
ADVANCED MATHEMATICS
MASTER’S FINAL PROJECT

Comparing Galois representations
and the Faltings-Serre-Livné method

Author:
Ignasi Sánchez Rodríguez

Supervisor:
Dr. Luís Dieulefait

Dr. Nuno Freitas

Facultat de Matemàtiques i Informàtica

September 7th, 2020

http://www.johnsmith.com
http://www.jamessmith.com
http://www.jamessmith.com




iii

Contents

Abstract v

Acknowledgements vii

Introduction 1

1 Basic concepts 3
1.1 Algebraic Number Theory . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Primes and ramification . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Frobenius element . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Linear representations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.1 Linear representation of finite groups . . . . . . . . . . . . . . . 7
1.2.2 Galois Representations . . . . . . . . . . . . . . . . . . . . . . . 9

Galois representations attached to an elliptic curve . . . . . . . 12
Galois representations and modular forms . . . . . . . . . . . . 17

2 Comparing Galois representations: the residually irreducible case. 21
2.1 The deviation group δ(G) . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2 The method of the quartic fields . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 Rational elliptic curves of conductor 11. . . . . . . . . . . . . . 29
2.2.2 Another application of the method of quartic fields: There is a

unique modular elliptic curve over Q of conductor 5077. . . . . 37

3 Comparing Galois representations: the residually reducible case. 43
3.1 The Faltings-Serre-Livné criterion . . . . . . . . . . . . . . . . . . . . . 43

4 Conclusions and Future Work 51

A Code and functions 53
A.1 Code for the example of conductor 11 . . . . . . . . . . . . . . . . . . 53

A.1.1 Check Ramification at 2 . . . . . . . . . . . . . . . . . . . . . . 53
A.1.2 Check hypothesis for general N . . . . . . . . . . . . . . . . . . 54

A.2 Code for the example of conductor 5077 . . . . . . . . . . . . . . . . . 55
A.2.1 Find matrix order . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2.2 Find quadratic extensions of K . . . . . . . . . . . . . . . . . . 56
A.2.3 Check the hypothesis on the traces . . . . . . . . . . . . . . . . 57
A.2.4 Possible fields K̃/K . . . . . . . . . . . . . . . . . . . . . . . . 59

A.3 Code for the example of conductor 33 . . . . . . . . . . . . . . . . . . 60
A.3.1 Find fixed field by modular residual representation . . . . . . . 60
A.3.2 Livné’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B Group isomorphisms from the quartic field method 63
B.1 Proof GL2(F2) ∼= S3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
B.2 Proof M2(F2) ∼= F2

2 ⊕ V4 . . . . . . . . . . . . . . . . . . . . . . . . . . 63



iv

Bibliography 65



v

UNIVERSITAT DE BARCELONA

Abstract
Facultat de Matemàtiques i Informàtica

MSc

Comparing Galois representations and the Faltings-Serre-Livné method

by Ignasi Sánchez Rodríguez

In 1984, Jean-Pierre Serre, based on the ideas of Gerd Faltings, explained in his
course at the Collège de France a method for comparing irreducible `-adic Galois
representations. This method would later be anointed as the Faltings-Serre method
by the mathematical community. In 1987 Ron Livné gave an algorithm to compare the
case of 2-dimensional 2-adic Galois representations with even trace. In 2008 Gabriel
Chênevert generalised it erasing the condition on the traces. In this thesis we are
going to draw on his work to explore and formalise Serre’s ideas. In addition, we are
going to collect some examples from Serre himself in the case of 2-dimensional 2-adic
Galois representations from elliptic curves to understand the use of it and we are going
to explain them in detail. Finally, we are also going to study Livné’s approach and
give an example of this as well.

HTTP://WWW.UB.EDU
http://mat.ub.edu




vii

Acknowledgements
M’agradaria primer donar les gràcies als meus dos tutors, Luís Dieulefait i Nuno

Freitas, per la seva inestimable ajuda durant tot el treball. En especial, durant aque-
stes últimes setmanes del mes d’agost, que rebien un correu meu cada dia amb inces-
sants dubtes i sempre contestaven amb la major rapidesa i detall. Moltes gràcies per
tot el que heu fet per mi.

També voldria agrair a totes les professores de la Facultat de Matemàtiques i
Informàtica, qui m’han obert les portes al món de les matemàtiques, del qual no puc
ni vull escapar. Especialment, m’agradaria agrair a la Teresa Crespo, qui ha sigut una
ajuda constant durant els meus anys de grau i qui em va obrir les portes a la teoria
de nombres i a la teoria de Galois.

Agrair també a en Santi Seguí, en Jordi Vitrià i n’Oriol Pujol per apropar-me a la
banda de Ciència de Dades i fer-me sentir una persona molt vàlida en aquest àmbit.
Treballar i, sobretot, aprendre d’ells ha estat una de les millors experiències que un
pot desitjar de la universitat.

Finalment, agrair a la meva família: als meus pares, Josep i Lupe, als meus ger-
mans, Albert i Gemma i als meus amics, els quals han escotat queixes constants de
què no arribava a acabar i han suportat el meu mal humor quan no em sortien els
resultats (ho sento!). Gràcies a l’Enric per pensar amb mi i oferir rutes alternatives
a qualsevol raonament que no sortia bé. I gràcies a l’Aina per escoltar-me dia a dia,
animar-me quan no sortien les coses i estar amb mi quan no em trobava bé. T’agraeixo
tot el que fas cada dia per mi.





1

Introduction

In the past century, there has been an increasing trend in mathematics to study
complex objects by how they act on spaces sharing common features. This is, in a
broad sense, what we call a representation. Particularly, mathematicians are highly
interested in representations arising from the action of a group G on vector spaces
over a field E. Such representations give rise to group homomorphisms from G to the
invertible matrices with coefficients in E and are called linear representations of G
over E. In this thesis we study certain representations of this kind arising naturally
in Number Theory.

The central object of study in Algebraic Number Theory is the absolute Galois
group of Q, denoted as GalQ := Gal(Q/Q), consisting of all field automorphisms of the
algebraic closure Q of Q. The representations of GalQ and of its subgroups are called
Galois representations. The 1-dimensional representations of GalQ are well understood
via Class Field Theory, but understanding the representations of dimension n ≥ 2 is
an extremely difficult problem. A general approach to this end is to "visualise" pieces
of GalQ via its action on certain geometric objects. This idea, in the particular
case of 2-dimensional representations, has seen a lot of research done during the last
decades, and has yielded some fantastic results. The most famous of which being the
proof by Wiles et al. (chronologically: [34], [33] and [5]) of one of the most famous
theorems in mathematics: Fermat’s Last Theorem. More recently, a full proof of
Serre’s conjecture was found by Khare and Wintenberger [16, 17]. These are however
only the first steps into what is known as the Langlands program, that consists of a
web of conjectures, according to which all Galois representations arising from geometry
should be automorphic. In view of these conjectures a natural question arises: given
two Galois representations that should be isomorphic according to the Langlands
program can we show they are actually isomorphic?

In this thesis we study methods that allow us to give a positive answer to the
previous question under certain hypothesis. For us, the study of isomorphisms of
Galois representations taking values on a finite extension of Q`, the field of `-adic
numbers, starts with Gerd Faltings, in his 1983 paper [12]. In 1984, Jean-Pierre Serre
gave a course in the Collège de France, in which he implemented Falting’s ideas into
a computable method for the case of 2-dimensional representations taking values in
Q2. Around the same time, using Serre’s method, François Mestre [19], gave an ex-
ample of how to prove that a particular elliptic curve, the one of conductor 5077,
was modular. Unfortunately, we do not know of any available notes of Serre’s course,
except for a short summary [29] and a letter he wrote to Tate [27] describing it. In
1987, Ron Livné [18] gave a further refinement of Serre’s method and, in 2008, Gabriel
Chênevert [8] made a generalization of Livné’s method. There are other articles ap-
plying variants of the method, for example, in [11] it is used to prove the modularity
of elliptic curves over imaginary quadratic fields and in [14] it is used to prove the
modularity of Calabi-Yau surfaces and threefolds. However only in very recent works
a more systematic approach to the method has been detailed. Indeed, there has been
a systematic study by two PhD students of John Cremona: Alejandro Argáez [2] and
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Mattia Sanna [26] in the 2-dimensional 2-adic and 3-adic cases respectively; more-
over, in [7] the authors describe the method applied to representations valued in the
symplectic group GSp(Q2) with absolutely irreducible residual image and remarkably
estabilsh ‘paramodularity’ of the abelian surface of conductor 277 as a consequence.
Despite of these latest efforts, there are still aspects of Serre’s method whose details
are not available in the literature. The objective of this thesis is to understand the
method proposed by Serre [27, 29], describe it in a more modern and general manner,
following [8], and to fill in the missing details of his computations and arguments.

The thesis is structured in the following way: In Chapter 1 we are going to give
the basic definitions from Algebraic Number Theory to follow the main statements of
the theorems. We are also going to introduce linear group representations, giving the
example of linear representations of a finite group G over the field of complex numbers
C. Then, we are going to define `-adic Galois representations, and give the definition
of representations arising from elliptic curves and modular forms. This will be used
afterwards in the examples by Serre.

In Chapter 2, we are going to introduce the essential tool when comparing Galois
representations, the deviation group δ(G). Then we are going to see Serre’s method,
the method of quartic fields or the Faltings-Serre method, for comparing two `-adic
representations with irreducible residual representation. Particularly, we are going to
detail the 2-dimensional 2-adic case. Then we are going to study the examples that
Serre talks about in his letter to Tate [27]. These are the following:

• There is only one Q-isogeny class of Q-elliptic curves of conductor 11.

• There is only one Q-elliptic curve of conductor 5077 which is modular.

Finally, in Chapter 3 we are going to present the generalisation by Ron Livné [18]
which covers the case of the two representations having reducible residual image using
Faltings’ and Serre’s ideas. We are also going to look at a concrete example: we are
going to prove that the elliptic curve of conductor 33 is modular.
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Chapter 1

Basic concepts

In this chapter we are going to introduce basic concepts from Algebraic Number
Theory and the necessary theory of linear representations that we are going to need
for this thesis.

1.1 Algebraic Number Theory

Any book on Algebraic Number Theory covers the topics we are going to talk about.
To cite a few, [20], [25] or [28].

1.1.1 Primes and ramification

Let K be a number field, let OK be its ring of integers and let L/K be a finite
extension with OL the ring of integers of L.

Since OL is a Dedekind domain, for any prime ideal p ⊆ OK (which we call a finite
prime of K), we can consider the prime decomposition of the ideal of OL, namely pOL:

pOL = Pe1
1 · · ·P

eg
g .

where the Pi are different prime ideals of OL which we call primes above p, primes
lying over p or primes dividing p. More in general, a prime P ⊆ OL is said to divide
p if p = P ∩ OK . Also, g =: gL/K(p) is a positive integer and the ej =: e(Pj/p) are
also positive integers called the ramification index for Pj/p. In a Dedekind domain,
every nonzero prime ideal is a maximal ideal, hence kPj := OL/Pj and kp := OK/p
are fields, which we call residue fields. They are finite fields of characteristic p, being
p a rational prime satisfying pZ = p ∩ Z. We may view kp as a subfield of kPj .
Particularly, we define the residual degree as their field extension degree, i.e.

f(Pj/p) := [kPj : kp].

If the extension L/K is Galois, then Gal(L/K) acts transitively on the set of
primes lying over p by permutation, so every ramification index and residual degree
are equal, independent of Pj .

In general, for any finite extension L/K and any prime p in OK , one has the
formula

gL/K(p)∑
i=1

e(Pj/p)f(Pj/p) = [L : K].

Particularly, in the Galois case the formula is simplified to efg = [L : K].
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For p a finite prime of K we differentiate between three possible situations:

1. If e(Pj/p) = 1 for 1 ≤ j ≤ g, we say that p is unramified in L/K. Otherwise
we say that p ramifies.

2. If gL/K(p) = 1 and e(P1/p) = 1, i.e. if p stays prime in OL, we say that p is
inert in L/K

3. If gL/K(p) = [L : K], we say that p is totally split in L/K.

There is different way of defining ramification in the Galois case, which will be
more useful to us. Let L/K be a Galois extension. Then for a prime p ⊆ OK and
P ⊆ OL a prime lying over it, we define the decomposition group at P/p as the
stabiliser at P of the action of Gal(L/K) on the set of primes above p. That is,

D(P/p) := {σ ∈ Gal(L/K) | σ(P) = P}.

The decomposition group acts on OL/P by σ(x+P) = σ(x) +P, so particularly,
it surjects onto Gal(kP/kp), the Galois group of the residual extensions. This yields
a short exact sequence

1 // I(P/p) // D(P/p) // Gal(kP/kp) // 1 (1.1)

where the kernel of the surjection, I(P/p), called the inertia group can be explicitly
written as

I(P/p) = {σ ∈ D(P/p) | σ(x) ≡ x (mod P), ∀x ∈ OL}.

When I(P/p) = 1, the prime p is unramified. Also, looking at the definitions of
both groups, it can be seen that for any σ ∈ Gal(L/K) the following identities are
satisfied

σD(P/p)σ−1 = D(σ(P)/p) and σI(P/p)σ−1 = I(σ(P)/p)

When L/K is Galois and finite, we can compute the order of the decomposition
and inertia groups.

The order of the decomposition group can be computed using the fact that it is
the stabiliser at P of Gal(L/K) acting on the set of primes above p. By the formula
above, efg = [L : K] = |Gal(L/K)|. Particularly, g = |Gal(L/K)|/ef . Now, by the
orbit-stabiliser theorem, we have that the order of an orbit of an element is equal to
the index between the group and the stabiliser. In this case, g is the order of the
orbit of a prime P lying over p, Gal(L/K) is the group and D(P/p) is the stabiliser.
Hence, we have

g =
|Gal(L/K)|

ef
and g =

|Gal(L/K)|
|D(P/p)|

.

Particularly, |D(P/p)| = ef .
To find the order of the inertia group, using the exact sequence (1.1), we have that

|I(P/p)| = |D(P/p)|
|Gal(kP/kp)|

=
ef

f
= e.
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1.1.2 Frobenius element

Following from the definition of the decomposition group, let L/K be a Galois exten-
sion of a number field K and let p be a finite prime of K and P a finite prime of L
lying over it.

If p is unramified, then I(P/p) = 1, hence the exact sequence (1.1) gives an
isomorphism between D(P/p) and Gal(kP/kp). The group Gal(kP/kp) is cyclic of
order a power of p and it is generated by the Frobenius homomorphism x 7→ xp. So,
there is a unique element of Gal(L/K) which is contained in D(P/p) and maps to
the Frobenius homomorphism by the isomorphism between the two groups. We call
this element the Frobenius element at P/p and denote it by Frob(P/p). Now, for any
σ ∈ Gal(L/K), we have

Frob(σ(P)/p) = σ Frob(P/p)σ−1.

So, we can define a conjugacy class in Gal(L/K) which contains Frob(P/p). We call
it the Frobenius element at p and denote it by Frobp. Explicitly,

Frobp = {Frob(P/p) | pOL ⊆ P}.

There is a concrete characterisation of the Frobenius element:

Proposition 1.1.1. Let L/K be a Galois extension, p a non-zero finite prime of K
unramified in L/K and P a finite prime of L lying over p. Then Frobp is the unique
σ ∈ Gal(L/K) that satisfies

σ(α) ≡ αNL/K(p) (mod P).

A very important theorem for us is the following

Theorem 1.1.2 (Weak Chebotarev). Let L/K be a Galois extension, unramified
outside a finite set of primes S. Then the Frobenius elements of unramified primes in
L/K are dense in Gal(L/K).

1.2 Linear representations

We are going to state some basic definitions and properties of linear group repre-
sentations over a field K of characteristic 0. We are then going to briefly look at
the classification of linear representations of a finite group over C, which will serve
as a clarifying example for the definitions given before, and finally we are going to
define and give some important examples of Galois representations, the main object
of interest in this thesis.

Definition 1.2.1. Let K be a field of characteristic 0, let G be a group and let
V be a finite dimensional vector space over K. Any K-linear action of G onto V ,
ρ : G −→ GL(V ), is called a K-valued representation of G.

The representation is usually denoted as the linear action and the vector space,
i.e. it is the pair (ρ, V ). Sometimes, when the space V and the field K are well
understood, they are omitted and the representation is just denoted as ρ.

Since we are asking for the vector space V to be finite dimensional, let n = dimK V .
In this case, we say that the representation ρ is of dimension n. Choosing a basis for V
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gives an isomorphism GL(V ) ∼= GLn(K). This allows us to denote the representation
as (ρ, V ) or (ρ,K, n). For example, when K = C, the complex numbers, we are going
to say that we have a complex representation of dimension n of G, ρ : G −→ GLn(C).

There is no harm in asking for G, V andK to have an endowed topology respecting
their algebraic structure and that the homomorphism ρ : G −→ GL(V ) is continuous,
since we could always endow everything with the discrete topology. In this work, we
are always going to assume that the representations are continuous.

If we have W ⊆ V a vector subspace, stable under the action of G, that is,

ρ(g)(w) ∈W, ∀g ∈ G, ∀w ∈W,

we call the representation ρ : G −→ GL(W ) a subrepresentation of ρ. In particular,
this gives the following definition:

Definition 1.2.2. A representation ρ : G −→ GL(V ) is called simple or irreducible if
its only possible subrepresentations are W = {0} and W = V .

We say that a representation ρ : G −→ GL(V ) is semisimple if it can be written
as a direct sum of simple subrepresentations.

Definition 1.2.3. Consider two representations (ρ1, V1) and (ρ2, V2), where V1, V2

are two vector spaces over K. A homomorphism of representations is a K-linear map
f : V1 −→ V2 such that

f ◦ ρ1(g) = ρ2(g) ◦ f.

If the homomorphism f is invertible, we say that ρ1 is isomorphic to ρ2 and write
ρ1
∼= ρ2.
Every representation ρ : G −→ GL(V ) admits a Jordan-Hölder composition series,

i.e. a decreasing filtration

V = V0 ) V1 ) · · · ) Vm = 0.

where Vi+1 is a maximal proper G-stable subspace of Vi or equivalently, Vi/Vi+1 is
simple. Let us write JH(ρ) for the set of isomorphism classes of the simple quotients
Vi/Vi+1 with multiplicities. It is a standard fact in representation theory that JH(ρ)
does not depend on the choice of Jordan-Hölder composition series for ρ. This allows
us to define an equivalence relation on the set of representations which is coarser than
being isomorphic:

Definition 1.2.4. We say that two representations of G, (ρ1, V1), (ρ2, V2) are equiv-
alent and write ρ1 ∼ ρ2 if JH(ρ1) = JH(ρ2).

Theorem 1.2.5. Let (ρ1, V1) and (ρ2, V2) be two representations of G. Then

1. If ρ1
∼= ρ2, then ρ1 ∼ ρ2.

2. If ρ1, ρ2 are semisimple, then ρ1
∼= ρ2 if and only if ρ1 ∼ ρ2.

3. For every representation ρ, there exists a unique (up to isomorphism) semisimple
representation ρss such that ρ ∼ ρss. Concretely, if

JH(ρ) = {(W1,m1), . . . , (Wr,mr)},

then ρss is the action of G on Wm1
1 ⊕ · · · ⊕Wmr

r .
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The isomorphism class of the semisimple representation ρss is called the semisim-
plification of ρ. From 2 and 3, we deduce

ρ1 ∼ ρ2 ⇐⇒ ρss1
∼= ρss2 .

The problem of deciding when two semisimple representations in characteristic
0 are isomorphic is completely determined by their trace. Given a representation
ρ : G −→ GL(V ), its trace is the continuous function

tr(ρ) : G
ρ−→ GL(V )

tr−→ K.

Proposition 1.2.6. Let ρ1 and ρ2 be two semisimple representations of a group G
with values in K. Then,

ρ1
∼= ρ2 ⇐⇒ tr(ρ1) = tr(ρ2).

Particularly, from the theorem above it follows that

ρ1 ∼ ρ2 ⇐⇒ ρss1
∼= ρss2 ⇐⇒ tr(ρ1) = tr(ρ2).

Notice that we write tr(ρ1) = tr(ρ2) instead of tr(ρss1 ) = tr(ρss2 ), which is the equality
that one would expect. This is because the trace does not distinguish a representation
ρ from its semisimplification ρss, since it is additive on short exact sequences whether
they are split or not.

1.2.1 Linear representation of finite groups

Suppose now we are on the setting of G a finite group and K = C. We are going to
see that the representations of G are determined by the group of characters of G.

Theorem 1.2.7. Every representation of a finite group G, ρ : G −→ GL(V ) is
semisimple.

The proof of this theorem can be found on any book on representations. It usually
involves the construction of a Hermitian product H(·, ·) and then for any subrepre-
sentation W , we can find the orthogonal space to W using the product. This gives a
decomposition of V as W ⊕W⊥.

This tells us that classifying representations modulo ∼= or modulo ∼ is indifferent
in the finite case. Of course, this is not true in general:

• If G is infinite, let ρ : Z −→ GL2(C) the representation defined by

ρ(1) =

(
1 1
0 1

)
.

The only subrepresentation of dimension 1 is the subspace spanned by (1 0)T .

• If the characteristic of the field where the vector space is defined divides the
order of the group. For example, let p be a prime and let ρ : Z/pZ −→ GL2(Fp)
the representation defined by

ρ(1) =

(
1 1
0 1

)
.
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Then, as before, the only subrepresentation of dimension 1 is the subspace
spanned by (1 0)T .

Given ρ, a complex n-dimensional representation of a finite group G, we define the
character attached to ρ, denoted as χ : G −→ K, as the trace of the representation.

It can be proved that for any g ∈ G, the image of g, ρ(g) ∈ GLn(C) is diagonaliz-
able and the eigenvalues of the matrix are the roots of unity dividing the order of the
group. Particularly,

χ(g) =
∑

λ∈Spec(ρ(g))

λ =
∑
d||G|

e2πi|G|/d.

Let us see some properties that characters satisfy in this setting. Let
ρ : G −→ GL(V ) be a representation of dimension n and let χ be its character. Then,
for every g ∈ G,

1. χ is constant in the conjugacy classes of G.

2. χ(g) is an algebraic integer, i.e. χ(g) ∈ Q.

3. |χ(g)| ≤ n and |χ(g)| = n ⇐⇒ ρ(g) = Id. Particularly, χ(idG) = n.

We want to classify the representations of G modulo isomorphism. In the vector
space of functions φ : G −→ C we define the Hermitian product

(φ, ψ) =
1

|G|
∑
g∈G

φ(g)ψ(g).

Let C be the subspace of all the functions G −→ C which are constant in the
conjugacy classes defined with the same Hermitian product. Such a function is called
a class function. As we saw in the properties of the characters of a representation
above, a character χ is a class function.

Theorem 1.2.8. The set of characters of the irreducible representations of G define
an orthonormal basis for C.

In particular, if ρ : G −→ GL(V ) is a representation of dimension n, one has the
following remarks:

• The number of non-isomorphic irreducible representations of G is equal to the
number of conjugacy classes of G.

• Let JH(ρ) = {(U1,m1), . . . , (Ur,mr)} be a list of all the non-isomorphic irre-
ducible representations of G. Let ρi be the induced representation of Ui and χi
the attached character. Then V can be written as

V = Um1
1 ⊕ · · · ⊕ Umrr ,

and the mi satisfy
χ = m1χ1 + · · ·+mrχr.

Therefore, all the necessary information to decompose representations of a finite
group G in irreducible sums is given in the character table for G. This table is an
r× r matrix with values χi(cj), where the cj are the representatives of the conjugacy
classes of G.
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Example 1.2.9. The standard example is to give the conjugacy classes of the group
Sm. To make it easy, we can choose G = S4.

The conjugacy classes of a symmetric group Sm are given by the partition numbers
of m. For m = 4, we have the following cases:

Partition of 4 Associated ci
1 + 1 + 1 + 1 id

2 + 1 + 1 (12)
3 + 1 (123)
2 + 2 (12)(34)

4 (1234)

1.2.2 Galois Representations

Definition 1.2.10. Let L/K be a Galois extension of number fields, let E be a field
of characteristic 0 and let V be a finite dimensional vector space over E. A Galois
representation is a linear representation of Gal(L/K) over V

ρ : Gal(L/K) −→ GL(V ).

First of all, let us remark that the usual definition of a Galois representation is by
using the absolute Galois group GalK . Both definitions are equivalent, since given

ρ : GalK −→ GL(V ),

such that Ker(ρ) = Gal(K/L), by the isomorphism theorem and Galois theory one
has

Im(ρ) ∼= GalK /Ker(ρ) ∼= Gal(K/K)/Gal(K/L) ∼= Gal(L/K).

Let us look at one of the simpler examples, the representation given by a cyclotomic
character.

Example 1.2.11. (Complex cyclotomic character). Let χ : (Z/NZ)× −→ C× be
a primitive Dirichlet character. Let ζN be a primitive Nth root of unity. Then
Gal(Q(ζN )/Q) ∼= (Z/NZ)×. Particularly, GalQ can be restricted to Gal(Q(ζN )/Q),
which gives the commutative diagram

GalQ

πN
����

Gal(Q(ζ)/Q)
∼ //

ρχ,N
&&

(Z/NZ)×

χ
zz

C×

The Dirichlet character χ determines a homomorphism

ρχ = ρχ,N ◦ πN : GalQ −→ C×.

It satisfies that ρχ(conj) = χ(−1) and for any prime p ⊆ OQ = Ẑ lying over a rational
prime p with p - N , i.e. p does not ramify in Q(ζN )/Q, then ρχ(Frobp) = χ(p).
To show that the homomorphism is continuous, it suffices to check that ρ−1

χ is open,
and this holds because the anti-image is Gal(K/Q) for some Galois number field
K ⊆ Q(ζN ).
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Any continuous homomorphism ρ : GalQ −→ GLn(C) factors through
Gal(K/Q) −→ GLn(C) for some Galois number field K. Particularly, the repre-
sentation ρ has finite image. For a 1-dimensional representation ρ : GalQ −→ C×,
having finite image implies, by the Kronecker-Weber theorem, factoring through
Gal(Q(ζN )/Q) for some N . Thus all complex 1-dimensional representations factor
through ρχ for a primitive Dirichlet character χ whose N has to be chosen properly.

However, the representations we are interested in, for example those that arise from
Q-abelian varieties, have E a finite extension of Q` for a rational prime `. Hence, let
E be a local number field, i.e. a finite extension of Q`, with ring of integers Oλ having
maximal ideal λ.

Definition 1.2.12. Let V be a vector space over E and let ρ be a continuous linear
action of Gal(L/K) on V ,

ρ : Gal(L/K) −→ GL(V ).

We call the couple (ρ, V ) a λ-adic Galois representation of the group Gal(L/K).

We can also look at the `-adic cyclotomic character

Example 1.2.13. (`-adic cyclotomic character). Let K be a number field and let ζ`n
be a primitive `n-root of unity in K with (ζ`n)` = ζ`n−1 . For σ ∈ GalK and i ≥ 0,
define a sequence of integers ai ∈ F`,

σ(ζ`) = ζa1`
σ(ζ`2) = ζa1+a2`

`2
...

σ(ζ`n) = ζa1+a2`+···+an`n−1

` .
...

Then we define the `-adic cyclotomic character χ` : GalK −→ Z×` ⊆ GL1(Q`) as

χ`(σ) = a1 + a2`+ · · ·+ an`
n−1 + . . . .

Notice that the value χ` (mod `n) simply says what σ does to the `n roots of unity.
It is easy to check that the cyclotomic character is multiplicative. It is also easy to
check that it is continuous: taking Fn = K(ζ`n), then Gal(K/Fn) 7→ 1 (mod `n) so
χ` is continuous. Hence, it defines a 1-dimensional `-adic representation.

This representation also satisfies that χ`(conj) = −1 and as before χ`(Frobp) = p
when p 6= `.

We are now going to see that any λ-adic representation can be seen as having
values in Oλ.

Definition 1.2.14. Let V be a finite dimensional vector space over E. An Oλ-lattice
Λ is a Oλ-submodule of V spawned by E-linearly independent vectors. If the vectors
of the basis of V over E, then we call Λ a full Oλ-lattice.

Since we are considering ρ to be continuous, we have the following proposition:

Proposition 1.2.15. Let (ρ, V ) be a λ-adic Galois representation of a Galois group
G = Gal(L/K). Then ρ stabilizes a full Oλ-lattice of V .
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Proof. Let Λ be a full lattice of V . Then ρ(G)(Λ) = {ρ(g)(v) | ∀g ∈ G, ∀v ∈ Λ} is a
lattice. Consider the subgroupH ofG that stabilizes Λ, i.e. H = {g ∈ G | ρ(g)Λ = Λ}.
By continuity of ρ, H is open, and being G profinite (hence compact), H has finite
index. Indeed, Λ is open and compact by definition, so its stabilizer in GL(V ) is open.
Therefore, the lattice T generated by the lattices ρ(σ)Λ, for σ ∈ G/H is stable under
the action of the Galois group.

Corollary 1.2.16. Choosing a E-basis of V which is a Oλ-basis for a full lattice Λ
under ρ, we have ρ : G −→ GLn(Oλ) ⊆ GLn(E).

Remark 1.2.17. We have seen in Definition 1.2.3 that two K-valued representations
are isomorphic if and only if they are conjugated, i.e., there exists P ∈ GLn(K) such
that Pρ1P

−1 = ρ2. This is not true when we are considering the representations with
values on Oλ. For example, let G = C2 the cyclic group of 2 elements and let K = Q2.
Consider the following representations

ρ1(σ) =

(
0 1
1 0

)
, ρ2(σ) =

(
1 0
0 −1

)
.

The matrix

P =

(
1 1
1 −1

)
satisfies Pρ1P

−1 = ρ2. However, if ρ1 and ρ2 were conjugate over Oλ = Z2, then they
would be conjugated modulo 2, but this is impossible since the reduction modulo 2 of
ρ2(σ) is the identity and the one of ρ1(σ) isn’t.

Definition 1.2.18. A homomorphism ρ : Gal(L/K) −→ H is unramified at a prime
p ⊆ OK if

I(P/p) ⊆ Ker(ρ),

for any prime P ⊆ OL above p.

Given S a finite set of primes of K, let IS be the closed normal subgroup of
Gal(L/K) generated by all the inertia subgroups I(P/p) for p 6∈ S. Then the quotient

Gal(L/K)S := Gal(L/K)/IS

is the largest continuous quotient of Gal(L/K) which is unramified outside S. By the
Galois correspondence, there exists a subextension LS of L/K such that

IS = Gal(L/LS)

is the maximal subextension of L unramified outside S. More generally, for any
topological group H, the continuous homomorphisms ρ : Gal(L/K) −→ H that are
unramified outside S are precisely those that factor through the quotient

Gal(L/K)S = Gal(LS/K).

Proposition 1.2.19. Let E be a local number field and V a finite dimensional vector
space over E. Let ρ1 and ρ2 be two representations of the absolute Galois group GalK
into GL(V ) which are unramified outside S. Then

ρ1 ∼ ρ2 ⇐⇒ tr(ρ1(Frobp)) = tr(ρ2(Frobp)), ∀p 6∈ S.
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Note that the trace is constant on conjugacy classes, so the right hand side makes
sense.

Proof. The equivalence class of a continuous representation ρ : Gal(L/K) −→ GL(V )
unramified outside S is determined by its trace. In particular, we may view the trace
map as a continuous function on Gal(LS/K), which is determined by its restriction
to a dense subset.

In addition to considering a single λ-adic Galois representation, sometimes is
needed to vary λ and consider families of representations satisfying a compatibility
condition.

Given K and E two number fields, and λ a prime of E, let Sλ denote the set of
primes of K which divide N(λ).

Definition 1.2.20. An E-rational compatible system of λ-adic representations of
degree n of GalK is a family indexed by the finite places λ of E,

ρ = {ρλ : GalK −→ GLn(Eλ)}λ,

where Eλ is the completion of E at λ, for which there exists a finite set S of primes
of K such that for every λ:

• ρλ is unramified outside S ∪ Sλ.

• for every prime p 6∈ S ∪ Sλ of K, the characteristic polynomial

det(1− tρλ(Frobp)) ∈ Eλ[t]

has coefficients in E and does not depend on λ.

The minimal set S satisfying these two conditions will be denoted Ram(ρ).
For the purposes of this thesis, we are interested in the following type of compatible

system: Given a representation ρ : GalK −→ GLn(E) with finite ramification, we can
associate a compatible system

ρλ := ρ⊗ Eλ.

Particularly, given a representation ρ as above, we can define the set Ram(ρ) as
the finite set for this compatible system.

Example 1.2.21. An example for this is E = Q and then for every rational prime `,
define the system of representations ρ` = ρ⊗QQ`. The condition on the characteristic
polynomial in this case is that it is an element of Q[t]. We are going to see another
example in the case of representations arising from an elliptic curve E/Q.

Galois representations attached to an elliptic curve

Let E be an elliptic curve defined over a number field K. Then one may define Galois
representations attached to the elliptic curve by letting the absolute Galois group
GalK act on sets of torsion points of E.

Let σ ∈ GalK and let E be an elliptic curve defined over K. Let P = (x, y) be
a point on E(K). The automorphism σ acts on P coordinate wise, so if P satisfies
the defining Weierstrass equation for E, so does σ(P ) = (σ(x), σ(y)). Particularly,
for every P,Q ∈ E, σ(P +Q) = σ(P ) + σ(Q). So, σ induces a group homomorphism
E(K) −→ E(K) and furthermore, it induces a map of the m-torsion points E[m](K)
by restriction, σm : E[m](K) −→ E[m](K).
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Since E[m](K) ∼= (Z/mZ)2, we can choose two points P,Q ∈ E[m](K) which span
it. Particularly, every point in E[m](K) can be written as a Z/mZ-linear combination
of P and Q. So, since we have a basis of this space, we can write σm as a 2×2 matrix

Aσ =

(
a b
c d

)
, a, b, c, d ∈ Z/mZ

which satisfies (
σm(P )
σm(Q)

)
=

(
a b
c d

)(
P
Q

)
.

This gives a group homomorphism

ρm : GalK −→ Aut(E[m]) ∼= GL2(Z/mZ)
σ 7−→ Aσ

.

This is Galois representation which we call the mod m Galois representation at-
tached to E or the residual representation of E mod m.

Notice that the kernel of this map are those σ ∈ GalK such that Aσ = Id.
That is, the σ which leave fixed the m-torsion points of E, namely the subgroup
Gal(K/K(E[m](K))). So, we have

ρm(GalK) ∼= GalK /Ker(ρm) ∼= GalK /Gal(K/K(E[m](K))) ∼= Gal(K(E[m](K))/K),
(1.2)

Example 1.2.22. The 2-torsion points of a rational elliptic curve can be easily de-
scribed. We are going to see some results on Chapter 2, §2.2. For now, let us state
some results without proof.

Let E be an elliptic curve over Q. Its 2-torsion subgroup, E[2] ∼= F2
2 is given by 4

points. Particularly, if E is given by a Weierstrass equation

y2 = x3 +Ax+B,

then a point (x, y) ∈ E[2] must satisfy y2 = 0, hence, the 2-torsion points consist
of points of the form (x, 0). Consequently, let E[2] = {O, (a, 0), (b, 0), (c, 0)}, with
a, b, c ∈ Q and O the identity element of E seen as a group. Then the 2-torsion field
Q(E[2]) = Q(a, b, c).

Since a, b, c are solution to an equation with rational coefficients, we can have 1 or
3 rational roots. If a, b, c ∈ Q, then Q(E[2]) = Q and the representation ρ2 is trivial
by (1.2).

If we have two or more roots in Q \Q, then Q(E[2])/Q is an extension with irre-
ducible polynomial of degree at most 3, so Gal(Q(E[2])/Q) is a transitive subgroup
of S3, which can only be the alternating group A3 or S3 itself. It is a simple ex-
ercise of Galois theory to check that the condition for one or the other is whether
the discriminant of the polynomial x3 + Ax + B is a square in Q (in which case
Gal(Q(E[2])/Q) ∼= A3) or not (in which case Gal(Q(E[2])/Q) ∼= S3).

In fact, since GL2(F2) ∼= S3, whenever the discriminant of x3 + Ax + B is not a
square in Q, the representation ρ2 : GalQ −→ GL2(F2) is surjective.

Surjectivity in the case of residual representations (in the non CM case at least)
is not that “rare”. In [30], Serre proves the following theorem:
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Theorem 1.2.23. Let K be an algebraic number field and E an elliptic curve defined
over K without complex multiplication. Then, for all but finitely many primes `, the
residual representation

ρ` : GalK −→ GL2(F`)

is surjective.

One is usually interested in a broader picture than the m-torsion points of an
elliptic curve. Recall that given an elliptic curve over a number field K and given a
rational prime `, we can define the Tate module of E,

T`(E) = lim←−
m

E[`m].

The inverse limit is given by the multiplication by ` isogeny, [`] : E[`n+1] −→ E[`n].
The Tate module is a free Z`-module of rank 2; this can be easily seen, since
E`n ∼= (Z/`nZ)2 and lim←−n Z/`

nZ = Z`. Denote by V`(E) the finite dimensional Q`-
vector space obtained by extension of scalars from T`(E), i.e.,

V`(E) = T`(E)⊗Z` Q`.

Then one defines the `-adic representation of E as

ρE,` : GalK −→ Aut(V`(E)).

Choosing a basis of T`(E) in the natural manner (i.e. choosing the basis for E[`n]
as above) gives a Z`-basis in V`(E) = T`(E) ⊗Z` Q`, which gives the isomorphism
GL2(Q`) ∼= Aut(V`(E)) and also this basis forms a full Z`-lattice of V`(E). We know
that ρE,` stabilises a full Oλ-lattice of V , by Proposition 1.2.15, but we would like to
prove that this particular Z`-lattice is the one being stabilised. This requires some
computations.

For ease of reading during this part, let T` = T`(E) and V` = V`(E). We can write
V` as the localisation of T` at 1/`, V` = T`[1/`]. Then,

V`/T` = T`[1/`]/T` =
⋃
n

`−nT`/T`.

Note that `−nT`/T` ∼= T`/`
nT` ∼= E[`n]. Hence,

V`/T` ∼=
⋃
n

E[`n].

This induces an isomorphism Aut(V`/T`) ∼= Aut(
⋃
nE[`n]). We want to see that

there is an isomorphism between Aut(T`) and Aut(V`/T`). We have the commutative
diagram
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...
...

...

`−nT`/T`
∼ //

[`]

OO

T`/`
nT`

∼ //

proj

OO

E[`n]

[`]

OO

`−n−1T`/T`
∼ //

[`]

OO

T`/`
n+1T`

∼ //

proj

OO

E[`n+1]

[`]

OO

...

[`]

OO

...

proj

OO

...

[`]

OO

where [`] denotes the multiplication by ` isogeny. These give a natural inclusion map
`−(n+1)T`/T` −→ `−nT`/T` which give V`/T` as a projective limit. Taking inverse
limit on T`/`

nT` ∼= E[`n] gives again the Tate module T`. And obviously, since
E[`n] ∼= (Z/`nZ)2, taking projective limits gives Z2

` . So we can redraw the diagram
above as:

...
...

...

`−nT`/T`
∼ //

[`]

OO

T`/`
nT`

∼ //

proj

OO

E[`n]

[`]

OO

`−n−1T`/T`
∼ //

[`]

OO

T`/`
n+1T`

∼ //

proj

OO

E[`n+1]

[`]

OO

...

[`]

OO

...

proj

OO

...

[`]

OO

V`/T`

OO

∼ // T`

OO

∼ // Z2
`

OO

Finally, the same diagram is given when taking automorphisms,

...
...

...

Aut(`−nT`/T`)
∼ //

OO

Aut(T`/`
nT`)

∼ //

OO

GL2(Z/`nZ)

OO

Aut(`−n−1T`/T`)
∼ //

OO

Aut(T`/`
n+1T`)

∼ //

OO

GL2(Z/`n+1Z)

OO

...

OO

...

OO

...

OO

Aut(V`/T`)

OO

∼ // Aut(T`)

OO

∼ // GL2(Z`)

OO
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So, denoting by E[`∞] =
⋃
nE[`n], we have an `-adic representation

φE,`∞ : GalK −→ Aut(E[`∞]) ∼= GL2(Z`).

Considering the inclusion GL2(Z`) ↪−→ GL2(Q`), then the representations φE,`∞
and ρE,` give the same representation: the action of GalK on V` is determined by the
action of GalK on T`.

Again in [30], Serre gives a theorem for surjectivity in the non-CM case:

Theorem 1.2.24. Let K be a number field and E an elliptic curve without com-
plex multiplication. Then for all but finitely many primes `, we have ρE,`(GalK) =
Aut(E[`∞]).

Our interest in this thesis is to compare Galois representations, i.e. to determine
when two representations are equivalent. As we have seen in Proposition 1.2.19, a way
to do so is by comparing the traces of the representations in the Frobenius elements
at unramified primes. The following proposition is going to help us to compute these
traces in the case of elliptic curves:

Proposition 1.2.25. Let ` be a prime and let E be an elliptic curve over Q with
conductor N . The Galois representation ρE,` is unramified at every prime p - `N .
For any such p, let p be a prime above it. Then, one has

tr(ρE,`(Frobp)) = ap(E) and det(ρE,`(Frobp)) = χ`(Frobp) = p,

where χ` is the `-adic cyclotomic character. In particular, the characteristic polyno-
mial of ρE,`(Frobp) is:

x2 − ap(E)x+ p.

Remark 1.2.26. For E an elliptic curve defined over a number fieldK, one can consider
the system of `-adic representations

ρE, := {ρE,` : GalK −→ GL2(Q`)}` prime number

Even though they are representations into different groups, they share many proper-
ties, since they come from the elliptic curve E. For example, for each finite prime
p of K, the type of reduction of E at p carrier information about the image of the
decomposition group at this prime by the representation ρE,`. An application of this
observation is the Néron-Ogg-Shafarevich criterion [32, Ch. 7, Thm. 7.1].

This allows us to generalise the proposition above:

Proposition 1.2.27. Let E be an elliptic curve defined over a number field K, let
` be a rational prime and let p be a finite place of K of good reduction for E such
that p - `. Let Frobp be an element of GalK projecting onto the Frobenius map in
Gal(kp/kp), the absolute Galois group of the residue field kp. Then,

tr(ρE,`(Frobp)) = ap = 1 +NK/Q(p)−#E(kp)

det(ρE,`(Frobp) = NK/Q(p),

where NK/Q(p) is the norm of p in K/Q which is equal to the cardinal of the residual
field kp. Particularly, the characteristic polynomial is

x2 − apx+NK/Q(p).
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Finally, one might consider what is the representation of the full torsion group
of E, that is, Etors =

⋃
nE[n]. One can define the automorphisms of Etors as the

projective limit
Aut(Etors) = lim←−

n

Aut(E[n])

Since E[n] ∼= (Z/nZ)2, Aut(E[n]) ∼= GL2(Z/nZ), so taking projective limits on both
sides yields

Aut(Etors) = GL2(Ẑ),

where Ẑ is the Prüfer ring, lim←−Z/nZ. The Galois group GalK acts continuously on
Aut(E[n]), hence, it acts continuously on Aut(Etors), giving the representation

ρE : GalK −→ Aut(Etors) ∼= GL2(Ẑ).

Galois representations and modular forms

We are going to associate a Galois representation to a modular curve X1(N) and
we are going to see that we can decompose them into 2-dimensional representations
associated to modular forms. This will give the desired representation ρf,` for a given
modular form f .

Let N be a positive integer and let ` be a rational prime. The modular curve
X1(N) is a projective nonsingular algebraic curve over Q. Let g denote its genus.
The complexification X1(N)C defined by the same equations but viewing the curve
over C, can also be viewed as a compact Riemann surface. The Jacobian of a modular
curve is a g-dimensional complex torus:

J1(N) = Jac(X1(N)C) ∼= Cg/Λg.

The Picard group of the modular curve is the Abelian group of divisor classes of
the points of X1(N),

Pic0(X1(N)) = Div(X1(N))/Div`(X1(N)).

The group Pic0(X1(N)) can be identified with a subgroup of Pic0(X1(N)C) and
the complex Picard group is naturally isomorphic to the Jacobian by Abel’s theorem.
Thus, there is an inclusion of `n-torsion,

in : Pic0(X1(N))[`n] −→ Pic0(X1(N)C)[`n] ∼= (Z/`nZ)2g.

Igusa’s theorem states that X1(N) has good reduction at primes p - N , so also
there is a natural surjective reduction map Pic0(X1(N)) −→ Pic0(X̃1(N)) which
restricts to

πn : Pic0(X1(N))[`n] −→ Pic0(X̃1(N)[`n].

From algebraic geometry, let X be a curve of genus g over a field K and let M be
an integer coprime to the characteristic of K. Then Pic0(X)[M ] ∼= (Z/MZ)2g and if
X has good reduction at a prime p -M over Q, then the reduction map is injective on
Pic0(X)[M ]. Particularly, the inclusion in is an isomorphism and so is the surjection
πn for p - `N .

Now we define the `-adic Tate module of X1(N) as

T`(Pic0(X1(N))) = lim←−
n

Pic0(X1(N))[`n].
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Much in the same way as in the previous section, choosing a basis for Pic0(X1))[`n] ∼=
(Z/`nZ)2g gives an isomorphims

T`(Pic0(X1(N))) ∼= Z2g
` .

Any σ ∈ GalQ defines an automorphism in Div0(X1(N)),

σ
(∑

nP (P )
)

=
∑

nP (σ(P )),

i.e. it acts on the points. Since σ(div(f)) = div(σ(f)) for any f ∈ Q(X1(N)), the
automorphism descends to Pic0(X1(N)), giving an action,

Pic0(X1(N))×GalQ −→ Pic0(X1(N)).

Said action restricts to the `n-torsion (this is because the extension overQ obtained
by attaching the `n torsion of the Picard group is Galois). This gives a commutative
diagram

GalQ

((vv
Aut(Pic0(X1(N))[`n]) Aut(Pic0(X1(N))[`n+1])oo

which allows us to take inverse limits and define the 2g-dimensional `-adic Galois
representation associated to X1(N),

ρX1(N),` : GalQ −→ GL2g(Z`) ⊆ GL2g(Q`).

We could have defined V`(X1(N)) = T`(X1(N))⊗Z` Q` as we did in the previous
section and by a similar argument, deduce that the representation over V`(X1(N))
has actually values on Z`, since the Galois groups acting on V`(X1(N)) actually acts
on T`(X1(N)). Or viceversa, we could have given the arguments we have given in this
section in the previous one. In fact, this latter approach is the one taken in [10].

Now we want to restrict this representation to be the representation of a modular
form f .

Recall that the Hecke algebra TZ is the algebra is the algebra of End(S2(Γ1(N)))
generated over Z by the Hecke operators. It acts on Pic0(X1(N)) linearly, which
restrictrs to the `n torsion and so the action extends to T`(Pic0(X1(N))). The Galois
action and the Hecke action on Pic0(X1(N)) commute and therefore so do the two
actions on T`(Pic0(X1(N))).

We have similar proposition to Proposition 1.2.25:

Proposition 1.2.28. Let ` be a prime and let N be a positive integer. The Galois
representation ρX1(N),` is unramified at every prime p - `N . For any such p, let p be
a prime above it. Then the characteristic polynomial of ρX1(N),`(Frobp) is

x2 − Tpx+ 〈p〉p.

Consider a normalized eigenform f ∈ S2(N,χ). The Hecke algebra contains an
ideal associated to f , the kernel of the eigenvalue map

If = {T ∈ TZ | Tf = 0},
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and the Abelian variety attached to f is defined as

Af = J1(N)/IfJ1(N).

There is an isomorphism

TZ/If ∼= Of :=
⊕
n≥0

Z[an(f)].

Under this isomorphism, the Fourier coefficients ap(f) act on Af as Tp + If . Also, Of
contains the values χn for positive n and χ(p) acts on Af as 〈p〉+ If .

LetKf denote the fraction field of the ringOf . It is a number field whose extension
degree d = [Kf : Q] is also the dimension of Af as a complex torus. As with elliptic
curves and modular curves, the Abelian variety has an `-adic Tate module (as a matter
of fact, elliptic curves’ is just an example of this one),

T`(Af ) = lim←−
n

Af [`n] ∼= Z2d
` .

The action of Of on Af is defined on the `n-torsion and extends to an action of T`(Af ).
The following lemma shows that GalQ acts on T`(Af ).

Lemma 1.2.29. The map Pic0(X1(N))[`n] −→ Af [`n] is surjective. Its kernel is
stable under the action of GalQ.

Proof. The proof is more involved than we would like to get, since it uses the homology
of X1(N)C. It can be seen in [10], Lemma 9.5.2.

So, GalQ acts onAf [`n] and therefore on T`(Af ). The action commutes with the ac-
tion of Of since the action of GalQ and the one from TZ commute on T`(Pic0(X1(N))).
Choosing coordinates appropriately gives a Galois representation

ρAf ,` : GalQ −→ GL2d(Q`).

The representation is unramified at primes p - `N since its kernel contains Ker(ρX1(N),`).
For any such prime p, let p be a prime above it. Then at the level of Abelian varieties
we have that Tp acts as ap(f), the pth Fourier coefficient of f , and 〈p〉 acts as χ(p),
the character of the space of cusp forms where f is, S2(N,χ), hence Proposition 1.2.28
says that the characteristic polynomial of ρAf ,`(Frobp) is

x2 − ap(f)x+ χ(p)p.

The Tate module T`(Af ) has rank 2d over Z`. Since it is an Of -module, the tensor
product V`(Af ) = T`(Af )⊗Z`Q` is a module over Of ⊗Q` = Kf ⊗QQ`. The absolute
Galois group GalQ acts (Kf ⊗Q Q`)-linearly on V`(Af ) ∼= (Kf ⊗Q Q`)

2. Choosing a
basis B of V`(Af ) gives an isomorphism GL2(Kf ⊗Q Q`) ∼= Aut(V`(Af )).
Remark 1.2.30. We recall the following result from Algebraic Number Theory. Let
E be a number field and OK its ring of integers. Completing E by a prime λ ⊂ OE
gives the field Eλ with ring of integers

OE,λ = lim←−
n

OE/λn.

If ` is a rational prime such that λ is above `, then Z` is a subring of OE,λ and Q` a
subfield of Eλ. Let fλ be the residual degree f(λ/`) = [kλ : F`] and eλ the ramification
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index e(λ/`). Then [Eλ : Q`] = eλfλ and there is a ring isomorphism

E ⊗Q Q`
∼=
∏
λ|`

Eλ.

Then, Kf ⊗Q Q`
∼=
∏
λ|`Kf,λ, so for each λ we have

ρf,λ : GalQ −→ GL2(Kf ⊗Q Q`) −→ GL2(Kf,λ).

This proves that for every normalised eigenform f ∈ S2(N,χ) with number field
Kf , ` a prime, for each λ maximal ideal of OKf lying over `, there exists a 2-
dimensional Galois representation

ρf,λ : GalQ −→ GL2(Kf,λ).

This representation is unramified at every prime p - `N and for any such p with p a
prime lying over it, the image of the Frobenius at p has characteristic polynomial

x2 − ap(f)x+ χ(p)p.

To finish off both examples, we have two theorems which are going to be very
important for the examples of representations arising from abelian varieties.

Theorem 1.2.31. If A is an abelian variety defined over a number field K, then
V`(A) = T`(A) ⊗ Q` is a semisimple representation for the absolute Galois group
GalK of K.

Theorem 1.2.32. Let A and A′ be two abelian varieties defined over a number field
K. Then A and A′ are K-isogenous if and only if V`(A) ∼ V`(A′).
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Chapter 2

Comparing Galois representations:
the residually irreducible case.

2.1 The deviation group δ(G)

LetG be an arbitrary group and let E be a local field with ring of integersOλ, maximal
ideal λ and residue field k. Let ρ1, ρ2 : G −→ GLn(Oλ) be two λ-adic representations.
We are interested in deciding when ρ1 ∼ ρ2, that is, when the semisimplifications of
ρ1 and ρ2 are isomorphic. In order to do this, we are going to construct a group δ(G)
in which we will be able to find a finite set of elements where, if the representations
coincide, then their semisimplifications will be isomorphic, otherwise, they won’t.

Let us start by extending the map ρ1 × ρ2 : G −→ GLn(Oλ) × GLn(Oλ) to an
homomorphism of Oλ-modules

ρ : Oλ[G] −→Mn(Oλ)⊕Mn(Oλ).

Recall that Oλ[G] is the group Oλ-module for G, i.e. it is the Oλ-module with basis
the elements of G, which can be described as:

Oλ[G] =


∑
i∈I

#I<∞

aigi

∣∣∣∣∣∣∣∣ ai ∈ Oλ, gi ∈ G
 .

For x =
∑
aigi ∈ Oλ[G], we set

ρ
(∑

giai

)
=
(∑

aiρ1(gi),
∑

aiρ2(gi)
)
.

Notice that it is only natural that the image is not in GLn(Oλ)×GLn(Oλ) since, in
general, it is not true that GLn(Oλ) is closed under Oλ-linear combinations.
Remark. Notice that Oλ[G] andMn(Oλ)⊕Mn(Oλ) are rings, and also Oλ is contained
in the center of Oλ[G] and Mn(Oλ) ⊕Mn(Oλ), then we can see them both as Oλ
associative algebras. Particularly, ρ is an Oλ-algebra homomorphism.

Now let M be the image of ρ in Mn(Oλ)⊕Mn(Oλ) and consider the composition

δ : G −→M× −→ (M/λM)×.

Definition 2.1.1. The image δ(G) of G in (M/λM)× is called the deviation group
of the pair (ρ1, ρ2).

Remark. Consider the short exact sequence associated to the reduction modulo λ:

0 −→Mn(λ) −→Mn(Oλ) −→Mn(k) −→ 0.
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This short exact sequence identifies Mn(k)⊕Mn(k) with R/λR, where
R = Mn(Oλ) ⊕Mn(Oλ) (recall that given M,N two A-modules, for a commutative
ring A, and I ⊆ A an ideal, (M ⊕N)/I(M ⊕N) ∼= M/IM ⊕N/IN). Since δ(G) is
a subgroup of (M/λM)× and M ⊆ R, it might be tempting to think that δ(G) is a
subgroup of (R/λR)× = GLn(k)×GLn(k). To show that this is not the case, let

M = M/(M ∩ λR).

Since λM ⊆M ∩ λR, we have a short exact sequence involving M/λM :

0 −→ (M ∩ λR)/λM −→M/λM −→M −→ 0.

Writing G for the image of G in M× ⊆ (R/λR)×, we have a short exact sequence

1 −→ N(G) −→ δ(G) −→ G −→ 1, (2.1)

where the kernel N(G) is the image of ρ(G) ∩ (1 + λR) in (M/λM)×, and in general
its nonzero.

Proposition 2.1.2. The group δ(G) is finite. More precisely,

|δ(G)| < |k|2n2
.

Proof. M is a submodule of the free Oλ-module Mn(Oλ) ⊕Mn(Oλ). Since Oλ is a
local ring, M itself is free of rank r, where r satisfies the inequality

r ≤ rank (Mn(Oλ)⊕Mn(Oλ)) = 2n2.

Since M is an Oλ-module, M/λM is a k = Oλ/λOλ-algebra of dimension r, hence:

|δ(G)| ≤ |(M/λM)×| < |k|r ≤ |k|2n2
.

The following proposition is a step towards deciding when ρ1 ∼ ρ2.

Proposition 2.1.3. Let Σ be a subset of G surjecting onto δ(G). Then,

ρ1 ⊗ E ∼ ρ2 ⊗ E ⇐⇒ tr(ρ1(g)) = tr(ρ2(g)), ∀g ∈ Σ.

Proof. The implication ρ1 ⊗ E ∼ ρ2 ⊗ E ⇒ tr(ρ1(g)) = tr(ρ2(g)) is obvious.
For the other implication, suppose that ρ1 6∼ ρ2. Then tr(ρ1) 6= tr(ρ2) for some

g ∈ G. Since this is an inequality in Oλ, it implies that there exists an integer α ≥ 1
such that

tr(ρ1(g)) ≡ tr(ρ2(g)) (mod λα) and tr(ρ1(g)) 6≡ tr(ρ2(g)) (mod λα+1).

Choose an uniformiser π, i.e. choose π ∈ Oλ such that λ = πOλ. We can define
the map

φ̃ : G −→ Oλ
g 7−→ π−α[tr(ρ2(g))− tr(ρ1(g))]

Our objective now is to descend φ̃ to map Φ from δ(G) instead of G. Since Σ
surjects into δ(G), then we are going to be able to find an element g′ of this set such
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that Φ(δ(g′)) is not in λM , and hence, the traces restricted to the set Σ will also be
non-equal, which is what we want to prove.

This map can be extended to an Oλ-linear map

φ : M −→ Oλ, φ(M) 6⊆ λ.

Following the same steps as in the definition of δ(G), we have the following com-
mutative diagram:

G� _

i
��

φ̃ // Oλ

Oλ[G]
ρ // //M

φ

OO

To see that φ(M) 6⊆ λ, notice that φ(ρ(i(g))) = π−α[tr(ρ2(g)) − tr(ρ1(g))] 6∈ λ,
since tr(ρ2(g))− tr(ρ1(g)) 6≡ 0 (mod λα+1).

The map φ descends to a non-zero k-linear mapM/λM −→ k, hence to a function

Φ: δ(G) −→ k

which is non-zero because δ(G) spans M/λM (since ρ(G) spans M and δ(G) ⊆
(M/λM)× ⊆M/λM is the image of ρ(G)).

Hence, since Σ surjects onto δ(G), there exists a g′ ∈ Σ such that Φ(δ(g′)) 6= 0,
i.e.

φ(g) = π−α[tr(ρ2(g))− tr(ρ1(g))] 6∈ λ.

In particular, tr(ρ1(g′)) 6= tr(ρ2(g′)), so tr(ρ1)|Σ 6= tr(ρ2)|Σ.

Remark. When E = Q`, for a prime `, then we can choose ` as the uniformizer, hence
the map φ can be written as

φ(g) =
tr(ρ2(g))− tr(ρ1(g))

`α
.

Corollary 2.1.4. Let R be a class of representations of G defined over Oλ and Σ be
a subset of G surjecting onto all the deviation groups of pairs ρ1, ρ2 ∈ R. Then, given
two representations ρ1 and ρ2,

ρ1 ∼ ρ2 ⇐⇒ tr ρ1|Σ = tr ρ2|Σ.

In particular, if R is the class of representations of degree n, it is enough to ask
that Σ surjects onto all quotients of G of size bounded by |k|2n2 . If G has only a
finite number of such quotients, this gives an algorithm to decide the equivalence of
n-dimensional λ-adic representations of G.

Application to Galois representation

Given a number field K, we specialize now to the case G = Gal(K/K) = GalK , the
absolute Galois group of K.

Lemma 2.1.5. Let ρ1 and ρ2 be two λ-adic representations of GalK . Then δ(GalK)
is unramified outside of Ram(ρ1) ∪ Ram(ρ2).
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Proof. For a prime p 6∈ Ram(ρ1) ∪ Ram(ρ2), we have I(p) ⊆ Ker(ρ1) ∩ Ker(ρ2).
Hence, I(p) ⊆ Ker(ρ), where recall that ρ = ρ1× ρ2. That is, the image of ρ(GalK) is
unramified at p. Hence, δ(GalK) being a finite quotient of ρ(GalK), is also unramified
at p.

This is a better version of Proposition 1.2.19. This lemma is telling us that since
δ(G) is a finite group, it can be identified with a finite extension F/K unramified
outside of Ram(ρ1) ∪ Ram(ρ2).

Corollary 2.1.6. Given a finite set S of places of K and an integer n ≥ 1, there
exists a finite set of primes T disjoint from S such that if ρ1 and ρ2 are any λ-adic
representations of degree n of GalK , unramified outside S, then

ρ1 ∼ ρ2 ⇐⇒ tr ρ1|Σ = tr ρ2|Σ,

where Σ = {Frobp | p ∈ T}.

Proof. By the Minkowski theorem, there are only a finite number of Galois extensions
L/K unramified outside S and of degree bounded by |k|2n2 . One can take for T the
finite set of primes p for which the Frobenius elements Frobp exhaust all conjugacy
classes of Gal(L/K) for such extensions L/K.

2.2 The method of the quartic fields

In 1984-1985, Serre [27, 29], based on Falting’s ideas of the deviation group we have
introduced, made a computable method for these. He focused on the case of 2-adic
representations of dimension 2. Particularly, in [27] Serre explicitly uses the method
to solve two problems:

(a) Every elliptic curve over Q of conductor 11 is Q-isogenous to an already known
curve.

(b) (Following Mestre [19]) The known elliptic curve of conductor 5077 is “of Weil”,
i.e. modular.

We are going to develop the required theory for a general λ-adic representation of
dimension n and then we are going to specialise to the case λ = n = 2. After that,
we are going to explain in detail both examples above.

Let ρ1, ρ2 : G −→ GLn(Oλ) be two semisimple λ-adic representations of dimen-
sion n and let δ(G) be the associated deviation group to the pair. Let us suppose
that the residual representations ρ1, ρ2 : G −→ GLn(k) are equal, but that the repre-
sentations ρ1 ⊗ E and ρ2 ⊗ E are not isomorphic, i.e. conjugated by an element of
GLn(E).

Let β be the maximal integer such that ρ1 and ρ2 are conjugated modulo λβ . We
know that β ≥ 1, since ρ1 = ρ2. We have also seen in the proof of Proposition 2.1.3,
there exists a maximal α such that tr(ρ1) ≡ tr(ρ2) (mod λα) and tr(ρ1) 6≡ tr(ρ2)
(mod λα+1). Particularly, ρ1 and ρ2 are not conjugated modulo λα+1, hence β ≤ α.
In particular, β is finite.

Now, replacing ρ2 by a conjugate if necessary, we can assume

ρ1 ≡ ρ2 (mod λβ), ρ1 6≡ ρ2 (mod λβ+1).
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Hence, for every g ∈ G, we have

ρ1(g)− ρ2(g) ≡ 0 (mod λβ) =⇒ ρ1(g)− ρ2(g) = θgπ
β,

for some θg ∈Mn(Oλ) and π an uniformiser of λ. We can still simplify this equation
one more step:

ρ1(g)− ρ2(g) = θgπ
β =⇒ ρ1(g) = (1 + πβθgρ2(g)−1)ρ2(g).

Now, let θ : G −→Mn(Oλ) be the map g 7−→ θgρ2(g)−1. We can write

ρ2 = (1 + πβθ)ρ1. (2.2)

As a remark, notice that θ(G) 6⊆Mn(λ), since ρ1 6≡ ρ2 (mod λβ+1).
Whenever we have α = β, the α defined in Proposition 2.1.3, this particular

expression allows us to write the map defined in that as:

φ(g) =
tr(ρ2(g))− tr(ρ1(g))

πβ
= tr(θ(g)ρ1(g)),

which defines a map from the group G to Mn(Oλ) × GLn(Oλ), g 7−→ (θ(g), ρ1(g)).
This map does not require of α = β, it works in general, but it is a natural deduction
when it is the case. We are going to see that when n = λ = 2, Serre proves (in
the letter to Tate [27] which gave birth to this method) that α = β, and hence the
function defined in Proposition 2.1.3 descends to this function we just defined.

Restricting ourselves to the field k (we want it to factor through the deviation
group δ(G)), this map is a group homomorphism when we endow the image with the
semidirect product

(A,B) ? (C,D) = (A+ CBC−1, BD).

The following proposition proves it.

Proposition 2.2.1. If ρ1 6' ρ2, the function

ϕ : G −→ Mn(k) o GLn(k)
g 7−→ (θ(g) (mod λ), ρ1(g) (mod λ))

is a group homomorphism which factors through the deviation group δ(G).

Proof. First let us show that ϕ is a group homomorphism. That is, given g, h ∈ G we
want to show that

ϕ(gh) = (θ(gh) (mod λ), ρ1(gh) (mod λ)) =

= (θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ), ρ1(g)ρ2(h) (mod λ) = ϕ(g)ϕ(h),

where the product is the group operation in the semidirect product coming from
the action of GLn(k) on Mn(k) by conjugation. We already know that the second
component is that way, since ρ1 is already a group homomorphism. Hence, we need
to show that

ϕ(gh)1 = θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ).

For us to do so, using (2.2),

ρ2(g) = (1 + πβθ(g))ρ1(g) and ρ2(h) = (1 + πβθ(h))ρ1(h).
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Then, we also have
ρ2(gh) = ρ2(g)ρ2(h), (1)

for being ρ2 a group homomorphism, and again from (2.2),

ρ2(gh) = (1 + πβθ(gh))ρ1(gh). (2)

Now, (1) can be expanded using (2.2) on each term, which yields

ρ2(gh) = (1 + πβθ(g))ρ1(g)(1 + πβθ(h))ρ1(h) =

= ρ1(g)ρ1(h) + πβ(θ(g)ρ1(g)ρ1(h) + ρ1(g)θ(h)ρ1(h)) + π2βθ(g)ρ1(g)θ(h)ρ1(h).

Equaling the right hand side of the equation above with the right hand side of (2),
we obtain

ρ1(g)ρ1(h) + πβθ(gh)ρ1(g)ρ1(h) =

= ρ1(g)ρ1(h) + πβ(θ(g)ρ1(g)ρ1(h) + ρ1(g)θ(h)ρ1(h)) + π2βθ(g)ρ1(g)θ(h)ρ1(h)

Multiplying by ρ1(gh)−1 = ρ1(h)−1ρ1(g)−1 on the right and by π−β , we obtain an
equation for θ(gh):

θ(gh) = θ(g) + ρ1(g)θ(h)ρ1(g)−1 + πβθ(g)ρ1(g)θ(h)ρ1(g)−1.

Hence, since β ≥ 1, reducing modulo λ = πOλ, the desired equality.

ϕ1(gh) = θ(gh) (mod λ) = θ(g) + ρ1(g)θ(h)ρ1(g)−1 (mod λ).

Now, let us show that ϕ factors through δ(G), i.e. let us show that Ker(δ) ⊆
Ker(ϕ). Let g ∈ Ker(δ). Since ρ1 × ρ2(g) = ρ(g) ∈ 1 + λM , i.e. there exists
{ah}h∈G ⊆ Oλ with ah = 0 for almost all h ∈ G such that

ρ(g) = 1 + π
∑
h∈G

ahρ(h).

Since this is a cartesian product ρ1 × ρ2(g), the equation above is actually a pair of
equations

ρi(g) = 1 + π
∑
h∈G

ahρi(h).

For i = 1, this implies ρ1(g) ≡ 1 (mod λ). This gives us that the second component
of ϕ(g) is the identity element in GLn(k). Moreover, using (2.2), the equation for
i = 2 can be rewritten as

ρ1(g) + πβθ(g)ρ1(g) = 1 + π
∑
h∈G

ahρ1(h) + πβ+1
∑
h∈G

ahθ(h)ρ1(h).

Subtracting ρ1(g) = 1 + π
∑

h∈G ahρ1(h) and multiplying by π−β to both sides, we
obtain

θ(g)ρ1(g) = πβ
∑
h∈G

ahθ(h)ρ1(h).

Hence,
θ(g) = πβ

∑
h∈G

ahθ(h)ρ1(hg−1) ≡ 0 (mod λ).
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Therefore, the first component of ϕ(g) is the identity element inMn(k). Which finishes
the proof, since ϕ(g) = (0, 1), hence g ∈ Ker(ϕ).

Recall the short exact sequence (2.1). We can refine it to include ϕ(G), the image
of G in Mn(k) o GLn(k), such that

δ(G) // // ϕ(G) // // G .

Particularly, we can draw the full diagram

0 // (M ∩ λR)/λM //M/λM //M // 0

1 // N(G) //
?�

OO

δ(G) //
?�

OO

����

G //
?�

OO

1

ϕ(G)

<< <<

Remark 2.2.2. In general, one does not have that the map δ(G) � ϕ(G) is a monomor-
phism. From the proof of the Proposition above, we have that an element g ∈ G lies
in Ker(δ) if and only if

ρ1(g) = 1 + π
∑
h∈G

ahρ1(h),

θ(g) = π
∑
h∈G

ahθ(h)ρ1(hg−1)

for some ah ∈ Oλ, all zero except a finite amount of them.

Also, from (2.2), and the following lemma, we have

det(ρ1) = (1 + πβ tr(θ) +O(πβ
2
)) det(ρ2). (2.3)

Lemma 2.2.3. Let R be a commutative ring and let A ∈ GLn(R). Then, for k ∈ R,

det(1 + kA) = 1 + k tr(A) +O(k2).

Proof. This is straightforward to prove by induction. Start with n = 2, since the case
n = 1 is uninteresting. Let

A =

(
a b
c d

)
, 1 + kA =

(
1 + ka kb
kc 1 + kd

)
.

Then

det(1 + kA) =

∣∣∣∣1 + ka kb
kc 1 + kd

∣∣∣∣ = (1 + ka)(1 + kd)− k2bc = 1 + k tr(A) + k2 det(A).

Suppose then the result to hold for n− 1 and let us prove the case n. Let

A =

a11 · · · a1n
...

. . .
...

an1 . . . ann

 .
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We denote by Aij the matrix in GLn−1(R) which is the matrix A without the ith row
and without the jth column. Then,

det(1 + kA) = (1 + ka11) det(1 + kA11) +
n∑
i=2

(−1)i+1kai1 det(1 + kAi1) =

= det(1 + kA11) + k
n∑
i=1

(−1)i+1ai1 det(1 + kAi1).

Using the induction hypothesis on Ai1 for 1 ≤ i ≤ n, we have

det(1 + kA) = 1 + k tr(A11) +O(k2) + ka11 = 1 + tr(A) +O(k2).

So, in addition, by (2.3), if we require det(ρ2) = det(ρ1), then 0 = πβ tr(θ)+O(πβ
2
)

which multiplying by π−β implies:

tr(θ) ≡ 0 (mod λβ)

In particular, ϕ takes values in

M0
n(k) o GLn(k)

where M0
n(k) denotes the set of n× n matrices of trace 0.

Gabriel Chênevert in [8, p.114] has a remark in which he explains that in con-
versations with Serre, he showed in [27] that ρ1 and ρ2 are conjugated modulo 2α if
and only if tr(ρ1) ≡ tr(ρ2) (mod 2α). Particularly, α = β. This would mean that the
function φ considered in Proposition 2.1.3 defined as

φ(g) = 2−α(tr(ρ2(g))− tr(ρ1(g)) (mod 2)

descends to ϕ(G). Consequently, ϕ(G) can be used in place of δ(G) in Corollary 2.1.4,
which makes the application to decide whether two representations satisfying the
hypothesis of Serre are equivalent or not a lot easier. Namely, if ρ1 6∼ ρ2, α = β and
Σ ⊆ G surjecting onto ϕ(G), then there exists g ∈ Σ such that

tr(ρ1(g)) 6= tr(ρ2(g)).

Particularly,
tr(θ(g)ρ1(g)) ≡ tr(θ(g)ρ1(g)) 6≡ 0 (mod λ).

In this case, the image of ϕ can be computed. Let ρ1, ρ2 : G −→ GL2(Z2) two
2-adic representations such that det(ρ1) = det(ρ2) and the residual representations
are equal and surjective. Then, seeing M2(F2) as an S3-module under the action by
conjugation of GL2(F2) ∼= S3, we have1

M2(F2) ∼= F2
2 ⊕ V4,

1A proof of both isomorphisms above can be found in Appendix B. The second one is straightfor-
ward from the restriction of having trace zero.
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where V4 is the Klein group, which is isomorphic to F2
2. Likewise,

M0
2 (F2) ∼= F2 ⊕ V4, F2 =

{(
0 0
0 0

)
,

(
1 0
0 1

)}
.

Then, if ρ1 = ρ2 and its surjective, the second component of ϕ(G) is the full S3.
That is,

Im(ϕ) = N o S3,

where N is a subgroup of F2⊕V4
∼= F3

2. So, the index [F2⊕V4 : N ] is either 1, 2 or 4.
We know it can not be 8, because then it would imply that θ(g) = 0 for every g ∈ G,
i.e. tr(ρ1) ≡ tr(ρ2) (mod 2α+1), which is not true by hypothesis. Then, we the only
possibilities for M2(F2) o GL2(F2) are:

F2 o S3
∼= {±1} × S3, V4 o S3

∼= S4, (F2 ⊕ V4) o S3
∼= {±1} × S4.

2.2.1 Rational elliptic curves of conductor 11.

We let E11/Q be the elliptic curve of conductor 11 defined by the Weierstrass equation

E11 : y2 − y = x3 − x2.

We aim to show that every elliptic curve over Q of conductor 11 is Q-isogenous to E11.
This result was first obtained by Agrawal, Coates, Hunt, and van der Poorten in [1]
with a method that involved lots of computations. Later on, Serre on a letter to Tate
on the 26th of October of 1984 [27] and simultaneously on his course of 1984-1985 at
the Collège de France [29], gave a method applying Faltings’ ideas to prove this result
in a much shorter way, which is now known as the method of quartic fields.

We start with a general treatment of elliptic curves of prime conductor. Let E
be an elliptic curve over Q with prime conductor p 6= 2, 3. We can assume that E is
given by a Weierstrass model of the form

y2 = f(x) := x3 + a2x
2 + a4x+ a6, ai ∈ Q.

Suppose that E has no rational 2-torsion points. Since the 2-torsion points satisfy
y = 0 in the above model, it follows the cubic f(x) is irreducible over Q. Let K be
the splitting field of f(x), that is, K is the 2-torsion field of E. Let M be the subfield
of K generated by a root of f(x) and let F be a field such that K/F is a cubic cyclic
extension. This is possible because K/Q has degree 3 or 6, since f(x) is irreducible
and so Gal(K/Q) is embedded in a transitive subgroup of S3, the symmetric group on
3 elements. The only possible options are S3 or A3, the alternating subgroup of S3.
(Note that in the case [K : Q] = 3, we would have K = M and F = Q.) Hence, we
have the following field extension diagram:

K

M

1 or 2

F

3

Q

3 or 6

1 or 2

3

The following lemma is due to Setzer [31].
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Lemma 2.2.4. Keep the notation above.

(1) The Galois group Gal(K/Q) is S3.

(2) F = Q(
√
p) ⊂ K or F = Q(

√
−p) ⊂ K.

(3) The extension K/F is unramified outside the primes dividing 2.

Proof. We first show that p must factor inM as pq2. Since E has prime conductor p it
has multiplicative reduction at p and good reduction away from p. There is an integral
model of E, i.e. an equation for E of the form y2 = f(x) := x3 + b2x

2 + b4x+ b6 with
bi ∈ Z, where f(x) is irreducible and has a double and a simple root modulo p. The
splitting field of this new f is also K, and we let M ⊂ K be the subfield generated
by a root of f(x). Thus at least two primes of M divide p. Moreover, the model for
E can be chosen such that its discriminant is ∆ = ±212pn, for some n ≥ 1. (The
explicit computations can be found in Setzer’s article.) Hence, the only primes that
may ramify in M are those dividing 2 and p. However, there are no cubic extensions
of Q ramifying only at 22. Thus, some prime of M dividing p must ramify in M/Q,
which proves the factorization of p. In particular,M/Q cannot be Galois, proving (1).

Since the discriminant of f(x) is ±28pn, it differs from ∆ by a square factor. Hence
F = Q(

√
∆) = Q(

√
±pn) and part (2) follows if we show that p ramifies in F/Q. Let

e be the ramification index of a prime of K lying over p, and let f be its residual
degree. Let g be the number of primes dividing p in K, so that gfe = 6. But g ≥ 2
and 2 | e, from the factorization of p in M , thus g = 3, e = 2 and f = 1. Since K/F
is cubic it follows that all the ramification of p occurs in F/Q, proving (2). Further,
no other primes besides those dividing 2 and p can ramify in K/F , so (3) holds.

Corollary 2.2.5. Let E/Q be an elliptic curve of prime conductor p. Assume E has
no 2-torsion point defined over Q. Then Q(

√
∆) = Q(

√
p) or Q(

√
∆) = Q(

√
−p),

where ∆ is the discriminant of a model for E.

Proof. This follows from the proof of part (2) in Lemma 2.2.4 and the fact that the
discriminant of different models for E differ by a square in Q.

We can deduce further properties of E from the work of Brumer and Kramer. The
following is [6, Cor. 5.3].

Lemma 2.2.6. Let E/Q be a semistable elliptic curve of discriminant ∆. Suppose
that E has no rational points of order 2.

(1) If E has good ordinary reduction or multiplicative reduction at 2, then 3 divides
the order of the class group of Q(

√
∆) modulo the subgroup generated by the

classes of the ideals lying over 2. Particularly, 3 | h(Q(
√

∆)).

(2) If E has good supersingular reduction at 2, then:

(a) ∆ ≡ 5 (mod 8).

(b) For every α ∈ Q(
√

∆), for which the ideal generated by α is a cube of an
ideal prime to 2, we have α ≡ 1 (mod 2).

2https://www.lmfdb.org/NumberField/?degree=3&ram_quantifier=exactly&ram_primes=2&
search_type=List

https://www.lmfdb.org/NumberField/?degree=3&ram_quantifier=exactly&ram_primes=2&search_type=List
https://www.lmfdb.org/NumberField/?degree=3&ram_quantifier=exactly&ram_primes=2&search_type=List
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(3) Neither of ±∆ is a perfect square.

In our setting, the conductor of E is a prime p so E is semistable. A key hypothesis
in the previous results is E[2](Q) = ∅. For curves with prime conductor this is
described by the following result (see [31, Thm. 2]).

Lemma 2.2.7. Let p 6= 2, 3, 17 be a prime. There is an elliptic curve of conductor p
over Q with a rational 2-torsion point if and only if p = u2 + 64 for some integer u.

The following theorem describes the 2-torsion field of certain elliptic curves with
prime conductor for some primes.

Theorem 2.2.8. Let N ≡ 3 (mod 8) be a prime such that 3 does not divide the class
number of Q(

√
N) nor Q(

√
−N). Let E/Q be an elliptic curve of conductor N and

denote by K its 2-torsion field. Then, the following holds:

(a) Gal(K/Q) ' S3;

(b) K is the unique cubic cyclic extension of Q(
√
−N) of conductor (2);

(c) E has good supersingular reduction at 2.

Before proving it, we need a lemma.

Lemma 2.2.9. Let N > 3 be a prime such that 3 does not divide the class number
of Q(

√
N) nor Q(

√
−N). Then there exists a unique cubic cyclic Galois extension of

Q(
√
−N) which is a subfield of the ray class field with modulus (2).

Proof. Let L/Q(
√
−N) be the extension corresponding to the ray class group of mod-

ulus (2) (note that Q(
√
−N) is totally complex so we don’t have to allow ramifica-

tion at the primes at ∞). From [21, Ch. V, Thm. 1.7], we know that the degree
[L : Q(

√
−N)] = h(2) is given by the formula

h(2) = h · (U : U(2),1)−12r0NQ(
√
−N)/Q((2))

(
1− 1

NQ(
√
−N)/Q((2))

)
,

where h is the class number of Q(
√
−N), r0 = 0 is the number of real places in the

modulus (2), U is the group of units in Q(
√
−N) and U(2),1 is the elements of a ∈ U

which satisfy ord2(a − 1) ≥ 1. The units of Q(
√
−N) are {±1} (since N is a prime

greater than 3), hence (U : U(2),1)−1 = 1. We also have NQ(
√
−N)/Q((2)) = 4, thus

h(2) = 3h. By hypothesis, 3 - h so 3 divides h(2) exactly once, which implies there is
a unique degree 3 cyclic extension of Q(

√
−N) inside L.

Now we can prove the theorem.

Proof of Theorem 2.2.8. Recall that for any number field its narrow class number is
of the form 2sh where h is its class number. From our hypotheses, it follows that the
narrow class numbers of Q(

√
N) and Q(

√
−N) are not divisble by 3.

From Lemma 2.2.7 we see that E has no 2-torsion point defined over Q; indeed, if
N = u2+64, thenN ≡ u2 (mod 8) butN ≡ 3 (mod 8) and 3 is not a square modulo 8,
a contradiction. By Lemma 2.2.4 we conclude that Gal(K/Q) ∼= S3, proving (a).

From Corollary 2.2.5 we know that either F = Q(
√
N) ⊂ K or F = Q(

√
−N) ⊂ K

and, from part (3) of Lemma 2.2.4, all the ramification of K at p occurs in this
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quadratic subfield. Suppose that the common ramification index of the primes in K
above 2 is e2 = 2, then this ramification occurs also in F because K/F is cubic and
so K/F is unramified at all finite places, contradicting the assumption on the narrow
class number; if 2 is unramified in K we get a similar contradiction. Thus e2 = 3
because an S3-extension does not allow for totally ramified primes. Moreover, F is
unramified at 2, so F = Q(

√
−N) because N ≡ 3 (mod 8).

Using Lemma 2.2.9, one proves (b), since N satisfies the hypothesis.
Finally, from Serre [30] and the fact that inertia at 2 has order 3, we conclude that

E has good supersingular reduction at 2, proving (c).

Proposition 2.2.10. Let E1/Q and E2/Q be non-isogenous elliptic curves with odd
conductor N satisfying a2(E1) = a2(E2) ∈ {−2, 0, 2}. Suppose that ρ̄E1,2 ' ρ̄E2,2 so
that we can consider the map ϕ : GalQ −→ M0

2 (F2) o GL2(F2) defined in Proposi-
tion 2.2.1,

ϕ(g) =
(

2−β(ρE1,2(g)− ρE2,2(g)) (mod 2), ρ̄E1,2(g)
)
.

Write K for the common 2-torsion field of E1 and E2 and, let K̃ be the field fixed
by ϕ. Then the extension K̃/K is unramified outside N . Moreover, if N = p is prime
then Gal(K̃/Q) ' S4.

Proof. Suppose ρEi,2 is unramified at p for both i = 1, 2, then any inertia subgroup
Ip ⊆ GalQ is contained in Ker(ρEi,2) for i = 1, 2. Thus ϕ(g) = (0, 1) for all g ∈ Ip.
Therefore, the primes that may ramify in K̃ are a subset of those for which ρE1,2

or ρE2,2 ramify. Moreover, from Proposition 1.2.25 it follows that K̃ may ramify only
at primes p | 2N . So, the first statement follows if we show that K̃/K is unramified
at all primes of K above 2.

Since E1 and E2 have even trace of Frobenius at 2 they both have good supersingu-
lar reduction at 2. The theorem of Honda-Hill-Cartier [13] implies that the polynomial
of the formal group associated to Ei at 2 is the same as the characteristic polynomial
of the system of `-adic representations at 2. This says that a2(Ei) determines the
formal group of Ei at 2, which determines the 2-adic representation restricted to a
decomposition group D2 at 2. By assumption, we have a2(E1) = a2(E2) therefore
ρE1,2|D2

∼= ρE2,2|D2 , hence for all x ∈ D2 we have ϕ(x) = (0, ρE1,2(x)). In particu-
lar, for x ∈ I2 ∩ Gal(Q/K) we have ϕ(x) = (0, 1), hence K̃/K is unramified at all
primes p | 2 in K, as desired.

We will now prove the second statement. Assume N = p is a prime. Since
the curves are non-isogenous, K̃/K is non-trivial and we know that Gal(K̃/Q) is
isomorphic to one of C2 × S3, S4 or C2 × S4. Moreover, the first part of the proof
shows that the size of the inertia subgroups at 2 in K̃ is the same as in K which we
know to be 3 because the curves have good supersingular reduction at 2. Therefore,
ϕ(I2) is isomorphic to {0} ×C3 in the cases C2 × S3 and C2 × S4. In the former case
ϕ(I2) is a normal subgroup fixing a biquadratic extension of Q ramified only at p,
which does not exist. In the latter case, we have ϕ(I2) is contained in the normal
subgroup {0} × A4; thus {0} × A4 fixes also a biquadratic extenstion ove Q ramified
only at p, a contradiction. Thus Gal(K̃/Q) ' S4.

We now resume the discussion about elliptic curves of conductor 11 by Serre. First,
an easy Magma calculation shows that the 2-torsion field of the curve E11 is

K11 := Q(θ), where θ6 − θ5 + 2θ4 − 3θ3 + 2θ2 − θ + 1 = 0.
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We now prove the main theorem in Serre’s letter [27]

Theorem 2.2.11. Let E/Q be an elliptic curve with good reduction away from 11
and 2-torsion field equal to K11. Then, one of the following holds:

(i) a2(E) = −2 and E is Q-isogenous to E11;

(ii) a2(E) = 0 and E is Q-isogenous to y2 + y = x3−x2− 7x+ 10 of conductor 112;

(iii) a2(E) = 2 and E is Q-isogenous to y2+y = x3−x2−40x−221 of conductor 112.

In particular, there is only one Q-isogeny class of rational elliptic curves with conduc-
tor 11 and it satisfies a2 = −2.

Proof. Since K11/Q has inertia of order 3 at all primes dividing 2, it follows as in the
proof of Theorem 2.2.8 that E/Q has good supersingular reduction at 2, so a2(E) ≡ 0
(mod 2). By the Hasse bound |ap(E)| ≤ 2

√
p for p = 2 we obtain a2(E) ∈ {−2, 0, 2}.

(i) Suppose first a2(E) = −2. Arguing by contradiction, we will show that the
Galois representations ρE,2, ρE11,2 : GalQ −→ GL2(Z2) attached to E and E11 are
equivalent.

Since both mod 2 residual representations ρ̄E,2 and ρ̄E11,2 cut out the field K11,
they are both surjective, and hence equivalent.

Suppose that ρE,2 6∼ ρE11,2 and consider the map ϕ : GalQ −→M0
2 (F2)oGL2(F2)

defined in Proposition 2.2.1, where ρ1 := ρE,2 and ρ2 := ρE11,2. More precisely,

ϕ(g) =
(
2−α(ρ1(g)− ρ2(g)) (mod 2), ρ1(g)

)
.

and we let K̃ = QKer(ϕ) ⊃ K11 be the fixed field by Ker(ϕ). The assumption ρ1 6∼ ρ2

implies that K̃/K11 is a non-trivial extension. We will show that K̃/K11 is trivial,
obtaining a contradiction.

An easy calculation shows that a2(E11) = −2. Since a2(E) = a2(E11), by Propo-
sition 2.2.10, we have that K̃/K11 is unramified at 2 and Gal(K̃/Q) ' S4. Using the
Number Field Database (NFDB) [15], we obtain the complete list of degree 4 exten-
sions of Q unramified at outside {2, 11} and having Galois group S4. The resulting
fields are listed in Table 2.1 and K̃ must be one of them.

rd grd D h G Polynomial
12.08 13.56 −24113 1 S4 x4 − 2x3 − 4x2 − 6x− 2
7.28 14.89 −28111 1 S4 x4 − 2x2 − 4x− 1
9.38 19.78 −26112 1 S4 x4 − 2x3 − 3x2 + 2
24.16 27.12 −28113 1 S4 x4 − 44x+ 22
18.76 33.27 −210112 2 S4 x4 − 6x2 − 8x− 25
18.76 33.27 −210112 2 S4 x4 − 8x2 − 16x+ 24

Table 2.1: Table of possible fields with the following search restric-
tions: degree = 4; Galois T -number = 5; Ramifying primes limited to
{2, 11}; p = 2 has c in 0..Infinity; p = 11 has c in 0..Infinity.

Using the Magma code in Appendix A.1.1 one checks that, for all fields in Table 2.1
containing K11, the ramification at 2 in K̃/K11 is non-trivial, a contradiction.

(ii) Suppose now a2(E) = 0. Let E′ be the conductor 112 elliptic curve with CM
given by the Weierstrass equation E′ : y2 + y = x3 − x2 − 7x + 10. It is easy to
check that the 2-torsion field of E′ is also K11 and a2(E′) = 0. Thus a2(E) = a2(E′)

https://hobbes.la.asu.edu/NFDB/
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and a perfectly analogous argument to the case a2(E) = −2 (it gives the same list of
possible fields K̃) shows that ρE,2 ∼ ρE′,2, hence E and E′ are Q-isogenous.

(iii) For a2(E) = 2, we let E′ be the conductor 112 elliptic curve given by the
Weierstrass equation E′ : y2 + y = x3−x2−40x−221. Again, it is easy to check that
the 2-torsion field of E′ is K11 and a2(E′) = 2. The conclusion follows as above.

Note that Theorem 2.2.8 implies that every elliptic curve of conductor 11 has 2-
torsion field K11. Thus, the last statement follows because the previous three cases
are exhaustive.

Next we give a generalization by Nigel Boston [4] of part (i) of Theorem 2.2.11.
For it, we require of two auxiliary lemmas.

Lemma 2.2.12. Let K/Q` a local number field with [K : Q`] = d. Then, the index
of the groups [K× : K×

n
] and [U : Un] is

[K× : K×
n
] = n[U : Un] = n`dv`(n)|µn(K)|,

where |µn(K)| is the order of the group of n-th roots in K.

Proof. This is [25, Ch. 2, Cor. 5.8].

Lemma 2.2.13. Let N > 3 be a prime such that 3 does not divide the class number
of Q(

√
N) nor Q(

√
−N), let K be the unique cubic cyclic extension of Q(

√
−N) and

suppose that h(K) is odd. Then, there exists an exact sequence of F2[Gal(K/Q)]-
modules as follows:

0
δ0−→ B

δ1−→ U
δ2−→
⊕
℘|N

U℘
δ3−→ P

δ4−→ 0,

where U is the units of K modulo squares, U℘ is the units in K℘ (the completion
of K at the prime ℘) modulo squares, and P = Gal(L/K), where L/K is the maximal
elementary 2-abelian extension of K unramified outside the primes in K above N .

Proof. We will deduce the exact sequence from well known facts of class field theory.
From [21, Ch. V, Thm. 1.7] or [9, Ch. 3, Prop. 3.2.3], given the modulus m =
℘1℘2℘3 ⊆ OK , where the ℘i are the primes above N in K, one has the exact sequence

0 // Um
// O×K // (OK/m)× // Clm(K) // Cl(K) // 0

Notice that (OK/m)× =
∏
℘i

(OK/℘i)× �
� //

⊕
℘i
O×℘i , where O

×
℘i is the group of

units in the completions by ℘i ofK, namelyK℘i . So the map (OK/m)× // Clm(K)

factors through
⊕

℘i
O×℘i , which yields the exact sequence

0 // Um
// O×K //

⊕
℘|N O×℘ // Clm(K) // Cl(K) // 0

Notice that Cl(K) is killed modulo squares since it is an abelian group of order
|Cl(K)| = h(K), which is odd.

Boston’s theorem states:
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Theorem 2.2.14. Let N ≡ 3 (mod 8) be a prime such that 3 does not divide the class
number of Q(

√
N) nor Q(

√
−N), so that there is a unique cubic cyclic extension K

of Q(
√
−N) of conductor (2). Let M ⊂ K a cubic subfield. Suppose that h(M) is odd

and that the minimum polynomial of a fundamental unit of M has a quadratic residue
and a quadratic non-residue root modulo N .

Then there is at most one Q-isogeny class of elliptic curves over Q of conductor N
with given trace of Frobenius at 2.

Proof. Let E1/Q and E2/Q be elliptic curves of conductor N . By Theorem 2.2.8 it
follows that ρ̄E1,2 and ρ̄E2,2 are isomorphic, cut out the field K and both have good
supersingular reduction at 2, hence a2(Ei) ∈ {−2, 0, 2}.

Suppose that a2(E1) = a2(E2) and that E1 and E2 are not Q-isogenous. By
Proposition 2.2.10 there is an extension K̃/K unramified outside N and such that
Gal(K̃/K) ' S4. In particular, K̃ ⊂ L where L/K is the maximal elementary 2-
abelian extension of K unramified outside the primes in K above N .

We will reach a contradiction by showing L/K is trivial. The key idea is to use
two results of Nicole Moser. The first one, [23, Theorem IV.1], states

h(K) =
a

3
h(M)2h(Q(

√
−N)), a ∈ {1, 3}.

Since h(M) is odd by assumption and, from Genus theory, h(Q(
√
−N)) is also odd

then h(K) is also odd. The second one is [23, Proposition II.2], stating that K
has a Minkowski unit, i.e. a single generator of its unit group modulo torsion as a
Z[Gal(K/Q)]-module. From Lemma 2.2.13, using the fact that h(K) is odd, there is
an exact sequence of F2[Gal(K/Q)]-modules:

0
δ0−→ B

δ1−→ U
δ2−→
⊕
℘|N

U℘
δ3−→ P

δ4−→ 0,

We now analyze the terms in this sequence:

• We have dimF2(U) = 3. Indeed, Dirichlet’s unit theorem states that the group of
units is U = µK ×Zr+s−1, where µK is the group of roots of unity in K, r is the
number of real embeddings ofK and s is half the number of complex embeddings
of K. Note that µK = {±1} and K is totally complex (it contains Q(

√
−N)).

Therefore, r = 0, s = 3 and U ' {±1} ×Z2; so taking U modulo squares yields
U ' {±1}3, as desired.

• We have dimF2(U℘) = 1 by Lemma 2.2.12. Indeed, in the notation of that
lemma, we have ` = N , K = K℘, U = U℘, d = e(℘/N)f(℘/N) = 2, n = 2,
vN (2) = 0 and |µ2(K℘)| = |±1| = 2. Thus [U℘ : U2

℘] = N2vN (2)2 = 2, as desired.
Since N = ℘1℘2℘3 in K, we also have

dimF2

⊕
℘|N

U℘

 = 3 = dimF2(U).

• We have dimF2(P ) = dimF2(B). Indeed, we have an exact sequence of F2-vector
spaces (with an action of Gal(K/Q)), hence

dimF2

⊕
℘|N

U℘

 = dimF2(Ker(δ3)) + dimF2(Im(δ3)).
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By exactness, dimF2(Ker(δ3)) = dimF2(Im(δ2)) and since δ3 is surjective, Im(δ3) =
P . So, one has

dimF2

⊕
℘|N

U℘

 = dimF2(Im(δ2)) + dimF2(P ).

Now, dimF2(Im(δ2)) = dimF2(U)−dimF2(Ker(δ2)), and since δ1 is injective and
exactness, Ker(δ2) = Im(δ1) = B. So, we can write the equality of dimensions
as:

dimF2

⊕
℘|N

U℘

+ dimF2(B) = dimF2(U) + dimF2(P ).

Finally, since dimF2

(⊕
℘|N U℘

)
= dimF2(U), we are left with the equality we

were searching for,
dimF2(P ) = dimF2(B).

Recall that, to finish the proof, we want to show that L/K is trivial. By the previous
equality of dimensions this follows if we show B = 0. Since B = Ker(δ2) = Im(δ1),
to see that Ker(δ2) = 0 we need to see that no non-trivial element of U maps to zero
via δ2. The existence of a Minkowski unit implies that U ∼= {±1} ⊕ V , where V is an
irreducible 2-dimensional F2[Gal(K/Q)]-module. Since N ≡ 3 (mod 8), then −1 can
not be a square modulo N , so particularly it is non trivial in U℘i for 1 ≤ i ≤ 3. So,
what we need to do is find an element of V which is not a square mod ℘i for some i
and therefore is not in the ith component of the kernel of the map δ2. This will finish
the proof since V is irreducible.

One of the hypothesis of the theorem is that the minimum polynomial of a fun-
damental unit ω of M has a root that is a quadratic residue and another which is a
quadratic non-residue modulo N . From the proof of Setzer’s Lemma, we know that

NOM = pq2,

for p, q primes of OM . We know that the residual fields OM/p ∼= OM/q ∼= FN (since
f(p/N) = f(q/N) = 1). The irreducible polynomial of ω, namely fω, is a degree 3
polynomial (since there are no subextensions of M and ω 6∈ Q). And, by hypothesis,
it splits like

fω (mod p) ≡ fω (mod q) ≡ (x− b1)(x− b2)2 (mod N),

with bi ∈ FN and one of them being a square mod N and the other not. Moreover,

ω ≡ b1 (mod p), ω ≡ b2 (mod q).

Now we can think of ω as an element of K. The irreducible polynomial of ω in K
is still fω. Moreover, we have seen above that

NOK = ℘2
1℘

2
2℘

2
3.

So, since p and q2 must divide NOK , we have that p is totally ramified and q is
totally split in K/M . Moreover, we have for every 1 ≤ i ≤ 3 one of the two following
possibilities:

ω (mod ℘i) ≡ ω (mod p) ≡ b1, or
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ω (mod ℘i) ≡ ω (mod q) ≡ b2.

Since we cannot be in the same case for the three i, there is a ℘i such that ω (mod ℘i)
is not a square. Particularly, δ2(ω)i ∈ U℘i is non-trivial. Hence, ω 6∈ Ker(δ2).

Finally, to finish this example, we have written some code in Magma to check
which primes N satisfy the hypothesis of Boston’s theorem. It can be found on
Appendix A.1.2.

2.2.2 Another application of the method of quartic fields: There is
a unique modular elliptic curve over Q of conductor 5077.

Nowadays we know that every elliptic curve defined over Q is modular due to the work
of Breuil, Conrad, Diamond, and Taylor [5] which extends the groundbreaking work of
Andrew Wiles [34] on modularity of semistable elliptic curves over Q. Before the proof
of these general results, mathematicians were interested in providing evidence towards
them. In particular, Mestre [19] showed there exists a unique modular elliptic curve
over Q of conductor 5077. This was a proof of existence without an explicit equation
for the curve. Then, adapting Serre’s approach for conductor 11 described above,
Mestre also shows that the curve given by equation (2.4) is modular, by showing it is
Q-isogenous to the unique modular elliptic curve of conductor 5077.

In this section, we give a slightly modified proof of Mestre’s computations with
the aid of Magma. Indeed, we will show that the elliptic curve E3 of conductor 5077
defined by the Weierstrass equation

E : y2 − y = x3 − 7x+ 6 (2.4)

is modular. More precisely, let f ∈ S2(5077) be the newform with q-expansion

f(q) = q − 2q2 − 3q3 + 2q4 − 4q5 + 6q6 − 4q7 + 6q9 +O(q10).

This is the unique newform in S2(5077) with field of coefficients Kf = Q4. From
Chapter 1, we know that, for every prime `, the curve E and the newform f have
attached `-adic Galois representations, respectively,

ρE,` : GalQ −→ GL2(Z`) and ρf,` : GalK −→ GL2(Z`).

Futhermore, the curve E is modular if ρE,` ∼ ρf,` for one (hence all) prime ` and we
will estabilsh this for ` = 2. To this end, Mestre [19] states the following theorem
which he attributes to Serre from his course in the Collège de France in 1984-85, [29].

Theorem 2.2.15. Let E and E′ be two elliptic curves defined over Q having prime
conductor N and such that the 2-torsion field of both curves is the same S3-extension
K/Q. Suppose that a2(E) = a2(E′) is even and that E and E′ are not Q-isogenous.

Then, there exists a unramified extension K̃/K such that K̃/Q is a S4-extension.
Furthermore, ap(E) 6= ap(E

′) for every prime p where the Frobenius at p in Gal(K̃/Q)
has order 4.

We were not able to find a detailed proof of this theorem and we don’t know that
the theorem is correct, so we are not going to use it. The potential issue is that
it claims the extension K̃/K is unramified. We can only show it is unramified at

3https://www.lmfdb.org/EllipticCurve/Q/5077/a/1
4https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5077/2/a/a/

https://www.lmfdb.org/EllipticCurve/Q/5077/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5077/2/a/a/
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primes above 2 and not necessarily at primes above N . Nevertheless, we will reprove
Mestre’s example using this weaker version; this will require additional computational
arguments. Let us first translate the general picture of the theorem into the language
of Galois representations. Let

ρ, ρ′ : GalQ −→ GL2(Z2)

be the two irreducible 2-adic representations of E and E′ respectively.

• The condition on the 2-torsion fields implies that ρ = ρ′, since the 2-torsion
fields are the ones cut out by the residual representations. Particularly, it is the
field cut out by the second component of the map ϕ defined in Proposition 2.2.1.

• The condition a2(E) = a2(E′) is even and implies that the 2-adic representations
coincide in the inertia group at 2. This comes from the Honda-Cartier-Hill
theorem [13], which tells us that, since the curve E has supersingular reduction
at 2, ρ|D2

∼= ρ′|D2 , where D2 is the decomposition group at 2. The argument is
similar to the one in Proposition 2.2.10.

The extension K̃/K comes from applying the Faltings-Serre method as for N = 11.
Indeed, it is K̃ = QKer(ϕ) of and it has Galois group S4 over Q. To see that the
extension K̃/K is unramified at 2 we argue as in the proof of Proposition 2.2.10, but
we are unable to prove it is also unramified at 5077. (A soft reason for the possibility
of this being false is that Boston, almost 10 years later, published his paper which we
used above and he did not mention this result nor use it). Nevertheless, this is the only
step of the theorem that we don’t know that it is true, everything else follows from
Serre [27]. To see that Gal(K̃/Q) ∼= S4 we use the same argument as in the case of
conductor 11, by looking at the inertia at 2, we discard the cases Gal(K̃/Q) ∼= C2×Si,
with i = 3, 4.

Finally, we need to see that for every prime p, and p a prime lying over it in K̃,
where Frobp ∈ Gal(K̃/Q) has order 4, ap(E) 6= ap(E

′). Recall from Proposition 1.2.25,
that tr(ρ(Frobp)) = ap(E), so ap(E) 6= ap(E

′) implies tr(ρ(Frobp)) 6= tr(ρ′(Frobp)).
We have seen before Proposition 2.2.1, that if we have an element (M,N) ∈M0

2 (F2)o
GL2(F2) (particularly, in the image of ϕ), then the map φ = tr(MN) is enough to
determine when the two representations are equivalent.

Lemma 2.2.16. An element (M,N) ∈ M2(F2) o GL2(F2) satisfies φ(MN) 6= 0 if
and only if it has order 4 or 6.

Proof. Recall that we can identify GL2(F2) with S3 (as given in Appendix B). Then
the elements (M,σ) ∈M0

2 (F2) o S3 contained in the one of the following subgroups{(
0 0
0 0

)}
× S3, M0

2 (F2)× {idS3},
{(

1 0
0 1

)}
× {σ ∈ S3 | σ2 = idS3}

satisfy φ(Mσ) = 0. All the other elements, the ones that have non-trivial image by
φ, correspond to elements of order 4 or 6 in M0

2 (F2) o S3
∼= F3

2 o S3
∼= C2 × S4.

Particularly, the elements of order 4 correspond to elements of {1}×S4 or {−1}×S4

and the elements of order 6 correspond to elements of order 3 of S4 and C2, since
there are no elements of order 6 in S4.

Particularly, since we have seen that Gal(K̃/Q) ∼= S4, it is enough to search for the
elements of order 4 in the image of ϕ, and these are the ones coming from a Frobenius
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element of order 4, as we wanted. This completes the proof of Theorem 2.2.15, except
for claim about the ramification at N .

As mentioned in the beginning of this section, we will prove modularity of E by
comparing its 2-adic representation to that of f . The arguments we have seen above
were mostly using properties of the Galois representations attached to the elliptic
curves E and E′, so it is natural to expect that we can proceed similarly with the
representation attached to f . This however, introduces some additional challenges as
we shall explain next.

Step 1. Firstly, we have to show that both residual representations

ρE,2, ρf,2 : GalQ −→ GL2(F2)

determine the same S3-extension K/Q, which implies they are isomorphic. Note
that the image of these residual representations is a subgroup of GL2(F2) ∼= S3,
so the extension K/Q has Galois group isomorphic to one of the groups in the
set {1, C2, C3, S3}. The case of ρE,2 is simpler. From Lemma 2.2.4, we already know
that the fixed field by ρE,2 has Galois group S3. We can easily compute it using Magma.
It is the field KE given by the polynomial

x6 + 2x5 − 163x4 + 284x3 + 2095x2 − 6274x+ 4483.

To find the field K defined by ρf,2 we need to do a bit more of work. First, we
discard the cases Gal(K/Q) ∈ {1, C2} as follows. Finding a prime p such that the
characteristic polynomial of ρf,2(Frobp) is irreducible over F2 implies that ρf,2(Frobp)
is diagonalizable over the quadratic extension of F2, hence ρf,2(Frobp) has order 3
or 6. This implies that the image of ρf,2 cannot be trivial or C2. In our example,
p = 3 satisfies the conditions and the computations can be found in Appendix A.2.1.

To deal with the cases C3 and S3 we will find a finite list of candidate fields using
ramification properties of ρf,2 and then exclude all possibilities except one, which
turns out to be the field KE above. Indeed, the representation ρf,2 is unramified
outside {2, 5077} by Proposition 1.2.28. Moreover, the residual representation ρf,2 is
a quotient of ρf,2, so its ramification set is a subset of {2, 5077}, hence the extension
K/Q cut out by ρ̄f,2 is also unramified outside {2, 5077}.

To obtain a complete list of possible fields we need to first bound the discriminant
of K/Q. Since Gal(K/Q) is C3 or S3, an inertia group at 2, denoted I2, has order
dividing 6. When |I2| = 1, then 2 does not ramify so the exponent of 2 in the
discriminant is 0. When |I2| = 3, the extension K/Q is tamely ramified at 2 and by
[28, Ch. III, Prop. 13], we have vP(DK/Q) = |I2| − 1 = 2, where DK/Q denotes the
different of K/Q and P is any prime in K dividing 2.

When K/Q is wildly ramified at 2, i.e. then |I2| ∈ {2, 6}, we apply a result of
Moon and Taguchi (see [22, Th. 3]). Following the notation of this theorem, in our
setting, we have p = k̃ = 2 and m = d = 1, we obtain

v2(DK/Q2
) = 1 +

k̃ − 1

p− 1
− k̃ − 1 + d

(p− 1)pm
= 1 + 1− 21−m = 2

So at most, the maximal exponent of the primes of K above 2 in the different DK/Q
is 2. Now, the discriminant is the norm of the different, i.e.

dK/Q = NK/Q(DK/Q).
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Particularly, since the norm is multiplicative, the factors of the discriminant are the
norm of the factors of the different. i.e., if v is the maximal exponent of the different
at a prime of K, namely p above a prime p ∈ Q, then

NK/Q(pv) = pfv,

where f is the residual degree f(p/p). Now, if the prime p satisfies p | dK/Q and
pOK =

∏g
i=1 p

e
i , then pi | DK/Q for 1 ≤ i ≤ g. Particularly, if α is the maximal

exponent of p such that pα | dK/Q, then

pα ≤
g∏
i=1

pfv = pgfv.

Hence, in our case, since v = 2 = |I2| − 1 = e(P/2)− 1, multiplying and dividing by
e := e(P/2) on both sides of the inequality gives

α ≤ egf
(

1− 1

e

)
= [K : Q]

(
1− 1

e

)
= 6− 2 = 4.

We now bound the exponent of 5077. Since 5077 does not divide 6 the ramification
is tame. Hence, again by [28, Ch. III, Prop. 13], the maximal exponent v of the
primes of K lying over 5077, namely P, such that Pv divides DK/Q is v = |I5077| − 1.
Moreover, the modular form f is Steinberg at 5077, and it is well known that this
implies that the image of inertia at 5077 via ρ̄f,2 has order 1 or 2. Hence, the maximal
exponent α such that 5077α divides dK/Q is

α ≤ [K : Q]

(
1− 1

|I5077|

)
= 6− 3 = 3.

So the root discriminant of K is at most

22/350771/2 = 113.1072.

Using this bound on the NFDB, and discarding the fields with Galois group C2,
one obtains the fields in Table 2.2.

rd grd D h G Polynomial
27.28 113.11 2250771 2 S3 x3 − 28x− 50
295.40 295.40 50772 1 C3 x3 − x2 − 1692x+ 5265

Table 2.2: Table of possible fields with the following search re-
strictions: degree in the range 1,2,3; root discriminant in the range
1..114; Galois T -number in the range 1,2; Ramifying primes limited to
{2, 5077}; p = 2 has c in 0..Infinity; and p = 5077 has c in 0..Infinity.

We note that the spliting field of the polynomial in the first line of Table 2.2 is
isomorphic to the field KE . To discard the field with Galois group isomorphic to C3,
we use the functions defined in Appendix A.2.1 to compute the order of ρ̄f,2(Frobp)
for some p ∈ OK above p (similarly to what has been done to prove that the Galois
group could not be trivial nor C2) and compare it with the Frobenius element at p of
the Galois group Gal(Q(x3 − x2 − 1692x + 5265)/Q) ∼= C3. We find that for p = 3,
the orders differ, hence this extension with Galois group C3 can not be the extension

https://hobbes.la.asu.edu/NFDB/
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K. We conclude that ρ̄E,2 and ρ̄f,2 cut the same field and so are isomorphic. The
code to check these claims is the following:

ff := Newform("G0N5077k2A"); // Gamma_0(N) of lvl 5077 & wt 2 & iso class A
Kf<a> := SplittingField(x^3-x^2-1692*x+5265);
p := 3;
apf := Coefficient(ff,p);
charpoly := x^2 - apf*x + p;
M := diagMatrix(charpoly);
ordF := matOrder(M);
ordK := Order(FrobeniusElement(Kf,p));

print "Order of rho(frob):", ordF, "||", "Order of Frob_p:", ordK;

And it prints:

Order of rho(frob): 3 || Order of Frob_p: 1

Step 2. We will determine a finite list of possible extensions K̃/K. Since 2
does not divide the level 5077 of f and ρ̄f,2(I2) has order 3 from Step 1, we conclude
that ρf,2|D2 is non-ordinary representation determined by the trace of Frobenius at 2.
Moreover, since a2(f) = −2 = a2(E) we also conclude ρf,2|D2 ' ρE,2|D2 . (This
conclusions uses a deep result about Galois representations outside the scope of this
work.) This is analogous conclusion to Serre’s argument and following the arguments
above, we conclude that Gal(K̃/K) ∼= S4. Moreover, we know that Gal(K/Q) ∼= S3

thus K̃/K is a biquadratic extension which only ramifies at the primes of K above
5077 (and possibly at some primes at infinity, since the extension K/Q is totally real).
To compute K̃ we introduce the p-Selmer group. Let S be a finite set of prime ideals
in K. For an integer p, the p-Selmer group of S is defined as

Kp(S) := {x ∈ K×/(K×)p | vq(S) ≡ 0 (mod p) ∀q 6∈ S}.

The set Kp(S) is a finite abelian group of exponent p and it can be computed using
Magma. We are interested in the 2-Selmer group of primes of K dividing 5077, since we
are searching for biquadratic extensions of K ramifying only on primes above 5077.
Let S = {p ⊆ OK | p | 5077}, then for any α ∈ K2(S), it satisfies that it is not a
square in K and the quadratic extension K(

√
α)/K ramifies only at the primes in S.

Since we are searching for biquadratic extension of K, we have to choose two elements
α, β ∈ K2(S) and consider the extension

K(
√
α,
√
β)/K.

Note that a priori such an extension can ramify at 2 and does not have to be Galois
over Q. Using Magma, we can find all such extensions with Galois group Gal(K̃/Q) '
S4 and the correct ramification properties. We found seven of them. The code for
this is available on Appendix A.2.2. The polynomials defining the possible fields are
in Appendix A.2.4.

Step 3. To finish the proof, we need to check that none of the extensions computed
in Step 2 is compatible with our setting. Observe that the argument at the end of the
sketch of proof of Theorem 2.2.15 giving that the Frobenius elements in Gal(K̃/Q) of
order four allow to discard the possibilities for K̃ also applies here. This is because
that argument depends only on the group structure of M0

2 (F2) o S3 and not on the
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representations involved arising from elliptic curves. Thus, for each of the seven K̃,
we find a prime p such that Frobp ∈ Gal(K̃/Q) has order 4 and tr(ρE,2(Frobp)) =
tr(ρf,2(Frobp)), discarding K̃. The code in Appendix A.2.3 finds such a prime p for
each extension K̃ and we find that the primes p = 5, 11, 13 suffice. More precisely, we
get the following output

p = 5 || ap(f) = -4 | ap(E) = -4
p = 13 || ap(f) = -4 | ap(E) = -4
p = 11 || ap(f) = -6 | ap(E) = -6
p = 5 || ap(f) = -4 | ap(E) = -4
p = 5 || ap(f) = -4 | ap(E) = -4
p = 5 || ap(f) = -4 | ap(E) = -4
p = 11 || ap(f) = -6 | ap(E) = -6

We conclude that the extension K̃/K is trivial and so ρE,2 ∼ ρf,2 as desired.
To conclude this chapter, we mention that nowadays there is an easier method to

prove that two elliptic curves over Q are Q-isogenous, that follows by the Modularity
theorem.

Theorem 2.2.17. Two elliptic curves E, E′ over Q are Q-isogenous if and only if
they have the same conductor N(E1) = N(E2) = N and |E1(Fp)| = |E2(Fp)| for all
primes p - N such that

p ≤ N

6

∏
p|N

(
1 +

1

p

)
.

Proof. Let ρi be the compatible system of 2-dimensional Galois repserentations asso-
ciated to Ei and fi the corresponding modular form (from the Modularity theorem),
for i = 1, 2. Then,

E1 ≡ E2 ⇐⇒ ρ1 ∼ ρ2 ⇐⇒ f1 = f2.

By [24, Th. 1], a cusp form f of weight 2 and level N is determined by its first

N

6

∏
p|N

(
1 +

1

p

)

Fourier coefficients an(f). For eigenforms, we can restrict out attention to Fourier
coefficients ap(f) where p is prime.

In our situation, if p | N , from multiplicity 1 it is automatic that ap(f1) = ap(f2),
since f1 and f2 are newforms of the same level N .

If p - N , sice ap(fi) = tr(ρi(Frobp)) = 1− |Ei(Fp)|+ p, the result follows.

Notice that this does not mean that the method is useless after the proof of the
modularity theorem, but that it is useless in the case of Q-isogenies of elliptic curves
over Q. For example, the method is still valid when the elliptic curves are defined
over a quadratic imaginary field, such as in [11].
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Chapter 3

Comparing Galois representations:
the residually reducible case.

3.1 The Faltings-Serre-Livné criterion

In this section we focus our attention on 2-dimensional λ-adic representations

ρ1, ρ2 : G −→ GL2(Oλ)

where Oλ has residual characteristic 2 and, moreover,

tr(ρ1) ≡ tr(ρ2) ≡ 0 (mod λ) and det(ρ1) ≡ det(ρ2) ≡ 1 (mod λ). (3.1)

The above condition on the traces show that the residual representations are not
surjective and, in fact, can be reducible. This is in contrast with the method of
quartic fields from the previous chapter which requires the residual representation to
be absolutely irreducible. Nevertheless, the basis for comparing representations has
been set in general using the deviation group introduced in 2.1. Here we present the
Faltings-Serre-Livné criterion which allows to have control over the deviation group
and decide whether ρ1 ∼ ρ2 in the residually reducible case.

The following set will play a crucial role.

Definition 3.1.1. Define Ξ to be the set of elements g ∈ G for which the characteristic
polynomials of ρ1(g) and ρ2(g) coincide.

The results of this chapter are very reliant on group-theoretical results. Before
starting with those, let us recall some definitions that we are going to use and that
are maybe not standard for a group theory course.

Definition 3.1.2. 1. Let G be a group. We define the ideal of Z,

I = {z ∈ Z | ∀g ∈ G, gz = 1}.

Since its an ideal of Z, it is of the form eZ, for some e ∈ Z. Particularly, the
exponent of G is the minimal e such that eZ = I.

2. Let G be a group. We say that G is a p-group if all elements have order a power
of p.

3. Let G be a profinite group. We say that G is a pro-p-group if for every normal
subgroup N , the quotient G/N is a p-group.

4. A subgroup H of a group G is called a characteristic subgroup if for every
ϕ ∈ Aut(G), ϕ(H) ⊆ H.
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With all these definitions, let us continue with comparing Galois representations.
The following proposition characterises the elements of Ξ.

Proposition 3.1.3. If g ∈ Ξ, then δ(g)2 = 1 in δ(G).

Proof. The characteristic polynomial of a 2-dimensional representation ρ is given by

x2 − tr(ρ)x+ det(ρ).

Particularly, if g ∈ Ξ, the characteristic polynomials of ρ1(g) and ρ2(g) are equal,
hence tr(ρ1(g)) = tr(ρ2(g)) and det(ρ1(g)) = det(ρ2(g)). Denote them by tr(g) and
det(g) respectively. Using the Cayley-Hamilton theorem, one has for i = 1, 2,

0 = ρi(g)2 − tr(g)ρi(g) + det(g)ρi(1) =⇒ ρi(g)2 = tr(g)ρi(g)− det(g)ρi(1).

Making use of the hypothesis (3.1), one has that tr(g)ρi(g) ∈ λρi(g) and det(g)ρi(1) ∈
(1 + λ)ρi(1). In particular, subtracting ρi(1) to both sides of the equation above, we
have

ρi(g)2 − ρi(1) = tr(g)ρi(g)− (det(g) + 1)ρi(1) ∈ λρi(g) + (2 + λ)ρ(1) ⊆ λM.

Hence,
ρ(g)2 ≡ ρ(1) (mod λM) =⇒ δ(g)2 = δ(1) = 1.

This gives us the following characterisation of δ(G) when both representations are
equivalent:

Corollary 3.1.4. If ρ1 ∼ ρ2, then δ(G) is an abelian group of exponent 2.

Proof. When ρ1 ∼ ρ2 we have Ξ = G. Particularly, δ(G) = δ(Ξ), has exponent 2.

In general, however, we can not say much more than the folowing.

Proposition 3.1.5. The deviation group δ(G) is a 2-group.

This gives, using Proposition 2.1.2, δ(G) = 2r, with 0 ≤ r ≤ 7.

Proof. The strategy is the following: recall that δ(G) fits into the short exact sequence

1 −→ N(G) −→ δ(G) −→ G −→ 1,

where N(G) is a finite quotient of ρ(G) ∩ (1 + λR), where R = M2(Oλ) ⊕M2(Oλ)
and ρ = ρ1 × ρ2. If we prove that G and N(G) are 2-groups, then so will be δ(G).

To see that N(G) is a 2-group first notice that the multiplicative group 1 + λR
embeds via the logarithm into the additive group λR, hence its a pro-2-group. It is a
known fact [3, Ch.10] that if {Gn} is a sequence of subgroups defining the topology on
G, then the completion G̃/G̃n ∼= G/Gn. Particularly, since N(G) is a finite quotient
of ρ(G) ∩ (1 + λR), then it is a 2-group.

Moreover, by the hypothesis on this section, (3.1), the characteristic polynomial
of ρi, for i = 1, 2, satisfies

x2 − tr(ρi)x+ det(ρi) ≡ x2 + 1 (mod λ).
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Again, using Cayley-Hamilton, for every g ∈ G, one has

ρi(g)2 ≡ −1 ≡ 1 (mod λ).

It follows that ρ1 × ρ2(g) ≡ 1 (mod λ), hence G has exponent 2, and in particular it
is an abelian 2-group.

We are going to state the group theory results we need to prove the theorem at
the end of the section.

Definition 3.1.6. For any group G, we define the subgroup generated by the squares

N2(H) := 〈g2 | g ∈ G〉.

It is easy to see that N2(G) is a characteristic subgroup of G: for any ϕ ∈ Aut(G),
it is enough to see that the image of the generators of N2(G) is invariant under ϕ.
Particularly, for any g ∈ G, ϕ(g2) = ϕ(g)2 ∈ N2(G). Since it is characteristic, then it
is normal, and we can therefore consider the 2-quotient G2 := G/N2(G) of G.

Proposition 3.1.7. G2 is the greatest quotient of G of exponent 2. Moreover, if N
is a normal subgroup of G, then

(G/N)2
∼= G/(N2(G) ·N).

In particular, (G/N)2 = G2 if and only if N ⊆ N2(G).

Proof. G/N is a quotient of G of exponent 2 if and only if N is a normal subgroup
which contains all the squares, i.e. N2(G) ⊆ N . Hence, G2 is the greatest quotient of
G of exponent 2, since N2(G) is normal.

To prove the isomorphism, we need to how that if N is a normal subgroup of G,
then N2(G/N) = (N2(G) · N)/N . This is an easy exercise using the definition of
quotient group, and then the conclusion follows.

As a final definition, let G[2] := {g ∈ G | g2 = 1}, the set of elements of 2-torsion
of G. This need not be a subgroup when G is not abelian: for example, if G = S3,
G[2] = {1, (1, 2), (1, 3), (2, 3)}, but this is not a subgroup (it has order 4 which does
not divide 6).

Lemma 3.1.8. Let G be a 2-group such that every element in G2 has a lift to an
element of G[2]. Then G has exponent 2, i.e. G = G2.

Proof. Consider the short exact sequence for G2,

1 −→ N2(G) −→ G −→ G2 −→ 1.

Let us argue by contradiction. Suppose that N2(G) 6= 1.
Without loss of generality we can assume that N2(G) is cyclic of order 2: Let Ω

be the set of subgroups of index 2 of N2(G). Writing the abelianisation of the 2-group
N2(G) as

N2(G)ab =
k⊕
i=1

Z/2aiZ, k, ai ≥ 1,
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we see that |Ω| = 2k − 1 is off, so G acts on Ω by conjugation with at least one
fixed point N ∈ Ω. Replacing G by G/N (which doesn’t change its 2-quotients by
Proposition 3.1.7), we obtain the supposition.

Hence, we can assume that N2(G) = 〈n〉 ∼= C2. Then, necessarily, N2(G) ⊆ Z(G):
for g ∈ G, gng−1 must be an element of order 2 in N2(G), hence gng−1 = n.

The elements of order 2 in G commute: for g, g′ ∈ G of order 2, consider gg′. Then
its either of the form g′′ or g′′n, with g′′ of order 2. In both cases, gg′ = 1.

Finally, using this last remark, we can find a section of G −→ G2 by choosing
generators of G2 and sending them to lifts of order 2 in H. This implies that G ∼=
N2(G)×G2, which contradicts the definition of the 2-quotient.

Using this lemma we can derive a criterion for the equivalence between two repre-
sentations:

Theorem 3.1.9. Let ρ1, ρ2 : G −→ GL2(Oλ) be two λ-adic representations satisfying
the conditions (3.1),

tr(ρ1) ≡ tr(ρ2) ≡ 0 (mod λ) and det(ρ1) ≡ det(ρ2) ≡ 1 (mod λ).

and also let

Ξ = {g ∈ G | tr(ρ1(g)) = tr(ρ2(g)),det(ρ1(g)) = det(ρ2(g))}.

Then ρ1 ∼ ρ2 if and only if Ξ surjects onto G2.

Proof. The implication to the right has nothing to prove since if ρ1 ∼ ρ2, then Ξ = G.
For the left implication, suppose that Ξ surjects onto G2 and consider the following

diagram of quotients of G
Ξ

����
G // //

����

G2

����
δ(G) // // δ(G)2

By Proposition 3.1.3, we have that for any g ∈ Ξ, δ(g)2 = 1, hence g ∈ δ(G)[2], hence,
we can apply the lemma to δ(G) to conclude δ(G) = δ(G)2. In particular, it follows
that Ξ surjects onto δ(G), which implies ρ1 ∼ ρ2 by Corollary 2.1.4.

We can apply this theorem to the case of Galois representations:

Theorem 3.1.10. Let K be a number field and Eλ a finite extension of Q2 with ring
of integers Oλ and maximal ideal λ. Let

ρ1, ρ2 : GalK −→ GL2(Eλ),

be two continuous representations unramified outside a finite set S of primes of K,
and such that (3.1) are satisfied, i.e.,

tr(ρ1) ≡ tr(ρ2) ≡ 0 (mod λ) and det(ρ1) ≡ det(ρ2) ≡ 1 (mod λ).

Let K2,S be the compositum of all quadratic extensions of K unramified outside S and
suppose that there exists a set of primes T disjoint from S such that
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1. {Frobp | p ∈ T}� Gal(K2,S/K).

2. tr(ρ1(Frobp)) = tr(ρ2(Frobp)) and det(ρ1(Frobp)) = det(ρ2(Frobp)) for all p ∈
T .

Then ρ1 ∼ ρ2.

Proof. Since GalK is compact, ρ1 and ρ2 preserve an Oλ-lattice in E2
λ, so that we may

view them as taking values in GL2(Oλ) (this is Proposition 1.2.15). Then we only
need to apply Theorem 3.1.9 to Gal(K/K)S = Gal(KS/K), where KS is the maximal
unramified extension outside S of K, since then Gal(K/K)2 = Gal(K2,S/K).

To apply this criterion one needs to describe explicitly the compositum K2,S , to-
gether with its Galois group. As an example, whenK = Q, the situation is particularly
simple. For each prime p ∈ Q, we need to describe the field Q2,p, i.e. the quadratic
field unramified outside p. Since we are dealing with quadratic extensions, we need
to differentiate between p = 2 and p 6= 2.

• For p 6= 2, let dp =
(
−1
p

)
p = (−1)p(p−1)/2p. Then Q2,p = Q(

√
dp). To describe

the Galois group Gal(Q2,p/Q), define the Frobenius at the primes q 6= 2, p, which
maps to

(
dp
q

)
=
(
q
p

)
under

εp : GalQ −→ Gal(Q2,p) ∼= {±1}.

• For p = 2, Q2,2 = Q(i,
√

2) = Q(ζ8) and Frobq, for q 6= 2 goes to q (mod 8)
under

ε2 : GalQ −→ Gal(Q2,2/Q) ∼= (Z/8Z)×.

• For a general S, Q2,S =
∏
p∈S Q2,p and

εs =
∏
p∈S

εp : GalQ −→ Gal(Q2,S/Q) ∼=
∏
p∈S

Gal(Q2,p/Q).

So, applying the criterion requires to compare the traces of ρ1 and ρ2 at 2|S|+1

primes at most.

Example 3.1.11. We are going to prove that the elliptic curve E of conductor 331

with Weierstrass equation

y2 + xy = x3 + x2 − 6x− 9

is modular. For that, we are going to compare it with the newform f ∈ S2(33)2 having
rational coefficients, trivial character, and q-expansion

f(q) = q + q2 − q3 − q4 − 2q5 − q6 + 4q7 − 3q8 + q9 +O(q10).

From Chapter 1, we can associate a 2-adic Galois representation to both objects,
ρE,2 and ρf,2 respectively. We want to see that ρE,2 ∼ ρf,2. Recall also that the
characteristic polynomial for any p above a prime p which does not ramify in ρE,2,
i.e. p - 2 · 33, is of the form

x2 − ap(E)x+ p ∈ Q[x] =⇒ tr(ρE,2(Frobp)) = ap(E), det(ρE,2(Frobp)) = p.

1Any elliptic curve in the isogeny class https://www.lmfdb.org/EllipticCurve/Q/33a/
2https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/33/2/a/a/

https://www.lmfdb.org/EllipticCurve/Q/33a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/33/2/a/a/
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Similarly, for ρf,2 and the same p,

x2−ap(f)x+χ(p)p ∈ Q[x] =⇒ tr(ρE,2(Frobp)) = ap(f), det(ρE,2(Frobp)) = χ(p)p = p,

since χ is a trivial character.
We are going to apply Livné’s method, i.e. Theorem 3.1.10, so we need to check

that

tr(ρE,2) ≡ tr(ρf,2) ≡ 0 (mod 2) and det(ρE,2) ≡ det(ρf,2) ≡ 1 (mod 2).

To show that the determinant is 1 is easy: both residual representations have
determinant the mod 2 cyclotomic character, which is just 1.

To show that the traces coincide and are even, however, is more difficult. To show
that the elliptic curve has even trace, we observe that E[2](Q) 6= ∅, since the point
P := [27/4 : −27/8 : 1] ∈ P1(Q) has order 2. One can check it with Magma. This
implies that we can take P as one of the two elements of the basis of E[2], hence any
Aut(E[2]) ∼= GL2(F2) has matrix in this basis of the form(

1 ∗
0 ∗

)
.

Since the determinant is 1, then the matrix is of the form(
1 c
0 1

)
,

with c ∈ F2. Thus ρE,2 has traces 2 ≡ 0 (mod 2) as desired.
Now for the residual representation attached to the modular form, we have to use a

different strategy, since we only know the characteristic polynomials at the Frobenius
elements. Recall that the residual representation has image in GL2(F2) ∼= S3, i.e. it is
one of the subgroups {1}, C2, C3 or S3. If it has an element of order 3 (i.e. the image
is C3 or S3) then the corresponding matrix in GL2(F2) has trace 1 and therefore does
not satisfy the hypothesis. Moreover, all elements of order 1 or 2 in GL2(F2) are the
identity or conjugations of the matrix(

1 1
0 1

)
,

hence they have trace 0 (mod 2). So we need to see that the field fixed by the residual
representation ρf,2 does not have an element of order 3 in its Galois group. In order
to do so, recall from Proposition 1.2.28 that ρf,2 can ramify only at 2, 3 and 11. This
allows us to search in the NFDB for a list of possible fields. It gives a long, but
complete, list with 51 possible fields, in which the 2-torsion field of E is included. (No
bound on the discriminant is required to have a complete result.)

Now to discard that the residual representation cuts out a field with Galois group
C3 or S3, we must find, for each of the listed fields with degree ≥ 3, a prime p where
Frobp has order 3. Then, looking at ap(f) we see this number is even, so the trace
of rhoE,2(Frobp) is 0 (mod 2), giving a contradiction. The code on Appendix A.3.1
finds such a prime p in all cases.

We now apply Theorem 3.1.10 with the following set of primes

T = {5, 7, 13, 17, 19, 23, 29, 31, 37, 59, 67, 73, 83, 89, 167}

https://hobbes.la.asu.edu/NFDB/
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whose corresponding Frobenius elements surject to the Galois group of Q2,S/Q, the
maximal polyquadratic extension of Q unramified outside S = {2, 3, 11}. We use the
code provided in Appendix A.3.2 which verifies the equality of traces as desired. The
output is

p = 5 || ap(f) = -2 | ap(E) = -2
p = 7 || ap(f) = 4 | ap(E) = 4
p = 13 || ap(f) = -2 | ap(E) = -2
p = 17 || ap(f) = -2 | ap(E) = -2
p = 19 || ap(f) = 0 | ap(E) = 0
p = 23 || ap(f) = 8 | ap(E) = 8
p = 29 || ap(f) = -6 | ap(E) = -6
p = 31 || ap(f) = -8 | ap(E) = -8
p = 37 || ap(f) = 6 | ap(E) = 6
p = 59 || ap(f) = -4 | ap(E) = -4
p = 67 || ap(f) = -4 | ap(E) = -4
p = 73 || ap(f) = -14 | ap(E) = -14
p = 83 || ap(f) = 12 | ap(E) = 12
p = 89 || ap(f) = -6 | ap(E) = -6
p = 167 || ap(f) = 0 | ap(E) = 0

Remark. It is possible to find a subset of T which also surjects onto Gal(Q2,S/Q)
by finding only Frobenius elements that correspond to the conjugacy classes of the
Galois group. The code in Appendix A.3.2 finds a Frobenius element for each one of
the elements in Gal(Q2,S/Q) because this is a small example and the computation is
inexpensive, but the Galois group gets exponentially larger with S.
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Chapter 4

Conclusions and Future Work

In this thesis we have studied the problem of identifying when two `-adic Galois
representations

ρ1, ρ2 : GalK −→ GLn(Q`)

are equivalent, with special focus on the case K = Q and n = 2.
We have seen in detail the method that started all the theory of comparing Galois

representations, as described by Serre in 1984, and also the algorithm for the reducible
residual case, given by Livné in 1987. This thesis is aimed at master’s or doctorate
students who are trying to get into the theory of Galois representations. Our objective
was to describe with full detail and give references to all of the results which are not
standard in the curriculum of a Mathematics degree or master. We have put an extra
effort to cite the results used in the arguments involving Algebraic Number Theory
and Class Field Theory.

In Chapter 1, we have given a brief introduction to the necessary concepts from
Algebraic Number Theory. Then we have introduced representations and Galois rep-
resentations. Particularly, the Galois representations attached to elliptic curves and
modular forms, the object of study in this thesis. In Chapter 2, we have seen the
deviation group and the Faltings-Serre method and two applications of it in the case
of elliptic curves over Q. However, the method by Serre is only the first stepping stone
into the world of comparing Galois representations.

We have also seen the Faltings-Serre-Livné method in Chapter 3, a variant that
works when the image of the residual representations ρi is a 2-group and provides a
computable criterion for deciding if two such representations are equivalent or not.
This method was generalised by Gabriel Chênevert: he eliminated the hypothesis on
the traces by augmenting the possible fields in the compositum similar to K2,S in
Livné’s case, but with more fields, not only quadratic extensions.

Moreover, trying to prove a theorem of Mestre (see Theorem 2.2.15) that we did
not use in Chapter 2 requires of more advanced techniques, such as the cohomology
of the Galois groups. These techniques are essential to someone who wants to do
research in the area of Galois representations.

Finally, we have only seen applications of elliptic curves and modular forms over Q.
The more interesting examples (and the ones not considered trivial after the proof of
the modularity theorem), are the ones that consider elliptic curves over a number field
K or, more generally, abelian varieties over a number field K. Particularly, to prove
the modularity of more abelian surfaces, such as [7], one should follow the line of
work of John Cremona’s PhD students, Alejandro Argàez [2] and Mattia Sanna [26],
to extend their methods to the case of dimension 4, with a particular interest in the
2-adic case with reducible residual representations.





53

Appendix A

Code and functions

A.1 Code for the example of conductor 11

A.1.1 Check Ramification at 2

R<x> := PolynomialRing(Rationals());
possibleTildeK := [ x^4 - 2*x^3 - 4*x^2 - 6*x - 2, \

x^4 - 2*x^2 - 4*x - 1, \
x^4 - 2*x^3 - 3*x^2 + 2, \
x^4 - 44*x + 22, \
x^4 - 6*x^2 - 8*x - 25, \
x^4 - 8*x^2 - 16*x + 24 ];

E := EllipticCurve("11a3");
cInv := cInvariants(E);
f := x^3-27*cInv[1]*x-54*cInv[2];
K<a> := SplittingField(f);

fact2AtK := Factorization(2*MaximalOrder(K)); // we know that it ramifies in here
ramIdx := fact2AtK[1][2];
print "Factorization of 2 in K: ", fact2AtK;

for tildeK in possibleTildeK do
tK<b> := SplittingField(tildeK);
sbfLat := Subfields(tK, 6);
for sbf in sbfLat do

if IsIsomorphic(K,sbf[1]) then // Only if we have K as a subfield
fact2AttK := Factorization(2*MaximalOrder(tK));
ramIdxAttK := fact2AttK[1][2];
print "Ramification index of 2 in tilde{K}/K = ", ramIdxAttK/ramIdx;
break;

end if;
end for;

end for;
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A.1.2 Check hypothesis for general N

N := 11;
print "N = 3 (mod 8)? ", N mod 8 eq 3;

R<x> := PolynomialRing(Rationals());

// Check the hypothesis on the class number of Q(sqrt(+-N));
print "h(Q(sqrt(-N))) =", ClassNumber(SplittingField(x^2+N));
print "h(Q(sqrt(N))) =", ClassNumber(SplittingField(x^2-N));

// Build the field lattice.
F<c>:=SplittingField(x^2+N);
RCF<r2> := AbsoluteField(NumberField(RayClassField(2*MaximalOrder(F))));
RCF<r2> := OptimizedRepresentation(RCF);
K<a> := Subfields(RCF,6)[1][1];
K<a> := OptimizedRepresentation(K);
M<b> := Subfields(K,3)[1][1];

// Check the hypothesis on the class number of M
print "h(M) =", ClassNumber(M);

// Check the hypothesis on the units of M
U,phi := UnitGroup(M);
print "Units of M";
[M!phi(U.i) : i in [1..Ngens(U)]];
minPoly := MinimalPolynomial(M!phi(U.2), Rationals());
print "Minimal polynomial for the fundamental unit:", minPoly;
// coerce into modulo N
coef := Coefficients(minPoly);
R<x> := PolynomialRing(Integers(N));
minPolyModN := 0*x;
for i in [1..#coef] do

minPolyModN := minPolyModN + (Integers()!coef[i] mod Integers()!N)*x^(i-1);
end for;

print "Minimal polynomial mod N: ", minPolyModN;
fact := Factorization(minPolyModN);
print "Factorisation of minimal polynomial mod N:", fact;

residues := [Coefficients(f[1])[1] : f in fact];
print "List of tuples <root, IsQuadraticResidue>:", //

[<r,LegendreSymbol(Integers()!r,N)> : r in residues];
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A.2 Code for the example of conductor 5077

A.2.1 Find matrix order

QQ := Rationals();
R<x> := PolynomialRing(QQ);

redModP := function(f, p)
Rp<y> := PolynomialRing(Integers(p));
returnPoly := 0*y;
coef := Coefficients(f);
for i in [1..#coef] do

returnPoly := returnPoly + (Integers()!coef[i] mod Integers()!p)*y^(i-1);
end for;
return returnPoly;

end function;

diagMatrix := function(charpoly)
cpMod2 := redModP(charpoly,2);
if not IsIrreducible(cpMod2) then

print "The reduction mod 2 of the polynomial is not irreducible";
return -1;

end if;
K,phi:=ext<GF(2)|cpMod2>;
RK<z> := PolynomialRing(K);
coef := [phi(c) : c in Coefficients(cpMod2)];
retPol := 0*z;
for i in [1..#coef] do

retPol := retPol + coef[i]*z^(i-1);
end for;
roots := Roots(retPol);
M := Matrix(2,2,[roots[1][1], 0, 0, roots[2][1]]);
return M;

end function;

matOrder := function(M)
prod := M;
n := 1;
Id := Matrix(2,2,[1,0,0,1]);
while prod*M ne Id do

prod := prod * M;
n := n+1;

end while;
return n+1;

end function;

ff := Newform("G0N5077k2A"); // Gamma_0(N) of lvl 5077 & wt 2 & iso class A
p := 3;
apf := Coefficient(ff,p);
charpoly := x^2 - apf*x + p;
M := diagMatrix(charpoly);
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matOrder(M);

A.2.2 Find quadratic extensions of K

/* Selmer group computations. */

QQ := Rationals();
PolsQ<x> := PolynomialRing(QQ);

/* 2-division field of the curve of conductor 5077. */

h := x^3 - 28*x + 50;
K := OptimizedRepresentation(SplittingField(h));
OK := Integers(K);
G, _, fromG := AutomorphismGroup(K);
G0 := [ fromG(g) : g in G ];

/* Computing the full 2-Selmer group */

Prs := { s[1] : s in Factorisation(5077*OK) };
S2, toS2 := pSelmerGroup(2, Prs);
print "2-Selmer gruop allowing ramification at 5077 only has ", #S2, " elements";

/* Computing orbits. */

orbits := [ ];
S0 := Set(S2);

while(IsEmpty(S0) eq false) do
s := Random(S0);
orb := {@ toS2(phi(s@@toS2)) : phi in G0 @};
Append(~orbits, orb);
S0 := S0 diff orb;
//H := sub<S2| orb>;
//[#orb, #Invariants(H)];

end while;

/* Colecting S4 fields with correct ramification at 2. */

S4:=SymmetricGroup(4);
S4fields := [];
grdS4 := [];

print "There are ", #orbits, " of elemens in the 2-Selmer group";

orbitRank2 := [ s : s in orbits | #(sub<S2|s>) eq 4 ];
print "There are ", #orbitRank2, " orbits of rank 2.";
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for s in orbitRank2 do
s1 := s[1];
L := AbsoluteField(ext<K|Polynomial([-s1@@toS2, 0, 1])>);
OL := MaximalOrder(L : Ramification := [ 2, 5077 ]);
_, OL := OptimizedRepresentation(OL);
L := NumberField(OL);
G, R, S := GaloisGroup(L);

M := SplittingField(L);
OM := MaximalOrder(M : Ramification := [ 2, 5077 ]);
_, OM := OptimizedRepresentation(OM);
M := NumberField(M);
//Discriminant(OM)^(1/24);
//Factorisation(Discriminant(OM));
if Factorisation(2*OM)[1,2] eq 3 and IsIsomorphic(G, S4) then
Append(~S4fields,DefiningPolynomial(M));
Append(~grdS4,Discriminant(OM)^(1/24));

end if;
end for;

print "There are ", #S4fields, " S4 fields to consider";

// sanity check
grdS4;
print "The three fields of root discriminant approx 113 belong to the set, as expected.";

A.2.3 Check the hypothesis on the traces

R<x> := PolynomialRing(Rationals());
K<a> := NumberField(x^6 - 2*x^5 - 163*x^4 - 284*x^3 + 2095*x^2 + //

6274*x + 4483);
possibleKTilde := [

x^24 - 768*x^22 - 1044*x^21 + 207820*x^20 + 623960*x^19 - 16241308*x^18 -
134490640*x^17 - 1199620624*x^16 + 6403989632*x^15 + 170496149024*x^14 +
844907263648*x^13 + 9718281955056*x^12 + 10504707677504*x^11 +
233726615121408*x^10 + 435373235946432*x^9 + 6632303935157952*x^8 +
14462639076832256*x^7 + 75456769923825856*x^6 + 176765487641250304*x^5 +
892265953333372672*x^4 + 3093979354576895488*x^3 +
5735563640611065856*x^2 + 4848578612082150400*x + 2994197252275334144,

x^24 + 4*x^23 + 344*x^22 + 1080*x^21 + 47393*x^20 + 185256*x^19 +
18111384*x^18 + 169777454*x^17 + 2452136182*x^16 + 7745919636*x^15 +
89352176896*x^14 + 676584855692*x^13 + 15134915674853*x^12 +
132167280625752*x^11 + 1124854949679324*x^10 + 5915789283347506*x^9 +
38408193987041206*x^8 + 165413107052078948*x^7 + 203694171277625524*x^6
+ 2025527232807512180*x^5 + 3217181714617109185*x^4 -
22296957747934339616*x^3 + 40146515784220357620*x^2 -
32029840653811622586*x + 11796203027981615769,

x^24 - 8*x^23 - 2*x^22 + 672*x^21 + 9321*x^20 - 258468*x^19 + 3859746*x^18 -
58106896*x^17 + 743541567*x^16 - 7353174560*x^15 + 72342120578*x^14 -
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703986635908*x^13 + 6013059324607*x^12 - 43380528820464*x^11 +
293650020729538*x^10 - 1907777596031764*x^9 + 10720003549794808*x^8 -
46359869994967172*x^7 + 189164556190567356*x^6 - 771680088204856584*x^5
+ 2365119561410505664*x^4 - 5136262747153807584*x^3 +
20667644673950506656*x^2 - 14175534002866179840*x +
85365252617909589184,

x^24 + 362*x^22 - 888*x^21 + 37205*x^20 - 212920*x^19 + 3168390*x^18 -
25416556*x^17 + 143450887*x^16 - 671681992*x^15 + 1784818490*x^14 +
25393019780*x^13 - 363601496305*x^12 + 3636405611644*x^11 -
3272703778574*x^10 - 245336839380128*x^9 + 2721592161459780*x^8 -
14745168147343628*x^7 + 45804471248662724*x^6 - 82505563999076880*x^5 +
83640048162301808*x^4 + 545365373218400*x^3 - 257251747274755520*x^2 +
151600036671104896*x + 710701106514873152,

x^24 - 12*x^23 - 74*x^22 + 1268*x^21 + 521*x^20 - 44700*x^19 + 39450*x^18 +
759704*x^17 - 899161*x^16 - 6931956*x^15 + 7391334*x^14 + 34259440*x^13
- 26126405*x^12 - 88439984*x^11 + 38036334*x^10 + 110900964*x^9 -
25235180*x^8 - 64163060*x^7 + 8311884*x^6 + 14870944*x^5 - 1031600*x^4 -
795200*x^3 - 20096*x^2 + 3008*x + 64,

x^24 - 12*x^23 + 78*x^22 - 340*x^21 + 1599*x^20 - 9028*x^19 + 37544*x^18 -
74884*x^17 - 80657*x^16 + 871420*x^15 - 4150194*x^14 + 25893380*x^13 -
115564199*x^12 + 196897892*x^11 + 609983388*x^10 - 4216898652*x^9 +
9448977848*x^8 - 2624229984*x^7 - 37912012512*x^6 + 101919818384*x^5 -
97261562848*x^4 - 81980901264*x^3 + 370117386688*x^2 - 458624922688*x +
208312622192,

x^24 + 6*x^23 + 203*x^22 + 1104*x^21 + 16975*x^20 + 82774*x^19 + 767877*x^18
+ 3287588*x^17 + 20702760*x^16 + 75868256*x^15 + 345575448*x^14 +
1059356600*x^13 + 3618564372*x^12 + 9109880416*x^11 + 23788563360*x^10 +
48229480736*x^9 + 96563687472*x^8 + 153614027680*x^7 + 232906571824*x^6
+ 279572330304*x^5 + 310295077184*x^4 + 260804775552*x^3 +
192919551488*x^2 + 93122246784*x + 34601690048

];
E := EllipticCurve("5077a1");
M := ModularForms(5077,2);
ff := Newform(M, 1, 1);

for f in possibleKTilde do
Ktilde<a> := NumberField(f);
flag := true;
index := 2;
while flag do

p := NthPrime(index);
Frob := FrobeniusElement(Ktilde, p);
if Order(Frob) eq 4 then

apf := Coefficient(ff, p);
apE := FrobeniusTraceDirect(E,p);
if apf eq apE then

flag := false;
end if;

end if;
index := index+1;

end while;
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print "p =", p, "||", "ap(f) = ", apf, "|", "ap(E) = ", apE;
end for;

A.2.4 Possible fields K̃/K

x24 − 768x22 − 1044x21 + 207820x20 + 623960x19 − 16241308x18 − 134490640x17

−1199620624x16 + 6403989632x15 + 170496149024x14 + 844907263648x13

+9718281955056x12 + 10504707677504x11 + 233726615121408x10

+435373235946432x9 + 6632303935157952x8 + 14462639076832256x7

+75456769923825856x6 + 176765487641250304x5 + 892265953333372672x4

+3093979354576895488x3 + 5735563640611065856x2

+4848578612082150400x+ 2994197252275334144

x24 + 4x23 + 344x22 + 1080x21 + 47393x20 + 185256x19 + 18111384x18

+169777454x17 + 2452136182x16 + 7745919636x15 + 89352176896x14

+676584855692x13 + 15134915674853x12 + 132167280625752x11

+1124854949679324x10 + 5915789283347506x9 + 38408193987041206x8

+165413107052078948x7 + 203694171277625524x6 + 2025527232807512180x5

+3217181714617109185x4 − 22296957747934339616x3

+40146515784220357620x2 − 32029840653811622586x

+11796203027981615769

x24 − 8x23 − 2x22 + 672x21 + 9321x20 − 258468x19 + 3859746x18 − 58106896x17

+743541567x16 − 7353174560x15 + 72342120578x14 − 703986635908x13

+6013059324607x12 − 43380528820464x11 + 293650020729538x10

−1907777596031764x9 + 10720003549794808x8 − 46359869994967172x7

+189164556190567356x6 − 771680088204856584x5 + 2365119561410505664x4

−5136262747153807584x3 + 20667644673950506656x2

−14175534002866179840x+ 85365252617909589184

x24 + 362x22 − 888x21 + 37205x20 − 212920x19 + 3168390x18 − 25416556x17

+143450887x16 − 671681992x15 + 1784818490x14 + 25393019780x13

−363601496305x12 + 3636405611644x11 − 3272703778574x10 − 245336839380128x9

+2721592161459780x8 − 14745168147343628x7 + 45804471248662724x6

−82505563999076880x5 + 83640048162301808x4 + 545365373218400x3

−257251747274755520x2 + 151600036671104896x+ 710701106514873152
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x24 − 12x23 − 74x22 + 1268x21 + 521x20 − 44700x19 + 39450x18 + 759704x17

−899161x16 − 6931956x15 + 7391334x14 + 34259440x13 − 26126405x12

−88439984x11 + 38036334x10 + 110900964x9 − 25235180x8 − 64163060x7

+8311884x6 + 14870944x5 − 1031600x4 − 795200x3 − 20096x2 + 3008x+ 64

x24 − 12x23 + 78x22 − 340x21 + 1599x20 − 9028x19 + 37544x18 − 74884x17

−80657x16 + 871420x15 − 4150194x14 + 25893380x13 − 115564199x12

+196897892x11 + 609983388x10 − 4216898652x9 + 9448977848x8

−2624229984x7 − 37912012512x6 + 101919818384x5 − 97261562848x4

−81980901264x3 + 370117386688x2

−458624922688x+ 208312622192

x24 + 6x23 + 203x22 + 1104x21 + 16975x20 + 82774x19 + 767877x18 + 3287588x17

+20702760x16 + 75868256x15 + 345575448x14 + 1059356600x13

+3618564372x12 + 9109880416x11 + 23788563360x10 + 48229480736x9

+96563687472x8 + 153614027680x7 + 232906571824x6 + 279572330304x5

+310295077184x4 + 260804775552x3 + 192919551488x2

+93122246784x+ 34601690048

A.3 Code for the example of conductor 33

A.3.1 Find fixed field by modular residual representation

QQ := Rationals();
R<x> := PolynomialRing(QQ);

ff := Newform("G0N33k2A");

possibleFields := [ x^2 - x + 1, x^2 + 1, x^2 - 2, x^2 + 2, \
x^2 - x + 3, x^2 - 3, x^2 - 6, x^2 + 6, x^2 - x - 8, x^2 - 11, \
x^2 - 22, x^2 + 22, x^2 + 33, x^2 - 66, x^2 + 66, x^3 - 3*x - 1, \
x^3 - x^2 + x + 1, x^3 - 2, x^3 - 3, x^3 - 3*x - 4, \
x^3 - x^2 + 4*x + 2, x^3 + 3*x - 2, x^3 - 12, x^3 - 6, \
x^3 - 3*x - 10, x^3 - x^2 - 7*x + 13, x^3 + 6*x - 1, \
x^3 - 11, x^3 - 9*x - 6, x^3 + 6*x - 10, x^3 - 12*x - 28, \
x^3 + 6*x - 12, x^3 - 9*x - 3, x^3 - 22, x^3 - 9*x - 14, \
x^3 - 99, x^3 - 33, x^3 + 6*x - 32, x^3 + 33*x - 22, \
x^3 + 33*x - 176, x^3 - 33*x - 66, x^3 - 132, x^3 - 396, \
x^3 - 198, x^3 - 66, x^3 - 66*x - 176, x^3 + 18*x - 48, \
x^3 - 9*x - 30, x^3 - 27*x - 78, x^3 - 99*x - 330, \
x^3 - 99*x - 66];
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for f in possibleFields do
if Degree(f) eq 2 then continue; end if;
print "---------";
print "f(x) =", f;
Kf<a> := SplittingField(f);

n := 2;
flag := false;
while flag eq false do

p := NthPrime(n);
if p eq 2 or p eq 3 or p eq 11 then

n := n+1;
continue;

end if;

apf := Coefficient(ff,p);
ordK := Order(FrobeniusElement(Kf,p));

if ordK eq 3 and Integers()!apf mod 2 eq 0 then
print "Frobenius has order 3 but the trace is even:", apf;
flag := true;

end if;
n := n+1;

end while;

end for;

A.3.2 Livné’s theorem

R<x> := PolynomialRing(Rationals());

E := EllipticCurve("33a3");
ff := Newform("G0N33k2A");

S := {2,3,11};

Q23<ap> := NumberField(x^2-3);
Q211<ap> := NumberField(x^2-11);
Q22<a2> := CyclotomicField(8);
Q2S<a> := OptimizedRepresentation(CompositeFields(CompositeFields(Q23,Q211)[1],Q22)[1]);
G := GaloisGroup(Q2S);

elsG := {g : g in G};
elsG := elsG diff {Id(G)};

i := 1;
while not IsEmpty(elsG) do

p := NthPrime(i);
if p notin S then

Frobp := FrobeniusElement(Q2S,p);
if Frobp in elsG then
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apf := Coefficient(ff,p);
apE := FrobeniusTraceDirect(E,p);
if apf eq apE then

elsG := elsG diff {Frobp};
print "p =", p, "||", "ap(f) = ", apf, "|", "ap(E) = ", apE;

end if;
end if;

end if;
i := i+1;

end while;
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Appendix B

Group isomorphisms from the
quartic field method

B.1 Proof GL2(F2) ∼= S3

We can represent S3 as the permutations of a set of three elements {1, 2, 3}:

S3 = {Id, (12), (13), (23), (123), (132)}.

And GL2(F2) is the group of invertible 2× 2 matrices with coefficients in F2, i.e.
its the group of matrices with coefficients {0, 1} and determinant 1.

GL2(F2) =

{(
1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
.

Then the isomorphism is explicitly given by:

Id←→
(

1 0
0 1

)
(12)←→

(
0 1
1 0

)
(13)←→

(
1 0
1 1

)
(23)←→

(
1 1
0 1

)
(123)←→

(
1 1
1 0

)
(132)←→

(
0 1
1 1

)

B.2 Proof M2(F2) ∼= F2
2 ⊕ V4

Recall that M2(F2) is the additive group of 2 × 2 matrices with coefficients in F2.
Particularly, its the set

M2(F2) =

{(
a b
c d

)
: a, b, c, d ∈ {0, 1}

}
.

This set has cardinality 24 = 16, since we have 2 choices (0 or 1) for 4 variables
(a, b, c, d).

Then, we represent F2
2 as a subgroup of M2(F2), particularly,

F2
2 =

{(
0 0
0 0

)
,

(
1 0
0 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)}
.

Similarly, we represent the Klein group V4 as a subgroup ofM2(F2) in the following
manner:

V4 =

{(
0 0
0 0

)
,

(
1 1
0 1

)
,

(
0 1
1 0

)
,

(
1 0
1 1

)}
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Then, as an S3 module under the action by conjugation of GL2(F2) ∼= S3, we have

M2(F2) ∼= F2
2 ⊕ V4.

The explicit isomorphism is given by:(
0 0
0 0

)
←→

(
0 0
0 0

)
⊕
(

0 0
0 0

) (
0 0
0 1

)
←→

(
0 1
1 1

)
⊕
(

0 1
1 0

)
(

0 0
1 0

)
←→

(
1 0
0 1

)
⊕
(

1 0
1 1

) (
0 0
1 1

)
←→

(
1 1
1 0

)
⊕
(

1 1
0 1

)
(

0 1
0 0

)
←→

(
1 0
0 1

)
⊕
(

1 1
0 1

) (
0 1
0 1

)
←→

(
1 1
1 0

)
⊕
(

1 0
1 1

)
(

0 1
1 0

)
←→

(
0 0
0 0

)
⊕
(

0 1
1 0

) (
0 1
1 1

)
←→

(
0 1
1 1

)
⊕
(

0 0
0 0

)
(

1 0
0 0

)
←→

(
1 1
1 0

)
⊕
(

0 1
1 0

) (
1 0
0 1

)
←→

(
1 0
0 1

)
⊕
(

0 0
0 0

)
(

1 0
1 0

)
←→

(
0 1
1 1

)
⊕
(

1 1
0 1

) (
1 0
1 1

)
←→

(
0 0
0 0

)
⊕
(

1 0
1 1

)
(

1 1
0 0

)
←→

(
0 1
1 1

)
⊕
(

1 0
1 1

) (
1 1
0 1

)
←→

(
0 0
0 0

)
⊕
(

1 1
0 1

)
(

1 1
1 0

)
←→

(
1 1
1 0

)
⊕
(

0 0
0 0

) (
1 1
1 1

)
←→

(
1 0
0 1

)
⊕
(

0 1
1 0

)
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