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by Ignasi SANCHEZ RODRIGUEZ

In 1984, Jean-Pierre Serre, based on the ideas of Gerd Faltings, explained in his
course at the Collége de France a method for comparing irreducible ¢-adic Galois
representations. This method would later be anointed as the Fultings-Serre method
by the mathematical community. In 1987 Ron Livné gave an algorithm to compare the
case of 2-dimensional 2-adic Galois representations with even trace. In 2008 Gabriel
Chénevert generalised it erasing the condition on the traces. In this thesis we are
going to draw on his work to explore and formalise Serre’s ideas. In addition, we are
going to collect some examples from Serre himself in the case of 2-dimensional 2-adic
Galois representations from elliptic curves to understand the use of it and we are going
to explain them in detail. Finally, we are also going to study Livné’s approach and
give an example of this as well.
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Introduction

In the past century, there has been an increasing trend in mathematics to study
complex objects by how they act on spaces sharing common features. This is, in a
broad sense, what we call a representation. Particularly, mathematicians are highly
interested in representations arising from the action of a group G on vector spaces
over a field E. Such representations give rise to group homomorphisms from G to the
invertible matrices with coefficients in £ and are called linear representations of G
over E. In this thesis we study certain representations of this kind arising naturally
in Number Theory.

The central object of study in Algebraic Number Theory is the absolute Galois
group of Q, denoted as Galgp := Gal(Q/Q), consisting of all field automorphisms of the
algebraic closure Q of Q. The representations of Galg and of its subgroups are called
Galois representations. The 1-dimensional representations of Galg are well understood
via Class Field Theory, but understanding the representations of dimension n > 2 is
an extremely difficult problem. A general approach to this end is to "visualise" pieces
of Galgp via its action on certain geometric objects. This idea, in the particular
case of 2-dimensional representations, has seen a lot of research done during the last
decades, and has yielded some fantastic results. The most famous of which being the
proof by Wiles et al. (chronologically: [34], [33] and [5]) of one of the most famous
theorems in mathematics: Fermat’s Last Theorem. More recently, a full proof of
Serre’s conjecture was found by Khare and Wintenberger [16, 17]. These are however
only the first steps into what is known as the Langlands program, that consists of a
web of conjectures, according to which all Galois representations arising from geometry
should be automorphic. In view of these conjectures a natural question arises: given
two Galois representations that should be isomorphic according to the Langlands
program can we show they are actually isomorphic?

In this thesis we study methods that allow us to give a positive answer to the
previous question under certain hypothesis. For us, the study of isomorphisms of
Galois representations taking values on a finite extension of Qy, the field of f-adic
numbers, starts with Gerd Faltings, in his 1983 paper [12]|. In 1984, Jean-Pierre Serre
gave a course in the Collége de France, in which he implemented Falting’s ideas into
a computable method for the case of 2-dimensional representations taking values in
Q2. Around the same time, using Serre’s method, Frangois Mestre [19], gave an ex-
ample of how to prove that a particular elliptic curve, the one of conductor 5077,
was modular. Unfortunately, we do not know of any available notes of Serre’s course,
except for a short summary [29] and a letter he wrote to Tate |27] describing it. In
1987, Ron Livné [18] gave a further refinement of Serre’s method and, in 2008, Gabriel
Chénevert [8] made a generalization of Livné’s method. There are other articles ap-
plying variants of the method, for example, in [11] it is used to prove the modularity
of elliptic curves over imaginary quadratic fields and in [14] it is used to prove the
modularity of Calabi-Yau surfaces and threefolds. However only in very recent works
a more systematic approach to the method has been detailed. Indeed, there has been
a systematic study by two PhD students of John Cremona: Alejandro Argéez [2| and
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Mattia Sanna [26] in the 2-dimensional 2-adic and 3-adic cases respectively; more-
over, in [7] the authors describe the method applied to representations valued in the
symplectic group GSp(Q,) with absolutely irreducible residual image and remarkably
estabilsh ‘paramodularity’ of the abelian surface of conductor 277 as a consequence.
Despite of these latest efforts, there are still aspects of Serre’s method whose details
are not available in the literature. The objective of this thesis is to understand the
method proposed by Serre [27, 29|, describe it in a more modern and general manner,
following [8], and to fill in the missing details of his computations and arguments.

The thesis is structured in the following way: In Chapter 1 we are going to give
the basic definitions from Algebraic Number Theory to follow the main statements of
the theorems. We are also going to introduce linear group representations, giving the
example of linear representations of a finite group G over the field of complex numbers
C. Then, we are going to define ¢-adic Galois representations, and give the definition
of representations arising from elliptic curves and modular forms. This will be used
afterwards in the examples by Serre.

In Chapter 2, we are going to introduce the essential tool when comparing Galois
representations, the deviation group §(G). Then we are going to see Serre’s method,
the method of quartic fields or the Faltings-Serre method, for comparing two f-adic
representations with irreducible residual representation. Particularly, we are going to
detail the 2-dimensional 2-adic case. Then we are going to study the examples that
Serre talks about in his letter to Tate [27]. These are the following:

e There is only one Q-isogeny class of Q-elliptic curves of conductor 11.

e There is only one Q-elliptic curve of conductor 5077 which is modular.

Finally, in Chapter 3 we are going to present the generalisation by Ron Livné [18]
which covers the case of the two representations having reducible residual image using
Faltings’ and Serre’s ideas. We are also going to look at a concrete example: we are
going to prove that the elliptic curve of conductor 33 is modular.



Chapter 1

Basic concepts

In this chapter we are going to introduce basic concepts from Algebraic Number
Theory and the necessary theory of linear representations that we are going to need
for this thesis.

1.1 Algebraic Number Theory

Any book on Algebraic Number Theory covers the topics we are going to talk about.
To cite a few, [20], [25] or |28].

1.1.1 Primes and ramification

Let K be a number field, let Ok be its ring of integers and let L/K be a finite
extension with Op the ring of integers of L.
Since Oy, is a Dedekind domain, for any prime ideal p C O (which we call a finite
prime of K), we can consider the prime decomposition of the ideal of O, namely pOp:
PO, = PR,
where the 3; are different prime ideals of O which we call primes above p, primes
lying over p or primes dividing p. More in general, a prime P C Op, is said to divide
pif p=PNOk. Also, g =: g/ (p) is a positive integer and the e; =: e(B;/p) are
also positive integers called the ramification index for B;/p. In a Dedekind domain,
every nonzero prime ideal is a maximal ideal, hence ky, := Op/B; and ky := Ok /p
are fields, which we call residue fields. They are finite fields of characteristic p, being
p a rational prime satisfying pZ = p N Z. We may view ky as a subfield of kgy;.
Particularly, we define the residual degree as their field extension degree, i.e.

F(Bi/p) = oy« K-

If the extension L/K is Galois, then Gal(L/K) acts transitively on the set of
primes lying over p by permutation, so every ramification index and residual degree
are equal, independent of ;.

In general, for any finite extension L/K and any prime p in Ok, one has the

formula
9L/ (P)

> e(B/p)f(R;/p) = [L: K.

=1

Particularly, in the Galois case the formula is simplified to efg = [L : K].
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For p a finite prime of K we differentiate between three possible situations:

1. If e(B;/p) =1 for 1 < j < g, we say that p is unramified in L/K. Otherwise
we say that p ramifies.

2. If g1k (p) = 1 and e(P1/p) = 1, ie. if p stays prime in Of, we say that p is
inert in L/ K

3. If g1 i (p) = [L : K], we say that p is totally split in L/K.

There is different way of defining ramification in the Galois case, which will be
more useful to us. Let L/K be a Galois extension. Then for a prime p C O and
B C O a prime lying over it, we define the decomposition group at B/p as the
stabiliser at B of the action of Gal(L/K) on the set of primes above p. That is,

D(B/p) = {0 € Gal(L/K) | o(F) = B}

The decomposition group acts on O, /P by o(x +PB) = o(x) + P, so particularly,
it surjects onto Gal(kyp/kp), the Galois group of the residual extensions. This yields
a short exact sequence

1——=1I(B/p) —= D(P/p) — Gal(kp/ky) —1 (1.1)

where the kernel of the surjection, I(8/p), called the inertia group can be explicitly
written as

IB/p) ={o € D(P/p) |o(z) =z (mod ), Vz € OL}.

When I(3/p) = 1, the prime p is unramified. Also, looking at the definitions of
both groups, it can be seen that for any o € Gal(L/K) the following identities are
satisfied

aD(B/p)o~" = D(o(B)/p) and oI(P/p)o~" = I(o(P)/p)

When L/K is Galois and finite, we can compute the order of the decomposition
and inertia groups.

The order of the decomposition group can be computed using the fact that it is
the stabiliser at P of Gal(L/K) acting on the set of primes above p. By the formula
above, efg = [L : K| = |Gal(L/K)|. Particularly, g = |Gal(L/K)|/ef. Now, by the
orbit-stabiliser theorem, we have that the order of an orbit of an element is equal to
the index between the group and the stabiliser. In this case, g is the order of the
orbit of a prime B lying over p, Gal(L/K) is the group and D(/p) is the stabiliser.
Hence, we have

_ |Gal(L/K))| _ |Gal(L/K))|
T I D/l
Particularly, |[D(B/p)| = ef.

To find the order of the inertia group, using the exact sequence (1.1), we have that

_ DG/l _ef _
[1(B/p)| = |Gal(kp/kp)| [
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1.1.2 Frobenius element

Following from the definition of the decomposition group, let L/K be a Galois exten-
sion of a number field K and let p be a finite prime of K and P a finite prime of L
lying over it.

If p is unramified, then I(/p) = 1, hence the exact sequence (1.1) gives an
isomorphism between D(B/p) and Gal(ky/ky). The group Gal(kyp/kp) is cyclic of
order a power of p and it is generated by the Frobenius homomorphism z +— aP. So,
there is a unique element of Gal(L/K) which is contained in D(/p) and maps to
the Frobenius homomorphism by the isomorphism between the two groups. We call
this element the Frobenius element at 3/p and denote it by Frob(33/p). Now, for any
o € Gal(L/K), we have

Frob((),/p) = o Frob(/p)o .

So, we can define a conjugacy class in Gal(L/K) which contains Frob(33/p). We call
it the Frobenius element at p and denote it by Frob,. Explicitly,

Frob, = {Frob(P/p) | pOr C PB}.

There is a concrete characterisation of the Frobenius element:

Proposition 1.1.1. Let L/K be a Galois extension, p a non-zero finite prime of K
unramified in L/K and B a finite prime of L lying over p. Then Froby is the unique
o € Gal(L/K) that satisfies

o(a) = aNe/x®  (mod P).

A very important theorem for us is the following

Theorem 1.1.2 (Weak Chebotarev). Let L/K be a Galois extension, unramified
outside a finite set of primes S. Then the Frobenius elements of unramified primes in
L/K are dense in Gal(L/K).

1.2 Linear representations

We are going to state some basic definitions and properties of linear group repre-
sentations over a field K of characteristic 0. We are then going to briefly look at
the classification of linear representations of a finite group over C, which will serve
as a clarifying example for the definitions given before, and finally we are going to
define and give some important examples of Galois representations, the main object
of interest in this thesis.

Definition 1.2.1. Let K be a field of characteristic 0, let G be a group and let
V be a finite dimensional vector space over K. Any K-linear action of G onto V,
p: G — GL(V), is called a K -valued representation of G.

The representation is usually denoted as the linear action and the vector space,
i.e. it is the pair (p,V). Sometimes, when the space V and the field K are well
understood, they are omitted and the representation is just denoted as p.

Since we are asking for the vector space V to be finite dimensional, let n = dimg V.
In this case, we say that the representation p is of dimension n. Choosing a basis for V
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gives an isomorphism GL(V) = GL,,(K). This allows us to denote the representation
as (p,V) or (p, K,n). For example, when K = C, the complex numbers, we are going
to say that we have a complex representation of dimension n of G, p: G — GL,(C).

There is no harm in asking for G, V and K to have an endowed topology respecting
their algebraic structure and that the homomorphism p: G — GL(V) is continuous,
since we could always endow everything with the discrete topology. In this work, we
are always going to assume that the representations are continuous.

If we have W C V a vector subspace, stable under the action of G, that is,

p(g)(w) € W, VgeG, YweW,

we call the representation p: G — GL(W) a subrepresentation of p. In particular,
this gives the following definition:

Definition 1.2.2. A representation p: G — GL(V) is called simple or irreducible if
its only possible subrepresentations are W = {0} and W = V.

We say that a representation p: G — GL(V) is semisimple if it can be written
as a direct sum of simple subrepresentations.

Definition 1.2.3. Consider two representations (p1, Vi) and (p2,V2), where Vi, Vs
are two vector spaces over K. A homomorphism of representations is a K-linear map
f: Vi — V5 such that

fopilg) =p2g)o f.

If the homomorphism f is invertible, we say that p; is isomorphic to p2 and write

p1 = p2.
Every representation p: G — GL(V') admits a Jordan-Hélder composition series,
i.e. a decreasing filtration

V=V2Vi2 2Vy=0.

where Vj;1 is a maximal proper G-stable subspace of V; or equivalently, V;/V;i; is
simple. Let us write JH(p) for the set of isomorphism classes of the simple quotients
Vi/Viy1 with multiplicities. It is a standard fact in representation theory that JH (p)
does not depend on the choice of Jordan-Holder composition series for p. This allows
us to define an equivalence relation on the set of representations which is coarser than
being isomorphic:

Definition 1.2.4. We say that two representations of G, (p1, V1), (p2, V2) are equiv-
alent and write p1 ~ pa if JH(p1) = JH(p2).
Theorem 1.2.5. Let (p1, V1) and (p2, Va2) be two representations of G. Then

1. If p1 = pa, then p1 ~ pa.

2. If p1, p2 are semisimple, then p1 = po if and only if p1 ~ p2.

3. For every representation p, there exists a unique (up to isomorphism) semisimple
representation p*® such that p ~ p**. Concretely, if

JH(p) = {(Wlam1)7 S (Wﬁ mT)}’

then p** is the action of G on W™ @& --- & W,
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The isomorphism class of the semisimple representation p®® is called the semisim-
plification of p. From 2 and 3, we deduce

SS ~v

p1~ p2 = pi° = p3°.

The problem of deciding when two semisimple representations in characteristic
0 are isomorphic is completely determined by their trace. Given a representation
p: G — GL(V), its trace is the continuous function

tr(p): G -2 GL(V) % K.

Proposition 1.2.6. Let p; and p2 be two semisimple representations of a group G
with values in K. Then,

p1 = py = tr(p1) = tr(p2).

Particularly, from the theorem above it follows that

p1~p2 = pi° = py = tr(p1) = tr(p2).
Notice that we write tr(p;) = tr(p2) instead of tr(pj®) = tr(p3°®), which is the equality
that one would expect. This is because the trace does not distinguish a representation
p from its semisimplification p**; since it is additive on short exact sequences whether
they are split or not.

1.2.1 Linear representation of finite groups

Suppose now we are on the setting of G a finite group and K = C. We are going to
see that the representations of G are determined by the group of characters of G.

Theorem 1.2.7. FEvery representation of a finite group G, p: G — GL(V) is
semisimple.

The proof of this theorem can be found on any book on representations. It usually
involves the construction of a Hermitian product H(-,-) and then for any subrepre-
sentation W, we can find the orthogonal space to W using the product. This gives a
decomposition of V as W & W+,

This tells us that classifying representations modulo 22 or modulo ~ is indifferent
in the finite case. Of course, this is not true in general:

e If GG is infinite, let p: Z — GL2(C) the representation defined by

=5 1)-

The only subrepresentation of dimension 1 is the subspace spanned by (1 0)7.

e If the characteristic of the field where the vector space is defined divides the
order of the group. For example, let p be a prime and let p: Z/pZ — GL4(F,)

the representation defined by
11
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Then, as before, the only subrepresentation of dimension 1 is the subspace
spanned by (1 0)7.

Given p, a complex n-dimensional representation of a finite group GG, we define the
character attached to p, denoted as x: G — K, as the trace of the representation.

It can be proved that for any g € G, the image of g, p(g) € GL,(C) is diagonaliz-
able and the eigenvalues of the matrix are the roots of unity dividing the order of the
group. Particularly,

W= Y A=Y e

A€Spec(p(g)) d||G|

Let us see some properties that characters satisfy in this setting. Let
p: G — GL(V) be a representation of dimension n and let x be its character. Then,
for every g € G,

1. x is constant in the conjugacy classes of G.
2. x(g) is an algebraic integer, i.e. x(g) € Q.
3. |x(g)] < nand |x(g)] =n <= p(g) =1d. Particularly, x(idg) = n.

We want to classify the representations of G modulo isomorphism. In the vector
space of functions ¢: G — C we define the Hermitian product

(6,) = é, S 6lg)ulg).

geG

Let C be the subspace of all the functions G — C which are constant in the
conjugacy classes defined with the same Hermitian product. Such a function is called
a class function. As we saw in the properties of the characters of a representation
above, a character x is a class function.

Theorem 1.2.8. The set of characters of the irreducible representations of G define
an orthonormal basis for C.

In particular, if p: G — GL(V) is a representation of dimension n, one has the
following remarks:

e The number of non-isomorphic irreducible representations of G is equal to the
number of conjugacy classes of G.

o Let JH(p) = {(U1,m1),...,(Ur,my)} be a list of all the non-isomorphic irre-
ducible representations of G. Let p; be the induced representation of U; and y;
the attached character. Then V can be written as

V=UM"a---aU",

and the m; satisfy
X =mix1 =+ + MeXr.

Therefore, all the necessary information to decompose representations of a finite
group G in irreducible sums is given in the character table for G. This table is an
r x r matrix with values x;(c;j), where the ¢; are the representatives of the conjugacy
classes of G.
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Example 1.2.9. The standard example is to give the conjugacy classes of the group
Sm. To make it easy, we can choose G = 9y.

The conjugacy classes of a symmetric group Sy, are given by the partition numbers
of m. For m = 4, we have the following cases:

Partition of 4 Associated ¢;

T+1+141 id
241+1 (12)
3+1 (123)
242 (12)(34)
4 (1234)

1.2.2 (Galois Representations

Definition 1.2.10. Let L/K be a Galois extension of number fields, let E be a field
of characteristic 0 and let V' be a finite dimensional vector space over E. A Galois
representation is a linear representation of Gal(L/K) over V

p: Gal(L/K) — GL(V).

First of all, let us remark that the usual definition of a Galois representation is by
using the absolute Galois group Galg. Both definitions are equivalent, since given

p: Galg — GL(V),

such that Ker(p) = Gal(K /L), by the isomorphism theorem and Galois theory one
has
Im(p) = Galg / Ker(p) = Gal(K/K)/ Gal(K /L) = Gal(L/K).

Let us look at one of the simpler examples, the representation given by a cyclotomic
character.

Example 1.2.11. (Complex cyclotomic character). Let x: (Z/NZ)* — C* be
a primitive Dirichlet character. Let (n be a primitive Nth root of unity. Then
Gal(Q(¢n)/Q) = (Z/NZ)*. Particularly, Galg can be restricted to Gal(Q(¢n)/Q),

which gives the commutative diagram

Galg
Gal(Q(¢)/Q) = (Z/NZ)*
i A

CX
The Dirichlet character x determines a homomorphism
Py = py,N omn: Galg — C*.

It satisfies that py(conj) = x(—1) and for any prime p C Og = Z lying over a rational
prime p with p t N, i.e. p does not ramify in Q({n)/Q, then p,(Frob,) = x(p).
To show that the homomorphism is continuous, it suffices to check that p 1'is open,
and this holds because the anti-image is Gal(K/Q) for some Galois number field

K C Q(¢N)-
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Any continuous homomorphism p: Galg — GL,(C) factors through
Gal(K/Q) — GL,(C) for some Galois number field K. Particularly, the repre-
sentation p has finite image. For a l-dimensional representation p: Galg — C*,
having finite image implies, by the Kronecker-Weber theorem, factoring through
Gal(Q(¢n)/Q) for some N. Thus all complex 1-dimensional representations factor
through p, for a primitive Dirichlet character xy whose N has to be chosen properly.

However, the representations we are interested in, for example those that arise from
Q-abelian varieties, have F a finite extension of (O, for a rational prime ¢. Hence, let
E be a local number field, i.e. a finite extension of QQy, with ring of integers O, having
maximal ideal .

Definition 1.2.12. Let V be a vector space over F and let p be a continuous linear
action of Gal(L/K) on V,

p: Gal(L/K) — GL(V).
We call the couple (p, V') a A-adic Galois representation of the group Gal(L/K).

We can also look at the f-adic cyclotomic character

Example 1.2.13. ({-adic cyclotomic character). Let K be a number field and let (yn
be a primitive £™-root of unity in K with (¢pn)? = (m-1. For o € Galg and i > 0,
define a sequence of integers a; € Fy,

o(C) = Cgl
o(Cr) = (3 +agt
O'(Qn) — C211+agz+...+an€n,1'

Then we define the f-adic cyclotomic character x,: Galg — ZZ C GL1(Qy) as
xe(o) = a1 +agl+ -+ a4

Notice that the value x, (mod ¢™) simply says what o does to the ¢" roots of unity.
It is easy to check that the cyclotomic character is multiplicative. It is also easy to
check that it is continuous: taking F,, = K({), then Gal(K/F,) — 1 (mod £™) so
x¢ is continuous. Hence, it defines a 1-dimensional /-adic representation.

This representation also satisfies that y,(conj) = —1 and as before x,(Froby) = p
when p # £.

We are now going to see that any A-adic representation can be seen as having
values in O).

Definition 1.2.14. Let V be a finite dimensional vector space over E. An Oj-lattice
A is a Oy-submodule of V' spawned by E-linearly independent vectors. If the vectors
of the basis of V over E, then we call A a full Oy-lattice.

Since we are considering p to be continuous, we have the following proposition:

Proposition 1.2.15. Let (p, V) be a A-adic Galois representation of a Galois group
G = Gal(L/K). Then p stabilizes a full Oy-lattice of V.
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Proof. Let A be a full lattice of V. Then p(G)(A) = {p(g)(v) | Vg € G, Vv € A} is a
lattice. Consider the subgroup H of G that stabilizes A, i.e. H = {g € G | p(9)A = A}.
By continuity of p, H is open, and being G profinite (hence compact), H has finite
index. Indeed, A is open and compact by definition, so its stabilizer in GL(V) is open.
Therefore, the lattice T' generated by the lattices p(o)A, for o € G/H is stable under
the action of the Galois group. O

Corollary 1.2.16. Choosing a E-basis of V' which is a Oy-basis for a full lattice A
under p, we have p: G — GL,(Oy) € GL,(E).

Remark 1.2.17. We have seen in Definition 1.2.3 that two K-valued representations
are isomorphic if and only if they are conjugated, i.e., there exists P € GL,(K) such
that PpiP~' = po. This is not true when we are considering the representations with
values on O). For example, let G = C5 the cyclic group of 2 elements and let K = Q.
Consider the following representations

pio)= (3 o) mer=(5 %)
P:G —11>

satisfies Pp; P~! = py. However, if p; and po were conjugate over Oy = Zo, then they
would be conjugated modulo 2, but this is impossible since the reduction modulo 2 of
p2(0) is the identity and the one of p;(o) isn’t.

The matrix

Definition 1.2.18. A homomorphism p: Gal(L/K) — H is unramified at a prime
p C OK if
I(B/p) € Ker(p),

for any prime ¢ C Op, above p.

Given S a finite set of primes of K, let Ig be the closed normal subgroup of
Gal(L/K) generated by all the inertia subgroups I(3/p) for p & S. Then the quotient

Gal(L/K)g := Gal(L/K)/Is

is the largest continuous quotient of Gal(L/K) which is unramified outside S. By the
Galois correspondence, there exists a subextension Lg of L/K such that

Is = Gal(L/Lg)

is the maximal subextension of L unramified outside S. More generally, for any
topological group H, the continuous homomorphisms p: Gal(L/K) — H that are
unramified outside S are precisely those that factor through the quotient

Gal(L/K)S = Gal(Ls/K).

Proposition 1.2.19. Let E be a local number field and V' a finite dimensional vector
space over E. Let p1 and pa be two representations of the absolute Galois group Galg
into GL(V') which are unramified outside S. Then

p1 ~ p2 <= tr(pi(Froby)) = tr(p2(Froby)), Vp¢&S.
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Note that the trace is constant on conjugacy classes, so the right hand side makes
sense.

Proof. The equivalence class of a continuous representation p: Gal(L/K) — GL(V)
unramified outside S is determined by its trace. In particular, we may view the trace
map as a continuous function on Gal(Lg/K), which is determined by its restriction
to a dense subset. O

In addition to considering a single A-adic Galois representation, sometimes is
needed to vary A and consider families of representations satisfying a compatibility
condition.

Given K and E two number fields, and A a prime of F, let S\ denote the set of
primes of K which divide N(A).

Definition 1.2.20. An FE-rational compatible system of A-adic representations of
degree n of Galg is a family indexed by the finite places A of F,

p = {p)\: Galgy — GLn(E/\)}N

where FE) is the completion of E at A, for which there exists a finite set .S of primes
of K such that for every A:

e p) is unramified outside S U S).

e for every prime p € S U Sy of K, the characteristic polynomial
det(1 — tpx(Froby)) € E[t]
has coefficients in £ and does not depend on A.

The minimal set S satisfying these two conditions will be denoted Ram(p).

For the purposes of this thesis, we are interested in the following type of compatible
system: Given a representation p: Galxy — GL,(E) with finite ramification, we can
associate a compatible system

px = p® Ey.

Particularly, given a representation p as above, we can define the set Ram(p) as
the finite set for this compatible system.

Example 1.2.21. An example for this is £ = QQ and then for every rational prime ¢,
define the system of representations p; = p®g Q. The condition on the characteristic
polynomial in this case is that it is an element of Q[t]. We are going to see another
example in the case of representations arising from an elliptic curve E/Q.

Galois representations attached to an elliptic curve

Let E be an elliptic curve defined over a number field K. Then one may define Galois
representations attached to the elliptic curve by letting the absolute Galois group
Galg act on sets of torsion points of E.

Let 0 € Galg and let E be an elliptic curve defined over K. Let P = (z,y) be

a point on E(K). The automorphism o acts on P coordinate wise, so if P satisfies
the defining Weierstrass equation for F, so does o(P) = (o(z),0(y)). Particularly,
for every P,Q € E, o(P + Q) = 0(P) + o(Q). So, o induces a group homomorphism

E(K) — E(K) and furthermore, it induces a map of the m-torsion points E[m](K)

by restriction, o,,: E[m](K) — E[m](K).
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Since E[m|(K) = (Z/mZ)?, we can choose two points P,Q € E[m](K) which span

it. Particularly, every point in E[m](K) can be written as a Z/mZ-linear combination
of P and @Q. So, since we have a basis of this space, we can write g, as a 2 X 2 matrix

d

(orien) = (2 0) (@)

This gives a group homomorphism

Ay = <CC‘ b>, a,b,c,d € Z/mZ

which satisfies

pm: Galg — Aut(E[m]) = GL2(Z/mZ)
c — A,

This is Galois representation which we call the mod m Galois representation at-
tached to E or the residual representation of E mod m.

Notice that the kernel of this map are those o € Galg such that A, = Id.
That is, the o which leave fixed the m-torsion points of E, namely the subgroup
Gal(K /K (E[m](K))). So, we have

pm(Galge) = Galye /Ker(pm) = Galy / Gal(K /K (E[m](K))) = Gal(K (E[m] (K)z /K)),
1.2

Example 1.2.22. The 2-torsion points of a rational elliptic curve can be easily de-
scribed. We are going to see some results on Chapter 2, §2.2. For now, let us state
some results without proof.

Let E be an elliptic curve over Q. Its 2-torsion subgroup, E[2] = F3 is given by 4
points. Particularly, if E' is given by a Weierstrass equation

y* =2 + Az + B,

then a point (z,y) € E[2] must satisfy y> = 0, hence, the 2-torsion points consist
of points of the form (z,0). Consequently, let E[2] = {O, (a,0), (b,0), (c,0)}, with
a,b,c € Q and O the identity element of E seen as a group. Then the 2-torsion field
Q(ER]) = Q(a, b, c).

Since a, b, ¢ are solution to an equation with rational coefficients, we can have 1 or
3 rational roots. If a,b,c € Q, then Q(F[2]) = Q and the representation ps is trivial
by (1.2).

If we have two or more roots in Q \ Q, then Q(E[2])/Q is an extension with irre-
ducible polynomial of degree at most 3, so Gal(Q(F[2])/Q) is a transitive subgroup
of S3, which can only be the alternating group As or Ss itself. It is a simple ex-
ercise of Galois theory to check that the condition for one or the other is whether
the discriminant of the polynomial z3 + Az + B is a square in Q (in which case
Gal(Q(E[2])/Q) = Aj3) or not (in which case Gal(Q(F[2])/Q) = S3).

In fact, since GLg(F2) = S5, whenever the discriminant of 23 + Az + B is not a
square in Q, the representation ps: Galg — GL2(FF2) is surjective.

Surjectivity in the case of residual representations (in the non CM case at least)
is not that “rare”. In [30], Serre proves the following theorem:
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Theorem 1.2.23. Let K be an algebraic number field and E an elliptic curve defined
over K without complex multiplication. Then, for all but finitely many primes ¢, the

restdual representation
P GalK — GLQ(F()

18 surjective.

One is usually interested in a broader picture than the m-torsion points of an
elliptic curve. Recall that given an elliptic curve over a number field K and given a
rational prime ¢, we can define the Tate module of F,

Ty(E) = %HE[K ]
The inverse limit is given by the multiplication by ¢ isogeny, [{]: E[("T!] — E[("].
The Tate module is a free Z,-module of rank 2; this can be easily seen, since
Epm = (Z/"7)? and Wm Z/"Z = Z;. Denote by Vy(E) the finite dimensional Q-

vector space obtained by extension of scalars from Ty(FE), i.e.,
Vi(E) = Ti(E) @z, Q.
Then one defines the ¢-adic representation of FE as
pee: Galg — Aut(Vy(E)).

Choosing a basis of Ty(F) in the natural manner (i.e. choosing the basis for E[¢"]
as above) gives a Zg-basis in Vy(E) = T;(E) ®z, Q, which gives the isomorphism
GL2(Qy) = Aut(Vy(E)) and also this basis forms a full Z-lattice of V;(E). We know
that pg ¢ stabilises a full Oy-lattice of V', by Proposition 1.2.15, but we would like to
prove that this particular Z,-lattice is the one being stabilised. This requires some
computations.

For ease of reading during this part, let Ty = Ty(E) and V; = V;(E). We can write
Vi as the localisation of Ty at 1/¢, V; = Ty[1//]. Then,

Vo/Te = Ty[1/0)/Ty = | J 0" T2/ To.
Note that ¢~"T,/T, = Ty /¢"T, = E[{"]. Hence,
Ve/Te = | E[e").

This induces an isomorphism Aut(Vy/Ty) = Aut(lJ,, E[¢"]). We want to see that
there is an isomorphism between Aut(7y) and Aut(V/T;). We have the commutative
diagram
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[4] proj 14
Ty —— T, /0" T —— E[("]
(4] proj 4

0T /Ty Ty /T, = B[]

[4] proj 14

where [¢] denotes the multiplication by ¢ isogeny. These give a natural inclusion map
6*(”+1)T4/Tg — {~"Ty/T; which give V;/Ty as a projective limit. Taking inverse
limit on T,/¢"T, = E[¢"] gives again the Tate module T;. And obviously, since
E[¢"] = (Z/t"Z)?, taking projective limits gives Z7. So we can redraw the diagram
above as:

[4] proj 14

0Ty ——— T, /(" Ty —— E[("]

(4] proj 4
T )Ty =Ty 0T, —— B[]

(4] proj (4]

Ve/Ty = T, = Z;

Finally, the same diagram is given when taking automorphisms,

~

Aut(ﬁ_”Tg/Tg) Aut(Tg/fnTg) = GLo (Z/ﬂnZ)

Aut(0~"T, ) Ty) ——— Aut(T,/0"H1T)) ——= GL2(Z /0" 7Z)

~ ~

Aut(Ve/Ty)

Aut(Ty)

GL2(Zy)
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So, denoting by E[¢>] =J,, E[¢"], we have an ¢-adic representation
¢E7g<><>2 Galg — Aut(E[foo]) = GLQ(Zg).

Considering the inclusion GLg(Z;) — GL2(Qy), then the representations ¢ oo
and pg ¢ give the same representation: the action of Galx on Vy is determined by the
action of Galgx on Ty.

Again in [30], Serre gives a theorem for surjectivity in the non-CM case:

Theorem 1.2.24. Let K be a number field and E an elliptic curve without com-
plex multiplication. Then for all but finitely many primes £, we have pg(Galg) =
Aut(E[€>°]).

Our interest in this thesis is to compare Galois representations, i.e. to determine
when two representations are equivalent. As we have seen in Proposition 1.2.19, a way
to do so is by comparing the traces of the representations in the Frobenius elements
at unramified primes. The following proposition is going to help us to compute these
traces in the case of elliptic curves:

Proposition 1.2.25. Let £ be a prime and let E be an elliptic curve over Q with
conductor N. The Galois representation pg g is unramified at every prime p { {N.
For any such p, let p be a prime above it. Then, one has

tr(pge(Froby)) = ap(E) and det(pge(Froby)) = x¢(Froby) = p,

where xy is the L-adic cyclotomic character. In particular, the characteristic polyno-
mial of pg ¢(Froby) is:
2% — ay(E)z + p.

Remark 1.2.26. For E an elliptic curve defined over a number field K, one can consider
the system of f-adic representations

PE.e ‘= {pE,K: Galg — GL2(QZ)}£ prime number

Even though they are representations into different groups, they share many proper-
ties, since they come from the elliptic curve E. For example, for each finite prime
p of K, the type of reduction of F at p carrier information about the image of the
decomposition group at this prime by the representation pg,. An application of this
observation is the Néron-Ogg-Shafarevich criterion [32, Ch. 7, Thm. 7.1].

This allows us to generalise the proposition above:

Proposition 1.2.27. Let E be an elliptic curve defined over a number field K, let
£ be a rational prime and let p be a finite place of K of good reduction for E such
that p t €. Let Frob, be an element of Galg projecting onto the Frobenius map in
Gal(ky/ky), the absolute Galois group of the residue field ky. Then,

tr(ppe(Froby)) = ay = 1+ Ngo(p) — #E(ky)

det(pg,¢(Froby) = Nk /q(p),

where Ng g(p) is the norm of p in K/Q which is equal to the cardinal of the residual
field ky. Particularly, the characteristic polynomial is

% — apx + NK/@(p).
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Finally, one might consider what is the representation of the full torsion group
of E, that is, Fiors = U, E[n]. One can define the automorphisms of Ey..s as the
projective limit

Aut Etors L Aut

Since E[n] & (Z/nZ)?, Aut(E[n]) = GLa(Z/nZ), so taking projective limits on both
sides yields R
Aut(Eiors) = GL2(Z),

where Z is the Priifer ring, @Z/nZ. The Galois group Galg acts continuously on
Aut(E[n]), hence, it acts continuously on Aut(Fiors), giving the representation

pe: Galg — Aut(Eiors) = GLo(Z).

Galois representations and modular forms

We are going to associate a Galois representation to a modular curve X;(N) and
we are going to see that we can decompose them into 2-dimensional representations
associated to modular forms. This will give the desired representation py, for a given
modular form f.

Let N be a positive integer and let £ be a rational prime. The modular curve
X1(N) is a projective nonsingular algebraic curve over Q. Let g denote its genus.
The complexification X;(N)¢ defined by the same equations but viewing the curve
over C, can also be viewed as a compact Riemann surface. The Jacobian of a modular
curve is a g-dimensional complex torus:

Jl(N) = Jac(Xl(N)(c) = Cg/Ag.

The Picard group of the modular curve is the Abelian group of divisor classes of
the points of X1(N),

Pic’(X; () = Div(X;(N))/ Div’(X; (N)).

The group Pic’(X;(N)) can be identified with a subgroup of Pic’(X1(N)c) and
the complex Picard group is naturally isomorphic to the Jacobian by Abel’s theorem.
Thus, there is an inclusion of £"-torsion,

in: Pic?(X1(N)[("] — Pic®(X1(N)o)[¢"] = (26" 7)%

Igusa’s theorem states that X;(NN) has good reduction at prlmes P 1 N, so also
there is a natural surjective reduction map Pic®(X{(N)) — Pic?(X1(N)) which
restricts to

n: Pic® (X1 (N))["] — Pic®( X1 (N)[¢"].

From algebraic geometry, let X be a curve of genus g over a field K and let M be
an integer coprime to the characteristic of K. Then Pic%(X)[M] = (Z/MZ)?9 and if
X has good reduction at a prime p { M over Q, then the reduction map is injective on
Pic?(X)[M]. Particularly, the inclusion i, is an isomorphism and so is the surjection
T for pt¢N.

Now we define the (-adic Tate module of X1(N) as

T,(Pic® (X L m Pic® (X1 (N))[e"].
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Much in the same way as in the previous section, choosing a basis for Pic?(X1))[("] =
(Z/"7)%9 gives an isomorphims

Ty(Pic® (X, (N))) = Z,9.

Any o € Galg defines an automorphism in Div?(X7(N)),

o (Y one(P) =Y nelo(P)),

i.e. it acts on the points. Since o(div(f)) = div(a(f)) for any f € Q(X;1(N)), the
automorphism descends to Pic’(X;(N)), giving an action,

Pic’(X1(N)) x Galg — Pic?(X1(N)).

Said action restricts to the £"-torsion (this is because the extension over QQ obtained
by attaching the ¢™ torsion of the Picard group is Galois). This gives a commutative
diagram

Galg

T

Aut(Pic’ (X1 (N))[£]) Aut(Pic (X1 (N))["+1)

which allows us to take inverse limits and define the 2g-dimensional ¢-adic Galois
representation associated to X1(N),

PX1(N)L* GalQ — GLQQ(Z,@) - GL2g(Q£)~

We could have defined V;(X1(N)) = Ty(X1(NN)) ®z, Q¢ as we did in the previous
section and by a similar argument, deduce that the representation over Vy(X;(N))
has actually values on Zy, since the Galois groups acting on V;(X1(V)) actually acts
on Ty(X1(N)). Or viceversa, we could have given the arguments we have given in this
section in the previous one. In fact, this latter approach is the one taken in [10].

Now we want to restrict this representation to be the representation of a modular
form f.

Recall that the Hecke algebra Ty is the algebra is the algebra of End(S2(I'1(N)))
generated over Z by the Hecke operators. It acts on Pic®(X;(NV)) linearly, which
restrictrs to the £ torsion and so the action extends to Ty(Pic’(X1(N))). The Galois
action and the Hecke action on Pic?(X1(N)) commute and therefore so do the two
actions on Ty(Pic®(X1(N))).

We have similar proposition to Proposition 1.2.25:

Proposition 1.2.28. Let ¢ be a prime and let N be a positive integer. The Galois
representation px, Ny, 1S unramified at every prime p tUN. For any such p, let p be
a prime above it. Then the characteristic polynomial of le(N)’g(Frobp) 18

% — Tpx + (p)p.

Consider a normalized eigenform f € Sa(N,x). The Hecke algebra contains an
ideal associated to f, the kernel of the eigenvalue map

Iy ={T €Tz |Tf =0},
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and the Abelian variety attached to f is defined as
Ap = J1(N)/IgJ1(N).

There is an isomorphism

Tz/If = Of := @ Zlan(f)].

n>0

Under this isomorphism, the Fourier coefficients a,(f) act on Ay as T, 4+ . Also, Of
contains the values x,, for positive n and x(p) acts on Ay as (p) + I5.

Let Ky denote the fraction field of the ring O;. It is a number field whose extension
degree d = [Ky : Q] is also the dimension of Ay as a complex torus. As with elliptic
curves and modular curves, the Abelian variety has an ¢-adic Tate module (as a matter
of fact, elliptic curves’ is just an example of this one),

To(Ay) = lim A [€") = Z37.

n

The action of O on Ay is defined on the £"-torsion and extends to an action of Ty(Ay).
The following lemma shows that Galg acts on Ty(Ay).

Lemma 1.2.29. The map Pic®(X1(N))[€"] — Af["] is surjective. Its kernel is
stable under the action of Galg.

Proof. The proof is more involved than we would like to get, since it uses the homology
of X1(N)c. It can be seen in [10], Lemma 9.5.2. O

So, Galg acts on A¢[¢"] and therefore on Ty(Af). The action commutes with the ac-
tion of O since the action of Galg and the one from Tz commute on 7y(Pic®(X1(N))).
Choosing coordinates appropriately gives a Galois representation

pAfyg: GalQ — GLQd(Qg).

The representation is unramified at primes p { £V since its kernel contains Ker(px, (n),¢)-
For any such prime p, let p be a prime above it. Then at the level of Abelian varieties
we have that T}, acts as ap(f), the pth Fourier coefficient of f, and (p) acts as x(p),
the character of the space of cusp forms where f is, So(N, x), hence Proposition 1.2.28
says that the characteristic polynomial of p» f7g(FI'Obp) is

2 — ay(F)z + X(p)p-

The Tate module Ty(Ay) has rank 2d over Z;. Since it is an Oy-module, the tensor
product Vy(Ay) = Ty(Ayr) ®z, Qg is a module over Oy ® Qp = K ®g Q. The absolute
Galois group Galg acts (K ®g Qp)-linearly on Vy(A4y) = (K; ®g Q¢)%. Choosing a
basis B of V;(Ay) gives an isomorphism GLo(Kf ®g Q) = Aut(V,(Ay)).

Remark 1.2.30. We recall the following result from Algebraic Number Theory. Let
FE be a number field and Oy its ring of integers. Completing E by a prime A C Op
gives the field E) with ring of integers

Opa = lim Op/\".

If £ is a rational prime such that X is above ¢, then Z; is a subring of Og ) and Q; a
subfield of Ey. Let f) be the residual degree f(A/¢) = [k : F¢] and ey the ramification
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index e(A/f). Then [E) : Q] = ey f) and there is a ring isomorphism
E®gQ =[] Ex
N
Then, K; ®q Q; = H/\\f Ky », so for each A we have
prxa: Galg — GLo(Kf ®g Qp) — GLo(Ky ).

This proves that for every normalised eigenform f € So(N,x) with number field
Ky, ¢ a prime, for each A maximal ideal of Ok, lying over /, there exists a 2-
dimensional Galois representation

PrA: Gal(@ — GLQ(Kﬁ)\).
This representation is unramified at every prime p { /N and for any such p with p a
prime lying over it, the image of the Frobenius at p has characteristic polynomial

2® —ap(f)z + x(p)p-
To finish off both examples, we have two theorems which are going to be very
important for the examples of representations arising from abelian varieties.

Theorem 1.2.31. If A is an abelian variety defined over a number field K, then

Vi(A) = Ty(A) @ Qp is a semisimple representation for the absolute Galois group
Galg of K.

Theorem 1.2.32. Let A and A’ be two abelian varieties defined over a number field
K. Then A and A’ are K-isogenous if and only if Vi(A) ~ V(4.
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Chapter 2

Comparing (alois representations:
the residually irreducible case.

2.1 The deviation group 6(G)

Let G be an arbitrary group and let E be a local field with ring of integers O), maximal
ideal A and residue field k. Let p1, p2: G — GL,,(O,) be two A-adic representations.
We are interested in deciding when p; ~ po, that is, when the semisimplifications of
p1 and pg are isomorphic. In order to do this, we are going to construct a group §(G)
in which we will be able to find a finite set of elements where, if the representations
coincide, then their semisimplifications will be isomorphic, otherwise, they won’t.

Let us start by extending the map p; X pa: G — GL,(O,) x GL,(O,) to an
homomorphism of Oy-modules

p: ON\G] — M,(0y) ® M,(O)).

Recall that Oy[G] is the group Oy-module for G, i.e. it is the Oy-module with basis
the elements of G, which can be described as:

O\[G] = Z a;igi |a;i € Oy, g €G
icl
#I1<oc0

For z =) a;g; € O,\[G], we set

p (Z giai) = (Z aip1(9i), Y am(gz‘)) :

Notice that it is only natural that the image is not in GL,(O)) x GL,(O,) since, in
general, it is not true that GL,(O),) is closed under Oy-linear combinations.

Remark. Notice that O)[G] and M, (Oy)® M, (O,) are rings, and also O} is contained
in the center of O,\[G] and M, (O,) & M,(O,), then we can see them both as Oy
associative algebras. Particularly, p is an Oy-algebra homomorphism.

Now let M be the image of p in M, (O,) & M, (O, ) and consider the composition
§: G — M* — (M/AM)*.

Definition 2.1.1. The image §(G) of G in (M/AM)* is called the deviation group
of the pair (p1, p2).

Remark. Consider the short exact sequence associated to the reduction modulo A:

0 — Mp(\) — M,(Oy) — My,(k) — 0.



22 Chapter 2. Comparing Galois representations: the residually irreducible case.

This short exact sequence identifies M, (k) & M, (k) with R/AR, where

R = M,(O)) & M,(0O,) (recall that given M, N two A-modules, for a commutative
ring A, and I C A an ideal, (M @ N)/I(M & N) = M/IM & N/IN). Since 6(G) is
a subgroup of (M/AM)* and M C R, it might be tempting to think that §(G) is a
subgroup of (R/AR)* = GLj (k) x GL, (k). To show that this is not the case, let

M = M/(MNAR).
Since AM C M N AR, we have a short exact sequence involving M /AM:
0— (MNAR)/AM — M/AM — M — 0.
Writing G for the image of G in M~ C (R/AR)*, we have a short exact sequence
1— N(G) —(G) — G — 1, (2.1)

where the kernel N(G) is the image of p(G) N (1 + AR) in (M/AM)*, and in general
its nonzero.

Proposition 2.1.2. The group §(G) is finite. More precisely,
3(G)] < K>

Proof. M is a submodule of the free Oy-module M,,(O,) & M, (O,). Since O, is a
local ring, M itself is free of rank r, where r satisfies the inequality

r < rank (M, (Oy) ® M, (0))) = 2n>.
Since M is an Oy-module, M/AM is a k = O,/ Oy-algebra of dimension r, hence:

(G| < |(M/AM)*| < [K|" < [K[*"".

The following proposition is a step towards deciding when p; ~ ps.

Proposition 2.1.3. Let ¥ be a subset of G surjecting onto 6(G). Then,
P ®E~p®FE < tr(pi(g)) = tr(pz(g)), Vg € X.

Proof. The implication p1 ® E ~ pa @ E = tr(p1(g)) = tr(p2(g)) is obvious.

For the other implication, suppose that p; % pe. Then tr(p;) # tr(pz) for some
g € G. Since this is an inequality in O), it implies that there exists an integer a@ > 1
such that

tr(p1(g)) = tr(p2(g)) (mod A*) and tr(pi(g)) # tr(p2(g)) (mod A**1).

Choose an uniformiser m, i.e. choose m € O, such that A = 7O,. We can define
the map

¢: G O,
g

.
— Y tr(p2(9)) — tr(pi(g))]

Our objective now is to descend & to map ® from 0(G) instead of G. Since X
surjects into 0(G), then we are going to be able to find an element ¢’ of this set such
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that ®(4(¢')) is not in AM, and hence, the traces restricted to the set X will also be
non-equal, which is what we want to prove.
This map can be extended to an Oy-linear map

¢: M — Oy, o(M) <L A

Following the same steps as in the definition of §(G), we have the following com-
mutative diagram:

G—2 .0,
A
7 | o
p |
O\G]—=M

To sce that ¢(M) Z A, notice that ¢(p(i(g))) = 7 *[tr(p2(9)) — tr(p1(9))] & A,

since tr(pa(g)) — tr(p1(g)) £ 0 (mod A*+1).
The map ¢ descends to a non-zero k-linear map M /AM — k, hence to a function

$:0(G) — k

which is non-zero because §(G) spans M/AM (since p(G) spans M and §(G) C
(M/AM)* C M/AM is the image of p(G)).
Hence, since X surjects onto 6(G), there exists a ¢ € X such that ®(6(¢’)) # 0,
ie.
¢(g) = 7 “[tr(pa(g)) — tr(pr(9))] € A-
In particular, tr(py(¢')) # tr(pa(g')), s0 tr(pr)lss # tr(pa)ls. =

Remark. When E = Qy, for a prime ¢, then we can choose ¢ as the uniformizer, hence
the map ¢ can be written as

_ tr(p2(9)) — tr(ﬂl(g)).

?(9) 7o

Corollary 2.1.4. Let R be a class of representations of G defined over Oy and X2 be
a subset of G surjecting onto all the deviation groups of pairs p1, p2 € R. Then, given
two representations p1 and pa,

p1~ p2 == trpils = trpals.

In particular, if R is the class of representations of degree n, it is enough to ask
that X surjects onto all quotients of G of size bounded by |k]2”2. If G has only a
finite number of such quotients, this gives an algorithm to decide the equivalence of
n-dimensional A-adic representations of G.

Application to Galois representation

Given a number field K, we specialize now to the case G = Gal(K/K) = Galg, the
absolute Galois group of K.

Lemma 2.1.5. Let p1 and p2 be two A-adic representations of Galg. Then 6(Galg)
is unramified outside of Ram(p1) U Ram(p2).
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Proof. For a prime p ¢ Ram(p;) U Ram(p2), we have I(p) C Ker(p1) N Ker(p2).
Hence, I(p) C Ker(p), where recall that p = p; x p2. That is, the image of p(Galg) is
unramified at p. Hence, §(Galg) being a finite quotient of p(Gal), is also unramified
at p. O

This is a better version of Proposition 1.2.19. This lemma is telling us that since
d(G) is a finite group, it can be identified with a finite extension F/K unramified
outside of Ram(p;) U Ram(p2).

Corollary 2.1.6. Given a finite set S of places of K and an integer n > 1, there
exists a finite set of primes T disjoint from S such that if p1 and p2 are any A-adic
representations of degree n of Galg, unramified outside S, then

p1~ p2 = trpi|s = trpols,
where ¥ = {Froby, | p € T'}.

Proof. By the Minkowski theorem, there are only a finite number of Galois extensions
L/K unramified outside S and of degree bounded by |k[2"*. One can take for T the
finite set of primes p for which the Frobenius elements Frob, exhaust all conjugacy
classes of Gal(L/K) for such extensions L/K. O

2.2 The method of the quartic fields

In 1984-1985, Serre [27, 29|, based on Falting’s ideas of the deviation group we have
introduced, made a computable method for these. He focused on the case of 2-adic
representations of dimension 2. Particularly, in [27] Serre explicitly uses the method
to solve two problems:

(a) Every elliptic curve over Q of conductor 11 is Q-isogenous to an already known
curve.

(b) (Following Mestre [19]) The known elliptic curve of conductor 5077 is “of Weil”,
i.e. modular.

We are going to develop the required theory for a general A-adic representation of
dimension n and then we are going to specialise to the case A = n = 2. After that,
we are going to explain in detail both examples above.

Let p1,p2: G — GL,(O,) be two semisimple A-adic representations of dimen-
sion n and let §(G) be the associated deviation group to the pair. Let us suppose
that the residual representations py,p2: G — GL,, (k) are equal, but that the repre-
sentations p; ® E and ps ® E are not isomorphic, i.e. conjugated by an element of
GL,(FE).

Let 8 be the maximal integer such that p; and ps are conjugated modulo \?. We
know that 8 > 1, since p; = p3. We have also seen in the proof of Proposition 2.1.3,
there exists a maximal a such that tr(p;) = tr(p2) (mod A*) and tr(p;) # tr(p2)
(mod A**t1). Particularly, p; and ps are not conjugated modulo A**!, hence 8 < a.
In particular, 8 is finite.

Now, replacing ps by a conjugate if necessary, we can assume

pr=p2 (mod N), p1#p; (mod At
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Hence, for every g € G, we have

p1(g) — p2(9) =0 (mod N) = p1(g) — palg) = Oy,

for some 6, € M, (O,) and 7 an uniformiser of A. We can still simplify this equation
one more step:

p1(9) = p2(9) = 0,7 = p1(g) = (1 +7"64p2(9) ") p2(9).
Now, let 6: G — M, (O,) be the map g — 0,p2(g)~". We can write
p2 = (1+7°0)p;. (2.2)

As a remark, notice that 6(G) € M, ()), since p; # p2 (mod \*+1).
Whenever we have o = [, the « defined in Proposition 2.1.3, this particular
expression allows us to write the map defined in that as:

o(g) = DO _ 9, g)),

which defines a map from the group G to M,(O,) x GL,(0,), g — (0(g9), p1(9)).
This map does not require of & = 3, it works in general, but it is a natural deduction
when it is the case. We are going to see that when n = A = 2, Serre proves (in
the letter to Tate [27] which gave birth to this method) that o = (3, and hence the
function defined in Proposition 2.1.3 descends to this function we just defined.

Restricting ourselves to the field k (we want it to factor through the deviation
group §(G)), this map is a group homomorphism when we endow the image with the
semidirect product

(A,B)x (C,D) = (A+CBC™' BD).

The following proposition proves it.

Proposition 2.2.1. If p1 % po, the function

o: G — My(k) x GL,(k)
g — (8(g) (mod A),pi(g) (mod N))

is a group homomorphism which factors through the deviation group 6(Q).

Proof. First let us show that ¢ is a group homomorphism. That is, given g, h € G we
want to show that

©(gh) = (0(gh) (mod M), p1(gh) (mod A)) =

= (6(9) + p1(9)0(h)p1(9)™"  (mod A), p1(g)p2(h) (mod A) = @(g)p(h),

where the product is the group operation in the semidirect product coming from
the action of GL, (k) on M,(k) by conjugation. We already know that the second
component is that way, since p; is already a group homomorphism. Hence, we need
to show that

p(gh)1 = 0(9) + p1(9)8(h)p1(9) ™" (mod ).

For us to do so, using (2.2),

pa(g) = (1 +7°0(9))p1(g) and  py(h) = (L + xP6(h))p1(h).
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Then, we also have

p2(gh) = p2(g)p2(h), (1)
for being p2 a group homomorphism, and again from (2.2),
p2(gh) = (1+7°0(gh))p1(gh). (2)

Now, (1) can be expanded using (2.2) on each term, which yields
p2(gh) = (1+770(9))p1(g) (1 + 7°0(h)) pr () =

= p1(g)p1(h) + 7 (0(g)p1(9)p1(h) + p1(9)0(h)p1(h)) + 7*°0(g) p1(9)0(h)p1(h).

Equaling the right hand side of the equation above with the right hand side of (2),
we obtain

p1(9)p1(h) +7°6(gh)p1(g)pr(h) =
= p1(g)p1(h) + 77 (0(9)p1(9)p1(h) + p1(9)8(R)pr(R)) + 7*8(g)p ( )0(h)p1(h)
1

Multiplying by p1(gh)™ = p1(h)~'p1(g)~
equation for 6(gh):

0(gh) = 0(g) + p1(9)0(h)p1(9)~" + 7°0(g)p1(9)0(h)p1(g) "

Hence, since g > 1, reducing modulo A = 7O, the desired equality.

on the right and by 7—#, we obtain an

¢1(gh) = 0(gh) (mod X) = 0(g) + p1(9)0(h)p1(g)~" (mod A).

Now, let us show that ¢ factors through §(G), i.e. let us show that Ker(d) C
Ker(p). Let g € Ker(d). Since p1 x p2(g9) = p(g) € 1 + AM, i.e. there exists
{an}hec € Oy with aj, = 0 for almost all A € G such that

9) =147 anp(h)

heG

Since this is a cartesian product p; X p2(g), the equation above is actually a pair of

equations
g9) =147 anpi(h)
heG

For ¢ = 1, this implies p1(g) = 1 (mod \). This gives us that the second component
of ¢(g) is the identity element in GL, (k). Moreover, using (2.2), the equation for
1 = 2 can be rewritten as

pr(g) +770(9)p1(g) =1+ 7> anpr(h) + 77T " and(h)p(h).
heG heG

Subtracting p1(g) = 1+ 7> e anp1(h) and multiplying by 77 to both sides, we

obtain
0(9)p1(g) = 77> anf(h)p1(h)
heG

Hence,

g) =" Zahé’ )pi(hg™) =0 (mod N).
heG
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Therefore, the first component of p(g) is the identity element in M, (k). Which finishes
the proof, since ¢(g) = (0, 1), hence g € Ker(yp). O

Recall the short exact sequence (2.1). We can refine it to include ¢(G), the image
of G in M, (k) x GL,,(k), such that

(@) o(G) G .
Particularly, we can draw the full diagram

00— (M NAR)/AM —= M/AM —> M ——0

N(G) 5(G) G 1

|

¢(G)

Remark 2.2.2. In general, one does not have that the map 6(G) — ¢(G) is a monomor-
phism. From the proof of the Proposition above, we have that an element g € G lies
in Ker(9) if and only if

pr(g) =1+m Y appi(h),
heG

6(9) =7 Y _ anf(h)pi(hg™")

heG

for some aj, € Oy, all zero except a finite amount of them.

Also, from (2.2), and the following lemma, we have

det(p1) = (1 + 77 tx(0) + O(")) det(ps). (2.3)

Lemma 2.2.3. Let R be a commutative ring and let A € GL,,(R). Then, for k € R,
det(1 + kA) = 1+ ktr(A) + O(k?).

Proof. This is straightforward to prove by induction. Start with n = 2, since the case
n = 1 is uninteresting. Let

_(a b (1+ka kb
A_<c d)’ HkA_( ke 1+kd)'

Then

1+ ka kb

det(l—i—k:A):‘ e 14

’ = (14 ka)(1 + kd) — k*bc = 1 + ktr(A) + k* det(A).

Suppose then the result to hold for n — 1 and let us prove the case n. Let

ayp -+ Qin

A=
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We denote by A;; the matrix in GL,,—; (R) which is the matrix A without the ith row
and without the jth column. Then,

det(1+kA) = (1+ kay1)det(1 + kAn) + Y _(—1)"ka det(1 + kAi) =
=2

= det(1+ kAyy) + kY (=1)"a; det(1 + kAn).
=1

Using the induction hypothesis on A;; for 1 < ¢ < n, we have
det(1 + kA) =1+ ktr(Ayr) + O(k?) + kayr = 1+ tr(A) + O(k?).
a

So, in addition, by (2.3), if we require det(ps) = det(py), then 0 = 7 tr(6)+0(7°°)
which multiplying by 7#—# implies:

tr(f) =0 (mod N9)
In particular, ¢ takes values in
MP (k) x GLy, (k)

where MY (k) denotes the set of n x n matrices of trace 0.

Gabriel Chénevert in |8, p.114]| has a remark in which he explains that in con-
versations with Serre, he showed in [27] that p; and p2 are conjugated modulo 2¢ if
and only if tr(p;) = tr(p2) (mod 2%). Particularly, & = 8. This would mean that the
function ¢ considered in Proposition 2.1.3 defined as

¢(g) = 27" (tr(p2(g)) — tr(pr(g)) (mod 2)

descends to ¢(G). Consequently, ¢(G) can be used in place of 6(G) in Corollary 2.1.4,
which makes the application to decide whether two representations satisfying the
hypothesis of Serre are equivalent or not a lot easier. Namely, if p; % p2, a = § and
Y C G surjecting onto ¢(G), then there exists g € 3 such that

tr(p1(g)) # tr(p2(g))-

Particularly,

tr(0(g)p1(9)) = tr(0(9)pi(g)) Z0 (mod N).

In this case, the image of ¢ can be computed. Let p1,p2: G — GLa(Z3) two
2-adic representations such that det(p;) = det(p2) and the residual representations
are equal and surjective. Then, seeing Ms(F3) as an S3-module under the action by
conjugation of GLg(F2) = S3, we have!

My(Fo) =2 F3 @ Vg,

LA proof of both isomorphisms above can be found in Appendix B. The second one is straightfor-
ward from the restriction of having trace zero.
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where V} is the Klein group, which is isomorphic to IF% Likewise,

S ()}

Then, if p1 = pz and its surjective, the second component of ¢(G) is the full Ss.
That is,
Im(p) = N xS,

where N is a subgroup of Fo @ V4 = F3. So, the index [Fy ® Vj : N] is either 1, 2 or 4.
We know it can not be 8, because then it would imply that 6(g) = 0 for every g € G,

i.e. tr(p1) = tr(p2) (mod 29t1), which is not true by hypothesis. Then, we the only
possibilities for My(F2) x GLo(F2) are:

Fy x S3 = {:l:l} x S3, Vi x S35y, (]FQ D ‘/4) X S3 = {:l:l} X Sy.

2.2.1 Rational elliptic curves of conductor 11.
We let E11/Q be the elliptic curve of conductor 11 defined by the Weierstrass equation

By P —y=a®—2%
We aim to show that every elliptic curve over Q of conductor 11 is Q-isogenous to F1j.
This result was first obtained by Agrawal, Coates, Hunt, and van der Poorten in [1]
with a method that involved lots of computations. Later on, Serre on a letter to Tate
on the 26th of October of 1984 [27] and simultaneously on his course of 1984-1985 at
the Colleége de France [29], gave a method applying Faltings’ ideas to prove this result
in a much shorter way, which is now known as the method of quartic fields.

We start with a general treatment of elliptic curves of prime conductor. Let E
be an elliptic curve over Q with prime conductor p # 2,3. We can assume that E is
given by a Weierstrass model of the form

v’ = f(z) = 2 + axx® + ayx + ag, a; € Q.

Suppose that E has no rational 2-torsion points. Since the 2-torsion points satisfy
y = 0 in the above model, it follows the cubic f(z) is irreducible over Q. Let K be
the splitting field of f(z), that is, K is the 2-torsion field of E. Let M be the subfield
of K generated by a root of f(x) and let F' be a field such that K/F is a cubic cyclic
extension. This is possible because K/Q has degree 3 or 6, since f(x) is irreducible
and so Gal(K/Q) is embedded in a transitive subgroup of S3, the symmetric group on
3 elements. The only possible options are S3 or As, the alternating subgroup of Ss.
(Note that in the case [K : Q] = 3, we would have K = M and F' = Q.) Hence, we
have the following field extension diagram:

IVK
M x
Jor6
3 /F
@ lor2

The following lemma is due to Setzer [31].
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Lemma 2.2.4. Keep the notation above.
(1) The Galois group Gal(K/Q) is Ss.

(2) F=Q(\/p) C K or F=Q(y/-p) C K.
(3) The extension K/F is unramified outside the primes dividing 2.

Proof. We first show that p must factor in M as pg?. Since E has prime conductor p it
has multiplicative reduction at p and good reduction away from p. There is an integral
model of E, i.e. an equation for F of the form y? = f(z) := 23 + boa® + byx + bg with
b; € Z, where f(x) is irreducible and has a double and a simple root modulo p. The
splitting field of this new f is also K, and we let M C K be the subfield generated
by a root of f(x). Thus at least two primes of M divide p. Moreover, the model for
E can be chosen such that its discriminant is A = 4+2'2p", for some n > 1. (The
explicit computations can be found in Setzer’s article.) Hence, the only primes that
may ramify in M are those dividing 2 and p. However, there are no cubic extensions
of Q ramifying only at 2. Thus, some prime of M dividing p must ramify in M/Q,
which proves the factorization of p. In particular, M/Q cannot be Galois, proving (1).

Since the discriminant of f(x) is £28p", it differs from A by a square factor. Hence
F = Q(VA) = Q(y/Ep") and part (2) follows if we show that p ramifies in F/Q. Let
e be the ramification index of a prime of K lying over p, and let f be its residual
degree. Let g be the number of primes dividing p in K, so that gfe = 6. But g > 2
and 2 | e, from the factorization of p in M, thus ¢ =3, e =2 and f = 1. Since K/F
is cubic it follows that all the ramification of p occurs in F/Q, proving (2). Further,
no other primes besides those dividing 2 and p can ramify in K/F, so (3) holds. [

Corollary 2.2.5. Let E/Q be an elliptic curve of prime conductor p. Assume E has
no 2-torsion point defined over Q. Then Q(vVA) = Q(,/p) or Q(WA) = Q(v/=p),

where A is the discriminant of a model for E.

Proof. This follows from the proof of part (2) in Lemma 2.2.4 and the fact that the
discriminant of different models for E differ by a square in Q. O

We can deduce further properties of £ from the work of Brumer and Kramer. The
following is [6, Cor. 5.3|.

Lemma 2.2.6. Let E/Q be a semistable elliptic curve of discriminant A. Suppose
that E has no rational points of order 2.

(1) If E has good ordinary reduction or multiplicative reduction at 2, then 3 divides
the order of the class group of Q(\/Z) modulo the subgroup generated by the
classes of the ideals lying over 2. Particularly, 3 | h(Q(v/A)).

(2) If E has good supersingular reduction at 2, then:

(a) A =5 (mod 8).

(b) For every a € Q(v/A), for which the ideal generated by a is a cube of an
ideal prime to 2, we have « =1 (mod 2).

2https://wuw.1lmfdb. org/NumberField/?degree=3&ram_quantifier=exactly&ram_primes=2&
search_type=List
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(3) Neither of £A is a perfect square.

In our setting, the conductor of F is a prime p so F is semistable. A key hypothesis
in the previous results is E[2](Q) = 0. For curves with prime conductor this is
described by the following result (see [31, Thm. 2]).

Lemma 2.2.7. Let p # 2,3,17 be a prime. There is an elliptic curve of conductor p
over Q with a rational 2-torsion point if and only if p = u®> + 64 for some integer u.

The following theorem describes the 2-torsion field of certain elliptic curves with
prime conductor for some primes.

Theorem 2.2.8. Let N =3 (mod 8) be a prime such that 3 does not divide the class
number of Q(vN) nor Q(v/—N). Let E/Q be an elliptic curve of conductor N and
denote by K its 2-torsion field. Then, the following holds:

(a) Gal(K/Q) ~ Ss;
(b) K is the unique cubic cyclic extension of Q(v/—N) of conductor (2);
(¢) E has good supersingular reduction at 2.

Before proving it, we need a lemma.

Lemma 2.2.9. Let N > 3 be a prime such that 3 does not divide the class number
of Q(V/'N) nor Q(v/=N). Then there exists a unique cubic cyclic Galois extension of
Q(vV/—N) which is a subfield of the ray class field with modulus (2).

Proof. Let L/Q(v/—N) be the extension corresponding to the ray class group of mod-
ulus (2) (note that Q(v/—N) is totally complex so we don’t have to allow ramifica-
tion at the primes at co). From [21, Ch. V, Thm. 1.7|, we know that the degree
[L : Q(V—N)] = hy) is given by the formula

1
hiy =h-(U:Us 1) 2Ny 0((2) [ 1 - ’
@ (@)1 AN/ Now=m/e((2))

where h is the class number of Q(v/—N), 79 = 0 is the number of real places in the
modulus (2), U is the group of units in Q(v/—N) and Uy ; is the elements of a € U
which satisfy orda(a — 1) > 1. The units of Q(v/—N) are {1} (since N is a prime
greater than 3), hence (U : Ug) ;)" = 1. We also have No(v=m)0((2)) = 4, thus
h(z) = 3h. By hypothesis, 3 { h so 3 divides h(y) exactly once, which implies there is
a unique degree 3 cyclic extension of Q(v/—N) inside L. O]

Now we can prove the theorem.

Proof of Theorem 2.2.8. Recall that for any number field its narrow class number is
of the form 2°h where h is its class number. From our hypotheses, it follows that the
narrow class numbers of Q(v/N) and Q(v/—N) are not divisble by 3.

From Lemma 2.2.7 we see that E has no 2-torsion point defined over Q; indeed, if
N = 4464, then N = u? (mod 8) but N =3 (mod 8) and 3 is not a square modulo 8,
a contradiction. By Lemma 2.2.4 we conclude that Gal(K/Q) = S3, proving (a).

From Corollary 2.2.5 we know that either F = Q(v'N) C K or F = Q(v/—N) C K
and, from part (3) of Lemma 2.2.4, all the ramification of K at p occurs in this
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quadratic subfield. Suppose that the common ramification index of the primes in K
above 2 is e = 2, then this ramification occurs also in F' because K/F' is cubic and
so K/F is unramified at all finite places, contradicting the assumption on the narrow
class number; if 2 is unramified in K we get a similar contradiction. Thus es = 3
because an Ss-extension does not allow for totally ramified primes. Moreover, F' is
unramified at 2, so F' = Q(v/—N) because N = 3 (mod 8).

Using Lemma 2.2.9, one proves (b), since N satisfies the hypothesis.

Finally, from Serre [30] and the fact that inertia at 2 has order 3, we conclude that
E has good supersingular reduction at 2, proving (c). O

Proposition 2.2.10. Let E1/Q and E2/Q be non-isogenous elliptic curves with odd
conductor N satisfying az(E1) = az(E2) € {—2,0,2}. Suppose that pg, 2 ~ pr,2 SO
that we can consider the map ¢: Galg — M3 (Fs) x GLo(F2) defined in Proposi-
tion 2.2.1,

2(9) = (27 (pm, 2(9) — pra2(9))  (mod 2), 5, 2(9) ) -

Write K for the common 2-torsion field of Eq and Ey and, let K be the field fized
by ¢. Then the extension K /K is unramified outside N. Moreover, if N = p is prime
then Gal(K/Q) ~ Sy.

Proof. Suppose pg, 2 is unramified at p for both ¢ = 1,2, then any inertia subgroup
I,, C Galg is contained in Ker(pg, 2) for ¢ = 1,2. Thus ¢(g) = (0,1) for all g € I,.
Therefore, the primes that may ramify in K are a subset of those for which PE. 2
or pg, 2 ramify. Moreover, from Proposition 1.2.25 it follows that K may ramify only
at primes p | 2N. So, the first statement follows if we show that K /K is unramified
at all primes of K above 2.

Since Fq and E5 have even trace of Frobenius at 2 they both have good supersingu-
lar reduction at 2. The theorem of Honda-Hill-Cartier [13] implies that the polynomial
of the formal group associated to E; at 2 is the same as the characteristic polynomial
of the system of f-adic representations at 2. This says that as(E;) determines the
formal group of E; at 2, which determines the 2-adic representation restricted to a
decomposition group D9 at 2. By assumption, we have as(E1) = ag(Es2) therefore
PE12|Dy = PE,2|D,, hence for all z € Dy we have p(z) = (0,pp, o(2)). In particu-
lar, for x € I, N Gal(Q/K) we have ¢(x) = (0,1), hence K/K is unramified at all
primes p | 2 in K, as desired.

We will now prove the second statement. Assume N = p is a prime. Since
the curves are non-isogenous, K/K is non-trivial and we know that Gal(K/Q) is
isomorphic to one of Cy x S3, S4 or Cy x Sy. Moreover, the first part of the proof
shows that the size of the inertia subgroups at 2 in K is the same as in K which we
know to be 3 because the curves have good supersingular reduction at 2. Therefore,
©(I2) is isomorphic to {0} x C5 in the cases Cy x S3 and Cy x S4. In the former case
©(I2) is a normal subgroup fixing a biquadratic extension of Q ramified only at p,
which does not exist. In the latter case, we have ¢(I) is contained in the normal
subgroup {0} x Ay; thus {0} x Ay fixes also a biquadratic extenstion ove Q ramified
only at p, a contradiction. Thus Gal(K /Q) ~ Sj. O

We now resume the discussion about elliptic curves of conductor 11 by Serre. First,
an easy Magma calculation shows that the 2-torsion field of the curve Ey; is

K11 :=Q(f), where 65—0°420*—-30°+20>—-0+1=0.



2.2. The method of the quartic fields 33

We now prove the main theorem in Serre’s letter [27]

Theorem 2.2.11. Let E/Q be an elliptic curve with good reduction away from 11
and 2-torsion field equal to K11. Then, one of the following holds:

(i) a2(E) = =2 and E is Q-isogenous to Ei1;
(ii) az(E) = 0 and E is Q-isogenous to y* +y = x3 — 2% — Tz + 10 of conductor 112;
(iii) az(E) =2 and E is Q-isogenous to y*+y = x® —x? —40x —221 of conductor 112.

In particular, there is only one Q-isogeny class of rational elliptic curves with conduc-
tor 11 and it satisfies ap = —2.

Proof. Since K71/Q has inertia of order 3 at all primes dividing 2, it follows as in the
proof of Theorem 2.2.8 that F/Q has good supersingular reduction at 2, so as(F) =0
(mod 2). By the Hasse bound |a,(E)| < 2,/p for p = 2 we obtain as(E) € {-2,0,2}.

(i) Suppose first as(E) = —2. Arguing by contradiction, we will show that the
Galois representations pg 2, pg,2: Galg — GLg(Zs) attached to E and Ej; are
equivalent.

Since both mod 2 residual representations pg 2 and pg,, 2 cut out the field K1,
they are both surjective, and hence equivalent.

Suppose that pg 2 % pE,, 2 and consider the map ¢: Galg — MY (F3) x GLo(F2)
defined in Proposition 2.2.1, where p1 := pg2 and p2 := pg,, 2. More precisely,

0(9) = (27%(p1(g) — pa(9)) (mod 2),7,(g)) -

and we let K = QKer D K11 be the fixed field by Ker(y). The assumption p1 7 p2
implies that K /K11 is a non-trivial extension. We will show that K /K11 is trivial,
obtaining a contradiction.

An easy calculation shows that as(E11) = —2. Since a2(E) = CLQ(EH) by Propo-
sition 2.2.10, we have that K /K1, is unramified at 2 and Gal(K /Q) ~ S4. Using the
Number Field Database (NFDB) [15], we obtain the complete list of degree 4 exten-
sions of @Q unramified at outside {2,11} and having Galois group S4. The resulting
fields are listed in Table 2.1 and K must be one of them.

rd grd D h G Polynomial
12.08 13.56 —2%113 Sy ozt —22% — 422 — 62 — 2
7.28 14.89 —2811! Sy a2t — 22 —dx —1
9.38 19.78 —2611? S4 zt — 223 — 322 + 2
24.16 27.12 —28113 Sy zt — 44z + 22
18.76 33.27 —210112 S4 zt — 622 — 8x — 25
18.76 33.27 —210112 Sy at—8z2 —16x+24

NN ===

TABLE 2.1: Table of possible fields with the following search restric-
tions: degree = 4; Galois T-number = 5; Ramifying primes limited to
{2,11}; p = 2 has ¢ in 0.Infinity; p = 11 has ¢ in 0..Infinity.

Using the Magma code in Appendix A.1.1 one checks that, for all fields in Table 2.1
containing K1, the ramification at 2 in K /K11 is non-trivial, a contradiction.

(ii) Suppose now az(E) = 0. Let E’ be the conductor 11?2 elliptic curve with CM
given by the Weierstrass equation E' : 4> +y = 23 — 2? — 7o + 10. It is easy to
check that the 2-torsion field of E’ is also Kj; and ag(E’) = 0. Thus az(E) = az(E’)
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and a perfectly analogous argument to the case az(E) = —2 (it gives the same list of
possible fields f() shows that pg o ~ ppr 2, hence E and E’ are Q-isogenous.

(iii) For az(E) = 2, we let E’ be the conductor 112 elliptic curve given by the
Weierstrass equation E' : y? +y = 23 — 22 — 402 — 221. Again, it is easy to check that
the 2-torsion field of F’ is K31 and az(E’) = 2. The conclusion follows as above.

Note that Theorem 2.2.8 implies that every elliptic curve of conductor 11 has 2-
torsion field K71. Thus, the last statement follows because the previous three cases
are exhaustive. O

Next we give a generalization by Nigel Boston [4] of part (i) of Theorem 2.2.11.
For it, we require of two auxiliary lemmas.

Lemma 2.2.12. Let K/Qy a local number field with [K : Qi = d. Then, the index
of the groups [K* : K*"] and [U : U™ is

(KX : KX = nlU : U"] = n®™) |, (K)|,
where |un(K)| is the order of the group of n-th roots in K.
Proof. This is [25, Ch. 2, Cor. 5.8]. O

Lemma 2.2.13. Let N > 3 be a prime such that 3 does not divide the class number

of Q(v'N) nor Q(v/=N), let K be the unique cubic cyclic extension of Q(v/—N) and
suppose that h(K) is odd. Then, there exists an exact sequence of Fo[Gal(K/Q)]-
modules as follows:

where U is the units of K modulo squares, U@ is the units in K, (the completion
of K at the prime p) modulo squares, and P = Gal(L/K), where L/K is the mazimal
elementary 2-abelian extension of K unramified outside the primes in K above N.

Proof. We will deduce the exact sequence from well known facts of class field theory.
From [21, Ch. V, Thm. 1.7] or |9, Ch. 3, Prop. 3.2.3], given the modulus m =
p1p203 C O, where the g; are the primes above N in K, one has the exact sequence

0 Un O (O /m)* —— Cln(K) —=Cl(K) —=0

Notice that (Ox/m)* =[], (Ok/pi)*—— D, Op, , where OF is the group of

units in the completions by p; of K, namely K,,. Sothe map (Og/m)* —— Cln(K)
factors through €9 or (’)gi, which yields the exact sequence

0 Un O Dyny Oy — Cln(K) — CUI(K) —=0

Notice that CI(K) is killed modulo squares since it is an abelian group of order

|CI(K)| = h(K), which is odd. 0

Boston’s theorem states:
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Theorem 2.2.14. Let N = 3 (mod 8) be a prime such that 3 does not divide the class
number of Q(v'N) nor Q(v/—N), so that there is a unique cubic cyclic extension K
of Q(v/—N) of conductor (2). Let M C K a cubic subfield. Suppose that h(M) is odd
and that the minimum polynomial of a fundamental unit of M has a quadratic residue
and a quadratic non-residue root modulo N .

Then there is at most one Q-isogeny class of elliptic curves over Q of conductor N
with given trace of Frobenius at 2.

Proof. Let E1/Q and E3/Q be elliptic curves of conductor N. By Theorem 2.2.8 it
follows that pg, 2 and pg, 2 are isomorphic, cut out the field K and both have good
supersingular reduction at 2, hence as(E;) € {—2,0,2}.

Suppose that az(E;) = ag(FE2) and that E; and Es are not Q-isogenous. By
Proposition 2.2.10 there is an extension K /K unramified outside N and such that
Cal(K/K) ~ S;. In particular, K C L where L/K is the maximal elementary 2-
abelian extension of K unramified outside the primes in K above V.

We will reach a contradiction by showing L/K is trivial. The key idea is to use
two results of Nicole Moser. The first one, [23, Theorem IV.1], states

h(K) = Sh(MPh(Q(V=-N)), a € {13}.
Since h(M) is odd by assumption and, from Genus theory, h(Q(y/—N)) is also odd
then h(K) is also odd. The second one is [23, Proposition II.2|, stating that K
has a Minkowski unit, i.e. a single generator of its unit group modulo torsion as a
Z|Gal(K/Q)]-module. From Lemma 2.2.13, using the fact that hA(K) is odd, there is
an exact sequence of Fo[Gal(K/Q)]-modules:

We now analyze the terms in this sequence:

e We have dimp, (U) = 3. Indeed, Dirichlet’s unit theorem states that the group of
units is U = ug x Z'*~1, where pug is the group of roots of unity in K, 7 is the
number of real embeddings of K and s is half the number of complex embeddings
of K. Note that pux = {1} and K is totally complex (it contains Q(/—N)).
Therefore, 7 = 0, s = 3 and U ~ {£1} x Z?; so taking U modulo squares yields
U ~ {£1}3, as desired.

e We have dimp,(U,) = 1 by Lemma 2.2.12. Indeed, in the notation of that
lemma, we have { = N, K = K, U = U, d = e(p/N)f(p/N) =2, n = 2,
on(2) =0 and |pa(Ky)| = |£1] = 2. Thus [U, : U2] = N*¥(2)2 = 2, as desired.
Since N = p1p9p3 in K, we also have

dimp, ( P T, | =3 = dimp, (T).
pIN

e We have dimp, (P) = dimg, (B). Indeed, we have an exact sequence of Fo-vector
spaces (with an action of Gal(K/Q)), hence

dimp, ( U, | = dimp, (Ker(d3)) + dimp, (Im(d3)).
pIN
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By exactness, dimp, (Ker(d3)) = dimp, (Im(d2)) and since d3 is surjective, Im(d3) =
P. So, one has

dimg, | U, | = dimp, (Im(62)) + dimp, (P).
pIN

Now, dimg, (Im(d2)) = dimg, (U) — dimp, (Ker(d2)), and since d; is injective and
exactness, Ker(d2) = Im(d1) = B. So, we can write the equality of dimensions
as:

dimg, | U, | + dimp, (B) = dimg, (T) + dimg, (P).
pIN

Finally, since dimp, (@m NU@> = dimp, (U), we are left with the equality we

were searching for,

dimp, (P) = dimp, (B).

Recall that, to finish the proof, we want to show that L/K is trivial. By the previous
equality of dimensions this follows if we show B = 0. Since B = Ker(d2) = Im(¢1),
to see that Ker(d2) = 0 we need to see that no non-trivial element of U maps to zero
via dy. The existence of a Minkowski unit implies that U = {+1} @V, where V is an
irreducible 2-dimensional Fo[Gal(K/Q)]-module. Since N = 3 (mod 8), then —1 can
not be a square modulo N, so particularly it is non trivial in Um for 1 <i < 3. So,
what we need to do is find an element of V' which is not a square mod g; for some ¢
and therefore is not in the ith component of the kernel of the map d5. This will finish
the proof since V' is irreducible.

One of the hypothesis of the theorem is that the minimum polynomial of a fun-
damental unit w of M has a root that is a quadratic residue and another which is a
quadratic non-residue modulo N. From the proof of Setzer’s Lemma, we know that

NOy = pe?,

for p, q primes of Op;. We know that the residual fields Oy /p = Opr/q = Fyy (since
f/N) = f(q/N) = 1). The irreducible polynomial of w, namely f,, is a degree 3
polynomial (since there are no subextensions of M and w ¢ Q). And, by hypothesis,
it splits like

fo (modp)=fu (modq)=(z—bi)(—b)? (mod N),
with b; € F and one of them being a square mod N and the other not. Moreover,
w=b; (modp), w=by (modq).

Now we can think of w as an element of K. The irreducible polynomial of w in K
is still f,,. Moreover, we have seen above that

NOg = p?p3p?.

So, since p and ¢ must divide NOg, we have that p is totally ramified and q is
totally split in K/M. Moreover, we have for every 1 < i < 3 one of the two following
possibilities:

w (mod p;) =w (mod p) =by, or
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w (mod p;) =w (mod q) = bo.

Since we cannot be in the same case for the three ¢, there is a p; such that w (mod g;)
is not a square. Particularly, d2(w); € Uy, is non-trivial. Hence, w ¢ Ker(d2). O

Finally, to finish this example, we have written some code in Magma to check
which primes N satisfy the hypothesis of Boston’s theorem. It can be found on
Appendix A.1.2.

2.2.2 Another application of the method of quartic fields: There is
a unique modular elliptic curve over Q of conductor 5077.

Nowadays we know that every elliptic curve defined over Q is modular due to the work
of Breuil, Conrad, Diamond, and Taylor [5] which extends the groundbreaking work of
Andrew Wiles [34] on modularity of semistable elliptic curves over Q. Before the proof
of these general results, mathematicians were interested in providing evidence towards
them. In particular, Mestre [19] showed there exists a unique modular elliptic curve
over Q of conductor 5077. This was a proof of existence without an explicit equation
for the curve. Then, adapting Serre’s approach for conductor 11 described above,
Mestre also shows that the curve given by equation (2.4) is modular, by showing it is
Q-isogenous to the unique modular elliptic curve of conductor 5077.

In this section, we give a slightly modified proof of Mestre’s computations with
the aid of Magma. Indeed, we will show that the elliptic curve E® of conductor 5077
defined by the Weierstrass equation

E:y?—y=2>-T2+6 (2.4)
is modular. More precisely, let f € S3(5077) be the newform with g-expansion
f(@) = q—2¢° = 3¢° + 2¢" — 4¢° + 6¢° — 4¢" + 6¢° + O(¢'").

This is the unique newform in S»(5077) with field of coefficients Ky = Q*. From
Chapter 1, we know that, for every prime ¢, the curve E and the newform f have
attached f-adic Galois representations, respectively,

PEL: Gal@ — GLQ(Z() and Pre: GalK — GLQ(Z().

Futhermore, the curve E is modular if pg ¢ ~ ps e for one (hence all) prime ¢ and we
will estabilsh this for £ = 2. To this end, Mestre [19] states the following theorem
which he attributes to Serre from his course in the Collége de France in 1984-85, [29].

Theorem 2.2.15. Let E and E’ be two elliptic curves defined over Q having prime
conductor N and such that the 2-torsion field of both curves is the same Ss-extension
K/Q. Suppose that az(E) = az2(E'") is even and that E and E' are not Q-isogenous.

Then, there exists a unramified extension K /K such that I?/Q is a Sy-extension.
Furthermore, a,(E) # ap(E") for every prime p where the Frobenius at p in Gal(K/Q)
has order 4.

We were not able to find a detailed proof of this theorem and we don’t know that
the theorem is correct, so we are not going to use it. The potential issue is that
it claims the extension K /K is unramified. We can only show it is unramified at

3https://www.1lmfdb.org/EllipticCurve/Q/5077/a/1
‘https://www.1lmfdb.org/ModularForm/GL2/Q/holomorphic/5077/2/a/a/


https://www.lmfdb.org/EllipticCurve/Q/5077/a/1
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/5077/2/a/a/

38 Chapter 2. Comparing Galois representations: the residually irreducible case.

primes above 2 and not necessarily at primes above N. Nevertheless, we will reprove
Mestre’s example using this weaker version; this will require additional computational
arguments. Let us first translate the general picture of the theorem into the language
of Galois representations. Let

p, p': Galg — GLa(Z2)
be the two irreducible 2-adic representations of E and E’ respectively.

e The condition on the 2-torsion fields implies that p = p/, since the 2-torsion
fields are the ones cut out by the residual representations. Particularly, it is the
field cut out by the second component of the map ¢ defined in Proposition 2.2.1.

e The condition az(E) = az(E’) is even and implies that the 2-adic representations
coincide in the inertia group at 2. This comes from the Honda-Cartier-Hill
theorem [13], which tells us that, since the curve E has supersingular reduction
at 2, p|p, = p'|p,, where Dy is the decomposition group at 2. The argument is
similar to the one in Proposition 2.2.10.

The extension K /K comes from applying the Faltings-Serre method as for N = 11.

Indeed, it is K = @Ker((p) of and it has Galois group Sy over Q. To see that the
extension K /K is unramified at 2 we argue as in the proof of Proposition 2.2.10, but
we are unable to prove it is also unramified at 5077. (A soft reason for the possibility
of this being false is that Boston, almost 10 years later, published his paper which we
used above and he did not mention this result nor use it). Nevertheless, this is the only
step of the theorem that we don’t know that it is true, everything else follows from
Serre [27]. To see that Gal(K/Q) 2 S we use the same argument as in the case of
conductor 11, by looking at the inertia at 2, we discard the cases Gal(l? /Q) = Cyx S,
with ¢ = 3, 4.

Finally, we need to see that for every prime p, and p a prime lying over it in K ,
where Frob, € Gal(K /Q) has order 4, ap(E) # ap(E"). Recall from Proposition 1.2.25,
that tr(p(Froby)) = ap(E), so ap(E) # ap(E’) implies tr(p(Froby)) # tr(p’(Froby)).
We have seen before Proposition 2.2.1, that if we have an element (M, N) € MY (F3) x
GLy(F3) (particularly, in the image of ), then the map ¢ = tr(MN) is enough to
determine when the two representations are equivalent.

Lemma 2.2.16. An element (M,N) € My(F3) x GL2(F2) satisfies ¢(MN) # 0 if
and only if it has order 4 or 6.

Proof. Recall that we can identify GLa(F2) with S3 (as given in Appendix B). Then
the elements (M, o) € MY(F3) x S3 contained in the one of the following subgroups

{(8 8>}X537 M3(Fs) x {ids,}, {(é (1)>}><{0653|02:id53}

satisfy ¢(Mo) = 0. All the other elements, the ones that have non-trivial image by
¢, correspond to elements of order 4 or 6 in MY(Fy) x S3 = F3 x S3 = Oy x Sy.
Particularly, the elements of order 4 correspond to elements of {1} x Sq or {—1} x Sy
and the elements of order 6 correspond to elements of order 3 of Sy and Cb, since
there are no elements of order 6 in Sy. O

Particularly, since we have seen that Gal(K /Q) 2 Sy, it is enough to search for the
elements of order 4 in the image of ¢, and these are the ones coming from a Frobenius
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element of order 4, as we wanted. This completes the proof of Theorem 2.2.15, except
for claim about the ramification at V.

As mentioned in the beginning of this section, we will prove modularity of E by
comparing its 2-adic representation to that of f. The arguments we have seen above
were mostly using properties of the Galois representations attached to the elliptic
curves E and E’, so it is natural to expect that we can proceed similarly with the
representation attached to f. This however, introduces some additional challenges as
we shall explain next.

STEP 1. Firstly, we have to show that both residual representations
pE,Q? ﬁf,Q: Gal(@ — GLQ(FQ)

determine the same Ss-extension K/Q, which implies they are isomorphic. Note
that the image of these residual representations is a subgroup of GLga(F9) = Ss,
so the extension K/Q has Galois group isomorphic to one of the groups in the
set {1,C2,C3,S3}. The case of pg o is simpler. From Lemma 2.2.4, we already know
that the fixed field by pg, 5 has Galois group S3. We can easily compute it using Magma.
It is the field K given by the polynomial

28 + 22° — 1632 + 28423 + 209522 — 62742 + 4483.

To find the field K defined by p;4 we need to do a bit more of work. First, we
discard the cases Gal(K/Q) € {1,C>} as follows. Finding a prime p such that the
characteristic polynomial of 5 5(Froby,) is irreducible over Fy implies that ¢ o(Froby)
is diagonalizable over the quadratic extension of F2, hence py4(Frob,) has order 3
or 6. This implies that the image of pso cannot be trivial or Cs. In our example,
p = 3 satisfies the conditions and the computations can be found in Appendix A.2.1.

To deal with the cases C'5 and S3 we will find a finite list of candidate fields using
ramification properties of pso and then exclude all possibilities except one, which
turns out to be the field K above. Indeed, the representation pyo is unramified
outside {2,5077} by Proposition 1.2.28. Moreover, the residual representation p; , is
a quotient of py o, so its ramification set is a subset of {2,5077}, hence the extension
K/Q cut out by py o is also unramified outside {2,5077}.

To obtain a complete list of possible fields we need to first bound the discriminant
of K/Q. Since Gal(K/Q) is Cs or S3, an inertia group at 2, denoted I, has order
dividing 6. When |I3] = 1, then 2 does not ramify so the exponent of 2 in the
discriminant is 0. When |I3| = 3, the extension K/Q is tamely ramified at 2 and by
[28, Ch. III, Prop. 13|, we have vp(Dg/q) = [l2| — 1 = 2, where D /g denotes the
different of K/Q and B is any prime in K dividing 2.

When K/Q is wildly ramified at 2, i.e. then |I3] € {2,6}, we apply a result of
Moon and Taguchi (see [22, Th. 3]). Following the notation of this theorem, in our
setting, we have p =k = 2 and m = d = 1, we obtain

k—1 k—-1+d

— 1-m _
p—l_(p—l)pm_1+1_2 m=2

v2(©K/@2) =1+

So at most, the maximal exponent of the primes of K above 2 in the different D /g
is 2. Now, the discriminant is the norm of the different, i.e.

Ok/0 = Nr/o(Dk/q)-
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Particularly, since the norm is multiplicative, the factors of the discriminant are the
norm of the factors of the different. i.e., if v is the maximal exponent of the different
at a prime of K, namely p above a prime p € Q, then

NK/Q(pv) = pfv7
where f is the residual degree f(p/p). Now, if the prime p satisfies p | 9x/p and
pOx = [19_ p¢, then p; | Dgg for 1 < i < g. Particularly, if « is the maximal
exponent of p such that p® | 0g /g, then

g
p* < []p" ="
=1

Hence, in our case, since v = 2 = |I5| — 1 = e(B/2) — 1, multiplying and dividing by
e := ¢e(*B/2) on both sides of the inequality gives

agegf<1—i>=[K:Q} <1—1>:6—2:4.

e

We now bound the exponent of 5077. Since 5077 does not divide 6 the ramification
is tame. Hence, again by [28, Ch. III, Prop. 13|, the maximal exponent v of the
primes of K lying over 5077, namely B, such that B divides D /g is v = |I5077] — 1.
Moreover, the modular form f is Steinberg at 5077, and it is well known that this
implies that the image of inertia at 5077 via py o has order 1 or 2. Hence, the maximal
exponent « such that 5077% divides 0/ is

aS[K:Q](l 1)—6—3—3.

 |Isor]

So the root discriminant of K is at most
22/35077/2 = 113.1072.

Using this bound on the NFDB, and discarding the fields with Galois group Cj,
one obtains the fields in Table 2.2.

rd grd D h G Polynomial
27.28 113.11 2250771 2 83 x5 — 28z — 50
205.40 29540 50777 1 C5 x® —x® — 1692z + 5265

TABLE 2.2: Table of possible fields with the following search re-
strictions: degree in the range 1,2,3; root discriminant in the range
1..114; Galois T-number in the range 1,2; Ramifying primes limited to
{2,5077}; p = 2 has ¢ in 0..Infinity; and p = 5077 has ¢ in 0..Infinity.

We note that the spliting field of the polynomial in the first line of Table 2.2 is
isomorphic to the field K. To discard the field with Galois group isomorphic to Cj,
we use the functions defined in Appendix A.2.1 to compute the order of pso(Froby)
for some p € Ok above p (similarly to what has been done to prove that the Galois
group could not be trivial nor Cy) and compare it with the Frobenius element at p of
the Galois group Gal(Q(z? — 22 — 1692z + 5265)/Q) = C3. We find that for p = 3,
the orders differ, hence this extension with Galois group C3 can not be the extension
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K. We conclude that pg2 and pfa cut the same field and so are isomorphic. The
code to check these claims is the following:

ff := Newform("GON5077k2A"); // Gamma_O(N) of 1vl 5077 & wt 2 & iso class A
Kf<a> := SplittingField(x~3-x"2-1692%x+5265);

P =95
apf := Coefficient(ff,p);
charpoly := x"2 - apf*x + p;
M := diagMatrix(charpoly);

n w

ordF := matOrder (M) ;
ordK := Order(FrobeniusElement (Kf,p));
print "Order of rho(frob):", ordF, "||", "Order of Frob_p:", ordK;

And it prints:

Order of rho(frob): 3 || Order of Frob_p: 1

STEP 2. We will determine a finite list of possible extensions K /K. Since 2
does not divide the level 5077 of f and py2(l2) has order 3 from Step 1, we conclude
that pfo|p, is non-ordinary representation determined by the trace of Frobenius at 2.
Moreover, since az(f) = —2 = az(E) we also conclude pfo|p, ~ pga2|p,. (This
conclusions uses a deep result about Galois representations outside the scope of this
work.) This is analogous conclusion to Serre’s argument and following the arguments
above, we conclude that Gal(K/K) = S;. Moreover, we know that Gal(K/Q) 2 Ss
thus K /K is a biquadratic extension which only ramifies at the primes of K above
5077 (and possibly at some primes at infinity, since the extension K/Q is totally real).
To compute K we introduce the p-Selmer group. Let S be a finite set of prime ideals
in K. For an integer p, the p-Selmer group of S is defined as

Ky(S):={x e K*/(K*)P | vy(S) =0 (mod p) Vg & S}.

The set K,(S) is a finite abelian group of exponent p and it can be computed using
Magma. We are interested in the 2-Selmer group of primes of K dividing 5077, since we
are searching for biquadratic extensions of K ramifying only on primes above 5077.
Let S = {p C Ok | p | 5077}, then for any o € K2(S5), it satisfies that it is not a
square in K and the quadratic extension K (y/a))/K ramifies only at the primes in S.
Since we are searching for biquadratic extension of K, we have to choose two elements
a, f € K5(S) and consider the extension

K(Va, V/B)/K.

Note that a priori such an extension can ramify at 2 and does not have to be Galois
over Q. Using Magma, we can find all such extensions with Galois group Gal(K /Q) ~
Sy and the correct ramification properties. We found seven of them. The code for
this is available on Appendix A.2.2. The polynomials defining the possible fields are
in Appendix A.2.4.

STEP 3. To finish the proof, we need to check that none of the extensions computed
in Step 2 is compatible with our setting. Observe that the argument at the end of the
sketch of proof of Theorem 2.2.15 giving that the Frobenius elements in Gal(K /Q) of
order four allow to discard the possibilities for K also applies here. This is because
that argument depends only on the group structure of M (Fs) x S3 and not on the
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representations involved arising from elliptic curves. Thus, for each of the seven K,
we find a prime p such that Frob, € Gal(K/Q) has order 4 and tr(pg 2(Frob,)) =
tr(pr2(Frob,)), discarding K. The code in Appendix A.2.3 finds such a prime p for
each extension K and we find that the primes p = 5,11, 13 suffice. More precisely, we
get the following output

p=51I ap(f) = -4 | ap(E) = -4
p=13 || ap(f) = -4 | ap(E) = -4
p=11 1| ap(f) = -6 | ap(E) = -6
p=511 ap(f) = -4 | ap(E) = -4
p=5 1| ap(f) = -4 | ap(E) = -4
p=511 ap(f) = -4 | ap(E) = -4
p=11 1| ap(f) = -6 | ap(E) = -6

We conclude that the extension K /K is trivial and so pg 2 ~ pyo as desired.

To conclude this chapter, we mention that nowadays there is an easier method to
prove that two elliptic curves over Q are Q-isogenous, that follows by the Modularity
theorem.

Theorem 2.2.17. Two elliptic curves E, E' over Q are Q-isogenous if and only if
they have the same conductor N(E1) = N(E2) = N and |E1(Fy)| = |E2(F,)| for all

primes p{ N such that
<ﬁ]| 142
P> 6 )

p|N

Proof. Let p; be the compatible system of 2-dimensional Galois repserentations asso-
ciated to E; and f; the corresponding modular form (from the Modularity theorem),
for ¢ = 1,2. Then,

E\=FE) < p1~p = fi=fo

By |24, Th. 1], a cusp form f of weight 2 and level N is determined by its first

I1(5)

p|N

Fourier coefficients a,(f). For eigenforms, we can restrict out attention to Fourier
coefficients a,(f) where p is prime.

In our situation, if p | N, from multiplicity 1 it is automatic that a,(f1) = ap(fa),
since f; and fo are newforms of the same level N.

If pf N, sice a,(f;) = tr(pi(Froby)) =1 — |E;(Fp)| + p, the result follows. O

Notice that this does not mean that the method is useless after the proof of the
modularity theorem, but that it is useless in the case of Q-isogenies of elliptic curves
over Q. For example, the method is still valid when the elliptic curves are defined
over a quadratic imaginary field, such as in [11].
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Chapter 3

Comparing (alois representations:
the residually reducible case.

3.1 The Faltings-Serre-Livné criterion
In this section we focus our attention on 2-dimensional A-adic representations
p1,p2: G — GLo(O))
where O) has residual characteristic 2 and, moreover,
tr(p1) =tr(p2) =0 (mod A\) and det(p1) =det(pz) =1 (mod A). (3.1)

The above condition on the traces show that the residual representations are not
surjective and, in fact, can be reducible. This is in contrast with the method of
quartic fields from the previous chapter which requires the residual representation to
be absolutely irreducible. Nevertheless, the basis for comparing representations has
been set in general using the deviation group introduced in 2.1. Here we present the
Faltings-Serre-Livné criterion which allows to have control over the deviation group
and decide whether p; ~ po in the residually reducible case.

The following set will play a crucial role.

Definition 3.1.1. Define = to be the set of elements g € G for which the characteristic
polynomials of p;(g) and pa(g) coincide.

The results of this chapter are very reliant on group-theoretical results. Before
starting with those, let us recall some definitions that we are going to use and that
are maybe not standard for a group theory course.

Definition 3.1.2. 1. Let G be a group. We define the ideal of Z,
I={2€Z|VgeG, g=1}.

Since its an ideal of Z, it is of the form eZ, for some e € Z. Particularly, the
exponent of G is the minimal e such that eZ = I.

2. Let G be a group. We say that G is a p-group if all elements have order a power
of p.

3. Let G be a profinite group. We say that G is a pro-p-group if for every normal
subgroup N, the quotient G/N is a p-group.

4. A subgroup H of a group G is called a characteristic subgroup if for every
v € Aut(G), p(H) C H.
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With all these definitions, let us continue with comparing Galois representations.
The following proposition characterises the elements of =.

Proposition 3.1.3. If g € Z, then §(9)? = 1 in §(G).

Proof. The characteristic polynomial of a 2-dimensional representation p is given by
2% — tr(p)x + det(p).

Particularly, if g € =, the characteristic polynomials of p1(g) and p2(g) are equal,
hence tr(p1(g)) = tr(p2(g)) and det(p1(g)) = det(p2(g)). Denote them by tr(g) and
det(g) respectively. Using the Cayley-Hamilton theorem, one has for i = 1,2,

0= pi(9)? = tr(9)pi(g) + det(g)pi(1) = pi(9)® = tr(g)pi(g) — det(g)pi(1)-

Making use of the hypothesis (3.1), one has that tr(g)p;(g) € Api(g) and det(g)p;(1) €
(1 + X)pi(1). In particular, subtracting p;(1) to both sides of the equation above, we
have

pi(9)* — pi(1) = tr(g)pi(g) — (det(g) + 1)pi(1) € Api(g) + (2 + A)p(1) C AM.

Hence,
p(9)* = p(1) (mod AM) = 6(g)* = 6(1) = 1.

O

This gives us the following characterisation of §(G) when both representations are
equivalent:

Corollary 3.1.4. If p1 ~ p2, then §(G) is an abelian group of exponent 2.
Proof. When p; ~ pa we have E = G. Particularly, 6(G) = 6(Z), has exponent 2. [

In general, however, we can not say much more than the folowing.

Proposition 3.1.5. The deviation group 6(G) is a 2-group.
This gives, using Proposition 2.1.2, §(G) = 2", with 0 < r < 7.
Proof. The strategy is the following: recall that §(G) fits into the short exact sequence
1— NG)—6G) — G —1,

where N(G) is a finite quotient of p(G) N (1 + AR), where R = My(O)) © M2(O,)
and p = p1 X pa. If we prove that G and N(G) are 2-groups, then so will be §(G).

To see that N(G) is a 2-group first notice that the multiplicative group 1 + AR
embeds via the logarithm into the additive group AR, hence its a pro-2-group. It is a
known fact [3, Ch.10] that if {G,} is a sequence of subgroups defining the topology on
G, then the completion G /Gy = G/G,. Particularly, since N(G) is a finite quotient
of p(G) N (1 + AR), then it is a 2-group.

Moreover, by the hypothesis on this section, (3.1), the characteristic polynomial
of p;, for i = 1, 2, satisfies

2?2 —tr(p))z + det(p;)) =2 + 1  (mod N).
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Again, using Cayley-Hamilton, for every g € G, one has
pi(g)?’=—-1=1 (mod \).

It follows that p; x pa(g) =1 (mod )), hence G has exponent 2, and in particular it
is an abelian 2-group. O

We are going to state the group theory results we need to prove the theorem at
the end of the section.

Definition 3.1.6. For any group GG, we define the subgroup generated by the squares
No(H) = (g% | g € G).

It is easy to see that Na(G) is a characteristic subgroup of G: for any ¢ € Aut(G),
it is enough to see that the image of the generators of No(G) is invariant under .
Particularly, for any g € G, ¢(g%) = p(g)? € No(G). Since it is characteristic, then it
is normal, and we can therefore consider the 2-quotient Gy := G/N2(G) of G.

Proposition 3.1.7. G is the greatest quotient of G of exponent 2. Moreover, if N
s a normal subgroup of G, then

(G/N)2 =2 G/(N2(G) - N).
In particular, (G/N)2 = Gy if and only if N C Na(G).

Proof. G/N is a quotient of G of exponent 2 if and only if IV is a normal subgroup
which contains all the squares, i.e. No(G) C N. Hence, G is the greatest quotient of
G of exponent 2, since Na2(G) is normal.

To prove the isomorphism, we need to how that if N is a normal subgroup of G,
then No(G/N) = (N2(G) - N)/N. This is an easy exercise using the definition of
quotient group, and then the conclusion follows. ]

As a final definition, let G[2] := {g € G | g® = 1}, the set of elements of 2-torsion
of G. This need not be a subgroup when G is not abelian: for example, if G = S5,
G[2] = {1,(1,2),(1,3),(2,3)}, but this is not a subgroup (it has order 4 which does
not divide 6).

Lemma 3.1.8. Let G be a 2-group such that every element in Go has a lift to an
element of G[2]. Then G has exponent 2, i.e. G = G.

Proof. Consider the short exact sequence for G,
1 — No(G) — G — Gy — 1.

Let us argue by contradiction. Suppose that Nyo(G) # 1.

Without loss of generality we can assume that No(G) is cyclic of order 2: Let Q
be the set of subgroups of index 2 of No(G). Writing the abelianisation of the 2-group
Ny (G) as

k
No(G)ar = D Z/2%Z, k,a; > 1,
=1
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we see that [ = 2F — 1 is off, so G acts on Q by conjugation with at least one
fixed point N € Q. Replacing G by G/N (which doesn’t change its 2-quotients by
Proposition 3.1.7), we obtain the supposition.

Hence, we can assume that No(G) = (n) = Cy. Then, necessarily, No(G) C Z(G):
for g € G, gng~! must be an element of order 2 in No(G), hence gng~! = n.

The elements of order 2 in G commute: for g,g" € G of order 2, consider gg’. Then
its either of the form ¢” or ¢"n, with ¢” of order 2. In both cases, gg’ = 1.

Finally, using this last remark, we can find a section of G — G5 by choosing
generators of (G2 and sending them to lifts of order 2 in H. This implies that G =
N3(G) x G2, which contradicts the definition of the 2-quotient. O

Using this lemma we can derive a criterion for the equivalence between two repre-

sentations:

Theorem 3.1.9. Let p1,p2: G — GL2(O)) be two A-adic representations satisfying
the conditions (3.1),

tr(p1) =tr(p2) =0 (mod \) and det(p1) =det(p2) =1 (mod A).

and also let

Z={g€G|tr(pi(9)) = tr(p2(g)), det(p1(g)) = det(p2(g))}-

Then p1 ~ po if and only if = surjects onto G.

Proof. The implication to the right has nothing to prove since if p; ~ po, then Z = G.
For the left implication, suppose that = surjects onto G5 and consider the following
diagram of quotients of G

—_
—
—

|

G Ga
.
0(G) —=6(G)2

By Proposition 3.1.3, we have that for any g € Z, (g)? = 1, hence g € §(G)[2], hence,
we can apply the lemma to 6(G) to conclude §(G) = §(G)2. In particular, it follows
that = surjects onto §(G), which implies p; ~ pg by Corollary 2.1.4. O]

We can apply this theorem to the case of Galois representations:

Theorem 3.1.10. Let K be a number field and Ey a finite extension of Qo with rTing
of integers Oy and mazximal ideal \. Let

P1, P2 GalK — GLQ(E,\),

be two continuous representations unramified outside a finite set S of primes of K,
and such that (3.1) are satisfied, i.e.,

tr(p1) =tr(p2) =0 (mod \) and det(p1) =det(p2) =1 (mod A).

Let Ky g be the compositum of all quadratic extensions of K unramified outside S and
suppose that there exists a set of primes T disjoint from S such that
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1. {Frob, | p € T} — Gal(Kys/K).

2. tr(p1(Froby)) = tr(p2(Froby)) and det(p;(Froby)) = det(p2(Froby)) for all p €
T.

Then py ~ p2.

Proof. Since Galg is compact, p; and po preserve an O)-lattice in E/Z\, so that we may
view them as taking values in GL2(O)) (this is Proposition 1.2.15). Then we only
need to apply Theorem 3.1.9 to Gal(K/K)g = Gal(Kg/K), where Kg is the maximal
unramified extension outside S of K, since then Gal(K/K)s = Gal(Kys/K). O

To apply this criterion one needs to describe explicitly the compositum K g, to-
gether with its Galois group. As an example, when K = Q, the situation is particularly
simple. For each prime p € Q, we need to describe the field Q3 ), i.e. the quadratic
field unramified outside p. Since we are dealing with quadratic extensions, we need
to differentiate between p = 2 and p # 2.

o For p#2, let d, = (-71) p = (~=1)P®=D/2p Then Qy, = Q(y/d,). To describe
the Galois group Gal(Qz,/Q), define the Frobenius at the primes ¢ # 2, p, which

maps to (%p) = (%) under

ep: Galpg — Gal(Qq,) = {£1}.

e For p = 2, Q22 = Q(i,v2) = Q(¢g) and Frob,, for ¢ # 2 goes to ¢ (mod 8)
under

E9: Gal(@ — Gal(@g’g/(@) = (Z/SZ)X

e For a general S, Qg 5 = Hpeg Q2,p and

es =[] e+ Galg — Gal(Q2,5/Q) = [] Gal(Q2,/Q).

peS peS

So, applying the criterion requires to compare the traces of p; and py at 2/5I+1

primes at most.
Example 3.1.11. We are going to prove that the elliptic curve E of conductor 33!
with Weierstrass equation

v +aoy=a2>+2>—62-9

is modular. For that, we are going to compare it with the newform f € S5(33)? having
rational coefficients, trivial character, and g-expansion

f@)=q+¢ ¢ —q* —2¢° —¢® +4¢" — 3¢° +¢° + O(¢").

From Chapter 1, we can associate a 2-adic Galois representation to both objects,
pe2 and pro respectively. We want to see that pgpo ~ pro. Recall also that the
characteristic polynomial for any p above a prime p which does not ramify in pg o,
ie. pt2-33, is of the form

z? — ap(E)x 4+ p € Qlz] = tr(pg2(Froby)) = ap(E), det(pra(Froby)) = p.

! Any elliptic curve in the isogeny class https://www.1lmfdb.org/EllipticCurve/Q/33a/
Zhttps://www.1lmfdb.org/ModularForm/GL2/Q/holomorphic/33/2/a/a/


https://www.lmfdb.org/EllipticCurve/Q/33a/
https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/33/2/a/a/
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Similarly, for pyo and the same p,

®—ay(f)z+x(p)p € Qlz] = tr(pg2(Froby)) = ap(f), det(pp2(Froby)) = x(p)p = p,

since y is a trivial character.
We are going to apply Livné’s method, i.e. Theorem 3.1.10, so we need to check
that

tr(pe2) =tr(pr2) =0 (mod 2) and det(pg) =det(pr2) =1 (mod 2).

To show that the determinant is 1 is easy: both residual representations have
determinant the mod 2 cyclotomic character, which is just 1.

To show that the traces coincide and are even, however, is more difficult. To show
that the elliptic curve has even trace, we observe that E[2](Q) # (), since the point
P = [27/4 : —27/8 : 1] € P}(Q) has order 2. One can check it with Magma. This
implies that we can take P as one of the two elements of the basis of F[2], hence any
Aut(E[2]) = GL2(F2) has matrix in this basis of the form

b 2)

Since the determinant is 1, then the matrix is of the form

b 1)

with ¢ € Fo. Thus pg 5 has traces 2 =0 (mod 2) as desired.

Now for the residual representation attached to the modular form, we have to use a
different strategy, since we only know the characteristic polynomials at the Frobenius
elements. Recall that the residual representation has image in GLa(Fg) 22 Ss, i.e. it is
one of the subgroups {1}, Cs, C3 or S3. If it has an element of order 3 (i.e. the image
is C5 or S3) then the corresponding matrix in GLa(F2) has trace 1 and therefore does
not satisfy the hypothesis. Moreover, all elements of order 1 or 2 in GLg(FF2) are the
identity or conjugations of the matrix

11
(o 1)

hence they have trace 0 (mod 2). So we need to see that the field fixed by the residual
representation pyo does not have an element of order 3 in its Galois group. In order
to do so, recall from Proposition 1.2.28 that p; o can ramify only at 2, 3 and 11. This
allows us to search in the NFDB for a list of possible fields. It gives a long, but
complete, list with 51 possible fields, in which the 2-torsion field of E is included. (No
bound on the discriminant is required to have a complete result.)

Now to discard that the residual representation cuts out a field with Galois group
Cs or S3, we must find, for each of the listed fields with degree > 3, a prime p where
Frob, has order 3. Then, looking at a,(f) we see this number is even, so the trace
of Thog o(Froby,) is 0 (mod 2), giving a contradiction. The code on Appendix A.3.1
finds such a prime p in all cases.

We now apply Theorem 3.1.10 with the following set of primes

T = {5,7,13,17,19, 23,29, 31, 37,59, 67, 73, 83,89, 167}


https://hobbes.la.asu.edu/NFDB/
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whose corresponding Frobenius elements surject to the Galois group of Qg 5/Q, the
maximal polyquadratic extension of Q unramified outside S = {2,3,11}. We use the
code provided in Appendix A.3.2 which verifies the equality of traces as desired. The
output is

p=5 1] ap(f) = -2 | ap(E) = -2
p=711 ap(f) = 4 | ap(E) = 4
p=13 || ap(f) = -2 | ap(E) = -2
p=17 || ap(f) = -2 | ap(E) = -2
p=19 || ap(f) = 0 | ap(E) = O
p=231| ap(f) = 8 | ap(E) = 8
p=29 || ap(f) = -6 | ap(E) = -6
p=2311] ap(f) = -8 | ap(E) = -8
p =237 || ap(f) = 6 | ap(E) = 6
p=259 || ap(f) = -4 | ap(E) = -4
p=267 11 ap(f) = -4 | ap(E) = -4
p=731| ap(f) = -14 | ap(E) = -14
p =283 1| ap(f) = 12 | ap(E) = 12
p=289 || ap(f) = -6 | ap(E) = -6
p =167 || ap(f) = 0 | ap(E) = O

Remark. It is possible to find a subset of T" which also surjects onto Gal(Qs,s/Q)
by finding only Frobenius elements that correspond to the conjugacy classes of the
Galois group. The code in Appendix A.3.2 finds a Frobenius element for each one of
the elements in Gal(Q2,5/Q) because this is a small example and the computation is
inexpensive, but the Galois group gets exponentially larger with S.
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Chapter 4

Conclusions and Future Work

In this thesis we have studied the problem of identifying when two f¢-adic Galois
representations
p1,p2: Galg — GLn(Qy)

are equivalent, with special focus on the case K = Q and n = 2.

We have seen in detail the method that started all the theory of comparing Galois
representations, as described by Serre in 1984, and also the algorithm for the reducible
residual case, given by Livné in 1987. This thesis is aimed at master’s or doctorate
students who are trying to get into the theory of Galois representations. Our objective
was to describe with full detail and give references to all of the results which are not
standard in the curriculum of a Mathematics degree or master. We have put an extra
effort to cite the results used in the arguments involving Algebraic Number Theory
and Class Field Theory.

In Chapter 1, we have given a brief introduction to the necessary concepts from
Algebraic Number Theory. Then we have introduced representations and Galois rep-
resentations. Particularly, the Galois representations attached to elliptic curves and
modular forms, the object of study in this thesis. In Chapter 2, we have seen the
deviation group and the Faltings-Serre method and two applications of it in the case
of elliptic curves over Q. However, the method by Serre is only the first stepping stone
into the world of comparing Galois representations.

We have also seen the Faltings-Serre-Livné method in Chapter 3, a variant that
works when the image of the residual representations p; is a 2-group and provides a
computable criterion for deciding if two such representations are equivalent or not.
This method was generalised by Gabriel Chénevert: he eliminated the hypothesis on
the traces by augmenting the possible fields in the compositum similar to K> g in
Livné’s case, but with more fields, not only quadratic extensions.

Moreover, trying to prove a theorem of Mestre (see Theorem 2.2.15) that we did
not use in Chapter 2 requires of more advanced techniques, such as the cohomology
of the Galois groups. These techniques are essential to someone who wants to do
research in the area of Galois representations.

Finally, we have only seen applications of elliptic curves and modular forms over Q.
The more interesting examples (and the ones not considered trivial after the proof of
the modularity theorem), are the ones that consider elliptic curves over a number field
K or, more generally, abelian varieties over a number field K. Particularly, to prove
the modularity of more abelian surfaces, such as [7], one should follow the line of
work of John Cremona’s PhD students, Alejandro Argaez [2| and Mattia Sanna [26],
to extend their methods to the case of dimension 4, with a particular interest in the
2-adic case with reducible residual representations.
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Appendix A

Code and functions

A.1 Code for the example of conductor 11

A.1.1 Check Ramification at 2

R<x> := PolynomialRing(Rationals());
possibleTildeK := [ x"4 - 2*x~3 - 4%x72 - 6%x - 2, \
x4 - 2%x~2 - 4xx - 1, \
x~4 - 2%xx"3 - 3%x"2 + 2, \
x~4 - 44xx + 22, \
x~4 - 6*%x”2 - 8*x - 25, \
x~4 - 8%x~2 - 16%x + 24 ];

E := EllipticCurve("11a3");

cInv := cInvariants(E);

f = x3-27xcInv[1]*x-54*xcInv[2];
K<a> := SplittingField(f);

fact2AtK := Factorization(2*MaximalOrder(K)); // we know that it ramifies in here
ramIdx := fact24tK[1][2];
print "Factorization of 2 in K: ", fact2AtK;

for tildeK in possibleTildeK do
tK<b> := SplittingField(tildeK);
sbflLat := Subfields(tK, 6);
for sbf in sbflat do
if IsIsomorphic(K,sbf[1]) then // Only if we have K as a subfield
fact2AttK := Factorization(2*MaximalOrder (tK));
ramIdxAttK := fact2AttK[1][2];
print "Ramification index of 2 in tilde{K}/K = ", ramIdxAttK/ramIdx;
break;
end if;
end for;
end for;
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A.1.2 Check hypothesis for general N

N := 11;
print "N = 3 (mod 8)7 ", N mod 8 eq 3;

R<x> := PolynomialRing(Rationals());

// Check the hypothesis on the class number of Q(sqrt(+-N));
print "h(Q(sqrt(-N))) =", ClassNumber(SplittingField(x~2+N));
print "h(Q(sqrt(N))) =", ClassNumber(SplittingField(x~2-N));

// Build the field lattice.

F<c>:=SplittingField(x~2+N);

RCF<r2> := AbsoluteField(NumberField(RayClassField(2*MaximalOrder(F))));
RCF<r2> := OptimizedRepresentation(RCF);

K<a> := Subfields(RCF,6) [1][1];

K<a> := OptimizedRepresentation(K) ;

M<b> := Subfields(X,3)[1][1];

// Check the hypothesis on the class number of M
print "h(M) =", ClassNumber(M);

// Check the hypothesis on the units of M
U,phi := UnitGroup(M);
print "Units of M";
M!phi(U.i) : i in [1..Ngens(U)11;
minPoly := MinimalPolynomial(M!phi(U.2), Rationals());
print "Minimal polynomial for the fundamental unit:", minPoly;
// coerce into modulo N
coef := Coefficients(minPoly);
R<x> := PolynomialRing(Integers(N));
minPolyModN := O*x;
for i in [1..#coef] do
minPolyModN := minPolyModN + (Integers()!coef[i] mod Integers()!N)*x~(i-1);
end for;

print "Minimal polynomial mod N: ", minPolyModN;
fact := Factorization(minPolyModN) ;
print "Factorisation of minimal polynomial mod N:", fact;

residues := [Coefficients(f[1])[1] : f in fact];
print "List of tuples <root, IsQuadraticResidue>:", //
[<r,LegendreSymbol(Integers()!r,N)> : r in residues];
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A.2 Code for the example of conductor 5077

A.2.1 Find matrix order

QQ := Rationals();
R<x> := PolynomialRing(QQ);

redModP := function(f, p)
Rp<y> := PolynomialRing(Integers(p));
returnPoly := 0%y;
coef := Coefficients(f);
for i in [1..#coef] do
returnPoly := returnPoly + (Integers()!coef[i] mod Integers()!p)*y~(i-1);
end for;
return returnPoly;
end function;

diagMatrix := function(charpoly)
cpMod2 := redModP(charpoly,2);
if not IsIrreducible(cpMod2) then
print "The reduction mod 2 of the polynomial is not irreducible';
return -1;
end if;
K,phi:=ext<GF(2) | cpMod2>;
RK<z> := PolynomialRing(X);
coef := [phi(c) : ¢ in Coefficients(cpMod2)];
retPol := Oxz;
for i in [1..#coef] do
retPol := retPol + coef[i]l*z~(i-1);
end for;
roots := Roots(retPol);
M := Matrix(2,2, [roots[1][1], O, 0, roots[2][1]1]1);
return M;
end function;

matOrder := function(M)
prod := M;
n:=1;

Id := Matrix(2,2,[1,0,0,1]);
while prod*M ne Id do
prod := prod * M;
n := n+l;
end while;
return n+1;
end function;

ff := Newform("GON5077k2A"); // Gamma_O(N) of 1vl 5077 & wt 2 & iso class A
p := 3;

apf := Coefficient(ff,p);

charpoly := x72 - apf*x + p;

M := diagMatrix(charpoly) ;
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matOrder (M) ;

A.2.2 Find quadratic extensions of K

/* Selmer group computations. */

QQ
Po

/%

h :
K :

0K
G,
GO
/*
Pr
S2
/*

or
S0

wh

en

:= Rationals();

1sQ<x> := PolynomialRing(QQ);

2-division field of the curve of conductor 5077. */

x~3 - 28%x + 50;

:= Integers(K);

OptimizedRepresentation(SplittingField(h));

_, fromG := AutomorphismGroup(K) ;

:= [ fromG(g) : g in G 1;

Computing the full 2-Selmer group */

s := { s[1] : s in Factorisation(5077*0K) I};

, toS2 := pSelmerGroup(2, Prs);
print "2-Selmer gruop allowing ramification at 5077 only has ",

Computing orbits. */
bits := [ ];
:= Set(82);
ile(IsEmpty(S0) eq false) do

s := Random(S0);

orb := {@ toS2(phi(s@@toS2))
Append (Torbits, orb);

SO := SO diff orb;

//H := sub<S2| orb>;
//[#orb, #Invariants(H)];

d while;

: phi in GO @};

#52,

/* Colecting S4 fields with correct ramification at 2.
S4:=SymmetricGroup(4);

S4fields := [1;

grds4 := [1;

print "There are ", #orbits, " of elemens in the 2-Selmer group";

or

bitRank2 := [ s : s in orbits | #(sub<S2|s>) eq 4 ];
print "There are ", #orbitRank2, " orbits of rank 2.";

" elements";
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for s in orbitRank2 do
s1 := s[1];
L := AbsoluteField(ext<K|Polynomial ([-s1@@toS2, 0, 1])>);
OL := MaximalOrder(L : Ramification := [ 2, 5077 ]);
_, OL := OptimizedRepresentation(0OL);
L := NumberField(OL);
G, R, S := GaloisGroup(L);

M := SplittingField(L);

OM := MaximalOrder (M : Ramification := [ 2, 5077 1);
_, OM := OptimizedRepresentation(OM);

M := NumberField(M);

//Discriminant (OM) ~(1/24) ;
//Factorisation(Discriminant (OM)) ;

if Factorisation(2+0M)[1,2] eq 3 and IsIsomorphic(G, S4) then
Append (TS4fields,DefiningPolynomial (M));

Append ("grdS4,Discriminant (OM)~(1/24)) ;

end if;

end for;

print "There are ", #S4fields, " S4 fields to consider";
// sanity check

grds4;
print "The three fields of root discriminant approx 113 belong to the set, as expected.";

A.2.3 Check the hypothesis on the traces

R<x> := PolynomialRing(Rationals());

K<a> := NumberField(x"6 - 2*x~5 - 163*x~4 - 284*x~3 + 2095%x~2 + //
6274*x + 4483);

possibleKTilde := [

x"24 - 768%x722 - 1044*x~21 + 207820%x"20 + 623960%x~19 - 16241308%x"18 -
134490640*x~17 - 1199620624*x~16 + 6403989632*x~15 + 170496149024xx~14 +
844907263648%x~13 + 9718281955056*x~12 + 10504707677504*x~11 +
233726615121408*x~10 + 435373235946432*x~9 + 6632303935157952*xx~8 +
14462639076832256*x~7 + 75456769923825856*x~6 + 176765487641250304*x"5 +
892265953333372672*xx~4 + 3093979354576895488*x~3 +
5735563640611065856*x~2 + 4848578612082150400*x + 2994197252275334144,

x"24 + 4%x~23 + 344x%x722 + 1080*x~21 + 47393%x"20 + 185256%x~19 +
18111384*x~18 + 169777454*x~17 + 2452136182%x~16 + 7745919636*x~15 +
89352176896*x~14 + 676584855692*%xx~13 + 15134915674853*x~12 +
132167280625752*xx~11 + 1124854949679324*x~10 + 5915789283347506*x~9 +
38408193987041206*x~8 + 165413107052078948*x~7 + 203694171277625524*x~6
+ 2025527232807512180*x~5 + 3217181714617109185*x~4 -
22296957747934339616*x~3 + 40146515784220357620%x"2 -
32029840653811622586*x + 11796203027981615769,

X724 - 8%x723 - 2%x722 + 672%x721 + 9321%x720 - 258468*x~19 + 3859746*x"18 -
58106896*x~17 + 743541567*x~16 - 7353174560*%x~15 + 72342120578%x~14 -
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703986635908*x~13 + 6013059324607+x~12 - 43380528820464*x~11 +
293650020729538*x~10 - 1907777596031764*x~9 + 10720003549794808*x~8 -
46359869994967172xx~7 + 189164556190567356*x~6 - 771680088204856584*x~5
+ 2365119561410505664*x"4 - 5136262747153807584*x"3 +
20667644673950506656*x~2 - 14175534002866179840*x +
85365252617909589184,

x"24 + 362*xx722 - 888*x721 + 37205%xx"20 - 212920*x~19 + 3168390*x~18 -
25416556*x717 + 143450887*x~16 - 671681992*x~15 + 1784818490*x~14 +
25393019780*x~13 - 363601496305*%x~12 + 3636405611644*x~11 -
3272703778574*x~10 - 245336839380128*x~9 + 2721592161459780%x~8 -
14745168147343628*x~7 + 45804471248662724*x~6 - 82505563999076880*x~5 +
83640048162301808*x~4 + 545365373218400*x~3 - 257251747274755520%x~2 +
151600036671104896*x + 710701106514873152,

x724 - 12%x723 - 74*x722 + 1268*x721 + 521%x720 - 44700%x~19 + 39450%x~18 +
759704%x~17 - 899161%x~16 - 6931956*x~15 + 7391334%*x~14 + 34259440%x~13
- 26126405*x~12 - 88439984*x~11 + 38036334*x~10 + 110900964*x~9 -
25235180%x"8 - 64163060*x~7 + 8311884*x~6 + 14870944+*x~5 - 1031600*x~4 -
795200%x~3 - 20096*x~2 + 3008*x + 64,

X724 - 12%x723 + 78%*x722 - 340%x"21 + 1599%x~20 - 9028%x~19 + 37544*x~18 -
74884*x~17 - 80657*x~16 + 871420%x~15 - 4150194*x~14 + 25893380*x~13 -
115564199*x~12 + 196897892*xx~11 + 609983388*x~10 - 4216898652*x~9 +
9448977848%x~8 - 2624229984*x~7 - 37912012512%x~6 + 101919818384*x~5 -
97261562848*x~4 - 81980901264*x~3 + 370117386688*x~2 - 458624922688*x +
208312622192,

X724 + 6%xx723 + 203*x722 + 1104*x721 + 16975%x~20 + 82774*x~19 + 767877*x~18
+ 3287588*%x~17 + 20702760*x~16 + 75868256*x~15 + 345575448%x~14 +
1059356600*x~13 + 3618564372*x~12 + 9109880416*x~11 + 23788563360*x~10 +
48229480736*x~9 + 96563687472*x~8 + 153614027680*x~7 + 232906571824*x~6
+ 279572330304*x~5 + 310295077184*x~4 + 260804775552%x~3 +
192919551488*x~2 + 93122246784*x + 34601690048

:= EllipticCurve("5077al");
:= ModularForms (5077,2) ;
ff := Newform(M, 1, 1);

= m -

for £ in possibleKTilde do
Ktilde<a> := NumberField(f);
flag := true;
index := 2;
while flag do
p := NthPrime(index);
Frob := FrobeniusElement(Ktilde, p);
if Order(Frob) eq 4 then
apf := Coefficient(ff, p);
apE := FrobeniusTraceDirect(E,p);
if apf eq apE then
flag := false;

end if;
end if;
index := index+1;

end while;
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pI'lIlt llp =ll, p’ llllll’ Hap(f) = Il, apf’ |l||l, Ilap(E) = ll, apE;
end for;

A.2.4 Possible fields K/K

22 — 768222 — 104422" + 2078202%° + 623960z — 1624130828 — 13449064017
—11996206242¢ 4 6403989632x'° + 1704961490242 + 8449072636483
+971828195505622 4 105047076775042'" + 2337266151214082°
+4353732359464322° + 66323039351579522° + 14462639076832256"
+7545676992382585620 + 1767654876412503042° + 892265953333372672x*
130939793545768954882> + 57355636406110658562:2
+48485786120821504002 4 2994197252275334144

2 + 42 4 34427 4+ 108022 + 4739322 4 1852562 4 18111384218
+16977745427 + 245213618226 + 774591963625 + 8935217689624
+676584855692x% 4 15134915674853x'2 4 1321672806257522:11
+1124854949679324x1° 4 5915789283347506x" + 384081939870412062°
+16541310705207894827 + 203694171277625524x5 + 20255272328075121802°
+32171817146171091852% — 222969577479343396162>
+401465157842203576202 — 320298406538116225862:
+11796203027981615769

22 — 82?3 — 227 + 6722%" 4 9321220 — 2584682 + 38597462 — 5810689627
474354156720 — 73531745602 + 723421205782 — 7039866359082
+6013059324607212 — 433805288204642' + 29365002072953821°
—19077775960317642° + 107200035497948082° — 463598699949671 722"
+1891645561905673565 — 771680088204856584x° + 23651195614105056644*
—5136262747153807584x> + 206676446739505066562:
—14175534002866179840z + 85365252617909589184

2 4 362222 — 888221 4 37205220 — 21292027 + 316839048 — 2541655627
114345088720 — 67168199221° + 1784818490z + 2539301978023
—363601496305x'2 + 3636405611644 — 327270377857420 — 2453368393801282"
+272159216145978025 — 14745168147343628z" + 458044712486627242°
—825055639990768802° + 83640048162301808z* + 5453653732184002°
—2572517472747555202 4 1516000366711048962 4+ 710701106514873152
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224 — 1227 — 74222 + 126822 + 521220 — 4470020 + 3945028 + 759704217

—8991612'% — 69319562'° + 73913342 + 3425944023 — 2612640522
—88439984x ' + 3803633420 + 1109009642° — 2523518028 — 641630607

+83118842° + 148709442 — 1031600z* — 7952002 — 2009622 + 3008z + 64

¥ — 1222 4 78222 — 34022' 4 1599220 — 90282 + 37544218 — 74884217
—806571¢ + 8714202 — 415019424 + 25893380213 — 11556419912
1196897892z + 609983388210 — 421689865227 + 94489778482°
—2624229984" — 379120125122° + 1019198183842° — 972615628482
—819809012642> + 3701173866881

—458624922688 + 208312622192

224 + 627 + 203272 + 11042%" + 1697522 + 8277427 + 76787728 + 3287588x 7

+207027602'% 4 758682562:'° + 3455754482 4 105935660013
1361856437222 + 91098804162 + 2378856336020 4 482294807362
+965636874722% + 153614027680z + 2329065718242° + 2795723303045
4310295077184z + 2608047755522 + 192919551488z:>

+931222467842 + 34601690048

A.3 Code for the example of conductor 33

A.3.1 Find fixed field by modular residual representation

QQ

ff .

:= Rationals();
R<x>

:= PolynomialRing(QQ) ;

= Newform("GON33k2A");

possibleFields := [ x™2 - x + 1, x"2 + 1, x°2 - 2, x”2 + 2, \

x~2
x~2
x~3
x~3
x~3
x~3
x~3
x~3
x~3
x~3
x~3
x~3

-x+3,x2-3,x2-6, x2+6, x2-x-28, x2-11, \

- 22, x72 + 22, x72 + 33, x°2 - 66, x”2 + 66, x”3 - 3*x - 1, \
-x"2+x+1, x3-2, x3 -3, x°3 - 3%x - 4, \

- x"2 + 4xx + 2, x°3 + 3*%x - 2, x°3 - 12, x°3 - 6, \

- 3*%x - 10, x°3 - x°2 - 7Tx*x + 13, x°3 + 6*xx - 1, \

- 11, x°3 - 9%x - 6, x~3 + 6*%x - 10, x~3 - 12%xx - 28, \

+ 6*x - 12, x73 - 9*x - 3, x"3 - 22, x"3 - 9*x - 14, \

- 99, x°3 - 33, x~3 + 6xx - 32, x~3 + 33xx - 22, \

+ 33%xx - 176, x~3 - 33*x - 66, x~3 - 132, x~3 - 396, \

- 198, x"3 - 66, x~3 - 66%x - 176, x~3 + 18xx - 48, \
- 9%x - 30, x~3 - 27*x - 78, x~3 - 99%x - 330, \
- 99%x - 66];
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for £ in possibleFields do
if Degree(f) eq 2 then continue; end if;

print "f(x) =", f;
Kf<a> := SplittingField(f);

n = 2;
flag := false;
while flag eq false do
p := NthPrime(n);
if peq 2 or peq 3 or peq 11 then

n := n+il;
continue;
end if;

apf := Coefficient(ff,p);
ordK := Order(FrobeniusElement (Kf,p));

if ordK eq 3 and Integers()!apf mod 2 eq O then

print "Frobenius has order 3 but the trace is even:", apf;
flag := true;
end if;
n := n+l;
end while;

end for;

A.3.2 Livné’s theorem

R<x> := PolynomialRing(Rationals());

E := EllipticCurve("33a3");
ff := Newform("GON33k2A");

S :={2,3,11};

Q23<ap> := NumberField(x~2-3);

Q211<ap> := NumberField(x~2-11);

Q22<a2> := CyclotomicField(8);

Q2S<a> := OptimizedRepresentation(CompositeFields(CompositeFields(Q23,Q211)[1],Q22)[1]);
G := GaloisGroup(Q2S);

elsG := {g : g in G};
elsG := elsG diff {Id(G)};

i:=1;
while not IsEmpty(elsG) do
p := NthPrime(i);
if p notin S then
Frobp := FrobeniusElement (Q2S,p);
if Frobp in elsG then
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apf := Coefficient(ff,p);
apE := FrobeniusTraceDirect(E,p);
if apf eq apE then

elsG := elsG diff {Frobp};

print "p =", p, "II", "ap(f) =", apf, "|", "ap(E) = ", apE;
end if;
end if;
end if;
i = i+1;

end while;
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Group isomorphisms from the
quartic field method

B.1 Proof GLy(Fs) = S5
We can represent S3 as the permutations of a set of three elements {1, 2, 3}:

And GLy(F9) is the group of invertible 2 x 2 matrices with coefficients in Fo, i.e.
its the group of matrices with coefficients {0, 1} and determinant 1.

10 01 10 11 11 01
e ={(0 1) (o)1) )-(o)- (o)}
Then the isomorphism is explicitly given by:
10 01 10
Id «— <0 1) (12) «— (1 0) (13) «— <1 1)
11 11 01
(23) «— <O 1> (123) «— <1 0) (132) +— <1 1)

B.2 Proof My(Fy) 2 F2 'V,

Recall that Ms(F9) is the additive group of 2 x 2 matrices with coefficients in Fs.
Particularly, its the set

My (F,) = {(i Z) ca,b,c,d € {0,1}}.

This set has cardinality 2* = 16, since we have 2 choices (0 or 1) for 4 variables
(a,b,c,d).
Then, we represent F3 as a subgroup of M(Fs), particularly,

{006 D)6 o) 0D}

Similarly, we represent the Klein group Vj as a subgroup of M (F2) in the following

manner: w:{(g 8)((1) i)(? é)G ?)}
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S3, we have

~

Then, as an S3 module under the action by conjugation of G Ly (F2)

) (
) (
) (
) (
) (
) (
) (
) (

M5 (F9)

The explicit isomorphism is given by:

)
)
)
)
)
)
)
)

01
10

) (
)e
)= (
)= (
)= (
)=(
)= (
)= (

0 1
11

)= (
)= (
)= (
)= (
)= (
)= (
)= (
)= (

0 0
01

0 0
0 0

)o
)o
)o
)o
)= (
)=(
)=(
)=(

0 0
0 0

)= (
)= (
)= (
)= (
)= (
)= (
)= (
)= (

0 0
0 0

(
(
(
(
(
(
(
(

10 10 00 11 11
0 1 11 11 10 01

0 0
10

10
11

10 11 01 11
01 01 10

01

01
00

00
00

0 0 01 01 0 1
0 0 1 0 11 11

10

01

01 10 10 0 0
10 10 01 0 1 0 0

11

10
0 0

10
11

01 11 10 0 0
11 0 1 11 0 0

1 0
10

11
01

10 11 0 0
11 11 01 0 0

01

11
0 0

10

00 11 10 01
10 0 0 11 0 1

11

10

11
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