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Abstract

We study the structural regularities and irregularities of the reals in inner mo-
dels of set theory. Starting with L, Gödel’s constructible universe, our study of the
reals is thus two-fold. On the one hand, we study how their generation process is
linked to the properties of L and its levels, mainly referring to [18]. We provide
detailed proofs for the results of that paper, generalize them in some directions
hinted at by the authors, and present a generalization of our own by introducing
the concept of an infinite order gap, which is natural and yields some new in-
sights. On the other hand, we present and prove some well-known results that
build pathological sets of reals.

We generalize this study to L[#1] (the smallest inner model closed under the
sharp operation for reals) and L[#] (the smallest inner model closed under all
sharps), for which we provide some introduction and basic facts which are not
easily available in the literature. We also discuss some relevant modern results for
bigger inner models.
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Introduction

"Sometimes it seems that there is such a complete lack of rule-
governed behavior that [some phenomena] just aren’t rule-governed.
But this is an illusion—a little like thinking that crystals and metals
emerge from rigid underlying laws, but that fluids or flowers don’t."

– Douglas R. Hofstadter, Gödel, Escher, Bach

Real numbers

The set of real numbers is undoubtedly one of the most important objects in
mathematics. The real numbers capture our understanding of continuous space,
and so play a crucial role in applied mathematics or mathematical branches like
Topology and Geometry. But even in Set Theory, the standard foundation for all of
mathematics, this set was central in shaping the developments of the field, and has
been thoroughly established as the kernel of many still open questions regarding
the nature of the mathematical universe.

The reals played a historically privileged role in the discretization of mathemat-
ics. As Kanamori writes [11], up until the ending of the 19th century mathematics
had enjoyed intensional interpretations and methods, where the focus was to be
found in processes and empirical intuitions rather than objects (similarly to how
physical phenomena or natural intuitive reasoning are most easily understood).
And so for instance functions where understood as rules rather than collections,
and many objects defined by their properties rather than a construction.

The increasingly proof theoretic approach striving for rigor brought to bear
the shortcomings of this approach. Most prominently, the study of limits and
continuity made apparent the need for an extensional understanding of functions
as acting on points. Collections of discrete objects were especially useful as an
underpinning for these previously non-rigorous concepts, such as the well-known
constructions of the continuum by Dedekind or Cantor. Of course, Cantor would
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iv Introduction

go on to establish the foundations of Set Theory, and his methods would gener-
alize to the extensional understanding of all mathematical objects as sets we use
today.

But the continuum didn’t only play an important role because the principal
pressures towards an extensional approach came from real analysis. It also did
so because of the consequences its formulation revealed. Cantor’s discovery of
the (infinitely many) different sizes of infinity was met with skepticism. This
was the first instance of a common phenomenon: as mathematically useful as the
extensional underpinning might be, some of its discrete properties seem counter
to our intensional intuitions about how an object should behave.

Of course, the different sizes of infinity have come to be widely accepted as
witnessing the richness of the mathematical universe. But as we see in Chapter
2, other apparent implausibilities, more concrete and pathological, still perplex
us. We also notice that this tension between a concept and its underpinning is
especially noticeable in the continuum because it is our paradigm example for
continuity, and thus its discretization strikes us as less plausible.

When regarding Set Theory not just as the foundation for all of mathematics,
but as the self-contained mathematical discipline studying the infinite, the set of
reals also plays a crucial role: settling its cardinality has been one of the driving
problems of the field since its beginnings. Since it is independent of ZFC, the
answer can only be motivated by the practical or intuitive value of adding certain
axioms, and this is the subject of much of modern Set Theory through Large
Cardinal axioms. But how can it be that such a fundamental question is not settled
by this otherwise fruitful Set Theory?

To answer that, let us first note that in Logic and Set Theory we identify R with
P(ω), and work with the latter. This is not only because R will always have that
cardinality, but also because, regardless of the construction of R we choose, there
will be a very natural correspondence between its members and the subsets of ω,
and thus all results will be directly translatable (for instance, we can consider the
characteristic function of a subset of ω as an infinite sequence of binary digits, the
binary expression of a real number).

The reason why ZFC doesn’t decide the Continuum Hypothesis is that it gen-
erally provides very little information about how the Power Set operation be-
haves. The Power Set axiom tells us we can always apply it, but gives us no
information about its richness or its properties, and so other than Cantor’s Theo-
rem (|P(x)| > |x|) and some results regarding cofinalities, cardinal exponentiation
remains mainly undecided. We need to pin down how the power set operation
actually looks to get more information, and inner models do so.
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Inner models

Inner models are transitive set theoretic classes that satisfy the axioms of ZF
and contain all the ordinals. That is, a smaller mathematical universe that nonethe-
less contains the same ordinal backbone.

Each one of these models will have certain concrete properties (that is, satisfy
some axioms additional to ZF), and so decide way more statements. In fact, as
we’ll see, inner models usually present some kind of structural regularity that
facilitates their study.

This regularity and the minimality of the model is in great part achieved by
concretely defining what the power set function does (especially in canonical inner
models, see Chapter 3). For instance, Gödel’s L, the smallest inner model, can be
understood as implementing the idea of choosing the simplest possible power set
function allowed by the expressive power of our language. That is, at every level
of its hierarchy, we add only what we can talk about, and thus must be present for
the model to be coherent. Other bigger models implement in their construction
slightly less simple power set operations.

So it is natural that in these models the reals see their complexity greatly re-
duced. The issue is, this yields some unwanted behaviour that crashes with our
intensional understanding of the reals. That is, as useful as the regularity prop-
erties are for some set theoretic purposes, these models can’t wholly capture an
inherently complex object like the reals.

We will study how the regularity of a model affects its reals, their resulting
unwanted properties, and the ways in which they are correlated.

This work

Our study of the reals of a model thus takes two directions. On the one hand,
we study how the reals of the model are generated, and how this generation
process is intertwined with the construction of the model itself. On the other
hand, we study some apparently pathological properties of sets of reals inside
that model.

In Chapter 1 we develop the first direction for L. We mainly study the gener-
ation process through the concepts and developments of [18], while still proving
other results and tracing some necessary tools to other authors. We provide de-
tailed proofs for the main theorems of the paper, generalize the results in certain
directions hinted at by the authors and present some generalizations of our own.
Most prominently, we introduce the notion of an infinite order gap, which helps
phrase some natural questions, and whose study yields some further insight into
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the model-theoretical structure of the hierarchy. So all in all this chapter has a
considerable mathematical load. We note nonetheless that our presentation of the
paper isn’t exhaustive, as some of its concrete results weren’t as relevant to our
main purpose and thus have been excluded.

In Chapter 2 we develop the second direction for L. We present and prove
some well-known results, and remark upon the possible heuristic reasons for their
apparent plausibility issues.

In Chapter 3 we generalize the previous study to bigger inner models. We
present and motivate the models L[#1] and L[#] in some detail, and comment
on how the two directions generalize to them. We finally reflect also upon the
situation for more complex inner models, by discussing some more general and
modern results in Inner Model Theory and Descriptive Set Theory relevant to our
purposes.

Since the topics involved are slightly advanced, we can’t provide exhaustively
all preliminaries needed, so a minimal familiarity with basic concepts and results
in set theory and model theory is required to completely understand some of the
mathematics (especially in Chapter 1, and some parts of Chapter 3). But we do
always state the results used and provide references for them which contain the
required background.



Chapter 1

Gaps in L

Gödel’s constructible universe, L, a proper class transitive ∈-model, was de-
vised to prove some independence results. Indeed, even though neither CH nor
AC are needed to construct it, L is a model of ZFC and the Generalized Contin-
uum Hypothesis, so both AC and GCH were proven irrefutable from ZF (assum-
ing of course ZF’s consistency). The theory of L is especially tame and simple,
and easily resolves many questions independent of ZF. L is in fact the smallest
inner model of ZF, that is, any other inner model contains it. So its canonicity
ensured that deeper aspects of its structure would become object of fruitful study.
The most celebrated results on this area are Jensen’s systematical Fine Structure
Theory and the study of L-indiscernibles which culminated in the discovery of
sharps (used in Chapter 3).

Here we exploit some of these advances, most concretely using the framework
and results of [18], to study the generation process of R in L and understand the
role of the constructible reals in the hierarchy levels. The reals turn out to be tightly
interlinked with model theoretic properties affecting the whole hierarchy, thanks
to their ability to codify set theoretic information. We end up with a picture of the
extreme regularity which the Axiom of Constructibility (V = L) bestows upon the
set theoretic universe, as seen through the reals.

Now, ω is an object easily definable and of extreme absoluteness: its definition
is Σ0, and so all transitive models of ZF identify ω correctly. So when investigat-
ing how the members of P(ω) behave in L (or any inner model), we are really
studying the properties of the power set function in this model (since those of ω

remain unchanged). In fact, as mentioned above, V = L can be understood as
artificially determining the power set operation to be the simplest one possible,
so it’s not surprising that P(ω) is so deeply affected by it, or that pursuing this
study leads to a generalization to iterations of P and its values on other cardinals,
as presented further down.
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1.1 Preliminaries

We work in the language of first order logic plus the binary predicate ∈, all
further symbols serving as abbreviations, and assume the axioms of ZF. An in-
troduction to L, and an exposition of the following well-known results of model
theory and set theory, can be found in resources like [6] and [14].

Definition 1.1. By De f A(P) we mean the set of all elements definable over ⟨A,∈⟩ with
parameters in P ⊆ A. That is, all elements a ∈ A such that, for some formula ϕ, natural
number k and string of parameters b̄ ∈ [P]k, {a} = {x ∈ A | ⟨A,∈⟩ |= ϕ(x, b̄)}.
We abbreviate De f A = De f A(∅). We also say A is pointwise definable from P ⊆ A if
De f A(P) = A, and pointwise definable if De f A = A.

We also abbreviate ⟨A,∈⟩ to A, since we mostly consider ∈-models, and it’s
always clear from context when we use A as a model.

Theorem 1.2. (Skolem hull argument) (I.15.28 in [14]) Assume there is a binary
relation R that well-orders A and is definable over A with parameters in P ⊆ A. Then
De f A(P) ≺ A.

Theorem 1.3. (Downward Löwenheim-Skolem) (I.15.10 in [14]) Fix an infinite set
A and an infinite cardinal κ ⩽ |A|, and S ⊆ A with |S| ⩽ κ. Then there’s a B ⊆ A with
B ≺ A, S ⊆ A and |B| = κ.

Theorem 1.4. (Global well-order in L) (II.3.2, 3.3 in [6], and [4]) There is a formula
W(x, y) such that for every ordinal α

Lα+5 |= "W(x, y) well-orders Lα"

Moreover, for every limit ordinal α

Lα |= "W(x, y) well-orders every Lβ, and thus the universe"

Furthermore, for every n ∈ ω there is a formula Wn without parameters such that, if
α = λ + n, then

Lα |= "Wn(x, y) well-orders the universe"

This last improvement on definability (a construction by Boolos) will prove
vital for fine-structural purposes. It is basically achieved by using a flat pairing
function for the successor case (see Definition 1.17). We call the Lα-definable re-
lation represented by this formula ⩽Lα (and use <Lα for its strict counterpart).
This theorem has as an immediate consequence ACL, and also the existence of an
L-definable ordinal enumeration of L.
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Theorem 1.5. (Condensation) (II.5.2 in [6]) If α is a limit ordinal and X ≺1 Lα, then
there are unique π and β ⩽ α such that

i) π : ⟨X,∈⟩ ∼= ⟨Lβ,∈⟩

ii) for transitive Y ⊆ X, π ↾ Y = Id ↾ Y

iii) π(x) ⩽Lα x for all x ∈ X

A ≺1 B means as usual that A ⊆ B and both models satisfy the same Σ1

formulas with parameters in A. Notice π is just the Mostowski collapse, defined
recursively as π(y) = {π(x) : x ∈X y} (see Section I.9 in [14]).

Condensation is arguably the most important tool for the study of constructibil-
ity. The following lemma, proved through Condensation, has as an immediate
consequence GCHL.

Lemma 1.6. (VI.4.6 in [15]) For any infinite ordinal α, P(Lα)L = P(Lα) ∩ L ⊆ Lα+L

where α+L denotes the smallest cardinal bigger than α according to L.

(α+n)L denotes the ordinal operation α+L iterated n times, and Pn the powerset
operation iterated n times. We use throughout a fixed pairing function for the
naturals, denoted by J, presupposed to be primitive recursive.

1.2 Gaps of reals

A main focus of our study will be the details of the generation process for the
constructible reals. As presented in [18], some results centered around recursion
of Putnam in [16] lead to a deeper set theoretic study of the hierarchy levels where
no new reals appear.

Definition 1.7. α is a gap ordinal iff (Lα+1 \ Lα) ∩ P(ω) = ∅

In the next results, by F being an ordinal operation Σ1 definable in L, we
mean a function from ONn to ON (for some n) such that there’s a Σ1 formula Φ
satisfying F(α1, α2, ..., αn) = α iff L |= Φ(α1, α2, ..., αn, α).

We first prove a necessary technical result. The original idea is found in a proof
of Lévy (Theorem 36 in [17]), but we instead employ simpler modern methods.

Lemma 1.8. (Lévy) Let F be an ordinal operation Σ1 definable in L. If at least one of the
αi is infinite, then

F(α1, α2, ..., αn) < α+L
1 + α+L

2 + ... + α+L
n
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Proof. Since L |= ∃α(F(α1, α2, ..., αn) = α), there’s such an α ∈ L. Take a limit β

such that α ∈ Lβ, and also α1, . . . , αn ∈ Lβ. Say γ = α+L
1 + α+L

2 + ... + α+L
n . Inside

L, apply the Downward Löwenheim-Skolem Theorem to find an elementary sub-
model X of Lβ of cardinality smaller than γ, and containing α, α1, . . . , αn (as well as
all their elements). By Condensation X is isomorphic to some Lξ , with ξ < γ. And
since the αi will be fixed by the Mostowski collapse, Lξ |= ∃α(F(α1, α2, ..., αn) = α).
But since F(α1, α2, ..., αn) = α is Σ1 expressible, and hence upwards absolute, α is
really the value of F(α1, α2, ..., αn), and is below γ.

Furthermore, Lγ |= F(α1, α2, ..., αn) = α, since an identical argument shows the
necessary witness for the Σ1 formula will be < γ. Using this result, we can prove
there are arbitrarily big gaps in a strong sense.

Theorem 1.9. (1.3 in [18]) Let F be an ordinal operation Σ1 definable in L, and let β1,
. . . , βm ∈ ωL

1 . Then there are arbitrarily large α ∈ ωL
1 such that

(LF(α,
#»

β ) \ Lα) ∩ P(ω) = ∅

Proof. Take γ ∈ ωL
1 . If α < ωL

2 , then by Lemma 1.8, F(α, β1, . . . , βm) < α+L + β+L
1 +

... + β+L
m ⩽ ωL

2 . Since all the constructible reals are in LωL
1

(Lemma 1.6), by the
absoluteness of F,

LωL
2
|= ∃α(α > γ ∧ (LF(α,

#»

β ) \ Lα) ∩ P(ω) = ∅)

Inside L, we apply the Löwenheim-Skolem Downward Theorem to find an ele-
mentary countable submodel X of LωL

2
. By the absoluteness of the satisfaction

predicate, X really is an elementary submodel in V. By Condensation X is iso-
morphic to some Lξ , ξ < ωL

1 due to its cardinality in L. By the absoluteness of
"being Lα" for the hierarchy levels above α and since Lξ ≡ LωL

2
, we get the desired

α.

This can be generalized in certain directions stated in [18]. We present below
the most general version and supply a proof.

Lemma 1.10. Pn(κ)L ⊆ L(κ+n)L

Proof. P(κ)L ⊆ P(Lκ)L ⊆ Lκ+L (Lemma 1.6), and if Pn(κ)L ⊆ L(κ+n)L , then
P(Pn(κ))L ⊆ P(L(κ+n)L)L ⊆ L(κ+n+1)L again.



1.2 Gaps of reals 5

Theorem 1.11. (Generalization of 1.9) Let F be an ordinal operation Σ1 definable in
L, s ⩽ n positive integers, and β1, . . . , βm ∈ (κ+s)L. Then there are arbitrarily large
α ∈ (κ+s)L such that

(LF(α,
#»

β ) \ Lα) ∩ Pn(κ) = ∅

Proof. Take γ ∈ (κ+s)L. If α ∈ (κ+n+1)L, then F(α,
#»

β ) < α+L + β+L
1 + ... + β+L

m ⩽
(κ+n+1)L. Since Pn(κ)L ⊆ L(κ+n)L (previous lemma), and by the absoluteness of F,

L(κ+n+1)L |= ∃α(α > γ ∧ (LF(α,
#»

β ) \ Lα) ∩ Pn(κ) = ∅)

Inside L, we apply the Löwenheim-Skolem Downward Theorem to find an el-
ementary submodel of L(κ+n+1)L containing γ and

#»

β , and of cardinality smaller
than (κ+s)L. By the absoluteness of the satisfaction predicate, it really is an ele-
mentary submodel in V, and its cardinality is less than (κ+s)L. By Condensation,
it is isomorphic to some Lξ , with ξ < (κ+s)L due to its cardinality. By the abso-
luteness of "being Lα" for the hierarchy levels above α and since Lξ ≡ L(κ+n+1)L , we
get the desired α.

The result can also be trivially generalized by replacing the cardinal κ by any
constructible transitive set a, and consequently (κ+s)L by (|a|+s)L.

Notice that F is required to be definable in L, not just in V, otherwise L might
not prove F is a function.1

Notice also that the result is not straightforwardly generalizable beyond Σ1

functions, since more complex functions might not be upwards absolute and thus
Lemma 1.8 would fail. Consider for instance the function F(α) = |α|+, which is
Π1 definable. Clearly there is no infinite α ∈ ωL

1 such that (L|α|+ \ Lα)∩P(ω) = ∅,
since |α|+ = ω1, and the reals of L appear cofinally in the levels below ωL

1 , which
is ⩽ ω1.

We now work towards proving Theorem 1.23, a characterization revealing the
connection between the generation of reals and the model-theoretical structure of
the hierarchy. For that we first need some technical results.

From now on we assume α infinite, since the finite case is trivial: no finite
ordinal is a gap.

Definition 1.12. α starts a gap iff α is a gap ordinal and ∀β<α((Lα \ Lβ)∩P(ω) ̸= ∅)

1An extreme example of this can be obtained by choosing F(α) to be the least ordinal greater
than α such that there exists a transitive model containing that ordinal and satisfying ZFC and
the existence of a mesurable cardinal. Then in a universe with an unbounded class of inaccessible
cardinals plus a measurable cardinal this is a definable function, but in its L none of its values will
be defined.



6 Gaps in L

We first prove a useful result: if a new real appears, then it actually does so by
a definition without parameters.

Lemma 1.13. (Lemma 1 in [4]) If α is not a gap ordinal, then there is a real not in Lα

which is definable without parameters over Lα.

Proof. Suppose ϕ(x, a) defines a real over Lα, with a ∈ Lα a parameter, and that
this real is not in Lα (without loss of generality, we can suppose the definition
requires only one parameter). Then by using the well-order <Lα of Lα definable
without parameters in Lα, the formula

∃y(ϕ(x, y) ∧ ∀w(ϕ(w, y) → w ∈ ω) ∧ ¬∃z∀w(w ∈ z ↔ ϕ(w, y))
∧ ∀y′(y′ <Lα y ∧ ∀w(ϕ(w, y) → w ∈ ω) → ∃z∀w(w ∈ z ↔ ϕ(w, y′))))

also defines a new real, and has no parameters. Indeed, it will be the new real de-
fined by ϕ with the <Lα -least parameter (and we know at least one such parameter
exists).

The definability without parameters of any new real allows us to complete the
following model theoretic argument.

Lemma 1.14. (8.1 in [18]) If α is not a gap ordinal, then Lα is pointwise definable.

Proof. By 1.2, De f Lα ≺ Lα. By Condensation, De f Lα ∼= Lξ for some ξ ⩽ α. But by
the previous lemma there’s a real definable without parameters over Lα not in Lα,
and since ω is definable without parameters in Lξ this real is also definable over
Lξ . So it belongs to Lξ+1, and thus ξ = α and De f Lα = Lα.

We now introduce the concept of an arithmetical copy, originated in Boolos [4].
The regular presence of arithmetical copies will have relevant consequences for
the structure of the constructible hierarchy, as we see later.

Definition 1.15. An arithmetical copy of Lα is a set Eα ⊆ ω encoding through a fixed
primitive recursive pairing J a subset of ω × ω isomorphic to ∈ ↾ Lα. That is, letting

Field(Eα) = {n ∈ ω | ∃m ∈ ω(J(n, m) ∈ Eα ∨ J(m, n) ∈ Eα)}

R(Eα) = {⟨n, m⟩ ∈ ω × ω | J(n, m) ∈ Eα}

there is an isomorphism ⟨Lα,∈⟩ ∼= ⟨Field(Eα), R(Eα)⟩.
We sometimes just write Eα for R(Eα).

If Lα is pointwise definable, an obvious argument enumerating the formulas
defining its elements yields an arithmetical copy, as in the following lemma.



1.2 Gaps of reals 7

Lemma 1.16. (4.1 in [18]) If Lα is pointwise definable, then there is an arithmetical copy
Eα of Lα belonging to Lα+2, and the isomorphism witnessing that is also in Lα+2.

Proof. Denote

ϕ(n, a) ≡ Lα |= ϕn(a) ∧ ∀b(b ̸= a → ¬Lα |= ϕn(b))

Φ(n, a) ≡ ϕ(n, a) ∧ ∀m < n(¬ϕ(m, a))

So Φ(n, a) states "n is the least Gödel number of a formula defining a". We can
define

Eα = {J(n, m) | Lα+1 |= ∃a, b(Φ(n, a) ∧ Φ(m, b) ∧ a ∈ b)}

πα = {⟨n, a⟩ | Lα+1 |= Φ(n, a)}

which thus belong to Lα+2.

But for Theorem 1.23 we need a stronger result: we need to see this copy actu-
ally belongs to Lα+1. For this, a more fine-structural analysis by Boolos involving
Skolem functions is needed, even if the general idea behind the proof remains the
same. We require a flat pairing function.

Definition 1.17. A flat pairing function is a definition of ordered pairs P(x, y) (thus,
preserving the property that for certain primitive recursive functions π1(P(x, y)) = x
and π2(P(x, y)) = y) that doesn’t raise the constructibility rank.
That is, for infinite α, ∀x, y ∈ Lα(P(x, y) ∈ Lα).

Lemma 1.18. There is a flat pairing function.

Proof. Define P(x, y) = x0 ∪ y1, where x0 is obtained by replacing every natural
number n ∈ a ∈ x by its successor and adding 0 to a, and y1 analogously but
without adding 0.

Lemma 1.19. (Theorem 1 in [4]) If α is not a gap ordinal, then there is an arithmetical
copy Eα of Lα belonging to Lα+1.

Proof. By Lemma 1.13, take a real A /∈ Lα defined over Lα by ϕ(x) without param-
eters. Let S be the Skolem hull closing ω in Lα under the Skolem functions for
ϕ(x), ¬ϕ(x) and V = L (that is, the Skolem functions for all of their existential
subformulas). S belongs to Lα+1. Indeed, if f1, . . . , fm are these functions, each
with ki variables, and k = maxi{ki}, then

S = {x ∈ Lα | Lα |= ∃ f , i(Function( f ) ∧ Dom( f ) = i + 1 ∧ f (0) ∈ ω ∧ ∀j < i
( f (j + 1) ∈ ω ∨ ∃l1 ⩽ j . . . lk ⩽ j( f (j + 1) = f1( f (l1), . . . , f (lk1)) ∨ . . .∨
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f (j + 1) = fm( f (l1), . . . , f (lkm)))) ∧ f (i) = x}
In case α is a successor ordinal, we encode all of these functions through iterated
use of a flat pairing function, so that they all belong to Lα (previous lemma).

By construction, S ≺V=L Lα. This is actually the Tarski-Vaught proof of the
Löwenheim-Skolem Theorem (see [24]), and we can see it by induction on the
complexity of the subformulas of V = L. For a Σ0 formula it is immediate, since
the relation ∈ coincides in both S and Lα. For adding connectives which are not
quantifiers, the induction step is trivial. And if S ≺ϕ Lα, then S ≺∃xϕ Lα, since
if one such x exists in Lα (for a certain choice of the parameters of ϕ), then the
Skolem function for this subformula has added it to S by its construction.

Since Lα |= V = L, we have S |= V = L, and thus S ∼= Lξ for a certain ξ

(see for instance II.6.16 in [14]), and the isomorphism can only be the Mostowski
collapse because Lξ is transitive. ξ ⩽ α, since otherwise S ⊆ Lα would contain
an ∈-chain of order type greater than α (which is impossible by induction on α).
And by the closure under ϕ(x) and ¬ϕ(x), again by the Tarski-Vaught proof of
the Löwenheim-Skolem Theorem, A is also definable over S, and thus ξ = α. As
seen in the above definition, every member of S either is a natural number or
was added at least once by repeated applications of the Skolem functions. So by
mirroring this construction using the natural numbers, we can define a recursive
coding over Lα analogous to the above definition of S. Writing it out explicitly:

CODE(n, x) ≡ ∃ f , g, i(Function( f ) ∧ Function(g) ∧ Dom( f ) = Dom(g) = i +
1∧ f (0) ∈ ω∧ g(0) = J(0, f (0))∧∀j < i([ f (j+ 1) ∈ ω∧ g(j+ 1) = J(0, f (j+ 1))]∨
∃l1 ⩽ j . . . lk ⩽ j([ f (j+ 1) = f1( f (l1), . . . , f (lk1))∧ g(j+ 1) = J(1, f (l1), . . . , f (lk1))]∨
. . . ∨ [ f (j + 1) = fm( f (l1), . . . , f (lkm)) ∧ g(j + 1) = J(m, f (l1), . . . , f (lkm))])) ∧
f (i) = x ∧ g(i) = n)

Code(n, x) = CODE(n, x) ∧ ∀m < n(¬CODE(m, x))

By calling ψ(x) the formula defining S above, we can define

Eα = {J(n, m) | Lα |= ∃x, y(ψ(x) ∧ ψ(y) ∧ x ∈ y ∧ Code(n, x) ∧ Code(m, y))}

and so ⟨Lα,∈⟩ ∼= ⟨S,∈⟩ ∼= ⟨Field(Eα), Eα⟩ and Eα ∈ Lα+1.

In fact, by using the flat pairing function, we can see the isomorphism πα

is also in Lα, improving again on Lemma 1.16. The proof here was necessarily
more intricate because we can’t readily use a formula expressing Lα |= ϕn without
jumping up a level.

Lemma 1.20. (Lemma 2.5 in [18]) If α starts a gap, then α is a limit ordinal.

Proof. Suppose β + 1 starts a gap. We essentially define a new real by diagonal-
ization.
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β is not a gap ordinal, so the previous proof applies to it. Defining S and Code
as in that proof, define then the real
Y = {n ∈ Lβ+1 | Lβ+1 |= ∃x, a1, . . . , ak(x = {a ∈ S ∩ ω | ⟨S,∈⟩ |= ϕm(a1, ..., ak, a)} ∧

a1, . . . ak ∈ S ∧ Code(n1, a1) ∧ ... ∧ Code(nk, ak) ∧ n = J(m, n1, . . . , nk) /∈ x)}
This is well-defined because every x with that form will belong to Lβ+1 (that

is, Lβ+1 is right in building those sets). To see this, say S = {b ∈ Lβ | Lβ |= ψ(b)}
as in the previous proof. Now, if x = {a ∈ S ∩ ω | ⟨S,∈⟩ |= ϕm(a1, ..., ak, a)}, then
x = {a ∈ Lβ | Lβ |= a ∈ ω ∧ ϕ′

m(a1, ..., ak, a)}, where ϕ′
m is the formula resulting

from bounding the quantifiers in ϕm by the formula ψ.
Clearly Y ∈ Lβ+2, and since β + 1 is a gap ordinal, we have Y ∈ Lβ+1. So for

some m, k and b1, ..., bk ∈ Lβ, Y = {x ∈ Lβ | Lβ |= ϕm(b1, ..., bk, x)}. Then by ap-
plying the inverse of the Mostowski collapse π (which fixes the natural numbers),
Y = {x ∈ S | ⟨S,∈⟩ |= ϕm(a1, ..., ak, x)}, where π(ai) = bi. And for certain n1, ..., nk,
we have Code(ni, ai). But then J(m, n1, . . . , nk) ∈ Y iff J(m, n1, . . . , nk) /∈ Y.

The previous lemma grants us a shortcut to prove the following result (which
can also be proved independently by similar reasoning to the proof of the previous
lemma).

Lemma 1.21. (Lemma 2.4 in [18]) Let α be a gap ordinal. If X ∈ P(ω) ∩ Lα and X is
a real well-ordering, then the type of X is less than α.

Proof. Suppose α is the least gap ordinal such that there’s an X ∈ P(ω)∩ Lα coding
a well-ordering of type ⩾ α. If α weren’t the start of a gap, then X would already
belong to the α′ < α starting the gap, contradicting leastness. So α starts the gap
and is thus a limit by the previous lemma. But then, since Lα = ∪β<αLβ, X ∈ Lβ

for a certain β < α, again contradicting leastness.

We now have the necessary tools to prove the central result.

Corollary 1.22. If α starts a gap, then Lα |= V = HC.

Proof. The non-gap ordinals β are cofinal in α since it starts a gap. For any one
of these non-gap ordinals, by Lemmas 1.14 and 1.16, Lα contains an isomorphism
between Lβ and a subset of ω.

Theorem 1.23. α starts a gap iff Lα |= ZFC − P + V = HC

Proof. If Lα |= ZFC − P + V = HC, then α is a gap ordinal. Otherwise, we’d have
a set {n ∈ Lα | Lα |= n ∈ ω ∧ ϕ(n)} ∈ Lα+1 \ Lα, which would constitute a failure
of Replacement in Lα, since then Lα |= ∀x(x ̸= {n ∈ ω | ϕ(n)}). And if α doesn’t
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start the gap, then for some β < α, P(ω)Lα = P(ω)Lβ ∈ Lα, so Lα |= |P(ω)| > |ω|
by Cantor’s theorem, contradicting V = HC.

If α starts a gap, by the previous lemma Lα |= V = HC. All of the axioms
except for Comprehension, Replacement and Choice are immediate from α being
a limit.

For Comprehension, given A ∈ Lα and ϕ(x), choose a β < α with A ∈ Lβ.
By 1.14 and 1.16, the isomorphism πβ between Lβ and a real belongs to Lα. So if
{x ∈ A | Lα |= ϕ(x)} /∈ Lα, then we also have {n ∈ ω | Lα |= ∃x ∈ A(ϕ(x)∧ ⟨n, x⟩ ∈
πβ} /∈ Lα, contradicting α being a gap ordinal.

For Choice, because of the global order definable in Lα, it is implied by Re-
placement. Indeed, given a family of disjoint nonempty sets, we will be able to
construct by Replacement the set of all the <Lα -least elements of these sets, which
will be a choice set.

To prove Replacement, take A ∈ Lα and ϕ(x̄, y). We need to see there’s a γ < α

such that ∀ā ∈ [A]k(Lα |= ϕ(ā, y) ⇒ y ∈ Lγ).
Since Lα |= V = HC, we choose an injection f from [A]k to ω belonging

to Lα. Also, for every ordinal δ < α choose the <Lα -least Wδ ⊆ ω such that
⟨δ,∈⟩ ∼= ⟨Field(Wδ), Wδ⟩ in Lα (at least one such real well-order exists by restricting
the arithmetical copy Eδ ∈ Lδ+2 to the images of ordinals). We can thus define over
Lα the following real, in which we code all well-orderings of order type δ + 1 for
the Lδ in which a new one of the desired y appears

Z = {J(m, n) | Lα |= ∃ā ∈ [A]k ∃δ, y(ϕ(ā, y)∧ y ∈ Lδ+1 \ Lδ ∧m = f (ā)∧n ∈ Wδ+1)}

Since α is a gap ordinal, this real belongs to Lα and thus to some Lβ+1 with
β + 1 < α. But then we can see that every y such that Lα |= ∃ā ∈ [A]kϕ(ā, y)
will belong to Lβ+1, and so β + 1 will be our desired γ. Otherwise, by choosing
such a y0 ∈ Lδ+1 \ Lδ with δ > β, we’d be able to construct from Z a well-order
of order type δ + 1 in Lβ+1, contradicting Lemma 1.21. Indeed, if Lα |= ϕ(ā0, y0),
and m0 = f (ā0), and Z = {x ∈ Lβ | Lβ |= ψ(x)}, then Wδ+1 = {n ∈ Lβ | Lβ |=
ψ(J(m0, n))} ∈ Lβ+1.

This last proof of Replacement amounts to the proof of a Reflection principle,
as often Replacement and Reflection are closely linked. In fact, in [18] Marek and
Srebrny detour through second-order arithmetic to prove the following principle,
which they see implies Lα satisfying Replacement:

For any ϕ, there are arbitrarily big β ∈ α such that, ∀ā ∈ Lβ,

Lβ |= ϕ(ā) iff Lα |= ϕ(ā)

Notice in proving this central result we’ve made extensive use of the reals’
capability to code information about the hierarchy or other sets. Indeed, given
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the extreme canonicity of ω (and most importantly that every natural is defin-
able without parameters and present in all infinite levels of the hierarchy), the
constructions in countable levels can eventually be replicated by a real. It is this
versatility that ensures strong mirroring between the construction of reals and hi-
erarchy levels, and why each one of these two processes can tell us much about
the other.

1.3 Gaps of finite order

As already hinted at by Theorem 1.11, we can generalize the notion of gap to
finite iterations of the power set operation. Jn will now denote a fixed primitive
recursive pairing function for Pn(ω).

Definition 1.24. α is a k-gap ordinal iff (Lα+1 \ Lα) ∩ P k(ω) = ∅

Definition 1.25. α starts a k-gap iff α is a k-gap ordinal and
∀β < α((Lα \ Lβ) ∩ P k(ω) ̸= ∅)

Definition 1.26. An n-analytical copy of Lα is a set Eα ⊆ Pn(ω) encoding through a
fixed primitive recursive pairing Jn a subset of Pn(ω)×Pn(ω) isomorphic to ⟨Lα,∈⟩.

Notice these definitions are slightly different (and not equivalent) to those of
[18] in order to simplify notation.

Recall that P0(ω) = ω and P1(ω) = P(ω). So the previous section corre-
sponded to 1-gaps, and the arithmetical copies are the 0-analytical copies.

Since Pn(ω) ⊆ Pn+1(ω), these definitions are equivalent to
∀n ⩽ k((Lα+1 \ Lα) ∩ Pn(ω) = ∅) and ∀β < α∃n ⩽ k((Lα \ Lβ) ∩ Pn(ω) ̸= ∅)

This exposes the inductive character that will facilitate generalizing the previous
proofs. Since P0(ω) ⊆ P k(ω), no finite ordinal is a k-gap, so we keep assuming α

infinite.

Towards proving a stronger central theorem, we now generalize the previous
results, providing only a sketch of the changes in the proofs where not obvious.

Lemma 1.27. (Generalization of 1.13) If α is not a k-gap ordinal, then there is an
x ∈ P k(ω) not in Lα definable without parameters over Lα.

Lemma 1.28. (Generalization of 1.14) For k ⩾ 1, if α is not a k-gap ordinal, then Lα is
pointwise definable from P k−1(ω)Lα .
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Proof. We use De f Lα(P k−1(ω)Lα) instead of just De f Lα to ensure Lξ contains all of
the members of P k−1(ω)Lα necessary for the definition to work and yield the same
x.

Lemma 1.29. (Generalization of 1.16) If Lα is pointwise definable from P k(ω)Lα , then
there is a k-analytical copy Eα of Lα belonging to Lα+2, and the isomorphism witnessing
that is also in Lα+2.

Proof. We now have, for a ∈ Lα and x ∈ P k(ω)Lα ,

ϕ(n, a, x) ≡ Lα |= ϕn(a, x) ∧ ∀b(b ̸= a → ¬Lα |= ϕn(b, x))

Φ(n, a, x) ≡ ϕ(n, a, x) ∧ ∀m < n∀y ∈ P k(ω)(¬ϕ(m, a, y)) ∧ ∀y <Lα x(¬ϕ(n, a, y))

So Φ(n, a, x) states "n is the least Gödel number of a formula defining a from a
parameter x, and x is the <Lα -least such parameter". Using Jk a pairing function
for P k(ω), and i a fixed injection from ω into P k(ω), we define

Eα = {Jk(Jk(i(m), x), Jk(i(n), y)) | Lα+1 |=

∃x, y ∈ P k(ω)∃a, b(Φ(m, a, x) ∧ Φ(n, b, y) ∧ a ∈ b}

πα = {⟨a, Jk(i(n), x)⟩ | Lα+1 |= Φ(a, n, x)}

Lemma 1.30. (Generalization of 1.19) If α is not a k-gap ordinal and
P k−1(ω)Lα ∈ Lα, then there is a (k − 1)-analytical copy Eα of Lα in Lα+1.

Proof. By Lemma 1.27, there is an A ∈ (Lα+1 \ Lα) ∩ P k(ω) defined by ϕ(x) with-
out parameters. Let S be the hull closing P k−1(ω)Lα under the Skolem functions
for ϕ(x), ¬ϕ(x) and V = L. As above, we need this to ensure Lξ contains all of
the necessary members of P k−1(ω) to define A. The rest of the proof proceeds as
before, using <Lα for the members of P k−1(ω) instead of < for the naturals, and
Jk−1 and i as in the previous lemma.

Lemma 1.31. (Generalization of 1.20) If α starts a k-gap, then α is a limit ordinal.

Proof. Suppose β + 1 starts a k-gap. If x ∈ (Lβ+1 \ Lβ)∩Pn(ω), then clearly {x} ∈
(Lβ+2 \ Lβ+1) ∩ Pn+1(ω), so by β + 1 being a k-gap we can’t have n ⩽ k − 1. So
β is a (k − 1)-gap, and thus P k−1(ω)Lβ+1 = P k−1(ω)Lβ ∈ Lβ+1. Then the former
proof applies, using Jk−1 and i and noticing the isomorphism between S and Lα

(which is the Mostowski collapse) fixes the members of P k−1(ω).
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Corollary 1.32. If α starts a k-gap, then it isn’t a k′-gap for any k < k′.
So in particular α can only start a gap of one finite order.

Proof. α is a limit and the non-k-gap ordinals are cofinal in α. But then by defining
over Lα the set of all members of P k(ω) in Lα, we get a new member of P k+1(ω),
and thus α isn’t a k′-gap.

This new corollary provides insight on the generation of gaps of different or-
ders. It implies that for a limit ordinal to be a k-gap, some limit below it already
had to be part of its (k − 1)-gap. So in particular, if α′ starts a k-gap, then some
α < α′ starts the 1-gap it’s a part of, so between α and α′ there are at least k − 1
limits. Of course, by 1.11 we know k-gaps exist (and are cofinal in for instance
ωL

1 ), so this is another way of interpreting the large length of some 1-gaps.

Lemma 1.33. (Generalization of 1.21) Let α be a k-gap ordinal. If X ∈ P k(ω) ∩ Lα

and X codes a well-ordering through Jk, then the type of X is less than α.

Before proceeding to the generalization of the central result, let us note that
the study of the generation of P k(ω)L (that is, the study of k-gaps) is actually
equivalent to the study of the generation of P(ℵk−1)

L. Indeed, the members of
a higher cardinal can be used to code information in an equivalent way as we’ve
been doing with ω, only with a bigger cardinality of elements to choose from.
And by the following Theorem 1.35, if α starts an (n + 1)-gap, then Lα |= Pn(ω) ∼=
ℵn. So this section can also be understood as a generalization of gaps to higher
cardinals (although all of them below ℵL

ω), as was also hinted at by 1.11, and the
previous results can so be rephrased. Thus the following results come across as
very natural.

Corollary 1.34. (Generalization of 1.22)
If α starts a k-gap, then Lα |= "there are k infinite cardinals"

Proof. A lower limit ordinal already was a (k − 1)-gap, and thus
∀n ⩽ k − 1(Pn(ω)Lα ∈ Lα), so Lα |= "ℵk−1 exists". As before, by Lemmas 1.28 and
1.29 every Lβ with β < α can be injected into ℵk−1.

Theorem 1.35. (Generalization of 1.23)
α starts a k-gap iff Lα |= ZFC − P + "there are k infinite cardinals"

The theory ZFC − P + "there are k infinite cardinals" is in a sense as close to
ZFC as was possible: we want to add a subtheory of ZFC to "there are k infinite
cardinals", to ensure Lα is moderately right about how cardinal arithmetic works,
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but we can never have the Power Set axiom if there’s a finite amount of cardinals
(and thus a biggest cardinal). In fact, "there are k infinite cardinals" is a sort of
restricted Power Set axiom, stating that the first k − 1 power sets of ω exist.

Of course, inside the theory ZFC − P + V = L + "there are k infinite cardinals"
we can define (k + 1)-order constructible arithmetic. And in fact, by applying
Theorem 2.1 of [19] to the constructible hierarchy, the levels modeling that theory
are exactly those for which Lα ∩ P k(ω) is a model of this arithmetic. So we’ve
actually seen how the generation of reals affects what these small models can say
about the reals and successive constructions from them.

1.4 Gaps of infinite order

One might wonder whether there’s an ordinal (for instance below ωL
1 ) that is

a gap of every finite order. This might be understood intuitively as an ω-gap, and
so the generalization to infinite orders easily comes to mind. For this we first need
to define what we mean by infinite iterations of the power set operation.

Definition 1.36. P0(ω) = ω

P β+1(ω) = P(P β(ω))

Pγ(ω) =
⋃

β<γ P β(ω) for limit γ

This is of course the only definition that makes the function Pα(ω) continuous
on α. The definitions of β-gap, start of a β-gap and β-analytical copy are as before.
Notice that, for γ < γ′, Pγ(ω) ⊆ Pγ′

(ω), so the formulas in these definitions can
again be rewritten as

∀γ ⩽ β(Lα+1 \ Lα) ∩ Pγ(ω) = ∅ and ∀δ < α∃γ ⩽ β((Lα \ Lδ) ∩ Pγ(ω) ̸= ∅)

By the reasoning after Lemma 1.33, the study of infinite order gaps is equiva-
lent to the study of P(κ), where κ can now be any cardinal (we work inside L to
simplify notation). Or also to the study of the finite order gaps over ℵγ for γ a
limit. For instance, one might consider the gaps of order between ω and ω + ω as
the study of Pn(ℵω) for every n ∈ ω.

In generalizing the previous results to these gaps, we will now have to consider
also the case of β being a limit ordinal.

Lemma 1.37. (Generalization of 1.13) If α is not a β-gap ordinal, then there is an
x ∈ P β(ω) not in Lα that is definable without parameters over Lα.

Lemma 1.38. (Generalization of 1.14) If α is not a β-gap ordinal, then Lα is pointwise
definable from a certain Pγ(ω)Lα , for some γ < β.
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Proof. For β = γ + 1 we choose γ. For β a limit, we choose a γ < β such that α is
not a (γ + 1)-gap. Then the former proof applies.

Lemma 1.39. (Generalization of 1.16) If Lα is pointwise definable from Pγ(ω)Lα , then
there is a γ-analytical copy Eα of Lα belonging to Lα+2, and the isomorphism witnessing
that is also in Lα+2.

Lemma 1.40. (Generalization of 1.19) If α is not a β-gap ordinal and
∀γ < β(Pγ(ω)Lα ∈ Lα), then there is a γ-analytical copy Eα of Lα in Lα+1, for a certain
γ < β.

Proof. As above, and by Lemma 1.37, there’s a successor γ + 1 ⩽ β with an A ∈
(Lα+1 \ Lα) ∩ Pγ+1(ω) defined over Lα by ϕ(x) without parameters, so we argue
as before with this γ.

Lemma 1.41. (Generalization of 1.20) If α starts a β-gap, then α is a limit ordinal.

Proof. Suppose α + 1 starts a β-gap. For limit β, for some γ < β, (Lα+1 \ Lα) ∩
Pγ(ω) ̸= ∅. But if x ∈ (Lα+1 \ Lα) ∩ Pγ(ω), then clearly {x} ∈ (Lα+2 \ Lα+1) ∩
Pγ+1(ω), contradicting α + 1 being a β-gap. For successor β, the former proof
applies.

As before we can see that the start of a γ-gap is not a (γ + 1)-gap. Notice
that for starting a β-gap with β limit, α has to be a limit of limits. Otherwise, the
previous limit would not be a β-gap, so it wouldn’t be a γ-gap for a certain γ < β,
so α wouldn’t be a (γ + 1)-gap.

Lemma 1.42. (Generalization of 1.21) Let α be a β-gap ordinal. If X ∈ Pγ(ω) ∩ Lα

for a γ ⩽ β and X codes a well-ordering through Jγ, then the type of X is less than α.

Corollary 1.43. (Generalization of 1.22) For α ⩾ β, if α starts a β-gap, then
Lα |= "the cardinals are the ℵγ with γ < β"

Proof. As before, for γ < β we can see the elements of Pγ(ω) can’t appear cofinally
in the levels below α. So Lα |= "ℵγ exists". As before, by Lemmas 1.38 and 1.39
every Lβ can be injected into one of these ℵγ.
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Of course for β = γ + 1 we’ll just have "ℵγ is the biggest cardinal". But for β a
limit we won’t have a biggest cardinal. This last situation is now compatible with
the Power Set axiom but incompatible with Replacement, and so the central result
changes slightly.

Theorem 1.44. (Generalization of 1.23) For α ⩾ β, α starts a β-gap iff either
i) β is a successor and Lα |= ZFC − P + "the cardinals are the ℵγ with γ < β"
ii) β is a limit and Lα |= ZFC − R+ "the cardinals are the ℵγ with γ < β"

Proof. i) is as before. For ii), if Lα |= ZFC− R+ "the cardinals are the ℵγ with γ < β",
then α is a β-gap. Otherwise, suppose ϕ(x) defines without parameters over Lα a
new member of Pγ+1(ω), for a γ < β. This constitutes a failure of Comprehension
in Lα, since it is the set {x ∈ Pγ(ω)Lα | Lα |= ϕ(x)}, and Pγ(ω)Lα ∈ Lα.

And if α doesn’t start the gap, then for some δ < α, ∀γ < β(Pγ(ω)Lα =

Pγ(ω)Lδ) and so ∪γ<βPγ(ω)Lα ∈ Lδ+1 contradicting the non-existence of ℵβ in Lα.
For Choice, given a family of disjoint non-empty sets in Lα, it belongs to some

Lδ with δ < α. But there’ll be a certain δ ⩽ δ′ < α such that δ′ starts a γ′-gap (for
some successor γ′ < β), since the non-β-gap ordinals are cofinal in α (because it
starts the gap) and also every Pγ(ω)Lα belongs to a certain level below β. By i), it
will satisfy Lδ′ |= ZFC − P, and so a choice set for the family will belong to it.

For Power Set, the existence of the power of the ℵγ ensures the existence of the
power of every set. Indeed, suppose the subsets of a certain x ∈ Lα were cofinal in
Lα. We know Lα proves x isomorphic to (a subset of) a γ-analytical copy Eδ, for a
certain γ < β. Thus, since thanks to the isomorphism they are mutually definable,
the subsets of Eδ would also be cofinal in Lα, but these are members of Pγ+1(ω)Lα ,
so that would contradict α being a β-gap. So the subsets of x are not cofinal in Lα

and thus P(x)Lα will be constructed at a certain level.

Going back to the question opening this section, the answer is positive by
further generalizing Theorem 1.9, and we see our formulation of β-gaps is natural
to express results such as this one.

Theorem 1.45. (Generalization of 1.9) For any β and γ ⩾ 1 such that β < ωL
γ, there

are arbitrarily big β-gap ordinals below ωL
γ.

Proof. For γ > β it is immediate, since P β(ω)L ⊆ LωL
β
. For γ ⩽ β, take δ ∈ ωL

γ ⊆
ωL

β . Then again by P β(ω)L ⊆ LωL
β

LωL
β+1

|= ∃α(α > δ ∧ (Lα+1 \ Lα) ∩ P β(ω) = ∅)
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Inside L, we apply the Löwenheim-Skolem Downward Theorem to find an ele-
mentary submodel of LωL

β+1
containing δ and β, and of cardinality smaller than

ωL
γ (possible because γ ⩾ 1). By Condensation, it is isomorphic to some Lξ , with

ξ < ωL
γ, and we get the desired α.

The only change in the proof is including β as a parameter to ensure P β(ω)

is correctly defined, that is, β collapses to itself, and that forces the requirement
β < ωL

γ. This premise is necessary, since for instance there isn’t an ω1-gap ordinal
below ωL

1 . Indeed, if αω1 started such a gap, by the reasoning after Lemma 1.41
there’d be an ordinal αγ starting the γ-gap to which αω1 belongs, for every γ < ω1.
But γ < γ′ implies αγ < αγ′ , and thus there would be an uncountable (according
to L) number of ordinals below αω1 < ωL

1 .
Just as in Theorem 1.9, the previous theorem can be generalized to an ordinal

operation Σ1 definable in L (replacing the +1 operation) to obtain longer gaps.

1.5 Lengths of gaps

Returning to the results of [18], we study now more closely the exact lengths
of these gaps, and find striking regularity. We present the results generalized to
β-gaps straight away.

Definition 1.46. α starts a β-gap of length ρ iff it starts a β-gap,
(Lα+ρ \ Lα) ∩ P β(ω) = ∅ and (Lα+ρ+1 \ Lα) ∩ P β(ω) ̸= ∅

Let us enumerate the beginnings of β-gaps as α0, α1, ..., αξ , ...
Provided β < ωL

β , there are ωL
β such beginnings, because there are arbitrarily big

β-gap and non-β-gap ordinals in ωL
β .

When on the contrary β = ωL
β (for instance, when β = ωL

ωω...
), by the reasoning

ending the previous section there are no β-gaps below β. But of course all ordinals
⩾ ωL

β will be β-gaps. So these surprisingly present a univocal cut-off point.

Theorem 1.47. (Generalization of 4.2 in [18]) The (ξ+1)st β-gap is of length 1,
provided β ⩽ αξ < ωL

β .

Proof. Lαξ+1 is pointwise definable from Lαξ
∪{Lαξ

}. Indeed, De f Lαξ+1 (Lαξ
∪{Lαξ

}) ≺
Lαξ+1 by a Skolem hull argument, and so it is isomorphic to some Lγ by Conden-
sation, with γ > αξ . But γ must start a β-gap because it satisfies the theory
corresponding to the starts of β-gaps by Theorem 1.44, so γ = αξ+1. In Lαξ+1 , the
set Lαξ

∪ {Lαξ
} is injectible into Pγ(ω) for a certain γ < β (that is, of cardinality

ℵγ or less), so Lαξ+1 is also pointwise definable from Pγ(ω), and by Lemma 1.39
we are done.
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Thus, again if β < ωL
β , there’ll be ωL

β β-gaps of length 1. But the result gener-
alizes for any length in the following theorem, which is our main tool for dealing
with lengths.

Theorem 1.48. (Generalization of 4.4 in [18]) The first β-gap of length ⩾ ρ starting
(strictly) higher than a given γ ⩾ ρ exists and is of length ρ, provided β ⩽ γ < ωL

β .

Proof. Say α starts said gap, and suppose ρ = δ + 1. We will build a new real in
Lα+δ+2. Consider M := De f Lα+δ(γ ∪ {γ}). By a Skolem hull argument M ≺ Lα+δ.
By Condensation it is isomorphic to some Lξ through the Mostowski collapse,
with ξ ⩽ α + δ. Clearly γ ∪ {γ} ⊆ Lξ , and also α ∈ M, since it is definable as
the <-least ordinal starting a β-gap of length ⩾ ρ above γ. Let ᾱ be the collapse
of α. It’s greater than γ (since the ordinals ⩽ γ collapse to themselves), and
starts a β-gap of length ⩾ ρ, so ᾱ ⩾ α by definition of α, and thus ᾱ = α. Since
Lα+δ |= ∀δ′ < δ(α + δ′ exists), we have ξ = α + δ. Thus Lα+δ is pointwise definable
from γ ∪ {γ}, which is injectible into Pγ′

(ω) for a certain γ′ < β because of the
theory Lα satisfies, so again by Lemma 1.39 we are done.

Now suppose that ρ is a limit. We construct a β-analytical copy Eα+ρ ∈ Lα+ρ+1.
We choose a finite number of sentences that guarantee every well-founded model
of them (containing γ) to be isomorphic to Lα+ρ. These sentences are extensional-
ity, V = L and the sentence

∃µ[∀x(x ∈ P β(ω) → x ∈ Lµ)

∧ ∀ν ∈ µ∃x ∈ P β(ω)(x ∈ Lµ \ Lν)

∧ ∀ν ∈ ρ(µ + ν exists)]

As in Lemma 1.19, we take the Skolem hull of γ ∪ {γ} under the Skolem func-
tions of these sentences in Lα+ρ, which is isomorphic to Lα+ρ, belongs to Lα+ρ+1,
and whose construction can be coded by members of Pγ ′(ω) for a certain γ′ < β

(into which γ ∪ {γ} is injectible).

Notice γ < ωL
β is trivially required since otherwise there are no starts of β-gaps

above it. And we need β ⩽ γ to ensure the definition of α in the successor case
and the last sentence in the limit case can be formulated.

Corollary 1.49. If β < ωL
β , then for every ρ ∈ ωL

β there are ωL
β gaps of length ρ.

Lemma 1.50. (Generalization of 4.7 in [18]) If α starts a β-gap of length > 1, the
beginnings of β-gaps of length 1 are cofinal in α, provided one of these beginnings is ⩾ β.

Proof. Otherwise, consider their supremum S < α. Suppose there’s an S ⩽ α′ < α

beginning a β-gap of length > 1. Then by 1.47, after α′ and before α there’s a
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β-gap of length 1, contradicting S being the supremum. So there are no β-gaps
above (or equal to) S and below α.

Then by an argument as that of Theorem 1.47, Lα is pointwise definable from
LS ∪ {LS} (because it’s the first β-gap level higher than S), which is injectible into
a certain Pγ′

(ω), so as before by Lemma 1.39 α starts a β-gap of length 1.

Theorem 1.51. (Generalization of 4.8 in [18]) If α starts a β-gap of length ρ < α,
then for each σ < ρ, sup{δ < α | δ starts a β-gap of length σ} = α,
provided any one of these beginnings is ⩾ β.

Proof. By the above lemma this is true for σ = 1. Consider now only these begin-
nings of β-gaps of length 1 which are above ρ. For each σ < ρ, by Theorem 1.48
the first β-gap of length ⩾ σ starting higher than any one of the given β-gaps of
length 1 is of length σ. So between every β-gap of length 1 and α there’s a β-gap
of length σ.

This result exposes extreme regularity in the lengths of gaps, and the slow
hierarchical building of them: a gap of a given length can only appear as the limit
of many other gaps of smaller length. For instance, a gap of length 3 is the limit
of gaps of length 2, and thus the limit of limits of gaps of length 1.

1.6 An application

Consider the following Friedman-Tomasik theorem of [23].

Theorem 1.52. (II.7.3A-3E in [6]) There are ωL
1 theories of sets Lα.

That is, if Σ = {{ϕ | Lα |= ϕ}}α∈ON , then L |= |Σ| = ℵ1. Even if V ̸= L, this
will of course yield an actual bijection between Σ and ωL

1 .
This result is usually proved by a diagonalization argument, but thanks to the

link between gap ordinals and pointwise definability explored earlier, phrasing it
in terms of gaps will make the generalization easier.

Proof. Since Σ can be injected into P(ω) inside L (by using Gödel numbers), its
cardinality in L is ⩽ ℵ1. On the other hand, there are ωL

1 non-1-gap ordinals
(they are cofinal in ωL

1 ). By Lemma 1.14, their corresponding levels are pointwise
definable, and thus have no proper elementary submodels. Indeed, if M ≺ Lα, and
ϕ defines x ∈ Lα without parameters over Lα, then it also does for M. Otherwise
it would define a different y ∈ M, and thus M and Lα would disagree about ϕ(y).
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But then any two of these levels have different theories, since otherwise they’d
also be isomorphic (by identifying elements with the same definition). And that’s
not possible since then one would be a proper elementary submodel of the other.
So we’ve also seen the cardinality of Σ in L is ⩾ ℵ1.

Definition 1.53. We call the theory of a model of the form

⟨Lα,∈, a⟩a∈P β(ω)∩Lα

a (β + 1)st-order analysis theory.

The a are of course used as constants, and thus the language has cardinality ℵL
β.

Theorem 1.54. (Generalization of 1.52)
There are ωL

β+1 (β + 1)st-order analysis theories of sets Lα.

Proof. There are ⩽ ωL
β+1 such theories, again by using Gödel numbers and the

cardinality of the language. On the other hand, there are ωL
β+1 non-(β+ 1)-gap or-

dinals above ωL
β . For every such α ⩾ ωL

β , by Lemma 1.38, Lα is pointwise definable
from P β(ω)Lα = P β(ω)L, and thus have no proper elementary submodels con-
taining P β(ω)L (by an argument as above). So they are pairwise non-isomorphic
as before, and have different (β + 1)st-order analysis theories.

Given the tight link between gaps and fundamental model-theoretic concepts
like Condensation and pointwise definability, presumably many other results in
constructibility can be meaningfully rephrased in terms of gaps. In that direction,
Marek and Srebrny observe that appropriate generalizations of the notion of a gap
will correspond to a diverse range of set theories, including statements about the
existence of certain (small) ordinals or cardinals.



Chapter 2

Pathologies in L

Unlike other objects of Set Theory, the reals aren’t well-behaved in L. We’ll see
some of the model’s properties have pathological consequences for the structure
of the reals. These might seem reasonable arguments against the adoption of the
Axiom of Constructibility V = L, or even against CH.

2.1 A well-ordering of the reals

It proves hard to imagine how a well-ordering of the reals (or of any set of un-
countable cardinality) might look like. This is nothing but another instance of our
intuitions about continuous and discrete objects colliding. The continuity of the
real line, that is, its dense order and closure under converging infinite sequences,
is the very reason why it seems such a natural and necessary object in the first
place. So it is not surprising that the idea of an order on it with radically different
properties should seem alien.

Then of course, it does seem plausible that any set of discrete objects will be
easily well-orderable: we just choose an object at each step for a transfinite amount
of times. And (without delving into serious philosophical dispute) transfinite iter-
ation is usually regarded as a more intuitively plausible generalization, a natural
extension of the obvious induction and recursion principles. Since thanks to the
foundational power of Set Theory all mathematical objects are sets, they will all be
plausibly well-orderable. If this apparent plausibility doesn’t transfer that easily
to the reals it is precisely because we have a hard time picturing them as a discrete
set (that is, because of the tension between their intensional nature and extensional
underpinning mentioned earlier).

The previous paragraph gives just a sketch of why the Axiom of Choice implies
the Well-ordering theorem (every set is well-orderable). The apparent plausibility
mismatch between these two principles is captured in Jerry Bona’s famous quote
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[13]:
"The Axiom of Choice is obviously true,
the Well-ordering theorem is obviously false;
and who can tell about Zorn’s Lemma?"

The Axiom of Choice is not widely accepted only because of its plausibil-
ity. Within a set theoretic framework, the Axiom of Choice is required for many
fundamental results and constructions, especially regarding other mathematical
branches like topology and geometry, more closely related to our intuitive under-
standing of space and the continuum.

So Choice is ever present, and thus in any of the many conceivable different
universes in which it holds a well-ordering of the reals will actually exist, our
ability to picture it notwithstanding. Whether this well-ordering is definable by a
formula, though, and the complexity of this definition, might vary across models
of ZFC (that is, across extensions of the theory ZFC), as we’ll see in the next
chapter.

But for now, it is enough to notice that inside L (that is, under the assumption
V = L) there is such a formula, thanks to its definable global well-order. And
in fact, keeping track of its detailed structure as in the reference for Theorem 1.4,
we see that the well-ordering of the reals induced by the restriction of the global
well-ordering of L has complexity both Σ1

2 and Π1
2, and thus ∆1

2, in the analytical
hierarchy. That is, with at most two alternate quantifiers, which quantify only over
the reals (thus yielding a sentence of second-order arithmetic).

2.2 Non-measurability and non-Baireness

An argument (probably originally due to Sierpiński) centered around Fubini’s
theorem from mathematical analysis shows that any well-order of the reals is a
subset of R2 that is not Lebesgue measurable.

Definition 2.1. A null subset of Rn is one with Lebesgue measure 0.
A co-null set is one with null complement.

Theorem 2.2. (Fubini’s Theorem for null sets) Suppose W ⊆ R2 is measurable, and
for x ∈ R let Wx = {y | (x, y) ∈ W}. Then W is null iff {x ∈ R | Wx is null in R} is
co-null in R.

Theorem 2.3. (1.2 in [5]) Any well-ordering of a non-null set of reals is not Lebesgue
measurable.
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Proof. Towards a contradiction, let λ be the least ordinal such that there is a non-
null S ⊆ R, and an enumeration ⟨rα | α < λ⟩ of S such that W = {(rα, rβ) | α < β <

λ} ⊆ R2 is measurable. Let Sα = {rβ | β < α} and Sα = {rβ | α < β}. Also, for
x ∈ R, r−1(x) is the α such that x = rα.

Let’s see S is measurable. Indeed, for almost all x ∈ S and almost all y ∈ S,
both Sr−1(x) and Sr−1(y) are measurable, because otherwise W wouldn’t be measur-
able. And since S = Sγ+1 ∪ Sα for any α ⩽ γ < λ, S must be measurable.

Now let’s find a γ < λ such that Sγ is non-null and measurable, and we will
be done by contradicting the minimality of λ.

Since for almost all y ∈ S Sr−1(y) is measurable, if there is no such Sγ then
almost all of them are null, and thus the measure of W is 0. But on the contrary,
for almost all x ∈ R, Sr−1(x) = S \ (Sr−1(x) ∪ {x}) has positive measure (since S is
not null, but almost all Sr−1(x) are), so W can’t have measure 0.

This will not be the only non-measurable set: in fact if one exists, then there are
22ℵ0 of them, which is of course the maximum amount. Indeed, since the Cantor
set (a null set of uncountable cardinality whose existence follows from ZFC) has
cardinality 2ℵ0 , and a subset of a null set is null, there will be at least 22ℵ0 different
null sets. But adding or subtracting a null set from a non-measurable set doesn’t
alter its non-measurability, so we’ll have 22ℵ0 non-measurable sets.

Both null and meagre sets are different (and incompatible) accounts of what
constitutes a small set of reals. They share a strong structural relationship, known
as the measure-category duality, that ensures most arguments are translatable
from one to the other. Indeed, by the Erdős-Sierpiński Duality Theorem, assum-
ing CH all arguments are translatable, thanks to an involution in R that swaps
null and meagre sets (in fact, assuming the weaker Martin’s Axiom suffices) (19 in
[21]). So of course we will have this duality in L.

But we don’t even need this assumption: we always have the category analogue
of Fubini’s Theorem, which is the Kuratowski-Ulam Theorem, and from that we
can reconstruct the argument for category.

Definition 2.4. A meagre subset of Rn is one which can be expressed as the countable
union of nowhere dense subsets. A co-meagre set is one with meagre complement.

Theorem 2.5. (Kuratowski-Ulam Theorem for meagre sets)
Suppose W ⊆ R2 has the Baire property, and for x ∈ R let Wx = {y | (x, y) ∈ W}.
Then W is meagre iff {x ∈ R | Wx is meagre in R} is co-meagre in R.
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Corollary 2.6. (1.2 in [5]) Any well-ordering of a non-meagre set of reals does not have
the Baire property.

Of course, the complexity of the set W in the proof of Theorem 2.3 is that of
the formula defining the well-order, so depending upon how easily definable it is
we’ll get simpler or more complex non-measurable and non-Baire sets of reals. In
L these sets are found at the ∆1

2 level, which is astoundingly low, lower than the
complexity of many sets found in everyday mathematical practice. So in accepting
V = L some very foundational and far reaching tools for analysis and algebra are
at risk of breaking down easily.

As an exemplification, the following sets are Π1
2-complete, and thus can’t have

lower complexity than ∆1
2 (37 in [12]):

{ f ∈ C([0, 1]) | f ′ is exhaustive}
{ f ∈ C([0, 1]) | f satisfies the Mean Value Theorem}
{K ⊆ R3 | K is compact and path connected}

2.3 Sierpiński and Luzin sets

It might not seem shocking that certain pathological properties can be derived
as in the previous section, since a formula well-ordering the universe can be con-
sidered very counter-intuitive, conflicting with the assumed vastness and richness
of the set theoretic universe. But now we present another odd result derived from
a much more modest claim, the Continuum Hypothesis.

CH is equivalent to every infinite subset of real numbers being equinumerous
either to the natural numbers or the whole of the real numbers. This assertion
seems way more plausible, and in fact the intuitive and intensional understanding
of the real line might favour it. After all, why should another cardinality exist in
between these? The natural numbers already serve as our archetype for a discrete
infinity, and the reals step in as that for a continuous, spatial one. If we take this
intuitive understanding of infinities at face value, and especially if we relate them
to their use in other mathematical fields, there would seem to be no practical need
for another cardinality. Of course, CH remains nonetheless undecided, thanks to
ZFC’s indeterminacy of the power set function. And in fact, as we will see, its CH
being true yields the following set.

Definition 2.7. A Sierpiński subset of R is an uncountable set whose intersection with
every null set is countable.

The oddness of this set originates now from a discrepancy between two notions
of size different to the previously mentioned: that between cardinality and mea-
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sure. The Sierpiński set is bijectable with the whole of the reals, and yet manages
to coincide with any one of all the null sets in only countably many points.

Of course, this is not trivial because uncountable null sets do exist, such as the
Cantor set. In fact, the Cantor set is itself an example of disagreement between
size notions (since it is big in cardinality yet null and meagre), and its existence
does follow from ZFC, so maybe sets showcasing these discrepancies are more
fundamental than they might seem. But the Sierpiński set does so in a different
way, involving the whole of R and its subsets, and maybe this difference proves
relevant.

Theorem 2.8. (Luzin, 4.3 in [23]) Assuming CH, a Sierpiński set exists.

Proof. Every null set is contained in a null Gδ set which is a countable intersection
of open sets. And since every Gδ can be coded by a subset of ω (consider the
endpoints of intervals), by CH we can enumerate in order-type ℵ1 all Gδ sets. For
every ordinal α < ℵ1 choose a real xα not in any one of the Gδ sets indexed by
δ < α, which is possible since their union is null (by being a countable union of
nulls), and thus not the whole of R. The uncountable set X of all these reals has
only countably many elements in each Gδ, and thus in each null set.

As in the previous section, a similar argument regarding the Baire property
instead of Lebesgue measurability shows that CH implies the existence of a Luzin
set, the analogue in category to the Sierpiński set.

Definition 2.9. A Luzin subset of R is an uncountable set whose intersection with every
meagre set is countable.

Corollary 2.10. Assuming CH, a Luzin set exists.

We’ve seen some examples of how adding axioms to ZFC restricting the rich-
ness and vastness of the universe can spawn sets with unexpected properties. ZFC
itself proves the existence of a Cantor set, and by assuming further CH (which par-
tially simplifies cardinal arithmetic) we get a Sierpiński set and a Luzin set. ZFC
itself also proves the existence of a non-measurable, non-Baire set, but the more
structural regularity there is in our universe (and the easier it is to define this
regularity), the lower its complexity.
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Chapter 3

Other inner models

Gödel’s strategy for constructing the smallest model of ZF was promptly ex-
tended to allow for models containing more sets and satisfying stronger theories.
This provided a rich spectrum of inner models with ever increasing complexity.
And analogously of different Axioms of Relative Constructibility with ever in-
creasing consistency strength.

Of course, all of these models could only be built inside an already existing set
theoretic universe, and so building them is usually tantamount to finding a smaller
universe with more regularity and less complexity than the one we started with.
Developments in the complementary direction had to wait for Cohen’s revolution-
ary technique of Forcing in the 60s, which through a far less direct construction
allowed for increasing the universe’s complexity. These two approaches thus pro-
vide thorough tools for the study of possible set theoretic universes.

But there’s another remarkable use for Inner Model Theory. The theories of
inner models present regularities which allow for finer analysis, elucidating many
otherwise intractable issues, in a way similar (but more complex) to L’s Fine Struc-
ture. So being able to conceptualize a model (of a certain strong theory) as actu-
ally an inner model of another, bigger universe will help answer some questions.
That’s why the search for canonical inner models of ever stronger large cardinal
axioms is a central program to modern set theory, which includes Woodin’s pro-
gram searching for Ultimate-L, a canonical inner model where a supercompact
cardinal exists [22] [26]. Gödel had already remarked upon the role such axioms
of infinity could play in future developments (§3 in [11]).

In this Chapter we only consider inner models of relatively low consistency
strength inside the large cardinal hierarchy of axioms, which can be built in a
straight forward way. We’ll now see there are two different manners of construct-
ing an inner model from a set or class by paralleling the construction of L.
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Definition 3.1.
D(B) is the set of all subsets of B definable with parameters in B.
That is, of all C ⊆ B such that, for a certain formula ϕ, C = {x ∈ B | B |= ϕ(x)}.

DA(B) is the set of all subsets of B definable in B with parameters, and additionally using
a predicate added to the language which is interpreted as A.
That is, ϕ can now include the predicate A(x), interpreted as x ∈ A.

Notice this definition is not equivalent to that of De f A(P) in Chapter 1. There
we were defining elements, and here subsets. So that De f A(P) ⊆ A, while
DA(B) ⊆ P(B). From it we can define the following hierarchies of relative con-
structibility:

Definition 3.2. For A a set (or also a proper class in the left column)

L0[A] = ∅
Lα+1[A] = DA(Lα[A])

Lγ[A] =
⋃

α<γ Lα[A] for limit γ

L[A] =
⋃

α Lα[A]

L0(A) = TC({A})
Lα+1(A) = D(Lα(A))

Lγ(A) =
⋃

α<γ Lα(A) for limit γ

L(A) =
⋃

α Lα(A)

That is, L(A) just adds all of the elements and information in A at the begin-
ning, while L[A] only uses A in every level for additional definability power, so
that maybe A ⊈ L[A]1. But both will always be an inner model of ZF by a proof
analogous to that of L (II.7.2B in [6], II.6.30 in [14]). L[A] is usually interpreted
model theoretically as the structure ⟨L[A],∈, A⟩, with the additional predicate
used in building it also present.

Notice in the case of L(A), the transitive closure is done on {A} to have A ∈
L(A). This ensures any definition carried out in L[A] can also be performed in
L(A) (by using the parameter A instead of the predicate A(x)), and so clearly
L[A] ⊆ L(A). Notice also that TC({A}) is not a set for A a proper class, and thus
the construction isn’t possible then.

In Inner Model Theory the mainly used construction is L[A], since its minimal
definability properties ensure it will be the smallest inner model satisfying a cer-
tain theory, unlike L(A). It also allows for a stronger analogue to L in results like
the following:

Theorem 3.3. (Generalized Condensation) (II.7.4A in [6]) If α is a limit ordinal, π

is the Mostowski collapse and X ≺1 Lα[A], then there is a unique β ⩽ α such that

π : ⟨X,∈⟩ ∼= ⟨Lβ[π(A)],∈⟩

So in particular if A is transitive, we recover regular Condensation.

1This does sometimes happen, for instance R ⊈ L[R] when a Cohen real over L exists [10].
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Theorem 3.4. (Generalized Partial GCH) (II.7.4C-E in [6])
If V = L[A] and A ⊆ κ+, then ∀λ ⩾ κ(2λ = λ+).

This last result is especially useful because it can be seen that every L[A] with
A a set is the same model as another L[A′] where A′ is a set of ordinals (see the
proof of 3.10.5 for an example).

We proceed to the motivation and description of concrete inner models.

3.1 L[#1]

Motivated by model-theoretic results by Ehrenfeucht and Mostowski [8], the
study of L-indiscernibles culminated in the isolation of 0#, a crucially canonical
object whose existence presents sweeping consequences for the set-theoretical uni-
verse. 0# is, broadly speaking, a set of formulas (coded as a real through Gödel
numbering) coding the theory of L. It of course doesn’t belong to L, and in fact
its existence (which is independent of ZFC) entails V to be vastly larger than L in
many relevant aspects, and conversely its non-existence entails V and L to be way
more similar.

An indepth exposition of L-indiscernibles and 0# can be found in V of [6] or
9 of [11]. We won’t summarize here that exposition due to lack of space, but the
three following results might exemplify the role of 0#:

Lemma 3.5. (9.17 in [11]) If 0# exists,
then |P(x)L| = |x| for every infinite x ∈ L, so in particular P(ω)L is countable.

Theorem 3.6. (Kunen, see V.4 in [6])
0# exists iff there is a nontrivial elementary embedding L ≺ L

Theorem 3.7. (Jensen’s Covering Theorem, V.5.1 in [6]) 0# does not exist iff
for any uncountable subset X ⊆ ON, there is a Y ∈ L with Y ⊇ X and |Y| = |X|

This treatment can readily be generalized to a study of L[x]-indiscernibles and
the set of formulas x#, for any set x (although results like the previous ones aren’t
completely translated). We can adjoin some of these sharps to L to obtain slightly
larger models, the first of which is L[0#]. These models will generally have a really
similar structure to L, as do all of the L[A] for A ⊆ ω.

The next model which presents a considerable step up is L[#1], the smallest
model closed under the sharps of its reals. It serves as a canonical framework of
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richer reals, and as we’ll see the higher complexity helps alleviate some patholo-
gies.

So we’ll be particularly interested in the sharps of reals. By defining x# as an
E-M set for L[x] (see §14 in [11]), "x# exists and x# = y" becomes a Π1

2 formula
without parameters, that is, of the form ∃z∀tϕ(x, y, z, t), where the quantifiers
range over real numbers (14.16 in [11]). Thanks to Shoenfield’s Lemma, these
sharps are absolute for inner models, in the following sense.

Lemma 3.8. (Shoenfield’s Absoluteness Lemma, [2])
Any two inner models agree on the truth of Π1

2 sentences.

Corollary 3.9. For x, y ∈ M, M |= "x# exists and x# = y" iff x# = y

We’re interested in studying the smallest inner model (and thus a model of the
form L[A]) closed under real sharps. That is, the smallest inner model satisfying
L[A] |= ∀x ⊆ ω(x# exists). As we’ll see, this model might or might not exist
depending on how many real sharps exist in our set theoretic universe.

But let us remark that the existence of a measurable cardinal (a relatively mod-
est large cardinal) does imply the existence of all real sharps [11], and so under
that assumption, or in any model with a measurable cardinal, the construction
presented below will yield the desired model.

Consider first the sharp function on the reals, F1.2 That is,

F1 : P(ω) → P(ω)

x 7→ x#

This is a partial function on the reals, and is only a total function when all of the
sharps of reals exist. Now, the obvious construction with our previous definition
of L[A] won’t work, because L[F1] = L. Indeed, DF1(Lα[F1]) = D(Lα[F1]), since

Lα[F1] |= a ∈ F1 iff Lα[F1] |= a = ⟨x, y⟩ ∧ x# = y

which was already a definable predicate as explained above.
On the other hand, L(F1) contains all of the sharps of reals existing in our

universe, and thus might not be the smallest model closed under real sharps as
required3.

So consider instead, as in [1] (but with different notation),
2The 1 stands for the reals being objects of class one [7], as usually we talk about the naturals being

class zero, the reals class one, etc.
3This does indeed sometimes happen. If c is a Cohen real over L(F1) ([10]), in L(F1)[c] still every

real has a sharp, but also in L(F1)[c] the smallest model closed under real sharps doesn’t contain c.
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#1 = {⟨x, n⟩ ∈ P(ω)× ω | x# exists ∧ n ∈ x#}

Then L[#1] is the appropriate model, because we’ve made the information en-
coded in the sharps available to use for successive definitions.

L[F1] could also work by changing its definition slightly. As in [7], define L̂[F1]

by changing the second clause in Definition 3.2 to

L̂α+1[F1] = D(L̂α[F1] ∪ {x# = F1(x) | x ∈ L̂α[#1] ∩ Dom(F1)})

That is, at each stage we explicitly add the sharps of all of the already con-
structed reals (something L[#1] already did automatically).

We present some useful basic facts about these models. The above results 3.3
and 3.4 are especially useful when A doesn’t have good definability properties.
But in the present case the definition of #1 already provides a direct proof of
Condensation.

Lemma 3.10. 1. L̂[F1] = L[#1]

2. If M is an inner model satisfying M |= ∀x ⊆ ω(x# exists), then L[#1] ⊆ M

3. L[#1]
L[#1] = L[#1]

4. Condensation is valid for L[#1]

5. L[#1] |= GCH

6. There’s a global well-ordering of L[#1] ∆1
3-definable in L[#1]

7. For a ⊆ ω, if a# ∈ L[#1] then a ∈ L[#1]

8. L(F1) = L(#1)

9. If M is an inner model satisfying ∀x ⊆ ω(x# exists → x# ∈ M), then L(#1) ⊆ M

Proof. 1. If a ∈ Lα[#1] ∩ P(ω), and a# exists, then a# = {n ∈ Lα[#1] | Lα[#1] |=
⟨a, n⟩ ∈ #1} ∈ Lα+1[#1]. So by induction on α, L̂[F1] ⊆ L[#1]. For the other
inclusion, suppose Lα[#1] ∈ L̂[F1] and a ∈ Lα+1[#1]. Then

a = {x ∈ Lα[#1] | Lα[#1] |= ϕ(ȳ, #1, x)} =

= {x ∈ L̂[F1] | L̂[F1] |= (Lα[#1] |= ϕ(ȳ, #1, x))}

Since #1 ∩ Lα[#1] ∈ L̂[F1], and given the absoluteness of the definition of
Lα[#1] and the satisfiability predicate, by Comprehension this set belongs to
L̂[F1].
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2. We see by induction on α that Lα[#1]
M = Lα[#1]. If it’s true for α and a ∈

Lα+1[#1], then a = {x ∈ Lα[#1]
M | Lα[#1]

M |= ϕ(ȳ, #1, x)}, so

M |= a = {x ∈ Lα[#1] | Lα[#1] |= ϕ(ȳ, #1, x)}

because #1 ∩ Lα[#1]
M ∈ M, so a ∈ Lα[#1]

M.

3. One inclusion is immediate, for the other we just use the absoluteness with
respect to inner models of the satisfiability relation and of the definition
of #1. This is assured by the definition of #1 being Π1

2, and Shoenfield’s
Absoluteness Lemma.
In fact, when L[#1] is indeed closed under real sharps, 3 is also directly
implied by 2, since L[#1]

L[#1] is also an inner model of V.

4. By recreating the original proof of Condensation (as in our source II.5.2 of
[6]), the only crucial change is noticing there is a Σ0 formula ϕ such that
v = Lγ[#1] ↔ ∃zϕ(z, v, γ). Indeed, the definition of the hierarchy is obtained
by just implementing that of #1, and all quantification can still be bounded
by a certain z since we’re only dealing with members of P(ω) and their
collections.

5. Just as in the source for Lemma 1.6, the hierarchy satisfying Condensation
implies it proves GCH. Equivalently, it is because (as for v = Lγ[#1] in 4) we
can write the equivalent axiom of relative constructibility V = L[#1] and that
proof of GCH goes through (even if the complexity has been raised as we’ll
see next).

Alternatively, and as an illustrative example, by Theorem 3.4 we only needed
to see #1 can be coded as a subset of ω1. Indeed, given an inclusion i of ω

into ω1 and a pairing function J1 for ω1 (both constructible), we can define
A = {J1(x, i(n)) | x# exists ∧ n ∈ x#}.

6. Exactly as for L, with #1 now an additional symbol of the language. Again,
by keeping track of the complexity through the construction, we can see the
definition of #1 being Π1

2 now makes the well-ordering ∆1
3 (check the sources

for Theorem 1.4).
The well-ordering in Lα[#1] can again be made definable over Lα[#1] by the
construction of Boolos.

7. If G is a Gödel numbering, a = {n ∈ ω | G(⌊n⌋ ∈ a) ∈ a#}, where ⌊n⌋ is the
term without free variables representing the numeral n, and thus ⌊n⌋ ∈ a is
a sentence of L[a]. Since G and ⌊ ⌋ are definable functions, a ∈ L[#1].
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8. We just need to show each object belongs to the other inner model. We build
over the ω2 levels to ensure all necessary sets are present:

#1 = {a ∈ Lω2(F1) | Lω2(F1) |= a = ⟨x, n⟩ ∧ x ∈Dom(F1) ∧ n ∈ F1(x)} ∈ L(F1)

F1 = {a ∈ Lω2(#1) | Lω2(#1) |=
a = ⟨x, x′⟩ ∧ ∀n ∈ ω(n ∈ x′ ↔ ⟨x, n⟩ ∈ #1) ∧ x′ ̸= ∅} ∈ L(#1)

9. Since M contains all of the real sharps, and is a transitive model of ZF, by
Replacement TC({#1}) ∈ M. By the absoluteness of the D function on sets
and the definition of #1, and by induction on α, Lα(#1)

M = Lα(#1).

Another interpretation of L[#1]
L[#1] = L[#1] is that, given that there exist enough

real sharps for L[#1] to be closed under them, the model will remain the same no
matter how many more real sharps actually do exist. So we might as well study it
with the assumption that all real sharps exist.

An interesting question is how many (and which) real sharps actually have to
exist for L[#1] to be closed under them. This is equivalent to asking how many
reals are in L[#1] when it’s thus closed, and that’s equivalent to determining ω

L[#1]
1 ,

since by the GCH |P(ω)|L[#1] = (2ℵ0)L[#1] = ℵL[#1]
1 . This will of course be bound by

ℵL
1 ⩽ ℵL[#1]

1 ⩽ ℵ1.
Now, if there are enough real sharps for L[#1] to be closed under them, then

since L[#1]
L[#1] = L[#1] it is a model for ℵL[#1]

1 = ℵ1, so this equality can’t be refuted
in ZFC + ∀x ⊆ ω(x# exists).

But we can say more: it is independent of ZFC+∀x ⊆ ω(x# exists). Indeed, we
can construct a forcing extension satisfying ℵL[#1]

1 < ℵ1. Now, in a universe with an
unbounded class of measurable cardinals (and so assuming the consistency of this
statement) necessarily every sharp exists [11]. Without delving into the complex
technique of Forcing, suffice it to say that then we can apply Forcing to collapse
ℵL[#1]

1 to a countable ordinal, while maintaining the existence of the unbounded
class of measurables (since the Forcing will only alter an initial segment of the
ordinals), and thus the existence of every sharp.

Adding to L an amount of sharps smaller than ℵL[#1]
1 (let alone ℵL

1 ) will clearly
not suffice to close it under real sharps. But notice why this happens: adding for
instance all of the successive 0#n doesn’t suffice, since then we’d be able to code
all of these sharps in N = {⟨n, m⟩ ∈ ω × ω |m ∈ 0#n}, and the model could be
expressed as L[N]. Since L[#1] knows N to be countable, L[N] would too if it were
closed under real sharps (since it would contain L[#1]). But then it would know N
is (encodable in) a real, and N# /∈ L[N].
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3.2 L[#]

We’ve considered the previous model because our main focus is on the reals,
but as seen in Chapter 1, we’re really studying the power set operation, and not
only the properties of P(ω) are relevant to inner models, but also those of Pγ(ω)

(or equivalently P(κ) for other cardinals). In order for these to get the same
treatment, it might seem arbitrary for the sharps to be restricted to the reals (sets
of natural numbers), and thus we also want to consider the whole sharp function
on sets of arbitrary ordinals:

F : P(ON) → P(ON)

x 7→ x#

Notice the image of the function is no longer contained in P(ω) (or any P(κ))
if enough sharps exist, since ever more parameters will be needed in the resulting
theory of L[A], and so the true sentences will have to be codified by a bigger
cardinal.

As before, we’ll have to write this as a relation for it to add definability power.

# = {⟨x, α⟩ ∈ P(ON)× ON | x# exists ∧ α ∈ x#}

This relation might now be a proper class, just like F.
As mentioned after 3.4, every sharp of a set is actually the sharp of a set of

ordinals, and so every sharp of a set will be in the image of F. By the same reason,
L[#] will be closed under all sharps.

As before, maybe not all existing sharps are needed to close L[#] under them,
and so maybe # ∩ L[#] ⊊ #. For this reason, the following function and relation
defined by recursion, as presented in [25], are even more natural:

F′ : ON → P(ON)

α 7→ (F′ ↾ α)#

#′ = {⟨α, β⟩ ∈ ON × ON | (#′ ↾ α)# exists ∧ β ∈ (#′ ↾ α)#}

That is, we’re not just taking the sharps of ordinals: we transfinitely iterate the
sharp function, starting from 0. At each stage, we take the sharp of everything
coming before, so that for instance F′(ω) = {0#, 0##, . . .}#. This is the sequence of
the set theoretical objects called mice, which play a crucial role in modern Inner
Model and Core Model Theory.

Of course, if not all sharps exist this function and relation will end at some
ordinal, and thus will be bounded and not total. Furthermore, Dom(F′) will be an
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ordinal (it will be the first α for which F′(α) doesn’t exist), since the existence of a
sharp implies the existence of all lower sharps.

As mentioned, this recursive definition is more natural because it does ensure
#′ ∩ L[#′] = #′. Indeed, any sharp arrived at by the function (through transfinite
iteration) will also be arrived at by L[#′], since it also provides transfinitely many
levels for definition.

Before proceeding, let us notice that these functions and relations are now Π2

instead of Π1
2, basically because the x of which we take the sharp can no longer be

bounded as a real.4

We present as before some basic facts about this model. Most are obtained by
reasoning analogous to that of the previous section, so we provide only the proofs
with non-trivial changes.

Lemma 3.11. 1. L[#] = L[#′]

2. If M is an inner model satisfying M |= ∀x(x# exists), then L[#] ⊆ M

3. L[#]L[#] = L[#]

4. Condensation is valid for L[#]

5. L[#] |= GCH

6. There’s a global well-ordering of L[#] ∆3-definable in L[#]

Proof. 3. Now we can’t use Shoenfield’s Absoluteness Lemma since the defini-
tion of # won’t necessarily be Π1

2 if enough sharps exist. But we can use the
other approach mentioned in 3.10.3:
When L[#] is indeed closed under all sharps, 3 is implied by 2, since L[#]L[#]

is an inner model of V. And even when it isn’t, since F′ will have a univocal
cut-off point α, we will have 2 for the formula "Dom(F′) = α" (using α as a
parameter), and this will also imply 3.

4More concretely, by going back to the proof of #1 being Π1
2 thanks to definition through E-M

sets (14.11, 14.16 in [11]), we only need to notice that:

1. the Gödel numbers can now be coded as members of Pγ(ω) for a certain γ depending on
the element x of which we take the sharp, and

2. the well-orderings (Ey) representing the order type of the set of indiscernibles will now pos-
sibly have arbitrarily high cardinality (this will be so when F′ is total), so we can’t assure
they’re coded by members of Pn(ω) for any n, and can only be bounded by an arbitrary set,
thus dropping the superscript in the complexity class.
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4. As before, but noticing now why all quantification can be bounded by a
certain z: because in the level Lγ[#] the highest sharp possibly appearing is
F′(γ), and so we’ll be dealing with members of at most Pγ′

(ω) for a certain
γ′, which can be bounded by a set.

5. Of course, Theorem 3.4 can no longer be used because we’re not assured the
relation will be coded as a subset of ω1 (or even of any cardinal). But the
usual proof through the formula V = L[#] still applies.

3.3 Gaps in inner models

The generalization of gap results for these two cases is immediate: all develop-
ments in Chapter 1 can be applied straight away to L[#1] and L[#]. This is because
they both satisfy all of the good properties needed as tools for the study of gaps:
mainly Condensation (and thus also GCH) and the global well-order (and thus
also AC).

As seen above, these are consequences of #1 and # being univocally definable
without parameters, so that we can write the axiom V = L[A] (or the formulas
v = Lγ[A]) just as in the case for L. This also ensures the absoluteness between
inner models of the notion of "being Lα[A]", and the validity of the Skolem hull
arguments used (as in 1.19).

So it seems like it is this definability what binds these models so close to L
regarding gaps. Even though the existence of sharps does provide richer real
numbers (or elements of Pγ(ω)), if they do exist they are nicely definable. And
this gives the inner models the regularity properties required.

As a more concrete exemplification, we can intuitively see why adding the
sharp relations won’t alter the gap structure. They will only contribute to the
hierarchy by adding a real’s sharp to the level immediately after that real appears
(as especially elucidated by the definition of the first model as L̂[F1]). But this will
not stop any gap from appearing. Indeed, if a sharp is added by the function at a
level, then the previous level added a real. And since successor levels can’t start
gaps, this means that level wouldn’t be a gap level anyway.

What ensures the results provable is both the expressibility power of the reals
in the model on the one hand, and the regularity properties of the model on the
other. For inner models bigger than L, the expressibility required will never fail.
Indeed, the definability power over the levels of the model will be equal or greater
(augmented by a predicate), so we can always codify information in the reals as
before. So only the regularity properties can fail.
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It is therefore natural to wonder when they fail. That is, when aren’t the levels
of the hierarchy so neatly definable? Or how big must the model be for, even more
strongly, Condensation or GCH to fail?

Apparently not very big: as exposed in [25], an inner model with an ω1-
Erdős Cardinal won’t satisfy Condensation. The existence of these cardinals is
just slightly stronger than ∀x(x# exists), and weaker than the existence of a Ram-
sey cardinal, so many inner models do satisfy it, just above the two we’ve studied.

For instance, since the existence of a measurable cardinal is even stronger, the
minimal model L[U] for a measurable cardinal doesn’t satisfy Condensation, so
the gap results won’t be generally applicable (although it does satisfy GCH below
its measurable cardinal, and thus weaker results there might be possible [20]).

Another result of [25] is even more interesting for our purposes: a model
satisfying GCH is equivalent to another property essential for our study of gaps.

Definition 3.12. (Acceptability) For A ⊆ ON, we say the model L[A] is acceptable if,
whenever B ∈ DA(Lα[A]) ∩ P(ρ) and B /∈ Lα[A],
we have ∃F ∈ Lα+1(F : ρ → Lα[A] is an onto function)

Theorem 3.13. For A ⊆ ON, L[A] is acceptable iff L[A] |= GCH

Notice acceptability is very reminiscent of our notion of β-analytical copies,
and the isomorphisms witnessing them. Acceptability states that whenever a new
subset of ρ appears in a level (analogously, when α is a gap of a certain order) then
this level knows the previous level to be injectible into ρ (that is, of cardinality at
most that of ρ). The definition doesn’t require this injection to be an isomorphism,
as was our case. But of course, if acceptability fails, then the stronger theorem by
Boolos demanding it be an isomorphism (our Lemma 1.19) will also fail. And so
we are left with no apparent way of proving the start of a gap must be a limit.
This completely disrupts the gap regularity we had found in Chapter 1.

So a failure of GCH makes the study of gaps as we know it impossible. As
seen above, this can only happen if Condensation fails. And as mentioned before,
even if only Condensation fails, results as basic as the existence of arbitrarily big
gaps below a cardinal (our Theorem 1.9) would need a completely different proof,
if one does exist.

This is a general pattern which also affects deeper results about inner mod-
els by Jensen. In the words of Welch, without some form of Condensation, fine
structural analysis is hopeless.
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3.4 Pathologies in inner models

We see now how the two results of Chapter 2 generalize to these and other
inner models.

Since GCH still holds, a Sierpiński set and a Luzin set will of course still
exist in both L[#1] and L[#1]. But there are many inner models in which this
can fail: according to Theorem 3.4, choosing A containing uncountable ordinals
might suffice. But it still might be that L[A] possesses some good properties (like
definability in our case) that ensure GCH. And indeed, even big models like L[U]

satisfy CH.
In fact, ¬CH is a property that seems more natural for a Forcing extension

than an inner model (and indeed, Forcing extensions were invented for that in the
first place), since through Forcing we can collapse cardinals and thus alter cardinal
arithmetic. This is augmented by the fact that ZFC alone doesn’t even prove there
exists an inner model satisfying ¬CH, since this won’t happen if V = L, which
is consistent with ZFC. Furthermore, some of the central regularity properties
characteristic of many inner models imply CH, like for instance diamond (⋄).
Even more, AD being true in the universe implies all inner models of a certain
natural form satisfy CH [3].

Nonetheless, inner models falsifying CH are in general possible. For instance,
if CH is false in the universe, then not only is V trivially an inner model of ¬CH,
but also L(R).5

When CH thus fails, the proof provided won’t work, and thus it might be
a priori that a Sierpiński or Luzin set doesn’t exist. Still, to ensure it doesn’t, we
need strong large cardinal axioms. For instance, Martin’s Axiom for ℵ1 does imply
a Sierpiński set can’t exist (and thus also ¬CH) (V.6.29 in [14]), but this again is a
statement that holds in Forcing extensions.

All in all, the existence of such sets is pervasive amongst inner models. Given,
as remarked earlier, that its counter-intuitive features are not much greater to
those of a Cantor set (which exists in ZFC), this might lead us in the direction of
considering them not as pathological as they might have seemed.

Regarding non-measurable and non-Baire sets, both L[#1] and L[#] do of course
still have one: the well-ordering of their reals. What changes is the complexity of
their definition. This change is only possible because there’s not a single formula
univocally defining a well-ordering of the reals in the theory ZFC (that is, in every
model of ZFC).

5Or more rigorously, of a formulation of ¬CH which employs subsets of reals instead of cardinal
arithmetic, since AC might fail in L(R) and thus we can’t talk about (2ℵ0 )L(R).
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As seen above, in L[#1] these sets will be at most ∆1
3 definable, while in L[#]

we can only assure they are ∆3. This difference is very relevant. A ∆1
3 set is still

a pretty natural construction in second-order arithmetic, and thus the situation
is just marginally less pathological than that of L. A ∆3 set on the other hand
possibly can’t be defined in any arithmetic, and indeed its quantifications might
range over arbitrarily big ordinals. This is thus a construction involving the full
vastness of the set theoretic universe.

Of course, this a priori doesn’t exclude the possibility that some well-order
on the reals, defined in a way different from the usual proof, does have lower
complexity, let alone any non-mesurable or non-Baire set whatsoever.

But for the case of the well-order we do have relevant limitative results, which
furthermore are related to the structure of the models (the complexity of the well-
orderings of the reals is an important issue in Descriptive Set Theory, and much
intersected with Inner Model Theory). The first of them is the following:

Theorem 3.14. (Mansfield, 25.39 in [9]) If for a certain A there is a Σ1
2(A) well-

ordering of the reals, then every real is constructible from A, that is, belongs to L[A].

This implies that the ∆1
2 well-ordering of the reals is only present in L. In fact,

this complexity is only possible because RL itself is ∆1
2 in L. As we’ll see shortly,

this is a repeating pattern: in many inner models the complexity of the well-
ordering is exactly that of the set of reals itself. So in a sense it is the complexity
of R itself what keeps the well-ordering (and thus the non-measurable set) from
being too simple.

This phenomenon is due to these inner models being canonical, in the sense
that they are definable without parameters, that is, M = {x | ϕ(x)} for ϕ without
parameters (for instance, ϕ(x) ≡ x ∈ L). This definition grants them a certain
locality: they can be built inside any model. This includes themselves, and so they
can reconstruct their building from the inside, yielding a well-order. That’s why
the well-order will have the same complexity as the constructed set itself: because
the construction of the set automatically yields a well-order.

As an application of Mansfield’s result, the existence of a measurable cardinal
implies that there is no ∆1

2 well-ordering. But the canonical minimal model L[U]

for a measurable cardinal does have a well-ordering of its reals of complexity
∆1

3. In a similar spirit, if a model contains a Woodin cardinal (a relatively strong
large cardinal axiom), then its R can’t be ∆1

3 definable, and so neither its well-
order. By adding further Woodin cardinals we keep rising this complexity, until at
infinitely many Woodin cardinals there is no projective well-ordering of the reals
whatsoever.
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By considering non-canonical inner models we can observe different behaviour.
We can even consider a model where there is no well-ordering of the reals at all
(and so necessarily Choice fails).

For instance, assuming AD (incompatible with AC), not only does L(R) not
have a well-ordering of the reals (we have lost it when adding R at the beginning
of the construction): it doesn’t have any non-measurable sets at all. This model
was brought into the spotlight because Kechris showed that, under the assumption
of a supercompact cardinal, it satisfies AD and also Dependent Choice, a weaker
version of Choice. These are in some sense the best analytical properties we can
hope for in a model without non-mesurable sets, so as Jensen put it this is an
analyst’s dream.

But of course, on the other hand, a non-canonical model won’t have the mini-
mality properties to be as fundamentally relevant to the development of set theory
as the models we’ve mainly been dealing with.

In conclusion we see that, even if not all inner models do, canonical inner
models present a direct correlation between the complexity and vastness of the
model (and the consistency strength of its theory) and the definitional complexity
of its reals and their well-ordering.



Conclusions

The results of Chapter 1 demonstrate that a certain simpler form of fine struc-
tural analysis is also possible and fruitful for the Gödel hierarchy, and well suited
to prove some results about the power set operation. Generalized gaps can be ap-
plied in many more directions than the ones presented, and they can be a useful
tool for inner models.

The reals, thanks to their multipurpose application in definitions (due to their
canonical definition), are deeply linked with the structure and construction of the
model they inhabit. More generally, the complexity of the power set function in
an inner model very accurately gauges the richness of said model.

In L the regularity is utmost and observable in any power set. Regarding L[#1]

and L[#], as much as sharps might present a richer paradigm for model theoretic
study, they’re not enough to disrupt the regularity, since they are still canonically
definable and can be used for coding just like any real. More generally, small
inner models seem mostly to present structural regularity almost as strong as that
of L. Although time hasn’t permitted, it would be an interesting line of research
whether the study of gaps in some weaker or more local form is possible in L[U],
which doesn’t satisfy Condensation or GCH everywhere.

The inner models most relevant to the whole enterprise of Set Theory are
canonical, and these present such regularities in some form even when big. So
we are faced with a trade-off between foundationally relevant canonicity on the
one hand, and analytic richness and intuitive behaviour on the other.

Regarding sets of reals, it is not clear at all that the existence of a Sierpiński set
or a Luzin set should be a relevant argument against CH. Conversely, it is very
desirable that non-measurable and non-Baire sets have high complexity, and we
need very complex inner model constructions to ensure that.

The model theoretic trade-off we are forced to face is a common situation in
foundational mathematics: we strive for a necessarily imperfect balance between
the formal rigor of mathematical systems and the content of our intuitive con-
cepts. The history of Logic in the last century demonstrates that only the dialogue
between these two forces, the use of both, can push human mathematics forward.
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