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Abstract 

Next-generation sequencing (NGS) has revolutionized biomedical sciences, 

especially in the area of cancer. It has nourished genomic research with extensive 

collections of sequenced genomes that are investigated to untangle the molecular 

bases of disease, as well as to identify potential targets for the design of new 

treatments. To exploit all this information, several initiatives have emerged 

worldwide, among which the Pan-Cancer project of the ICGC (International 

Cancer Genome Consortium) stands out. This project has jointly analyzed 

thousands of tumor genomes of different cancer types in order to elucidate the 

molecular bases of the origin and progression of cancer. To accomplish this task, 

new emerging technologies, including virtualization systems such as virtual 

machines or software containers, were used and had to be adapted to various 

computing centers. The portability of this system to the supercomputing 

infrastructure of the BSC (Barcelona Supercomputing Center) has been carried 

out during the first phase of the thesis. In parallel, other projects promote the 

application of genomics discoveries into the clinics. This is the case of MedPerCan, 

a national initiative to design a pilot project for the implementation of 

personalized medicine in oncology in Catalonia. In this context, we have centered 

our efforts on the methodological side, focusing on the detection and 

characterization of somatic variants in tumors. This step is a challenging action, 

due to the heterogeneity of the different methods, and an essential part, as it lays 

at the basis of all downstream analyses.  

On top of the methodological section of the thesis, we got into the biological 

interpretation of the results to study the evolution of chronic lymphocytic 

leukemia (CLL) in a close collaboration with the group of Dr. Elías Campo from the 

Hospital Clínic/IDIBAPS. In the first study, we have focused on the Richter 

transformation (RT), a transformation of CLL into a high-grade lymphoma that 
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leads to a very poor prognosis and with unmet clinical needs. We found that RT 

has greater genomic, epigenomic and transcriptomic complexity than CLL. Its 

genome may reflect the imprint of therapies that the patients received prior to 

RT, indicating the presence of cells exposed to these mutagenic treatments which 

later expand giving rise to the clinical manifestation of the disease. Multiple NGS-

based techniques, including whole-genome sequencing and single-cell DNA and 

RNA sequencing, among others, confirmed the pre-existence of cells with the RT 

characteristics years before their manifestation, up to the time of CLL diagnosis. 

The transcriptomic profile of RT is remarkably different from that of CLL. Of 

particular importance is the overexpression of the OXPHOS pathway, which could 

be used as a therapeutic vulnerability. Finally, in a second study, the analysis of a 

case of CLL in a young adult, based on whole genome and single-cell sequencing 

at different times of the disease, revealed that the founder clone of CLL did not 

present any somatic driver mutations and was characterized by germline variants 

in ATM, suggesting its role in the origin of the disease, and highlighting the 

possible contribution of germline variants or other non-genetic mechanisms in 

the initiation of CLL. 
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1.1 Thesis trajectory 

I would like to start by summarizing the context in which I started this thesis 

and the trajectory that we followed. 

My first contact with genomic research was back in 2011, when the BSC (and 

myself) participated in the CLLGenome project, which was part of the 

International Cancer Genome Consortium (ICGC), an international initiative that 

coordinated worldwide efforts focused on the study of the genomic basis of 

cancer. There, we analyzed more than 500 genomes of chronic lymphocytic 

leukemia (CLL) and identified several biomarkers associated with the offset and 

progression of this tumor (Puente et al., 2011, 2015; Quesada et al., 2012). My 

role was to manage and prepare the data for their analyses and to execute them 

in high-performance computing (HPC). Even though my contribution was purely 

technical, it gave me the opportunity to hear about the first concepts of next-

generation sequencing (NGS) analysis, and to foresee the giant wave of genomic 

data that was coming in the field, together with their computational demands. 

Later on, as a natural evolution of these activities, the ICGC launched a new 

worldwide initiative called Pan-Cancer Analysis of Whole Genomes (PCAWG), 

where more 2,600 normal-tumor genome pairs, covering 38 cancer types, were 

analyzed to further elucidate the origin and evolution of cancer (Campbell et al., 

2020). The BSC was one of the main data centers of the project, stored around 

1PB of data, and performed the analysis of genomic sequences for the search of 

cancer-related mutations. Within this project, I dealt with the underlying 

challenges of large-scale genomic projects, where portability and reproducibility 

are fundamental to carry out distributed efforts among different data centers. 

Virtualization approaches were starting to gain attention within the field and the 

use of virtual machines, followed by docker containers, was mandatory to 
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guarantee these requirements. Data storage and management was a challenge 

for the project, but, above all, the biggest obstacle for our center was the use of 

those emerging technologies, which had to be accommodated in our (almost 

pure) HPC center at the time. 

Next, my contribution to other projects addressing the generation of 

computational environments for the analysis and management of cancer genome 

data, such as MedPerCan or EUCANCan, gave me a deeper understanding of the 

methodologies that are used in cancer genomics, which I had previously been 

executing for many years. Within the MedPerCan project, a national initiative 

from the Pla de recerca i innovació from the Generalitat de Catalunya, we 

implemented a pilot circuit among sequencing centers, data analysis centers, and 

hospitals, to evaluate the impact that genomic analysis can have into the clinics. 

In that context, I could further explore and evaluate the myriad of programs that 

can be used to analyze different kinds of NGS data, including the most challenging 

settings and scenarios in cancer genomics (e.g., the analysis of tumor-only 

samples that lack the corresponding germline sample, or the analysis of formalin-

fixed paraffin-embedded (FFPE) specimens, which are prone to present genomic 

artifacts). This is where I saw first-hand the vast heterogeneity of quality and 

scope that exists among the different analysis pipelines across research centers, 

which require harmonizing and benchmarking environments. In line with this, 

within the EUCANCan project, a federated network for the harmonized genomic 

and phenotypic data sharing in oncology, we are pursuing these concerning 

topics, defining strategies for the harmonization of variant calling results, and 

devoting efforts to create benchmarking protocols, as well as addressing the legal 

aspects of genomic and clinical data sharing. 

Finally, to fulfill this path, and to follow my growing interest in the biological 

aspects, I have had the opportunity to apply all these methodologies and 
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strategies to answer specific biomedical questions about CLL. Here, I was involved 

in the generation and also in the interpretation of the results, gaining deeper 

insights into the biological and medical aspects of this tumor. This activity has 

been done in a close collaboration with Dr. Elías Campo's group at IDIBAPS 

(Barcelona) and Hospital Clínic, where we have jointly analyzed the genomic and 

molecular basis of particular and aggressive forms of CLL progression to high-

grade lymphomas (Richter transformation). 

Overall, during these years, I have covered from the more technical aspects 

of the cancer genomics field, up to the real application of these methodologies to 

different studies, which, in turn, lead to new discoveries of the biology of CLL 

evolution and provided me with a wide and comprehensive view of modern 

genomic projects in Biomedicine. 

1.2 The biology of the genome and its relationship to disease 

The biomedical community has long been trying to decipher the molecular 

basis of disease, mapping the traits to genes, exploring what parts of the genome 

are controlling the molecular processes in our cells and, above all, elucidating the 

genetic factors that can have an effect on our health. 

1.2.1 Transformation of biomedical research 

Biomedicine plays a very important role in modern health care. The roadmap 

of this field, centered in the understanding of the genetic and biological basis of 

disease, has evolved over the years, pushed by new biological insights, as well as 

the emergence of new technologies and methodologies. These new protocols 

have shifted the standpoint of our research from physical traits to the genomic 
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alterations potentially responsible for the different phenotypes that we can 

observe.  

Traditionally, the starting point of human genetic studies was the physical 

manifestation of disease, followed by the identification and characterization of 

the causal cellular functions that pinpoint specific proteins which, in turn, had to 

be linked to candidate genes. The advent of new sequencing techniques and the 

increasing knowledge about our genome has allowed to simultaneously study the 

genome of hundreds and thousands of patients of a particular trait and identify 

alterations associated with it. With this new perspective, instead of tackling our 

biological questions from function to genetics, we can go the other way around: 

from genomics to function (Figure 1). After the sequencing process, we can detect 

the modifications in the genome and evaluate their recurrence and functional 

impact as a means to associate genomic genes or locus to molecular processes 

driving malignancy. 

 

Figure 1. Traditional approach (up) from phenotype to genotype, and current approach (down) from 

DNA to functional implications. 

This new approach comes with a remarkable change of methodologies, 

starting with the explosion of next-generation sequencing (NGS), and the 

consequent growth of biological data and bioinformatics applications. The 

extensive collection of tools is unceasingly increasing in order to analyze the vast 
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amounts of data generated. This data tsunami has shed light on how our genome 

works (C. A. Davis et al., 2018; Dunham et al., 2012), how specific alterations can 

be related to different kinds of diseases, and has also provided thousands of 

potential diagnosis and treatment markers. Altogether, it has fostered biomedical 

research, helping us understand the underlying mechanisms leading to disease, 

and favoring more accurate clinical decisions on diagnosis and treatment options, 

which corresponds to the ground of Personalized Medicine (PM). 

At the same time, massive genome sequencing analyses also open up the 

need for computational infrastructures capable of meeting demanding resources, 

both in terms of data management and storage and computational capacities able 

to run the analyses. These technical challenges and existing means to address 

them will be described in more detail in section 1.4.3 in the context of cancer 

research. 

1.2.2 Next-generation sequencing to study the genome 

After the tremendous effort of the sequencing of the first human genome 

(Craig Venter et al., 2001; Lander et al., 2001) genomic research has taken a new 

direction. This endeavor, which starts from the very basics of directly exploring 

the DNA, has further elucidated our knowledge, and led us towards a better 

understanding and treatment of disease. 

1.2.2.1 Data explosion 

The advent of high-throughput sequencing (Bentley et al., 2008), or next-

generation sequencing (NGS), has revolutionized genomic research, offering 

affordable sequencing both in terms of costs and time. It has improved up to the 

point where, since 2008, Moore’s Law stopped being an accurate predictor of 

sequencing costs (Figure 2). 
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Figure 2. Cost per genome data – August 2020 (genome.gov). The observed drop in 2008 coincides 

with the wider use of NGS, offering affordable prices and leading to the consequent genome data 

growth. 

NGS produces millions of DNA sequenced fragments, or reads, that can be 

computationally analyzed. Briefly, DNA samples are prepared as libraries of short 

fragments of 100-150 base pairs (bp) and sequenced. The output is a collection of 

short sequence reads (commonly known as “reads”), all mixed up and mapping at 

unknown genome locations. These sequences can be informatically assembled or 

aligned to an already known reference genome. Bioinformatics analysis usually 

proceeds with the identification of genomic variants that can be potentially 

related to mechanisms and processes behind the development of a disease. DNA 

sequencing techniques can be used to identify both germline and somatic 

variants, the latter using a normal reference sample to discern acquired mutations 

from the inherited genotype.  

There are different kinds of assays that can be done, which can give us 

different and complementary perspectives of the underlying mechanisms leading 

to malignancy. The three main layers that can be investigated based on NGS are: 

the genome, the transcriptome, and the epigenome. Genomic methods include 
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three main techniques that vary in terms of cost and scope. Targeted sequencing 

of specific locus is the cheapest approach, it can be used to deeply explore or 

validate small regions of the genome. Whole-exome sequencing (WES) captures 

all protein-coding regions of the genome. It is cost-effective and it has been widely 

used to identify genes and variants associated with diseases, especially in the 

context of Mendelian diseases. Nonetheless, it only allows us to explore 1-2% of 

our genome. Whole-genome sequencing (WGS) gives us the chance to go further 

and study the remaining 99% non-coding region of the genome and has the 

highest cost. WGS provides orders of magnitude more point mutations than 

exomes, greater resolution to detect copy number alterations (CNAs), and the 

ability to call structural variants (SVs). Thus, it increases the breadth and depth of 

our analyses but, at the same time, moving from WES to WGS datasets for large 

studies increases data sizes up to the petabyte scale. The next layer is the 

transcriptome analysis (RNA-seq, short for RNA sequencing), which covers gene 

expression profiling and discovery of non-coding RNA and novel transcribed 

sequences. Finally, epigenomic studies address the modifications that affect gene 

expression without altering the DNA sequence, focusing on chromatin changes, 

and using methods such as DNase-seq, ATAC-seq, DNA methylation and histone 

modification ChIP-seq. Depending on the scope and budget, projects might 

include one or several of these techniques. 

Faster and cheaper sequencing has fostered the generation of larger and 

larger collections of samples, growing at an unprecedented scale. This has defied 

bioinformaticians and computational scientists: the bottleneck is not on data 

generation anymore; it goes down to data processing. Consequently, strategies to 

analyze such data must adapt to new datasets that grow in size and number. 
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1.2.2.2 Bioinformatics applications, infrastructures, and data sharing 

High-throughput technologies generate vast amounts of raw data, which 

puts the need for computational strategies able to manage and analyze them on 

the spot. As previously explained, the sequencing process starts with the DNA 

preparation. Briefly, the DNA is fragmented, short oligonucleotides to ligate the 

ends of DNA fragments of interest to the primers are linked, and all together form 

the library of fragments, which have a specific fragment size, and that will be sent 

to sequencing. In the paired-end sequencing strategy, the most common 

nowadays, the parts targeted for sequencing are located at both ends of the 

insert, have a selected read length, and are sequenced in opposed orientation. 

The non-sequenced region between both paired reads corresponds to their inner 

distance (Figure 3).  

 

Figure 3. Sequencing and alignment concepts. View of an alignment of a pair-end read. 

The result of DNA sequencing is a set of short nucleotide sequences (from 

70bp to 150bp) called reads. They are encoded using the alphabet letters A, C, G, 

and T, to symbolize the nucleobases adenine, cytosine, guanine, and thymine, 

respectively. At this point, we are far beyond wet labs, and informaticians and 

computers come into place. The unsorted reads are stored in FASTQ formatted 
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files that are aligned against a reference genome to find the location of each 

sequence. The obtained alignments are usually stored on BAM formatted files, a 

zipped form of the SAM format (H. Li et al., 2009), or CRAM formatted files, which 

is an even more compressed format. The alignments, in turn, are the inputs of the 

variant calling phase, a crucial step that can affect all downstream analyses. 

Variant calling analysis provides a list of sequence variants with respect to a 

reference genome. This list can be used for multiple analysis, including complex 

algorithms to infer tumor evolution, mutational processes contributing to cancer, 

or the most direct question one might ask which is to determine the functional 

impact of genetic variants. In any case, the answer to the biological questions that 

we are trying to respond will greatly depend on the variant calling results. Thus, it 

is of the utmost importance that the detection of variants is as accurate as 

possible. 

Bioinformatics methodologies are becoming essential not only in biomedical 

research but also in clinical applications. Over the past decade, this field has 

evolved together with the advances and requirements of the NGS-era, where 

terabytes and petabytes of data pile up. New bioinformatics methodologies and 

protocols are essential to manage, analyze, and interpret the continuously 

growing biological data in modern biomedicine, ultimately enhancing the 

discovery of new drug targets, and improving patient care. In this sense, biological 

data has entered into the world of big data analytics (Schadt, 2012) (Figure 4). 

Tools, methods, and infrastructures are being developed and adapted to 

process voluminous datasets and extract their biologically relevant information. 

As we strengthen our comprehension of the relationship between alterations in 

our DNA and their functional and clinical impact, we can translate this knowledge 

into actionable clinical practice. In particular, we are now able to identify the 

specific variants in the genome of an individual, which is the ground of 
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personalized or precision medicine, where we can treat patients according to 

their particular alterations in their DNA. 

 

Figure 4. Life and biomedical sciences and the big data revolution. Image from (Schadt, 2012). 

As a community, we can advance research faster and gain statistical power 

by joining together the insights of individual genomes and external datasets. This 

prompts the necessity to share sensitive data, which heralds barriers at many 

different levels. Data must be organized, raw data and associated metadata must 

be easily linked, found, and made available to the researchers and clinicians. In 

other words, data producers should follow the FAIR principles (Findability, 

Accessibility, Interoperability, and Reusability) (Wilkinson et al., 2016) to 

contribute to the broader community scientific advances and maximize 

transparency. Openness does not only apply to data, but also the computer code 

used to extract the biologically meaningful information. In this sense, the software 

used to analyze the data, from single tools to complex workflows, should also be 
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open access (Jiménez et al., 2017). Data sharing can benefit scientific advances at 

many levels, but despite encouraging initiatives there is still some reluctancy. To 

move towards this direction and persuade data producers to make their data and 

code available, many funding agencies and journals are implementing policies to 

request openness of their work (Popkin, 2019). 

1.2.2.3 From bulk to single cell resolution 

We have learned a lot from next-generation sequencing studies that taught 

us the molecular mechanisms and genetic determinants of disease. In the case of 

cancer, not only particular alterations driving tumorigenesis have been identified, 

but it has also been seen that tumors are not formed by a monolithic population 

of malignant cells, but rather multiple subpopulations with particular attributes 

that, in turn, will define different patterns of evolution. This heterogeneity can be 

quite complex and is a major problem when imposing treatment pressures. 

Conventional bulk sequencing obscures the underlying genetic diversity 

within cell subpopulations, and signals may not be identified when they are 

analyzed altogether as a group. However, when they are analyzed individually, 

they can reveal the variation and differences on a cell-by-cell basis. An analogy 

often used to compare bulk and single-cell sequencing is that of a smoothie, 

where all ingredients are mingled, and a bowl of fruit, where each single fruit can 

be explored separately (Figure 5). Single-cell emerged as the perfect technology 

to dissect this heterogeneity and was selected Method of the Year 2013 (Eberwine 

et al., 2013; “Method of the Year 2013,” 2013). Sequencing of DNA and RNA of 

single cells is poised to expand our knowledge of biology and medicine as it 

becomes more potent and broadly available. Diseases show heterogeneity at the 

level of individual cells, and single-cell studies can untangle the differences among 

them and lead to a better understanding of why they might have different drug 
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responses. Single-cell DNA sequencing (scDNA-seq) can identify somatic 

mutations in the genomes of individual cancer cells, and this information can be 

used to assess the subclonal architecture of tumors and to trace the evolution and 

spread of the disease. At the RNA level, single-cell transcriptome profiling (single-

cell RNA sequencing, scRNA-seq) can determine phenotypic differences in cells 

that are biologically relevant, shedding light on the cellular differences with higher 

resolution. 

 

Figure 5. Bulk sequencing vs single-cell sequencing. Bulk sequencing resembles a smoothie, where all 

ingredients are mixed, the same way cells are mingled together in bulk sequencing. On the other 

hand, single-cell sequencing can provide information on each individual cell, differentiating each 

particular cell the same way one can characterize different fruits from a bowl. 

1.2.3 Genomic variation  

The human genome is made of 3.2 billion bases, and it is estimated that 99.9 

percent of them are identical across all human beings. The 0.1% difference is 

responsible for the diversity that makes us unique, and also for the differences 

among individuals from the point of view of their risk of developing diseases. 

1.2.3.1 Germline and somatic variants 

Genetic variants can either be inherited or generated and accumulated 

during our lifetime. Germline mutations, inherited from our parents, are present 
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in all the cells of our body, and they can be passed out to our children. On the 

other hand, somatic mutations are acquired later on during our life span and 

occur initially in a single cell. Thus, they only affect tissues derived from the 

mutated cell, and are not passed out to offspring. 

Everyone is born with a set of genetic variants which constitutes our 

genotype. Our genetic background can determine many things in our life, and 

together with environmental factors, can predispose us to different kinds of 

diseases (Figure 6). There are some variants that can help us prevent disease, 

while others can be more damaging. Some germline variants do not have strong 

effects but predispose to disease, which can appear if not-so-healthy choices are 

added on top. This is the case of complex diseases such as type 2 diabetes. On the 

other hand, other variants that have strong and deleterious effects will lead to 

monogenic or rare diseases, regardless of our lifestyle. During our life, new 

variants, called somatic, can also be acquired independently, due to intrinsic or 

extrinsic factors, such as tobacco or ultraviolet radiation. Many of them can have 

a neutral effect, but others can have a deleterious effect leading to the formation 

of a tumor. 

These three types of diseases require three different research approaches. 

Genome-wide association studies (GWAS) (Uffelmann et al., 2021) are used to 

identify single nucleotide polymorphisms (SNPs) that are enriched in a subgroup 

of individuals with a specific phenotype or disease. Large-scale sequencing 

projects, like the 1000 Genomes Project (1000G) (D. L. Altshuler et al., 2010; D. 

M. Altshuler et al., 2012; Auton et al., 2015; Sudmant et al., 2015), the GoNL 

project (Boomsma et al., 2014), or the UK10K project (Walter et al., 2015), 

generate haplotype maps of specific populations that are needed to achieve the 

statistical power required in this study of common complex diseases. The study of 

rare diseases has greatly benefited from NGS, especially the more cost-effective 
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whole-exome sequencing, that can be used to identify pathogenic variants in 

coding regions of the genome, which is where we expect high penetrant variants 

to occur. This complements current clinical protocols that, despite comprehensive 

clinical evaluation, are unable to find  a definitive diagnosis (Worthey et al., 2011), 

and can thus improve the diagnosis of this type of disease. Finally, the analysis of 

somatic variants, which is mainly related to cancer, has been one of the areas with 

more sequencing and analysis of genomes.  

 

Figure 6. Types of genetic variants: germline variants are inherited from our parents, while somatic 

variants are acquired during our life. Both types of DNA alterations can confer a higher risk to develop 

different kinds of diseases: from rare diseases to complex common diseases and cancer, where 

lifestyle and environmental factors can play an important role. 

In cancer research, these studies have demonstrated not only the role of 

DNA alterations in tumor formation and progression, but also their potential 

translation and actionability in the clinics. These discoveries led to a new paradigm 

where cancer researchers identify somatic genetic alterations, drugs targeting 

those cancer-specific alterations are developed, and patients are managed with 

treatments targeting their specific DNA alterations. There are many examples of 
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success; the first one was the use of imatinib to treat patients with chronic 

myeloid leukemia (CML) harboring a translocation that creates a BCR-ABL fusion 

kinase, followed by the use of epidermal growth factor receptor (EGFR) inhibitors 

for lung cancers bearing mutant EGFR, or BRAF inhibitors to treat melanomas 

bearing mutated BRAF, among others (Letai, 2017).  

Overall, with the new aforementioned perspective, diseases can be 

categorized and treated according to their genomic and molecular basis, in 

addition to their macroscopic symptoms that have been used over the years. 

1.2.3.2 Types of genomic variants 

Genomic alterations can affect the sequence and the structure of the 

genome in different ways, and are usually classified according to type of DNA 

change (Figure 7):  

- Single nucleotide variants (SNVs) are substitutions of one single nucleotide by 

another. They are the smallest and most common type of variant, and the 

most easily detectable.  

- Small insertions and deletions (indels) are short insertions and deletions, 

usually up to 50bp.  

- Copy number alterations (CNAs) encompass changes in the number of copies 

of a region in the genome, either due to duplications or deletions. 

- Structural variants (SVs) are the most complex type of alterations where the 

DNA has been broken and reassembled elsewhere in the genome. They 

include deletions, insertions, where new DNA is acquired by exogenous 

sources like viruses; duplications, inversions, and translocations, where more 

than one chromosome is involved. A balanced translocation is an event where 

there is no loss of genetic material, whereas unbalanced translocation results 

in loss of DNA. Reciprocal translocations are two-way exchanges between two 
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non-homologous chromosomes. On the other hand, nonreciprocal 

translocations are one-way transfers of a chromosomal segment into a non-

homologous chromosome. 

 

Figure 7. Types of DNA variants. Mutations in the genome can be classified according to the DNA 

sequence change into single nucleotide variants (a), small insertions and deletions (b), copy number 

alterations (c) and structural variants (d), where different types of alterations are included, namely 

deletions, duplications, insertions, inversions, and translocations, which can result in loss of genetic 

material (unbalanced, left) or not (balanced, right). Ref, reference allele. Alt, alternate allele 

harboring the alteration. 

 

1.2.3.3 Complex genomic rearrangements, chromothripsis, and chromoplexy 

Somatic alterations can be acquired individually, one at a time, or in a single 

catastrophic event that generates numerous alterations at the same time, leading 

to complex rearrangements that combine structural variants with copy number 
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alterations. Different types of complex rearrangements have been described 

based on clusters of structural variants in which multiple breakpoints occur close 

together, usually in time and in genomic space, implying that they might be 

mechanistically linked (Y. Li et al., 2020; Yi & Ju, 2018).  

The first complex rearrangement was described in 2011. This event led to a 

massively reorganized chromosome in a single-hit event (Stephens et al., 2011). 

It was named chromothripsis that means “chromosome (chromo, which 

represents the chromosomes) shattering into pieces (thripsis in Greek)”, which 

indeed describes the fragmentation of a chromosome into numerous segments 

that are wrongly repaired afterwards, supposedly by non-homologous end-joining 

(Figure 8). Using NGS, these defective rearrangements can be observed as 

numerous SV breakpoints (typically from 10 to 100) with similar proportions of all 

types (i.e., deletions, duplications, and inversions), clustered in one or a few 

chromosomal arms. Copy number alterations are also observed, including 

deletions, and loss-of-heterozygosity is frequent in minimum copy number 

regions. Chromothripsis is found in 2-3% of all cancers, and more frequently in 

bone cancers (25%) (Stephens et al., 2011).  

There are two possible mechanisms behind this catastrophic hit:  telomere 

crisis where telomeres are shortened and chromatids can be fused forming a 

chromatic bridge when they are stretched out during the anaphase of mitosis 

(Maciejowski & De Lange, 2017), and formation of aberrant nuclear structures 

(micronuclei) where the isolated genetic materials are massively broken into 

pieces and reassembled (C. Z. Zhang et al., 2015). 
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Figure 8. Chromothripsis representation. One or a few chromosome arms are shattered into pieces 

and wrongly reassembled by repair mechanisms in a single catastrophic event. Image from Stephens 

et al., 2011. 

Chromoplexy is another type of complex rearrangement arising from a single 

catastrophic event. It results from multiple double-stranded DNA breaks in 

different chromosomes that are wrongly reassembled. It is characterized by 

interdependent SV breaks, mainly interchromosomal translocations that form 

balanced chains of rearrangements, involving three or more chromosomes, and 

it is usually copy number neutral, although small deletions can occur close to the 

breakpoints (Figure 9). It was first described in prostate cancer, where it is 

particularly prevalent (Baca et al., 2013). Chromoplexy events frequently disrupt 

tumor suppressor genes and/or active oncogenes. The mechanisms driving this 

phenomenon are not well understood, but the breakpoints distribution is 

enriched in open chromatin and active regions, suggesting that DNA injury might 

occur in transcriptional hubs occupied by co-regulated genomic regions from 

multiple chromosomes (Baca et al., 2013). 



 

 25 

 

Figure 9. Chromoplexy events in prostate cancer. Circos plot showing chains of rearrangements in a 

prostate adenocarcinoma. Each independent chain is painted in a different color. The inner ring 

depicts the copy number alterations (red for deletions and blue for duplications). Image from Baca 

et al., 2013. 

1.2.4 Large-scale computational technologies 

The world of computing is constantly advancing. It is fed not only by new 

technologies, but also by the ever-growing interconnectedness of our society. The 

high-speed connectivity around the world has made cloud-based solutions very 

appealing to research and business centers. Large-scale computing is not only 

supported by local HPC clusters, but also by flexible cloud environments. Both 

systems offer different capabilities that make them more or less suitable 

depending on the type of work. 

HPC aggregates computing power in order to deliver higher performance 

than traditional computers. A supercomputer is built on multiple computing 

nodes and fast storage devices that work together to complete tasks very 

efficiently. The nodes are networked at high speed and work in parallel with each 

other, boosting massive amounts of computing to be executed in a short period 

of time. HPC clusters are managed by batch queue systems that receive requests 

of jobs to run and schedule their execution according to the system load and pre-

defined priorities. 
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Cloud computing represents a practical and cheaper way to scale compute 

capabilities that has gained popularity over the years. It also releases companies 

and research institutes from expensive hardware maintenance and software 

upgrades. 

HPC processing power, together with its fast storage and network 

connections, will always outperform cloud computing in terms of speed. 

However, it comes with a cost, and its dedication to small or non-parallelizable 

tasks might be more expensive than necessary. Moreover, HPC regulations can be 

very stringent, and software developed within communities not dedicated to HPC 

might not be suitable or not even allowed (i.e., docker containers, or internet 

access requirements). In this case, cloud-based solutions might be more 

convenient.  

1.2.4.1 HPC infrastructure at the BSC 

The Barcelona Supercomputing Center - Centro Nacional de 

Supercomputación (BSC-CNS) is the national supercomputing center in Spain. It 

specializes in HPC and has the MareNostrum (MN) saga of supercomputers at its 

base. It has an active role promoting HPC and providing HPC resources to the 

scientific community, including its four research departments (Computer 

Sciences, Life Sciences, Earth Sciences, and Computer Applications in Science and 

Engineering). 

MareNostrum 3 (Figure 10) was the third supercomputer of the center. It 

was based on Intel SandyBridge processors, iDataPlex Compute Racks, and 

Infiniband interconnection, with a peak performance of 1,1 Petaflops. It had 52 

racks, and 3,056 nodes (2x Intel SandyBridge 8-core, 2,752 nodes with 32GB of 

RAM, 128 nodes with 64GB of RAM, and 128 nodes with 256GB of RAM). Each 

computing rack had 1,344 cores and 2,688GB of memory. The compute nodes 
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were interconnected through a high-speed network based on Infiniband and had 

500GB of local storage. It had Linux operating system (OS), and IBM LSF to manage 

the workload and schedule batch jobs. The storage infrastructure was managed 

by the General Parallel File System (GPFS), a high-performance clustered file 

system software developed by IBM. 

 

Figure 10. MareNostrum 3 at the Barcelona Supercomputing Center. 

The next supercomputer was MareNostrum 4 and achieved a peak 

performance of 13.9 Petaflops. Its computational power is distributed in two 

different blocks: a general-purpose section, and an emerging technologies 

section. The latter includes an IBM Power9 and NVIDIA Volta GPUs cluster, an 

AMD cluster, and a 64-bit ARMv8 processor prototype machine. The general-

purpose part has 48 racks and 3,456 nodes. Each node has two Intel Xeon 

Platinum chips with 24 processors each and 96GB of memory. There are 216 high-

memory nodes with 384GB of RAM. High-speed Omnipath network is used to 

interconnect all the computing nodes and other components. It has a disk capacity 

of 14 Petabytes. As its predecessor, Linux is the OS, and batch processing is 

administered by Slurm workload manager, a free and open-source job scheduler. 

GPFS was again used to manage the storage infrastructure. 
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Primarily, the BSC was born as an HPC center and, as such, it had, and still 

has, strict regulations. This includes rules that limit the kind of jobs that can be 

run on the machines and prohibitions at the security level, such as internet access 

or use of virtualized systems. The standard queues typically have a maximum wall 

time of 48 hours, or at most 72 hours. Non-parallel jobs are sent to the sequential 

queue, which might have some limitations (i.e., maximum number of running jobs 

per user). These requirements often clash with typical bioinformatics applications, 

which often consist of complex workflows that take a long time to complete, or 

simple independent tasks that are not very well parallelized. Embarrassingly 

parallel workloads consist of numerous tasks that can be run independently and 

are one of the most common kinds of workload that bioinformatics deal with. To 

pave their road to HPC, the BSC Support team developed a framework called 

GREASY that leverages the use of HPC resources for embarrassingly parallel tasks. 

1.2.4.2 Workflows and virtualization 

Virtualization refers to the creation of a virtual, or logical, instance of 

computing hardware, storage resources, or network devices. Hardware 

virtualization encompasses the creation of a virtual machine (VM) that acts as a 

real computer with its own operating system. The software executed on these 

VMs acts on the virtualized hardware and it is thus separated from the underlying 

bare metal. Therefore, virtualization becomes a reasonable solution to export and 

execute processes and programs across different architectures, which otherwise 

would require specific solutions. 

Cloud infrastructures provide resources by means of virtualization, mainly 

VMs. They are managed by cloud management platforms (CMP) that integrate 

software tools to monitor and control the cloud computing resources. The most 

renowned ones are OpenNebula and OpenStack, and they can set-up dynamic 
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and flexible pools of computing and storage resources via simple web-based UI or 

programmatically.   

In recent years, new ways of lighter software virtualization have emerged, 

together with the growing popularity of containers. Docker (Merkel, 2014) is 

probably the most well-known example of such light packaging. Containerization 

is focused on the creation, implementation, and execution of applications, easing 

their development and usage throughout their life cycle. The applications are 

bundled together with all their dependencies, making their distribution effortless. 

They can be easily shareable and portable, and their outputs can be reproducible. 

In contrast to VMs, containers do not have an OS, they share the host OS, which 

makes them less heavy than VMs (Figure 11). Containers can give more agility to 

both developers and operators and can be quickly deployed. However, VMs have 

a stronger separation from the host kernel, which makes them more secure. 

 

Figure 11. Components of docker containers and virtual machines. 

Easy usage, portability, and reproducibility are some of the main advantages 

of docker containers, but their security risks and vulnerabilities make them 

unsuitable for most, if not all, HPC infrastructures. Docker images maintain root 

access to the host and can thus provide means to gain root access to the system 
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they are running on. Typically, HPC sites do not allow users to run Docker 

containers. Fortunately, most of them do allow Singularity containers  (Kurtzer et 

al., 2017), which address these security issues. Unlike Docker, Singularity inherits 

permissions of the user who is running the container. Hence, unprivileged users 

outside the container will remain as such, and escalating privileges are prevented. 

Porting from Docker to Singularity is straightforward, as Singularity images can be 

easily created from prior docker images, and offer the same benefits of 

shareability, reproducibility, and portability. 

Genome analysis can be as easy as executing a simple tool or reach higher 

levels of complexity where a myriad of different tools, with potential 

dependencies among them, is used. The latter usually requires integration of the 

results, often in different formats, burdening their unification. To help the 

development, deployment, portability, and reproducibility of such complex 

pipelines, workflow management systems have been employed (Ahmed et al., 

2021). They present a solution to define and orchestrate computational pipelines 

across heterogeneous computational environments.  

These shareable workflows can be uploaded to public repositories such as 

Docker Hub, a service provided by Docker for sharing and finding container 

images, or Dockstore, a free open-source platform for sharing analytical 

workflows developed by the Cancer Genome Collaboratory and used by the 

GA4GH. As part of the GA4GH, it takes part of promoting standards by defining 

best practices for describing tools in Docker containers with workflow language 

descriptors, such as Common Workflow Language (CWL) (Amstutz et al., 2016), 

Workflow Description Language (WDL) (Voss et al., 2017), and Nextflow (DI 

Tommaso et al., 2017). CWL is a standard for describing computational workflows 

that are portable and can be run in different environments preserving 

reproducibility. In the same way, WDL is a way to specify data processing 
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workflows, with human-readable syntax that allows easy definition of tasks and 

dependencies and supports their parallel execution. Nextflow has gained great 

popularity over the years and is currently being used in many local and large-scale 

projects, such as the ICGC-ARGO (see Introduction - section 1.4.2). It addresses 

reproducibility, efficient parallel execution, error tolerance, execution 

provenance, and traceability.  

Despite the supposedly portability and extended usability of these systems, 

their use in pure HPC infrastructures is not exempt from breaking some 

regulations, and exceptions have to be made to allow their execution in those 

systems. For example, the Slurm executor of Nextflow can efficiently parallelize 

the tasks of a workflow, but they might be submitted as sequential jobs, which is 

not efficient within HPC systems, and requires a master process to monitor and 

schedule the whole workflow, often exceeding the maximum wall time allowed. 

1.2.5 Translation of genomic knowledge into the clinics 

Genomic research has generated an extensive hoard of data, yielding 

biologically meaningful findings that scientists and clinicians can use to decipher 

the role that genetic factors might play in the development of complex diseases, 

such as cancer. What is more, these discoveries can also be used to implement 

more accurate diagnostics, more effective treatment strategies, and, altogether, 

better decision-making in the clinics that will improve the life of patients. In 

oncology, it has also increased the options for molecular targeted therapies, 

which act on specific molecular targets to block tumor cell growth and 

proliferation. 

On this ground, the role of genetics in health care is starting to become 

increasingly important. NGS plays a promising role in the era of precision 

medicine, where treatments are tailored to the patient’s genetic make-up. It is 
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well known that genetic variation in tumors can explain the variability of 

treatment effectiveness between individuals and can guide therapy decisions.  

Traditionally, patients would be treated according to their specific disease, 

or, in oncology, according to their cancer type and stage. However, it has been 

largely seen that this “one-size fits all” approach (Figure 12) does not always work 

well for all patients, who might have different responses to treatment (Figure 13). 

Research studies have found associations between genetic alterations and 

treatment resistance (Furman, Cheng, et al., 2014; Wagle et al., 2011; Woyach et 

al., 2014), asserting the urgency to integrate genomic analysis into clinical 

decision-making. 

 

Figure 12. From one-size-fits-all to precision medicine. Traditionally, patients were grouped by 

disease type and treated equally. The next approach is more specific and stratifies patients into 

groups according to disease subtypes, clinical features, and available biomarkers. Finally, the 

personalized medicine approach proposes tailored treatments to each individual patient. 

Personalized medicine (PM) considers the patient’s molecular profile, 

together with their clinical history, and environmental and lifestyle factors. The 

awaited benefits of joining together all this information are earlier diagnosis and 
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preventive approaches, more precise prognostics, better treatment selection, and 

an overall improved patient management. The potential of PM does not stop at 

healthcare quality, it can also have an impact on economics, reducing costs of 

expensive treatments that might not work on individual patients. 

The identification of targetable alterations and the coinciding development 

of small molecule-targeted and antibody-based therapies in cancer has 

encouraged the transition of genomic assays into clinical use (Berger & Mardis, 

2018). Somatic mutations within a tumor can be incredibly helpful and it is 

increasingly being used to guide the selection of the most appropriate treatment 

for each patient according to their cancer’s genome (Figure 13). 

Cancer genomics has the power to remodel traditional medicine by 

identifying specific alterations that can guide clinical decision-making for each 

individual patient. But before incorporating research findings into patient care, 

the significance of potentially actionable alterations has to be evaluated, and 

biological and clinical interpretation of genomic events identified by 

computational predictions still remains a challenge (Good et al., 2014).  

Bringing genomic testing into clinical practice is not straightforward, as 

genomic analysis, widely applied in research, has to be adjusted for its proper 

translation into the clinics (Morganti et al., 2020; Xu et al., 2019). Despite 

numerous efforts to define guidelines and best practices for variant calling, 

annotation, and variant interpretation, its application to the clinics is still 

problematic, due to the diversity of available tools, discrepancies of their results, 

and lack of real benchmarking datasets for variant detection, especially in the field 

of somatic variants. 
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Figure 13. One-size-fits-all vs personalized medicine treatment strategies. Within the traditional 

management of patients, the same treatment is used for all patients with the same disease. This can 

lead to benefit for some patients, no effect for others, and, unfortunately, to adverse effects for some. 

Personalized medicine aims to give the best treatment option to each individual patient, achieving 

treatment success for all cases. 

1.3 Cancer: a disease of the genome 

The biological processes within our cells are tightly regulated. This intricate 

coordination preserves our health, but it is not infallible. Intrinsic and extrinsic 

factors can interfere and deviate the normal functioning of cells, leading to the 

formation of masses of cells that can grow uncontrollably, called neoplasms or 

tumors. Neoplastic cells can be classified as benign, when they have no capacity 

to invade other tissues, or malign, when they can spread to other parts of the 

body. Malign tumors, commonly referred as cancer, are a major threat to our 

health, and encompass more than 100 different diseases, which can originate 
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from most cell types or organs of the body, and have the capacity to reach, or 

metastasize, to tissues beyond their boundaries (Stratton et al., 2009).  

Cancer has a high impact on human health and is one of the major causes of 

mortality. According to the World Health Organization (WHO), nearly 10 million 

people are estimated to have died of cancer in 2020. Despite research and clinical 

advances, the cancer burden continues to grow, and it is expected to reach 28.4 

million cases in 2040 (Sung et al., 2021). The most common types of cancer vary 

among men and women, and incidence and mortality are higher in less developed 

countries. Strong health systems integrating new strategies for earlier diagnosis 

and better tailored treatments are needed to improve global cancer control, 

especially in transitioning countries. 

1.3.1 Molecular basis of cancer 

Cancer is a disease of the genome, caused by genomic aberrations that 

deregulate the normal functioning of the cells. While some genetic factors are 

hereditary, the root of most cancers lies on somatic variants that are accumulated 

throughout our life. These alterations, which can be as simple as a single 

nucleotide change or large events involving one or more chromosomes, can 

confer the cells advantageous capabilities that can lead to the formation of a 

tumor. Besides the genetic counterpart, epigenomic changes, comprising the DNA 

modifications that do not affect the sequence per se, can also affect the activity 

of genes, leading to uncontrolled monitoring of key biological processes, such as 

cell growth and proliferation. 

The biology of cancer can be quite complex, but it has been largely seen that 

there are commonalities among different cancer types, mainly affecting the 

molecular machinery regulating cell proliferation, differentiation, and death. 
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These disrupted processes were summarized into six acquired capabilities or 

hallmarks of cancer (Hanahan & Weinberg, 2000):  

1. Self-sufficiency in growth signals. Tumors have different mechanisms to 

promote cell growth and proliferation. They can overexpress membrane 

receptors or other proliferative signals or constitutively activate downstream 

molecules that activate and maintain chronic proliferative signaling. 

2. Evasion of growth-inhibitory signals. Tumors can become insensitive to 

growth control signals, hence maintaining their ability to grow. Tumor 

suppressor genes that regulate cell growth and proliferation have been found 

inactivated in many animal or human cancers. The two major examples are 

TP53 and RB1, which have a central role in pathways that determine the 

course of cells, activating senescence and apoptosis or stopping cell-cycle 

progression. 

3. Resistance to programmed cell death. Apoptosis is a programmed cell death 

that is triggered when cells are damaged. Tumor cells have different ways to 

evade it, allowing them to continue to grow and proliferate. The most 

common strategy is TP53 disruption, which is seen in more than 50% of 

human cancers and impedes its proapoptotic function. BCL2 is another 

example that through overexpression can induce its antiapoptotic activity. 

4. Limitless replicative potential. The length of the telomeres, which is 

shortened each time a cell divides, is used to determine when a cell should 

die, and thus controls the number of times a cell can divide. Cancer cells can 

have the capacity to extend telomeres avoiding their erosion by 

overexpressing telomerases that ensure telomere maintenance. Through this 

process, regardless of the times they have replicated, they can continue to 

replicate permanently. 

5. Sustained angiogenesis. All cells need nutrients and oxygen to survive and 

obtain them from blood, which travels through vessels that irrigate tissues. 
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As tumor masses grow, they require the creation of new blood vessels 

(angiogenesis) to supply enough resources to their continuously dividing and 

growing cells.  Angiogenic activation can be triggered by signaling proteins 

that are upregulated in tumors. 

6. Activation of tissue invasion and metastasis. Cancer cells have the capability 

to invade surrounding and distal sites by altering the signaling between them 

and stromal cells and degrading the cellular matrix to gain motility. Loss of E-

cadherin, a cell-to-cell interaction molecule, is one of the most common 

mechanisms to confer tumor cells their invasive phenotype.  

These core principles, known as the hallmarks of cancer, are shared by most 

and probably all types of cancer, are illustrated in Figure 14.  

 

Figure 14. Hallmarks of cancer. Regulatory circuits disrupted in tumor cells. Image from Hanahan & 

Weinberg, 2000. 

The six hallmarks of cancer represent a conceptual framework for describing 

the principles that govern the transformation of normal cells into neoplastic 

tissues. This pathogenesis, though, cannot only be seen as an isolated tumor 

mass. Malignant cells form complex tissues that are composed of different cell 
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types that can interact with one another, which constitute the tumor 

microenvironment. Normal cells forming the tumor-associated stroma are not 

passive participants but can be actively contributing to tumorigenesis. To 

incorporate this new layer, as well as new insights in cancer biology, a 

reexamination of the previous hallmarks was done, announcing two new enabling 

characteristics and two new hallmarks (Hanahan & Weinberg, 2011), depicted in 

Figure 15. 

The two enabling characteristics are: 

1. Genomic instability and mutation. The cancer genome successively 

accumulates genomic alterations that might confer advantageous properties 

and lead to deregulation of key cell regulation programs. 

2. Tumor-promoting inflammation. The immune system can respond to tumors 

and, contrary to their intention, infiltrating immune cells can promote tumor 

progression by supplying molecules and signals that can enable multiple 

cancer hallmarks.  

The two additional emerging hallmarks are: 

1. Deregulating cellular energetics. The substantial activity of cancer cells to 

grow and proliferate entails some adjustments in their metabolism. Instead 

of using energy from the mitochondrial oxidative phosphorylation they turn 

to another system, the “aerobic glycolysis”, and possibly use glycolysis 

intermediates in biosynthetic pathways to aid the generation of new cells. 

2. Evading immune destruction. Immune surveillance, our ever-alert immune 

system, can recognize and eradicate most initiating tumor cells. However, 

progressing tumors can bypass exposure to the immune system, avoiding 

their destruction. 
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Figure 15. Enabling characteristics and new emerging hallmarks from the revision of the original 6 

hallmarks of cancer. Image from Douglas Hanahan & Weinberg, 2011. 

These molecular discoveries uncover not only the intricate processes of 

tumorigenesis, but, more importantly, the potential of being translated into the 

clinics, where they can be used for better diagnosis and treatment options. 

The introduction of targeted therapies as new treatment strategies for 

cancer relies on previous knowledge of the molecular basis of cancer. In this line, 

insights into the pathogenesis of cancer and its underlying principles, previously 

described, are of utmost importance for the development of new therapeutic 

strategies. These promising treatments target specific proteins that control 

processes that promote cancer cell capabilities. In principle, the precision of these 

drugs can reduce their side effects, because they have less off-target activity, but 

the downfall is that initial clinical responses are usually followed by relapses. An 

explanation to this is the growing evidence that hallmark capabilities can be 

sustained through multiple pathways. To bypass the inhibition of one single 

circuit, tumor cells can use this redundancy to sustain a particular capacity, or they 

can switch to other hallmark capabilities to maintain their pathogenic abilities. 
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As we learn the bases or hallmarks of cancer, we might wonder how they are 

gained. What triggers malignancy in normal cells?  These malignant cells derive 

from normal cells that go through a progressive transformation acquiring genetic 

and epigenetic changes that can target multiple sites of the genome and affect 

different regulatory pathways that, in the end, disrupt the normal behavior of the 

cell and activate one or more hallmarks of cancer. 

1.3.2 Bioinformatics analysis of cancer genomes  

In the era of NGS, cancer genomes can be analyzed by sequencing 

techniques followed by bioinformatics analysis. To decipher the mutational 

landscape of tumors, somatic alterations must be identified and discerned from 

germline mutations. Thus, a normal-matched sample from the same patient is 

commonly used.  

 

Figure 16. General strategy for the genomic analysis of tumor genomes. 

The general strategy (Figure 16) starts from the comparison of normal and 

matched tumor samples, whose DNA is prepared through experimental protocols, 

and sequenced as previously explained (see Introduction - section 1.2.2.2). In the 
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case of cancer, both the normal and the tumor sample are aligned separately, and 

they are both inputs of the variant calling step, where somatic variants can be 

inferred from the comparison of tumor and normal variants. Finally, the functional 

impact of the detected variants can be evaluated, and other downstream analysis 

can be performed. 

There are many factors that can complicate somatic variant calling, which 

reduce its accuracy due to the introduction of false positives or the miss of true 

variants. Starting with sequencing errors and alignment artifacts, the inputs of this 

core step are already obscured. And even more so if tumor samples come from 

FFPE material, which is known to have DNA fragmentations and alterations. In 

addition to these technical determinants, tumor samples themselves can defy 

variant calling methods, veiling the identification of low frequency variants due to 

tumor heterogeneity, or low purity of the sample. Matched normal samples can 

also be contaminated with tumor cells in some cancers, such as chronic 

lymphocytic leukemia. Automated workflows try to provide high accuracy, 

filtering out potential artifacts while keeping true variants, but, typically, a manual 

review of the results is also needed.  

In the typical strategy, where tumor and normal matched samples are 

available, candidate variants are called on genomic positions where an alternate 

allele is supported by tumor reads and is not present in the normal sample (as 

long as there is no tumor-in-normal contamination). The frequency of the variant 

is defined by the variant allele fraction (VAF) that counts the percentage of 

supporting reads (total number of alternate reads divided by the total read depth, 

or coverage, at that position). The VAF is affected by the purity of the tumor 

sample and the copy number at that region, and many posterior analyses (e.g., 

tumor evolution) require its correction to indicate the actual fraction of tumor 

reads carrying the variant, the cancer cell fraction (CCF). Subclonal variants, 
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present only in a small number of tumor cells, present a low VAF and CCF and are 

the most difficult to detect, as they are only present in a minority of alternate 

reads (Figure 17). 

 

Figure 17. Schematic view of reads with mutations. The variants are marked as colored squares, the 

number of supporting reads is used to calculate the variant allele frequency (VAF), and the cancer 

cell fraction (CCF) that corrects for purity and CNA. The example shows a tumor with 100% purity. A 

subclonal variant is depicted in blue. 

Variant calling can identify different types of variants, namely: SNVs, indels, 

CNAs and SVs (see Introduction - section 1.2.3.2). Some tools are dedicated to one 

single class, while others can detect different kinds of variants (e.g., sometimes 

SNVs and indels might be called jointly). The degree of difficulty in finding each 

type of variant is different, SNVs are the easiest and SVs the most complex ones. 

Point mutations and short insertions and deletions are detected as mismatches 

between the aligned reads and the reference genome, CNAs require more 

complex algorithms, where normalized coverage and/or B-allele frequencies must 

be considered, SVs can be detected by split reads, where part of the read maps to 

another region, and pair discrepancies in orientation, mapping chromosome, 

and/or insert size (Figure 18). 
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Figure 18. Examples of discordant reads to detect SVs. A deletion is represented at the top, paired 

ends have opposed orientation and larger insert size. An inversion is illustrated at the bottom, 

supporting paired reads have the same direction, as one of them is within the inverted region, and 

larger insert size. Split reads are depicted in blue. 

Even though the tumor-normal design is the preferred approach, sometimes 

a matched normal sample is not available, especially in clinical settings. Tumor-

only analysis greatly obscures true detection of somatic variants, as germline 

variants cannot be truthfully discarded. The most common attempt to overcome 

this limitation relies on public germline resources  (Karczewski et al., 2020; Sherry, 

2001) and panels of normals, calculated from pools of non-matched normal 

samples, that are used to filter out potential germline variants. 

There is a large repertoire of individual tools and complex pipelines to 

perform variant calling. Gold standard datasets for benchmarking of variant 

discovery pipelines are essential to evaluate their performance. The Genome In A 

Bottle Consortium (GIAB) and the National Institute of Standards (NIST) compiled 

a dataset for germline variation that includes high-confidence genotypes and 

confidence regions for a set of samples. The high-confidence variants can be used 
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to assess the precision and sensitivity of variant callers. Best practices for 

benchmarking variant calling have also been developed by the GA4GH, and 

include a reference implementation of their strategy on the evaluation of 

germline variants (Krusche et al., 2019). However, benchmarking datasets and 

strategies are not so well defined for somatic variation, where publicly available 

real datasets are very limited, and tumor features such as intratumor 

heterogeneity hinder the results. A common approach to improve variant 

discovery of individual tools, is to combine the results of different methods. This 

strategy has been adopted by many institutional pipelines and also the main large-

scale cancer genomics projects (Campbell et al., 2020; Ellrott et al., 2018).   

In addition to the proper selection of tools for genome analysis, an 

understanding of the quality of the raw data, as well as the intermediate results, 

is essential. Quality control metrics can inform about the level of veracity of the 

final results and/or their limitations for a particular analysis.  

1.3.3 Driver and passenger mutations 

Since the very first moment of our existence, the fertilized egg, our genome 

can accumulate mutations that can arise due to intrinsic or extrinsic factors. To 

protect our well-being, our cells have very stringent mechanisms to prevent DNA 

damage, either by repairing it or by initiating cell death (apoptosis). However, 

some mutations might escape these controls and are settled in our genome. Most 

of them will have no effect, but a few might hit a key cellular function. When a 

variant confers the cell some selective advantage, it enhances the possibilities of 

this cell to expand and proliferate through positive selection which can lead to 

cancer formation.  

Starting with the discovery of a point mutation that leads to the activation 

and transforming capacities of a gene, HRAS, in human bladder carcinoma (Reddy 
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et al., 1982), the search for gene abnormalities that can contribute to cancer 

development has been one of the pillars of cancer research (Bailey et al., 2018; 

Martínez-Jiménez et al., 2020). Driver mutations are defined as those that are 

directly implicated in oncogenesis and have been positively selected at some 

point during tumor evolution, though they do not need to be present to maintain 

the final cancer. On the other hand, other somatic variants are called passenger 

mutations when they do not confer any selective advantage to the cells carrying 

them, hence not promoting cancer development (Stratton et al., 2009).  

 

Figure 19. Lineage of mitotic cell divisions from the fertilized egg to a cancer cell. Mutations may be 

acquired due to intrinsic or extrinsic factors. Driver mutations, capable of malignancy 

transformation, can lead to clonal expansions that underlie tumor formation. Treatment forces can 

stimulate the emergence of resistant clones that often preexist before treatment. 

Somatic mutations often occur during cell division, by exposure to mutagen 

agents, or due to failure of intrinsic mechanisms, such as defective DNA damage 

repair. Most of them will probably have no functional consequences by 

themselves. However, they will already be present in the genome when one or 

more driver events occur. Consequently, they will be carried by all cancer cells 

that originate from this initial malignant cell. Once the tumor is formed, it 

continues to evolve. It can follow a treatment-naive natural evolution or a 

constrained evolutionary trajectory due to the selective pressures of treatment. 
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During the latter, mutations in minor subclones can gain selective advantages 

within the new treatment-based environment, and can emerge as the dominant 

clone, which can be resistant to treatment (Figure 19).  

The term driver is also extended to the genes that harbor such alterations. 

There are two major types of driver genes: (1) Genes that can promote cell 

proliferation and survival when activated by a mutation are known as oncogenes, 

whereas (2) driver genes that undergo loss-of-function are tumor suppressor 

genes, which in normal conditions should bring a mutated cell to apoptosis. In 

both cases, driver genes convey tumorigenic traits to the cells. Tumors carry an 

average of 4 driver mutations (ranging from <1/tumor to >10/tumor, depending 

on the cancer type), and it is estimated that half of the driver events occur in yet-

to-be-discovered driver genes (Martincorena et al., 2017). Altogether, these 

mutations are only a small fraction of the overall mutational burden of the cancer 

genome. Passenger mutations, usually present in thousands, are commonly 

thought not to play a role in cancer development, although their contributing 

roles have also been described (Supek et al., 2014). These passenger mutations in 

fact represent an imprint of the mutagenic events that tumor cells have 

experienced and provide a valuable tool to reconstruct the history of the tumor 

and the mutagenic processes that have been active throughout the evolution 

from a normal to a malignant cell. 

1.3.4 Mutational processes in cancer 

The accumulation of somatic mutations in tumor genomes is the result of 

different processes that operate throughout our life and during the formation and 

evolution of neoplasms. These mutational processes generate a specific and 

characteristic mutational pattern and can be triggered by both endogenous and 

extrinsic factors, such as DNA repair mechanisms or mutagens like tobacco or 
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ultraviolet light. For example, tobacco smoking induces C>A transversions, while 

ultraviolet rays introduce C>T transitions in specific contexts (i.e., the change 

mainly occurs when it is preceded by a thymine and goes before a cytidine 

(T[C>T]C)). Each one of these mechanisms can leave an imprint in our genome, as 

they might have a preference in specific mutation types and in particular contexts. 

Statistic and mathematical models can recognize and deconvolute these 

signatures, which can be linked to specific etiologies or exposures through 

statistical association or experimental validation (Koh et al., 2020). Insights into 

these mutational processes have been nourished by the increasing availability of 

whole genome and exome sequencing and the gathering of large-scale genomic 

projects used to define catalogs of signatures of known and unknown etiologies. 

The COSMIC mutational signatures catalog is established as the largest 

compendium of mutational processes known to date. The current version 

compiles the latest work by the PCAWG Network (Alexandrov et al., 2020; 

Campbell et al., 2020), including data from more than 23,000 tumor exomes and 

genomes.  

The imprint of mutational processes can be extracted from the mutational 

landscape of tumor genomes, which comprises a complex high dimensional 

dataset that can be dissected into individual signatures. Next, the contribution of 

each signature to each cancer genome can be quantified and linked to the 

exposure of each mutational process (Alexandrov et al., 2013). The non-negative 

matrix factorization (NMF) and model selection is one of most used approaches 

to resolve this deconvolution and can be used to blindly separate multiple 

patterns from a multidimensional dataset, as well as to estimate the relative 

contribution of each signature to the mutational catalog of individual tumors 

(Figure 20). 
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Figure 20. Deconvolution of mutational signatures. Decomposition of a mutational catalog of M 

mutation types from N samples into a set of K mutational signatures and their exposure to each 

sample. 

Mutational signatures are commonly studied based on SNVs, but can also be 

characterized from dinucleotide substitutions, indels, CNAs, or SVs (Y. Li et al., 

2020). The SNV 96-mutational profile is the most widely used and consists of 96 

single nucleotide mutation types that consider the mutation itself, the single base 

substitution (SBS), together with the flanking bases at the 3’ and 5’ sides (Figure 

21).  

 

Figure 21. 96 tri-nucleotide classes of SNVs. The 96 classes take into account the variant, together 

with the 3’ and 5’ flanking bases, which provide the context. 

Other approaches including SNVs are also used, where the context can be 

expanded to four flanking bases instead of two, leading to 1536 classes. This wider 
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approach can provide a better characterization and/or confirmation of novel 

mutational signatures (Haradhvala et al., 2018; Rustad et al., 2020).  

As an illustrative example, the pattern of 4 single base substitution 

mutational signatures (SBS1, SBS4, SBS2 and SBS13) based on the 96 mutation 

types previously described can be seen in Figure 22. The relative amount of each 

class is indicated by the bar plots highlighting the predilection of specific mutation 

types. SBS1, together with SBS5, is present in virtually all cancer types and is 

considered a clock-like signature, as it correlates with the age of individuals and 

the rates of stem cell division, and may therefore serve as a mitotic clock 

(Alexandrov et al., 2015). It is characterized by the most common deamination 

reaction of 5-methylcytosine to thymine that generates G:T mismatches that can 

be fixed as C>T mutations when they are not previously repaired. Other known 

signatures with well-defined etiologies include those of external mutagens, such 

as tobacco smoking (SBS4), mainly defined by C>A transversions, or internal 

mechanisms such as the activity of the AID/APOBEC family of cytidine deaminases 

(SBS2 and SBS13).  

 

Figure 22. Examples of the classic 96-mutation profile of mutational signatures. A. Clock-like 

signature SBS1. B. DNA damage by tobacco smoke imprint, SBS4. C-D. Imprint of the activity of 

AID/APOBEC enzymes, SBS2 and SBS13. 

There are many mutational signatures that can be attributed to known 

processes, but others remain elusive. In addition, mutational processes can be the 
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union of both the DNA damage and the consequent DNA repair. Cells have 

intricate apparatus to counteract DNA alterations, which trigger various DNA 

repair pathways. When there is a deficiency in those mechanisms, their attempts 

to correct mutations might lead to new mutational patterns. Altogether, the 

interplay between mutagens and awry DNA repair mechanisms can jointly shape 

mutagenesis, giving place to distinct mutational imprints. Hence, mutational 

signatures might not have a one-to-one relationship to mutagenic processes, but 

they can be variable and molded by DNA repair or replicative defects (Volkova et 

al., 2020). 

The analysis of mutational signatures is hampered by the fact that purely 

mathematical algorithms might not be biologically accurate. The fitting of 

potential signatures in tumor samples might lead to misleading results, where 

signatures that are not biologically present in the sample might be theoretically 

identified. This can specially happen if the signatures share dominant peaks. In 

the same way, the cosine similarity function that is used to calculate signature 

similarities might not capture genuine comparisons, as it works best for signatures 

with hilly peaks, but it is less effective for flatter signatures. Additionally, 

mutational signatures might appear slightly different in different tissue types. 

Taking all this together, rather than blind confidence in mere mathematical 

algorithms, a final assessment of the biological validity of the results is an essential 

practice.  Although there are no standard protocols to conduct these analyses, 

efforts towards best practices and consensus strategies have been made 

(Alexandrov et al., 2020; Maura, Degasperi, et al., 2019). 

Mutational signatures do not only provide a view into the evolutionary 

history of tumors, but they can also have a clinical value. They can be used as 

biomarkers for endogenous DNA repair/replication defective mechanisms or 

exogenous carcinogen exposures, and can be indicative of prognosis and therapy 
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efficacy (Brady et al., 2021). Finally, treatment-induced mutations, such as those 

induced by chemotherapies, can also guide the investigation of the long-term 

effects of those exposures (Pich et al., 2021) and the study of evolution in tumors, 

pinpointing the expansion of seeding cells already present before therapy (Pich et 

al., 2019; Rustad et al., 2020). 

1.3.5 Tumor heterogeneity  

Tumors are traditionally classified by their primary site of origin or by tissue 

type. This initial categorization does not consider the variability that exists among 

patients. It has been largely seen that tumors have a unique combination of 

genetic alterations. Each person’s cancer harbors a set of DNA changes that make 

it distinct from other patients, even if they have the same cancer type. This 

variation is called intertumoral heterogeneity, and accounts for different 

prognosis or treatment responses among individuals. However, this variability 

among patients is not the only source of heterogeneity in tumors. Even within a 

tumor, different cancer cell populations can coexist, each having particular 

mutational profiles, features, and capabilities that generate its intra-tumor 

heterogeneity (ITH) (Figure 23). 

 

Figure 23. Intertumor and intratumor heterogeneity. Variation among patients with the same cancer 

time comprises the intertumor heterogeneity, while variation within a tumor of a single patient 

constitutes the intratumor heterogeneity. 
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ITH is an urgent clinical challenge, as it is implicated in therapy resistance 

and cancer evolution (Dentro et al., 2021). Early studies considered tumors as a 

homogeneous mass and mainly focused on clonal alterations. Subclonal 

mutations are more difficult to detect because they are only present in a small 

fraction of reads, often below the limits of detection of variant callers. However, 

thanks to our growing understanding of how tumors evolve, and the reducing 

costs of sequencing which provides affordable higher coverage sequencing, we 

can now infer the composition of tumors and unveil their underlying ITH. 

Cancer evolution is marked by genetic diversification, clonal selection within 

the possibly changing microenvironment, and posterior expansion of the most 

advantageous subclones (Greaves & Maley, 2012). Evolutionary changes at the 

level of DNA changes can be traced and used to assess the subclonal architecture 

of tumors. Subclonal reconstruction based on genome sequencing of bulk tumor 

samples relies on the frequency of somatic mutations to identify cancer 

‘(sub)clones’, which are entities that share a number of mutations that were 

present in a common ancestor. The most used approaches perform an 

unsupervised clustering of variant allele frequencies, adjusted for copy-number 

and tumor purity, to identify clusters of mutations that have similar cellularity. 

The resulting clusters represent the different subclones that might be present in 

the studied sample. Finally, ITH can reveal a tumor’s life history, elucidating the 

temporal order of the acquired somatic events. The tumor’s phylogenetic tree can 

be inferred from the different subclones and their feasible relationships (Nik-

Zainal, Van Loo, et al., 2012). The trunk of the evolutionary tree represents the 

mutations identified in all cancer cells, while subclonal alterations, present only in 

a subfraction of tumor cells, make up the branches. However, sequencing of a 

tumor sample only provides a static snapshot of its genetic landscape and will 

likely provide an underestimation of the actual variety of tumor cell 

subpopulations (Gerstung et al., 2020). Hence, using multiple samples from the 
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same patient, multi-regional or longitudinal, can add valuable information that 

will aid the decomposition of more subclones and their dynamics. 

A tumor’s ITH and its capacity to evolve and adapt to changing environments, 

such as therapy aggressive constraints, are key contributors to therapeutic failure 

and dismal outcome of cancer (Greaves, 2015). Cancer medicine should not only 

consider the clonal population at a time, but also the underlying ITH, which can 

foster tumor evolution and clonal shifts where the tumor’s composition can be 

completely changed. ITH may also be used as a prognostic or predictive biomarker 

(Venkatesan & Swanton, 2016). However, despite the known role of clonal 

evolution in treatment failure, ITH and clonal dynamics are infrequently 

considered to inform clinical decisions.  

1.3.6 Tumor evolution 

Cancer is a dynamic disease, it evolves over time, specially under selective 

pressure of treatments, making patient management more complex. This 

evolution is fueled by the underlying ITH, where an admixture of cell 

subpopulations, or subclones, interact and compete for resources, leading to the 

expansion of the fitter clones. This evolutionary process was described by Nowell 

(Nowell, 1976) as a stepwise series of events driven by the acquisition of 

successive somatic mutations and selection of advantageous subclones. This 

model resembles Darwin’s theory of natural selection, which has been adopted 

to explain the basis of tumor evolutionary trajectories (Figure 24).  Viewed in this 

way, cancer evolution is based on two essential processes, the acquisition of 

genetic variation in individual tumor cells and natural selection, where cells with 

selective advantages with respect to their neighboring cells will outcompete them 

and will act on the resultant phenotype (Stratton et al., 2009). This phenomenon 
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is called clonal expansion and can be seen from the formation of a tumor to their 

final stages, especially when tumor cells need to escape treatment constraints. 

 

Figure 24. Tumor evolution by Nowell in 1976 and Darwin’s theory of natural selection. Left, Nowell 

proposed a model of clonal evolution where a neoplastic cell gains selective growth advantages and 

proliferates (T1). Within the expanding tumor cells new genetic alterations can be acquired (T2 to 

T6) and can, in turn, confer selective fitness advantages (T6), or disadvantages leading to their 

extinction (hatched circles). Image from (Nowell, 1976). Right, Darwin’s iconic tree drawing of 1837 

showing the evolutionary tree of speciation. Image from Charles Darwin’s Notebook, 1837. 

The first models to describe tumorigenesis were based on Darwin’s 

principles, but emerging evidence from new technological developments in 

genomic analysis posit alternative modes of evolution that cannot be explained 

by the conventional stepwise processes. Altogether, tumor dynamics can be 

explained with Darwin’s theory and beyond (Figure 25). 
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Figure 25. Models of tumor evolution. Linear evolution (A), branched evolution (B), macroevolution 

(C) and neutral evolution (D). Muller plots (left) represent the clonal dynamics and their clonal size 

over time, phylogenetic trees show the lineages of clones (center) and linear plots (right) indicate the 

number of alterations over time. Image from Vendramin et al., 2021. 

The Darwinian view of cancer models tumors as a large population of cells 

with diverse genetic alterations that can give rise to distinctive subpopulations. 

These subpopulations, or subclones, compete with each other and face changing 

pressures from the microenvironment or imposed treatments. As in Darwin’s 

selection, the fitter clones to the current specific conditions survive, while less 

advantageous subclones can diminish or even disappear. The ever-changing 

environment of tumors underlies their ever-changing dynamics, where clones 

that were dominant at a time, may reach a bottleneck and be depleted, while 

other minor subpopulations in the past might achieve a favorable position later 
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on and become the dominant population. Under this model, the main 

evolutionary patterns that have been recognized in tumors are linear evolution 

and branched evolution (A. Davis et al., 2017).  In the former, mutations are 

acquired linearly in a step-by-step process, and new driver mutations have such 

strong selective advantages that result in clonal sweeps where they outcompete 

all other subclones and become dominant. In the latter, there is a coexistence of 

distinct subclones that diverge from a common ancestor and evolve 

independently. These different clonal lineages can harbor different driver 

mutations that can promote their expansion. Finally, evidence of parallel 

evolution has been observed for some tumor suppressor genes, suggesting that 

inactivation of the same gene can occur multiple times, likely driven by selective 

pressures. 

Even though this Darwinian process can explain the history of tumors to 

some extent, this model is not sufficient to encompass the full spectrum of cancer 

evolutionary trajectories, and other non-Darwinian mechanisms have been 

described to explain tumor evolution. Darwin’s gradualism does not consider 

evolution by one-hit catastrophic events (see Introduction - section 1.2.3.3) that 

bring about multiple genetic alterations at the same time.  In cancer, such 

macroevolutionary events, including chromoplexy or chromothripsis, have been 

described and can drive tumor initiation and progression (Baca et al., 2013; 

Stephens et al., 2011). Another feature of tumor evolution that is not supported 

by Darwin’s theory is neutral evolution. Cancers emerge from a single cell, and 

neutral mutations within this cell or the first cell divisions are present at high 

frequencies in the final population, regardless of the action of selection. In the 

same way, each subclone originates from a single cell, and early neutral mutations 

are found in a large proportion of the subclone cells. In this mode of evolution 

there is no selection during the lifetime of the tumor, and random mutations 

accumulate over time leading to its extensive ITH. Evidence for neutral evolution 
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has been reported for some tumor types (Caravagna et al., 2020; Williams et al., 

2016), however this hypothesis has been countered by others (Tarabichi et al., 

2018). 

The mutational landscape of the disease and its subclonal composition can 

define the evolutionary forces that will drive progression and/or treatment 

resistance. Tremendous levels of heterogeneity can be the culprit that fuels this 

evolutionary process. When strong selection pressures are applied upon this ITH, 

the disease can evolve to more aggressive forms, which sets one of the central 

obstacles to curative therapy. Tumors are a composition of an admixture of cell 

subpopulations, which challenges therapeutic approaches and calls for 

procedures that consider tumors not as one disease entity but rather thousands 

of variations of this disease. Moreover, therapy can induce novel mutagenesis 

(Pich et al., 2019, 2021) and/or accelerate the clonal expansion of more aggressive 

and resistant clones. As an example, subclones carrying lesions that hamper DNA 

repair are resistant to chemoimmunotherapy, and they are thus selected by it. It 

has also been seen that clonal evolution is more frequent in tumors receiving 

chemoimmunotherapy than in treatment-naïve tumors, where the clonal 

architecture can be in equilibrium (Landau et al., 2015). 

Tumor evolution has important clinical and therapeutic implications. Hence, 

identifying the underlying mechanisms of evolution to therapeutic response and 

resistance is of the utmost relevance to inform and better design cancer 

treatments and clinical trials. 
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1.4 Fostering large-scale cancer research and its translation 

into the clinics 

Many bioinformatics applications have been implemented to handle small 

size projects. As data grows, analysis becomes computationally expensive, both in 

terms of cost and time, and methodologies to investigate these expanding 

datasets must be adapted to enable genomic analysis at scale. To pave the road 

to large-scale genomic projects, cloud computing is emerging as a key 

infrastructure to handle distributed or federated datasets and analysis that would 

otherwise be very time and resource consuming. Genomics researchers are also 

increasingly relying on academic and commercial clouds to accomplish cost-

effective large-scale analyses and examination of big datasets bypassing the need 

of local infrastructures and data transfer burden. 

Large-scale genomic data analysis has to deal with numerous bottlenecks 

arising at different levels, from ever growing data sizes, computationally 

demanding algorithms, up to the need of data sharing among research and clinical 

communities.  Many of these challenges have been addressed by the leading 

cancer genomic initiatives described in the following sections. 

Cancer genomic studies, included within large-scale initiatives or from 

independent projects, have identified potential cancer drivers and its role in the 

formation and progression of tumors. Side by side, there have been works on 

centralizing all this scientific knowledge to curate and present it in an organized 

manner. In this direction, several databases and public resources have been 

developed. 
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1.4.1 Catalogs of sequence variants 

Numerous databases collecting genomic variation data have been developed 

throughout the years, some include all kinds of variant annotations while others 

can be cancer specific. There are population-based databases, such as dbSNP 

(Sherry, 2001), the Exome Aggregation Consortium (ExAC) (Lek et al., 2016), or 

the Genome Aggregation Database (gnomAD) that include population frequency 

data of the variants identified within each resource. Other databases report the 

pathogenicity of variants, such as the UniProt Humsavar database 

(https://www.uniprot.org/docs/humsavar), or dbNSFP (Liu et al., 2016), a 

compendium of non-synonymous SNPs and their functional predictions.  

Following with the functional annotations, some resources include 

additional information found in the literature and curated annotations. ClinVar 

(Landrum et al., 2018) is a well-known archive at the National Center for 

Biotechnology Information (NCBI). It is freely available and provides information 

for interpretation and clinical significance of both germline and somatic variants. 

CIViC (Clinical Interpretation of Variants in Cancer) (Griffith et al., 2017) is a 

community-driven resource for the clinical interpretation of variants in cancer. It 

is open source, offers open access, via a web portal or public application 

programming interfaces (APIs), and provides accurate annotations with 

provenance of supporting evidence.  

Probably one the most  well-known databases of somatic mutations is The 

Catalog of Somatic Mutations in Cancer (COSMIC), which started with data from 

four genes (Bamford et al., 2004), and has grown to include almost 6 millions of 

coding mutations across 1.4 million cancer samples (Tate et al., 2019), together 

with non-coding mutations, copy-number alterations, gene-fusions, and the 

largest catalog of mutational signatures. In parallel, a curated catalog of genes 
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driving cancer, the Cancer Gene Census (CGC), is also available. The database can 

be interrogated through web pages that support graphical and tabular views of 

the results.  

Besides these laborious catalogues of variants and their annotations, other 

resources are also focused on the visualization of the data. The cBioPortal 

(https://www.cbioportal.org/) was designed to integrate data from different 

platforms to explore it and perform data analytics in an easy manner (Gao et al., 

2013). It provides a web resource for searching, visualizing, and analyzing 

multidimensional cancer genomics datasets. Researchers can interactively 

explore genetic alterations, with multiple graphical summaries, and link them to 

clinical outcomes. The portal includes data of already existing projects, curated 

scientific results, and can also be installed locally to work on regional data. 

While some resources are mainly focused on assembling and handling 

already generated and published data, some can also be used to provide 

information on new variants. The Cancer Genome Interpreter (CGI) (Tamborero 

et al., 2018) is a platform that systematizes the interpretation of tumor genomes. 

It uses current knowledge and evidence to interpret newly identified variants, 

annotating potential driver alterations and their possible association to treatment 

responses.  

Some initiatives are specifically focused on personalized medicine in 

oncology, including diagnostic and prognostic information, clinical trials, and 

therapy response, like the Personalized Cancer Therapy (PCT) 

(https://pct.mdanderson.org) at the MD Anderson Cancer Center that compiles 

and integrates scientific knowledge on cancer alterations and their implication for 

cancer therapy, the Jackson Laboratory Clinical Knowledgebase (CKB) (S. E. 

Patterson et al., 2016), or OncoKB (Chakravarty et al., 2017). The Molecular Tumor 
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Board Portal (MTBP) is a clinical decision support system that unifies genomic 

analyses from European cancer centers within the Cancer Core Europe (CCE) 

network (Eggermont et al., 2019). The portal automates capture, interpretation, 

and reporting of data across the CCE sites, and is used to select candidates for on-

going clinical trials. Additionally, they offer a public resource for investigators 

outside the network that provides a framework for classifying the functional and 

predictive relevance of a set of variants. Variants are categorized according to up-

to-date evidence from the integration of expert-curated knowledge bases, bona 

fide biological assumptions, and bioinformatics predictions. Next, functionally 

relevant variants are associated with biomarkers of disease diagnosis, prognosis, 

and therapy response as reported by some of the aforementioned databases 

(Chakravarty et al., 2017; Griffith et al., 2017; Tamborero et al., 2018). 

Altogether, these repositories aim to facilitate the interpretation of variants 

in clinical and research settings. Besides these knowledge-based resources, 

dedicated to gather and curate scientific knowledge, other initiatives also 

promote and coordinate research projects from the raw data generation up to 

the compilation of their results, making them easily and homogeneously 

accessible. These projects themselves come with data portals to access the 

comprehensive catalogs of genomic alterations in cancer that they generate. 

1.4.2 Large consortia and international and national initiatives 

Large-scale tumor sequencing efforts have been led by big consortia, such as 

the International Cancer Genome Consortium (ICGC) (Hudson et al., 2010) or The 

Cancer Genome Atlas (TCGA) (Ellrott et al., 2018). They have been promoting 

cancer research, organizing diverse cancer projects, and collecting their results 

into comprehensive catalogs of genomic alterations. Their shared mission is to 

launch and coordinate numerous cancer research projects organized in a 
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collaborative framework, including tens of cancer types. The ICGC is a 

multinational consortium involving many countries around the world, where each 

project specifically analyzes one cancer type (Figure 26), whereas the TCGA is 

based and coordinated within the United States. Projects within their umbrella 

adhere to agreed requirements in terms of ethical approval, sample quality, 

minimal clinical annotation, and data sharing. The full inventory of somatic 

mutations, clinical information, additional analysis, and raw data is homogenized 

and organized into databases that can be examined via user-friendly web portals. 

 

Figure 26. The international cancer genome consortium. Countries and projects that contributed to 

the final release in 2018. 

As a natural evolution of these large-scale tumor sequencing projects, which 

generate sequence data from thousands of tumors, the ICGC launched a new 

worldwide initiative, the Pan-Cancer Analysis of Whole Genomes (PCAWG) 

(Campbell et al., 2020). Within this new phase, more than 2,600 normal-tumor 

genome pairs across 38 cancer types and from 14 jurisdictions were to be jointly 
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analyzed to answer questions related to the causes, formation, and evolution of 

tumors, together with the prevention, diagnosis, and treatment of cancer. This 

project was set to be the most comprehensive analysis of cancer whole genomes 

up to date and required the setting up of infrastructures capable of performing 

large-scale analyses, supporting storage of vast amounts of data, and providing 

computational and data access to the researchers. The design, implementation, 

and execution of the project is described in the corresponding Results section 

(Results - Chapter 1: Study 1). 

Other initiatives, more specific to the analysis part and their translation into 

the clinics, are also trying to standardize and inform best-practice protocols to 

analyze genome data. The Sequencing Quality Control 2 (SEQC2) project (Mercer 

et al., 2021) sought to develop reference materials to assess quality-control 

metrics for NGS analysis, benchmark the impact that experimental and 

bioinformatic factors can have, and evaluate the inter- and intra-laboratory 

reproducibility. Herewith, participating researchers and clinicians worked 

together to create consensus standards for best practices in clinical settings. 

Genomic analysis is growing to be part of health care systems. The aim of 

any biomedical scientific discovery should be its impact to ultimately benefit 

patients: its translation into the clinics. The vast amount of generated data and 

subsequent scientific results must be pushed towards this end. Within this scope, 

the European infrastructure for translational medicine (EATRIS) brings together 

resources, expert services, research tools, and education and training programs 

to make the translation of scientific advances into medical products that can 

improve our health and life quality. 

Key consortia within cancer research are also moving towards the 

applicability into health care. The ICGC-ARGO (Acceleration Research in Genomic 
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Oncology) is a new effort from the ICGC to strengthen cancer research and its 

translation into the clinics. Over the next ten years, ICGC-ARGO aims to coordinate 

the integration of homogenic genomic analysis and phenotypic data on 200,000 

cancer patients. This detailed and curated clinical and genomic dataset will be 

used to address key clinical and biological questions regarding cancer origin, 

progression, and resistance to treatments. The project will gather high quality 

data from clinical trials and well annotated cohorts, from hospitals and data 

centers distributed around the world, and will make it available to the entire 

research community, using mechanisms for efficient and responsible data sharing 

that will enable collaborative and combined analysis to accelerate research into 

the causes and management of cancer. Overall, the project aims at fostering 

scientific impact and translating it into health impact. The addressed questions 

will be relevant to the patients, tackle unmet clinical needs on how cancer can 

change with time and treatment, and investigate informative molecular data for 

precision oncology and prognostic markers.  

Following the PCAWG strategy, genomic data will be harmonized, 

comprehensively annotated, and homogeneously analyzed in regional data 

processing centers (RDPC). The RDPCs will be the foundational units where 

genomic data will be submitted and processed through a series of standardized 

and containerized pipelines. The results will be sent to the Data Coordination 

Center (DCC) for integration with all ICGC-ARGO data sets and distribution to the 

community. ICGC-ARGO comes with a full stack of software products to cover all 

stages of a cancer genomics project (Figure 27). The system can be used to build 

a genomics platform from scratch, where users can collaborate and share their 

results. Data lies at the center of the organization; submitters can securely upload 

genomic and associated clinical metadata, access components authorize users to 

view and download controlled data, supplementary products provide interactive 
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visualizations and code-based analysis environments, and researchers can share 

their searches and results across the scientific community. 

 

Figure 27. Overture software stack. A collection of open-source and extendable solutions for big-data 

genomic science that can be used to support cancer genomic research. Image from 

https://www.overture.bio. 

At the national level, initiatives such as MedPerCan (Medicina Personalitzada 

Catalunya Cancer) are also pushing translational research to address clinical needs 

and improve health outcomes. The MedPerCan project, from the Pla Estratègic 

de Recerca i Innovació en Salut (PERIS), proposed to establish a multidisciplinary 

circuit among different hospitals, data centers, and sequencing facilities for the 

implementation of personalized medicine in oncology in Catalonia (Figure 28). 

This project was developed in the context of research, but aimed to explore its 

feasibility in clinical settings, as one of the major goals was to evaluate the impact 

that genomic analysis can have in clinical decisions. 

This pilot project evaluated the feasibility of the use genomic data for more 

precise diagnostics and treatment recommendations, and implemented a 
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prospective strategy that could be used in the public health care system. In 

particular, three use cases with particular unmet clinical needs were addressed: 

risk of hereditary cancer, first-line treatment response, and treatment selection 

at advanced stages of the disease. The project included different institutions with 

expertise in all ares of the circuit, from hospitals and clinical research institutions 

to sequencing and supercomputing centers, and from doctors and researchers to 

bioinformaticians and computer engineers. These multidisciplinary teams worked 

together to integrate genomic analysis with clinical information to support clinical 

decision-making.  

 

Figure 28. Circuit of the MedPerCan project. The cycle starts at the hospitals, where samples from 

patients are collected and sent to the sequencing center. The sequencing data is sent to the data 

center where it is analyzed, and the results are populated into a database accessible via a web 

interface. The genetic variants can then be evaluated by a panel of experts that will come up with 

the best clinical decisions based on the genetic make-up of the patients. 

1.4.3 Infrastructures to facilitate data sharing and large-scale analyses 

Together with these actions, an endeavor towards standardization and best 

practices for genomic analysis and data sharing is a must. In this direction, the 

Global Alliance For Genomics and Health (GA4GH) is a policy-framing and 

technical standard-setting organization for genomic analysis and data sharing 
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(Figure 29). This global alliance is meant to enable rapid progress in biomedicine, 

creating and maintaining interoperability of technical standards and harmonizing 

procedures for data sharing (Rehm et al., 2021). Open standards are designed to 

enable storage and data access, as well as to homogenize data processing tools, 

which will allow results from different projects to be comparable and integrable. 

To carry this out, real world initiatives (so-called driver projects) present the 

inputs and requirements of the community and interact with the technical and 

foundation working streams that provide mechanisms for their implementation.

 

Figure 29. Standards by the GA4GH throughout the cycle of Life sciences data generation. Image 

from Rehm et al., 2021. 

Other proposals also bring out the challenges of cross-border data sharing 

and their integration. The EUropean-CANadian Cancer network (EUCANCan) 

proposes a federated infrastructure whose mission is to enable Personalized 

Medicine in oncology by promoting the generation and sharing of harmonized 

genomic and phenotypic data. Here, the analysis of the data is handled from a 



 

 68 

different angle, instead of reanalyzing everything from scratch, they aim to design 

a strategy for the evaluation of the used methods and pipelines and set a 

minimum quality threshold upon which the results could be safely combined. The 

federated infrastructure guarantees that regional data can be stored locally, while 

it is identifiable, searchable, and findable within the federation. The software 

stack used to build this model is based on the ICGC-ARGO project previously 

described. 

To respond to the numerous datasets and resources generated by the 

community there are initiatives trying to promote their shareability and easy 

usage. The iPC (Individualized Paediatric Cure) project has the aim of providing 

clinicians with the tools and knowledge to create individualized treatment 

strategies for children with cancer. The project will collect, standardize, and 

harmonize existing clinical knowledge and medical data that will be used to create 

artificial intelligence treatment models for each patient. Researchers will then 

apply these models on virtual patients to evaluate treatment toxicity and efficacy 

to assess if they can improve patient survival and life quality.  EOSC4Cancer is a 

European project that aims to accelerate research and innovation by providing 

smooth access, management, interoperability, and reuse of digital information. It 

will connect a set of interoperable nodes (e.g., European Cancer Centres, 

Research Infrastructures, and Medical Centres) that provide access to FAIRified 

cancer-related data within a trusted users environment(s). Their ambition is to 

put in the hands of clinicians and researchers the necessary means to address the 

different steps during the individual cancer patient journey, from prevention and 

diagnosis to advanced stages and treatment. Different data sources relevant in 

cancer research will be mobilized and interconnected. The usage of tools, data 

analytics, and machine learning methods will be leveraged by their integration 

into virtual research environments and cancer analysis portals. 
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It is also worth mentioning that there are other initiatives which are not 

cancer specific but share the overarching goal to promote data sharing as the 

basis to enable scientists and clinicians to better understand disease and give the 

best possible personalized treatments. 

The European ‘1+Million Genomes’ Initiative (1+MG) aims to make genome 

information of at least 1 million European citizens accessible in the EU by 2022, 

with both genotypic and phenotypic data available and properly linked. This 

promising cohort has the power to provide new striking research that might 

translate into improved patient management, allowing for more personalized 

treatments. To pursue its goal, the project will involve stakeholders with different 

backgrounds, from health care professionals and patient organizations, to 

researchers, engineers, and more. They will help national and regional authorities 

build a federated infrastructure, making sure ethical and legal aspects are covered 

to allow for genomic data sharing across borders. 

To facilitate the cooperation and coordinate the signatory countries, the EU 

Commission granted the Horizon 2020 project Beyond 1 Million Genomes 

(B1MG). It will uphold the creation of a network for genetic and clinical data 

sharing across Europe, providing legal and technical guidance, as well as defining 

standards and best practices. The infrastructure will be set up for the long-term, 

and will go beyond 1+MG. 

Efforts on standards and recommendations to guide the life cycle of health 

data and to accomplish responsible data sharing are also being made. The goal of 

HealthyCloud is to define specifications, standards, and best practices to enable 

health research across Europe. Stakeholders from the EU member states, 

including academia, industry, healthcare providers, patients’ organizations and 

policy makers will join together to assist the generation of a Strategic Agenda for 
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ethical and legal good practices for use of health data, and sustainable 

computational resources. 

1.4.4 Current challenges in cancer research 

Despite many years of NGS, continuously emerging new tools, and large 

international initiatives and consortia, such as the ICGC, the TCGA or the GA4GH, 

unified or standard protocols for variant calling, the core of genomic analysis, still 

remain a challenge. 

Cancer research and its translation into the clinics faces many challenges at 

many different levels. At the global level, data sharing and harmonization is a 

major concern, including not only legal but also methodological aspects. Both 

have been addressed, and are continuously dealt with, in large-scale genomic 

projects. These initiatives gather sizable genomic data and have identified the 

main obstacles in the field. They all have seen that discrepancies among variant 

calling tools and lack of homogeneous results complicate their integration. While 

some decide to re-analyze everything from scratch (Campbell et al., 2020; Ellrott 

et al., 2018), where extra resources and time are spent, others come up with a 

smoother solution where they try to harmonize different variant calls as long as 

they are above set thresholds of good quality data. The shortage of benchmarking 

datasets for somatic variant calling (Alioto et al., 2015; Griffith et al., 2015) 

aggravates this situation, because assessing the best variant calling pipeline is not 

straightforward, and the evaluation of the methods can differ greatly depending 

on the input data (e.g., low vs high tumor purity, low vs high coverage, low 

frequency variants, or FFPE samples).  

Small-scale studies also deal with these problematic procedures. The lack of 

benchmarking datasets, together with the demanding characteristics of some 

tumor samples, such as low purity, FFPE archival material, lack of matched-normal 
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sample for tumor analysis, impedes the selection of one single strategy that can 

be blindly trusted, and brings out the need of bioinformatics expertise to correctly 

interpret the results. Bioinformatics knowledge is sometimes missing in clinical 

environments, where easy-to-use methods, as well as highly accurate results, are 

essential for clinical application. 

1.5 Chronic lymphocytic leukemia (CLL) 

Chronic lymphocytic leukemia (CLL) is the most common leukemia in adults 

in western countries, though it is less prevalent in Asian countries. The average 

age at diagnosis is around 70, and it is more common in men than women. People 

with first-degree relatives with CLL have more than twice the risk of developing 

this disease. 

CLL is a type of cancer characterized by the accumulation of B-cells (Figure 

30), a type of white blood cells, in bone marrow, lymph nodes and peripheral 

blood.  It is thought to be preceded by monoclonal B-cell lymphocytosis (MBL), a 

typically asymptomatic state, in which an increased number of monoclonal B-cells 

is already present in blood.  

CLL has been at the forefront of cancer research thanks to the accessibility 

of tumor samples, taken from the bloodstream, and its usually slow growing 

nature which provides an ideal setting for longitudinal studies. The biology of CLL 

is a complex that integrates factors from the cell-of-origin, the microenvironment, 

and DNA alterations. Several signaling pathways, and notably the B-cell receptor 

(BCR) pathway, have a central role in CLL development and clonal expansion of 

malignant clones.  
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Figure 30. High-power magnification (1000 X) of a Wright's stained peripheral blood smear showing 

chronic lymphocytic leukemia. The lymphocytes with the darkly staining nuclei and scant cytoplasm 

are the CLL cells. 

During the last decade fruitful findings have shed some light on the genetic 

susceptibility, the molecular mechanisms driving the disease, the genomic and 

epigenetic dysregulations, and the patterns of clonal evolution leading to 

progression, treatment resistance, and adverse transformation into more 

aggressive lymphomas. These new discoveries have the potential to be translated 

into the clinics by exploring new therapies and management strategies. 

Nonetheless, the TP53 disruption and the immunoglobulin status remain the only 

two biomarkers that are routinely being used in the clinics (Hallek et al., 2018). 

1.5.1 Normal B-cell differentiation 

Foreign agents, including viruses, bacteria, or fungi, express specific antigens 

that can be identified by our immune system that triggers a response to neutralize 

or destroy them and any other cell that has been infected. As part of our adaptive 

immune system, B cells go through different stages to mature and acquire full 

specificity to fight foreign antigens. The process starts in the bone marrow, where 

hematopoietic stem cells (HSCs) start differentiating into multipotent progenitors 

that eventually give rise to myeloid and lymphoid lineages, including B cells. 
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During their development, B cells present different immunophenotypes 

characterized by different gene expression profiles and immunoglobulin 

rearrangements (Figure 31). In the end, B-cell production is committed to find the 

most effective antigen-binding. This diversity of B-cell receptors (BCRs) is made 

possible by molecular and cellular mechanisms capable of generating a broad 

repertoire of receptor molecules and the selection of the most efficient ones for 

further expansion. 

 

Figure 31. Simplified schema of the B-cell receptor (BCR). The immunoglobulin molecule contains two 

identical heavy chains and two identical light chains that are produced through genomic 

rearrangements during B-cell development. The antigen binding site has a variable region that can 

acquire higher affinity during maturation. 

The first step to generate the BCR takes place in the bone marrow, where 

different DNA segments of the immunoglobulin (Ig) genes are joined together. 

These segments include the variable (V), diversity (D), and join (J) regions, which 

are randomly selected and rearranged from the numerous V, D, and J sequences 

that are available in the genome in a process called V (D) J recombination. The 

BCR structure is composed of two identical heavy chains (H-chain) and two 

identical light chains (L-chain) bonded together. Both types of chains are formed 

by a variable region and a constant region. The variable region, which contains the 
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V, D, and J segments or the V and J segments for the H- and L-chains, respectively, 

forms the Ig antigen-binding site, whereas the constant domains determine the 

Ig isotype and its functions. The two H- and L-chains compose the antigen-

recognition structure of the BCR (Pieper et al., 2013). Those B cells with a 

functional Ig that does not bind to self-antigens leave from the bone marrow to 

the bloodstream.  

At that point, naïve B cells can go to the secondary lymphoid organs, where 

they can be activated upon antigen recognition through the BCR. These stimuli 

induce proliferation and other processes to gain higher antigen-binding affinity. 

The development process will continue upon activation by an antigen, with or 

without the help of T cells. The T-cell dependent activation starts with the creation 

of the germinal centers (GCs), which are transient structures for B-cell 

proliferation and BCR affinity maturation. Proliferative B cells in GCs, called 

centroblasts, undergo somatic hypermutation (SHM) in the so-called dark zone of 

the GCs to diversify and fine-tune their antigen-binding capabilities. Activation-

induced cytidine deaminase (AID) is the enzyme responsible for this mutagenic 

process and acts upon the Ig H- and L-chain genes. B cells with enhanced BCR go 

to the light zone where positive selection is imposed, and only those with higher 

ability to bind to antigens proceed to the next steps.  

At this stage, B cells are called centrocytes and experience the class switch 

recombination (CSR), also induced by AID, which can modify their constant region 

to other isotypes with particular effector functions (Klein & Dalla-Favera, 2008). 

In the end, those B cells with a high-affinity receptor that are positively selected 

will differentiate into long-lived memory B cells, which can be rapidly activated 

upon reinfection of known antigens, or plasma cells, specialized in the production 

and secretion of large quantities of antibodies (Figure 32). T-cell independent 

activation occurs in the marginal zone of the lymphoid follicle, where B cells can 
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also be activated and undergo SHM and CSR, but they are short-lived, and their 

resulting antibodies have lower affinity (Bortnick & Allman, 2013). 

 

Figure 32. B-cell development stages. Starting from stem cells in the bone marrow, B cells go through 

different states until they mature and are differentiated into plasma or memory B cells. The 

compartments are indicated at the top. The mechanisms underlying the main steps are shown. 

1.5.2 Genetic predisposition to CLL 

Population and family based studies have reported a 7.5- or 8.5-fold 

increased risk for first-degree relatives of CLL patients (Cerhan & Slager, 2015; 

Goldin et al., 2004). Possible models of genetic inheritance have been described 

for sporadic and familial CLL: if there is only one member of the family with CLL, 

it is likely sporadic or associated with a low risk allele; if there is a second family 

member it is less likely to be sporadic and might be associated with low risk alleles; 

when there is a higher number of affected family members it is likely that there is 

a high risk allele (Sellick et al., 2006). 

High risk alleles are very rare, linkage or family-based, and probably involve 

a gene that is involved in the disease (Brown et al., 2012). Low risk variants can be 
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identified with GWAS, and up to 45 risk loci have been associated with CLL (Law 

et al., 2017). Most of these SNPs are in the non-coding regions of the genome, 

and their mechanisms are being elucidated by integrating genome-wide 

sequencing, transcriptomics, and epigenomics (Speedy et al., 2019). A lot of them 

are associated with active regulatory elements, suggesting that they might have a 

role in gene expression. In CLL, risk loci do not only influence the risk of developing 

CLL, but also the outcome of the disease. More recently, risk loci for progressive 

CLL have been described (Lin et al., 2021), illustrating the impact that germline 

variants can have not only on getting the disease, but also on the clinical 

phenotype.  

NGS WES studies have also explored germline variation in CLL. Family-based 

studies have identified genes commonly altered in families: POT1 and other 

shelterin complexes (Speedy et al., 2016), ITGB2 (Goldin et al., 2016), and NFATC4 

(Itchaki et al., 2017). Rare variants in sporadic CLL cases versus controls were 

found to be enriched in ATM and CDK1, with frequent loss of the normal allele of 

ATM  (Tiao et al., 2017).  

1.5.3 Cell-of-origin and molecular subtypes 

The cell(s) of origin of CLL, i.e., the non-malignant cell from which malignancy 

develops, have not yet been fully characterized. Hematopoietic stem cells (HSCs) 

might already acquire some of the earliest changes that can lead to clonal 

expansions of CLL-like cells (Kikushige et al., 2011), and common genetic 

alterations of CLL, such as trisomy of chromosome 12 (tri12), deletion of 

chromosome 13q [del(13q)], and mutations in driver genes SF3B1, NOTCH1, and 

XPO1 have been found in the hematopoietic progenitors of some patients (Damm 

et al., 2014; Gahn et al., 1997). These findings suggest that even though CLL is a 

neoplasm of mature B cells, malignant transformation starts at earlier stages of B 
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lymphocytes differentiation. The mechanisms leading these initial steps to fully 

oncogenic mature B cells are not well known, but immunogenetic analyses of the 

BCR found antigen selection to have a major role in driving tumor cells’ clonal 

selection (Agathangelidis et al., 2012; Stamatopoulos et al., 2016). This 

observation is supported by the striking bias in the use of some immunoglobulin 

heavy-chain variable region (IGHV) genes, the essentially identical 

complementary-determining region 3 (CDR3) in some cases, and the highly 

homologous Ig rearrangements, named stereotypes, which account for 30% of 

the patients.  

Traditionally, CLL is classified into two main molecular subtypes that are 

based on the mutational status of the IGHV and define two different entities 

(Figure 33), with particular genomic and epigenomic alterations and distinct 

clinical course (Damle et al., 1999; Hamblin et al., 1999). CLL expressing mutated 

IGHV (M-CLL) have a more indolent behavior and originate from B cells that have 

gone through the germinal center, whereas CLL presenting unmutated IGHV (U-

CLL) are more aggressive and derive from pre-germinal center B cells (Seifert et 

al., 2012). The assessment of the IGHV mutational status is routinely performed 

in both research and clinical settings, where Sanger or NGS protocols with a cutoff 

of >= 98% identity between tumor and germline sequences are used. Its 

prognostic and predictive value underlies its clinical importance, where evaluation 

of the IGHV status is recommended at diagnosis or before treatment initiation 

(Rosenquist et al., 2017). 

Concordantly, epigenetic studies have reported that M-CLL has a 

methylation signature of a normal post-germinal center cell (i.e., memory-like), 

and U-CLL maintains a naïve-like methylation signature, corresponding to a cell 

that maturated outside of the germinal center (Kulis et al., 2012; Oakes et al., 

2016). Interestingly, a third intermediate epigenetic group was identified with a 
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methylation profile between naïve-like and memory-like CLLs, suggesting that it 

could derive from a not-yet-identified normal B cell. The 3 subtypes present 

different mutational profiles, usage of IGHV genes, and clinical outcomes (Kulis et 

al., 2012; Puente et al., 2015; Queirós et al., 2014). 

 

Figure 33. Schematic view of the two main molecular subtypes of CLL. M-CLL is derived from antigen-

experienced B cells that have gone through the germinal center, where immunoglobulin somatic 

hypermutation takes place. Contrarily, U-CLL originates from a pre-GC mature B cell. 

All these studies support that the cell of origin, determined by its 

immunogenetic or epigenetic profile, can be an important determinant of the 

clinical and biological behavior of the tumor. 

1.5.4 Landscape of genomic alterations in CLL 

Genomic sequencing of the last ten years has unraveled the mutational 

landscape of CLL. Even though recurrent mutations have been identified, CLL 

remains a very heterogeneous disease from the genomic point of view, and the 

tail of low frequency recurrent variants and affected genes is notably long. 

Furthermore, the genetic profile can change and evolve from early to relapsed 

refractory patients, increasing the complexity and heterogeneity of the disease. 
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Up to date, WGS- and WES-based studies include more than 1,000 cases, 

and identified an average of 2,500 mutations per tumor (Puente et al., 2015), 

which correlates with the mutational status of IGHV (M-CLL, despite their better 

outcome, have a higher number of somatic mutations). The mutational processes 

contributing these mutations are mainly related to aging and to the activity of AID 

(Alexandrov et al., 2020; Kasar et al., 2015; Puente et al., 2015). The noncanonical 

AID (nc-AID) signature is responsible for mutations in M-CLL and has also been 

seen in other lymphoid neoplasms derived from cells that have germinal center 

experience.  

CLL’s low mutational burden is accompanied by few chromosomal 

translocations. The most common cytogenetic alterations are 13q deletions 

(including miR15 and miR16 genes within the minimal deleted region), 11q 

deletions (encompassing ATM), 17p deletions (including TP53), and trisomy 12. 

Their strong correlation with patients’ prognosis brought them into clinical use. 

Patients carrying del(11q) or del(17p) have a significantly worse outcome than 

those harboring del(13q)  (Döhner et al., 2000). The most common translocations 

involve IGH and different oncogenes and are present in a very small percentage 

of cases (Figure 34). 

The coding landscape of CLL is characterized by few recurrently mutated 

genes, present at most in 10-15% of cases (Figure 35). The most recurrently 

mutated genes at CLL diagnosis are NOTCH1 (8–12%), SF3B1 (9–11%), TP53 (5–

8%), and ATM (5–7%), but the frequencies can vary in CLL progression, reflecting 

their impact on the clinical evolution of the disease (Landau et al., 2015; Nadeu et 

al., 2018).  
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Figure 34. Recurrent chromosomal alterations in CLL. Summary of most recurrent chromosomal 

rearrangements and target genes. The outer circle shows the chromosomes, followed by copy 

number alterations (deletions in red, gains in blue, and loss of heterozygosity in green). The intensity 

of the color is proportional to the fraction of patients carrying each alteration. Translocations are 

drawn in the inner circle linking together different regions of the genome.  Image from Nadeu, Diaz-

Navarro, et al., 2020. 

 

Figure 35. CLL driver alterations. Frequency of the most common driver alterations at CLL diagnosis 

separated by IGHV mutational status. Image adapted from Nadeu, Diaz-Navarro, et al., 2020. 
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These driver genes converge into key deregulated pathways (Figure 36), 

including NOTCH1 signaling (NOTCH1 and FBXW7), DNA damage response and 

genomic stability (ATM, TP53, and POT1), RNA splicing and metabolism (SF3B1, 

U1, XPO1, DDX3X, and RPS15), NF-κB signaling (BIRC3, NFKB2, NFKBIE, TRAF2, and 

TRAF3), B-cell receptor and Toll-like receptor signaling (EGR2, BCOR, MYD88, 

TLR2, IKZF3, and KRAS or NRAS), and chromatin modifiers (CHD2, SETD2, KMT2D, 

ASXL1).  

 

Figure 36. Main disrupted molecular pathways in CLL. Illustrative view of the main cellular pathways 

affected by CLL mutations in driver genes. Image from Nadeu, Diaz-Navarro, et al., 2020. 

NOTCH1 is a known oncogene that encodes a transmembrane protein whose 

signaling cascade produces NOTCH1 intracellular domain (NICD) that, once in the 

nucleus, forms a transcription complex that can switch on the expression of target 

genes involved in processes related to cell fate, differentiation, proliferation, and 

survival (Andersson et al., 2011). NOTCH1 emerged as one of the most mutated 

genes in CLL, and its frequency rises with disease progression (Rosati et al., 2018). 

As such, it is associated with worse prognosis (Sportoletti et al., 2010). Recurrent 
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mutations disrupt or result in the loss of its PEST domain required for the 

degradation of the NICD. Moreover, even CLLs without NOTCH1 mutations can 

accumulate NICD within the nucleus and show similar NOTCH1 expression 

signatures (Fabbri et al., 2017). The mechanisms behind this phenomena are not 

fully understood, but FBXW7, a negative regulator of NOTCH1, is mutated in a 

subfraction of patients where it can stabilize NICD and is associated with 

increasing levels of downstream genes (Close et al., 2019).  

TP53 and ATM are tumor suppressor genes and key elements in the DNA 

damage response pathway. Deletions of their loci (17p and 11q, respectively) 

often co-occur with mutations. They are associated with higher genomic 

complexity and confer poor prognosis (Campo et al., 2018; Ouillette et al., 2010; 

Stankovic & Skowronska, 2014). They are also implicated in resistance to 

chemotherapy, but not to novel agents (Brown et al., 2017).  

POT1 encodes a component of the shelterin complex of the telomeres, and 

its mutations often occur in the domains that bind to telomeric DNA, leaving CLL-

mutated cells with lots of telomeric and chromosomal abnormalities, and 

conferring adverse prognosis (Ramsay et al., 2013). 

Some mutations in genes participating in RNA splicing and metabolism can 

trigger a cascade of events that result in altered mRNA transcripts and proteins 

that may conduct the pathogenesis of the disease. SF3B1 encodes a subunit of 

splicing factor 3B and, when it is mutated, it can lead to mis-splicing near the 3’ 

splicing sites in numerous genes involved in DNA damage response, telomere 

maintenance, and NOTCH1 signaling (Mansouri et al., 2013; L. Wang et al., 2016). 

A murine model with SF3B1 mutated and ATM deletion showed that both 

alterations are necessary to overcome cellular senescence, induced by SF3B1 

mutated, and generate a CLL-like disease in elderly mice. These CLL-like cells show 
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genomic instability and dysregulation of multiple cellular processes associated 

with CLL, such as BCR signaling, which is decreased in SF3B1 mutated cells, and 

they are more sensitive to BTK inhibitors (Yin et al., 2019). CLL also carries other 

mutated genes involved in RNA transport and splicing, XPO1 and DDX3X, but their 

functions are not fully understood. A recently discovered recurrent mutation in 

the U1 small nuclear RNA (a noncoding component of the spliceosome) has been 

identified in CLL. The mutation creates novel splice junctions and alters the 

splicing pattern of multiple genes, including known cancer driver genes (Shuai et 

al., 2019). RPS15 encodes a protein of the 40S ribosomal subunit, which acts as a 

nuclear export factor of this ribosomal component. Alterations in this protein 

induce changes in global protein synthesis and translational fidelity, affecting 

translational machinery and cell metabolism (Bretones et al., 2018; Ljungström et 

al., 2016). 

The pathogenesis of CLL is also modulated by constitutive activation of 

nuclear factor-κB (NF-κB) signaling, which regulates important cellular processes 

linked to cancer progression, cell survival, and proliferation. Only a few 

recurrently mutated genes have been identified, including NFKB2, TRAF3, and 

genes encoding BIRC3 and NFKBIE, inhibitors of the noncanonical and the 

canonical NF-κB pathway, respectively. However, NF-κB can also be mediated by 

upstream cell surface receptors like BCR or toll-like receptors (Mansouri et al., 

2016).  

BCR signaling has a pivotal role in CLL pathogenesis. It is required for the 

survival of mature B cells and of most neoplastic mature B cells. Upon activation, 

downstream pathways lead to cell survival and proliferation (Kipps et al., 2017). 

Contrary to other lymphoid neoplasms, activation mutations are uncommon in 

CLL. EGR2 encodes a transcription factor (TF) downstream of the BCR pathway. Its 

activating mutations are associated with aggressive forms of the disease and 
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confer poor outcome (Young et al., 2016). Toll-like receptor signaling activation in 

CLL is mediated by MYD88 and TLR2 mutations that increase interleukin (IL)-6 and 

IL1RA levels, suggesting that they may promote a favorable microenvironment for 

tumor cell survival (Beà et al., 2013; Puente et al., 2011). 

Mutations in chromatin remodeler genes, capable of modifying the 

epigenomic landscape of tumors, are less common in CLL than other lymphoid 

neoplasms. CHD2 encodes a protein that binds to histone marks involved in 

transcription. Its mutations confer defective association with active chromatin 

and change the transcriptomic profile of the tumor (Rodríguez et al., 2015). SETD2 

encodes a histone methyltransferase, and it is postulated as a tumor suppressor 

gene. Loss-of-function mutations are associated with other poor prognosis 

alterations and poor outcome for the patients (Parker et al., 2016).  

These discoveries have not only identified recurrent common alterations in 

genes and pathways associated with the pathogenesis of CLL, but have also shown 

how specific genetic alterations can serve as biomarkers for prognostication and 

prediction of response to therapies. Moreover, the identified disrupted cellular 

pathways can be potential targets for new therapies. Lastly, all these genetic 

insights can be used to guide novel treatment algorithms for the clinical 

management of patients. Nonetheless, the vast heterogeneity among CLL tumors 

poses the need of large cohorts where the impact of genes mutated at low 

frequencies can be further characterized. 

1.5.5 Clonal dynamics 

Early studies based on NGS allowed us to come forward in terms of genetic 

alterations, transcriptomic dysregulations, and epigenetic changes of CLL. Our 

understanding of CLL heterogeneity has also evolved over time, from differences 

between affected individuals to the genetic variability found within individual 
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samples (Gruber & Wu, 2014). As in any other cancer type, CLL comprises not a 

monolithic population, but rather an admixture of subpopulations. The 

significance of what is happening during the evolution of the disease relies mainly 

on concerns about progression, relapse, and resistance to treatment. The 

presence of subclonal driver alterations has been identified as an independent 

risk factor for disease progression in WES-based studies (Landau et al., 2013, 

2015). The deconvolution of genetic alterations according to their clonality and 

their categorization into clonal and subclonal events, allows the temporal 

reconstruction of the acquisition of mutations into early or late events, 

respectively.  

In CLL, the initiating events are generally CNAs, including del(13q), tri12, and 

del(11q), and mutations in driver genes such as SF3B1, POT1, TP53, ATM, 

NOTCH1, or BIRC3, occur later in the course of the disease (Landau et al., 2015; 

Nadeu et al., 2018). Longitudinal studies based on WES or WGS have confirmed 

these findings and have identified three different patterns of CLL evolution (Figure 

37): stable equilibrium (subpopulations are maintained over time), linear 

evolution (alterations are sequentially acquired in a single clone), and branched 

evolution (different subclones coexist and evolve). ITH entails that multiple tumor 

subpopulations can coexist together and, in the presence of selective pressures 

such as treatment, this composition can change, leading to clonal sweeps where 

resistant subclones can become dominant. Nonetheless, the presence of 

mutations with competitive advantages, such as SF3B1, can promote clonal 

changes and progression of the disease even before any treatment (Nadeu et al., 

2016; Schwaederlé et al., 2013). After chemotherapy, which has been in the 

frontline of CLL treatment for many years, resistant subclones (i.e., harboring 

TP53 mutations) can become dominant. Following treatment lines can again 
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impose selection barriers, leading to more clonal changes and expansion of the 

fitter clones. 

Several works have identified genetic alterations that lead to therapy 

resistance (Herling et al., 2018; Woyach et al., 2014), and have also found that 

often the predominant population at the time of relapse can be tracked back as a 

small or minute subpopulation before treatment initiation with very sensitive 

techniques (Burger et al., 2016; Landau et al., 2015, 2017). This points to the idea 

that the capacity for evolution is already present at the time of treatment 

initiation and is certainly a conundrum for CLL therapy management.  

 

Figure 37. Patterns of evolution of CLL and sequential acquisition of driver alterations through the 

course of the disease. CLL starts with the expansion of a subclone harboring early alterations. The 

presence of mutations with proliferative advantages can lead to clonal shifts before treatment, in 

the same way that resistant subclones can become dominant after treatment regiments (Top). 

Tumors with less advantageous mutations may be more stable and maintain subclonal equilibrium 

before and after treatment (Bottom). Image from Nadeu, Diaz-Navarro, et al., 2020. 
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New capabilities of single-cell sequencing provide great opportunities to 

further dissect CLL heterogeneity and evolution. They provide an unprecedented 

opportunity to better understand how mutations, activation states, and protein 

expression have an impact on disease. Getting down to single cells can inform us 

about the composition and functional aspects of the cells that are contributing to 

the set phenotype and can be exploited to predict patient-specific dynamics. 

Multiple studies have begun to explore CLL at the single-cell level (Gohil & Wu, 

2019), and give hope for a better characterization of leukemic cells in aid of better 

prognostication, earlier diagnosis, and treatment optimization. 

1.5.6 Treatment advances and clinical challenges 

CLL has a very heterogeneous clinical course, ranging from patients that have 

an indolent disease and might not need any treatment for years, to others that 

suffer more aggressive forms of the disease or whose CLL even transforms into a 

deadly neoplasm. The watch-and-wait approach is the current standard of care 

for patients without symptoms, and some people can be managed solely with this 

surveillance for years before the disease progresses.  

CLL treatment decisions are based on the symptoms and the status of few 

genetic aberrations and the IGHV mutational status, associated with risk of 

progression and response to traditional treatments (Hallek et al., 2018). In the 

clinics, the prognosis of CLL is mainly assessed based on IGHV mutations and TP53 

disruption (Patel & Pagel, 2021), which predicts a more aggressive disease course, 

is a less favorable prognostic marker for chemoimmunotherapy (Döhner et al., 

2000; Zenz et al., 2010), and is best treated with novel therapies (Hallek, 2019). 

B-cell receptor signaling has a pivotal role in B cells survival and proliferation, 

and in many B-cell malignancies (Stevenson et al., 2011). Hence, it is not surprising 

that it has become a target for therapeutic intervention. Novel agents that inhibit 
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Bruton’s tyrosine kinase (BTK), the apoptosis regulator B-cell leukemia/lymphoma 

2 (BCL-2), and phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit 

delta (PI3Kδ) have been approved for CLL in the recent years (Byrd et al., 2013; 

Furman, Sharman, et al., 2014; Roberts et al., 2016) (Figure 38). BCR stimulation 

triggers the activation of BTK, which is involved in the regulation of cell migration, 

adhesion, survival, and proliferation. PI3Kδ is another key kinase downstream of 

BCR. BTK inhibitors have come to the frontline of CLL treatment thanks to their 

higher efficacy with high-risk patients and the more favorable toxicity compared 

with chemoimmunotherapy (Scheffold & Stilgenbauer, 2020).  

Ibrutinib is an irreversible BTK inhibitor that forms a covalent bond to the 

target Cys-481 in the active site of BTK (Burger & Buggy, 2013). It is approved for 

both first line and relapsed/refractory disease stages.  

Approved PI3K inhibitors include duvelisib and idelalisib, approved in 2014 

for relapsed/refractory CLL patients. Idelalisib showed efficacy in patients with 

TP53 disruption, but it was associated with worse adverse effects than ibrutinib 

or venetoclax (Lampson et al., 2016) and it is not the first option to treat patients. 

Duvelisib also showed discontinuation of treatment due to adverse effects in a 

fraction of cases (Flinn et al., 2018).  

BCL-2 is an apoptosis regulator that has anti-apoptotic properties and is 

overexpressed in CLL cells, promoting their survival. Venetoclax is a BCL-2 

antagonist that can disrupt this survival mechanism. It was first approved for CLL 

with 17p deletion but is now also approved as a chemotherapy-free combination 

regimen for previously untreated CLL patients by the FDA. 
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Figure 38. Representation of the B-cell receptor signaling pathway and mechanisms of action of 

Bruton's tyrosine kinase (BTK) inhibitor (ibrutinib), phosphatidylinositol 3-kinase (PI3K) inhibitor 

(idelalisib) and BCL-2 inhibitor (venetoclax). All three novel agents inhibit key molecules of BCR 

signaling and B-cell proliferation. Image from E. Ezekwudo et al., 2019. 

Relevant advances in our understanding of CLL biology together with the 

approval of new targeted therapies have greatly benefited the outcome of high-

risk patients. But despite these advances in treatment options and their 

improvement on the management of high-risk patients, CLL still remains an 

incurable disease with unmet clinical needs, especially in the case of an extreme 

form of evolution into an aggressive lymphoma, the Richter transformation.  

1.5.7 Richter transformation 

CLL is commonly an indolent neoplasia of mature B-cells but, in some cases, 

it can not only progress more rapidly and confer worse prognosis, but also 

transform into a high-grade B-cell lymphoma known as Richter transformation 

(RT), which is associated with a dismal clinical outcome, with an overall survival of 

less than one year. Back in history, this histopathological phenomenon was first 

described by Maurice Richter in his article in the American Journal of Pathology in 

1928 (Richter, 1928) as a transformation of  CLL into a more aggressive lymphoma, 
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and has thus been termed Richter syndrome (RS). The incidence of RT in 

treatment-naïve patients is rare, but it is found in up to 10% and 20% of cases 

after chemoimmunotherapy (CIT) and targeted therapies, respectively (W. Ding, 

2018). Even though these novel small molecule inhibitors have significantly 

improved the outcome for CLL patients, the prognosis of RT is extremely poor, 

and it remains an incurable and deadly disease with urgent clinical needs.  

Although different types of transformation, including Hodgkin lymphoma 

(HL), plasmablastic lymphoma, and other rare lymphomas have been reported, 

the majority of RT shows the same histological characteristics as diffuse large B-

cell lymphoma (DLBCL) (Figure 39), but the molecular profile and clinical course 

of RT is distinct from de novo DLBCL and shows an intermediate genomic 

complexity between CLL and DLBCL (Fabbri et al., 2013). Transformation of CLL to 

a clonally related DLBCL, as assessed by the identity of the IgH rearrangement, 

accounts for the majority of cases and has very poor prognosis, whereas the 

development of DLBCL unrelated to the prior CLL clone has an outcome similar to 

de novo DLBLC (Rossi et al., 2011). 

 

Figure 39. Chronic lymphocytic leukemia transformation to diffuse large B-cell lymphoma (DLBCL), 

Richter’s transformation. BM MGG (1000×).  Image from https://www.leukemia-cell.org/atlas. 
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The genomic mechanisms underlying RT are explored mainly in cases after 

CIT and mostly using WES or targeted approaches (Beà et al., 2002; Chakraborty 

et al., 2021; Chigrinova et al., 2013; Fabbri et al., 2013; Klintman et al., 2021; Rossi 

et al., 2011; Scandurra et al., 2010). Recurrent alterations at transformation are 

the deletion of CDKN2A, which has not been described in CLL, TP53 disruption, 

NOTCH1 mutations, MYC translocations or amplifications, and other less 

recurrent cytogenetic alterations (Figure 40). Risk factors for the development of 

RT have been studied and include clinical characteristics and molecular and 

genetic changes. Associated high-risk genomic aberrations have been identified, 

including CLL carrying subset #8, TP53 disruption, MYC activation, trisomy 12 

(particularly in the absence of del13q14) and NOTCH1 mutations (Rossi et al., 

2009, 2012).   

 

Figure 40. Somatic genetic characteristics associated with Richter transformation. Image from Parikh 

& Shanafelt, 2014. 

Two genetic mechanisms leading to RT have been described. The main one 

is found in about half of the patients and affects their outcome. It is related to the 

inactivation of TP53 (by loss or by somatic mutations) and loss of CDKN2A/B, a 

known tumor suppressor gene involved in cell-cycle regulation, inducing high 

proliferation rates and deregulation of cell cycle, apoptosis, senescence, and 

cellular metabolism. These alterations were mutually exclusive with a second 
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group characterized by the presence of trisomy 12, followed by the acquisition of 

NOTCH1 mutations. This second genetic pathway was observed in about one third 

of the patients (Chigrinova et al., 2013). Another mechanism that apparently 

orchestrates RT has been seen in murine models that have shown that 

constitutively active AKT transforms CLL towards aggressive lymphoma, via 

overactivation of NOTCH1 (Kohlhaas et al., 2021). In another murine in vivo CLL 

model, biallelic inactivation of TP53 and CDKN2A/CDKN2B lead to more aggressive 

disease, allowing BCR-dependent/costimulatory signal-independent proliferation 

of CLL cells (Chakraborty et al., 2021). DNA damage response pathways have also 

been identified as a potential mechanism driving RT, as numerous mutations in 

involved genes have been identified and pathway-based clonal deconvolution 

analysis demonstrates high clonal-expansion probability (Klintman et al., 2021).  

Despite improvements on the outcome of high-risk CLL patients under novel 

targeted therapies, RT also develops in patients under novel agents and it usually 

occurs as an early event, within the first 4-16 months (Anderson et al., 2017; 

Innocenti et al., 2018). Most genetic studies of RT in the era of novel agents 

include patients treated with ibrutinib.  The occurrence of resistance-associated 

mutations in BTK and PLCG2 is higher in CLL progression than RT, where they are 

either not reported, identified in a smaller fraction of cases, or they are different 

from those of CLL (Innocenti et al., 2018; Kadri et al., 2017). Even though there 

are fewer studies exploring the genetic aberrations under novel agents, the 

recurrent genetic alterations in RT identified are similar to those under CIT (Figure 

41). 
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Figure 41. Recurrent genetic aberrations in RT developed on ibrutinib (A) and CIT (B). Image from 

Petrackova et al., 2021. 

Although previous studies have identified risk factors and recurrent 

alterations of RT, the mechanisms underlying this transformation are not 

thoroughly understood. The evolutionary history of RT and its driving 

genomic/epigenomic determinants remain largely unknown. An in-depth 

understanding of this process might help to anticipate RT and guide novel 

treatment strategies, improving the outcome of these high-risk patients. 
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2 Objectives 
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The goal of this thesis is to design, set-up, and apply computational 

methodologies to answer specific biomedical questions within genome oncology. 

The three main objectives correspond to the three conceptual blocks that 

constitute the thesis: 

1) To adapt, implement, and execute the large-scale cancer genomics project 

Pan-cancer Analysis of Whole Genomes (PCAWG) infrastructure into 

supercomputing premises. 

 

2) To assess, develop and implement methods and strategies for genome 

analysis in oncology, with specific focus on variant identification, 

characterization, and interpretation. 

 

3) To answer specific biomedical questions in the context of the genomics of CLL 

using the methodology generated within this thesis: 

a) To understand the molecular mechanisms and the clonal evolution of 

Richter transformation in CLL to ultimately identify early clinical markers. 

b) To identify the role of ATM germline variants and somatic mutations in 

the evolution of CLL in a young adult. 

 

 

 

 

 





 

 99 

3 Methods 
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3.1 PCAWG computational infrastructures and workflow 

frameworks 

For the generation of infrastructures related to the PCAWG initiative 

(Objective 1), our group faced several challenges. Our center, the BSC, is mainly 

based on high-performance computing (HPC). HPC provides advantages in terms 

of computational power and efficiency, but also imposes restrictions, and the 

cloud-based solutions adopted by project could not be directly implemented in 

our premises. 

Part of the PCAWG infrastructure was dedicated to the execution of 

workflows, a group of tools and scripts that need to be run in a specific order. Due 

to the large size of the data and its distributed nature, these workflows or 

pipelines were set to be executed in different computing centers. Portability and 

reproducibility among them were key points that needed to be addressed and 

virtualization techniques were used to ensure them. 

 Initially, the PCAWG project used the SeqWare workflow execution engine 

(O’Connor et al., 2010), an open source portable software infrastructure designed 

to analyze massive genomic datasets, to bundle software, and to execute 

pipelines in virtual machines (VMs). Later, the project adopted docker as a key 

enabling technology for running workflows across different platforms. Dockstore 

was used to place and share PCAWG workflows. 

Both types of executions (i.e., workflows either in VMs or packaged into 

docker containers) were performed in MN3. The BSC’s computational resources 

committed to the project are summarized in Table 1. Note that the runs in the 

VMs system report the actual running time of the executions. However, this 

setting required the separation of a whole rack of MN3 (see Results - Chapter 1: 
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Study 1) which was reserved the whole time for the project, thus having dedicated 

CPU core-hours even when it was not utilized. Besides this computational power, 

the BSC also stored between 500GB and 1PB of data throughout the whole 

project. 

Table 1. BSC's computational resources dedicated to PCAWG. 

Pipeline Infrastructure # Samples  CPU core-hours 
Alignment VMs 550 200,000 

Sanger Variant Calling Docker 500 600,000 

DKFZ/EMBL Variant Calling Docker 850 900,000 

3.2 Data collection 

3.2.1 Benchmarking datasets 

Within the second objective of the thesis, we evaluated several strategies for 

variant identification in tumor genomes. The results of this work are detailed in 

Results - Chapter 2: Study 2 and Study 3. 

To evaluate the accuracy of variant calling (VC) methods, benchmarking 

datasets with validated “truth” variants are crucial. These datasets are usually 

generated within particular studies, covering a limited number of variants, and 

less than a handful of comprehensively characterized samples are available and 

findable for somatic VC (Alioto et al., 2015; Griffith et al., 2015).  Besides these 

attempts to fully characterize whole-genome or whole-exome samples, 

orthogonal validation with other experiments, such as gene panels or RNA-seq, 

can also be used to evaluate variant calling performance (Ellrott et al., 2018), 

although it might be biased towards specific regions of the genome (e.g., coding 

regions in the case of gene panels). Finally, one can restrict the validation 

approach to specific mutations validated by Sanger or deep sequencing, which is 
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expensive and makes it practically impossible to cover all mutations in a whole 

genome. 

Synthetic data can also be used for benchmarking. This simulated approach 

is very convenient to reach the points that real data cannot catch and to have 

complete control over the “true” variants as well as the false positives. However, 

it lacks the artifacts and other intricate features only present in real data. 

Therefore, the results presented within the thesis will be mainly based on real 

samples. 

In order to evaluate our variant calling strategies (see Results - Chapter 2: 

Study 2 and Study 3) we first used validated variants coming from WES and WGS 

that have been entirely characterized.  

For WES, we used the exome capture of a primary acute myeloid leukemia 

(AML), sequenced at a coverage of ∼433x, and a matched normal skin sample 

(Griffith et al., 2015). This data was produced in a study where they performed 

both WES and WGS of a primary and relapsed AML tumor (AML31). After 

extensive filtering, validation of ∼200,000 putative SNVs by deep sequencing 

(coverage of ∼1,000x), and manual review, they produced a list of “platinum” or 

“validated” variants that contained 1,343 high-quality SNVs. We used the subset 

of these variants that corresponded to the exomes and downsampled the original 

WES to 140x and 90x, for the tumor and normal samples, respectively, to match 

the sequencing coverage that was being used within the MedPerCan project (see 

Results - Chapter 2: Study 2).  

For WGS, we used the medulloblastoma sample (MB99) that was prepared 

for a benchmarking exercise within the context of the ICGC (Alioto et al., 2015). 

They sequenced the tumor sample at ∼300 × in five different sequencing centers 

and used this high coverage to curate a gold set of somatic mutations. They 
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categorized these variants into different tiers, according to the difficulty or 

easiness of being detected. The benchmarks presented in the Results section 

(Results - Chapter 2: Study 3) focus on Tier 1, which includes 962 SNVs and 337 

indels with a VAF≥10%, and Tier 4, that contains additional mutations with low 

VAF and ambiguous local alignments (1,263 SNVs and 347 indels), to calculate the 

recall and precision, respectively. We used the downsampled WGS at 30x that 

were used within the PCAWG project to match the coverage of the ongoing 

projects.  

As there were not any other published datasets with such a wide 

characterization of somatic variants, we complemented our benchmarks with 

other real data approaches including orthogonal validations using high coverage 

gene panels. We used the data from two previously published studies that 

performed gene panel sequencing on a subset of diffuse large B-cell lymphoma 

(DLBCL) WES samples that were part of the MedPerCan project and a number of 

chronic lymphocytic leukemia (CLL) WES and WGS samples that had previously 

been sequenced, respectively (Karube et al., 2018; Nadeu et al., 2018; Puente et 

al., 2015).  

For our evaluations, we used the variants (SNVs and indels) identified in the 

high coverage gene panels as the “true” variants and considered “false” positives 

those mutations seen in the WES/WGS samples within the gene panel territory, 

but not detected in the gene panel results.  

For the CLL series, we used the reported variants directly, while for the 

DLBCL set we re-analyzed the gene panels using the same pipeline that was used 

for CLL as the original publication only reported non-synonymous variants. We 

could evaluate 29 WGS and 64 WES CLL samples on 28 CLL driver genes (Results - 

Chapter 2: Study 2 and Study 3), and 13 WES DLBCL samples on 106 DLBCL driver 
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genes (Results - Chapter 2: Study 2). We used variants with VAF above 10%, as 

gene panels are able to detect low frequency variants that cannot be identified 

by WES or WGS at lower coverages. More details follow in the results’ 

corresponding section (Results - Chapter 2: Study 2 and Study 3).  

The orthogonally validated dataset of DLBCL was also used to assess the 

accuracy of tumor-only analyses. In this case, further filtering based on the 

functional impact was applied. We considered the impact annotation from snpEff  

(Cingolani, Patel, et al., 2012) and selected variants with a “HIGH” or “MODERATE” 

impact, which include disrupting mutations such as in frame or frameshift indels, 

missense SNVs, stop gained, or start loss variants. 

3.2.2 Richter transformation study cohort 

As part of the third objective of the thesis, we applied and interpreted the 

results of cancer genomics methodologies. The first study was about Richter 

transformation in CLL (Results - Chapter 3: Study 4). 

A total of 19 patients fulfilling the criteria of RT after pathological revision 

and with good quality samples were included in this study. All of them were 

subjected to whole-genome sequencing. Low purity tumor samples and normal 

samples with high tumor contamination hampering the detection of somatic 

variants were discarded. Integration of multiple omics (genome, epigenome, and 

transcriptome) and resolution levels (bulk and single cell) was available for a 

subset of cases. Besides this CLL-RT cohort, described in more detail below, we 

also included a dataset of 147 previously published WGS of CLL at diagnosis (ICGC-

CLL cohort) and 27 WGS of post-treatment CLL samples (CLL post-treatment 

cohort) for the mutational signature analysis (Figure 42). 
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Figure 42. Summary of the CLL-RT cohort and additional datasets. 19 cases were included in the RT 

study, with multiple samples collected along the course of the disease and analyzed with different 

technologies. Two additional cohorts (bottom) were included in specific analyses (i.e., mutational 

signatures). 

Out of the 19 selected cases of the CLL-RT cohort, three developed RT before 

therapy, while in the other cases the transformation occurred after 

chemoimmunotherapy or after multiple lines of treatment including targeted 

therapies (ibrutinib, duvelisib, idelalisib, and venetoclax) (Table 2). Note that the 

majority of the latter patients received several lines of treatment before the 

transformation.  

Table 2. Treatments that the patients received prior to RT 

Summary of the last treatments prior to RT  
Treatment  None CIT Ibrutinib Duvelisib Idelalisib Venetoclax 

# Cases 3 6 6 2 1 1 

 

In all but one case we collected and analyzed multiple synchronous and/or 

longitudinal samples (range 2-8 samples/case), which were obtained at different 

time points of the disease from CLL diagnosis to RT. For 12 cases we had a 
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complete WGS data set (germline, CLL, and RT samples were analyzed), while the 

previous CLL sample or germline material was not available for 1 and 6 cases, 

respectively. Bulk RNA-seq, methylation arrays, and ATAC-seq/H3K27ac were 

available for 6 non-overlapping cases. Single-cell DNA and single-cell RNA 

sequencing were available for 4 and 5 cases, respectively (Figure 43 and Figure 

44).  

Regarding the types of transformation, 17 cases had a diffuse large B-cell 

lymphoma-type (RT-DLBCL), 1 case had a plasmablastic lymphoma transformation 

(RT-PBL, case 1669), and 1 developed a prolymphocytic leukemia transformation 

(RT-PLL, case 3299). For simplicity, all cases were analyzed together as RT (Figure 

44). 

 

Figure 43. Details of the cases included in the CLL-RT cohort and available data types. Each case is 

represented by the upper numbers, while each column represents a time point. The first 5 rows 

indicate the last therapy prior to RT, the number of therapies the patient received before the 

corresponding sample, whether RT and other samples are longitudinal or spatial, the IGHV 

mutational status, and the diagnosis at the time of the corresponding sample. The 8 lower rows 

indicate whether the material and analyses are available or not at each time point. 
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Figure 44. Cohort studied and types of Richter transformation. Representation of the disease course 

of the patients included in the study. Each sample analyzed, treatment, and date of Richter 

transformation (RT) are depicted. Cases labeled in gray lacked germline DNA. Case 4676 also lacked 

DNA from the previous CLL sample. Cases are grouped based on the therapy received prior to RT in 

three groups: cases developing RT before any treatment, after chemo(immuno)therapy, and after 

targeted therapy. The type of transformation [RT-DLBCL, diffuse large B-cell lymphoma type; RT-PLL, 

prolymphocytic transformation; RT-PBL, plasmablastic transformation] and IGHV mutational status 

are also shown. Additional molecular studies conducted in each case are also depicted. 

Abbreviations: Ale: alemtuzumab; AlloSCT: allogeneic stem cell transplantation; AutoSCT: 

autologous stem cell transplantation; B: bendamustine; Burkimab: rituximab, methotrexate, 

dexametasone, ifosfamide, vincristine, etoposide, cytarabine, doxorubicin and vindesine; C: 

cyclophosphamide; CHOP: cyclophosphamide, doxorubicin, vincristine and prednisone; CLB: 
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chlorambucil; CLB-R: chlorambucil and rituximab; CP: cyclophosphamide and prednisone; F: 

fludarabine; FCM: fludarabine, cyclophosphamide and mitoxantrone; G-GemOx: rituximab, 

gemcitabine, and oxaliplatin; LR-ESHAP: lenalidomide, rituximab, etoposide, methyl-prednisolone, 

cytarabine and cisplatin; M: mitoxantrone; Prd: prednisone; R: rituximab; R-B: rituximab and 

bendamustine; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone; R-

CVP: rituximab, cyclophosphamide, vincristine and prednisone; R-DHAP: rituximab, dexamethasone, 

cytarabine and cisplatin; R-ESHAP: rituximab, etoposide, methyl-prednisolone, cytarabine and 

cisplatin; RFC: fludarabine, cyclophosphamide and rituximab; RFCM: rituximab, fludarabine, 

cyclophosphamide and mitoxantrone; R-ICE: rituximab, ifosfamide, carboplatin and etoposide; TBI: 

total body irradiation. 

3.2.3 Case report of CLL carrying ATM germline variants  

The second study within the third objective of the thesis was a case report 

of a young adult with CLL harboring ATM germline variants (Results - Chapter 3: 

Study 5). To characterize this case, we covered 8 years of genomic evolution from 

CLL diagnosis. 

 

Figure 45. Clinical course and samples analyzed. Samples are represented by small circles. 

Sequencing with different technologies (i.e., WGS and scDNA-seq) are indicated by colors. The 

treatments that the patient received along the course of the disease are annotated. FCR: fludarabine, 

cyclophosphamide and rituximab. 

Samples were available at 4 time points, and whole-genome sequencing was 

performed for all of them at 30x. The germline and the tumor sample at diagnosis  

(T1) were included in our previous ICGC-CLL study (Puente et al., 2015), and the 
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coverage of T1 was increased to 60x during the current study to improve the 

detection of mutations. Adequate samples for scDNA-seq were available for the 

last three time points (Figure 45). 

3.3 Bioinformatics analysis 

NGS analysis starts with the sample preparation, followed by the sequencing 

procedures, the primary data analysis, the downstream analysis, and the final 

interpretation of the results. Bioinformatics analysis covers all data processing, 

from the FASTQ files obtained after sequencing, their alignment, and the 

detection of mutations, to the downstream analysis, which is meant to provide 

for the biological interpretation of the results (Figure 46). 

The next subsections describe each of the steps of the primary and 

downstream analyses together with a brief description of the methods that have 

been used during this thesis.  

 

Figure 46. Bioinformatics analysis for cancer genomics. Main steps to analyze tumor genomes: 

alignment of read files and identification of somatic variants are the main steps of the primary 

analysis, which outputs are used for the downstream analysis. 
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3.3.1 Alignment 

Sequencing yields a collection of reads, encoded with the 4-letter alphabet 

(A, C, G, and T) and stored in FASTQ files. These DNA sequences are mapped to a 

reference genome to find out their locus. The alignment process is not 

straightforward as it is shadowed by uncertainties concerning repetitive regions, 

multi-mapping, and alterations inherent in tumor samples. BWA (H. Li & Durbin, 

2009) is the most widely used aligner, specially its BWA-MEM algorithm. This 

program was used to map the reads to the human reference genome (GRCh37) 

in all the studies of the thesis. The output was converted to BAM and sorted using 

biobambam2, a suite for processing BAM files. Optical or PCR duplicates were 

flagged by the same package. Finally, SAMtools (Danecek et al., 2021), a single 

executable that offers multiple commands for working on alignment data, was 

used to index the final BAM file (Table 3). BAM files were subjected to base quality 

score recalibration (BQSR) upon recommendation of some variant callers (i.e., 

Mutect2, MuSE, and lancet). GATK’s BQSR was used to perform this step. Program 

versions and repositories are detailed in Table 3. 

An additional tool was included for PDX samples in order to filter out reads 

coming from mouse DNA. Disambiguate is an algorithm that separates sequencing 

reads of two species derived from grafted samples. It operates on previous 

alignments of all reads against the reference genomes of the two species and 

disambiguates their source. Applying this process prior to variant calling, or other 

analyses, allows more accurate results as they are not confounded by cross-

species contamination.  

Table 3. Program versions used for alignment. 

Program Version Reference 
BWA (BWA-MEM) v0.7.15 https://github.com/lh3/bwa 
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Biobambam2 v2.0.65 https://gitlab.com/german.tischler/biobambam2 

SAMtools  v1.9 https://github.com/samtools/samtools 

GATK v4.0.2.0 https://github.com/broadinstitute/gatk 

Disambiguate v1.0.0 https://github.com/AstraZeneca-NGS/disambiguate 

 

3.3.2 Variant calling 

Variant calling (VC) is the process that identifies or “calls” variants in the 

genome. In essence, it determines the differences between the analyzed sample 

and the reference genome. Variant discovery can be specialized in germline or 

somatic variants, or in particular types of variants, including SNVs, indels, SVs, or 

CNAs (see Introduction - section 1.2.3.2 and Figure 7). Strategies to tackle each 

kind of alteration differ, and tools are sometimes focused on one or two single 

classes. Somatic variant calling requires additional considerations and is more 

difficult than germline variant calling, where all variants are expected at a high 

frequency (50% or 100% of the reads). Ideally, the analysis of somatic variants in 

tumors uses an additional matched normal sample to distinguish somatic variants 

from germline variants, that is, selecting the mutations that are present in the 

tumor but not in the normal sample. Furthermore, tumor purity and 

heterogeneity have a direct impact on the frequency of the variants, which 

become more difficult to detect as the number of supporting reads decreases (see 

Introduction - section 1.3.2 and Figure 17).  

Variant calling tools utilize heuristic, Bayesian, and other sophisticated 

probabilistic models to infer statistical correctness of candidate variants. 

Confidence of the calls can be based on mapping quality scores, base quality 

scores, strand bias, and GC content, among others.  In the next section, there is a 

brief description of the methods used within the thesis, and their scope is 

summarized in Table 4.  
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3.3.2.1 Tools 

Due to the great variety of variant callers generated by the community, the 

selection of VC tools becomes the first challenge for the analysis of genomes. As 

many variant callers are designed for a specific range of variants, the complete 

analysis of genomes requires the combination of several callers. In addition, since 

each caller has its strong and weak points, the combination of callers also helps 

remove false calls when filtering by a minimum number of callers that identified 

a certain variant. Among the available programs, we have chosen a selection of 

those that are most widely used, and those that have been selected by large-scale 

initiatives like the PCAWG or the TCGA (Campbell et al., 2020; Ellrott et al., 2018). 

Overall, they cover all types of variants and support WES and WGS analyses (Table 

4). 

Table 4. Variant calling tools and types of variants they detect. 

Program Variants Sequencing 

HaplotypeCaller (v4.0.2.0) SNV/indel (germline) WES/WGS 

cgpCaVEMan (v1.12.0) SNV WES/WGS 

Mutect2 (v4.0.2.0) SNV/indel WES/WGS 

MuSE (vv1.0rc) SNV WES/WGS 

Sidrón SNV/indel WES/WGS 

Platypus (v0.8.1) SNV/indel WES/WGS 

Lancet (v1.0.5) SNV/indel WES/WGS 

Strelka2 (v2.8.2) SNV/indel WES/WGS 

cgpPindel (v2.2.3) indel WES/WGS 

SvABA (v7.0.2) indel/SV WES/WGS 

SMuFin SNV/indel/SV WES/WGS 

cgpBattenberg (v3.2.2) CNA WGS 

ascatNgs (v4.1.0) CNA WGS 

Facets (v0.5.14) CNA WES/WGS 

BRASS (v6.0.5) SV WGS 

Delly2 (v0.8.1) SV WGS 

CNVkit (v0.9.3) CNA WES/WGS 
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HaplotypeCaller (McKenna et al., 2010) is a germline variant caller of short 

variants (SNVs and indels) from GATK. It performs local assembly of all reads in 

each region of the genome with potential variation to identify all possible 

haplotypes. Next, it realigns each haplotype against the reference haplotype to 

determine potentially variant sites. To determine the likelihood of the haplotypes 

given the read data, it performs a pairwise alignment of each read against each 

haplotype with the PairHMM algorithm. These likelihoods are input to a 

probabilistic model to assess the likelihood of variants implied by the assembled 

haplotypes. For each potentially variant site, the Bayes’ rule is applied to calculate 

the posterior likelihoods of each genotype given the read data and the most likely 

is selected. 

cgpCaVEMan (Jones et al., 2016) is a wrapper of the CaVEMan algorithm, an 

expectation maximization-based somatic substitution-detection method. It 

generates SNV calls, considering copy number segments, purity, and ploidy 

information. It can be combined with a set of validated post-hoc filters, including 

problematic regions based on the UCSC High Seq Depth track, a panel of normals, 

and germline indels called by cgpPindel, among others, to improve recall and 

positive predictive value.  

MuTect2 (McKenna et al., 2010) is one of the most popular tools and is part 

of GATK. It performs local assembly of haplotypes and uses a Bayesian somatic 

genotyping model, based on the HaplotypeCaller machinery, to call somatic short 

mutations (SNVs and indels). MuTect2 filters variants based on mapping quality, 

strand bias, read position bias, and panels of normals, among others, to eliminate 

artifacts due to library preparation, sequencing, and mapping. 

MuSE (Fan et al., 2016) is a statistical approach for SNV calling based on a 

Markov substitution model for molecular evolution that models the evolution of 
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the allelic composition of the normal and tumor samples at each reference base. 

It uses a sample-specific error model to identify tier-based cutoffs (PASS, Tiers 1 

to 5) and improve overall accuracy.  The input BAM files are recommended to be 

processed following the GATK Best Practices, including the recalibration of best 

quality scores. 

Sidrón is a proprietary software to detect SNVs that implements a 

probabilistic binomial model that uses genotyping data to calibrate sequencing 

error per sample (Puente et al., 2011). This program was run at the developer’s 

premises by collaborators. 

Platypus (Rimmer et al., 2014) uses local realignment of reads and local 

assembly to detect SNPs, MNPs, and short indels (deletions up to several kb, using 

the assembly option). Identification of somatic variants requires custom filtering, 

we used the somaticMutationDetector.py script to identify somatic indels called 

by Platypus with a minimum posterior of 1. 

Lancet (Narzisi et al., 2018) is another somatic variant caller for short read 

data that was recently published at the time. It can detect SNVs and indels, 

including deletions up to 400bp and insertions shorter than 200bp. It uses a 

localized micro-assembly strategy based on the colored de Bruijn graph assembly 

paradigm that jointly analyzes tumor and normal reads within the same graph. 

Due to its pure local-assembly strategy, it currently has longer runtimes than 

other methods based on alignment. 

Strelka2 (S. Kim et al., 2018) is a method for germline and somatic small 

variant calling, including SNVs and indels. It uses a novel mixture-model-based 

estimation, complemented by a final empirical variant scoring (EVS) step, which is 

based on machine-learning variant classification approaches. 
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cgpPindel (Raine et al., 2015) is a customized version of pindel, updated to 

support split read mappings by BWA-MEM and to provide additional post calling 

filtering, including a panel of aberrant sites and UCSC High Seq Depth regions. 

SvABA (structural variation analysis by assembly) (Wala et al., 2018) is a tool 

to efficiently detect SVs and indels genome-wide. It performs local assembly to 

create consensus contigs from sequence reads that diverge from the reference 

genome, i.e., gapped, clipped, unmapped, and discordant read pairs, and 

compares them to the reference to annotate the variants. 

SMuFin (Somatic MUtation FINder) (Moncunill et al., 2014) is a reference-

free method capable of identifying multiple types of somatic variants from the 

direct comparison of tumor samples with their matched normal sample. SMuFin 

can detect SNVs, indels, and SVs in a single run. This tool was run by Montserrat 

Puiggròs from the Computational Genomics group at BSC. 

cgpBattenberg is a wrapper of the Battenberg algorithm (Nik-Zainal, Van Loo, 

et al., 2012), which identifies subclonal copy number from whole-genome 

sequencing based on allele ratios by haplotype rather than individual SNPs. 

ascatNgs (Raine et al., 2016) is a wrapper of the ASCAT (Allele-Specific Copy 

number Analysis of Tumors) method, which derives copy number profiles of 

tumor samples, considering normal cell admixture as well as tumor aneuploidy. 

Facets (Shen & Seshan, 2016) is an algorithm to estimate the fraction and 

allele specific copy number states corrected for tumor purity, ploidy, and clonal 

heterogeneity from matched tumor and normal sequencing, including WGS, WES, 

and targeted sequencing. 

BRASS (Nik-Zainal, Van Loo, et al., 2012) determines potential 

rearrangement breakpoints from pair-end sequencing. It considers read pairs 
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where both ends map but are not marked as properly paired, groups them based 

on mapped locations, and performs an assembly. 

Delly2 (Rausch et al., 2012) is a SV prediction method to discover, genotype, 

and visualize all kinds of structural variants, including deletions, tandem 

duplications, inversions, and translocations, based on read-depth, paired-end, 

and split-read information. It can use a panel of normal samples to filter out 

artifactual false positives and germline SVs. 

CNVkit (Talevich et al., 2016) is a Python library and command-line software 

toolkit to infer and visualize copy number alterations and it was designed for use 

with hybrid capture, including both WES and target panels.  It uses both the 

targeted reads and the off-target reads to infer copy number events evenly across 

the genome. It can use a pooled reference to determine somatic copy number 

alterations when the matched normal sample is unavailable. Filtering and merging 

strategies, developed by Dr. Ferran Nadeu from IDIBAPS, were applied to the 

results of the Richter transformation study (Results – Chapter 3: Study 4): CNAs 

smaller than 500kb or with an absolute log2 copy ratio (log2CR) <0.3 were 

removed. CNAs within any of the immunoglobulin loci were removed. CNAs were 

classified as gains if log2CR >0.3, deletions if log2CR <(-0.3), high-copy gains if 

log2CR >1.1, and homozygous deletions if log2CR <(-1.1). Note that the log2CR 

cutoff was set to 0.15 for two samples with low tumor cell content (102-01-01TD 

and 4690-03-01BD). To avoid the high segmentation of the CNA profile obtained 

using CNVkit, we merged CNAs belonging to the same class if they were separated 

by <1Mb and with an absolute log2CR difference <0.25. 

An increasingly popular approach for variant calling is the combination of 

different tools, each one with its own strengths and weaknesses, to provide a 

consensus result that outperforms all integrating methods. The final calls can be 
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the union, intersection, or selection of variants detected by a minimum number 

of programs or machine learning strategies. Prior to combining the results, 

individual calls can be filtered according to custom criteria (e.g., allele 

frequencies, high-confidence regions, or other quality-related metrics) to improve 

performance and, next, they should be normalized in such a way that they can be 

compared to the results of the other methods. Finally, equivalent variants from 

different programs are merged together and those fulfilling the merging strategy 

criteria will form the final list of variant calling results. 

3.3.2.2 Filtering of variant calling results  

Each variant caller has its own statistics and conventions to distinguish true 

variants from sequencing errors or other artifacts, and usually provides additional 

annotations on which they based their findings, together with variant-related 

features, such as the variant allele frequency. All this information can be used to 

fine-tune the original results from the program, for instance to achieve higher 

precision at the expense of losing some sensitivity, or to apply more stringent 

criteria in problematic samples. An illustrative exploration of this kind of filtering 

can be seen in Results - Chapter 2: Study 3. 

In Study 3, we applied the following filters for the benchmarking: 

For SNVs: 

- CaVEMan: CLPM [number of soft clipped bases in variant allele reads] >0 and 

ASMD [median alignment score of variant allele reads] <90, <120, or <140 for 

sequencing read lengths of 100, 125, or 150 bp, respectively 

- Mutect2: MMQ [median mapping quality of supporting reads] <60 

- Strelka2: SomaticEVS [somatic Empirical Variant Score] <17, MQ [RMS 

mapping quality] <60, and MQ0 [total mapping quality zero reads] >0 
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- Lancet: FETS [phred-scaled p-value of the Fisher's exact test for tumor-normal 

allele counts (right-sided)] <10 and SB [phred-scaled strand bias of the Fisher's 

exact test (two-sided)] <4 

For indels: 

- Mutect2: MMQ [median mapping quality of supporting reads] <55 

- Strelka2: SomaticEVS [somatic Empirical Variant Score] <0, MQ [RMS mapping 

quality] <55, and MQ0 [total mapping quality zero reads] >0 

- Lancet: FETS [phred-scaled p-value of the Fisher's exact test for tumor-normal 

allele counts (right-sided)] <10 and SB [phred-scaled strand bias of the Fisher's 

exact test (two-sided)] <4 

- Platypus: MQ [root mean square of mapping qualities of reads at the variant 

position] < 55 

- SvABA: MAPQ [mapping quality from BWA-MEM of the assembled contig] <55 

For SVs: 

- SvABA: MAPQ [mapping quality from BWA-MEM of the assembled contig] <60 

- Delly2: MAPQ [median mapping quality of paired ends] < 60 

- Brass: BAS [brass assembly score: a maximum score of 100 indicates a perfect 

pattern of 5 vertices in Velvet's de Bruijn graph] < 90 

In Studies 4 and 5, we applied very similar filters: 

SNVs detected by CaVEMan with CLPM>0 and ASMD values <90, <120, or 

<140 for sequencing read lengths of 100, 125, or 150 bp, respectively, were 

excluded. Variants called by Mutect2 with MMQ<60 were eliminated.  

Indels variants with MMQ<60, MQ<60, and MAPQ<60 identified by Mutect2, 

Platypus, and SvABA, respectively, were removed.  
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SVs were filtered out if they had BAS<90 for BRASS or MAPQ<60 for SvABA 

and Delly2.  

3.3.2.3 Merging and consensus variant calling results 

To achieve higher agreement among variant callers, we first normalized their 

results to obtain a unified representation of the genetic variants. SNVs were 

normalized and indels were left-aligned and normalized using bcftools (Danecek 

et al., 2021) and intersected using custom scripts. For SVs, a custom script, 

developed by Ana Dueso from the Computational Genomics group at the BSC, was 

used to merge the calls considering a window of 300bp around the breakpoints. 

In the MedPerCan project (see Results - Chapter 2: Study 2), we applied the 

following programs and merging strategies: 

- Somatic SNVs were identified using CaVEMan, Mutect2, MuSE, Strelka2, and 

Lancet. No additional filters were applied, and consensus results retained 

variants called by at least three programs. 

- Somatic indels were called using Pindel, Platypus, Mutect2, Strelka2, Lancet, 

and SvABA. No additional filters were applied, and variants detected by at 

least 3 programs were kept. 

- Germline variants were determined running HaplotypeCaller and applying the 

following filters: read depth <8, fisher strand >25.0, quality by depth <6.0, and 

RMS mapping quality <50.0. 

In Studies 4 and 5 (Results - Chapter 3), we applied the following programs 

and merging strategies for somatic variant calling: 

- SNVs were called using CaVEMan, Mutect2, and MuSE. Filtering was applied 

as previously described, and variants detected by at least two programs 

passing custom filters were kept. 
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- Indels were identified using SMuFin, Pindel, SvABA, and Mutect2. Filtering 

was applied as previously described, and variants detected by at least two 

programs passing custom filters were retained. 

- CNAs were obtained from visual inspection and manual consensus of the 

results of ASCAT, Battenberg, and Genome-wide Human SNP Array 6.0, when 

available. Manual curation of CNAs was done by Ferran Nadeu. CNAs within 

immunoglobulin loci were not considered. 

- SVs were extracted using SMuFin, BRASS, SvABA, and Delly2. Filtering was 

applied to each program as previously described. Variants detected by at least 

two programs and at least one of them passing custom filters were kept. 

IgCaller was used to call SVs within the immunoglobulin regions. All SVs were 

visually inspected using the Integrative Genomics Viewer (IGV) (Robinson et 

al., 2011). 

In the Richter transformation cohort (Results - Chapter 3: Study 4), there were 

special considerations to adapt to the particularities of some cases: 

- For the two cases that underwent allogeneic stem-cell transplant before RT 

(cases 1523 and 4675). We performed variant calling on tumor vs patient’s 

germline and tumor vs donor’s germline in parallel. Next, we intersected both 

results and only kept the variants identified in both analyses in order to filter 

out both the patient- and the donor-specific germline variation. 

- For the cases lacking a normal sample, a restricted tumor-only variant calling 

was applied. SNVs and indels were identified within the coding regions of the 

considered driver genes (see Methods - section 3.3.5). First, mini-BAM files, 

covering only the driver gene regions, were obtained using Picard tools. Next, 

we applied a multi-caller approach using  Mutect2 (GATK, v.4.0.4.0) (McKenna 

et al., 2010), VarScan2 (v2.4.3) (Koboldt et al., 2012), VarDictJava (v1.4) (Lai 

et al., 2016), LoFreq (v2.1.3.1) (Wilm et al., 2012), outLyzer (v1.0) (Muller et 
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al., 2016), and freebayes (v1.1.0, https://github.com/freebayes/freebayes). 

Variants were normalized using bcftools (v1.9) (Danecek et al., 2021) and 

annotated using snpEff/snpSift (v4.3t) (Cingolani, Platts, et al., 2012). Only 

non-synonymous variants that were identified as PASS by ≥2 algorithms were 

considered. Variants reported in 1000 Genome Project, ExAC, or gnomAD 

with a population frequency >1% were removed. This pipeline was developed 

and run by Ferran Nadeu. Finally, we investigated if the resulting variants 

were also present in normal samples of our ICGC database of 506 WES/WGS 

(Puente et al., 2015) and removed them accordingly.  

3.3.2.4 Benchmarking 

Systematic errors and biases can arise from experimental processing of the 

samples in the laboratory, as well as from the application of computational 

methods. Errors can be introduced at all stages: library preparation, sequencing, 

mapping, and variant calling. Sequencing technologies are prone to errors that 

can result in incorrect base calling, subsequently leading to incorrect alignment 

and/or wrong identification of variants (Dohm et al., 2008). Thus, variant calling 

tools implement sophisticated algorithms that try to disentangle true variants 

from methodological artifacts.  

The evaluation of the performance of variant calling individual tools and 

consensus approaches requires benchmarking datasets able to assess their 

accuracy. As mentioned above, these datasets are challenging to identify and to 

incorporate into the studies. Ideally, they should be composed of the usual normal 

and tumor sample pairs together with a list of “truth” variants that have been 

previously validated using orthogonal approaches. Based on this, we can compare 

the variant calling results with the “truth” variants, often referred to as “Golden”, 

and use a collection of metrics to define their efficiency (Figure 47). The variants 
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that are detected by the algorithm under evaluation and are present in the list of 

“truth” or “Golden” variants correspond to the true positives (TP); the variants 

that are identified by the program but are not present in the “truth” set are 

considered false positives (FP); and the variants that are not predicted by the tool 

but are present in the “truth” list are defined as false negatives (FN). Using these 

three values we can determine the recall of the predicted results, which is defined 

as the fraction of all “truth” variants that the caller is able to detect, as well as the 

precision, which measures the fraction of “wrong” or false variants identified by 

the caller. In order to classify and rank variant callers, the community is using the 

F1-score, which corresponds to a harmonic mean of the two previous calculations. 

 

Figure 47. Benchmarking of variant calling results. The predicted variants from the evaluated pipeline 

are compared to the “Truth” variants of the benchmarking dataset (left), and a set of metrics (right) 

are used to define their performance. TP: true positives, FN: false negatives, FP: false positives, S: 

sensitivity, P: precision. 

In the same manner as the merging step, variants must be normalized before 

they can be compared. Both the “truth” and the predicted variants should be 

represented in the same way to accurately verify their concordance. Thus, SNV 

and indel normalization was applied prior to benchmarking, and a window of 

300bp was used for SVs comparison, as their detection can be less accurate and 

programs often cannot determine them with base pair resolution. 
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3.3.3 Quality control 

The quality of the biopsies before the sequencing step also has a great 

impact on the bioinformatics results and seemingly on their biological 

interpretation and downstream decisions. Quality control (QC) should be 

assessed all the way from the FASTQ files to variant calling results, and 

downstream analysis. QC metrics are mainly defined for the primary analysis, but 

cautious biological interpretation of the mathematical or statistical inferences of 

downstream methods should also be considered. There are many tools that are 

used for QC and return sets of metrics that can be grouped into the three main 

data types that are used and produced during the primary analysis: FASTQ files, 

aligned BAM files, and variant calling results, usually in VCF format (Figure 46). A 

brief description of the most popular metrics and programs is exposed below, and 

the versions used within this thesis is detailed in Table 5.  

FastQC stands out as the most widely used tool for QC of FASTQ files. It 

provides a simple way to do some quality control checks on raw sequence data 

coming from high-throughput sequencing (HTS) pipelines, including per base 

sequence quality, per sequence quality scores, per base sequence content, per 

base GC content, per sequence GC content, per base N content, sequence length 

distribution, sequence duplication levels, overrepresented sequences, and kmer 

content. 

Picard is a suite of tools for manipulating HTS data and supports typical 

formats such as SAM/BAM/CRAM and VCF. It includes different programs to 

collect QC metrics from different sequencing data (PCR targeted sequencing, 

WES, WGS, RNA-seq, etc.). It provides one of the most used QC metrics, the mean 

coverage, which indicates the average number of reads covering each position, 

usually excluding low quality, duplicated, and overlapping paired reads, 
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depending on the tool and set parameters. We used the default settings (i.e., 

minimum mapping quality > 20, minimum base quality > 20, and excluding 

duplicates and overlapping bases from paired reads) so that the resulting counts 

include the informative reads for variant calling. The output of the program 

provides extensive information about the excluded reads and the fraction of bases 

that attained a defined set of minimum coverages.  

Conpair (Bergmann et al., 2016) is a method to estimate the concordance 

and contamination for tumor-normal pairs. It provides a fast verification that both 

the normal and tumor samples come from the same patient, as well as cross-

individual contamination level estimation. 

MultiQC (Ewels et al., 2016) is a tool to create a single report from multiple 

tool outputs across multiple samples for easy visualization. It supports many QC 

programs through additional plugins. 

Table 5. Program versions used for quality control. 

Program Version Reference 
FastQC v0.11.5 www.bioinformatics.babraham.ac.uk/projects/fastqc 

Picard v2.10.2 https://broadinstitute.github.io/picard 

Conpair  v1.0 https://github.com/nygenome/Conpair 

MultiQC v1.7 https://github.com/ewels/MultiQC 

 

3.3.4 Variant annotation 

In order to understand the functional impact of mutations, they are usually 

annotated against gene sets to find if they are in a coding region and to determine 

their potential effect when they are in a gene. 

SNVs and indels were annotated using snpEff/snpSift (v4.3t) (Cingolani, 

Patel, et al., 2012; Cingolani, Platts, et al., 2012) using RefSeq as a reference 
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(GRCh37.p13.RefSeq). SnpEff is used for variant annotation and functional impact 

prediction on genes and proteins, while snpSift annotates variants using external 

databases. SVs were annotated using a custom script that annotates gene sets 

within the proximity of break points. A window of 200Kbp was considered 

followed by manual curation. Driver genes in CLL and DLBCL were considered for 

the CLL studies (Results - Chapter 3: Study 4 and Study 5). 

3.3.5 Driver alterations 

In Study 4, driver alterations previously described in CLL (Landau et al., 2015; 

Puente et al., 2015), DLBCL (Chapuy et al., 2018; Karube et al., 2018), or other B-

cell neoplasms were considered as potential drivers in RT. All types of alterations 

(SNVs, indels, CNAs, and SVs) were considered in the definition of drivers. 

Alterations that were recurrent and/or had functional references in the literature 

and that had not been previously reported in RT (Chitalia et al., 2019; De Paoli et 

al., 2013; Fabbri et al., 2013; Klintman et al., 2021) were considered as novel 

drivers in RT.  

3.3.6 Characterization of complex structural rearrangements 

Structural variants are genomic rearrangements that can result in deletions, 

duplications, insertions, inversions, or translocations. Sometimes these 

alterations do not occur independently, but they are rather generated in a single-

hit event.  To better characterize the genomic complexity of our samples, we 

clustered simple SVs into complex events that, potentially, might have emerged 

from one punctuated event. This work was carried out in the Richter 

transformation study (Results - Chapter 3: Study 4). 

First, we classified SVs into deletions, duplications, inversions, and 

translocations according to the variant callers that detected them. Next, 
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inversions and translocations were tagged as reciprocal when both ends of the 

double-stranded DNA break were identified. Finally, we further categorized SVs 

into simple or complex events, which included chromothripsis, chromoplexy, 

templated insertions, breakage-fusion bridge cycles, and kataegis, based on the 

following definitions: 

- Chromothripsis was determined by the presence of seven or more SV 

breakpoints occurring in a single chromosome or seven or more oscillating 

changes between two or three copy number states (Nadeu, Martin-Garcia, et 

al., 2020; Puente et al., 2015), and supported by additional hallmarks (Cortés-

Ciriano et al., 2020; Korbel & Campbell, 2013; Stephens et al., 2011). 

Chromothripsis events were subcategorized according to the number of 

chromosomes involved. 

- Chromoplexy was defined by the presence of translocations reshuffling three 

or more chromosomes and leading to chains of rearrangements (Baca et al., 

2013). A window of 50kb was used to link proximal SVs and identify potential 

chains of rearrangements. 

- Cycles of templated insertions were determined by the presence of segments 

of copy number gains in three or more chromosomes interlinked through 

structural variants (Y. Li et al., 2020; Nadeu, Martin-Garcia, et al., 2020).  

- Breakage-fusion bridge cycles were identified as a series of focal copy number 

increases and fold-back inversions, along with the presence of telomeric 

deletions (Nadeu, Martin-Garcia, et al., 2020).  

- Other complex events defined chains of rearrangements having more than 

two chained SVs and not meeting any of the previous criteria. These events 

were further subclassified based on the number of involved chromosomes. 

- Kataegis was defined as genomic segments having mutation clusters of six or 

more consecutive SNVs with an average inter-mutation distance ≤1 Kb 

(Mayakonda et al., 2018).  
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A preliminary classification was done according to the previous criteria, and 

was further refined by manual curation, including a visual comparison with the 

results of ChainFinder (Baca et al., 2013) and ShatterSeek (Cortés-Ciriano et al., 

2020) used to identify chromoplexia and chromothripsis, respectively. Thanks to 

the multiple longitudinal samples of our study, the presence of the involved 

alterations in each time point of each case was also considered to finalize the 

categorization. 

Driver genes within 25kb of a breakpoint or that fall in a deletion or an 

amplification were annotated to SVs.  

3.3.7 Immunoglobulin gene rearrangements 

IgCaller (Nadeu, Mas-de-les-Valls, et al., 2020) was used to analyze 

immunoglobulin gene rearrangements, including heavy and light chain 

rearrangements as well as class switch recombination from WGS. Based on 

current guidelines (Rosenquist et al., 2017), the sequences obtained from IgCaller 

were used as input of IMGT/V-QUEST (Brochet et al., 2008) to annotate the genes, 

functionality, and IGHV mutational status.  The ARResT/AssignSubsets online tool 

(Bystry et al., 2015) was used to analyze stereotypy. 

3.3.8 Mutational signatures 

Mutational signatures analysis was performed on SNVs classified according 

to their trinucleotide context into 96 categories (Figure 21) and following three 

main steps previously described (Maura, Degasperi, et al., 2019): de novo 

extraction of mutational signatures on all the samples, assignment of the 

extracted signatures into one or more already know mutational signatures (from 

COSMIC or any other resource), and fitting of the identified signatures into each 

of the sample profiles (Figure 48). 
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Figure 48. Strategy for the analysis of mutational signatures. The recommended procedure starts 

with the de novo extraction of mutational signatures, followed by their assignment to already known 

processes (i.e., signatures from COSMIC or literature) based on their cosine similarity (cossim), and 

lastly, the estimation of their contribution to each sample. 

1. De novo extraction of mutational signatures 

First, de novo extraction of mutational signatures is performed to extract 

patterns of variants (i.e., trinucleotide context of SNVs) from input samples. This 

step identifies both known and potentially novel mutational processes that might 

have been active during the tumor’s life.  There are multiple programs that 

implement this task, and most of them are based on a NMF approach (see 

Introduction - section 1.3.4 and Figure 20). To ensure that the results are more 
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robust and not method-dependent, we ran 4 different algorithms: HDP, 

SignatureAnalyzer, SigProfiler, and sigfit. The program versions that were used are 

detailed in Table 6. 

HDP (Hierarchical Dirichlet Process) is a non-NMF-based signature extraction 

method that implements hierarchical Bayesian Dirichlet process. It models 

mutation classes counts across cancer samples and produces a set of 

components, the mutational signatures, with a characteristic distribution over the 

possible mutation categories. Four independent sampling chains were run, each 

initialized with default parameters, followed by 10,000 burn-in iterations, and the 

collection of 200 posterior samples off each chain with 200 iterations between 

each. 

SignatureAnalyzer (Alexandrov et al., 2020) uses a Bayesian variant of NMF 

that allows automatic inference of the optimal number of signatures. It was run 

with default parameters. 

SigProfiler’s SigProfilerExtractor (Alexandrov et al., 2020) uses multiple NMF 

iterations to identify the optimal number of mutational signatures and their 

activities in each sample.  It was run with 1,000 iterations and a maximum of 10 

extracted signatures. 

Sigfit implements a flexible Bayesian inference of mutational signatures. It 

enables simultaneous fitting and extraction of signatures and includes four model 

classes: multinomial, Poisson, normal, and negative binomial. It was run using the 

multinomial model (equivalent to the NMF approach) to extract five signatures 

with 10,000 burn-in iterations and 20,000 sampling iterations. 
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Table 6. Program versions used for mutational signatures analysis. 

Program Version Reference 
HDP v0.1.5 https://github.com/nicolaroberts/hdp 

SignatureAnalyzer v0.0.7 https://software.broadinstitute.org/cancer/cga/msp 

SigProfiler  v1.0.8 https://github.com/AlexandrovLab/SigProfilerExtractor 

sigfit v2.0.0 https://github.com/kgori/sigfit 

 

The extracted signatures among programs, or different cohorts, can be 

slightly different even if they represent the same mutational processes. At the 

same time, the extracted signatures will not be identical to the reference ones, 

which might be inferred from larger cohorts (i.e., PCAWG) and, thus, more robust. 

To diminish these minor differences, the similarity between two signatures is used 

to assign their equivalence, and then the identified reference signatures are used 

in further analyses. To assess the similarity between two signatures A and B of n 

mutation types, the cosine similarity is calculated: 

𝑐𝑜𝑠𝑖𝑛𝑒	𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = 	
∑ 𝐴!𝐵!"
!#$

3∑ 𝐴!%"
!#$ 3∑ 𝐵!%"

!#$

	 

This equation returns values between 0 and 1. When two mutational profiles 

A and B are identical, their cosine similarity will be 1, whereas when they are 

completely independent, it will be 0. In practice, values close to 1 are used to 

consider equivalent mutational signatures. 

2. Assignment to reference signatures 

After the de novo extraction of mutational signatures, the resulting 

signatures are assigned to already known patterns (i.e., to the COSMIC catalog of 

mutational signatures and other published results). This assignment is done based 

on their cosine similarity, and can be done on a one-to-one bases, or require the 
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deconvolution of the extracted signature into two or more of the reference ones. 

Finally, it can also happen that an identified signature is a split of a reference one, 

which would be composed by multiple extracted signatures. 

We considered that two signatures are the same if their cosine similarity is 

greater than 0.85. Extracted signatures that could not be assigned to any 

reference signature were decomposed into multiple reference signatures using a 

previously described expectation maximization (EM) algorithm (Lee-Six et al., 

2019). The EM algorithm was first run on the set of reference signatures that had 

already been identified and, next, on the whole set of reference signatures only 

for the signatures that could not be properly deconvoluted on the first try. 

Signatures that could not be recognized from COSMIC (v3.2) or other known 

mutational processes (de Kanter et al., 2021; Kucab et al., 2019) were considered 

novel. 

3. Fitting of the mutation catalogs and the identified signatures 

The fitting process estimates the contribution of the identified signatures, 

which can be novel processes or reference signatures, in each sample. This purely 

mathematical calculation tends to overfit the results, leading to the signature 

bleeding effect, where all signatures might be assigned to all samples. Therefore, 

some prior knowledge about the mutational processes operating in the studied 

cohort is crucial.  

We have implemented a refined fitting algorithm (Figure 49) based on 

previous studies (Alexandrov et al., 2020; Maura, Degasperi, et al., 2019). Explicit 

guidance takes into account previous biological knowledge to minimize overfitting 

of signatures (false positives) as well as missing signatures (false negatives). The 

fitting function is applied to one sample at a time, which makes it reproducible 
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regardless of the other samples in the cohort. The contribution of each identified 

signature (reference or novel) in each sample was measured using 

MutationalPatterns (v3.0.1).  

 

Figure 49. Fitting of mutational signatures. This strategy calculates the contribution of a set of 

signatures to mutation catalogs from a group of samples, represented in a mutation matrix. Next, it 

re-evaluates each sample, removing the less contributing signatures (below a set threshold) to avoid 

signature bleeding. Finally, it also accounts for missed signatures that are known to be present in the 

sample. 

To avoid inter-sample bleeding, we iteratively removed the less contributing 

signature if it reduced the cosine similarity below a set threshold (0.01). To find 

the less contributing signature we iterated over all possible signatures, removed 

one signature at a time, and recalculated the cosine similarity with the new fitting 

including the remaining signatures. This process was repeated, removing one 

signature after another, until no signatures could be removed below the 

threshold. This method cleans up low-contribution signatures, which might 

represent false positives. SBS1 and SBS5 have been reported in all normal and 

tumor samples, as they represent clock-like processes that correlate with the age 

of individuals and can serve as a cell division/mitotic clock (SBS1). As such, they 

were always included, and were reassigned if they happened to be removed in 
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the previous iterations and if they improved the cosine similarity, as previously 

advised (Alexandrov et al., 2020; Maura, Degasperi, et al., 2019). Similarly, SBS9 

was added in M-CLL samples if the addition improved the cosine similarity, as it is 

known to be active in mutated cases of CLL. 

As a final step, mSigAct (v2.1.1) (Ng et al., 2017) was used to account for low-

contribution mutational signatures. It can assess if the addition of a mutational 

signature is statistically significant. In particular, it was used in the Richter 

transformation study (Results - Chapter 3: Study 4) to assess the contribution of 

SBS-melphalan, a previously described signature related to Melphalan treatment 

(Maura et al., 2021). 

The analysis of mutational signatures in the Richter transformation study 

(Results - Chapter 3: Study 4) included further work and considerations that are 

explained below. 

To increase the sample size to analyze mutational signatures, we integrated 

the mutations identified in the CLL-RT cohort together with those of 147 CLL 

samples published before (Puente et al., 2015). Note that all these 147 additional 

CLL genomes have been re-analyzed using our current bioinformatic pipeline for 

harmonization purposes. 

We used a principal components analysis (PCA) to simplify the mutational 

profiles of CLL and RT into two dimensions. Dimensionality reduction was 

performed on the 96 classes of point mutations integrating the ICGC-CLL WGS 

cohort, the SNVs detected in the first CLL (time point 1) and RT samples of the 

same patient from the RT-CLL cohort, and the CLL post-treatment cohort. The 

percentage of SNVs assigned to each category in each sample was used to obtain 

the PCA. 



 

 135 

Careful review of the signatures extracted led us to refine the previous 

assignment procedure in two cases: 1) we combined two HDP signatures that 

together constituted SBS5 to avoid splitting of signatures, and 2) APOBEC 

signatures (SBS2 and SBS13) were favored to be assigned to one of the signatures 

extracted by HDP and SignatureAnalyzer although it was not the best EM solution. 

The reasoning behind the latter exception is that these signatures were only 

acting in one of the samples analyzed, which impaired a more precise extraction 

of the signatures.  

Signatures extracted by only one program, that were present in ≤3 samples, 

and had striking one/few-peak profiles never been described before, were 

considered artifacts. This removed 7 signatures privately extracted by HDP. 

The novel SBS-RT extracted by HDP was considered for downstream analyses 

since it had less background noise than the one extracted by SignatureAnalyzer, 

favoring a higher specificity during the fitting step. 

The fitting of signatures to the mutational profile at the level of subclones 

followed additional considerations:  only the signatures that were found to be 

present in the corresponding sample were used, and the final step of adding SBS9 

in M-CLL samples was skipped to avoid its addition in multiple subclones with low 

evidence. 

mSigAct was used to account for mutational signatures that might have been 

missed due to low number of mutations and/or samples. Two cases in our study 

received Melphalan, which has an associated mutational signature (Maura et al., 

2021; Rustad et al., 2020). Although this signature could not be extracted from 

our cohort, probably due to low incidence, we included it in the fitting step, as we 

found it was significantly present in some of our samples using mSigAct.  
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Clustered mutational signatures were extracted from clustered mutations. 

The set of clustered mutations was built on mutations with an inter-distance 

below 1,000 bp, as previously described (Mayakonda et al., 2018).  

Mutational signature transcriptional and replication strand bias analyses 

were performed using the MutationalPatterns R package, which performs a 

Poisson test for strand asymmetry in any of the 96 mutation types (Rustad et al., 

2020). Replication strand was annotated based on the left or right replication 

direction of the timing transition regions previously described (Haradhvala et al., 

2016). The transcriptional strand was annotated using the 

TxDb.Hsapiens.UCSC.hg19.knownGene R package. The main peaks of the SBS-RT 

signature were used to determine if there was any evidence of replication and/or 

transcriptional strand bias associated with the SBS-RT. 

We assessed the contribution of SBS-RT to coding mutations (SNVs) in RT 

subclones (also including tumor-only cases in which the CLL sample was used as  

germline) by calculating the probability that a given mutation was caused by SBS-

RT. To perform this calculation, we considered the signatures present in the 

subclone/sample and their signature profile, as previously described (Yang et al., 

2021). 

The reference epigenome of CLL (Beekman et al., 2018) was used to explore 

the contribution of the different mutational processes in the different regulatory 

regions of the genome. To that aim, we simplified the described chromatin states 

in four categories: heterochromatin [H3K9me3_Repressed (E10), 

Heterochromatin Low_Signal (E11)], polycomb [Posied_Promoter (E4), 

H3K27me3_Repressed (E12)), enhancer/promoter [Active_Promoter (E1), 

Strong_Enhancer1 (E2), Weak_Promoter (E3), Weak_Enhancer (E5), 

Strong_Enhancer (E6))], and transcription [Transcription_Transition (E7), 
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Weak_Transcription (E8), Transcription_Elongation (E9)]. Besides, we utilized the 

high-resolution genomic replication timing data from lymphoblastoid cell lines to 

map the activity of mutational processes in early/late replication regions of the 

genome (Koren et al., 2012). We lifted over from hg18 to hg19 the replication 

timing data from the original publication and determined peaks/valleys of 

early/late replication as those regions of ≥1 Kb with absolute replication timing 

>0.5. All SNVs of the CLL and RT subclones (the latter including also those 

mutations identified in the tumor-only cases in which the CLL sample was used as 

germline) were classified in any of the four defined chromatin states and 

early/late replication regions. A cutoff of 0.005 was used to remove the less 

contributing signature during the fitting step instead of the 0.01 applied during 

the analysis of mutational signatures per sample/subclone. Only the signatures 

that were identified in the CLL and RT subclones were considered when analyzing 

the processes active in CLL and RT, respectively. An enrichment of SBS-RT 

mutations in any of the defined categories was tested using a log2-fold change 

between the observed and expected number of SBS-RT mutations per region 

based on their length. 

The mutational signatures analysis of the case report (Results - Chapter 3: 

Study 5) did not include the extraction step, as the sample size was small. Instead, 

COSMIC mutational signatures known to be found in CLL were considered (SBS1, 

SBS5, SBS8, and SBS9) (Alexandrov et al., 2020; Kasar et al., 2015; Puente et al., 

2011). We measured their contribution into each identified subclone using the 

previously described fitting approach and iteratively removing the less 

contributing signature if removal of the signature decreased the cosine similarity 

between the original and reconstructed 96-profile less than 0.01. 
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3.3.9 Subclonal architecture and clonal evolution 

Massively parallel sequencing data can be used to characterize tumors’ intra-

tumor heterogeneity, reconstruct their subclonal architecture, and dissect the 

evolutionary trajectories of the disease. Variant calling of somatic mutations in 

bulk samples can give information on the prevalence of each variant (see 

Introduction - section 1.3.2). These frequencies can be used to infer the events 

and mutational processes that came first, and those that are acquired later during 

the disease evolution (Landau et al., 2013; McGranahan et al., 2015; Nik-Zainal, 

Van Loo, et al., 2012).  

Each tumor sample represents a “snapshot” taken along a temporal and 

spatial axis, which can be used to characterize the tumor’s alterations at a specific 

moment. On top of that, the frequency at which these mutations are identified 

within this finite time point can be used to reveal the temporal order of acquisition 

of these events (Figure 50). This reasoning is mainly based on SNVs, which are 

easier to detect and, thus, more reliable. The VAF of a mutation 𝑖  is calculated as 

the fraction of reads that support the mutated allele: 

𝑉𝐴𝐹! =
𝑀𝑢𝑡𝑎𝑡𝑒𝑑	𝑟𝑒𝑎𝑑𝑠!
𝑇𝑜𝑡𝑎𝑙	𝑟𝑒𝑎𝑑𝑠!

	 

Next, the VAF is adjusted by the local copy number (𝑁&) and tumor purity 

(𝑝), the fraction of tumor cells within the sample. This gives an estimate of the 

fraction of tumor cells carrying the mutation, the cancer cell fraction (CCF).  The 

following formula can be used to calculate the CCF of a mutation 𝑖 (Dentro et al., 

2017): 

𝐶𝐶𝐹! =
𝑉𝐴𝐹!
𝑚!𝑝

[𝑝𝑁&,(,! + (1 − 𝑝)𝑁&,",!] 
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Where 𝑁&,(,!  is the number of chromosome copies in tumor cells at locus 𝑖, 

𝑁&,",!  is the number of chromosome copies in normal cells at locus 𝑖, usually 2, 

and 𝑚!  is the mutation multiplicity. 

These values can be used to classify variants as clonal, when they are present 

in all tumor cells, or subclonal, when they are only present in a portion of tumor 

cells. Clonal mutations represent early events, as they occurred at, or prior to, the 

most recent clonal expansion. Conversely, subclonal mutations represent later 

events. 

 

Figure 50. Strategy to infer the timing of somatic events from bulk sequencing. Frequencies of 

somatic mutations (represented by green and blue small rectangles) can be used to determine their 

clonality and their relative timing. 

We can also go one step further, and use the CCF of all variants within a 

sample to determine its subclonal architecture (Dentro et al., 2017).  Clustering 

of CCF can identify clusters of mutations with similar frequencies that estimate 

the distinct tumor cell subpopulations that are present at the time of sampling. 

Next, the phylogeny among subclones can be inferred from the CCF of each 

cluster, or subclone. The trunk constitutes the set of mutations that are shared by 

all cells, the founding clone, and the branches represent the variants that are 
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acquired later during tumor evolution and correspond to subclonal diversification 

from the parental clone (Figure 51). 

 

Figure 51. Subclonal reconstruction based on clustering of CCF. The subclonal architecture of tumors 

can be inferred from the clusters of mutations with similar CCF (left). The phylogeny of the clusters 

can be inferred from their CCF and it is represented as a tree (right), whose branches’ length is 

proportional to the number of mutations within that cluster. 

Subclonal reconstruction based on single-sample analyses has limitations 

and can underestimate ITH (A. Davis et al., 2017; Dentro et al., 2021). Variants 

identified as clonal in one sample might be subclonal in another spatial sample 

from the same patient. Temporarily, multiple samples can also dissect clusters of 

mutations that might have similar frequencies at one time point but diverge 

during tumor evolution (Figure 52).  

Comprehensive spatial and/or longitudinal studies can yield more accurate 

ITH assessment and, thus, more reliable insights into tumor composition and 

evolution. However, as in any other NGS analysis, previous steps can introduce 

errors that can influence posterior analyses. Sequencing, alignment, and variant 

calling can drag uncertainties into the clustering of subclones and the inference 

of their phylogenetic relationship. Moreover, the VAF of SNVs can be noisy and 

influenced by local sequencing depth, especially in low coverage samples, where 
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the difference of one mutated read can significantly vary its VAF and, therefore, 

its CCF. To account for this variability, a binomial distribution can be used to model 

this noise and capture the effect of copy number state, read depth, and variant 

frequency. 

 

Figure 52. Subclonal reconstruction using multiple time points. Multiple samples can better estimate 

the subclonal architecture of tumors, dissecting subclones that might have similar frequencies at one 

time point (blue subclone in Time point 1) but that differ during tumor evolution (blue dashed 

subclones in Time point 2).  

The subclonal architecture of tumor longitudinal samples in Study 4 and 

Study 5 was reconstructed from WGS data using a Bayesian clustering method 

named DPClust in the PCAWG project (Bolli et al., 2014; Dentro et al., 2017; 

Maura, Bolli, et al., 2019; Nik-Zainal, Van Loo, et al., 2012). It uses a hierarchical 

Bayesian Dirichlet process to model the mutations as deriving from an unknown 

number of clusters, or subclones. The properties of the clusters, the fraction of 
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tumor cells they represent, and the number of mutations they contribute, are also 

unknown. This approach can jointly estimate all unknown parameters. A binomial 

distribution models the mutated reads and accounts for read sampling variation 

while integrating copy number states and tumor purities. A Markov Chain Monte 

Carlo (MCMC) is used to infer putative subclones, to assign mutations to 

subclones, and to estimate the subclone frequencies in each sample. The MCMC 

samples were run for 10,000 iterations, and the first 5,000 were discarded.  

The phylogenetic ordering of the subclones was inferred from the subclone 

frequencies in each sequential sample following the “pigeonhole principle”, as 

previously described (Maura, Bolli, et al., 2019). This principle states that the sum 

of CCF of branching subclones should not be greater than the parental clone, 

assuming the infinite sites hypothesis (mutations occur only once and never 

revert to wild type). In linear evolution, the smaller subclone must be a 

descendant of the bigger subclone. For any possible subclone phylogeny, the 

pigeon principle must be followed in each sample. In multi-sample approaches, 

this further constrains the feasible relationships between subclones. A tolerated 

error can be introduced to make these principles more permissible for noisy data. 

We used values between 0.001 and 0.05 to account for each case’s variability. 

Clusters with less than 100 (Study 4), 50 (Study 5), or not assigned to the 

reconstructed phylogenetic tree were excluded. The length of each tree branch 

in the phylogeny is proportional to the number of mutations assigned to the 

corresponding subclone. TimeScape R package (v1.6.0) was used to plot the fish 

plots that show the clonal evolution of tumors. 

3.3.10 High-coverage, UMI-based NGS 

Data analysis was performed following manufacturer’s recommendations. 

Briefly, paired reads were trimmed using cutadapt (Martin, 2011). Trimmed 
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FASTQ reads were converted to unmapped BAM using Picard's FastqToSam tool. 

UMI information was extracted and stored as a tag using fgbio.jar 

ExtractUmisFromBam. Template reads were converted to FASTQ with Picard's 

SamToFastq. Next, template reads were mapped against the human reference 

genome (GRCh37) and the reads were merged with the UMI information using 

Picard's MergeBamAlignment.  

Finally, reads were grouped by UMI and a consensus was called on grouped 

reads using fgbio.jar GroupReadsByUmi and CallMolecularConsensusReads, 

respectively. Note that a minimum of 3 reads was required to create a UMI-based 

final read. Final reads were converted back to FASTQ using Picard's SamToFastq 

and mapped against the reference genome using BWA-MEM. Finally, mean 

coverage was determined using Picard's CollectTargetedPcrMetrics tool. Mean 

coverage was 23,805x.  

Read counts were collected at all targeted genomic positions for all samples 

using bcftools mpileup. The versions and parameters used for each tool are 

detailed in Table 7. A custom script was used to parse the depth (DP) as well as 

reference and alternate supporting reads (AD). Allele frequencies from positions 

lacking mutations by WGS were used to model the potential background 

sequencing noise, which was unified according to the tri-nucleotide context of 

each mutation (considering the flanking 3’ and 5’ bases together with the variant 

itself). The presence/absence of the mutations of interest was assessed according 

to the background noise of their tri-nucleotide context, and they were annotated 

as high-confidence when their frequency was above the background with a 

probability of 95%. Mutations with supporting reads but below the 95% threshold 

were considered as low confidence. Variants were classified as not present when 

the alternate allele had no supporting reads. 
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Table 7. Program versions and parameters used for high-coverage UMI-based analysis. 

Program Version Parameters 
cutadapt v1.15 -g CCTACACGACGCTCTTCCGATCT  

-a AGATCGGAAGAGCACACGTCTGAA  
-A AGATCGGAAGAGCGTCGTGTAGG  
-G TTCAGACGTGTGCTCTTCCGATCT -e 0.1 -O 9  
-m 20 -n 2 

FastqToSam, 
MergeBamAlignment 

v2.10.2 default parameters 

ExtractUmisFromBam v1.0.8 --read-structure=16M+T 16M+T  
--single-tag=RX --molecular-index-tags=ZA ZB 

GroupReadsByUmi v1.0.8 --strategy=adjacency --edits=1  
--min-map=10 

CallMolecular 
ConsensusReads 

v1.0.8 --min-reads=3 

BWA-MEM v0.7.15 default parameters 

CollectTargetedPcrMetrics v2.10.2 CLIP_OVERLAPPING_READS=true 
MINIMUM_MAPPING_QUALITY=15 
MINIMUM_BASE_QUALITY=15 

bcftools mplileup v1.8 -B -Q 13 -q 10 -d 100000  
-a FORMAT/DP, FORMAT/AD, FORMAT/ADF, 
FORMAT/ADR  
-O v 

 

3.3.11 Bulk RNA-seq 

Like other NGS techniques, bulk RNA-seq produces a collection of mixed 

reads with unknown locations. Here, the mapping against the reference genome 

is more challenging as it must deal with the non-contiguous transcript structure 

and short read lengths. After the alignment, multiple analyses can be performed 

including gene expression, splicing events, gene fusions, and even variant calling. 

During this thesis we conducted analyses for differential gene expression (Results 

- Chapter 3: Study 4, and methodological contributions – see Appendix) and 

differential splicing (see Appendix), which will be explained in this section. All the 

methods included in these analyses and their versions used can be found in Table 

8. 



 

 145 

First, quality assessment and trimming or filtering of reads was performed to 

retain only good quality and informative reads. RNA-seq preparation kits include 

procedures and best practices to deplete ribosomal RNA (rRNA) from the total 

RNA before sequencing. However, experimental techniques are not bullet-proof, 

which calls for posterior examination and repair. To verify if the resulting material 

is suitable for downstream analyses, we first applied rRNA filtering by running 

SortMeRNA (Kopylova et al., 2012), a local sequence alignment tool that can be 

used for mapping and removing rRNA contamination. Non-ribosomal RNA reads 

were subsequently trimmed for sequence adapters and low quality bases using 

Trimmomatic (Bolger et al., 2014), a tool for custom quality trimming and adapter 

clipping. Reads were scanned with a 4-base wide sliding window and cut when the 

average quality per base dropped below 20, Illumina adapters were removed, and 

reads with a minimum length of 50bp were kept. Quality of the original and 

trimmed reads was assessed using FastQC, and MultiQC was used to visualize all 

reports. 

At this point, RNA reads are ready to be analyzed. For differential splicing 

analysis, we used LeafCutter (Y. I. Li et al., 2017) to quantify splicing variation by 

leveraging spliced reads (i.e., reads that span an intron) to evaluate differential 

intron usage across input samples. For gene expression analysis, two different 

approaches can be applied: alignment of the reads against a reference genome 

and posterior counting of gene-level expression, or direct transcript quantification 

from FASTQ files performing a pseudoalignment against a reference 

transcriptome for rapidly determining the agreement of reads and targets, 

without the need for prior alignment. With respect to the first option, we mapped 

the reads using STAR (Spliced Transcripts Alignment to a Reference) (Dobin et al., 

2013), an aligner specifically designed to address the difficulties of RNA-seq data 

mapping that uses a two-step strategy: it starts with a sequential maximum 

mappable seed search, followed by a seed clustering and stitching step. Next, we 
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used the htseq-count tool from HTSeq (Anders et al., 2015) to generate gene-level 

expression read counts by calculating the overlap of reads with genes. Regarding 

the second approach, we used Kallisto (Bray et al., 2016) to quantify abundances 

of transcripts and tximport (Soneson et al., 2016) to summarize transcript-level 

estimates into gene-level counts (GRCh38.p13, Ensembl release 100).  

In Study 4, we applied this last methodology, and conducted a paired 

differential expression analysis using DESeq2 (Love et al., 2014). To detect genes 

with changes in expression, regardless of low or highly variable read counts, a 

shrinkage of effect size was performed using the “apeglm” (Approximate 

Posterior Estimation for generalized linear model) method (Zhu et al., 2019). 

Differentially expressed genes were determined by an adjusted P value (Q) <0.01 

and absolute log2-transformed fold change >1.  

Table 8. Tools used for bulk RNA-seq analyses. 

Program Version Reference 
FastQC v0.11.5 www.bioinformatics.babraham.ac.uk/projects/fastqc 

SortMeRNA v4.3.2 https://github.com/biocore/sortmerna 

Trimmomatic  v0.38 https://github.com/usadellab/Trimmomatic 

MultiQC v1.7 https://github.com/ewels/MultiQC 

STAR v2.6.0c https://github.com/alexdobin/STAR 

HTSeq v0.11.0 https://htseq.readthedocs.io/en/master/ 

Kallisto v0.46.1 https://github.com/pachterlab/kallisto 

tximport v1.14.2 https://bioconductor.org/packages/release/bioc/html/tximport.html 

LeafCutter v0.2.8 https://github.com/davidaknowles/leafcutter/ 

DESeq2 v1.26.0 https://bioconductor.org/packages/release/bioc/html/DESeq2.html 
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4 Results 
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The results are presented following the outline of this thesis, as previously 

described (see Introduction - section 1.1 Thesis trajectory), and are divided into 

three chapters, according to the thesis’ three main blocks (Figure 53). Each result 

corresponds to a Study, which also contains a brief introduction. 

 

Figure 53. Thesis trajectory. Contents of the chapters within the Results section, which correspond to 

each part of the thesis. 

First, in Chapter 1, the results obtained within the PCAWG project are 

presented. Here, we dealt with the most technical aspects, including new 

emerging technologies that defied the BSC’s HPC restrictions at the time. At this 

point, I performed NGS analysis, but did not enter into their design nor the 

evaluation of their results. In Chapter 2, the results obtained within the 

MedPerCan project are explained. At this point, we went into the methodology 

itself, evaluating the performance of variant calling strategies and deepening into 

the characterization of somatic variation. This chapter also includes the extension 

of the protocols developed within the MedPerCan project to meet the needs of 

our studies presented in Chapter 3. Finally, in Chapter 3, these methodologies, 

Technical

Implementation of the large-scale genomics project PCAWG in HPC
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Clinico-biological
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and the lessons learned, were applied to studies of the progression of CLL in a 

close collaboration with Dr. Elías Campo’s group at Hospital Clínic de 

Barcelona/IDIBAPS. This last chapter, where we went beyond the computational 

aspects and engaged in the biological significance of the results, concludes the 

trajectory of this thesis. 

4.1 Chapter 1: The Pan-Cancer Analysis of Whole Genomes 

infrastructure 

4.1.1 Introduction 

The Pan-Cancer Analysis of Whole Genomes (PCAWG) was a collaborative 

effort emerging from the ICGC project that joined together more than 2,800 

cancer whole genomes coming from different countries and subprojects to 

homogeneously analyze genomic features across 38 tumor types. The final aim 

was to identify features associated to cancer processes, beyond each specific 

tumor type. Previous studies from the ICGC generated volumes of NGS data and 

obtained remarkable results, but each one of them focused only on one individual 

cancer type. At the same time, the TCGA repertoire of NGS cancer-related 

datasets was also growing and they envisioned a large-scale collaboration, the 

Pan-Cancer Atlas, that interconnected mainly whole-exome sequencing analyses 

of the 33 most common tumor types to increase our understanding of how 

tumors arise in humans (L. Ding et al., 2018; Hoadley et al., 2018; Sanchez-Vega 

et al., 2018).  

Within the new PCAWG initiative, the goal was to jointly analyze these 

valuable data, coming from both the ICGC and the TCGA, and concentrate on 

comprehensive whole-genome sequencing analysis to better understand the 

molecular processes behind the origin of tumors and their progression, identifying 
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shared and uncommon features across cancer types.  At that time, it was the 

largest effort done so far to put together and analyze this number of tumors. The 

integration of the data at this large-scale level implied many technical and 

conceptual challenges that were addressed during the project. Because of the 

difficulties imposed by the management and analysis of the data, and the 

complexity of the different biological implications of the results, this consortium 

generated different groups devoted to specific areas and tasks. 

At the technical side, the PCAWG created a technical working group to 

coordinate the development of uniform portable software, perform uniform 

analyses on ~1PB of sequencing data distributed across different geographical 

locations and using a variety of computational resources, and to ultimately 

provide the community with high-quality and validated consensus variant catalogs 

to find answers to specific biological questions around cancer formation and 

progression. 

As this large PCAWG cohort was derived from all the independent ICGC 

studies done in each country, these datasets had already been analyzed within 

their own jurisdictions. Ideally, the merging and unification of the different 

analysis (i.e., the VCFs with somatic variants) previously generated should 

theoretically allow us to derive biological conclusions, but the fact that these prior 

results came from different methodologies for variant discovery, which showed a 

vast heterogeneity among them, made their unification not possible from the 

interpretation point of view. Thus, to eliminate variations that arise from 

discrepant analysis and to ensure an accurate integration of the results for 

downstream analysis, a uniform analysis on all samples was required. This 

homogenized analysis was done using metadata conventions for describing raw 

sequencing data, and a standardized set of pipelines covering the alignment of 

sequencing reads, three variant calling pipelines, and filtering and merging 
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strategies of their results validated through target deep sequencing (Figure 54). 

All these analyses were performed within 13 data centers selected among the 

partners, which included the BSC. Each data center was devoted to part of the 

analysis and had to be aligned with the other data centers.  These core workflows 

yielded high quality and harmonized somatic variants from all tumor genomes for 

downstream working groups to explore the biology of cancer. 

 

Figure 54. Flow-chart showing key steps in the analysis of PCAWG genomes. After data collection, 

alignment to the human genome was performed, somatic mutations were identified by three 

pipelines, and subsequent merging into a consensus variant set was used for downstream scientific 
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analyses. Subs, substitutions; DKFZ/EMBL, German Cancer Research Centre/European Molecular 

Biology Laboratory. Image from Campbell et al., 2020. 

This (re-)analysis implied the need for dedicated infrastructures allowing 

automatic executions at different computing sites worldwide. From the technical 

point of view (Figure 55), the project started with the reformatting of sequencing 

data, its annotation with standardized metadata, and its submission to one of the 

processing data centers. Submitted data was subject to homogeneous primary 

analysis that included 1 WGS alignment, 3 variant calling pipelines, and 2 RNA-seq 

alignments. Overall, around 14 computing clouds and HPC facilities were utilized 

over 2.5 years. Aligned reads and variant calls were finally made available to 16 

working groups for downstream analysis, who produced over 20 publications in 

Nature and affiliated journals. Finally, the generated data was made available to 

the broader community through the ICGC Data Portal. 

 

Figure 55. PCAWG project main steps. The project started with the collection, formatting, and 

annotation of sequencing data that was uploaded to the data processing centers. Next, the pipelines 

of the primary analysis were executed. The results were synchronized among the data centers, who 

provided the data to the working groups that performed the downstream analysis. 

Each of these steps brought about technical requirements and called for 

innovative solutions to complete the activities of the project. 

To start with, the PCAWG dataset’s size and nature presented significant 

methodological and data management challenges. First, genomic data across 
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countries was subjected to different jurisdictions that imposed particular 

restrictions of some cohorts on geographical storage and cloud-based processing. 

For example, the data generated in the United States (generated within the TCGA 

project) could not be, by law, analyzed and re-distributed from non-US countries. 

This already imposed several challenges to the project and demanded specific 

solutions that consisted in distributing the management and analysis facilities 

across different countries, including the US. The size of the final dataset was 

estimated to be around ~1PB, but during run-time temporary files occupied more 

space, way past that number.  

Storage, legal constraints, and compute requirements to analyze such a large 

dataset made it unworkable to complete the analysis at a single center. All these 

limitations had to be considered to organize the executions of the analyses on a 

network of compute sites, including academic and commercial clouds, and more 

restrictive HPC environments, like in the case of the BSC. The distribution of 

workloads among different centers made necessary the use of orchestrators and 

the development of portable workflows that could be transparently ported to 

different compute environments and architectures, providing consistent and 

comparable analysis results independently of the underlying platform. 

As a major orchestrator of data management across the different analysis 

centers, we originally selected GNOS, a software made by Annai Systems that 

could coordinate several compute sites, which would then act as nodes and as 

GNOS serves. Each compute site that offered storage allocation became a GNOS 

server capable of accepting unaligned BAMs, aligned BAMs, and variant calling 

VCFs. GNOS repositories were connected and synchronized along the project in 

order to facilitate access to all the raw and generated data from multiple cloud 

environments. 
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At the start of PCAWG, cloud computing at scale was still novel in the cancer 

bioinformatics community. Most alignment and VC pipelines were executed on 

local and HPC clusters, and containerization (e.g., Docker or Singularity) was still 

a technology in their early stages. The project had to struggle with all these 

emerging frameworks as it matured. Over the years, pre-defined virtual machines 

with embedded workflows were converted into docker containers that could be 

run in HPC clusters more conveniently, as well as in cloud infrastructures.  

Upon completion of the primary analysis, the last stage of the project 

involved the participation of researchers organized in thematic working groups 

that needed to access the data. Downloading hundreds of terabytes of data is an 

unsustainable model, as it is only feasible for few research centers that have 

enough storage and compute facilities. With this in mind, PCAWG acknowledged 

the need to co-locate the data with compute resources, so that researchers could 

bring their analysis and methods to the data, instead of the other way around. 

The project embraced the use of cloud technologies, and the majority of 

computational sites opted to install or adapt cloud infrastructures for the project, 

which made their deployments much easier. Unfortunately, this was not possible 

at some HPC-based institutes at the time. Initially, SeqWare was used as a 

mechanism to encapsulate analytical workflows so that they can be run in a 

variety of sites. SeqWare bundles were used to deploy the workflows in worker 

VMs that were instantiated at each computing center. At this stage, in order to 

solve the sparse distribution of centers, the project decided to use cloud 

computing and specific virtual machines with all the required dependencies. This 

strategy was adopted to ensure that the same pipelines and processes that were 

run in each analysis center could provide the same results, independently of their 

architectures. Over time, Docker allowed the technical group to leverage non-

cloud environments in the project as well. This lightweight virtualization 
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technology complemented the clouds and ensured that workflows worked 

identically across the diverse compute environments that were part of the 

project. HPC clusters could then be used by the project, even if they did not 

provide cloud services, as long as they could be modified to enable Docker 

container executions. PCAWG workflows included many PCAWG-specific 

elements that limit their usability outside of the project, and even within the 

project at more restrictive centers. For example, many workflows assume that 

input data should be staged in from GNOS repositories and, likewise, the results 

should be uploaded back to GNOS. To enable the execution in limiting 

environments (e.g., without internet access) and the long-term usability beyond 

the project, most workflows were extended or simplified to be run under these 

settings. 

The project represented one of the major initiatives at the time. Although a 

(big) part of the effort was dedicated to the technical aspects, the central goal of 

the project was, of course, to shed light on the biological processes driving cancer. 

On the whole, the integrative analyses of whole-genome sequencing studies 

brought us closer to the understanding of the causal molecular alterations of 

cancer. Analyses of non-coding somatic mutations could identify the driving role 

of non-coding point mutations and structural variants to the cancer phenotype 

and the role of germline variants in patterns of somatic mutations. Further 

integration with transcriptomic data provided a comprehensive catalog of RNA-

level alterations in cancer and reported the effect of somatic alterations on 

transcription. Inference of tumor composition and evolution recognized the 

ubiquity of ITH and different evolutionary trajectories across multiple cancer 

types. It also gave us insights into the timing of DNA alterations and mutational 

processes that shape the cancer genome, revealing that driver mutations can be 

already present years before diagnosis (Alexandrov et al., 2020; Calabrese et al., 
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2020; Campbell et al., 2020; Gerstung et al., 2020; Y. Li et al., 2020; Rheinbay et 

al., 2020). 

4.1.2 Study 1: Implementation of the PCAWG infrastructure at the BSC 

During the PCAWG project I was involved in all the data-oriented tasks 

assigned to the BSC, which is summarized in (Figure 54) and included the main 

steps of WGS analysis. Additionally, as part of the Spanish ICGC-CLL consortium, 

the CLLGenome project, the BSC was in charge of managing the data derived from 

this project and of its contribution to the PCAWG project. More precisely, my work 

consisted in: 

- Preparation of harmonized raw sequencing data and metadata and 

submission to the GNOS server of the CLL dataset, which included 100 donors 

with whole-genome sequencing, and a subset with RNA sequencing. 

- Execution of the core alignment and variant calling pipelines (Sanger and 

DKFZ/EMBL) at the HPC premises of the BSC. 

- Upload of the alignment and variant calling results to the corresponding GNOS 

servers. 

- Synchronization of the GNOS server throughout the project’s lifetime and 

assistance to the EGA submission for the long-term archival. 

I was responsible of the technical coordination at the BSC, identifying the 

conflicting points between our HPC center and the cloud-based environment that 

the project required, especially at the initial phase. Working together with our 

Operations team and the PCAWG technical working group, we had to find a middle 

point for each matter that could risk our security and mitigate the potential 

vulnerabilities of virtualized technologies in our pure HPC infrastructure. The 

workflows and their adaptive modifications were developed and provided by other 

partners within the project. All operation services that required root access for 
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setting-up were conducted by the system administration team at the BSC. GNOS 

developers provided support to install GNOS instances at our site and implemented 

additional synchronization scripts that were specific for our center. All tasks that 

could be done by an unprivileged user, including data submission, automation and 

executions of pipelines, data uploads, and GNOS operations, were done by me, and 

I was also part of all the discussions to adapt the project requests into our system. 

The HPC infrastructure at the BSC has strict policies that directly conflict with 

the requirements and logistic plans of PCAWG. For example, virtualization is not 

allowed in HPC clusters, and their computing nodes have no external network 

access. Solutions between cloud-based systems and traditional HPC had to be 

carefully devised. Two approaches to allow VMs, at the initial phase of the project 

(phase 1), and docker containers, at the last phase (phase 2), were implemented 

at the BSC. 

As a data center of the project, the BSC set-up a GNOS server with external 

access used for data submission. This work was done by the operations team with 

the support of Annai Systems. Regular updates had to be applied to the system, 

including patches that required root access, and other upgrades and data fixing 

issues that I managed.  

At the beginning of the project, to carry out the executions of the primary 

analysis at each computational site, workflows were packaged within VMs so they 

could be easily distributed, following the need of executing exactly the same 

methodology in each data center. To allow the deployment of VMs, an alternative 

infrastructure had to be implemented in our center (Figure 56). An isolated cluster 

was created by decoupling a whole rack of MareNostrum3 (MN3) from the rest of 

the machine, so that black-box VMs could not affect or endanger the performance 

of the rest of the system.  
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Figure 56. PCAWG infrastructure at the BSC during phase 1. Set-up at BSC’s HPC premises included 

an isolated rack of MN3 where VMs could be deployed, an internal GNOS server that was accessible 

from the VMs, and an external GNOS server that was reachable from the external network and was 

used for data submission and synchronization with the other PCAWG data centers. Synchronization 

between the external and the internal GNOS was done through a data transfer server that had access 

to the filesystems of both servers. 

The detached nodes were completely isolated from the rest, and they only 

had an internal network among them. This implied that they could not access any 

other machine that was not part of this isolated cluster, including the GNOS data 

server. Thus, input data had to be copied from the disk of the BSC GNOS server to 

a filesystem that could be seen from the VMs. This was done by using a fast data 

transfer machine, which was connected to both disks. In addition to that, the 

workflows also required access to the BSC GNOS server to retrieve metadata and 

validate the outputs’ metadata. To bypass the non-allowed connection between 

the VMs and the BSC GNOS server, an internal GNOS was set up. This internal 

GNOS was in the same internal network as the VMs, so it could be reached from 

them. Both the internal GNOS and the external BSC GNOS had to be synchronized 
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and specific scripts to import and export the data between them had to be 

developed by Annai Systems. From the HPC perspective, the downfall of this 

solution is that, since these nodes were physically separated, they could not be 

used by any other HPC application when not in use. 

Whereas during phase 1 the use of VMs forced computing nodes to be 

physically isolated from the HPC supercomputer, in phase 2, the use of docker 

containers required no infrastructure changes and they could be launched as any 

other traditional HPC application (Figure 57). Docker containers are lighter than 

VMs, which makes them easier to tune and make them HPC compliant. However, 

due to security reasons they are usually not allowed. To allow highly exceptional 

Docker executions, the containers had to be forced to be run as a regular user, 

which was created specifically for the project, and who had no extra permits that 

could expose the rest of the HPC cluster. We had to audit the project’s Docker 

images together with our system administrators, and UID (user id) settings 

matching an unprivileged user of the machine assured that everything inside the 

container ran without root access. Only supervised images were allowed to be 

run, and an unchangeable wrapper script around the Docker execution itself 

assured this point. Docker containers could only be run using this script, which 

only allowed audited images, and that could only be executed by the PCAWG user.  

With this, docker executions were allowed and were integrated into the 

queue system (LSF), which also had to be adapted to enable container executions. 

A special queue, restricted to a single user, had to be created with special settings 

(e.g., maximum running jobs, extended maximum wall time). Prolog and epilog 

scripts that can be run with root permissions had to be developed to prepare and 

clean the docker environment where the workflows were executed. The prolog is 

executed before the user execution starts, and it was used to start the Docker 
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engine and load the approved docker images. After completion of the execution, 

the epilog cleaned the environment and stopped the Docker server.  

As explained above, most of the workflows came with the assumption that 

input data could be downloaded from a GNOS server and that the outputs could 

be uploaded back to the server. However, our infrastructure did not allow external 

connections of any kind, and the workflows had to rely on input data that was 

already present at the GPFS disks. Similarly, output data could not be sent to 

external GNOS servers and had to be stored at the filesystem instead. This 

restriction entailed the adaptation of the workflows to work with local data, and 

the implementation of a strategy to first gather input data and place it at the local 

filesystem, and later collect the results from disk and upload them to the 

appropriate GNOS server. 

 

Figure 57. PCAWG Infrastructure at the BSC during phase 2. Docker allowed a more integrated 

solution for workflow executions. They could be run in regular compute nodes but needed a special 

queue that performed additional settings to start and finish a docker-enabled environment. Input 

and output data had to be managed independently as compute nodes do not have internet access. 
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Overall, three core pipelines were run at the BSC: the alignment pipeline of 

whole genomes, during phase 1, and two variant calling pipelines (Sanger and 

DKFZ/EMBL), during phase 2. We performed 10.2% of the alignments, and 28.5% 

and 17.2% of the DKFZ/EMBL and Sanger VC pipelines, respectively. The number 

of VC executions in all PCAWG centers throughout the project can be seen in 

Figure 58 and Figure 59, while the computational resources used at our center 

are detailed in the Methods (see Methods - section 3.1). Of note, the third variant 

calling pipeline (Broad) had a part of a proprietary software and could not be run 

outside of the developer’s center. Moreover, TCGA data could only be stored and 

distributed from the United States (US) and, initially, it was planned to be analyzed 

there. However, the project required more computational nodes that could 

analyze these data as there were not enough resources at the time within the US. 

Logistics were done to allow international executions: external centers had to 

apply for the credentials to download the data, run the analyses, and upload the 

results back to a US site. The BSC ran many executions on TCGA data, retrieving 

and uploading data from/to a US-based GNOS server.  

 

Figure 58. Executions of Sanger workflow by site. Number of completed executions of the Sanger 

variant calling pipeline at each site during the project. 
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Figure 59. Executions of DKFZ/EMBL workflow by site. Number of completed executions of the 

DKFZ/EMBL variant calling pipeline at each site during the project. 

4.2 Chapter 2: Framework for variant characterization in tumor 

genomes 

4.2.1 Introduction 

The identification of somatic variants in tumors (i.e., variant calling) is at the 

root of cancer genomics analysis, for both research and clinical applications. 

Researchers rely on variant calling results, which are at the bases of any further 

downstream analyses, to conduct their investigations. In clinical settings, the 

detection of variants can be used to identify biomarkers for diagnosis, prognostic 

indicators, or to guide treatment decisions, and can have a great impact as NGS is 

progressively introduced into healthcare routines. 

The MedPerCan project devised the applicability of such analyses in the 

clinics and set a pilot project that would include all actors taking part in this 

process, from sequencing centers to data analysis centers and clinicians as end-

users. The aim of the project was to create a prototype to evaluate the impact of 

genomic analysis in clinical decision-making in oncology. Within this context, we 
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designed, evaluated, and implemented variant calling strategies to analyze WES 

(Results - Chapter 2: Study 2). Forthcoming collaborations, during and after the 

project, guided the continuity and enhancement of the initial pipeline for the 

detection and characterization of small variants in WES throughout the project 

and past its completion. The extension of this framework (Results - Chapter 2: 

Study 3) included the integration of new data types, such as WGS or 

transcriptomics, and new analysis tools responding and adapted to the needs of 

scientific questions. All these methodologies have been applied to several 

published studies (see Appendix) and, more importantly, they have also been 

applied to a capital part of the thesis, where the effort and focus was not only on 

the technical and methodological aspects but rather on the biological 

interpretation of their results. Within this last part, we extended the cancer 

genomics analyses to cover questions related to the clonal dynamics of tumors 

and the mutational processes that may act during this evolution (Results - Chapter 

3: Study 4 and Study 5).  

4.2.2 Study 2: Variant calling strategies in MedPerCan  

During the MedPerCan project, I coordinated the design, evaluation, and set-

up of variant calling strategies for whole-exome data. Montserrat Puiggròs, Héctor 

Gracia, and Álvaro Férriz from the Computational Genomics group at BSC were 

also involved in the project. I installed the tools, with the help of the Support team 

at BSC, in MareNostrum4, Nord3, and StarLife, and automatized and performed 

their executions. I also implemented benchmarking runs to assess their 

performance on different settings. All WES data from the project was subjected to 

uniform analysis using these pipelines. Hereafter, I will present the work that I 

carried out during the project. 
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In the next sections, first, there is a brief introduction of the MedPerCan 

project from the organizational point of view, laying out the specific role of the 

BSC within the project. Next, the results of the work carried out at the BSC, which 

include the design of methodologies for variant identification and 

characterization, are presented, followed by their application to representative 

tumor types. Please note that some of the work presented here overlapped with 

the first phase of Study 3. Some benchmarking efforts were done in parallel and 

complemented each other. 

4.2.2.1 Introduction 

MedPerCan was a pilot study to assess the impact of genomic analysis in 

clinical decision-making in oncology and to serve as a model for the 

implementation of personalized medicine in Catalonia. During the project, we 

developed a multidisciplinary and multi-institutional circuit that started from the 

patient, who would go to a hospital, where they would collect specimens for 

genomic analyses. From there, the samples would be sent to a sequencing center, 

where they would sequence the samples and send the results to a data or analysis 

center. There, the bioinformatics analyses would be carried out, and the variants 

of the normal and/or tumor samples would be identified. Next, the variants would 

be annotated and populated into a database that would be made available to the 

clinicians through a user-friendly web page. The tumor board would browse the 

web portal, evaluate the results, and come up with some recommendations that 

would be sent back to the doctor. Finally, the physician would use this information 

for better diagnosis or improved treatment options. 

Our group at the BSC acted as the data and analysis center that would 

perform the bioinformatics analysis to detect and characterize variants in 

sequenced data, more specifically, in WES. Thus, the role of the BSC within this 
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network was to design, evaluate, and implement a framework for variant calling 

and perform this analysis on the data generated by the project.  

4.2.2.2 Results 

Pipeline for variant identification and characterization in WES 

The main pipeline developed within the MedPerCan project included a multi-

caller approach for somatic variant calling of small variants (SNVs and indels) on 

normal-tumor paired WES data (Figure 60).  Most of the datasets generated by 

the project fitted this analysis, but we also had to implement satellite workflows 

to accommodate other datasets, such as samples from patient-derived xenograft 

(PDX), tumor-only analyses, and special considerations for FFPE samples.  

 

Figure 60. Main pipeline for variant identification and characterization within the MedPerCan 

project. 
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Additionally, germline variant calling was also performed on all normal 

samples, as some subprojects were based on inherited cancer. The results of 

germline variant calling benchmarks will not be shown here since they were 

performed by Álvaro Férriz. In brief, we evaluated different filtering strategies for 

the HaplotypeCaller program from GATK, including hard filters based on quality-

based features (e.g., mapping or base qualities, strand bias, or read depth) and 

the Variant Quality Score Recalibration (VQSR) by GATK. We evaluated the results 

using the Platinum genomes from Illumina (Eberle et al., 2017) and, based on their 

performance, we selected the following hard filters: read depth <8, fisher strand 

bias >25.0, quality by depth <6.0, and RMS mapping quality <50.0. 

The tools included in the somatic variant calling pipeline, as well as their 

different combinations, were benchmarked using different datasets. The results 

shown here are based on real data, as it captures the intricacies of tumor’s 

complex biology as well as potential artifacts coming from real sample processing 

and sequencing.  

For the benchmarking of the pipeline, at that time, to our knowledge, there 

was only one published dataset with a comprehensive characterization of somatic 

variants that included WES data (Griffith et al., 2015). Unfortunately, this dataset 

only included validated SNVs. We used the WES normal and tumor samples from 

this study (case AML31), and downsampled them to the average coverage that 

was being used within the project (i.e., tumor at 140x, normal at 90x). This first 

dataset showed the vast heterogeneity among different methods, with a large 

number of tool-specific calls (Figure 61).  
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Figure 61. Comparison of SNVs results for the benchmarking dataset AML31. The upset plot shows 

the concordance among different variant callers. Each row represents one program. The total 

number of variants detected by each tool is indicated by the blue barplots on the left. The number of 

variants in each intersection subset is represented by black vertical bars and the total number on top. 

All evaluated programs agreed on 36 SNVs, but they had tens of uniquely 

called mutations, except MuSE. In this case, Strelka2 was the program detecting 

the higher number of mutations, which is a general trend that we have seen in 

most of the analyzed samples (Figure 62). 

In line with this, in the evaluation of AML31, Strelka2 had the highest recall 

but also the worst precision, while MuSE had the best overall performance with a 

good balance between recall and precision and the best F1-score. We also 

evaluated the consensus results of variants detected by a minimum number of 

programs and recognized that the SNVs detected by at least 3 or 4 progs (labelled 

3_PROGS and 4_PROGS) yielded the best results (Figure 63 and Table 9). 
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Figure 62. Overview of the number of detected SNVs. The number of SNVs detected by each program 

is indicated. Each dot represents a sample from the corresponding MedPerCan dataset 

MEDPERCAN_01_02 (top) and MEDPERCAN_03_04 (bottom).  

Table 9. Benchmarking results of SNVs in AML31 WES. FP: false positives, TP: true positives, FN: false 

negatives, F1_score: weighted average of Precision and Recall. 

VC Recall (%) Precision (%) FP TP FN F1_score (%) 
1_PROG 93.9 13.6 291 46 3 23.8 
2_PROGS 93.9 62.2 28 46 3 74.8 
3_PROGS 91.8 86.5 7 45 4 89.1 
4_PROGS 87.8 95.6 2 43 6 91.5 
5_PROGS 69.4 94.4 2 34 15 80 
Mutect2 89.8 40.4 65 44 5 55.7 
Lancet 79.6 37.5 65 39 10 51 
CaVEMan 85.7 56 33 42 7 67.7 
MuSE 87.8 84.3 8 43 6 86 
Strelka2 93.9 22.4 159 46 3 36.2 
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Figure 63. Benchmarking results of SNVs in AML31 WES. Blue bars represent the recall for the 

variants detected by each tool and those detected by a minimum number of programs, while green 

bars show their precision. 

Due to the lack of other comprehensively characterized WES datasets for 

somatic variant benchmarking, we also used an approach based on orthogonal 

validation in which  we compared the variants identified in high-coverage gene 

panels versus those detected by WES. Although this limited the parts of the 

genome and the number of variants that could be evaluated to the regions and 

mutations that were detected by the gene panels, it had the advantage that we 

could benchmark not only real data, but also part of the data that was being 

generated within the project. Thus, we could assess the performance of variant 

calling on the exact sequencing and procedures where it was meant to be used. 

For the evaluation metrics, variants detected in the gene panels were considered 

true positives, while those not seen in these high-coverage regions were 

considered false positives.  

We identified 13 diffuse large B-cell lymphoma (DLBCL) samples that had 

WES from the MedPerCan project and that were also subjected to the sequencing 

of 106 genes in a previous study (Karube et al., 2018). The published results only 
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included coding non-synonymous variants, which cuts down the number of 

variants that can be used in the evaluation. Hence, we reanalyzed the gene panels 

with a validated variant calling pipeline (Nadeu et al., 2016; Rivas-Delgado et al., 

2021). The comparison of the results with the WES analyses showed a significant 

level of precision but missed a high proportion of variants (Figure 64).  

Indeed, gene panels have higher coverage than WES and can detect lower 

frequency variants, which are below the threshold of detection at lower 

coverages. Hence, we filtered the low frequency variants to have a more realistic 

view of the variants that can be recognized in WES. 

 

Figure 64. Venn diagrams showing the comparison of variant calling in gene panels and WES. The 

3_PROGS strategy (variants detected by at least 3 programs) is shown for illustrative purposes for 

SNVs (left) and indels (right). The pinkish circles represent the number of variants obtained from the 

gene panel, while the blueish ones correspond to the WES. The results shown as is (top) and after 

filtering low frequency variants (bottom).  
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We calculated the recall, precision, and F1 score of SNVs and indels for each 

program as well as the consensus for each number of programs (labeled as 

N_PROGS: variants detected by at least N program) (Table 10 and Table 11). 

Table 10. Benchmarking results of SNVs identified in WES versus SNVs from gene panels. FP: false 

positives, TP: true positives, FN: false negatives, F1_score: weighted average of Precision and Recall. 

VC Recall Precision FP TP FN F1_score 
1_PROG 88.6 95.1 6 116 15 91.7 
2_PROGS 88.6 95.1 6 116 15 91.7 
3_PROGS 87.8 95 6 115 16 91.3 
4_PROGS 79.4 94.5 6 104 27 86.3 
5_PROGS 52.7 94.5 4 69 62 67.6 
Mutect2 58 95 4 76 55 72 
Lancet 85.5 94.9 6 112 19 90 
CaVEMan 84.7 94.9 6 111 20 89.5 
MuSE 80.9 94.6 6 106 25 87.2 
Strelka2 87.8 95 6 115 16 91.3 

 

Table 11. Benchmarking results of indels identified in WES versus indels from gene panels. FP: false 

positives, TP: true positives, FN: false negatives, F1_score: weighted average of Precision and Recall. 

VC Recall Precision FP TP FN F1_score 
1_PROG 100 60 6 9 0 75 
2_PROGS 100 69.2 4 9 0 81.8 
3_PROGS 100 69.2 4 9 0 81.8 
4_PROGS 88.9 66.7 4 8 1 76.2 
5_PROGS 77.8 63.6 4 7 2 70 
6_PROGS 55.6 100 0 5 4 71.4 
Mutect2 77.8 58.3 5 7 2 66.7 
Lancet 88.9 66.7 4 8 1 76.2 
Pindel 88.9 66.7 4 8 1 76.2 
Platypus 66.7 100 0 6 3 80 
SvABA 100 69.2 4 9 0 81.8 
Strelka2 100 64.3 5 9 0 78.3 

 



 

 173 

Like in the AML31 benchmark, 3_PROGS was one of the best approaches for 

both SNVs and indels. However, the 1_PROG and 2_PROGS outperformed 

3_PROGS for SNVs. This can be explained for the restrictions on the evaluated 

variants. Due to the large number of low frequency variants that could be 

detected in the gene panels and not in WES, mutations with VAF lower than 10% 

were filtered out. This can inflate the precision of variant callers, as it eliminates 

variants that are more difficult to detect, and more prone to be artifacts. An 

example of this can be seen in Study 3 (Figure 72 confirms the low frequency of 

false positives from a WGS benchmark).  

A similar reasoning can be applied to Strelka2, which was the best individual 

tool and achieved the same performance as 3_PROGS. However, Strelka2’s good 

results are most likely due to the VAF filtering used in this evaluation. Actually, 

this program tends to attempt to call difficult variants close to the limits of 

detection, which translates into a high recall and a low precision, as can be seen 

in the AML31 benchmark and in the WGS benchmarks in Study 3.  

Next, we used another orthogonal validation dataset based on CLL, 

composed of 64 WES samples and a validation gene panel of 28 CLL driver genes 

(Nadeu et al., 2016, 2018). In this case, we used the variants reported by the 

publications directly, which include non-synonymous variants. Although this WES 

data was not part of the MedPerCan project and was sequenced differently, we 

thought that this dataset would be of value as it allowed us to evaluate the 

performance of variant callers on CLL samples, which is the focus of the research 

studies of the thesis (Results - Chapter 3: Study 4 and Study 5). Thus, the results 

and lessons learned from this analysis could be directly applied to our studies.  
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During the evaluation of this dataset, we realized that several variants were 

missed by some of the programs used due to tumor contamination in the normal 

sample. This is a well-known characteristic of blood cancers, which present 

unexpected contamination of normal samples with tumor cells. Consequently, 

most variant callers discard genuine somatic mutations since they are found in 

the normal sample and therefore interpreted as germline variants. This criterion 

works well with solid tumors that do not tend to present tumor cells in normal 

samples, but it must be reconsidered when analyzing hematological malignancies.  

In line with this, we reevaluated the filtering decisions of the more stringent 

variant callers (i.e., Mutect2, Lancet, CaVEMan, and Pindel) and implemented a 

more flexible selection of somatic variants. We recovered all variants (including 

SNVs and indels) that were filtered out exclusively due to the presence of mutated 

reads in the normal sample, that had a variant allele frequency below 0.05 in the 

normal sample, and whose VAF difference between tumor and normal was 

greater than 0.2. This process allowed us to rescue 15% (11/75) of the originally 

missed somatic variants. The results presented from here onwards already 

include the application of this method. 

Focusing on the 3_PROGS strategy, which includes the variants detected by 

at least 3 programs, and that showed one of the best performances in the DLBCL 

orthogonal validation and the AML31 benchmark, we obtained a precision of 85% 

and a sensitivity of 64% for SNVs. Next, as seen before, we recognized that the 

drop in recall was mainly due to low frequency variants that could be identified in 

the high coverage gene panels, but not in the lower coverage WES samples. 

Hence, we evaluated the results discarding low frequency variants (<10%) and 

attained a sensitivity of 83% and a precision of 83% (Figure 65). 
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Figure 65. Performance of 3_PROGS for SNVs in CLL WES. a. Venn diagram shows the intersection of 

SNVs detected by 3_PROGS (pink) and SNVs detected in the high coverage gene panel considered as 

“truth” and named Golden (blue). b. Variant allele frequency of the false positives and false 

negatives, which commonly have a VAF below 10%. c. Venn diagram shows the intersection between 

3_PROGS and the Golden variants having a VAF above 10%. 

We analyzed the indel variants in the same way and obtained a precision of 

91% and a sensitivity of 43%. Again, we found that many false negatives, or missed 

indels, had low frequencies, and we performed the same evaluation considering 

only indels with a VAF above 10%. This increased our sensitivity to 71% and 

maintained a specificity of 91%. Indel detection is more complex than that of 

SNVs, which could explain the lower sensitivity in this variant calling (Figure 66). 
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Figure 66. Performance of 3_PROGS indels in CLL WES. a. Venn diagram shows the intersection of 

indels detected by 3_PROGS (pink) and indels detected in the high coverage gene panel considered 

as “truth” or Golden (blue). b. Variant allele frequency of the false positives and false negatives, 

which commonly have a VAF below 10%. c. Venn diagram shows the intersection between 3_PROGS 

and the Golden variants having a VAF above 10%. 

All the results presented up to now refer to variant calling performed on 

normal and tumor paired samples, which is the ideal setting for somatic variant 

calling. However, when the germline sample is not available one can still do a 

tumor-only analysis, although it is less precise and can leak a high number of 

germline variants.  
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Within the MedPerCan project, several tumor samples without a matched 

normal were included. Thereby, we sought to assess the validity of such analyses 

to understand their reliability and to what extent they can be used. We used the 

same 13 DLBCL samples used for the previous orthogonal validation and 

performed two tumor-only approaches. On one hand, we applied the same 

pipeline as in the normal-tumor paired samples, using a random normal sample, 

and filtering all variants that were present in a panel of normals created from an 

in-house cohort of around 600 CLL and mantle cell lymphoma (MCL) cases. On the 

other hand, we selected a program that was already prepared to run tumor-only 

analysis (i.e., Mutect2). In both cases, after the variant calling, we also filtered out 

all variants with a population frequency greater than 1% found in gnomAD, ExAC, 

or 1000genomes. The results shown here are based on SNVs. 

First, we did a simple comparison between the results previously obtained 

by normal-tumor analysis and the two tumor-only strategies (Figure 67). As 

expected, both tumor-only results carried way too many mutations (most likely 

germline variants) that were not called by the pipeline which considered the 

germline sample.  Due to this high number of discrepant variants, the results are 

not comparable, and the reliability of the tumor-only variants is questionable. 

Next, we tried to see if we could improve the results by reducing the span of the 

genomic regions, for instance focusing only on regions of interest, i.e., the gene 

panel captured regions. Of course, this means that we would be losing most of 

the variants that could be detected by WES, but at least we would grasp valuable 

information from the tumor-only samples. We observed that the variability 

between tumor-only and normal-tumor analysis is now lower, and the proportion 

of potential germline leakage is reduced (Figure 67).  
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Figure 67. Comparison of normal-tumor paired versus tumor-only analyses. Results from WES 

normal-tumor analysis considering variants detected by at least 3 programs (3_PROGS) versus 

tumor-only approaches: 3_PROGS using a random normal (3_PROGS_TO) and Mutect2 in tumor-

only mode (Mutect2_TO). Red numbers correspond to variants detected only in tumor-only analyses. 

Green variants in the middle correspond to matched results between normal-tumor paired and 

tumor-only analyses. 

We continued to apply other filters based on the VAF and the functional 

impact of the variants. Here, we included the gene panel results in the 

comparison, which allowed us to assess the sensitivity and precision on the 

evaluated variants (Figure 68).  

As we reduce the number of evaluated variants by their frequency, we 

increase the agreement with the gene panel’s results, as previously explained. 

Moreover, restricting the variants based on their functional impact (i.e., by 

selecting those that can have a potential effect at the protein level) further 

increases the compatibility between normal-tumor paired and tumor-only 

analyses. Thus, tumor-only analysis might be used, with caution, to identify coding 

mutations in genes of interest. In our benchmark, we obtained a sensitivity of 55% 

and 73%, and a specificity of 87% and 80%, by using our two tumor-only analyses 

based on Mutect2 in tumor-only mode and our normal-tumor pipeline using a 

non-matched normal, respectively. 
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Figure 68. Comparison of gene panel, normal-tumor paired, and tumor-only analyses. Results from 

gene panel versus WES normal-tumor analysis considering variants detected by at least 3 programs 

(3_PROGS) versus tumor-only approaches: 3_PROGS using a random normal (3_PROGS_TO) and 

Mutect2 in tumor-only mode (Mutect2_TO). From left to right, first the results are compared as is, 

only restricting to the gene panel covered regions. Next, variants of low frequencies (VAF below 10%) 

are filtered out. Finally, only variants with a High or Moderate functional impact are kept. 

As to the implementation, the main pipeline for variant identification and 

characterization within the MedPerCan project (Figure 60) was set-up in the BSC 

HPC facilities, mainly the MareNostrum supercomputer. This implementation was 

adjusted to our HPC regulations, respecting the established maximum wall times, 

parallelizing the executions to avoid sequential runs, and aiming at the efficient 

use of the resources.  

Although the project only considered WES data, which generates relatively 

small files that require less resources and are faster to analyze, we anticipated the 

use of the pipelines for other datasets, such as WGS, and took the potential longer 

execution times as well as larger computational requirements into consideration. 

As a summary, for each tool, or task, a bash wrapper was implemented to execute 

all the command lines that were necessary to obtain the results (i.e., execution of 

the tool itself, which might include several commands, and various normalization 

and formatting steps). Besides, another script was also developed to submit each 

particular task to the Slurm queue system. Both scripts were homogenized in such 
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a way that all tasks could follow the same structure. The data was also organized 

in predefined tree directories that could be automatically identifiable from the 

scripts. In order to launch the selected tools or pipeline, a set of master scripts 

were programmed to orchestrate the executions on the input samples. As the 

pipeline accepted multiple inputs, GREASY was used to leverage the use of HPC 

for massively parallel executions. The dependencies among different tasks were 

managed using Slurm’s dependencies. Finally, the framework supported the re-

submission of failed tasks using the re-start files generated by GREASY. 

Application of the methodology to representative tumor types 

The goal of the MedPerCan project was to set up an operational circuit that 

could encompass the whole path of personalized medicine in oncology, from 

sample collection in a hospital to the genomic report intended to go back to the 

doctors and the patient, hopefully with an increased value for the management 

of the patient (i.e., better diagnosis or treatment options). After establishing this 

system, the next aim was to evaluate the clinical relevance of introducing genomic 

analysis in health routines. In this direction, the clinical partners (IDIBELL, IDIBAPS, 

and VHIO) selected a set of samples to be analyzed with a specific purpose. They 

covered different stages during the development of the disease and included the 

groups of patients who could benefit the most (i.e., cases with risk of hereditary 

cancer and cases who could receive treatment strategies based on their genomic 

profile).  

IDIBELL studied the risk of hereditary cancer (colorectal/endometrial) in 

patients without any recognized causal variants in the current gene panel in use. 

They included 77 non-tumoral samples sequenced at 60x, which were analyzed 

by the germline variant calling pipeline.  
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IDIBAPS selected diffuse large B-cell lymphoma (DLBCL) cases that do not 

respond well to current therapies to determine whether genomic analysis could 

be of use to identify the patients who do not benefit from this first-line treatment. 

This study included 94 cases with paired normal and tumor samples and 5 cases 

without a matched germline sample. All samples were fresh frozen (FF), and they 

were sequenced at 90x and 140x, for normal and tumor samples, respectively. 

Normal samples were subjected to germline analysis, paired normal-tumor 

samples were analyzed by the somatic variant calling pipeline, and tumor-only 

approaches were performed on the tumor samples without normal. 

The last two subprojects included studies to improve treatment selection 

during advanced stages of the disease. VHIO included a set of 41 relapse cases 

with colorectal cancer to identify molecular alterations that could be potential 

therapy targets. They had paired normal and tumor samples, from FFPE, and 

sequenced at 150x and 70x, respectively. Germline and somatic variant calling 

were performed. Another group from IDIBELL investigated POLE/POLD1 mutated 

endometrial tumors to assess if they could benefit from PD1 inhibitors. They 

included 42 FFPE samples, including multi-region tumors at 60x and controls at 

60x from 11 patients. Germline and somatic variant calling were performed on 

paired normal-tumor samples and tumor-only strategies were applied to 

unmatched tumor samples. An additional quality assessment was done due to the 

poor quality of some samples. 

Overall, the previously described somatic variant calling pipeline was applied 

to normal-tumor paired samples, including both FF and FFPE. Germline variant 

calling was performed on all normal samples. There was also a subset of cases 

without matched germline material that were analyzed using tumor-only 

approaches, and PDX samples that were subjected to tumor-only analyses with a 

prior step to distinguish human DNA from mouse DNA (see Methods - section 3.3). 
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After the genomic analyses conducted at the BSC, the outputs were sent 

back to the CRG-CNAG that was in charge of setting up a platform for an easy 

inspection and interpretation of the results.  From there, each hospital group 

received the list of genomic variants identified in their samples, either through 

the CNAG platform, or through raw files with lists of variants produced at the BSC, 

to perform the corresponding downstream analysis. Some of this work has led to 

possible publications and manuscripts are under review or being finalized. 

4.2.3 Study 3: Comprehensive characterization of tumors based on its genomic 

profile 

Complementing the previous project, we started an independent 

collaboration with the group of Dr. Elías Campo for the characterization of CLL 

evolution with special focus on Richter transformation. For this project, we relied 

on the MedPerCan variant calling pipeline, and added further functionalities and 

filtering strategies to adapt to the needs of that particular project (Results - 

Chapter 3: Study 4 and Study 5), as well as other side projects (see Appendix). The 

results concerning the methodological aspects of this new phase will be explained 

within this chapter, while the application of the methods to our biomedical studies 

will be presented in the next chapter (Results - Chapter 3). 

Following the needs of these upcoming research collaborations, we expanded 

the MedPerCan framework to cover new data types as well as complementary 

downstream analyses. Among the additions and improvements, we set-up tools 

for RNA-seq analysis, extended the pipeline and benchmarks to deal with WGS, 

and enhanced it with downstream analyses including tumor evolution and 

mutational signatures. We set-up and evaluated the required methods and 

implemented their automatic executions. I worked together with Ana Dueso from 

the Computational Genomics group at BSC, who contributed to the setting up of 
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SVs merging and consensus strategies, and Ferran Nadeu from IDIBAPS, who 

provided input for variant calling and downstream analyses in connection to CLL 

studies. 

Here, I present the extension of the MedPerCan variant calling pipeline 

(Results - Chapter 3: Study 2) to support additional data types and analyses, within 

the context of our collaboration with Dr. Elias Campo’s. The RNA-seq analyses as 

well as WGS downstream analyses, including mutational signatures and tumor 

evolution, are described in the Methods (see sections 3.3.8, 3.3.9, and 3.3.11). 

The variant calling pipeline for WGS, including its evaluation, is presented here, 

while the specific technical aspects can be found in the Methods (see section 

3.3.2). These new strategies have been applied to several works (see Appendix), 

including the two studies that are part of this thesis, described in the next Results’ 

chapter (Results - Chapter 3: Study 4 and Study 5).  

4.2.3.1 Introduction 

Genomic initiatives, like the MedPerCan project, though they are meant to 

move towards their translation into the clinics, they remain at the level of 

research, and their applicability in real clinical practice has yet to come. Within 

the MedPerCan project, we developed a framework for tumor genome analysis 

of WES (described in Study 2), which we continued to use and improve beyond 

the completion of the project. New collaborations called for additional analyses 

to include other molecular data, such as WGS or RNA-seq, and further 

characterization of somatic mutations. In this direction, we introduced new 

features to gain insights into tumor composition and evolution, genomic 

complexity, and the identification of mutational processes that contribute to the 

mutational spectra of tumors. 
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4.2.3.2 Results 

Pipeline for variant identification and characterization in WGS 

WGS allows a wider characterization of tumors, including not only the coding 

but also the non-coding region of the genome. The higher number of mutations 

that can be identified genome wide is advantageous for further analysis such as 

mutational signatures or tumor evolution. Moreover, copy number alterations 

and structural variants can be recognized throughout the whole genome. Small 

variants, including SNVs and indels, can usually be identified using the same 

programs as for WES, while CNAs and SVs might require new tools specific for 

WGS (Table 4). In line with this, we based the extended WGS framework on the 

initial MedPerCan pipeline, added new programs to cover CNAs and SVs, and 

complemented it with the full characterization of the mutational landscape of 

tumors. We integrated methods to explore it in terms of genomic complexity, 

mutational processes, and tumor subclonal structure to uncover the dynamic 

forces driving its evolution (Figure 69). 

The design and implementation of WGS workflows, including the selection 

and evaluation of tools, was guided by the needs of our studies of CLL and 

emerging questions we wanted to elucidate (see Results - Chapter 3: Study 4 and 

Study 5). Variant calling was fine-tuned with additional benchmarks on the same 

datasets we were analyzing, and a thorough and manual investigation of the 

results was always applied. Overall, the complemented framework for WGS tumor 

analysis was enhanced to work with our CLL studies, but it could be applied to any 

other cancer dataset. Likewise, the protocols we followed for the examination, 

evaluation, and interpretation of the results could be adopted by any cancer 

genomics study. 
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Figure 69. Framework for tumor WGS analysis. Overview of the steps and programs used to analyze 

WGS. Quality control and alignment precedes the central step to discover tumor variants 
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implemented by a multi-caller approach. Finally, downstream analyses expand the characterization 

of somatic variation on top of variant calling. 

Variant calling is at the core of genomic analyses and a good understanding 

of its performance and reliability on the analyzed datasets is essential. To assess 

the strengths and weaknesses of variant calling strategies for WGS, we first 

benchmarked different tools and candidate consensus strategies using real WGS 

data. We worked with the well-characterized medulloblastoma sample (MB99) 

from published benchmarking efforts (Alioto et al., 2015), and used a 

downsampled version at 30x to match the coverage of our data. The Tier1 and 

Tier4 lists of golden variants were used to calculate the sensitivity and precision, 

respectively, for SNVs and indels (see Methods - section 3.2.1).  

The intent of the results discussed here is to present the guidelines and the 

reasoning that we followed to evaluate variant calling strategies, rather than the 

selection of one single strategy that might be very convenient for one specific 

benchmarking dataset but might not be so good for other external data with 

slightly different characteristics. For illustrative purposes, SNVs will be used to 

explain and exemplify our approach in more detail.  

As expected, and as we have seen before, there was a high disagreement 

among programs in WGS variant calling. Starting with SNVs, some variants were 

indeed detected by all algorithms, but the majority of them (74%) were private 

mutations detected by only one tool (Figure 70). The evaluation of these SNV 

results showed that all programs had an overall good recall, but their precision 

was lower and more variable. The criteria of selecting the variants detected by a 

minimum number of programs improved the precision, while preserving a reliable 

recall (Figure 71).  
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Figure 70. Comparison of SNV results for the benchmarking dataset MB99. The upset plot shows the 

concordance among different variant callers for SNVs. Each row represents one program. The total 

number of variants detected by each tool is indicated by the blue barplots on the left. The number of 

variants in each intersection subset is represented by black vertical bars and the total number on top. 

 

Figure 71. Benchmarking results of MB99 SNVs. Blue bars represent the recall for the variants 

detected by each tool and those detected by a minimum number of programs (N_PROGS), while 

green bars show their precision. 
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Clearly, the union of all program’s results (labeled 1_PROG) had the best 

recall, as it included the highest number of variants. However, it also had the 

worst precision of all. On the other way around, the consensus of variants 

detected by all 5 programs (5_PROGS) had the best precision and the worst 

sensitivity. Investigation of the false positives showed that most of them came 

from tool-private calls and were related with low frequency values (Figure 72).  

 

Figure 72. Characteristics of false positives. Distribution of the VAF of false positives (left). Absolute 

number of false positives detected by the intersection of each number of programs (right). 

In order to select the best strategy for our research, we first tried to see if 

we could improve the results of each program individually. Digging into each 

program’s results, we saw that specific features calculated by the tools could have 

a direct impact on their performance. Most variant callers provide multiple 

metrics for each reported variant, commonly including the number of reads 

supporting the mutation, the total depth, quality-related values such as mapping 

or base qualities, and other statistics indicating the reliability of the variant. These 

factors are taken into consideration to try to discern true somatic variants from 

germline variants, sequencing errors, and other potential artifacts. We 

investigated the behavior of these features on true and false positives to see if 

stricter filtering could improve the results. We found several candidates that had 
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distinct values for true and false positives, and that could possibly be used to fine-

tune the programs’ outputs. Some examples are detailed in Figure 73, where 

three metrics from three variant callers show higher values for true positives, 

while most false positives have the lowest values. We explored the metrics that 

had this kind of behavior and set different thresholds to try to filter out false 

positives, while keeping the true variants. 

 

Figure 73. Distribution of program-specific features on true and false positives. Example of three 

metrics from three variant callers (CaVEMan, Mutect2, and Strelka2). The definition of the metrics 

shown is detailed in the Methods, section 3.3.2.2. The density plots show the distribution of the true 

positives (variants in the Golden dataset, in blue) and false positives (variants not in the Golden 

dataset, in pink). Dashed vertical lines indicate an illustrative threshold that would minimize false 

positives, while keeping the majority of true positives. 

Moreover, we also examined the general profile of the variants that would 

be discarded when applying those filters.  We explored them in terms of the 

pattern of the 96 mutation types (see Introduction - section 1.3.4), widely used 

for mutational signatures analyses, and the variant allele frequency of the 

mutations. Focusing on CaVEMan’s results (Figure 74), we can see that the 

expected 96-classes profile (from Golden SNVs) is slightly different from this tool’s 

output, as it shows 4 striking peaks that are not present in the validated variants. 

Now, if we compare the variants that passed the additional filters against those 

that were filtered out, we can see that the profile of the conserved variants is 

more similar to the golden profile, while the filtered-out mutations mainly 

correspond to the discrepant peaks. Besides, the frequency of the kept variants 
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covers from clonal to lower frequency variants, but virtually all filtered-out 

variants have very low frequencies, indicating that they are supported by a low 

number of mutated reads and that they are more likely to be artifacts.  

 

Figure 74. Characterization of the variants detected by CaVEMan in MB99. The two upper rows 

illustrate the mutational profile of the golden SNVs and that obtained from the CaVEMan results, 

which shows some characteristic peaks that are not present in the truth set. Next, the “CaVEMan 

OK” plots show the profile and VAF of the variants that would be kept after filtering, respectively, 

while the last two plots display the profile and VAF of the variants that are filtered out. 

We followed the same procedure for the rest of the features and programs 

and obtained similar results. We also inspected real sample data from our in-

house cohorts to evaluate the impact of this filtering strategy not only on a single 
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benchmarking dataset, but also on multiple samples from our studies. This 

analysis allowed us to confirm that variant filtering based on the selected 

program’s metrics would have equivalent results on our own data.  

Next, we checked the agreement among programs after applying our 

filtering strategy per program (see Methods - section 3.3.2.2) and observed that 

we reduced a large number of unique variants (75% of them were removed). 

 

Figure 75. Comparison of SNV results for the benchmarking dataset MB99 after filtering. The upset 

plot shows the concordance among different variant callers after filtering each program’s results. 

Each row represents one program. The total number of variants detected by each tool is indicated 

by the blue barplots on the left. The number of variants in each intersection subset is represented by 

black vertical bars and the total number on top. 

Altogether, we concordantly observed that our strategy was removing 

unique calls, mainly at low frequencies, and often corresponding to striking peaks 

in the 96-mutation classes that were not expected. Consistently, the evaluation 

of the results using the golden variants showed a significant improvement on the 
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precision of each program, while their recall was only affected by a small decrease 

(Figure 76). 

Based on this and the overall exploration of our own data, we evaluated the 

results of different combinations of programs. The selected pipeline (named 

Filtered2) included 3 programs (CaVEMan, Mutect2, and MuSE), applied the 

previously explained filters to the first two, and kept the SNVs detected by at least 

two algorithms. We did not base our choice solely on the limited benchmarking 

datasets, which could lead to overfitting of the proposed solution, providing very 

good results on this data at the expense of losing efficiency on other diverse 

datasets. We rather examined a variety of our own samples, together with our 

benchmarks, to see the way in which the programs behaved. In the MB99 dataset, 

our Filtered2 approach had a recall of 93.6% and a precision of 93.2%, which 

outperformed all single programs as well as most of their combinations (i.e., 

considering variants detected by a minimum number of programs) (Figure 76). In 

the case of the MB99 benchmarking dataset, the intersection of 3 programs out 

of 5 without any additional filtering achieved a slightly higher recall and precision. 

However, we found that Filtering2 was more conservative among our samples and 

less computationally demanding. 

 

Figure 76. Benchmarking results of MB99 SNVs before and after filtering, and comparison to the 

Filtered2 strategy. Performance (recall in blue, precision in green) of variant callers as well as their 

combinations considering variants detected by a minimum number of programs before filtering (left) 
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and after filtering (right). The selected strategy Filtered2 is shown on the right and its precision and 

recall are indicated on the right. The horizontal lines correspond to these values for easy comparison 

with the rest of the results. 

Following the SNV analysis, we examined the performance of indel detection 

using the same benchmarking for WGS (MB99). We applied the same strategy 

based on 6 variant callers and additional filtering (see Methods - section 3.3.2.2). 

Similar to SNVs, we selected 4 programs (Pindel, Platypus, Mutect2, and 

SvABA), applied the corresponding additional filters, and kept the variants 

detected by at least 2 programs. Not surprisingly, the performance achieved for 

indels was much lower than that of SNVs. In the MB99 sample, the Filtered2 

strategy had a recall of 67.7% and a precision of 82.3% and was slightly 

outperformed by the variants detected by 3 or more programs after filtering. The 

intersection of 3 or more programs without any additional filtering also showed 

reasonably good results (Figure 77). 

 

Figure 77. Benchmarking results of MB99 indels before and after filtering and comparison to the 

Filtered2 strategy. Performance (recall in blue, precision in green) of variant callers as well as their 

combinations considering variants detected by a minimum number of programs before filtering (left) 

and after filtering (right). The selected strategy Filtered2 is shown on the right and its precision and 

recall are indicated on the right. The horizontal lines correspond to these values for easy comparison 

with the rest of the results. 
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To assess the performance of the Filtered2 strategy on our cohort, we 

performed an orthogonal validation of the pipeline against high coverage gene 

panels (Nadeu et al., 2018) including both SNVs and indels (Figure 78).  

We identified 29 CLL samples that were subjected to both whole-genome 

sequencing and targeted sequencing of 28 CLL driver genes. We considered the 

variants detected at a minimum VAF of 10% in the gene panels (48 mutations) as 

the golden or truth variants. We obtained a sensitivity of 93% and a precision of 

88%. The missed variants corresponded to indels which are well-known to be 

more difficult to detect. 

 

Figure 78. Orthogonal validation of the Filtered2 pipeline. Selection of 29 CLL samples subjected to 

both WGS and high-coverage gene panel (left). Evaluation of the performance in WGS compared to 

high-coverage gene panels (right). The Venn diagram shows the intersection between the WGS 

results (in blue), and the variants identified by the gene panel (yellow).  

Finally, to assess the performance of SV variant calling, we used a 

benchmarking dataset created from a cell line that included a normal and a tumor 

paired samples (COLO829) subjected to multi-platform sequencing and validation 

for somatic structural variation detection (Espejo Valle-Inclan et al., 2022). As in 

the other mutation types, we applied custom filters to the raw results of the 

variant callers. In this case, the filters were mainly based on the mapping quality 



 

 195 

of the reads to try to preserve variants with high confidence (see Methods - 

section 3.3.2.2). 

In this dataset, the filtering step discarded many false positives from Delly2 

and Brass, while preserving most of the true positive variants in Delly2 but not in 

Brass. For SvABA, it only filtered out a few false and true positives (Figure 79). 

 

Figure 79. Comparison of variant calling results of SVs in COLO829. The results of each program 

(Delly2, SvABA, and Brass) is compared to the Golden “truth” variants without any additional filtering 

(top) and after the selected filters (bottom). The Venn diagrams show the intersection between the 

program’s results (in blue) and the Golden variants (in pink). 

We followed a similar merging strategy as for SNVs and indels, but since SVs 

are more difficult to detect, we applied a more flexible criteria to try to avoid a 

significant drop in sensitivity. Again, we selected the variants detected by at least 

two programs but only required one of them to pass the additional filters (see 

Methods - section 3.3.2.2). We refer to this strategy as Filtered2. In this particular 

benchmark, this approach achieved the best performance (Figure 80). When 

analyzing real data, since SVs are the most challenging to detect, we manually 

curated the results and confirmed them by visual inspection of each SV call in IGV. 
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Figure 80. Benchmarking results of SVs in COLO829 before and after filtering. Performance (recall in 

blue, precision in green) of variant callers as well as their combinations considering variants detected 

by a minimum number of programs before filtering (left) and after filtering (right). The selected 

strategy was Filtered2 and its precision and recall are indicated on the right. The horizontal lines 

correspond to these values for easy comparison with the rest of the results. 

4.3 Chapter 3: Application of cancer genome analysis to tackle 

biological questions 

4.3.1 Introduction 

This chapter concludes the thesis trajectory as it allowed me to apply the 

methodological aspects previously described, along with the expertise I gained on 

cancer genomics, to solve specific biological and clinical questions within 

oncology. This is where I brought together the computational perspective with 

the specific needs of biomedical scenarios and focused on the biological meaning 

of the results, rather than the technicalities of the analyses. In these studies, the 

procedures to analyze tumor genomes were aimed at finding answers to the 

biology and evolution of CLL.  

The research presented in this chapter (Study 4 and Study 5) was carried out 

in a close collaboration with Dr. Elías Campo’s group at Hospital Clínic de 

Barcelona/IDIBAPS. For each study, I first explain my contribution to the work 
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presented, followed by an introduction of the motivation, current knowledge in 

the field, and our approach. Lastly, I present the results of our research. 

4.3.2 Study 4: Richter transformation study 

This study has been the core of my thesis. It allowed me to go beyond the 

technical and methodological aspects of cancer genome analysis and deepen into 

the biological interpretation of their results to tackle unmet biomedical needs of 

Richter transformation (RT) in chronic lymphocytic leukemia (CLL). This work has 

been done in the collaboration with Dr. Elías Campo and Dr. Ferran Nadeu from 

IDIBAPS/Hospital Clínic de Barcelona. I have actively participated in the project 

since the very beginning, working hand in hand with Dr. Ferran Nadeu. 

My role in this work started on the computational and bioinformatics 

analyses of NGS data. More in detail, I have collected and managed all data, 

conducted all WGS, high-coverage UMI-based NGS, bulk RNA-seq computational 

analyses, and written the corresponding methods. Pursuing my interest on the 

biological significance of such analyses, I also got into the interpretation of their 

results together with Dr. Ferran Nadeu, who gave me constant feedback on the 

more biological and clinical interpretation of the downstream analyses.  

Overall, I have pushed and thoroughly followed the project, and I contributed 

to the writing and conception of the publication, supplemental material, and 

response to the reviewers. 

The following subsection is an introduction of the overarching topic and aim 

of the project. Next, the results of the study are presented as they appear in the 

publication (see Appendix): Integrative genomics characterization of RT, Novel 

mutational processes active in RT, Dormant seeds of RT at CLL diagnosis, The 

OXPHOShigh-BCRlow transcriptional axis of RT, and OXPHOS and BCR activity in RT. I 
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contributed to the first 4 blocks, particularly: I carried out all the WGS analyses for 

the genomic characterization of RT,  took responsibility of the mutational 

signatures analyses, conducted the study of tumor evolution based on WGS, and 

contributed to the bulk RNA-seq analyses of the fourth part. My work will be 

explained more extensively, while the rest will be introduced as it appears in the 

manuscript for the sake of contextualization and understanding of the whole 

research. The publication can be found in the Appendix. 

4.3.2.1 Introduction 

Clonal evolution (Cairns, 1975) plays a pivotal role in tumor initiation, 

progression, therapy resistance, and relapse in leukemias (Ferrando & López-Otín, 

2017) and solid tumors (Greaves & Maley, 2012) as a result of the emergence 

and/or selection of fitter subclones (Dentro et al., 2021; Nowell, 1976). A better 

understanding of the underlying forces driving these dynamics might help us 

predict treatment response, prevent poor outcomes, and achieve an overall 

better management of patients with anticipation-based treatment strategies. 

Many tumor evolution studies are restricted to low resolution bulk sequencing 

and single or scant time points, limiting the analyses to an underestimation of the 

actual tumor cell subpopulations (Gerstung et al., 2020).  

As a model of tumor evolution, we have used chronic lymphocytic leukemia 

(CLL), a usually indolent neoplasia of mature B-cells, though it can transform into 

a deadly cancer, usually in the form of diffuse large B-cell lymphoma (DLBCL). 

Richter transformation (RT) (Richter, 1928) in CLL represents a paradigmatic 

model of cancer evolution, where a slow growing malignancy transforms into a 

high-grade lymphoma associated with dismal clinical outcomes and unmet clinical 

needs. It is found rarely in treatment-naïve patients, but affects up to 20% of cases 

after chemoimmunotherapy (CIT) and newer targeted therapies (W. Ding, 2018). 
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RT can occur within a few months after treatment initiation (Ahn et al., 2017; Jain 

et al., 2015; Maddocks et al., 2015), suggesting the selection of minor subclones 

already present before therapy initiation (Landau et al., 2017). 

The genetic makeup of RT has been mainly characterized on patients after 

CIT using whole exome sequencing and targeted approaches (Chigrinova et al., 

2013; Fabbri et al., 2013; Rossi et al., 2011) or FFPE whole genome sequencing 

(Klintman et al., 2021). These studies have identified a mostly linear model of 

evolution from CLL to RT, where the predominant CLL clone acquired 

approximately 20 coding mutations per tumor. The most recurrently altered 

genes at the time of transformation were TP53 disruption, MYC amplifications, 

and CDKN2A deletions, which were exclusive of RT. Genomic complexity was 

assessed according to the number of copy number alterations and was found to 

be intermediate between CLL and DLBCL. Risk factors were also evaluated and 

include CLL carrying immunoglobulin genes that belong to stereotype subset #8 

(see Introduction - section 1.5.3), which is associated with aggressive disease, 

TP53 alterations, and NOTCH1 mutations. In the context of novel inhibitors, RT is 

less studied and often lacks BTK or PLCG2 and BCL2 mutations known to confer 

resistance under ibrutinib and venetoclax, respectively (Innocenti et al., 2018).  

Overall, recurrent alterations and risk factors of RT have been identified, but 

the genomic and epigenomic mechanisms leading to RT after CIT (Beà et al., 2002; 

Chakraborty et al., 2021; Chigrinova et al., 2013; Fabbri et al., 2013; Klintman et 

al., 2021; Rossi et al., 2011; Scandurra et al., 2010) and, specially, under targeted 

agents (Anderson et al., 2017; Herling et al., 2018; Kadri et al., 2017; Miller et al., 

2017) remain elusive. A more comprehensive characterization of RT might identify 

new alterations and molecular mechanisms underlying this transformation and 

might help us reconstruct the evolutionary trajectories of RT, recognize actionable 
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pathways, and determine features for early diagnosis that might allow 

anticipation-based therapies.  

We have performed a thorough characterization of RT, including multiple 

layers (genome, epigenome, and transcriptome) at different resolution levels 

(bulk and single cell), to reconstruct its evolutionary history, to uncover the 

molecular processes driving this transformation, and to identify potential factors 

for early detection that might anticipate its manifestation. 

 
4.3.2.2 Results 

Integrative genomic characterization of RT 

To achieve these goals, we have integrated the characterization of bulk 

whole genome, transcriptome, and epigenome, complemented with single-cell 

DNA and RNA sequencing analyses and functional experiments, of 19 CLL patients 

developing RT before or after several treatment lines, including targeted 

therapies or chemoimmunotherapy (see Methods - section 3.2.2; Figure 42, 

Figure 43, and Figure 44).  

We have performed whole genome sequencing (WGS) of 53 samples (mean 

coverage 33x) and 1 whole exome (mean coverage 119x) of spatial or longitudinal 

samples of 19 patients (including up to 6 time points per patient). In the majority 

of cases, their CLL transformed into a diffuse large B-cell lymphoma (RT-DLBCL, 

n=17), and in two cases it transformed into plasmablastic lymphoma (RT-PBL, 

n=1), or prolymphocytic leukemia (RT-PLL, n=1), respectively. The RT occurred 

simultaneously at the time of CLL diagnosis (n=3) or after up to 19 years following 

different lines of treatment with CIT (n=6) and targeted agents (n=10; BCR 

inhibitors: ibrutinib n=6, duvelisib n=2, idelalisib n=1; BCL2 inhibitor: venetoclax 
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n=1). All RT were clonally related to the CLL (see Introduction - section 1.5.7), as 

assessed by their immunoglobulin genes, 15 cases had unmutated IGHV (U-CLL) 

and 4 mutated IGHV (M-CLL). Matched normal samples were available in 12 cases 

allowing a complete analysis of somatic variation, while a restricted bioinformatic 

analysis was performed in cases lacking germline samples (see Methods - section 

3.3.2.3). 

A concordant increase in complexity from CLL diagnosis to relapse and RT 

was observed in bulk WGS, including somatic mutations (SNVs and indels), CNAs, 

and SVs, and also in the epigenome, analyzing DNA methylation, H3K27ac histone 

modification, and chromatin accessibility (ATAC-seq) (Figure 81). The WGS 

analysis showed a mutational burden of 1.8 mutations per megabase and a 

median of 18 CNAs and 37 SVs in RT that surpassed the 1.1 mutations/megabase, 

4 CNAs, and 5 SVs observed at CLL diagnosis (Figure 81.a). No major differences 

were seen among RT at CLL diagnosis or after different therapies (Figure 81.b). 

 

Figure 81. Genetic and epigenetic changes from CLL to RT. a. Increase in genomic alterations 

[mutations, including SNVs and indels, CNAs, and SVs] and epigenetic changes [number of DNA 

methylation, ATAC-seq, and H2K27ac changes] compared to normal naïve and memory B cells over 

the disease course. b. Mutational burden (mutations/megabase), CNAs, and SVs found in RT 

stratified according to therapy prior to transformation. Targeted, targeted therapies.  
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This comprehensive genomic characterization recognized novel driver genes 

and mechanisms, expanding the list of altered pathways in RT (Anderson et al., 

2017; Chakraborty et al., 2021; Chigrinova et al., 2013; De Paoli et al., 2013; Fabbri 

et al., 2013; Herling et al., 2018; Klintman et al., 2021; Rossi et al., 2011, 2012; 

Scandurra et al., 2010; Villamor et al., 2012) (Figure 82, Figure 83, and Figure 84). 

The main alterations affected cell cycle regulators (17/19, 89%), chromatin 

modifiers (79%), MYC (74%), NF-κB (74%), and NOTCH (32%) pathways.  

These genomic variations were simultaneously present in most cases, except 

for MYC and NOTCH altered pathways, which only co-occurred in 2/19 cases 

(Figure 82). Alterations in some genes such as TP53, NOTCH1, BIRC3, EGR2, and 

NFKBIE were usually present and clonally dominant from the sample at CLL 

diagnosis, while others were only detected during the disease course or at the 

time of RT (e.g., CDKN2A/B, CDKN1A/B, ARID1A, CREBBP, TRAF3, and TNFAIP3) 

(Figure 82). 

Among recurrent CNAs found either in CLL or RT samples (n ≥5), deletions of 

9p (PTPRD and CDKN2A/B) and deletions of 15q (MGA) were enriched in RT 

whereas deletions of ATM (11q), TP53 (17p), and 13q14 were found at similar 

frequencies in CLL and RT (Figure 83). 
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Figure 82. Landscape of driver alterations from CLL to RT. Oncoprint shows the list of putative driver 

alterations. Samples, grouped by patient (id on the top), are represented by columns while genes are 

displayed in rows. Novel drivers in RT are labeled in blue. Genes are grouped according to their 

biological function or if they were previously described as potential driver genes in CLL and/or mature 

B-cell lymphomas. Metadata including the type of therapy prior to RT, number of treatment lines 

before each sample, the spatial/longitudinal nature of the CLL-RT samples analyzed, the mutational 

status of the IGHV, and diagnosis is detailed in the upper rows. In the main plot, mutations (SNVs 

and indels) are depicted with horizontal rectangles, CNAs using the background color of each cell, 

and SVs with vertical rectangles. The transparency of the color of mutations and CNAs indicates their 

cancer cell fraction (CCF). For cases lacking the normal sample (case id indicated in gray), the CCF of 

the alterations could not be inferred and a CCF of 100% was used for illustrative purposes. 
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Figure 83. CNA profiles from CLL to RT. a. Copy number landscape grouped by patient. Diagnosis, 

IGHV mutational status, prior therapy, and total number of CNAs are indicated for each time point. 

The type of each CNA is indicated by its color, and the transparency is proportional to its CCF (when 

available). b. Aggregated copy number profile of RT vs CLL. The first CLL samples (time point 1, T1) 

were considered. The plot shows the percentage of samples with gains (up) and losses (down).  
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Figure 84. Structural variants in CLL and RT. Circos plots illustrating the CNAs and SVs of each sample, 

grouped by patient. Chromosomes are displayed in the outer circle. The next ring indicates the CNAs 
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colored by their type. The transparency is proportional to their CCF. The inner circle represents SVs, 

linking together the breakpoints of the affected loci. Candidate driver genes affected by CNAs and/or 

SVs are annotated. 

We identified novel alterations, including deletions targeting CDKN1A and 

CDKN1B in 5 RT associated with downregulation of their expression (Figure 85.a), 

one immunoglobulin (IG)-CDK6 translocation (Figure 85.b) and one CCND2 

mutation already present at CLL diagnosis, and a CCND3-IG translocation acquired 

at RT (Figure 85.c). Similarly, we also detected a MYCN-IG translocation that 

correlated with the overexpression of the gene (Figure 85.d). Most chromatin 

remodeler genes were altered by deletions and reduced their expression. 

Intriguingly, some of these genes were also downregulated in RT cases lacking 

these deletions, suggesting that other mechanisms might converge into similar 

transcriptomic profiles. Novel alterations in this group were deletions of ARID4B 

and truncations of CREBBP (Chitalia et al., 2019) and SMARCA4 (Klintman et al., 

2021) by translocations and chromoplexy (Baca et al., 2013) (Figure 85.f-g). We 

also recognized recurrent IRF4 alterations in RT, which have been associated with 

increased MYC levels in CLL (Benatti et al., 2021).  

Contrary to previous literature (Kadri et al., 2017), BTK/PLCG2 or BCL2 

mutations were not identified in any RT sample after treatment with BCR or BCL2 

inhibitors, respectively. Interestingly, the two M-CLL cases developing RT after 

targeted therapies carried the IGLV3-21R110 mutation, which triggers cell-

autonomous BCR signaling (Minici et al., 2017) (Figure 82). 
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Figure 85. Structural variants and copy number alterations affecting driver genes in RT. a. Deletions 

in chr12 identified in four cases with the minimal deleted region affecting CDKN1B. Its expression in 

CLL and RT sample pairs is shown on the right. The case carrying the deletion at time of RT is labeled 

in the boxplot. b. Reciprocal translocation juxtaposing CDK6 next to IGKJ5 in case 4687. c. CCND3 

insertion next to the constant region IGLC1 in the RT of case 835. d. Reciprocal translocation between 

MYCN and class switch recombination (CSR) region of IGHG3 in the RT sample of case 816 [left]. 

MYCN expression based on bulk RNA-seq [right]. e. Deletion in chr1 affecting two cases with the 

minimal deleted region targeting ARID4B. Its expression in CLL and RT sample pairs is shown in the 

boxplot (right). f. Chromoplexy disrupting SMARCA4 in the RT sample of case 4675. g. Reciprocal 

translocations truncating CREBBP and CIITA in the RT sample of case 12. h. Expression levels of known 
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and novel RT-driver genes in CLL and RT paired samples. Cases carrying deletions/mutations at the 

time of RT are indicated. 

In addition to the high frequency of CNAs, which has already been described 

in RT (Beà et al., 2002; Fabbri et al., 2013) (Figure 83), we observed a high number 

of structural variants that clustered into complex structural rearrangements 

(Figure 84). Chromothripsis (Stephens et al., 2011), a rare event in CLL (Puente et 

al., 2015), was found in 8 RT, involved 1 to 3 chromosomes per event, and usually 

targeted one or more driver genes, as previously seen in other tumor types 

(Cortés-Ciriano et al., 2020; Maura, Bolli, et al., 2019) (Figure 86). In line with this, 

CDKN2A/B and CDKN1B where targeted by chromothripsis in 5 and 1 cases, 

respectively, and MYC, MGA, SPEN, TNFAIP3, as well as chromatin remodeling 

genes (ARID1A, CHD2, and SETD2) in additional cases (Figure 87). 

 

Figure 86. Structural variants and complex rearrangements in RT. a. Upper rows indicate the case 

and associated metadata. Next, the number of complex structural alterations in each sample is 

shown, together with the total number of SVs of each type (deletions, duplications, inversions, and 

translocations). The color indicates the type, while the transparency indicates if they belong to a 

complex structural rearrangement. 
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Figure 87. Complex genomic rearrangements affecting driver genes. a. The circos plot [left] displays 

the SVs (links) and CNAs (inner circle) found in the RT sample of case 1669. CNAs are colored by type 

while SVs according to their occurrence within specific complex events. Target driver genes are 

annotated. Chromosome-specific plots [right] illustrate selected complex rearrangements affecting 

one or more driver genes with CNAs and SVs colored by type. b. Complex rearrangements in case 12 

and affected expression of targeted genes [right]. c-f. Additional cases with complex events. 

Taken together, our analyses expand the catalog of driver genes, pathways, 

and mechanisms involved in RT, and identify a similar distribution of these 

alterations in RT arising after different treatments, suggesting that therapy-
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specific pressure is not a major determinant of the driver genomic landscape of 

these tumors. 

Novel mutational processes in RT 

We next performed a mutational signature analysis to explore the 

mutational processes that could shape the genome of CLL and the increased 

mutational burden and genomic complexity of RT.  

First, we integrated the CLL (time point 1) and RT samples from our CLL-RT 

cohort with 147 CLL obtained prior to therapy from the ICGC-CLL cohort and an 

independent cohort of 27 CLL post-treatment samples. An unsupervised analysis 

based on the percentage of the 96 classes of point mutations showed that the 

mutational profile of RT was notably different from the M-CLL and U-CLL (Figure 

88). As shown in the plot, the first component differentiates M-CLL from U-CLL, 

which are known to be two different entities (see Introduction - section 1.5.3) and 

have different mutational profiles (i.e., mutational signature SBS9 is only found in 

M-CLL). The second component separates RT from CLL samples, which led us to 

think that there might be different mutational processes operating in RT.  

 

Figure 88. Mutational profile of CLL and RT. Principal component analysis of the 96-mutation profile 

of CLL and RT. Samples from the CLL-RT study are represented as circles, while CLL samples from the 
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CLL-ICGC and CLL-post-treatment cohorts are represented as crosses and plus signs, respectively. 

Outline colors indicate the mutational status of the IGHV of each case. 

Thereafter, we extracted de novo the mutational signatures from genome-

wide and clustered mutations identified in the CLL-RT and ICGC-CLL cohorts 

altogether. The resulting signatures were assigned and/or decomposed into 

reference signatures from COSMIC, obtaining 10 and 2 genome-wide and 

clustered mutational signatures, respectively (Figure 89). 

 

Figure 89. Mutational signatures extraction. Signatures extracted by the Hierarchical Dirichlet 

Process (HDP) (a), SignatureAnalyzer (b), sigfit (c), and SigProfiler (d). Decomposition of the extracted 

signatures into COSMIC signatures together with their percentage contribution are shown at the 

right of each profile. The cosine similarities between the extracted and reconstructed signatures are 

shown in brackets. 

Among the ten genome-wide processes, 5 were previously identified in CLL 
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to polymerase-eta), and SBS18 (possibly damage by reactive oxygen species)] and 

3 had been only found in DLBCL [SBS2 and SBS13 (APOBEC enzymes), SBS17b 

(unknown)]. Note that APOBEC-related signatures (SBS2 and SBS13) were not 

precisely extracted by the algorithms but manually identified based on their 

remarkable contribution among RT-private mutations of one case (839). One 

signature had been recently described in other tumors exposed to ganciclovir 

(nucleoside analog used primarily in treating cytomegalovirus infections) (de 

Kanter et al., 2021) and was named SBS-ganciclovir. Finally, another signature, 

characterized by [T>A]A and, in a lower degree, [T>C/G]A mutations, was 

considered a novel mutational process and named SBS-RT (Figure 90). This 

signature has not identified previously in any tumor type including CLL and DLBCL 

(Alexandrov et al., 2020; Arthur et al., 2018; Kasar et al., 2015; Kucab et al., 2019; 

Maura, Degasperi, et al., 2019; Puente et al., 2015). 

 

Figure 90. Signatures de novo identified in CLL-RT not reported in COSMIC. The main peaks of each 

signature are labeled in black. 

SBS-RT was directly identified by two independent algorithms (HDP and 

SignatureAnalyzer) with a high cosine similarity of 0.947,  and is required on top 

of all COSMIC signatures to properly reconstruct two signatures extracted by 

SigProfiler and sigfit, respectively (Figure 89 and Figure 91.a).  To determine if SBS-

RT represents a novel signature not identified in previous studies, we performed 

pairwise comparisons between SBS-RT and all COSMIC signatures, as well as a 
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compendium of environmental agents associated signatures (Kucab et al., 2019). 

Virtually none of these signatures had a cosine similarity >0.6 with SBS-RT, 

suggesting that SBS-RT did not correspond to any reference signature (Figure 

91.b). Next, we explored if SBS-RT could be a combination of already known 

signatures. We decomposed it into “N” COSMIC and environmental agents related 

signatures (Kucab et al., 2019) using an expectation maximization approach as 

previously described (Lee-Six et al., 2019). The best reconstituted signature was 

composed of 4 COSMIC signatures and its similarity with SBS-RT was not enough 

to consider them equivalent. Their cosine similarity was 0.79, and, furthermore, 

visual inspection of the reconstructed signature showed that it was missing 

several SBS-RT representative peaks (Figure 91.c). Taken together, these results 

strongly suggest that SBS-RT is a novel mutational signature. In line with this, 

additional findings described below, allowed us to associate this signature with 

potential mutational processes. 

 

Figure 91. Novel mutational signature SBS-RT. a. Comparison of SBS-RT extracted by HDP and 

SignatureAnalyzer. Based on their high cosine similarity (0.941), we considered that both signatures 

represented the same mutational process and selected the one extracted by HDP for downstream 

analyses. b. Pairwise comparisons of the SBS-RT with known signatures from COSMIC and 

environmental agents (Kucab et al., 2019) c. Decomposition of SBS-RT into “N” COSMIC and 

environmental agents signatures using an expectation maximization approach. The low cosine 

similarity (<0.80) between SBS-RT and the best reconstructed signature suggests that SBS-RT 

represents a novel mutational signature. 
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Further genomic and chromatin-based characterization of this novel 

signature showed that SBS-RT mutations were present in all different chromatin 

states and early/late replicating regions although with a moderate enrichment in 

heterochromatin/late replication (Figure 92.a-b), a lack of replication and 

transcriptional strand bias (Figure 92.c-d), and a modest correlation between SBS-

RT and SBS5 clock-like mutations (R=0.74, p=0.16) (Figure 92.e). Note that 

contribution to chromatin states and replication timings was done based on the 

mutations from the “CLL subclone” and the “RT subclone” identified in the 

reconstruction of the clonal composition and evolution by WGS. 

 

Figure 92. Characterization of SBS-RT. a. Activity of the mutational processes found in CLL and RT 

subclones in the different regulatory regions of the genome: heterochromatin (Het), polycomb (Pol), 

enhancer/promoter (EP), and transcription (Tra). Mutated and unmutated IGHV cases were analyzed 

separately. The heatmap [right] shows the log2-fold change of the observed vs the expected number 

of SBS-RT mutations per region. b. Contribution of the identified mutational processes in early and 

late replication regions. The heatmap [right] shows the log2-fold change between the observed and 

expected SBS-RT mutations per region. c-d. Replication (c) and transcriptional (d) strand bias of the 

mutational profile of RT subclones with SBS-RT. The number of mutations in the right and left 

replicating (c) or transcribed and untranscribed (d) strands are indicated with red and blue bars, 
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respectively. Specific SBS-RT peaks are indicated with their context at the x axis. Significant 

asymmetries are indicated with asterisks. e. Correlation of SBS-RT with the total number of SNVs and 

other mutational processes identified in RT subclones. 

During the first review of our manuscript, one of the reviewers asked us to 

speculate what might be driving this new mutational process (SBS-RT), which led 

us to perform a throughout revision of the mutational signature analysis. We 

refined some considerations and preliminary hypotheses based on very recently 

published results, hinting at an in-depth exploration of all treatment lines that the 

patients received. 

In the first submission, we considered the de novo extracted signature, now 

identified as SBS-ganciclovir, as a potential artifact and excluded it from further 

analyses. We initially flagged it as a technical artifact because it was only present 

in one case, had a striking 1-peak profile, and was similar to a COSMIC signature 

related to potential sequencing artifacts (SBS53, cosine similarity of 0.90). 

However, a posterior publication describing SBS-ganciclovir (named SBSA in the 

original paper) related it to treatment with the antiviral ganciclovir (de Kanter et 

al., 2021), which made us reconsider this preliminary decision. Indeed, our 

extracted signature had a very high similarity to this novel signature (cosine 

similarity of 0.987), and it was found in the RT sample of 1 case (case 4675), which 

had received valganciclovir (a prodrug of ganciclovir) due to cytomegalovirus 

reactivation at three different time points before RT (Figure 93 and Figure 44).  

This finding brought our attention to all the treatments that our patients had 

received. Two patients had been treated with melphalan, an alkylating agent 

associated with a previously described signature (Maura et al., 2021), here named 

SBS-melphalan (originally referred to as SBS-MM1). On that account, we included 

it in the analysis based on its contribution to 3 RT samples, 2 of which correspond 

to patients who had received melphalan as a conditioning of their allogeneic stem 
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cell transplant 1.9 and 4.2 years prior to RT (cases 4675 and 1523), respectively.  

The third RT sample with SBS-melphalan contribution was case 102, which did not 

receive melphalan and was the one with the lowest number of mutations assigned 

to SBS-melphalan, suggesting that another non-identified mutational process 

might be hampering the results in this case. We speculated that this mutational 

signature could indeed be present in melphalan-exposed tumors but that it could 

had not been extracted de novo in our analysis due to the low number of cases 

treated with this drug and its slight similarity, although remarkably different, to 

the novel SBS-RT (cosine similarity = 0.549).  

Next, we determined the prevalence of each identified mutational signature 

in each sample analyzed. This analysis revealed that SBS-RT was present in the RT 

sample of 7/18 cases, 1/6 after CIT and 6/10 under multiple treatments including 

targeted therapies and was detected in all subtypes of transformation (RT-DLBCL, 

RT-PBL, and RT-PLL) (Figure 93). It was also found in CLL samples before RT in two 

cases (12 and 3299), but not in other CLL samples from the reanalyzed pre-

treatment ICGC-CLL cohort nor in the independent CLL-post-treatment cohort 

(Figure 94). Note that none of the cases included in these two supplementary 

cohorts had evidence of RT, with a median follow-up of 9.8 years (range 0.2-30.4). 

 

Figure 93. Contribution of mutational processes in CLL and RT. Each bar corresponds to a sample, 

grouped by patient. The colors indicate the contribution of the mutational signatures to the 
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mutational profile of each sample. RT time points are marked in rose. Last therapy prior to RT is 

indicated by horizontal color lines. CIT, chemoimmunotherapy. 

 

Figure 94. Contribution of mutational processes in CLL diagnosis and post-treatment samples. 

Analysis of mutational signatures in two additional cohorts: ICGC-CLL cohort (left) including 147 CLL 

samples at diagnosis, and CLL post-treatment cohort (right) of 27 samples of CLL patients after 

treatment. Cases are grouped based on their IGHV mutational status and sorted based on their 

number of mutations. 

Although we first hypothesized that SBS-RT could correspond to a RT-specific 

mutational process, due to its absence in CLL and DLBCL samples of non-RT cases, 

an in-depth review of the treatment lines that the patients received suggested 

that SBS-RT might represent the footprint of an early-in-time therapy.  

Intriguingly, all cases showing contribution of the novel SBS-RT at time of RT 

had been treated with the alkylating agents bendamustine (n=5) or chlorambucil 

(n=2) during their CLL course at a median of 2.9 years (range from 0.7 to 6.8 years) 

before RT. Contrarily, cases without SBS-RT had never been exposed to these 

drugs (Figure 95). This observation allowed us to narrow down the potential 

mutational process behind SBS-RT, which seemed to be related to the exposure 

to these alkylating agents. 
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Figure 95. Therapies prior to RT. Representation of the treatments that each patient received before 

RT. The presence/absence of mutational signatures SBS-melphalan, SBS-ganciclovir, and SBS-RT at 

time of RT is shown on the right. mAB, monoclonal antibody. TBI, total body irradiation. Inh, inhibitor. 

To better time the activity of each mutational process, we reconstructed 

the phylogenetic tree of the tumor subclonal composition for 11 patients with 

multiple synchronous (n=2) or longitudinal (n=9) and matched germline samples, 

and measured the contribution of each signature to the mutational profile of each 

subclone. The major subclone at time of transformation was named “RT 

subclone”. As previously described, clock-like mutational signatures were present 

all along the phylogeny (constantly acquired), whereas SBS9 was found only in the 

trunk of the two M-CLL cases (365 and 19) representing early events. DLBCL-

related signatures, and treatment-related signatures (SBS-ganciclovir, SBS-

melphalan, and SBS-RT) were found in single RT subclones in 6 cases while 2 cases 

carried two simultaneous subclones with SBS-RT (cases 12 and 19) (Figure 96.a). 

SBS-RT contributed with 28.6% of the mutations acquired in RT (mean 679, range 

499-1,167), similar to DLBCL-related signatures and SBS-melphalan/SBS-

ganciclovir, led to the higher mutational burden compared to RT lacking these 

signatures, and it was occasionally associated with coding mutations in driver 

genes (EP300 and CIITA) (Figure 96.a and Figure 96.b).  
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RT subclones were also characterized by the acquisition of kataegis (Nik-

Zainal, Alexandrov, et al., 2012) that was mainly found within the IG loci, mediated 

by the 2 mutational signatures identified in localized regions of the genome 

related to direct and indirect effects of activation-induced cytidine deaminase 

(AID) activity (SBS84 and SBS85, respectively) (Alexandrov et al., 2020; Kasar et al., 

2015). These kataegis led to the acquisition of mutations in the rearranged V(D)J 

genes in 5 RT (1 after CIT, 4 after targeted therapies) (Figure 96.c). This canonical 

AID activity in RT is in line with the acquisition of SBS9 mutations in two RT samples 

(4686 [CIT] and 3495 [targeted therapies]) and SVs mediated by aberrant class-

switch recombination or somatic hypermutation in 6 RT (1 before therapy, 2 CIT, 

3 novel agents), which targeted MYC, MYCN, TRAF3, and CCND3 (Figure 82). 

 

Figure 96. Mutational processes in Richter transformation’s clonal evolution. a. Phylogenetic 

relationship of subclones and contribution of each mutational signature to their mutational profile. 
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b. Relative contribution of mutational processes in CLL (#1) and RT subclones [left]. Number of 

mutations in RT subclones [right]. RT subclones are defined by the mutational signatures identified.  

c. Relative contribution of mutational processes in regions of kataegis in CLL and RT [left]. Two cases 

acquiring mutations in the immunoglobulin genes at time of RT [right]. 

To better characterize and validate the timing of mutations introduced by 

SBS-RT, we applied a high-coverage, unique-molecular identifier (UMI)-based 

next-generation sequencing (NGS) approach in longitudinal samples of cases 12, 

19, and 63. We observed that mutations of the RT subclones found in the main 

peaks of the SBS-RT were mainly identified in samples collected after 

bendamustine or chlorambucil therapy, whereas mutations not associated with 

SBS-RT were detected earlier during the disease course. These results suggest a 

causal link between the exposure to these drugs and SBS-RT (Figure 97.a).  

 

Figure 97. Timing of RT mutations by high-coverage UMI-based analysis. a. Detection [top] and 

variant allele frequency (VAF) [bottom] of mutations assigned to the RT subclone during the disease 

course in cases 12, 63, and 19 by high-coverage, UMI-based NGS. Mutations are grouped according 

to the main peaks of SBS-RT. P values by Fisher’s test. L.C., low confidence; H.C., high confidence. b. 
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Distribution of the cancer cell fraction (CCF) of the SNVs assigned to the RT subclone based on WGS 

and stratified according to the main peaks of the SBS-RT. 

The identification of SBS-melphalan, SBS-ganciclovir, and SBS-RT in RT 

supports the model of a single-cell that can carry the footprints of cancer 

therapies, which can only be detected after its expansion (Figure 97.b). Contrarily, 

the non-detection of SBS-RT in the 27 CLL-post-treatment cases (7 treated with 

bendamustine or chlorambucil) suggests that CLL relapse in these cases might be 

driven by the simultaneous expansion of different subclones, hindering the 

discovery of SBS-RT by bulk sequencing (Pich et al., 2019; Rustad et al., 2020). 

As previously explained, SBS-RT mutations were found in CLL samples prior 

to the transformation. In case 3299, it was only present in the RT subclone, which 

suggests that the RT subclone was already present and could be detected before 

its clinical manifestation (Figure 93 and Figure 96.a). In addition, SBS-RT was found 

in two different subclones in case 12 and 19. We speculated that these secondary 

subclones with SBS-RT (named “RT-like” subclones) could correspond to 

“transformed” or “RT-like” cells that could have been missed by the routine 

analysis. To prove our hypothesis, we reanalyzed the flow cytometry data 

available for case 12 at different time points. From time point T4, we detected 

two cell subpopulations differing in size and specific surface markers (likely CLL 

and RT-like subclones), whereas at T5 we detected an additional subpopulation of 

larger cells (RT subclone) (0.2% cells) which expanded at T6 outcompeting the 

previous RT-like subpopulation (Figure 98). These dynamics correspond to the 

subclonal evolution identified by WGS, which showed that the RT-like and RT 

subclones diverged from a cell carrying deletion of CDKN2A/B and truncation of 

CREBBP (subclone #5), each acquiring more than 2100 specific mutations (Figure 

96.a). 
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Figure 98. Clonal evolution along the disease course in case 12 inferred from WGS [top]. 

Abbreviations for treatment regimens are detailed in Figure 44. Each subclone is depicted by a 

different color and number, and its CCF is proportional to its height in each time point (vertical line). 

The phylogeny of the subclones with the main driver alterations is shown [middle]. Flow cytometry 

analysis for time points (T) 4, 5, and 6 [bottom]. The size of the cells (FSC vs. SSC, first row) and the 

expression levels of CD20 and CD38 (second row) differentiated CLL cells (yellowish) and the two 

larger size tumor populations (pale and dark rose, respectively). Numbers along axes are divided by 

1000. 

Altogether, these findings show that RT may arise simultaneously from 

different subclones and that such subclones can be detectable time before their 

final expansion and clinical manifestation. The identification of mutations in RT 

associated with early-in-time CLL therapies points to the clonal expansion of a pre-

existing single cell that later in time has the capacity to expand and become the 

dominant clone leading to RT. 
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Dormant seeds of RT at CLL diagnosis 

Following the previous idea, that the cell which expands at the time of RT 

might already be present long before transformation, we sought to further 

explore the evolutionary trajectories from CLL to RT. We first capitalized on the 9 

cases with fully characterized longitudinal WGS to confirm the presence of minor 

RT subclones in early steps of CLL evolution.  

The longitudinal nature of our study, including from 2 to 6 time points per 

case, allowed us to evaluate the intra-tumoral heterogeneity of these tumors, 

reconstruct their subclonal architecture, infer the phylogeny of these 

subpopulations of cancer cells, and understand their dynamics along the course 

of the disease.  

The RT subclone was predicted to be present at low cancer cell fraction (CCF) 

in the preceding CLL samples in 5 of the 9 cases, and only detected at time of 

transformation in the remaining 4 (Figure 99).  

 

Figure 99. Early seeding of Richter transformation. Evolution of the RT subclone along the disease 

course based on WGS. The time lapse between the first and last sample analyzed is shown on the 

bottom. RT time points are marked in rose. The summary of the three patterns observed is shown on 

the bottom. 
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Among them, we identified two patterns of evolution based on the rapidness 

of expansion of the RT subclone. In 3/5 cases, the RT subclone was detected at 

time of CLL diagnosis, remained stable at a minute size (<1%) for 6-19 years of 

natural and treatment-influenced CLL course, and expanded at the moment of 

clinical manifestations (cases 12, 19, and 63) (Figure 99). In the other 2 cases, the 

RT subclone was also detected in the first CLL sample analyzed but promptly 

expanded driving the RT 0.6 and 3.5 years later in cases 3034 and 3299 (RT-PLL), 

respectively (Figure 99, Figure 100, and Figure 101).  

Given the limitations of WGS data, we used a battery of more sensitive 

methodologies to confirm the subclonal architecture and dynamics of CLL 

evolution to RT that we initially inferred from WGS. These techniques included 

DNA- and RNA-based high-coverage sequencing of the immunoglobulin gene, 

scDNA-seq, and scRNA-seq. Note that we have also performed high-coverage, 

unique molecular identifier (UMI)-based NGS to time the acquisition of mutations 

of the RT subclone over time, which indirectly allowed us to validate the presence 

of these mutations in early time points. All these procedures confirmed the 

evolutionary trajectories inferred from WGS and thus supported the predicted 

early seeding of RT. 

We performed scDNA-seq of 32 CLL driver genes in 16 longitudinal samples 

of 4 cases (12, 19, 365, and 3299) to validate the inferred evolutionary histories 

of RT (we obtained 202,210 cells passing filters, mean of 12,638 cells per sample). 

The scDNA analyses were performed by Dr. Ferran Nadeu, and we jointly 

evaluated the results and their integration with WGS.  
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Figure 100. Clonal dynamics from CLL to RT with scDNA validation. a-d. Subclonal reconstruction and 

clonal evolution of four cases (19, 3299, 12, and 365) with WGS and scDNA-seq data. The upper fish 

plot shows the clonal evolution along the course of the disease inferred from WGS analysis. Each 

time point is indicated with dashed vertical lines, each color represents a different subclone and their 

height is proportional to their cancer cell fraction (CCF) in each time point. The treatments that the 

patient received and the elapsed time (in years) between samples are indicated on the top. The tissue 

is indicated for samples of case 3299 in which different tissues were analyzed by WGS and scDNA-

seq in the same time point. The phylogeny of the subclones is depicted together with the main driver 

alterations [top right]. The lower bar plots show the dynamics of the different subclones according 

to the scDNA-seq analyses. The total number of cells per sample is shown on the bottom. The 

mutation tree inferred from scDNA-seq data is shown on the bottom-right part. 

Focusing on case 19 with a time lapse of 14.4 years from CLL diagnosis to RT 

(Figure 100.a), the RT subclone (subclone #5) at transformation (T6) carried 

CDKN2A/B and TP53 (p.G245D) alterations while the main CLL subclones (#3 and 

#4) driving the relapse after therapy at T4 and T5 harbored a different TP53 

mutation (p.I195T). The WGS predicted the presence of all these subclones at CLL 

diagnosis (T1). Using scDNA-seq we confirmed these predictions. Two small 

populations accounting for 0.1% of the cells carried the TP53 p.I195T and p.G245D 

mutations, respectively, at diagnosis (T1) and were also detected at relapse 7.2 

years later (T3). The subclone carrying TP53 p.I195T expanded to dominate the 

relapse 3.7 years later at T4 and T5 but was substituted by the subclone carrying 

TP53 p.G245D at T6 in the RT 14.4 years after diagnosis. All these subclones 

carried the SF3B1 and NOTCH1 mutations of the initial CLL subclone. The scDNA-

seq of the 3 additional cases also corroborated the phylogenies and most of the 

dynamics inferred from WGS (Figure 100.b-d). These results strongly suggest that 

CLL evolution to RT is characterized by an early driver diversification probably 

generated before diagnosis. RT may be emerging, at least in a notable fraction of 

patients, by a selection of pre-existing subclones carrying potent driver mutations 

rather than a de novo acquisition of leading clones. 



 

 227 

 

Figure 101. Clonal dynamics from CLL to RT from WGS. a-b. Subclonal architecture and dynamics of 

six cases with longitudinal samples (a) and two cases with spatial samples (b) analyzed by WGS. 
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The observed subclonal heterogeneity of CLL before diagnosis is concordant 

with the massive diversification revealed by single cell DNA methylation (Gaiti et 

al., 2019) and high-coverage IG (Bagnara et al., 2021; Gemenetzi et al., 2021) 

analyses. We identified 5 RT carrying specific mutations in the IG genes by WGS 

which represent a hallmark of their cell of origin. We analyzed if these IG-based 

RT subclones were already present at the time of CLL diagnosis using high-

coverage NGS in cases 12 and 3495. The lack of germline material and 

cryopreserved cells for case 3495 precluded our complete WGS analysis and we 

could not reconstruct its subclonal structure and phylogeny. Nonetheless, using a 

modified variant calling strategy that used the CLL sample as the normal sample, 

we could identify that the RT occurring after treatment with the BCR inhibitor 

ibrutinib harbored two novel V(D)J mutations, which generated an unproductive 

IGH gene.  

Using high-coverage NGS (performed by Dr. Ferran Nadeu) we recognized 

0.002% sequences carrying the same two mutations at CLL diagnosis 1.72 years 

before (Figure 102.a). In addition, we also observed the expansion of additional 

unproductive subclones accounting for 11.8% of all sequences at time of RT, 

which suggests that BCR-independent subclones may have a proliferative 

advantage under therapy with BCR inhibitors (Figure 102.a). Similar results were 

found in case 12 in which the V(D)J sequence of RT carried a novel mutation that 

could be identified at CLL diagnosis 19.5 years before transformation. This finding 

was confirmed at both DNA and RNA level (Figure 102.b). It is known that 

immunogenetic features represent a faithful imprint of the B cell of origin, thus 

the identification of the same immunogenetic subclone (i.e., with the same IG 

gene rearrangement) before clinical manifestation of RT provides further 

evidence for the existence of early seeding. 
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Figure 102. Early seeding of RT based on high-coverage IG. a. Representation of the clinical course 

and samples analyzed for case 3495 (top) together with the size of the IGH subclones identified using 

high-coverage NGS analyses (bottom). Subclones with specific RT mutations are indicated in dark 

pink. Abbreviations for treatment regimens are detailed in Figure 44. b. Clinical course (top) and IGH 

subclones identified by DNA- and RNA-based NGS (bottom) in case 12.  

We finally investigated the transcriptome of RT using scRNA-seq of 19 

longitudinal samples from 5 cases (24,800 tumor cells passing filters, mean of 

1,305 cells/sample; microenvironment cells were not analyzed due to its low 

numbers) to verify if dormant RT subclones could be also identified at CLL 

diagnosis or during the disease course based on their phenotype. These analyses 

were performed by Ramon Massoni from Dr. Holger Heyn’s group at CRG/CNAG.  

As expected, RT and CLL cells had remarkably different gene expression 

profiles (Figure 103a, Figure 104). The transcriptome of CLL cells was 

characterized by different expression of CXCR4, CD27, and MIR155HG, that may 

describe the continuous recirculation of CLL cells between peripheral blood and 

lymph nodes (Calissano et al., 2009, 2011; Cui et al., 2014) and defined three main 

clusters identified across patients (Figure 103a-b, Figure 104). On the other hand, 

RT intra-clonal heterogeneity was mainly linked to distinct proliferative capacities. 
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G2M cell-cycle phase scores, while the remaining RT clusters showed a more 

quiescent state and were characterized by the expression of different marker 

genes among patients including CCND2, MIR155HG, and TP53INP1 (Figure 103a-

c, Figure 104).  

 

Figure 103. Early seeding of RT based on scRNA-seq for case 12. a. UMAP visualization based on the 

scRNA-seq data of all time points colored by annotation. RT clusters are colored in pink, while CLL 

clusters use gray colors. b. Expression of key marker genes in each cluster identified. Color and size 

represent scaled mean expression and proportion of cells expressing each marker gene, respectively. 

c. Distribution of cell cycle phase scores for each cluster based on scRNA-seq. d. UMAP plot split by 

time point, the fraction of RT cells is annotated. ‘n’, number of cells. 
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Figure 104. scRNA-seq characterization of CLL and RT. a-d. UMAP visualization of tumor cells from 

all time points colored by annotation and tissue of origin for cases 19 (a), 63 (b), 365 (c), and 3299 

(d). hi, high; lo, low; PB, peripheral blood; LN, lymph node; BM, bone marrow [left]. Dot plot with the 

expression of key markers in each cluster identified. Color and size represent scaled mean expression 

and proportion of cells expressing each marker gene, respectively [middle-left]. Violin plots showing 

the cell cycle phase scores (S and G-to-M) for each cluster of cells [middle-right]. UMAP visualization 

split by time point [right]. ‘n’ refers to the total number of cells in that time point, and the percentage 

refers to the proportion of cells within RT clusters.  
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When considering each time point separately, we detected RT cells in all CLL 

samples prior to transformation in case 12, 19, 63, and 3299 but not in case 365 

(Figure 103d, Figure 104, Figure 105a-e). To validate these observations, we 

reanalyzed the longitudinal scRNA-seq dataset from Penter and colleagues 

(Penter et al., 2021), which consists of 9 CLL patients, one of whom developed RT. 

In this case, we identified RT cells in the CLL sample collected 1.6 years prior to 

the expansion and diagnosis of RT (Figure 105f). 

 

Figure 105. Sample specific visualization of scRNA-seq profiles. a-e. Time point-specific UMAP 

visualizations for each case. RT seed cells are depicted in rose and with an increased size. f. UMAP 

visualization of case CLL9 from  Penter et al., 2021 split by time point. PB, peripheral blood; BM, bone 

marrow. 

Overall, the presence and dynamics of these RT subclones according to their 

transcriptomic profile recapitulated the findings obtained by WGS, scDNA-seq, 

and IG analyses in all 5 cases, suggesting that they captured the same cells. As a 

proof of concept, we selected genes targeted by chromothripsis (TNFRS14 and 

SPEN) and simple chromosomal deletions (TRAF3) in the RT subclone of case 12 

detected by WGS and analyzed their expression along the disease course using 

scRNA-seq. We observed a low expression of these genes as well as of CDKN1B, a 

hallmark of RT independent of genomic alterations (Cobo et al., 2002), in the 

dormant RT cells prior to their final expansion (Figure 106).  
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Figure 106. Expression of chromothripsis targeted genes at single cell level. Schematic representation 

of the chromothripsis (chr1) and deletion of TRAF3 (chr14) identified at RT in case 12 [top]. Expression 

of the targeted genes and CDKN1B in CLL and RT cells split by time point [bottom]. 

To further explore the presence of genomic rearrangements in early time 

points, we used scRNA-seq to identify CNAs involved in simple and complex 

structural variants found in RT subclones according to WGS. These analyses were 

performed on all cases with available scRNA-seq, except for case 365, which did 

not carry any new CNAs compared to the preceding CLL. Although the 

characterization of the copy number profile of single cells can miss small CNAs 

due to the small number of genes within the deleted/gained regions, it identified 

the main RT alterations in dormant RT cells prior to their final expansion up to the 

time of CLL diagnosis (Figure 107). These results link our genomic and 

transcriptomic findings and suggest an early acquisition of structural variants, 

including chromothriptic events, in RT, as reported in other tumor types (Maura, 

Bolli, et al., 2019).  
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Figure 107. Identification of CNA involved in complex rearrangements in RT cells of case 12 by scRNA-

seq. Chromosomal alterations detected by WGS in chromosomes 1, 11, and 14 in CLL and RT samples 

[top]. Copy number profile of RT cells detected at the different time points according to scRNA-seq. 

Only a subset of RT cells from time point 6 (time of RT) was included for illustrative purposes 

[bottom]. 

Overall, our integrative analyses uncovered a widespread early seeding of 

RT cells, up to 19 years before their clinical manifestation, which remain virtually 

dormant until they expand massively and become the dominant population at the 

time of transformation. This early presence of small subpopulations of the future 

dominant RT subclones was first inferred from WGS and subsequently confirmed 

by scDNA-seq, IG deep sequencing, and the gene expression and CNA profiles 

from scRNA-seq. 
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The OXPHOShigh-BCRlow transcriptional axis of RT 

To elucidate the transcriptomic evolution and the epigenomic regulation 

from CLL to RT, we integrated genome-wide profiles of chromatin accessibility 

(ATAC-seq), chromatin activation (H3K27ac), and DNA methylation (performed by 

Beatriz Garcia and Dr. Martí Duran from Dr. José I. Martín’s group at IDIBAPS) with 

bulk RNA-seq and scRNA-seq of multiple longitudinal samples from 6 cases, all 

treated with BCR inhibitors. The DNA methylome of RT mainly reflected the naïve- 

and memory-like B cell provenance of their CLL counterpart while chromatin 

activation and accessibility were remarkably different upon transformation 

(Figure 108).  

 

Figure 108. Bulk epigenomic and transcriptomic profile of RT and CLL. Principal components analysis 

of the bulk epigenetic and transcriptomic layers analyzed. RT samples are indicated in pink, while CLL 

samples are gray. Mutational status of the immunoglobulin genes is indicated by the border color. 

We identified 150 regions with increased H3K27ac and 426 regions that 
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CLL or CLL-relapse samples. These de novo active regions (i.e., chromatin 

accessible regions within the RT-specific active chromatin regions) were enriched 

in transcription factor (TF) families different from those known to modulate the 

epigenome of CLL (Beekman et al., 2018). Among them, 24 were enriched and 

upregulated in RT. The top TF was TEAD4, recently described to activate genes 

involved in oxidative phosphorylation (OXPHOS) through mTOR pathway (Chen et 

al., 2021) and to co-operate with MYCN in high-risk neuroblastoma (Rajbhandari 

et al., 2018). Additional TF were related to MYC (MAZ), proliferation/cell cycle 

(E2F family) or IRF family, among others (Figure 109). Intriguingly, high IRF4 levels 

seem to attenuate BCR signaling in CLL (Maffei et al., 2021) while they are 

necessary to induce MYC target genes, OXPHOS and glycolysis in activated normal 

B cells (D. G. Patterson et al., 2021). 

 

Figure 109. Transcription factors enrichment in RT. TF enriched within the ATAC peaks identified in 

the regions of increase H3K27ac in RT. The motif (left), percentage of RT-specific active regions and 

regions with increased H3K27ac in CLL that contained the motif (middle), and TF expression (bulk 

RNA-seq) in CLL and RT (right) are shown. 

The bulk RNA-seq analysis revealed a distinct transcriptomic profile of CLL 

and RT. Two cases, 19 and 3299 (RT-PLL), had an intermediate expression profile 
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of RT (Figure 108 and Figure 110), which was also observed by scRNA-seq where 

they showed a low number of differentially expressed genes with no overlap with 

the other cases. Excluding these two cases due to their intermediate 

transcriptomic profile, we identified 2,248 differentially expressed genes (DEG) 

between RT and CLL (1,439 upregulated, 809 downregulated) (Figure 110). A 

considerable fraction of upregulated and downregulated genes overlapped with 

regions with the respective increase and decrease of H3K27ac (20%) and 

chromatin accessibility (16%) at RT.   

 

Figure 110. Transcriptome of RT by bulk RNA-seq. a. Heatmap showing the differentially expressed 

genes (DEG) between CLL and RT. Cases used in the differential expression analysis (DEA) are 

indicated. The overlap of DEG with DNA methylation changes, H3K27ac, and ATAC peaks is shown 

on the right. Selected genes are annotated.  
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Genes upregulated in RT were associated with pathways that seem 

independent of BCR signaling such as Wnt (WNT5A and others) (Hasan et al., 

2021), Toll-like receptors (TLR9 among others) (Ntoufa et al., 2016), and a number 

of cyclin-dependent kinases. Downregulated genes involved, among others, 

CXCR4, HLA-A/B, and chromatin remodelers also targeted by genetic alterations 

(Figure 110 and Figure 111). Gene sets modulated by gene expression in RT were 

in line with the identified chromatin-based changes and included upregulation of 

E2F targets, G2M checkpoints, MYC targets, MTORC1, OXPHOS, mitochondrial 

translation, glycolysis, reactive oxygen species, and DNA repair, among others. In 

addition, RT showed a downmodulation of the BCR signaling (Figure 111).  

 

Figure 111. Differentially expressed gene sets in RT based on bulk RNA-seq. a. Summary of the main 

gene sets modulated in RT. b. Gene set enrichment plot for OXPHOS and BCR signaling. 

The scRNA-seq analyses aligned with the bulk RNA-seq results. They 

confirmed the gene set enrichment analysis and allowed us to further refine the 

OXPHOShigh-BCRlow pattern recognized by bulk RNA-seq in RT. We recognized that 

2/5 cases had OXPHOShigh-BCRlow (12 and 63, although the latter showed some 

intercluster variability), the 2 M-CLL cases carrying the IGLV3-21R110 had RT with 

BCR expression similar to CLL and were OXPHOShigh-BCRnormal (365) or 

OXPHOSnormal-BCRnormal (19), and the RT-PLL (3299) was OXPHOSlow-BCRlow.  
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In addition, the scRNA-seq analysis showed that the OXPHOS/BCR profiles of 

RT were already identified in the dormant RT cells detected at diagnosis and at 

intermediate time points years before their final expansion and clinical 

manifestation, suggesting that they represent an intrinsic characteristic of RT cells 

rather than being derived from a de novo epigenetic/transcriptomic modulation 

upon treatment with BCR inhibitors (Figure 112).  

 

Figure 112. OXPHOS and BCR signaling of selected case 12 by scRNA-seq. a. OXPHOS and BCR 

signaling scores depicted at single cell level (all time points together). RT and CLL cells are highlighted 

[left]. Ridge plots show the OXPHOS and BCR score across clusters [right]. b. OXPHOS and BCR 

signaling scores of CLL and RT cells of case 12 across time points by scRNA-seq. 

To expand these observations, we measured the expression of OXPHOS and 

BCR pathways in the scRNA-seq dataset of CLL and RT from Penter et al., 2021. 

The RT samples of case CLL9, which developed RT in the absence of any 

intervening therapy, showed a remarkably higher OXPHOS and slightly lower BCR 

expression compared to CLL (Figure 113). 
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Figure 113. Confirmation analysis of the longitudinal scRNA-seq dataset from the study Penter et al., 

2021. Distribution of OXPHOS and BCR signaling scores at single cell level across the different time 

points of the nine cases included in the study of Penter et al. B, peripheral blood; M, bone marrow; 

*sample collected under treatment with ibrutinib.  

Overall, the epigenome and transcriptome of RT converge to an OXPHOShigh-

BCRlow axis that is reminiscent of that observed in the de novo DLBCL subtype 

characterized by high OXPHOS and mitochondrial translation (DLBCL-OXPHOS), 

and insensitive to BCR inhibition (Caro et al., 2012; Monti, 2005; Norberg et al., 

2017). Therefore, this axis might explain the selection and rapid expansion of 

small RT subclones under therapy with BCR inhibitors. 

OXPHOS and BCR activity in RT 

Next, we sought to validate the OXPHOS and BCR activity in RT previously 

described. These experiments were performed by Heribert Playa from Dr. Dolors 

Colomer’s group at IDIBAPS and Pablo M. Garcia-Roves at IDIBELL. Although it was 

challenging to obtain suitable cryopreserved cells from paired CLL-RT samples, we 

could obtain enough material for three cases of the CLL-RT cohort (cases 19, 63, 

and 12) at different time points and with multiple technical replicates. 
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Independent cases were also considered, but the cryopreserved cells’ quality 

and/or quantity did not meet the requirements for the experiments.  

For the available cases, we measured the respiratory capacity and BCR 

signaling in CLL and RT to confirm our previous findings obtained by 

transcriptomic analyses and showed that the high OXPHOS levels identified in RT 

could potentially be used as a target for therapeutic intervention in the future 

(Figure 114). 

 

Figure 114. Cellular respiration, BCR signaling, and OXPHOS inhibition in RT cells. a. Oxygen (O2) 

consumption of intact CLL and RT cells of cases 12, 63, and 19 at routine respiration (routine), 

oligomycin-inhibited Leak respiration (uncoupled), and uncoupler-stimulated electron transfer 

system capacity (ETC). Each dot represents a technical replicate. The mean of the replicates is shown 

using a horizontal line [left]. Summary of the routine respiration of CLL and RT cells of the three cases 

collapsed [right]. Richter samples are indicated in pink. b. Calcium kinetics of tumoral cells (CD19+, 

CD5+) upon stimulation with 4-hydroxytamoxifen (4-OHT) and anti-BCR antibody (black arrow). 

Basal calcium was adjusted at 5x109 Indo-1 ratio for 60 seconds prior cell stimulation with F(ab’)2 

anti-human IgM + H2O2 at 37ºC. Then, Ca2+ flux was recorded up to 500 seconds [left]. Summary 

of the calcium release after BCR stimulation of CLL and RT cells. Average mean fluorescence after 

stimulation is represented [right]. c. Cell proliferation after 72-hour incubation with or without IACS-
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010759 (IACS) at 100nM. Percentage of proliferating cells was determined by CFSE cell tracer. Two 

technical replicates of each sample were performed [left]. Summary of the proliferation for each CLL 

and RT cells with or without IACS-010759 (IACS) treatment after 72 hours. The normalized 

percentage of growth inhibition is indicated [right]. 

We first performed in vitro experiments using paired CLL and RT cells from 

cases 12, 19, and 63 to functionally validate the OXPHOShigh-BCRlow axis identified 

in RT, including functional evaluations of the oxygen consumption and BCR 

signaling in CLL and RT. Respirometry assays confirmed that OXPHOShigh RT cells 

(cases 12 and 63) had a 3.5-fold higher oxygen consumption at routine respiration 

and 5-fold higher electron transfer system capacity (ETC) compared to CLL. In 

addition, OXPHOSnormal RT (case 19) showed a routine oxygen consumption similar 

to CLL, although also had a relatively higher ETC than its CLL counterpart (Figure 

114.a).  

Using intracellular calcium flux analysis by flow cytometry, BCR signaling was 

measured by Ca2+ mobilization upon BCR stimulation with anti-BCR antibody (IgM) 

and showed that BCRlow RT cells (cases 12 and 63, the latter showing intercluster 

variability by scRNA-seq) had a lower Ca2+ flux compared to their respective CLL 

cells, which contrasted with the higher flux observed in BCRnormal RT cells (case 19) 

(Figure 114.b). Note that case 19 carried the IGLV3-21R110 mutation, known to 

trigger autonomous BCR signaling (Minici et al., 2017), both in the CLL and RT . 

 To provide a functional validation that our findings could be therapeutically 

relevant, we focused on OXPHOS inhibition in primary CLL and RT cells. To 

determine the biological effect of OXPHOShigh in RT, we performed in vitro cell 

growth assays using paired CLL and RT cells from cases 12, 19, and 63 with and 

without treatment with IACS-010759 (100nM), an OXPHOS inhibitor that targets 

mitochondrial complex I (Figure 114.c). These experiments showed that 

OXPHOShigh RT (cases 12 and 63) had a higher proliferation at 72 hours compared 
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to OXPHOSnormal RT (case 19), and all of them higher than their respective CLL 

(Figure 114.c). OXPHOS inhibition in OXPHOShigh RT resulted in marked growth 

inhibition with an average of 49.1% decrease in cell proliferation, which 

contrasted with that observed in OXPHOSnormal RT (2.2% decrease) and CLL (23.2% 

decrease) (Figure 114.c). Note that we also confirmed that treatment with IACS-

010759 (100nM) inhibited the cellular respiration of CLL and RT cells of the two 

cases analyzed (case 12 and 63; OXPHOShigh RT).  

Overall, these results confirm the role of OXPHOShigh phenotype in the high 

proliferation of RT and suggest its potential therapeutic value in RT as has been 

proposed in other neoplasms (Caro et al., 2012; Molina et al., 2018; Norberg et 

al., 2017; Vangapandu et al., 2018; L. Zhang et al., 2019). 

4.3.3 Study 5: Case report of a young adult with CLL harboring ATM germline 

variants 

In this study we investigated a case report of a young adult with CLL. I 

performed and interpreted all WGS analyses, interpreted scDNA-seq analyses, and 

wrote the manuscript.  

The first subsection is an introduction of what is known in the field in relation 

to our case report. Next, the results subsection includes the clinical course of the 

patient, which was written by Dra. Laura Magnano, and the 8-year genomic 

evolution under the influence of different therapies. 

This work has been published in Blood Cancer Journal and is attached in the 

Appendix. 
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4.3.3.1 Introduction 

Chronic lymphocytic leukemia (CLL) is the most common leukemia of adults 

in western countries, commonly diagnosed in the elderly with a median age of 

approximately 70 years. However, CLL can also be detected in adolescent and 

young adults (AYA). According to different studies, 0.85-3.7% of patients with CLL 

are diagnosed in AYA and 3% of these patients had a first-degree relative with CLL 

(Cherng et al., 2021). Families with multiple individuals affected with CLL and 

other related B-cell tumors have been described with contradictory findings 

regarding their potential early age at diagnosis (Goldin et al., 2009). Despite these 

observations, our knowledge about the molecular profile and predisposing factors 

in AYA CLL is scarce (Luskin et al., 2014; Nassereddine & Dunleavy, 2019).  

The understanding of the biology of CLL has evolved significantly in recent 

decades. Comprehensive studies have dissected the genomic, epigenomic, and 

transcriptomic landscape of CLL (Puente et al., 2015). Approximately 9-18% of 

patients with CLL harbor del(11q) or Ataxia telangiectasia gene (ATM) disruption, 

which occurs in younger patients with bulky disease and poor survival (Döhner et 

al., 2000; Nadeu et al., 2016; Wierda et al., 2011). These deletions are frequently 

associated with germline and acquired mutations of ATM (Skowronska et al., 

2012). ATM codes for the ATM protein kinase that participates in cell cycle, DNA 

repair, and apoptosis. Patients with the inherited disorder ataxia telangiectasia 

have biallelic alterations of the ATM gene and increased susceptibility to lymphoid 

malignancies (Reiman et al., 2011). Rare, protein-coding germline ATM variants 

are associated with CLL in adults (Tiao et al., 2017). However, ATM mutations are 

uncommon in familial CLL (Yuille et al., 2002). 

Here, we describe an 18-year-old woman diagnosed with CLL whose family 

history included a younger brother with B-cell acute lymphoblastic leukemia (B-
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ALL) and other family members carrying germline ATM mutations. A combination 

of whole genome and single cell characterization of this CLL at diagnosis and at 

additional time points during the course of the disease provided an opportunity 

to understand the genomic profile of AYA CLL and the sequence of events driving 

its evolution.  

4.3.3.2 Results 

Clinical course 

An 18-year-old female was diagnosed with CLL, Binet-Rai stage AI, in the 

study of a lymphocytosis detected in a routine blood test at another institution. 

She had a past medical history of anxiety-depressive syndrome during childhood 

and chronic headache, but no neurological symptoms were reported. The patient 

had a younger brother diagnosed with B-ALL when he was 3 years old, who was 

in complete remission 13 years later, and an older sister with epilepsy. Her parents 

were both healthy. At the time of CLL diagnosis, the patient was asymptomatic 

with a normal physical exam. Her white blood cell count (WBC) was 9.08x109/L, 

with 75% lymphocytes. Hemoglobin and platelet count were normal. Peripheral 

blood smear showed small atypical lymphocytes consistent with CLL, whose 

phenotype was CD5+, CD23+, CD43+, CD200+, CD10-, CD20, and CD22 weakly 

positive with weak kappa light chain restriction. The fluorescence in situ 

hybridization (FISH) analysis for ATM (11q22), D12Z3 (cen 12), DLEU (13q14.3), 

LAMP1 (13q34), and TP53 (17p13) were normal. One year after diagnosis, the 

patient received two cycles of rituximab plus fludarabine and cyclophosphamide 

(FCR) due to progressive disease, achieving a complete remission.  

The patient was then referred to Hospital Clínic de Barcelona. Physical 

examination was normal without evidence of lymphadenopathy or splenomegaly. 

WBC count was 2x109/L with 10% lymphocytes, hemoglobin 117 g/L, and normal 
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platelet count. Watchful waiting was recommended. Five years later, the CLL 

progressed with increased lymphocytosis, inguinal, axillary, and laterocervical 

lymphadenopathy (2-3 cm), and splenomegaly of 4 cm below the costal margin. 

At that time, the karyotype was 46,XX,del(13)(q12q21)[6]/46,XX[10] and a 

heterozygous del(13q14.3) was detected by FISH in 92% of nuclei. FISH for ATM, 

D12Z3, and TP53 were normal and no TP53 mutations were observed. The 

sequence of the IGHV genes showed a clonal rearrangement of the IGHV3-21 with 

100% homology to the germline, not belonging to any major stereotype subset. 

Due to CLL progression, ibrutinib 420 mg per day was started and the patient 

achieved a partial response. However, after 20 months, ibrutinib had to be 

discontinued due to the severe diarrhea and acalabrutinib 100 mg every 12 hours 

was started. Progression of CLL was observed after 13 months of treatment and 

rituximab and venetoclax were initiated (Figure 45).  

8 years of genomic evolution 

The patient was included in the CLL program of the International Cancer 

Genome Consortium and the whole genomes of the normal and tumor sample at 

diagnosis were sequenced (Puente et al., 2015). No somatically-acquired driver 

alterations were detected but three germline ATM mutations were identified, 

including a pathogenic 28-base frameshift deletion (p.N3003Dfs*6) and two 

missense single nucleotide variants (p.K2204M and p.Y1961C). Although the 

p.K2204M missense variant has not been identified in previous studies, the 

p.Y1961C has been reported in a CLL patient and its modeling showed reduced 

ATM kinase activity (Barone et al., 2009). Based on this result, we studied the 

segregation of these mutations in the family members by Sanger sequencing. The 

mother harbored the frameshift deletion, while the father and the sister carried 

the two missense variants. Both the patient and her brother with B-ALL inherited 

all three variants (Figure 115). A milder ataxia telangiectasia phenotype, where 
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the disease progresses at a slower pace, has been observed in patients with 

reduced levels of ATM kinase activity (Stewart et al., 2001).  At time of last follow-

up the two siblings (28 and 16 years old) had not developed neurological 

symptoms.  

 

Figure 115. Pedigree tree of germline variants in ATM. The two missense variants carried by the 

mother and the frameshift variant from the father were inherited by the chronic lymphocytic 

leukemia (CLL) case studied and her brother that developed acute lymphoblastic leukemia (ALL) 

To better unfold the contribution of somatic alterations during the evolution 

of the disease, whole-genome sequencing (WGS) was performed at 3 additional 

time points over a period of 8 years and complemented with single-cell DNA-

sequencing (Figure 45 and see Methods - section 3.2.3). Using a longitudinal 

sample-aware mutation calling pipeline that increases sensitivity, we identified 

689 genome-wide mutations, including 7 non-synonymous variants, in the WGS 

at diagnosis, which increased up to 1779 genome-wide mutations, including 18 

non-synonymous, at the latest sample analyzed. Among them, four mutations 

were found in CLL driver genes over the course of the disease: XPO1 (p.E571K), 

SF3B1 (p.G742D), MGA (p.C1238G), and POT1 (p.C44S). The mutations in XPO1 

and SF3B1 were already present at diagnosis but were missed in our previous 

study (Puente et al., 2015) due to their very low frequencies. After 4 years (time 

point 2), their clonal size expanded, and the remaining two driver mutations in 
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MGA and POT1 were detected. Regarding structural alterations, only del(13q) was 

clonally detected at the second time point and onwards (Figure 116).  

 

Figure 116. Somatic mutations identified during the disease course. The upper barplots show the 

number of mutations [single nucleotide variants (SNVs) and short insertions and deletions (indels)] 

and copy number alterations (CNAs) or structural variants (SVs) at each time point. The lower 

oncoprint shows the driver alterations; the transparency of the color is proportional to their cancer 

cell fraction (CCF). 

Somatic driver alterations were present at different allele frequencies 

through the disease course, suggesting an ongoing clonal evolution driving the 

pre- and post-treatment progression of the disease. To dissect the underlying 

clonal evolution, we reconstructed the subclonal evolution and explored the 

mutational processes active during the CLL course (Figure 117). This analysis 

revealed a branching pattern of evolution in which the founding CLL clone did not 

carry any recognized driver alteration beyond the ATM germline variants. 

Additionally, two minor subclones were already present at diagnosis: subclone #3 

carrying del(13q), XPO1, and MGA, and subclone #4 which originated from 

subclone #3 and acquired the SF3B1 mutation (Figure 117.a). These lineage 

trajectories are in line with previous literature in which ATM loss preceded  

del(13q) in a familial CLL study (Kostopoulos et al., 2015) and with a recently 

described combinatorial effect of ATM loss and SF3B1 mutation (Yin et al., 2019).  
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Intriguingly, these small subclones at diagnosis expanded after treatment 

with FCR, that, on the other hand, reduced or eliminated the initial subclones #1 

and #2, with no additional CLL drivers, suggesting that decreased competition 

allowed the expansion of subclones carrying potent drivers. Of note, subclone #4 

carrying the SF3B1 mutation represented the largest subpopulation of cells at 

relapse post-treatment with FCR (T2), in line with the poor prognosis of SF3B1 

mutated cases under FCR therapy (Stilgenbauer et al., 2014). Nonetheless, this 

subclone slightly diminished at time point 3 and was virtually eradicated at time 

point 4 after treatment with ibrutinib, which is in line with the higher sensitivity 

of SF3B1 mutated CLL cells to BCR inhibition in vitro (Yin et al., 2019). Additional 

diversification was observed in subclone #3 at T2 which led to the emergence of 

subclone #6 harboring the POT1 mutation. This subclone expanded under 

ibrutinib treatment and accounted for 54% at the last time point analyzed 3 years 

after its detection (Figure 117.a). 

 

Figure 117. Evolutionary trajectories along the course of the disease. a. The fishplot [left] depicts the 

subclonal architecture and clonal dynamics inferred from WGS. Each vertical line represents a time 

point analyzed. Each subclone is painted in a different color, and its height is proportional to the CCF 

at each time point. The upper-right tree shows the phylogeny of the tumor cell subpopulations, the 

length of the branches is proportional to the number of acquired SNVs, and they are colored by 

contribution of mutational signatures identified in CLL [right]. The clock-like signatures SBS1 and 

SBS5 contributed most of the mutations acquired. b. The fishplot (left) shows the clonal dynamics 

measured by single cell analysis. For each available time point, the integrated barplot shows the 

proportion of cells harboring each specific combination of alterations in the driver genes illustrated 
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on the “Mutation tree” (middle). The total number of analyzed cells at each analyzed sample is shown 

at the bottom. The “Co-occurrence of mutations” plot (right) indicates the presence or absence of 

mutations in each cell. For illustrative purposes, cells have been merged in bins of 100. 

To confirm these evolutionary trajectories, we performed single-cell DNA-

sequencing of 32 CLL driver genes and identified the reported mutations in XPO1, 

SF3B1, and POT1 [note that MGA was not included in the commercial gene panel 

used]. This single-cell analysis confirmed the timing of acquisition of these driver 

mutations and the clonal dynamics inferred from WGS (Figure 117.b).  

Finally, we explored the mutational processes active during the CLL course. 

We roughly observed the same mutational signatures in all subclones and 

identified signatures SBS1 and SBS5, which are related to cell division and found 

in all cancer types as well as non-tumor cells (Alexandrov et al., 2015), as the 

responsible for most of the mutations acquired (Figure 117.a).  

Here we have reported the 8-year genomic evolution of a CLL diagnosed in 

a young patient that inherited three ATM variants, two of them previously 

reported to inactivate or reduce ATM activity (Barone et al., 2009), which 

represented the only recognized driver events in the founding CLL clone. This 

might suggest that ATM inactivation might be a genomic factor contributing to 

CLL initiation, while tumor evolution and disease progression was dictated by the 

acquisition of secondary driver alterations, which could be detected in small 

subclones years before their expansion, and by different types of treatment that 

influenced subsequent clonal dynamics. Altogether, the lack of somatically-

acquired genetic driver alterations in the founding CLL clone of this patient 

emphasizes the need to study the germline as well as non-genetic aspects of the 

tumors to further understand the mechanisms leading to CLL. 
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5 Discussion 
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Over the past decades, next-generation sequencing has boosted biomedical 

research at an unprecedented scale. It has changed the way we tackle biological 

questions and led to remarkable scientific discoveries. Not only have NGS 

technologies become faster and more affordable but also have advanced to 

produce longer DNA reads and reached higher resolution up to the level of single 

cells. Along the way, numerous challenges and open questions have come up: 1. 

The computational needs to sustain these studies have grown together with the 

accelerated production of data. Besides, sophisticated bioinformatics 

methodologies are needed to perform complex and demanding analyses. 2. Upon 

mastery and understanding of the technologies, the point of interest is moved to 

the exploitation of the data and to the extraction of biologically and clinically 

meaningful information that can expand our knowledge. 3. Finally, to obtain real 

benefit from these insights, they must reach the lives of citizens to improve them 

with better disease prevention and management, and by contributing to the 

promise of personalized medicine. During this thesis we have dealt with these 

topics at different levels. Starting from the infrastructure level, going through the 

methodological aspects, and finally applying them to biomedical studies, while 

seeing and handling constraints and challenges that hamper current cancer 

research first-hand. 

Large-scale genomic analyses depend upon infrastructures that go towards 

distributed cloud-based solutions 

Within the PCAWG project (2014-2020), we reanalyzed more than 2800 

normal-tumor pairs of whole genomes which was the largest set of whole 

genomes at the time. Thus, the first need of the project was the coordination of 

multiple computational institutions that could provide the resources to perform 

such analyses, as well as the storage to manage vast amounts of data adding up 

to 1PB. As in any other project that aims to integrate datasets from different 
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sources, data had to be organized and harmonized. In our case, each data-

contributing project had to reformat their sequencing data with standardized 

metadata and submit it to their regional data center(s) that would later conduct 

the execution of the project’s workflows. Overall, the PCAWG initiative utilized 14 

computing clouds and HPC centers over 2.5 years.  

During this long period of time, data was being submitted, pipelines were 

being developed, and, at the same time, analyses were being performed. This 

overlap in time of development and execution carried some hindrances and 

adjustments had to be made after many already completed executions (e.g., 

applying filtering strategies that were not included in the first version of the 

variant calling workflows). It also caused delays on the analyses as workflows were 

not yet developed or properly tested. Nonetheless, the project advanced and 

coordinated a massive and distributed analysis, where virtualization was used as 

a means of reproducible and portable software.  

There are numerous efforts towards reproducible research, which includes, 

of course, the software used within the studies. Complex pipelines that contain 

multiple tools with dependencies among them are not easy to reproduce and the 

community is increasingly promoting the use of packaging solutions that can be 

easily run in any environment. The development of very well defined, 

standardized, and containerized state-of-the art portable pipelines is burdened by 

the rapidly evolving field of bioinformatics, where new tools are often published, 

and new versions are released within months or even weeks. So probably a trade-

off between the effort of building such a pipeline and the utility of the product 

should also be considered.  

Within the PCAWG project, we made a huge effort towards this direction. 

However, there were many steps applied after the basic variant calling, which also 



 

 255 

included manual filtering and revisions, some of the tools could not be packaged 

into standard docker containers and, overall, it would be hardly impossible to 

reproduce all these analyses as they were done during the project. Moreover, the 

reference genome version that was used has long been replaced by the newest 

version. So, nowadays, if one were to perform a similar analysis, it would be more 

convenient to use newer versions of the programs and migrate to the newest 

version of the reference genome. Indeed, this is what we are doing within the 

ICGC-ARGO project, where pipelines are being designed from scratch, although 

on top of all the technological advances that started within the PCAWG project 

and of the tremendous experience that everyone gained from this endeavor. 

Going back to the development of the project, its implementation in the 

BSC’s HPC premises was carried out in Study 1. In particular, in our center, we 

dealt with the requirements of large-scale executions and found ways to 

accommodate these mainly cloud-based solutions into our HPC infrastructures.  

At the beginning of the project, technologies like Docker and the usage of cloud 

environments were growing in popularity and were starting to be introduced in 

the genomics area. Cancer genomics, and genomics in general, produces tons of 

data, and can benefit from portable workflows that can be executed right where 

the data is located, rather than having to download terabytes or, potentially, 

petabytes of data. This solution entails a convenient bypass for the bottleneck of 

data transferring and/or the lack of storage capacity in some centers. The project 

was conceived in this way and cloud infrastructures with residing data were made 

available to the working groups who carried out the downstream analyses.  

During the development phase, each computational center performed the 

assigned executions and synchronized the results with the other data centers. The 

BSC was part of this process, but we had additional hiccups as our pure HPC center 

at the time did not allow most of the used technologies right away. After study 
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with the Operations team at the BSC, we could break some barriers and 

implement exceptional ways to carry out these non-HPC executions. This project 

was a special case and the BSC allowed us privileged operations that are usually 

not granted. While our HPC center started to realize the need of virtualization, 

especially within the Life Sciences department, among others, the technologies 

also evolved to be more HPC-friendly and more secure containerization systems 

were starting to evolve, such as Singularity. Now, we can freely use Singularity at 

the BSC which does not set us aside from the advances and common practices in 

Life Sciences. 

On top of these technological efforts, researchers exploited the data 

generated during the project and over 20 papers were published in Nature and 

affiliated journals. Despite these scientific discoveries, which took advantage of 

the integrative PCAWG dataset and very well described the genomics of all 

included cancer types in terms of driver alterations, mutational signatures, or 

tumor heterogeneity, among others, associations with clinical data could not be 

thoroughly exploited. The project included a minimal set of clinical data, but this 

restricted information does not have enough power to explore the full potential 

of the PCAWG dataset. For instance, associations of biomarkers with particular 

characteristics of patients only present in their whole clinical history, which was 

not available, could not be assessed. To fully profit from such large-scale datasets 

and bring translational research closer to real clinical applications, phenotypical 

and clinical information needs to come with molecular data, as it is the only way 

we can associate genetic alterations with the clinical outcomes of patients. 

Opportunely, this is the main idea behind the ICGC-ARGO initiative, where a 

resource of more than 100,000 cancer patients will integrate molecular and high-

quality clinical annotations to find answers to key clinical questions. 
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The identification of variants still remains a challenge  

Most of the genomes included in PCAWG had already been analyzed by the 

groups who generated the data. However, each dataset was subjected to 

different workflows to identify somatic mutations and their integration without 

any biases reflecting the tools used was not possible. Variant calling is still a 

challenge and, although there is a vast variety of programs, their results are 

heterogeneous, which makes them not comparable and complicates their 

integration. Thus, harmonization of the results from independent workflows that 

can overcome methodological differences and faithfully distinguish biological 

signals from noise and technical biases is not straightforward.  

The answer to this heterogeneity has often been the reanalysis of all data 

using homogeneous pipelines, which requires additional and redundant 

computational resources (Campbell et al., 2020; Ellrott et al., 2018). Besides this 

expensive solution, one could also think of a way to harmonize variant calling 

results from different programs by assessing their performance on selected 

benchmarking datasets and evaluating if they can really be integrated and how. 

In line with this, within the EUCANCan project, we are currently working on 

protocols to assess the performance of variant calling programs and pipelines as 

well as the degree of compatibility among them. The assessment of integrability 

of different datasets analyzed using distinct pipelines would spare the need of 

many computational resources. 

Discordance among different variant callers not only complicates data 

integration from different studies, but also the selection of tools for the design of 

a pipeline. There is a need for bioinformatics expertise to correctly interpret the 

results and it is also important to know the biology behind the data. For instance, 

in the case of CLL, as it is a type of blood cancer, when the germline samples are 
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extracted from blood, although they are purified, they might have remains of 

tumor contamination. This particularity requires adjustments to the variant calling 

settings because many programs do not allow any reads supporting somatic 

variants in the normal sample by default. 

The lack of well characterized benchmarking datasets for somatic variants, 

and the demanding characteristics of some tumor samples, such as low purity, 

FFPE archival material, lack of matched-normal sample, impedes the selection of 

one single strategy that can be blindly trusted. Synthetic sequence data have been 

used to benchmark variant calling algorithms, but it is very difficult, if not 

impossible, to perfectly simulate the sequencing protocols and especially the 

complexity and heterogeneity of a tumor sample. Next to the pure simulated data, 

where reads are simulated from scratch, there was another approach that actually 

used real sequenced data to introduce somatic alterations (Ewing et al., 2015; Lee 

et al., 2018). This combining strategy is closer to reality, as it uses real reads, in 

contrast to simulating them artificially. In any case, simulated mutations might not 

follow the true molecular processes that generate real somatic mutations in the 

first place, which is another caveat for synthetic data. Cell lines have also been 

used with the intent to provide good benchmarking datasets that can be openly 

available (Espejo Valle-Inclan et al., 2022; Shand et al., 2020; Tai Fang et al., 2021). 

Finally, orthogonal validations from real data can provide the most realistic 

settings but have other limitations. Not only are we restricted to the number of 

validated variants, but it is also very difficult to be 100% certain of the validation 

of some variants. However, identifying a variant in two different experiments can 

indeed increase our confidence that it will most probably be a “true” variant. 

Similarly, although not seeing the variant in the second experiment might not 

always mean that the variant is not there, if we can confirm the good quality of 

the validation, we could consider it a “false” variant for variant calling evaluation. 
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Taking all this into account, we have carried out various efforts on 

procedures for variant calling interpretation throughout this thesis, which can 

serve as guidelines for future evaluations and for assessing performance on other 

datasets (Study 2 and Study 3). To compensate for the lack of benchmarking 

datasets for somatic variant calling, we also used orthogonal validation, which is 

a resourceful approach, although it is limited to the genomic loci used in the other 

technique. Similarly, previously validated variants can also be used but might be 

biased to regions of interest like driver genes, or to the programs that were used 

at the time. On top of this, most of the benchmarking efforts are done on good 

quality material, while some clinical samples are not of best quality. From archival 

FFPE blocks to cases without germline samples, these usually unique samples are 

not fit to the general variant calling strategies. However, the particularities of 

some patients or some cancer types and their scarcity make these samples very 

precious, and worth trying.  

We have recognized that quality control provides good guidance on the 

reliability of the prospective variant calling results, particularly in these borderline 

samples. Together with quality control, the bioinformatics expertise and 

knowledge of the tools gained during this thesis has been an asset as it can give 

hints on how good your data and results might be. Familiarity with both the 

methods and the biology of the samples analyzed has aided us to grasp the validity 

of the results at first glance and spot potential caveats. Numerous checkpoints 

can be used to reaffirm or invalidate the variant calling results: the expected 

number of mutations, the mutational profile in terms of mutational signatures, 

the allele frequency of the variants, and the detection of known drivers, among 

others.  

There is a large variety of complementary variant calling tools. Usually, they 

are designed for one or two specific types of variants. For instance, SNVs and 
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indels are commonly identified together by the same program, but identification 

of CNAs or SVs requires a totally different strategy and is implemented by other 

programs. Analysis of whole genomes usually involves the selection of several 

methods to cover all types of variants: SNVs, indels, SVs, and CNAs.  And not only 

that, even within one same type of variant, it is well known that methods produce 

discrepant results (Alioto et al., 2015). Each algorithm can have its own strengths 

and weaknesses: one method might be very good at detecting low frequency 

variants, but at the same time it might call a high number of false positives, while 

other methods are more conservative and have a lower false positive rate, at the 

price of missing the most challenging variants. To find a balance between them, it 

is a common approach to use several methods and create a consensus among 

them (Campbell et al., 2020; Ellrott et al., 2018), which basically follows the 

wisdom of crowd principle (Costello & Stolovitzky, 2013).  

As previously reported (Alioto et al., 2015; S. Y. Kim et al., 2014; M. Wang et 

al., 2020), we have also observed that this strategy can improve the overall 

performance of individual variant callers. Moreover, it might have less variability 

due to peculiarities of the tumor samples. We have experienced individual 

methods that can go awry in lower quality samples, while the consensus among 

different tools might aid to counter this effect and might achieve decent results. 

Overall, the numerous evaluations on cancer genome and exome sequencing data 

that we performed during the thesis, allowed us to understand the differences 

and common limitations of variant callers and prepared me for their application 

and interpretation of their results in real studies. 

Biological research translation into the clinics and data sharing challenges 

Despite technical and methodological challenges, NGS has certainly led to 

unsurpassed discoveries, especially in cancer research (Shyr & Liu, 2013). The next 
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step is to put this knowledge in the hands of clinicians and health care systems so 

that it can really benefit our society. Our growing understanding of the cancer 

genome, including driver events, mutational processes, intratumor 

heterogeneity, and evolutionary trajectories, can have an impact on drug 

development, prognostication, treatment selection, and improved patient 

management. Precision medicine is supported and guided by our understanding 

of the cancer genomic landscape to provide better diagnosis, treatments, and 

aspires to get better outcomes for each individual patient. The introduction of 

genomic analysis in clinical settings is having the highest impact in rare diseases 

and oncology (Schilsky, 2014). In the latter, clinicians have long known that each 

patient's cancer is unique. Thus, tumor molecular profiling has the potential to 

place personalized cancer care over conventional non-personalized approaches 

(Schwaederle et al., 2015). Next-generation sequencing is increasingly used in the 

clinical setting, motivated by the growth of molecular target therapies, which rely 

on the genetic variants identified in the patient samples.  

The promise of personalized medicine builds upon the integration of 

genomic information, clinical data, and patient preferences to provide the best 

treatment possible for each patient’s unique cancer. It has been seen that 

patients who have actionable molecular alterations (i.e., with strong evidence of 

benefit from a specific therapy) and who receive a matched therapy had 

significantly longer median overall survival (Pishvaian et al., 2020). However, 

molecularly guided treatments are not always possible. Not all patients harbor 

actionable variants, and the overall success of these therapies depend on the 

knowledge of actionable mutations in cancer. Moreover, even patients with 

sequencing-matched therapies might not have access to them and struggle with 

restrictions to access clinical trials, due to previous treatments or comorbidities, 

and, in some countries, insurance coverage limitations (Morash et al., 2018).  
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The MedPerCan project (Study 2) envisioned the potential of genomic 

analysis and its translation into the clinics. It had two very well-defined goals 

aimed to guide the implementation of personalized medicine in oncology in 

Catalonia. First, a multidisciplinary and multi-institutional circuit was to be 

established including the main actors: hospitals, sequencing centers and 

computational infrastructures for data analysis. This platform would integrate the 

outcomes of genomic analyses, potentially run at large scale, and relevant clinical 

information. Next, the impact of clinical decision-making based on this knowledge 

base was to be evaluated. Although this initiative was opportune in time and 

scope, it never fulfilled its ultimate goal. One of its main weaknesses was the 

reduced shareability of clinical data, which was limited to very few basic metadata 

fields, which were insufficient to fully test the procedures. This is a recurrent issue 

faced by many similar projects, as we are not yet culturally prepared to share 

private clinical data even if it is among accredited partners and in protected 

infrastructures.  

Limited data sharing, especially in relation to clinical information, obstructs 

data reuse and scientific advances as genomic data by itself cannot be used to 

identify and correlate genetic alterations to clinical responses. Reusability, 

together with findability, accessibility, and interoperability, the so-called FAIR 

principles, are all key topics addressed by a mass of projects worldwide. They 

aspire to provide the bases and guidelines, in terms of infrastructure, software 

applications, and data sharing, to enable access and exploitation of data and to 

foster research and its translation into the clinics. However, despite these efforts, 

even if we are well-advanced technologically, and even if we are pushing for the 

sake of patients and well-being of citizens, social and legal issues are not resolved, 

and it is a long hard road. 



 

 263 

Large-scale initiatives have proved the value of assembling and integrating 

large biological datasets leading to new insights into the molecular basis of cancer 

(Campbell et al., 2020a; Weinstein et al., 2013). This wealth of information 

presents the opportunity to strengthen our findings and most importantly its 

translation into clinical care. Using these data to its full extent will require cross-

national cooperation, including procedures to pass over the ethical and legal 

barriers across borders and harmonization that allows interoperability among 

datasets from different sources and data types.  

Many projects are working towards this direction. At the European level, 

among others, the 1+ Million Genomes initiative aims to enable genomic and 

clinical data secure access across Europe, and EOSC4Cancer has the goal to foster 

the exploitation of cancer data providing the infrastructure, protocols, and 

guidelines to organize and integrate cancer-related data resources to foster 

cancer research and its subsequent benefits for EU citizens. Altogether, these 

initiatives work in parallel to bring together technologies and data pieces that 

have the potential to enhance scientific discoveries and, most importantly, 

optimize our health systems with personalized medicine protocols that can 

improve patient management and outcome. 

Meanwhile, local studies at smaller scales are pushing to expand our 

understanding of the molecular basis of cancer origin, progression, and response 

to treatment. In this direction, we have worked together with Dr. Elías Campo 

from IDIBAPS/Hospital Clínic to further elucidate the molecular basis of CLL and 

its evolution during the disease course and to its most aggressive form, the Richter 

transformation (Study 4 and Study 5). As in other cancer types, NGS has greatly 

contributed to sequencing studies that taught us the molecular attributes of CLL. 

Early studies that collectively identified recurrent genetic alterations, 
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transcriptional alterations, and epigenetic changes allowed us to see the 

tremendous heterogeneity of this neoplasm (Gruber & Wu, 2014).  

The mechanisms behind Richter transformation in CLL are elusive and have unmet 

clinical needs 

We now know that CLL comprises subpopulations of tumor cells, or 

subclones, rather than a monolithic population. This intra-tumor heterogeneity 

becomes quite problematic in the presence of treatment, because a small 

subpopulation can become the dominant clone upon relapse, leading to a more 

aggressive form of the disease. In this regard, cancer evolution is a central 

obstacle to curative therapy and, what is worse, the selective pressures of our 

treatments might accelerate this evolutionary process. More often than not, what 

becomes the clonal population after treatment can be traced back to a small 

subpopulation present (long) before treatment initiation (Burger et al., 2016; 

Guièze et al., 2019; Landau et al., 2015, 2017). This inherent capacity for evolution 

of the pre-treatment diversity is one of the major bottlenecks of treatment 

success and has been seen in virtually all cancer types. In the case of CLL, the most 

aggressive form of evolution occurs in a small percentage of patients, whose CLL 

transforms into a high-grade lymphoma. This complication, called Richter 

transformation (RT), is associated with dismal clinical outcomes and with unmet 

clinical needs.  

We have used this paradigmatic form of cancer evolution as a model to study 

tumor evolution, which is hampered by the analysis of bulk tumor samples at low 

coverages and single or limited number of spatial or sequential samples (Gerstung 

et al., 2020; Griffith et al., 2015; Vendramin et al., 2021). A better knowledge of 

these evolutionary trajectories can contribute to our understanding of the role of 

therapy as a driver of clonal diversification and selection, and might translate into 
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more effective clinical protocols and anticipation-based treatment strategies 

(Ferrando & López-Otín, 2017). 

Previous studies have identified recurrent alterations and risk factors of RT 

(Chigrinova et al., 2013; Fabbri et al., 2013; Klintman et al., 2021; Rossi et al., 2011; 

Scandurra et al., 2010), but the mechanisms underlying this transformation are 

not fully understood, and available material to study this neoplasm is scarce. In 

Study 3, we could gather up to 19 cases with available fresh frozen material to 

conduct WGS and further analyses, including transcriptomic techniques and 

epigenetic experiments, in a subset of cases. Furthermore, we have investigated 

our results at both bulk and single cell resolution. Overall, the project involved the 

work of many people from different research groups and, altogether, we could 

reveal the spectrum of mutational processes, genomic and epigenomic 

alterations, subclonal composition, and temporal dynamics of this transformation 

under different treatments. 

We have found that the genome of RT is characterized by a remarkable 

structural complexity, often including single-hit catastrophic events like 

chromothripsis or chromoplexy that can target multiple driver genes. As 

previously described, we identified driver alterations in cell cycle, MYC, NOTCH, 

and NF-κB pathways (Chigrinova et al., 2013; Fabbri et al., 2013; Rossi et al., 2011). 

We have also recognized that it carries the imprint of early-in-time, treatment-

related mutational processes, such as the novel SBS-RT potentially associated with 

bendamustine and chlorambucil exposure. The detection of previous treatment 

footprints at the time of transformation supports the model of single cell 

expansion, where a pre-existing cell exposed to a mutagenic therapy can carry its 

imprint, which is only detectable after its expansion by bulk sequencing (Pich et 

al., 2019; Rustad et al., 2020).  
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Indeed, the reconstruction of the subclonal composition and dynamics from 

WGS identified the presence of minute RT subclones up to the time of CLL 

diagnosis. At first, we were not confident enough of these striking results that 

seemed to point to the existence of potent RT seeds dormant for up to 19 years 

before they were triggered, somehow leading to the overt RT manifestation. As a 

curiosity, at the beginning of the study, we actually applied more stringent criteria 

that did not identify these RT seeds so early in time. However, as the project 

advanced, we applied other techniques that further confirmed our initial finding 

and that supported the idea of a very early diversification of CLL leading to fully-

assembled RT-cells in terms of genomic, immunogenetic, and transcriptomic 

profiles, already at CLL diagnosis before the clonal expansion associated with the 

clinical transformation 6-19 years later.  

At the genomic level, we identified the driver alterations in each subclone 

and validated their composition and evolution by single-cell DNA sequencing 

using a gene panel of 32 CLL driver genes. This first technique already confirmed 

the evolution inferred from bulk WGS and recognized the presence of a small 

percentage of cells already at the time of CLL diagnosis carrying the RT driver 

alterations. Immunogenetic analyses by deep sequencing of the immunoglobulin 

(IG) genes also identified the early presence of IG RT-specific mutations, which 

were previously detected in the WGS samples at the time of transformation. This 

early seeding of RT subclones is aligned with previous studies finding the presence 

of resistant subclones before treatment initiation and mathematical models 

timing the acquisition of driver events years before diagnosis (Gerstung et al., 

2020; Landau et al., 2017; Sentís et al., 2020). Likewise, an early immunogenetic 

diversification after the leukemic transformation has also been described 

(Bagnara et al., 2021; Gemenetzi et al., 2021). 
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Beyond the mutational landscape, we also asked ourselves if these early 

seeds of RT could have other RT-like features and explored the DNA methylation, 

chromatic accessibility and activation, and the transcriptional profile of RT. There 

were remarkable changes in chromatin configuration and transcriptional 

programming. We observed overexpression of cell cycle regulators, Toll-like 

receptors, Wnt, MYC, MTORC1, and OXPHOS related transcripts, and 

downregulation of the B-cell receptor signaling pathway that might be 

compensated by the activation of Toll-like, MYC, and MAPK pathways 

(Chakraborty et al., 2021; Dadashian et al., 2019; Ntoufa et al., 2016; Varano et 

al., 2017). Of note, the upregulation of OXPHOS and downregulation of BCR 

pathways defined an OXPHOShigh-BCRlow axis characteristic of RT which reminded 

the de novo DLBCL-OXPHOS subset, which is insensitive to inhibitors of BCR 

signaling (Caro et al., 2012). The rapid expansion of RT subclones under BKT 

inhibitor treatments is in line with its low BCR signaling, except for the cases 

carrying the IGLV3-21R110 mutation leading to autonomous BCR activation (Minici 

et al., 2017), the increased number of subclones carrying unproductive IG genes, 

and the development of RT with plasmablastic differentiation, a cell type 

independent of BCR signaling (Chan et al., 2017). 

Using scRNA sequencing, we identified this reprogrammed transcriptomic 

profile in small RT subclones years before their clinical manifestation and up to 

the time of CLL diagnosis, confirming our WGS findings. Furthermore, the link 

between the previous genomic landscape and the transcriptomic program is 

further confirmed by the presence of RT structural changes identified in single 

cells and inferred from scRNA-seq.  

Altogether, we confirmed the presence of fully assembled RT-cells that can 

be dormant for many years although carrying potent driving forces. The very early 

emergence of these subclones driving the late stages of cancer evolution might 
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set the basis for future single-cell-based predictive strategies able to identify 

these lethal seeds before their final expansion. Finally, we also uncovered a 

potential vulnerability of RT that could be exploited therapeutically. OXPHOS 

inhibition revealed a remarkable cell growth inhibition of RT cells in vitro (Molina 

et al., 2018; L. Zhang et al., 2019), a finding worth exploring in future treatment 

options.  

Despite numerous novel targeted therapies currently available, RT remains 

the biggest therapeutic challenge in CLL. The combined discovery of RT early 

seeds and RT-specific therapeutic targets might provide an opportunity for early 

intervention to eradicate dormant RT subclones and prevent their future 

expansion leading to this lethal transformation of CLL.  

The limited number of patients of this study might be one of its weakest 

points. Especially in heterogeneous cancers like CLL or RT, many cases are needed 

to identify recurrence and commonalities among patients. Due to the rarity of RT 

and the low number of samples with good quality that are available, only a handful 

of our cases had the complete set of omics analyses. Nonetheless, we were able 

to unveil novel genomic drivers and epigenomic and transcriptomic 

reconfigurations, very early emergence of RT seeds, and potential treatment 

options targeting the OXPHOS pathway that can be further explored in other cases 

and more studies to come. Indeed, studies like this would greatly benefit from 

data sharing, where larger cohorts could be gathered. Usually, genomic data is 

shared with minimal clinical metadata, if any, but it is obvious that we need more 

than that, as precise and extended clinical information is essential for 

comprehensive translational research. For instance, in our study, we would not 

have been able to establish the relation between SBS-RT and bendamustine or 

chlorambucil if we hadn’t had the whole clinical history of the patients, including 

all the treatments during the course of the disease. If partial information was 
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given, i.e., sharing only the last treatment prior to RT, it would not have been 

enough. 

Complex interactions between genomic and epigenomic alterations, the 

microenvironment, and treatment pressures can determine the disease course. 

In the RT study (Study 3), we have seen how the integration of different layers of 

omics data, including genomics, epigenomics, and transcriptomics information, 

can give a broader view of the molecular processes underlying this 

transformation. Together with this, the complete clinical history allowed us to 

recognize that the novel mutational signature SBS-RT might be related to 

treatments that the patients received during the CLL stage, and how BTK 

inhibitors might favor the selection of subclones that do not rely on the BCR 

signaling, as shown by the expansion of subclones carrying unproductive BCR. 

Altogether, we found that the dynamics of these tumors seem to be driven by the 

selection of subclones from the pre-existing subclonal diversity, rather than the 

emergence of new subclones.  

Genomic characterization spanning 8 years of disease course of a young adult 

with CLL 

In line with this, in the case report of a young adult with CLL (Study 4), where 

we analyzed 4 time points along 8 years of the disease course, we identified minor 

subclones at the time of CLL diagnosis, indicating again a pre-existing 

diversification that can dictate later clonal dynamics. Upon treatment pressures, 

we recognized how these subclones expanded or shrank. In particular, the 

subclone carrying a SF3B1 mutation, which confers poor prognosis under FCR 

therapy (Stilgenbauer et al., 2014),  represented the largest subclone at relapse 

post-treatment with FCR therapy, and slightly diminished after ibrutinib 

treatment, in line with the higher sensitivity of SF3B1 mutated CLL cells to BCR 
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inhibition in vitro (Yin et al., 2019). However, despite the somatic mutations 

identified during this evolution, we did not recognize any somatic driver alteration 

in the CLL founding clone, which highlights the importance of exploring germline 

variation, as well as other non-genomic aspects. Indeed, our case carried three 

ATM germline variants, two of them reported to inactivate or reduce ATM activity 

(Barone et al., 2009). These mutations could have a driving role in CLL initiation, 

as they are the only driver alterations identified in this patient in the CLL founding 

clone, and they are also carried by the younger brother who also developed 

another neoplasm when he was 3 years old.  

The relevance of technological and methodological aspects in biomedical studies 

and their clinical application 

These studies allowed me not only to put the previously established 

strategies for tumor genome analyses into use, but also to expand my 

contribution beyond the computational counterpart and interpret the biological 

meaning of the results to find answers to biomedical questions and tackle 

important clinical needs. 

The methodological work within the first part of the thesis has served as the 

basis for scientific discoveries giving insights into the mechanisms driving CLL 

evolution and its lethal Richter transformation with potential clinical value. Both 

aspects have given me a comprehensive view of modern genomics in Biomedicine 

and of current cancer genomics initiatives and their needs for a vast exploitation 

of the continuously generated data towards the translation and implementation 

of personalized medicine strategies within our health care systems. 

Overall, the technological and methodological work carried out during the 

thesis served as the basis to engage in real biomedical studies. In the same way, 

it highlighted the importance of a proper infrastructure and well-defined 
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methodology for the implementation of large-scale, as well as small-scale, studies. 

These procedures are even more fundamental for the application of genomic 

analysis into the clinics, where the obtained results will guide clinical decisions 

that can directly affect the patients. Interdisciplinary efforts between clinicians, 

technicians, and bioinformaticians are necessary to understand the needs and 

contributions of each field. Rather than working separately, focusing only on their 

respective areas, multidisciplinary dialogues are the best way to respond to the 

real clinical needs. 
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6 Conclusions 
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1. We contributed to the large-scale genomics initiative Pancancer Analysis 

of Whole Genomes and made possible its execution in the BSC’s HPC 

infrastructure. We adapted the project's computational solutions to the specific 

requirements of a traditional HPC environment, while maintaining the 

homogeneity of the analysis with the other data centers. 

2. We have implemented and evaluated variant calling strategies.  The 

analysis of the results we obtained pointed out that filtering and consensus 

strategies can improve their performance, and that there is a need for expert 

intervention to accurately interpret the results of variant calling as well as 

downstream analyses. 

3. Global consideration of the analysis of Richter transformation in CLL 

indicates that it introduces a higher genomic, epigenomic, and transcriptomic 

complexity than CLL. 

4. We have identified that the mutational profile of RT can be shaped by the 

imprint of previous mutagenic therapies, suggesting the prior existence of a cell 

that takes in and carries all these mutations until it expands at the time of 

transformation. 

5. Using longitudinal whole-genome sequencing, we have unveiled the early 

presence of minute RT subclones up to the time of CLL diagnosis. Posterior 

external validations confirmed the presence of these early seeds that capture RT-

specific features. 

6. RT shows a distinct gene expression profile than its CLL counterpart. 

Aligned with the single-cell RNA sequencing and functional analyses performed by 

collaborators, we identified alterations in metabolism-related pathways (i.e., 

OXPHOS) that could be used as a therapeutic vulnerability. 
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7. From the analysis of a case of CLL in a young adult, we found that the CLL 

founding clone was solely defined by three ATM germline variants, suggesting 

their potential driver role in the initial development of CLL. As expected, 

somatically-acquired alterations under the selective pressure of treatments 

influenced the clonal evolution of the disease. 

8. Taken together, these studies unveiled the heterogeneity that exists at the 

time of CLL diagnosis, often carrying the seeds that can potentially drive 

progression, relapse, and transformation. 
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Pan-cancer analysis of whole genomes

The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium 

Cancer is driven by genetic change, and the advent of massively parallel sequencing has 
enabled systematic documentation of this variation at the whole-genome scale1–3. Here 
we report the integrative analysis of 2,658 whole-cancer genomes and their matching 
normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes 
(PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The 
Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, 
facilitated by international data sharing using compute clouds. On average, cancer 
genomes contained 4–5 driver mutations when combining coding and non-coding 
genomic elements; however, in around 5% of cases no drivers were identi"ed, 
suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which 
many clustered structural variants arise in a single catastrophic event, is frequently an 
early event in tumour evolution; in acral melanoma, for example, these events precede 
most somatic point mutations and a#ect several cancer-associated genes 
simultaneously. Cancers with abnormal telomere maintenance often originate from 
tissues with low replicative activity and show several mechanisms of preventing 
telomere attrition to critical levels. Common and rare germline variants a#ect patterns 
of somatic mutation, including point mutations, structural variants and somatic 
retrotransposition. A collection of papers from the PCAWG Consortium describes  
non-coding mutations that drive cancer beyond those in the TERT promoter4; identi"es 
new signatures of mutational processes that cause base substitutions, small insertions 
and deletions and structural variation5,6; analyses timings and patterns of tumour 
evolution7; describes the diverse transcriptional consequences of somatic mutation on 
splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range 
of more-specialized features of cancer genomes8,10–18.

Cancer is the second most-frequent cause of death worldwide,  
killing more than 8 million people every year; the incidence of cancer 
is expected to increase by more than 50% over the coming decades19,20. 
‘Cancer’ is a catch-all term used to denote a set of diseases characterized 
by autonomous expansion and spread of a somatic clone. To achieve 
this behaviour, the cancer clone must co-opt multiple cellular pathways 
that enable it to disregard the normal constraints on cell growth, modify 
the local microenvironment to favour its own proliferation, invade 
through tissue barriers, spread to other organs and evade immune sur-
veillance21. No single cellular program directs these behaviours. Rather, 
there is a large pool of potential pathogenic abnormalities from which 
individual cancers draw their own combinations: the commonalities 
of macroscopic features across tumours belie a vastly heterogeneous 
landscape of cellular abnormalities.

This heterogeneity arises from the stochastic nature of Darwinian 
evolution. There are three preconditions for Darwinian evolution: 
characteristics must vary within a population; this variation must be 
heritable from parent to offspring; and there must be competition for 
survival within the population. In the context of somatic cells, heritable 
variation arises from mutations acquired stochastically throughout 
life, notwithstanding additional contributions from germline and 
epigenetic variation. A subset of these mutations alter the cellular 
phenotype, and a small subset of those variants confer an advantage 

on clones during the competition to escape the tight physiological 
controls wired into somatic cells. Mutations that provide a selective 
advantage to the clone are termed driver mutations, as opposed to 
selectively neutral passenger mutations.

Initial studies using massively parallel sequencing demonstrated the 
feasibility of identifying every somatic point mutation, copy-number 
change and structural variant (SV) in a given cancer1–3. In 2008, recog-
nizing the opportunity that this advance in technology provided, the 
global cancer genomics community established the ICGC with the 
goal of systematically documenting the somatic mutations that drive 
common tumour types22.

The pan-cancer analysis of whole genomes
The expansion of whole-genome sequencing studies from individual 
ICGC and TCGA working groups presented the opportunity to under-
take a meta-analysis of genomic features across tumour types. To 
achieve this, the PCAWG Consortium was established. A Technical 
Working Group implemented the informatics analyses by aggregating 
the raw sequencing data from different working groups that studied 
individual tumour types, aligning the sequences to the human genome 
and delivering a set of high-quality somatic mutation calls for down-
stream analysis (Extended Data Fig. 1). Given the recent meta-analysis 
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of exome data from the TCGA Pan-Cancer Atlas23–25, scientific working 
groups concentrated their efforts on analyses best-informed by whole-
genome sequencing data.

We collected genome data from 2,834 donors (Extended Data 
Table 1), of which 176 were excluded after quality assurance. A further 
75 had minor issues that could affect some of the analyses (grey-listed 
donors) and 2,583 had data of optimal quality (white-listed donors) 
(Supplementary Table 1). Across the 2,658 white- and grey-listed donors, 
whole-genome sequencing data were available from 2,605 primary 
tumours and 173 metastases or local recurrences. Mean read coverage 
was 39× for normal samples, whereas tumours had a bimodal cover-
age distribution with modes at 38× and 60× (Supplementary Fig. 1). 
RNA-sequencing data were available for 1,222 donors. The final cohort 
comprised 1,469 men (55%) and 1,189 women (45%), with a mean age of 
56 years (range, 1–90 years) across 38 tumour types (Extended Data 
Table 1 and Supplementary Table 1).

To identify somatic mutations, we analysed all 6,835 samples using 
a uniform set of algorithms for alignment, variant calling and quality 
control (Extended Data Fig. 1, Supplementary Fig. 2 and Supplementary 
Methods 2). We used three established pipelines to call somatic single-
nucleotide variations (SNVs), small insertions and deletions (indels), 
copy-number alterations (CNAs) and SVs. Somatic retrotransposition 
events, mitochondrial DNA mutations and telomere lengths were also 
called by bespoke algorithms. RNA-sequencing data were uniformly 

processed to call transcriptomic alterations. Germline variants identi-
fied by the three separate pipelines included single-nucleotide poly-
morphisms, indels, SVs and mobile-element insertions (Supplementary 
Table 2).

The requirement to uniformly realign and call variants on approxi-
mately 5,800 whole genomes presented considerable computational 
challenges, and raised ethical issues owing to the use of data from dif-
ferent jurisdictions (Extended Data Table 2). We used cloud comput-
ing26,27 to distribute alignment and variant calling across 13 data centres 
on 3 continents (Supplementary Table 3). Core pipelines were pack-
aged into Docker containers28 as reproducible, stand-alone packages, 
which we have made available for download. Data repositories for raw 
and derived datasets, together with portals for data visualization and 
exploration, have also been created (Box 1 and Supplementary Table 4).

Benchmarking of genetic variant calls
To benchmark mutation calling, we ran the 3 core pipelines, together 
with 10 additional pipelines, on 63 representative tumour–normal 
genome pairs (Supplementary Note 1). For 50 of these cases, we per-
formed validation by hybridization of tumour and matched normal DNA 
to a custom bait set with deep sequencing29. The 3 core somatic variant-
calling pipelines had individual estimates of sensitivity of 80–90% 
to detect a true somatic SNV called by any of the 13 pipelines; more 

Box 1

Online resources for data access, visualization and analysis
The PCAWG landing page (http://docs.icgc.org/pcawg) provides 
links to several data resources for interactive online browsing, 
analysis and download of PCAWG data and results (Supplementary 
Table 4).
Direct download of PCAWG data
Aligned PCAWG read data in BAM format are also available at 
the European Genome Phenome Archive (EGA; https://www.
ebi.ac.uk/ega/search/site/pcawg under accession number 
EGAS00001001692). In addition, all open-tier PCAWG genomics 
data, as well as reference datasets used for analysis, can be 
downloaded from the ICGC Data Portal at http://docs.icgc.org/
pcawg/data/. Controlled-tier genomic data, including SNVs and 
indels that originated from TCGA projects (in VCF format) and 
aligned reads (in BAM format) can be downloaded using the 
Score (https://www.overture.bio/) software package, which has 
accelerated and secure file transfer, as well as BAM slicing facilities 
to selectively download defined regions of genomic alignments.
PCAWG computational pipelines
The core alignment, somatic variant-calling, quality-control and 
variant consensus-generation pipelines used by PCAWG have each 
been packaged into portable cross-platform images using the 
Dockstore system84 and released under an Open Source licence that 
enables unrestricted use and redistribution. All PCAWG Dockstore 
images are available to the public at https://dockstore.org/
organizations/PCAWG/collections/PCAWG.
ICGC Data Portal
The ICGC Data Portal85 (https://dcc.icgc.org) serves as the main 
entry point for accessing PCAWG datasets with a single uniform web 
interface and a high-performance data-download client. This uniform 
interface provides users with easy access to the myriad of PCAWG 
sequencing data and variant calls that reside in many repositories 
and compute clouds worldwide. Streaming technology86 provides 
users with high-level visualizations in real time of BAM and VCF files 
stored remotely on the Cancer Genome Collaboratory.

UCSC Xena
UCSC Xena87 (https://pcawg.xenahubs.net) visualizes all PCAWG 
primary results, including copy-number, gene-expression, gene-fusion 
and promoter-usage alterations, simple somatic mutations, large 
somatic structural variations, mutational signatures and phenotypic 
data. These open-access data are available through a public Xena 
hub, and consensus simple somatic mutations can be loaded to the 
local computer of a user via a private Xena hub. Kaplan–Meier plots, 
histograms, box plots, scatter plots and transcript-specific views offer 
additional visualization options and statistical analyses.
The Expression Atlas
The Expression Atlas (https://www.ebi.ac.uk/gxa/home) contains 
RNA-sequencing and expression microarray data for querying 
gene expression across tissues, cell types, developmental stages 
and/or experimental conditions88. Two different views of the data 
are provided: summarized expression levels for each tumour type 
and gene expression at the level of individual samples, including 
reference-gene expression datasets for matching normal tissues.
PCAWG Scout
PCAWG Scout (http://pcawgscout.bsc.es/) provides a framework for 
-omics workflow and website templating to generate on-demand, 
in-depth analyses of the PCAWG data that are openly available to the 
whole research community. Views of protected data are available 
that still safeguard sensitive data. Through the PCAWG Scout web 
interface, users can access an array of reports and visualizations 
that leverage on-demand bioinformatic computing infrastructure 
to produce results in real time, allowing users to discover trends as 
well as form and test hypotheses.
Chromothripsis Explorer
Chromothripsis Explorer (http://compbio.med.harvard.edu/
chromothripsis/) is a portal that allows structural variation in the 
PCAWG dataset to be explored on an individual patient basis 
through the use of circos plots. Patterns of chromothripsis can also 
be explored in aggregated formats.
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than 95% of SNV calls made by each of the core pipelines were genu-
ine somatic variants (Fig. 1a). For indels—a more-challenging class of  
variants to identify with short-read sequencing—the 3 core algorithms 
had individual sensitivity estimates in the range of 40–50%, with pre-
cision of 70–95% (Fig. 1b). For individual SV algorithms, we estimated 
precision to be in the range 80–95% for samples in the 63-sample pilot 
dataset.

Next, we defined a strategy to merge results from the three pipelines 
into one final call-set to be used for downstream scientific analyses 
(Methods and Supplementary Note 2). Sensitivity and precision of 
consensus somatic variant calls were 95% (90% confidence interval, 
88–98%) and 95% (90% confidence interval, 71–99%), respectively, for 
SNVs (Extended Data Fig. 2). For somatic indels, sensitivity and preci-
sion were 60% (34–72%) and 91% (73–96%), respectively (Extended Data 
Fig. 2). Regarding somatic SVs, we estimate the sensitivity of merged 
calls to be 90% for true calls generated by any one pipeline; precision 
was estimated as 97.5%. The improvement in calling accuracy from 
combining different pipelines was most noticeable in variants with 
low variant allele fractions, which probably originate from tumour 
subclones (Fig. 1c, d). Germline variant calls, phased using a haplotype-
reference panel, displayed a precision of more than 99% and a sensitivity 
of 92–98% (Supplementary Note 2).

Analysis of PCAWG data
The uniformly generated, high-quality set of variant calls across more 
than 2,500 donors provided the springboard for a series of scientific 
working groups to explore the biology of cancer. A comprehensive 
suite of companion papers that describe the analyses and discoveries 
across these thematic areas is copublished with this paper4–18 (Extended 
Data Table 3).

Pan-cancer burden of somatic mutations
Across the 2,583 white-listed PCAWG donors, we called 43,778,859 
somatic SNVs, 410,123 somatic multinucleotide variants, 2,418,247 
somatic indels, 288,416 somatic SVs, 19,166 somatic retrotransposition 
events and 8,185 de novo mitochondrial DNA mutations (Supplemen-
tary Table 1). There was considerable heterogeneity in the burden of 
somatic mutations across patients and tumour types, with a broad 
correlation in mutation burden among different classes of somatic 
variation (Extended Data Fig. 3). Analysed at a per-patient level, this 
correlation held, even when considering tumours with similar purity 
and ploidy (Supplementary Fig. 3). Why such correlation should apply 
on a pan-cancer basis is unclear. It is likely that age has some role, as we 
observe a correlation between most classes of somatic mutation and 
age at diagnosis (around 190 SNVs per year, P = 0.02; about 22 indels 
per year, P = 5 × 10−5; 1.5 SVs per year, P < 2 × 10−16; linear regression 
with likelihood ratio tests; Supplementary Fig. 4). Other factors are 
also likely to contribute to the correlations among classes of somatic 
mutation, as there is evidence that some DNA-repair defects can cause 
multiple types of somatic mutation30, and a single carcinogen can cause 
a range of DNA lesions31.

Panorama of driver mutations in cancer
We extracted the subset of somatic mutations in PCAWG tumours 
that have high confidence to be driver events on the basis of current 
knowledge. One challenge to pinpointing the specific driver muta-
tions in an individual tumour is that not all point mutations in recur-
rently mutated cancer-associated genes are drivers32. For genomic 
elements significantly mutated in PCAWG data, we developed a ‘rank-
and-cut’ approach to identify the probable drivers (Supplementary  
Methods 8.1). This approach works by ranking the observed mutations 
in a given genomic element based on recurrence, estimated functional 
consequence and expected pattern of drivers in that element. We then 
estimate the excess burden of somatic mutations in that genomic  
element above that expected for the background mutation rate, and cut 
the ranked mutations at this level. Mutations in each element with the 
highest driver ranking were then assigned as probable drivers; those 
below the threshold will probably have arisen through chance and were 
assigned as probable passengers. Improvements to features that are 
used to rank the mutations and the methods used to measure them 
will contribute to further development of the rank-and-cut approach.

We also needed to account for the fact that some bona fide cancer 
genomic elements were not rediscovered in PCAWG data because 
of low statistical power. We therefore added previously known  
cancer-associated genes to the discovery set, creating a ‘compendium 
of mutational driver elements’ (Supplementary Methods 8.2). Then, 
using stringent rules to nominate driver point mutations that affect 
these genomic elements on the basis of prior knowledge33, we separated 
probable driver from passenger point mutations. To cover all classes 
of variant, we also created a compendium of known driver SVs, using 
analogous rules to identify which somatic CNAs and SVs are most likely 
to act as drivers in each tumour. For probable pathogenic germline 
variants, we identified all truncating germline point mutations and 
SVs that affect high-penetrance germline cancer-associated genes.

This analysis defined a set of mutations that we could confidently 
assert, based on current knowledge, drove tumorigenesis in the more 
than 2,500 tumours of PCAWG. We found that 91% of tumours had at 
least one identified driver mutation, with an average of 4.6 drivers per 
tumour identified, showing extensive variation across cancer types 
(Fig. 2a). For coding point mutations, the average was 2.6 drivers per 
tumour, similar to numbers estimated in known cancer-associated 
genes in tumours in the TCGA using analogous approaches32.

To address the frequency of non-coding driver point mutations, 
we combined promoters and enhancers that are known targets of 
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Fig. 1 | Validation of variant-calling pipelines in PCAWG. a, Scatter plot of 
estimated sensitivity and precision for somatic SNVs across individual 
algorithms assessed in the validation exercise across n = 63 PCAWG samples. 
Core algorithms included in the final PCAWG call set are shown in blue.  
b, Sensitivity and precision estimates across individual algorithms for 
somatic indels. c, Accuracy (precision, sensitivity and F1 score, defined as 
2 × sensitivity × precision/(sensitivity + precision)) of somatic SNV calls across 
variant allele fractions (VAFs) for the core algorithms. The accuracy of two 
methods of combining variant calls (two-plus, which was used in the final 
dataset, and logistic regression) is also shown. d, Accuracy of indel calls 
across variant allele fractions.
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non-coding drivers34–37 with those newly discovered in PCAWG data; 
this is reported in a companion paper4. Using this approach, only 
13% (785 out of 5,913) of driver point mutations were non-coding 
in PCAWG. Nonetheless, 25% of PCAWG tumours bear at least one 
putative non-coding driver point mutation, and one third (237 out 
of 785) affected the TERT promoter (9% of PCAWG tumours). Overall, 
non-coding driver point mutations are less frequent than coding 
driver mutations. With the exception of the TERT promoter, indi-
vidual enhancers and promoters are only infrequent targets of driver 
mutations4.

Across tumour types, SVs and point mutations have different rela-
tive contributions to tumorigenesis. Driver SVs are more prevalent 
in breast adenocarcinomas (6.4 ± 3.7 SVs (mean ± s.d.) compared 
with 2.2 ± 1.3 point mutations; P < 1 × 10−16, Mann–Whitney U-test) 
and ovary adenocarcinomas (5.8 ± 2.6 SVs compared with 1.9 ± 1.0 
point mutations; P < 1 × 10−16), whereas driver point mutations have 

a larger contribution in colorectal adenocarcinomas (2.4 ± 1.4 SVs 
compared with 7.4 ± 7.0 point mutations; P = 4 × 10−10) and mature 
B cell lymphomas (2.2 ± 1.3 SVs compared with 6 ± 3.8 point muta-
tions; P < 1 × 10−16), as previously shown38. Across tumour types, there 
are differences in which classes of mutation affect a given genomic 
element (Fig. 2b).

We confirmed that many driver mutations that affect tumour-
suppressor genes are two-hit inactivation events (Fig. 2c). For exam-
ple, of the 954 tumours in the cohort with driver mutations in TP53, 
736 (77%) had both alleles mutated, 96% of which (707 out of 736) 
combined a somatic point mutation that affected one allele with 
somatic deletion of the other allele. Overall, 17% of patients had 
rare germline protein-truncating variants (PTVs) in cancer-predis-
position genes39, DNA-damage response genes40 and somatic driver 
genes. Biallelic inactivation due to somatic alteration on top of a 
germline PTV was observed in 4.5% of patients overall, with 81% of 
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Fig. 2 | Panorama of driver mutations in PCAWG. a, Top, putative driver 
mutations in PCAWG, represented as a circos plot. Each sector represents a 
tumour in the cohort. From the periphery to the centre of the plot the 
concentric rings represent: (1) the total number of driver alterations; (2) the 
presence of whole-genome (WG) duplication; (3) the tumour type; (4) the 
number of driver CNAs; (5) the number of driver genomic rearrangements;  
(6) driver coding point mutations; (7) driver non-coding point mutations; and 
(8) pathogenic germline variants. Bottom, snapshots of the panorama of driver 
mutations. The horizontal bar plot (left) represents the proportion of patients 
with different types of drivers. The dot plot (right) represents the mean 
number of each type of driver mutation across tumours with at least one event 
(the square dot) and the standard deviation (grey whiskers), based on n = 2,583 

patients. b, Genomic elements targeted by different types of mutations in the 
cohort altered in more than 65 tumours. Both germline and somatic variants 
are included. Left, the heat map shows the recurrence of alterations across 
cancer types. The colour indicates the proportion of mutated tumours and the 
number indicates the absolute count of mutated tumours. Right, the 
proportion of each type of alteration that affects each genomic element.  
c, Tumour-suppressor genes with biallelic inactivation in 10 or more patients. 
The values included under the gene labels represent the proportions of 
patients who have biallelic mutations in the gene out of all patients with a 
somatic mutation in that gene. GR, genomic rearrangement; SCNA, somatic 
copy-number alteration; SGR, somatic genome rearrangement; TSG, tumour 
suppressor gene; UTR, untranslated region.
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these affecting known cancer-predisposition genes (such as BRCA1, 
BRCA2 and ATM).

PCAWG tumours with no apparent drivers
Although more than 90% of PCAWG cases had identified drivers, we 
found none in 181 tumours (Extended Data Fig. 4a). Reasons for miss-
ing drivers have not yet been systematically evaluated in a pan-cancer 
cohort, and could arise from either technical or biological causes.

Technical explanations could include poor-quality samples, inad-
equate sequencing or failures in the bioinformatic algorithms used. 
We assessed the quality of the samples and found that 4 of the 181 
cases with no known drivers had more than 5% tumour DNA contami-
nation in their matched normal sample (Fig. 3a). Using an algorithm 
designed to correct for this contamination41, we identified previously 
missed mutations in genes relevant to the respective cancer types. 
Similarly, if the fraction of tumour cells in the cancer sample is low 
through stromal contamination, the detection of driver mutations 
can be impaired. Most tumours with no known drivers had an aver-
age power to detect mutations close to 100%; however, a few had 
power in the 70–90% range (Fig. 3b and Extended Data Fig. 4b). Even 

in adequately sequenced genomes, lack of read depth at specific 
driver loci can impair mutation detection. For example, only around 
50% of PCAWG tumours had sufficient coverage to call a mutation 
(≥90% power) at the two TERT promoter hotspots, probably because 
the high GC content of this region causes biased coverage (Fig. 3c).  
In fact, 6 hepatocellular carcinomas and 2 biliary cholangiocarcinomas 
among the 181 cases with no known drivers actually did contain TERT 
mutations, which were discovered after deep targeted sequencing42.

Finally, technical reasons for missing driver mutations include fail-
ures in the bioinformatic algorithms. This affected 35 myeloprolif-
erative neoplasms in PCAWG, in which the JAK2V617F driver mutation 
should have been called. Our somatic variant-calling algorithms rely 
on ‘panels of normals’, typically from blood samples, to remove recur-
rent sequencing artefacts. As 2–5% of healthy individuals carry occult 
haematopoietic clones43, recurrent driver mutations in these clones 
can enter panels of normals.

With regard to biological causes, tumours may be driven by muta-
tions in cancer-associated genes that are not yet described for that 
tumour type. Using driver discovery algorithms on tumours with no 
known drivers, no individual genes reached significance for point muta-
tions. However, we identified a recurrent CNA that spanned SETD2 in 
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Fig. 3 | Analysis of patients with no detected driver mutations. a, Individual 
estimates of the percentage of tumour-in-normal contamination across 
patients with no driver mutations in PCAWG (n = 181). No data were available for 
myelodysplastic syndromes and acute myeloid leukaemia. Points represent 
estimates for individual patients, and the coloured areas are estimated density 
distributions (violin plots). Abbreviations of the tumour types are defined in 
Extended Data Table 1. b, Average detection sensitivity by tumour type for 
tumours without known drivers (n = 181). Each dot represents a given sample 
and is the average sensitivity of detecting clonal substitutions across the 
genome, taking into account purity and ploidy. Coloured areas are estimated 
density distributions, shown for cohorts with at least five cases. c, Detection 

sensitivity for TERT promoter hotspots in tumour types in which TERT is 
frequently mutated. Coloured areas are estimated density distributions.  
d, Significant copy-number losses identified by two-sided hypothesis testing 
using GISTIC2.0, corrected for multiple-hypothesis testing. Numbers in 
parentheses indicate the number of genes in significant regions when 
analysing medulloblastomas without known drivers (n = 42). Significant 
regions with known cancer-associated genes are labelled with the 
representative cancer-associated gene. e, Aneuploidy in chromophobe renal 
cell carcinomas and pancreatic neuroendocrine tumours without known 
drivers. Patients are ordered on the y axis by tumour type and then by presence 
of whole-genome duplication (bottom) or not (top).
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medulloblastomas that lacked known drivers (Fig. 3d), indicating that 
restricting hypothesis testing to missing-driver cases can improve 
power if undiscovered genes are enriched in such tumours. Inactivation 
of SETD2 in medulloblastoma significantly decreased gene expres-
sion (P = 0.002) (Extended Data Fig. 4c). Notably, SETD2 mutations 
occurred exclusively in medulloblastoma group-4 tumours (P < 1 × 10−4). 
Group-4 medulloblastomas are known for frequent mutations in other 
chromatin-modifying genes44, and our results suggest that SETD2 loss 
of function is an additional driver that affects chromatin regulators in 
this subgroup.

Two tumour types had a surprisingly high fraction of patients with-
out identified driver mutations: chromophobe renal cell carcinoma  
(44%; 19 out of 43) and pancreatic neuroendocrine cancers (22%;  
18 out of 81) (Extended Data Fig. 4a). A notable feature of the miss-
ing-driver cases in both tumour types was a remarkably consistent 

profile of chromosomal aneuploidy—patterns that have previously 
been reported45,46 (Fig. 3e). The absence of other identified driver muta-
tions in these patients raises the possibility that certain combinations 
of whole-chromosome gains and losses may be sufficient to initiate 
a cancer in the absence of more-targeted driver events such as point 
mutations or fusion genes of focal CNAs.

Even after accounting for technical issues and novel drivers, 5.3% of 
PCAWG tumours still had no identifiable driver events. In a research 
setting, in which we are interested in drawing conclusions about popu-
lations of patients, the consequences of technical issues that affect 
occasional samples will be mitigated by sample size. In a clinical setting, 
in which we are interested in the driver mutations in a specific patient, 
these issues become substantially more important. Careful and critical 
appraisal of the whole pipeline—including sample acquisition, genome 
sequencing, mapping, variant calling and driver annotation, as done 
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Fig. 4 | Patterns of clustered mutational processes in PCAWG. a, Kataegis. 
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Chromothripsis. Top, frequency of chromothripsis across cancer types. 
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categorization. b, Circos rainfall plot showing the distances between 
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position. Lymphoid tumours (khaki, B cell non-Hodgkin’s lymphoma; orange, 
chronic lymphocytic leukaemia) have hypermutation hot spots (≥3 foci with 
distance ≤1 kb; pale red zone), many of which are near known cancer-associated 
genes (red annotations) and have associated SVs (≤10 kb from the focus; shown 
as arcs in the centre). c, Circos rainfall plot as in b that shows the distance versus 
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across cancer types, coloured by cancer type. Regions with an average 
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pattern of thymine mutations in a Cp TpT context.



 

 319 

  

88 | Nature | Vol 578 | 6 February 2020

Article
here—should be required for laboratories that offer clinical sequenc-
ing of cancer genomes.

Patterns of clustered mutations and SVs
Some somatic mutational processes generate multiple mutations in a 
single catastrophic event, typically clustered in genomic space, leading 
to substantial reconfiguration of the genome. Three such processes 
have previously been described: (1) chromoplexy, in which repair of 
co-occurring double-stranded DNA breaks—typically on different chro-
mosomes—results in shuffled chains of rearrangements47,48 (Extended 
Data Fig. 5a); (2) kataegis, a focal hypermutation process that leads to 
locally clustered nucleotide substitutions, biased towards a single DNA 
strand49–51 (Extended Data Fig. 5b); and (3) chromothripsis, in which 
tens to hundreds of DNA breaks occur simultaneously, clustered on 
one or a few chromosomes, with near-random stitching together of 
the resulting fragments52–55 (Extended Data Fig. 5c). We characterized 
the PCAWG genomes for these three processes (Fig. 4).

Chromoplexy events and reciprocal translocations were identified 
in 467 (17.8%) samples (Fig. 4a, c). Chromoplexy was prominent in 
prostate adenocarcinoma and lymphoid malignancies, as previously 
described47,48, and—unexpectedly—thyroid adenocarcinoma. Differ-
ent genomic loci were recurrently rearranged by chromoplexy across 
the three tumour types, mediated by positive selection for particu-
lar fusion genes or enhancer-hijacking events. Of 13 fusion genes or 
enhancer hijacking events in 48 thyroid adenocarcinomas, at least  
4 (31%) were caused by chromoplexy, with a further 4 (31%) part of com-
plexes that contained chromoplexy footprints (Extended Data Fig. 5a). 
These events generated fusion genes that involved RET (two cases) and 
NTRK3 (one case)56, and the juxtaposition of the oncogene IGF2BP3 
with regulatory elements from highly expressed genes (five cases).

Kataegis events were found in 60.5% of all cancers, with particularly 
high abundance in lung squamous cell carcinoma, bladder cancer, 
acral melanoma and sarcomas (Fig. 4a, b). Typically, kataegis com-
prises C > N mutations in a TpC context, which are probably caused 
by APOBEC activity49–51, although a T > N conversion in a TpT or CpT 
process (the affected T is highlighted in bold) attributed to error-prone 
polymerases has recently been described57. The APOBEC signature 
accounted for 81.7% of kataegis events and correlated positively with 
APOBEC3B expression levels, somatic SV burden and age at diagnosis 
(Supplementary Fig. 5). Furthermore, 5.7% of kataegis events involved 
the T > N error-prone polymerase signature and 2.3% of events, most 
notably in sarcomas, showed cytidine deamination in an alternative 
GpC or CpC context.

Kataegis events were frequently associated with somatic SV break-
points (Fig. 4a and Supplementary Fig. 6a), as previously described50,51. 
Deletions and complex rearrangements were most-strongly associ-
ated with kataegis, whereas tandem duplications and other simple 
SV classes were only infrequently associated (Supplementary Fig. 6b). 
Kataegis inducing predominantly T > N mutations in CpTpT context 
was enriched near deletions, specifically those in the 10–25-kilobase 
(kb) range (Supplementary Fig. 6c).

Samples with extreme kataegis burden (more than 30 foci) comprise 
four types of focal hypermutation (Extended Data Fig. 6): (1) off-target 
somatic hypermutation and foci of T > N at CpTpT, found in B cell non-
Hodgkin lymphoma and oesophageal adenocarcinomas, respectively; 
(2) APOBEC kataegis associated with complex rearrangements, notably 
found in sarcoma and melanoma; (3) rearrangement-independent 
APOBEC kataegis on the lagging strand and in early-replicating regions, 
mainly found in bladder and head and neck cancer; and (4) a mix of 
the last two types. Kataegis only occasionally led to driver mutations  
(Supplementary Table 5).

We identified chromothripsis in 587 samples (22.3%), most fre-
quently among sarcoma, glioblastoma, lung squamous cell carci-
noma, melanoma and breast adenocarcinoma18. Chromothripsis 

increased with whole-genome duplications in most cancer types 
(Extended Data Fig. 7a), as previously shown in medulloblastoma58. 
The most recurrently associated driver was TP5352 (pan-cancer odds 
ratio = 3.22; pan-cancer P = 8.3 × 10−35; q < 0.05 in breast lobular (odds 
ratio = 13), colorectal (odds ratio = 25), prostate (odds ratio = 2.6) and 
hepatocellular (odds ratio = 3.9) cancers; Fisher–Boschloo tests). In 
two cancer types (osteosarcoma and B cell lymphoma), women had a 
higher incidence of chromothripsis than men (Extended Data Fig. 7b). 
In prostate cancer, we observed a higher incidence of chromothripsis 
in patients with late-onset than early-onset disease59 (Extended Data  
Fig. 7c).

Chromothripsis regions coincided with 3.6% of all identified driv-
ers in PCAWG and around 7% of copy-number drivers (Fig. 4d). These 
proportions are considerably enriched compared to expectation if 
selection were not acting on these events (Extended Data Fig. 7d). The 
majority of coinciding driver events were amplifications (58%), followed 
by homozygous deletions (34%) and SVs within genes or promoter 
regions (8%). We frequently observed a ≥2-fold increase or decrease in 
expression of amplified or deleted drivers, respectively, when these loci 
were part of a chromothripsis event, compared with samples without 
chromothripsis (Extended Data Fig. 7e).

Chromothripsis manifested in diverse patterns and frequencies 
across tumour types, which we categorized on the basis of five charac-
teristics (Fig. 4a). In liposarcoma, for example, chromothripsis events 
often involved multiple chromosomes, with universal MDM2 ampli-
fication60 and co-amplification of TERT in 4 of 19 cases (Fig. 4d). By 
contrast, in glioblastoma the events tended to affect a smaller region 
on a single chromosome that was distant from the telomere, resulting 
in focal amplification of EGFR and MDM2 and loss of CDKN2A. Acral 
melanomas frequently exhibited CCND1 amplification, and lung squa-
mous cell carcinomas SOX2 amplifications. In both cases, these drivers 
were more-frequently altered by chromothripsis compared with other 
drivers in the same cancer type and to other cancer types for the same 
driver (Fig. 4d and Extended Data Fig. 7f). Finally, in chromophobe renal 
cell carcinoma, chromothripsis nearly always affected chromosome  
5 (Supplementary Fig. 7): these samples had breakpoints immediately 
adjacent to TERT, increasing TERT expression by 80-fold on average 
compared with samples without rearrangements (P = 0.0004; Mann–
Whitney U-test).

Timing clustered mutations in evolution
An unanswered question for clustered mutational processes is whether 
they occur early or late in cancer evolution. To address this, we used 
molecular clocks to define broad epochs in the life history of each 
tumour49,61. One transition point is between clonal and subclonal muta-
tions: clonal mutations occurred before, and subclonal mutations after, 
the emergence of the most-recent common ancestor. In regions with 
copy-number gains, molecular time can be further divided according 
to whether mutations preceded the copy-number gain (and were them-
selves duplicated) or occurred after the gain (and therefore present on 
only one chromosomal copy)7.

Chromothripsis tended to have greater relative odds of being clonal 
than subclonal, suggesting that it occurs early in cancer evolution, 
especially in liposarcomas, prostate adenocarcinoma and squamous 
cell lung cancer (Fig. 5a). As previously reported, chromothripsis was 
especially common in melanomas62. We identified 89 separate chromo-
thripsis events that affected 66 melanomas (61%); 47 out of 89 events 
affected genes known to be recurrently altered in melanoma63 (Sup-
plementary Table 6). Involvement of a region on chromosome 11 that 
includes the cell-cycle regulator CCND1 occurred in 21 cases (10 out 
of 86 cutaneous, and 11 out of 21 acral or mucosal melanomas), typi-
cally combining chromothripsis with amplification (19 out of 21 cases) 
(Extended Data Fig. 8). Co-involvement of other cancer-associated 
genes in the same chromothripsis event was also frequent, including 



 

 320 

 
  

Nature | Vol 578 | 6 February 2020 | 89

TERT (five cases), CDKN2A (three cases), TP53 (two cases) and MYC 
(two cases) (Fig. 5b). In these co-amplifications, a chromothripsis 
event involving multiple chromosomes initiated the process, creat-
ing a derivative chromosome in which hundreds of fragments were 
stitched together in a near-random order (Fig. 5b). This derivative 
then rearranged further, leading to massive co-amplification of the 
multiple target oncogenes together with regions located nearby on 
the derivative chromosome.

In these cases of amplified chromothripsis, we can use the inferred 
number of copies bearing each SNV to time the amplification process. 
SNVs present on the chromosome before amplification will them-
selves be amplified and are therefore reported in a high fraction of 
sequence reads (Fig. 5b and Extended Data Fig. 8). By contrast, late 
SNVs that occur after the amplification has concluded will be present 
on only one chromosome copy out of many, and thus have a low variant 

allele fraction. Regions of CCND1 amplification had few—sometimes 
zero—mutations at high variant allele fraction in acral melanomas, in 
contrast to later CCND1 amplifications in cutaneous melanomas, in 
which hundreds to thousands of mutations typically predated ampli-
fication (Fig. 5b and Extended Data Fig. 9a, b). Thus, both chromoth-
ripsis and the subsequent amplification generally occurred very early 
during the evolution of acral melanoma. By comparison, in lung squa-
mous cell carcinomas, similar patterns of chromothripsis followed by  
SOX2 amplification are characterized by many amplified SNVs, sug-
gesting a later event in the evolution of these cancers (Extended Data 
Fig. 9c).

Notably, in cancer types in which the mutational load was sufficiently 
high, we could detect a larger-than-expected number of SNVs on an 
intermediate number of DNA copies, suggesting that they appeared 
during the amplification process (Supplementary Fig. 8).
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Fig. 5 | Timing of clustered events in PCAWG. a, Extent and timing of 
chromothripsis, kataegis and chromoplexy across PCAWG. Top, stacked bar 
charts illustrate co-occurrence of chromothripsis, kataegis and chromoplexy 
in the samples. Middle, relative odds of clustered events being clonal or 
subclonal are shown with bootstrapped 95% confidence intervals. Point 
estimates are highlighted when they do not overlap odds of 1:1. Bottom, 
relative odds of the events being early or late clonal are shown as above. Sample 

sizes (number of patients) are shown across the top. b, Three representative 
patients with acral melanoma and chromothripsis-induced amplification that 
simultaneously affects TERT and CCND1. The black points (top) represent 
sequence coverage from individual genomic bins, with SVs shown as coloured 
arcs (translocation in black, deletion in purple, duplication in brown, tail-to-tail 
inversion in cyan and head-to-head inversion in green). Bottom, the variant 
allele fractions of somatic point mutations.



 

 321 

  

90 | Nature | Vol 578 | 6 February 2020

Article

Germline effects on somatic mutations
We integrated the set of 88 million germline genetic variant calls 
with somatic mutations in PCAWG, to study germline determinants 
of somatic mutation rates and patterns. First, we performed a genome-
wide association study of somatic mutational processes with common 
germline variants (minor allele frequency (MAF) > 5%) in individuals 
with inferred European ancestry. An independent genome-wide associ-
ation study was performed in East Asian individuals from Asian cancer 
genome projects. We focused on two prevalent endogenous muta-
tional processes: spontaneous deamination of 5-methylcytosine at 
CpG dinucleotides5 (signature 1) and activity of the APOBEC3 family of 
cytidine deaminases64 (signatures 2 and 13). No locus reached genome-
wide significance (P < 5 × 10−8) for signature 1 (Extended Data Fig. 10a, 
b). However, a locus at 22q13.1 predicted an APOBEC3B-like mutagen-
esis at the pan-cancer level65 (Fig. 6a). The strongest signal at 22q13.1 
was driven by rs12628403, and the minor (non-reference) allele was 
protective against APOBEC3B-like mutagenesis (β = −0.43, P = 5.6 × 10−9, 
MAF = 8.2%, n = 1,201 donors) (Extended Data Fig. 10c). This variant 
tags a common, approximately 30-kb germline SV that deletes the 
APOBEC3B coding sequence and fuses the APOBEC3B 3′ untranslated 
region with the coding sequence of APOBEC3A. The deletion is known 

to increase breast cancer risk and APOBEC mutagenesis in breast can-
cer genomes66,67. Here, we found that rs12628403 reduces APOBEC3B-
like mutagenesis specifically in cancer types with low levels of APOBEC 
mutagenesis (βlow = −0.50, Plow = 1 × 10−8; βhigh = 0.17, Phigh = 0.2), and 
increases APOBEC3A-like mutagenesis in cancer types with high lev-
els of APOBEC mutagenesis (βhigh = 0.44, Phigh = 8 × 10−4; βlow = −0.21, 
Plow = 0.02). Moreover, we identified a second, novel locus at 22q13.1 
that was associated with APOBEC3B-like mutagenesis across cancer 
types (rs2142833, β = 0.23, P = 1.3 × 10−8). We independently validated the 
association between both loci and APOBEC3B-like mutagenesis using  
East Asian individuals from Asian cancer genome projects 
(βrs12628403 = 0.57, Prs12628403 = 4.2 × 10−12; βrs2142833 = 0.58, Prs2142833 = 8 × 10−15) 
(Extended Data Fig. 10d). Notably, in a conditional analysis that 
accounted for rs12628403, we found that rs2142833 and rs12628403 
are inherited independently in Europeans (r2<0.1), and rs2142833 
remained significantly associated with APOBEC3B-like mutagenesis 
in Europeans (βEUR = 0.17, PEUR = 3 × 10−5) and East Asians (βASN = 0.25, 
PASN = 2 × 10−3) (Extended Data Fig. 10e, f). Analysis of donor-matched 
expression data further suggests that rs2142833 is a cis-expression 
quantitative trait locus (eQTL) for APOBEC3B at the pan-cancer level 
(β = 0.19, P = 2 × 10−6) (Extended Data Fig. 10g, h), consistent with  
cis-eQTL studies in normal cells68,69.
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Fig. 6 | Germline determinants of the somatic mutation landscape.  
a, Association between common (MAF > 5%) germline variants and somatic 
APOBEC3B-like mutagenesis in individuals of European ancestry (n = 1,201). 
Two-sided hypothesis testing was performed with PLINK v.1.9. To mitigate 
multiple-hypothesis testing, the significance threshold was set to genome-
wide significance (P < 5 × 10−8). b, Templated insertion SVs in a BRCA1-
associated prostate cancer. Left, chromosome bands (1); SVs ≤ 10 megabases 
(Mb) (2); 1-kb read depth corrected to copy number 0–6 (3); inter- and 
intrachromosomal SVs > 10 Mb (4). Right, a complex somatic SV composed of a  
2.2-kb tandem duplication on chromosome 2 together with a 232-base-pair 
(bp) inverted templated insertion SV that is derived from chromosome 5 and 
inserted inbetween the tandem duplication (bottom). Consensus sequence 
alignment of locally assembled Oxford Nanopore Technologies long 
sequencing reads to chromosomes 2 and 5 of the human reference genome 
(top). Breakpoints are circled and marked as 1 (beginning of tandem 
duplication), 2 (end of tandem duplication) or 3 (inverted templated insertion). 
For each breakpoint, the middle panel shows Illumina short reads at SV 

breakpoints. c, Association between rare germline PTVs (MAF < 0.5%) and 
somatic CpG mutagenesis (approximately with signature 1) in individuals of 
European ancestry (n = 1,201). Genes highlighted in blue or red were associated 
with lower or higher somatic mutation rates. Two-sided hypothesis testing was 
performed using linear-regression models with sex, age at diagnosis and 
cancer project as variables. To mitigate multiple-hypothesis testing, the 
significance threshold was set to exome-wide significance (P < 2.5 × 10−6).  
The black line represents the identity line that would be followed if the 
observed P values followed the null expectation; the shaded area shows  
the 95% confidence intervals. d, Catalogue of polymorphic germline L1 source 
elements that are active in cancer. The chromosomal map shows germline 
source L1 elements as volcano symbols. Each volcano is colour-coded 
according to the type of source L1 activity. The contribution of each source 
locus (expressed as a percentage) to the total number of transductions 
identified in PCAWG tumours is represented as a gradient of volcano size, with 
top contributing elements exhibiting larger sizes.
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Second, we performed a rare-variant association study (MAF <0.5%) 
to investigate the relationship between germline PTVs and somatic 
DNA rearrangements in individuals with European ancestry (Extended 
Data Fig. 11a–c). Germline BRCA2 and BRCA1 PTVs were associated 
with an increased burden of small (less than 10 kb) somatic SV dele-
tions (P = 1 × 10−8) and tandem duplications (P = 6 × 10−13), respectively, 
corroborating recent studies in breast and ovarian cancer30,70. In 
PCAWG data, this pattern also extends to other tumour types, includ-
ing adenocarcinomas of the prostate and pancreas6, typically in the 
setting of biallelic inactivation. In addition, tumours with high lev-
els of small SV tandem duplications frequently exhibited a novel and 
distinct class of SVs termed ‘cycles of templated insertions’6. These 
complex SV events consist of DNA templates that are copied from 
across the genome, joined into one contiguous sequence and inserted 
into a single derivative chromosome. We found a significant associa-
tion between germline BRCA1 PTVs and templated insertions at the  
pan-cancer level (P = 4 × 10−15) (Extended Data Fig. 11d, e). Whole-genome 

long-read sequencing data generated for a BRCA1-deficient PCAWG 
prostate tumour verified the small tandem-duplication and templated-
insertion SV phenotypes (Fig. 6b). Almost all (20 out of 21) of BRCA1-
associated tumours with a templated-insertion SV phenotype displayed 
combined germline and somatic hits in the gene. Together, these data 
suggest that biallelic inactivation of BRCA1 is a driver of the templated-
insertion SV phenotype.

Third, rare-variant association analysis revealed that patients with 
germline MBD4 PTVs had increased rates of somatic C > T mutation 
rates at CpG dinucleotides (P < 2.5 × 10−6) (Fig. 6c and Extended Data  
Fig. 11f, g). Analysis of previously published whole-exome sequencing 
samples from the TCGA (n = 8,134) replicated the association between 
germline MBD4 PTVs and increased somatic CpG mutagenesis at the 
pan-cancer level (P = 7.1 × 10−4) (Extended Data Fig. 11h). Moreover, 
gene-expression profiling revealed a significant but modest correlation 
between MBD4 expression and somatic CpG mutation rates between 
and within PCAWG tumour types (Extended Data Fig. 11i–k). MBD4 
encodes a DNA-repair gene that removes thymidines from T:G mis-
matches within methylated CpG sites71, a functionality that would be 
consistent with a CpG mutational signature in cancer.

Fourth, we assessed long interspersed nuclear elements (LINE-1; L1 
hereafter) that mediate somatic retrotransposition events72–74. We iden-
tified 114 germline source L1 elements capable of active somatic retro-
transposition, including 70 that represent insertions with respect to the 
human reference genome (Fig. 6d and Supplementary Table 7), and 53 
that were tagged by single-nucleotide polymorphisms in strong linkage 
disequilibrium (Supplementary Table 7). Only 16 germline L1 elements 
accounted for 67% (2,440 out of 3,669) of all L1-mediated transduc-
tions10 detected in the PCAWG dataset (Extended Data Fig. 12a). These 
16 hot-L1 elements followed two broad patterns of somatic activity (8 
of each), which we term Strombolian and Plinian in analogy to patterns 
of volcanic activity. Strombolian L1s are frequently active in cancer, 
but mediate only small-to-modest eruptions of somatic L1 activity in 
cancer samples (Extended Data Fig. 12b). By contrast, Plinian L1s are 
more rarely seen, but display aggressive somatic activity. Whereas 
Strombolian elements are typically relatively common (MAF > 2%) and 
sometimes even fixed in the human population, all Plinian elements 
were infrequent (MAF ≤ 2%) in PCAWG donors (Extended Data Fig. 12c; 
P = 0.001, Mann–Whitney U-test). This dichotomous pattern of activ-
ity and allele frequency may reflect differences in age and selective 
pressures, with Plinian elements potentially inserted into the human 
germline more recently. PCAWG donors bear on average between 50 
and 60 L1 source elements and between 5 and 7 elements with hot 
activity (Extended Data Fig. 12d), but only 38% (1,075 out of 2,814) of 
PCAWG donors carried ≥1 Plinian element. Some L1 germline source 
loci caused somatic loss of tumour-suppressor genes (Extended Data 
Fig. 12e). Many are restricted to individual continental population 
ancestries (Extended Data Fig. 12f–j).

Replicative immortality
One of the hallmarks of cancer is the ability of cancer to evade cellular 
senescence21. Normal somatic cells typically have finite cell division 
potential; telomere attrition is one mechanism to limit numbers of 
mitoses75. Cancers enlist multiple strategies to achieve replicative 
immortality. Overexpression of the telomerase gene, TERT, which main-
tains telomere lengths, is especially prevalent. This can be achieved 
through point mutations in the promoter that lead to de novo tran-
scription factor binding34,37; hitching TERT to highly active regulatory 
elements elsewhere in the genome46,76; insertions of viral enhancers 
upstream of the gene77,78; and increased dosage through chromosomal 
amplification, as we have seen in melanoma (Fig. 5b). In addition, there is 
an ‘alternative lengthening of telomeres’ (ALT) pathway, in which telom-
eres are lengthened through homologous recombination, mediated by  
loss-of-function mutations in the ATRX and DAXX genes79.
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Fig. 7 | Telomere sequence patterns across PCAWG. a, Scatter plot of the 
clusters of telomere patterns identified across PCAWG using t-distributed 
stochastic neighbour embedding (t-SNE), based on n = 2,518 tumour samples 
and their matched normal samples. Axes have arbitrary dimensions such that 
samples with similar telomere profiles are clustered together and samples with 
dissimilar telomere profiles are far apart with high probability. b, Distribution 
of the four tumour-specific clusters of telomere patterns in selected tumour 
types from PCAWG. c, Distribution of relevant driver mutations associated 
with alternative lengthening of telomere and normal telomere maintenance 
across the four clusters. d, Distribution of telomere maintenance 
abnormalities across tumour types with more than 40 patients in PCAWG. 
Samples were classified as tumour clusters 1–3 if they fell into a relevant cluster 
without mutations in TERT, ATRX or DAXX and had no ALT phenotype. TMM, 
telomere maintenance mechanisms.
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As reported in a companion paper13, 16% of tumours in the PCAWG 

dataset exhibited somatic mutations in at least one of ATRX, DAXX 
and TERT. TERT alterations were detected in 270 samples, whereas 
128 tumours had alterations in ATRX or DAXX, of which 71 were protein-
truncating. In the companion paper, which focused on describing pat-
terns of ALT and TERT-mediated telomere maintenance13, 12 features 
of telomeric sequence were measured in the PCAWG cohort. These 
included counts of nine variants of the core hexameric sequence, 
the number of ectopic telomere-like insertions within the genome, 
the number of genomic breakpoints and telomere length as a ratio 
between tumour and normal. Here we used the 12 features as an over-
view of telomere integrity across all tumours in the PCAWG dataset.

On the basis of these 12 features, tumour samples formed 4 dis-
tinct subclusters (Fig. 7a and Extended Data Fig. 13a), suggesting that 
telomere-maintenance mechanisms are more diverse than the well-
established TERT and ALT dichotomy. Clusters C1 (47 tumours) and 
C2 (42 tumours) were enriched for traits of the ALT pathway—having 
longer telomeres, more genomic breakpoints, more ectopic telomere  
insertions and variant telomere sequence motifs (Supplementary 
Fig. 9). C1 and C2 were distinguished from one another by the latter 
having a considerable increase in the number of TTCGGG and TGAGGG 
variant motifs among the telomeric hexamers. Thyroid adenocarci-
nomas were markedly enriched among C3 samples (26 out of 33 C3 
samples; P < 10−16); the C1 cluster (ALT subtype 1) was common among 
sarcomas; and both pancreatic endocrine neoplasms and low-grade 
gliomas had a high proportion of samples in the C2 cluster (ALT sub-
type 2) (Fig. 7b). Notably, some of the thyroid adenocarcinomas and 
pancreatic neuroendocrine tumours that cluster together (cluster C3) 
had matched normal samples that also cluster together (normal cluster 
N3) (Extended Data Fig. 13a) and which share common properties. For 
example, the GTAGGG repeat was overrepresented among samples in 
this group (Supplementary Fig. 10).

Somatic driver mutations were also unevenly distributed across the 
four clusters (Fig. 7c). C1 tumours were enriched for RB1 mutations or 
SVs (P = 3 × 10−5), as well as frequent SVs that affected ATRX (P = 6 × 10−14), 
but not DAXX. RB1 and ATRX mutations were largely mutually exclusive 
(Extended Data Fig. 13b). By contrast, C2 tumours were enriched for 
somatic point mutations in ATRX and DAXX (P = 6 × 10−5), but not RB1. 
The enrichment of RB1 mutations in C1 remained significant when 
only leiomyosarcomas and osteosarcomas were considered, confirm-
ing that this enrichment is not merely a consequence of the different 
distribution of tumour types across clusters. C3 samples had frequent 
TERT promoter mutations (30%; P = 2 × 10−6).

There was a marked predominance of RB1 mutations in C1. Nearly 
a third of the samples in C1 contained an RB1 alteration, which were 
evenly distributed across truncating SNVs, SVs and shallow dele-
tions (Extended Data Fig. 13c). Previous research has shown that RB1 
mutations are associated with long telomeres in the absence of TERT 
mutations and ATRX inactivation80, and studies using mouse models 
have shown that knockout of Rb-family proteins causes elongated 
telomeres81. The association with the C1 cluster here suggests that RB1  
mutations can represent another route to activating the ALT pathway, 
which has subtly different properties of telomeric sequence com-
pared with the inactivation of DAXX—these fall almost exclusively in 
cluster C2.

Tumour types with the highest rates of abnormal telomere mainte-
nance mechanisms often originate in tissues that have low endogenous 
replicative activity (Fig. 7d). In support of this, we found an inverse cor-
relation between previously estimated rates of stem cell division across 
tissues82 and the frequency of telomere maintenance abnormalities 
(P = 0.01, Poisson regression) (Extended Data Fig. 13d). This suggests 
that restriction of telomere maintenance is an important tumour-
suppression mechanism, particularly in tissues with low steady-state 
cellular proliferation, in which a clone must overcome this constraint 
to achieve replicative immortality.

Conclusions and future perspectives
The resource reported in this paper and its companion papers has 
yielded insights into the nature and timing of the many mutational 
processes that shape large- and small-scale somatic variation in the 
cancer genome; the patterns of selection that act on these varia-
tions; the widespread effect of somatic variants on transcription; 
the complementary roles of the coding and non-coding genome for 
both germline and somatic mutations; the ubiquity of intratumoral 
heterogeneity; and the distinctive evolutionary trajectory of each 
cancer type. Many of these insights can be obtained only from an 
integrated analysis of all classes of somatic mutation on a whole-
genome scale, and would not be accessible with, for example, targeted 
exome sequencing.

The promise of precision medicine is to match patients to targeted 
therapies using genomics. A major barrier to its evidence-based imple-
mentation is the daunting heterogeneity of cancer chronicled in these 
papers, from tumour type to tumour type, from patient to patient, from 
clone to clone and from cell to cell. Building meaningful clinical predic-
tors from genomic data can be achieved, but will require knowledge 
banks comprising tens of thousands of patients with comprehensive 
clinical characterization83. As these sample sizes will be too large for 
any single funding agency, pharmaceutical company or health system, 
international collaboration and data sharing will be required. The next 
phase of ICGC, ICGC-ARGO (https:// www.icgc-argo.org/), will bring 
the cancer genomics community together with healthcare providers, 
pharmaceutical companies, data science and clinical trials groups to 
build comprehensive knowledge banks of clinical outcome and treat-
ment data from patients with a wide variety of cancers, matched with 
detailed molecular profiling.

Extending the story begun by TCGA, ICGC and other cancer genom-
ics projects, the PCAWG has brought us closer to a comprehensive  
narrative of the causal biological changes that drive cancer phenotypes. 
We must now translate this knowledge into sustainable, meaningful 
clinical treatments.
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Methods

Samples
We compiled an inventory of matched tumour–normal whole-cancer 
genomes in the ICGC Data Coordinating Centre. Most samples came 
from treatment-naive, primary cancers, although a small number of 
donors had multiple samples of primary, metastatic and/or recurrent 
tumours. Our inclusion criteria were: (1) matched tumour and normal 
specimen pair; (2) a minimal set of clinical fields; and (3) characteri-
zation of tumour and normal whole genomes using Illumina HiSeq 
paired-end sequencing reads.

We collected genome data from 2,834 donors, representing all ICGC 
and TCGA donors that met these criteria at the time of the final data 
freeze in autumn 2014 (Extended Data Table 1). After quality assurance 
(Supplementary Methods 2.5), data from 176 donors were excluded 
as unusable, 75 had minor issues that could affect some analyses  
(grey-listed donors) and 2,583 had data of optimal quality (white-listed 
donors) (Supplementary Table 1). Across the 2,658 white- and grey-
listed donors, whole-genome sequences were available from 2,605 
primary tumours and 173 metastases or local recurrences. Matching 
normal samples were obtained from blood (2,064 donors), tissue 
adjacent to the primary tumour (87 donors) or from distant sites (507 
donors). Whole-genome sequencing data were available for tumour 
and normal DNA for the entire cohort. The mean read coverage was 
39× for normal samples, whereas tumours had a bimodal coverage 
distribution with modes at 38× and 60× (Supplementary Fig. 1). The 
majority of specimens (65.3%) were sequenced using 101-bp paired-
end reads. An additional 28% were sequenced with 100-bp paired-end 
reads. Of the remaining specimens, 4.7% were sequenced with read 
lengths longer than 101 bp, and 1.9% with read lengths shorter than 
100 bp. The distribution of read lengths by tumour cohort is shown in  
Supplementary Fig.  11. Median read length for whole-genome 
sequencing paired-end reads was 101 bp (mean = 106.2, s.d. = 16.7; 
minimum–maximum = 50–151). RNA-sequencing data were collected 
and re-analysed centrally for 1,222 donors, including 1,178 primary 
tumours, 67 metastases or local recurrences and 153 matched normal 
tissue samples adjacent to the primary tumour.

Demographically, the cohort included 1,469  men (55%) and 
1,189 women (45%), with a mean age of 56 years (range, 1–90 years) 
(Supplementary Table 1). Using population ancestry-differentiated 
single nucleotide polymorphisms, the ancestry distribution was heavily 
weighted towards donors of European descent (77% of total) followed 
by East Asians (16%), as expected for large contributions from European, 
North American and Australian projects (Supplementary Table 1).

We consolidated histopathology descriptions of the tumour sam-
ples, using the ICD-0-3 tumour site controlled vocabulary89. Overall, 
the PCAWG dataset comprises 38 distinct tumour types (Extended 
Data Table 1 and Supplementary Table 1). Although the most common 
tumour types are included in the dataset, their distribution does not 
match the relative population incidences, largely owing to differences 
among contributing ICGC/TCGA groups in the numbers of sequenced 
samples.

Uniform processing and somatic variant calling
To generate a consistent set of somatic mutation calls that could be 
used for cross-tumour analyses, we analysed all 6,835 samples using a 
uniform set of algorithms for alignment, variant calling and quality con-
trol (Extended Data Fig. 1, Supplementary Fig. 2, Supplementary Table 3 
and Supplementary Methods 2). We used the BWA-MEM algorithm90 
to align each tumour and normal sample to human reference build 
hs37d5 (as used in the 1000 Genomes Project91). Somatic mutations 
were identified in the aligned data using three established pipelines, 
which were run independently on each tumour–normal pair. Each of the 
three pipelines—labelled ‘Sanger’92–95, ‘EMBL/DKFZ’96,97 and ‘Broad’98–101 
after the computational biology groups that created or assembled 

them—consisted of multiple software packages for calling somatic 
SNVs, small indels, CNAs and somatic SVs (with intrachromosomal SVs 
defined as those >100 bp). Two additional variant algorithms102,103 were 
included to further improve accuracy across a broad range of clonal 
and subclonal mutations. We tested different merging strategies using 
validation data, and choses the optimal method for each variant type 
to generate a final consensus set of mutation calls (Supplementary 
Methods S2.4).

Somatic retrotransposition events, including Alu and LINE-1 inser-
tions72, L1-mediated transductions73 and pseudogene formation104, were 
called using a dedicated pipeline73. We removed these retrotransposi-
tion events from the somatic SV call-set. Mitochondrial DNA mutations 
were called using a published algorithm105. RNA-sequencing data were 
uniformly processed to quantify normalized gene-level expression, 
splicing variation and allele-specific expression, and to identify fusion 
transcripts, alternative promoter usage and sites of RNA editing8.

Integration, phasing and validation of germline variant call-sets
Calls of common (≥1% frequency in PCAWG) and rare (<1%) germline 
variants including single-nucleotide polymorphisms, indels, SVs and 
mobile-element insertions (MEIs) were generated using a population-
scale genetic polymorphism-detection approach91,106. The uniform 
germline data-processing workflow comprised variant identification 
using six different variant-calling algorithms96,107,108 and was orches-
trated using the Butler workflow system109.

We performed call-set benchmarking, merging, variant genotyp-
ing and statistical haplotype-block phasing91 (Supplementary Meth-
ods 3.4). Using this strategy, we identified 80.1 million germline 
single-nucleotide polymorphisms, 5.9 million germline indels, 1.8 mil-
lion multi-allelic short (<50 bp) germline variants, as well as germline 
SVs ≥ 50 bp in size including 29,492 biallelic deletions and 27,254 MEIs 
(Supplementary Table 2). We statistically phased this germline variant 
set using haplotypes from the 1000 Genomes Project91 as a reference 
panel, yielding an N50-phased block length of 265 kb based on haploid 
chromosomes from donor-matched tumour genomes. Precision esti-
mates for germline SNVs and indels were >99% for the phased merged 
call-set, and sensitivity estimates ranged from 92% to 98%.

Core alignment and variant calling by cloud computing
The requirement to uniformly realign and call variants on nearly 5,800 
whole genomes (tumour plus normal) presented considerable com-
putational challenges, and raised ethical issues owing to the use of 
data from different jurisdictions (Extended Data Table 2). To process 
the data, we adopted a cloud-computing architecture26 in which the 
alignment and variant calling was spread across 13 data centres on 3 
continents, representing a mixture of commercial, infrastructure-as-
a-service, academic cloud compute and traditional academic high-
performance computer clusters (Supplementary Table 3). Together, 
the effort used 10 million CPU-core hours.

To generate reproducible variant calling across the 13 data centres, 
we built the core pipelines into Docker containers28, in which the work-
flow description, required code and all associated dependencies were 
packaged together in stand-alone packages. These heavily tested, exten-
sively validated workflows are available for download (Box 1).

Validation, benchmarking and merging of somatic variant calls
To evaluate the performance of each of the mutation-calling pipelines 
and determine an integration strategy, we performed a large-scale 
deep-sequencing validation experiment (Supplementary Notes 1). We 
selected a pilot set of 63 representative tumour–normal pairs, on which 
we ran the 3 core pipelines, together with a set of 10 additional somatic 
variant-calling pipelines contributed by members of the PCAWG SNV 
Calling Methods Working Group. Sufficient DNA remained for 50 of 
the 63 cases for validation, which was performed by hybridization of 
tumour and matched normal DNA to a custom RNA bait set, followed 
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by deep sequencing, as previously described29. Although performed 
using the same sequencing chemistry as the original whole-genome 
sequencing analyses, the considerably greater depth achieved in the 
validation experiment enabled accurate assessment of sensitivity and 
precision of variant calls. Variant calls in repeat-masked regions were 
not tested, owing to the challenge of designing reliable validation 
probes in these areas.

The 3 core pipelines had individual estimates of sensitivity of 80–90% 
to detect a true somatic SNV called by any of the 13 pipelines; with >95% 
of SNV calls made by each of the core pipelines being genuine somatic 
variants (Fig. 1a). For indels—a more-challenging class of variants to 
identify in short-read sequencing data—the 3 core algorithms had indi-
vidual sensitivity estimates in the range of 40–50%, with precision 
70–95% (Fig. 1b). Validation of SV calls is inherently more difficult, 
as methods based on PCR or hybridization to RNA baits often fail to 
isolate DNA that spans the breakpoint. To assess the accuracy of SV 
calls, we therefore used the property that an SV must either generate 
a copy-number change or be balanced, whereas artefactual calls will 
not respect this property. For individual SV-calling algorithms, we 
estimated precision to be in the range of 80–95% for samples in the 
63-sample pilot dataset.

Next, we examined multiple methods for merging calls made by 
several algorithms into a single definitive call-set to be used for down-
stream analysis. The final consensus calls for SNVs were based on a sim-
ple approach that required two or more methods to agree on a call. For 
indels, because methods were less concordant, we used stacked logistic 
regression110,111 to integrate the calls. The merged SV set includes all calls 
made by two or more of the four primary SV-calling algorithms96,100,112,113. 
Consensus CNA calls were obtained by joining the outputs of six indi-
vidual CNA-calling algorithms with SV consensus breakpoints to obtain 
base-pair resolution CNAs (Supplementary Methods 2.4.3). Consensus 
purity and ploidy were derived, and a multitier system was developed 
for consensus copy-number calls (Supplementary Methods 2.4.3, and 
described in detail elsewhere7).

Overall, the sensitivity and precision of the consensus somatic vari-
ant calls were 95% (90% confidence interval, 88–98%) and 95% (90% 
confidence interval, 71–99%), respectively, for SNVs (Extended Data 
Fig. 2). For somatic indels, sensitivity and precision were 60% (90% con-
fidence interval, 34–72%) and 91% (90% confidence interval, 73–96%), 
respectively. Regarding SVs, we estimate the sensitivity of the merging 
algorithm to be 90% for true calls generated by any one calling pipeline; 
precision was estimated to be 97.5%. That is, 97.5% of SVs in the merged 
SV call-set had an associated copy-number change or balanced partner 
rearrangement. The improvement in calling accuracy from combining 
different pipelines was most noticeable in variants that had low variant 
allele fractions, which are likely to originate from subclonal popula-
tions of the tumour (Fig. 1c, d). There remains much work to be done 
to improve indel calling software; we still lack sensitivity for calling 
even fully clonal complex indels from short-read sequencing data.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The PCAWG-generated alignments, somatic variant calls, annotations 
and derived datasets are available for general research use for browsing 
and download at http://dcc.icgc.org/pcawg/ (Box 1 and Supplementary 
Table 4). In accordance with the data access policies of the ICGC and 
TCGA projects, most molecular, clinical and specimen data are in an 
open tier which does not require access approval. To access poten-
tially identifying information, such as germline alleles and underly-
ing read data, researchers will need to apply to the TCGA Data Access 
Committee (DAC) via dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/wga.

cgi?page=login) for access to the TCGA portion of the dataset, and to 
the ICGC Data Access Compliance Office (DACO; http://icgc.org/daco) 
for the ICGC portion. In addition, to access somatic single nucleotide 
variants derived from TCGA donors, researchers will also need to obtain 
dbGaP authorization.

Beyond the core sequence data and variant call-sets, the analyses in 
this paper used a number of datasets that were derived from the variant 
calls (Supplementary Table 4). The individual datasets are available at 
Synapse (https://www.synapse.org/), and are denoted with synXXXXX 
accession numbers; all these datasets are also mirrored at https://dcc.
icgc.org, with full links, filenames, accession numbers and descriptions 
detailed in Supplementary Table 4. The datasets encompass: clinical 
data from each patient including demographics, tumour stage and vital 
status (syn10389158); harmonized tumour histopathology annotations 
using a standardised hierarchical ontology (syn1038916); inferred 
purity and ploidy values for each tumour sample (syn8272483); driver 
mutations for each patient from their cancer genome spanning all 
classes of variant, and coding versus non-coding drivers (syn11639581); 
mutational signatures inferred from PCAWG donors (syn11804065), 
including APOBEC mutagenesis (syn7437313); and transcriptional data 
from RNA sequencing, including gene expression levels (syn5553985, 
syn5553991, syn8105922) and gene fusions (syn10003873, syn7221157).

Code availability
Computational pipelines for calling somatic mutations are available to 
the public at https://dockstore.org/organizations/PCAWG/collections/
PCAWG. A range of data-visualization and -exploration tools are also 
available for the PCAWG data (Box 1).
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Clonal evolution1 drives cancer initiation, progression and 
relapse due to the stepwise acquisition and/or selection 
of !tter subclones2,3. "e understanding of tumor evolu-

tion is hampered by the analysis of bulk tumor cell populations at 
low resolution and at single or limited time points of the disease 
course in most studies4. A better knowledge of this process might 
translate into anticipation-based treatment strategies5. RT in CLL 
represents a paradigmatic model of cancer evolution occurring 
rarely in treatment-naive patients with CLL but found in 4–20% 
of patients a#er chemoimmunotherapy (CIT) and targeted thera-
pies6. RT sometimes occurs within the !rst months a#er treatment  

initiation7–9, suggesting selection of pre-existing subclones10. 
Nonetheless, the genomic/epigenomic mechanisms driving RT a#er 
CIT11–17 or targeted agents18–21 are not well known. "e aims of the 
present study were to reconstruct the evolutionary history of RT and 
to reveal the molecular processes underlying this transformation.

Results
Genomic characterization of RT. We sequenced 53 whole genomes 
and 1 whole exome of synchronous or longitudinal samples of 19 
patients (up to six time points per patient) in whom CLL trans-
formed into di$use large B cell lymphoma (RT-DLBCL; n = 17), 

Detection of early seeding of Richter 
transformation in chronic lymphocytic leukemia

1,2,21�ᅒ 3,21, Ramon Massoni-Badosa4,21 1,2,21,  
Beatriz Garcia-Torre1,21 1,2, Kevin J. Dawson5, Marta Kulis1, Ander Diaz-Navarro2,6,  
Neus Villamor1,2,7 8 1 3, 
Julio Delgado1,2,7,9 10, Sara Ruiz-Gil4, Domenica Marchese4, Ariadna Giró1,2, 
Núria Verdaguer-Dot1, Mónica Romo1 1,2, Maria Rozman1,7 7, 

1,7, Tycho Baumann2,7,20 2,11, Marcos González2,11, 
Fina Climent12, Pau Abrisqueta13 13, Francesc Bosch13, Marta Aymerich1,2,7, 
Anna Enjuanes1, Sílvia Ruiz-Gaspà1, Armando López-Guillermo1,2,7,9, Pedro Jares1,2,7,9 1,2,7,9,  

3, Josep Ll. Gelpí3,9 14,15,16, David Torrents3,16, 
5 4,15, Davide Rossi17 10 2,6, 

9,18 1,2,7,9 4,15 19, 
1,2,9,16 1,2,7,9�ᅒ

Richter transformation (RT) is a paradigmatic evolution of chronic lymphocytic leukemia (CLL) into a very aggressive large B 
cell lymphoma conferring a dismal prognosis. The mechanisms driving RT remain largely unknown. We characterized the whole 
genome, epigenome and transcriptome, combined with single-cell DNA/RNA-sequencing analyses and functional experiments, 
of 19 cases of CLL developing RT. Studying 54 longitudinal samples covering up to 19 years of disease course, we uncovered 
minute subclones carrying genomic, immunogenetic and transcriptomic features of RT cells already at CLL diagnosis, which 
were dormant for up to 19 years before transformation. We also identified new driver alterations, discovered a new mutational 
signature (SBS-RT), recognized an oxidative phosphorylation (OXPHOS)high–B cell receptor (BCR)low-signaling transcriptional 
axis in RT and showed that OXPHOS inhibition reduces the proliferation of RT cells. These findings demonstrate the early seed-
ing of subclones driving advanced stages of cancer evolution and uncover potential therapeutic targets for RT.
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plasmablastic lymphoma (RT-PBL; n = 1) or prolymphocytic leu-
kemia (RT-PLL; n = 1). Nontumor samples were available in 12 
patients. RT occurred simultaneously with CLL at diagnosis (n = 3) 
or a!er up to 19 years following di"erent lines of treatment with 
CIT (n = 6) and targeted therapies (n = 10; BCR inhibitors, ibruti-
nib n = 6; duvelisib n = 2; idelalisib n = 1; and BCL2 inhibitor, vene-
toclax n = 1). All instances of RT were clonally related to CLL, 15 
tumors had unmutated IGHV (U-CLL) and 4 had mutated IGHV 
(M-CLL). Whole-genome sequencing (WGS) data were inte-
grated with bulk epigenetic and transcriptomic analyses as well as 
single-cell DNA and RNA sequencing (Fig. 1a, Extended Data Fig. 1 
and Supplementary Tables 1 and 2).

#e WGS and epigenome of CLL and RT revealed a concor-
dant increased complexity from CLL diagnosis to relapse and RT  
(Fig. 1b, Extended Data Fig. 2a and Supplementary Tables 3–8). #e 
RT genomes carried a median of 1.8 mutations per megabase, 18 
copy number alterations (CNAs) and 37 structural variants (SVs) 
that contrasted with 1.1 mutations per megabase, 4 CNAs and 5 SVs 
observed at CLL diagnosis. No major di"erences were seen among 
RT occurring a!er di"erent therapies (Fig. 1b and Extended Data 
Fig. 2b). We discovered new driver genes and mechanisms in RT, 
expanding previous observations12–18,21–24 (Fig. 1c, Extended Data 
Fig. 2c–e, Supplementary Fig. 1 and Supplementary Tables 9 and 10). 
#e main alterations involved cell-cycle regulators (17 of 19, 89%), 
chromatin modi$ers (79%), MYC (74%), nuclear factor (NF)-κB 
(74%) and NOTCH (32%) pathways. #ese aberrations were simul-
taneously present in most cases but alterations in MYC and NOTCH 
pathways only co-occurred in 2 of 19 cases (Fig. 1c). Aberrations 
in genes such as TP53, NOTCH1, BIRC3, EGR2 and NFKBIE were 
usually present and clonally dominant a!er the $rst CLL sample, 
whereas others were only detected at RT or during the disease 
course (for example CDKN2A/B, CDKN1A/B, ARID1A, CREBBP, 
TRAF3 and TNFAIP3) (Fig. 1c). New alterations included deletions 
of CDKN1A and CDKN1B in $ve cases of RT associated with down-
regulation of their expression, one immunoglobulin (IG)-CDK6 
translocation and one CCND2 mutation already present at CLL 
diagnosis, and CCND3-IG and MYCN-IG translocations acquired 
at RT in two di"erent cases (Fig. 1d,e, Extended Data Fig. 3a,b and 
Supplementary Table 11). Most chromatin remodelers were a"ected 
by deletions with reduced gene expression. New alterations in this 
group were deletions of ARID4B and truncations of CREBBP25 and 
SMARCA4 (ref. 16) by translocations and chromoplexy (Fig. 1f and 
Extended Data Fig. 3c–e). We also identi$ed recurrent IRF4 alter-
ations in RT, which have been linked to increased MYC levels in 
CLL26. BTK/PLCG2 or BCL2 mutations were not detected in any RT 
a!er treatment with BCR or BCL2 inhibitors, respectively. Notably, 
the two cases of M-CLL developing RT a!er targeted therapies car-
ried the IGLV3–21R110 mutation, which triggers cell-autonomous 
BCR signaling27 (Fig. 1c).

In addition to the high frequency of CNAs previously identi-
$ed in RT11,14, we observed a high number of complex structural 
alterations (Fig. 1c). Chromothripsis was found in eight RT tumors 
targeting CDKN2A/B and the new CDKN1B in $ve and one cases, 
respectively, and MYC, MGA, SPEN, TNFAIP3 and chromatin 
remodeling genes in additional cases (Fig. 1g and Extended Data 
Fig. 3f–j).

Altogether, our analyses expand the catalog of driver genes, path-
ways and mechanisms involved in RT and recognize a similar distri-
bution of these alterations in RT a!er di"erent therapies, suggesting 
that treatment-speci$c pressure is not a major determinant of the 
driver genomic landscape of these tumors.

New mutational processes in RT. To understand the increased 
mutational burden of RT, we explored the mutational processes 
re-shaping the genome of CLL and RT. An unsupervised analy-
sis showed that the mutational pro$le of RT was notably di"erent  

from M-CLL and U-CLL before therapy (ICGC-CLL cohort, 
n = 147)28 or at post-treatment relapse (independent cohort of 27 
CLL post-treatment samples) (Fig. 2a). We identi$ed 11 mutational 
signatures distributed genome-wide and 2 in clustered mutations 
(Extended Data Fig. 4 and Supplementary Tables 12–14). Among 
the former, we extracted a new signature characterized by (T>A)A 
and, to a lesser extent, (T>C/G)A mutations not recognized previ-
ously in any cancer type, including CLL and DLBCL28–33. We named 
this single-base substitution signature, SBS-RT (Fig. 2b). SBS-RT 
was present in the RT sample of 7 of 18 patients, 1 of 6 a!er CIT 
and 6 of 10 a!er multiple therapies, including targeted agents and 
detected in all subtypes of transformation (RT-DLBCL, RT-PBL and 
RT-PLL) (Fig. 2c and Supplementary Table 15). It was also pres-
ent in CLL samples before RT in patients 12 and 3,299 but was not 
identi$ed in the reanalysis of our ICGC-CLL or post-treatment CLL 
cohorts. None of the patients in these two additional cohorts had 
evidence of RT (median follow-up 9.8 years, range 0.2–30.4) (Fig. 
2c, Extended Data Fig. 5a and Supplementary Table 15). Further 
characterization of this new signature showed (1) a modest corre-
lation between SBS-RT and total number of mutations (R = 0.79, 
P = 0.11); (2) SBS-RT mutations present in all di"erent chromatin 
states and early/late replicating regions although with a moderate 
enrichment in heterochromatin/late replication; and (3) lack of rep-
lication and transcriptional strand bias (Extended Data Fig. 5b–f 
and Supplementary Table 16).

Among the remaining ten genome-wide signatures, $ve were pre-
viously identi$ed in CLL and DLBCL (SBS1 and SBS5 (clock-like), 
SBS8 (unknown etiology), SBS9 (attributed to polymerase eta) and 
SBS18 (possibly damage by reactive oxygen species)); three had been 
only found in DLBCL (SBS2 and SBS13 (APOBEC enzymes) and 
SBS17b (unknown)); and two have been recently described related 
to treatments with melphalan34 or ganciclovir35, which were named 
here as SBS-melphalan and SBS-ganciclovir, respectively (Fig. 2b,c 
and Extended Data Fig. 4). SBS-melphalan was found in three RT 
cases, two had received melphalan as a conditioning of their allo-
genic stem-cell transplant 1.9 and 4.2 years before RT, respectively. 
SBS-ganciclovir was found in the RT sample of one patient that had 
received valganciclovir (prodrug of ganciclovir) due to cytomega-
lovirus reactivation (Fig. 2c,d and Extended Data Fig. 1a). Notably, 
all cases with the new SBS-RT at time of RT had been treated with 
the alkylating agents bendamustine (n = 5) or chlorambucil (n = 2) 
during their CLL history at a median of 2.9 years (range 0.7 to 
6.8) before RT. Contrarily, RT cases lacking the SBS-RT had never 
received these drugs (Fig. 2c,d and Extended Data Fig. 1a).

To time the activity of each mutational process, we reconstructed 
the phylogenetic tree for the 11 patients with multiple synchronous 
(n = 2) or longitudinal (n = 9) samples and germline available and 
measured the contribution of each signature to the mutational pro-
$le of each subclone. #e major subclone at time of transformation 
was named ‘RT subclone’ (Supplementary Table 17). As expected, 
clock-like mutational signatures were present all along the phy-
logeny (constantly acquired), whereas SBS9 was found only in the 
trunk of the two M-CLL tumors (patients 365 and 19; early events). 
DLBCL-related signatures, SBS-ganciclovir, SBS-melphalan and 
SBS-RT were found in single RT subclones in six cases while two 
cases carried two simultaneous subclones with SBS-RT (patients 
12 and 19) (Fig. 2e). SBS-RT represented 28.6% of the mutations 
acquired in RT (mean 679, range 499–1,167) and it was occa-
sionally associated with coding mutations in driver genes (EP300 
and CIITA) (Fig. 2f, Extended Data Fig. 5g and Supplementary  
Table 16). By applying a high-coverage, unique molecular identi-
$er (UMI)-based next-generation sequencing (NGS) approach 
in longitudinal samples of patients 12, 19 and 63 (Supplementary 
Table 18), we observed that mutations of the RT subclones found 
in the main peaks of the SBS-RT were mainly identi$ed in samples 
collected a!er bendamustine or chlorambucil therapy, whereas 
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mutations not associated with SBS-RT were detected earlier dur-
ing the disease course (Fig. 2g and Extended Data Fig. 5h). !ese 
results suggest a causal link between the exposure to these drugs 
and SBS-RT. !e "nding of SBS-melphalan, SBS-ganciclovir and 
SBS-RT in RT argues in favor of a single-cell expansion model for 
RT; a single cell that can carry the footprints of cancer therapies 
(Fig. 2h). Contrarily, the lack of SBS-RT in the 27 post-treatment 
CLL samples (7 patients treated with bendamustine or chlorambu-
cil) suggests that CLL relapse might be driven by the simultaneous 
expansion of di#erent subclones, hindering the detection of SBS-RT 
through bulk sequencing34,36.

RT subclones also acquired kataegis, mainly within the immuno-
globulin loci, attributed to activation-induced cytidine deaminase 
(AID) activity (SBS84 and SBS85)29,32 (Fig. 2i and Extended Data 
Fig. 4).!ese kataegis led to the acquisition of mutations in the rear-
ranged V(D)J gene in "ve RT cases (one a$er CIT and four targeted 
therapies) (Fig. 2i, Extended Data Fig. 5i,j and Supplementary Table 
19). !is canonical AID activity in RT is concordant with the acqui-
sition of SBS9 mutations in two RT samples (4,686 (CIT) and 3,495 
(targeted therapies)) and SVs mediated by aberrant class-switch 
recombination or somatic hypermutation in six RT (one before 
therapy, two CIT and three new agents), which targeted MYC, 
MYCN, TRAF3 and CCND3 (Fig. 1c and Supplementary Table 2).

SBS-RT mutations were found in CLL samples before the trans-
formation in patient 3,299 although it was only present in the RT 
subclone (Fig. 2c,e). SBS-RT was also found in two di#erent sub-
clones in case 12 and 19. We speculated that these secondary sub-
clones with SBS-RT (named ‘RT-like’ subclones) could correspond 
to the single-cell expansion of a ‘transformed’ cell that could have 
been missed by the routine analysis (Fig. 2e). !e reanalysis of %ow 
cytometry data available for case 12 detected two cell populations 
at time point (T) 4 di#ering in size and surface markers (likely CLL 
and RT-like subclones), whereas at T5 we detected an additional 
population of large cells (RT subclone, 0.2% cells) that expanded 
at T6, substituting the previous large cell population (RT-like sub-
clone) (Fig. 2j and Extended Data Fig. 5k–m). WGS analysis showed 
that the RT-like and RT subclones diverged from a cell carrying a 
deletion of CDKN2A/B and truncation of CREBBP, each acquiring 
more than 2,100 speci"c mutations (Fig. 2e,j).

Altogether, these "ndings show that RT may arise simultaneously 
from di#erent subclones and that such subclones can be detectable 
time before their "nal expansion and clinical manifestation. !e 
identi"cation of mutations in RT associated with early-in-time CLL 
therapies demonstrates that RT emerges from the clonal expansion 
of a single cell previously exposed to these therapies.

Dormant seeds of RT at CLL diagnosis. !e WGS-based subclonal 
phylogeny of the nine patients with fully characterized longitudinal 
samples predicted that the RT subclone was present at low cancer cell 
fraction (CCF) in the preceding CLL samples in "ve (56%) patients 
and only detected at time of transformation in the remaining four 
(44%) (Fig. 3a). Indeed, the RT subclone was detected at time of 
CLL diagnosis in three of "ve patients, remained stable at a min-
ute size (<1%) for 6–19 years of natural and treatment-in%uenced 
CLL course and expanded at the moment of clinical manifestations 
(patients 12, 19 and 63) (Fig. 3a). In the other two patients, the RT 
subclone was also detected in the "rst CLL sample analyzed but rap-
idly expanded driving the RT 0.6 and 3.5 years later in patients 3,034 
and 3,299 (RT-PLL), respectively (Fig. 3a and Extended Data Fig. 6).

We next performed single-cell DNA sequencing (scDNA-seq) 
of 32 genes in 16 longitudinal samples of 4 patients (12, 19, 365 
and 3,299) to validate these evolutionary histories of RT (202,210 
cells passing "lters, mean of 12,638 cells per sample; Fig. 1a, 
Supplementary Fig. 2 and Supplementary Table 20). Focusing on 
patient 19 with a time lapse of 14.4 years from diagnosis to RT 
(Fig. 3b), the RT subclone (subclone 5) at transformation (T6) 

carried CDKN2A/B and TP53 (p.G245D) alterations, whereas 
the main CLL subclones driving the relapse a$er therapy at T4 
and T5 harbored a di#erent TP53 mutation (p.I195T; subclones 3 
and 4). !e WGS predicted the presence of all these subclones at 
CLL diagnosis (T1). Using scDNA-seq we identi"ed two small pop-
ulations accounting for 0.1% of cells carrying the TP53 p.I195T and 
p.G245D mutations, respectively, at T1, which were also detected 
at relapse 7.2 years later (T3). !e subclone carrying TP53 p.I195T 
expanded to dominate the second relapse a$er 3.7 years at T4 and 
T5 but was substituted by the subclone carrying TP53 p.G245D at 
T6 in the RT 14.4 years a$er diagnosis. All these subclones car-
ried the SF3B1 and NOTCH1 mutations of the initial CLL subclone 
(Fig. 3c and Supplementary Table 20). !e scDNA-seq of the three 
additional cases also corroborated the phylogenies and most of the 
dynamics inferred from WGS (Extended Data Fig. 6a). !ese results 
suggest that CLL evolution to RT is characterized by an early driver 
diversi"cation probably generated before diagnosis, consistent with 
the early immunogenetic and DNA methylation diversi"cation pre-
viously reported in CLL37–39 and that RT may emerge by a selection 
of pre-existing subclones carrying potent driver mutations rather 
than a de novo acquisition of leading clones.

As we identi"ed "ve cases of RT carrying speci"c mutations in 
the immunoglobulin genes by WGS (Fig. 2i), we analyzed whether 
these immunoglobulin-based RT subclones were already present at 
CLL diagnosis using high-coverage NGS in patients 12 and 3,495 
(Supplementary Table 21). Focusing on patient 3,495, for which 
the lack of germline material precluded our phylogenetic analyses, 
the RT occurring a$er treatment with ibrutinib harbored two new 
V(D)J mutations generating an unproductive IGH gene. NGS iden-
ti"ed 0.002% sequences carrying the same two mutations at CLL 
diagnosis 1.72 years before (Fig. 3d). We also observed the expan-
sion of additional unproductive subclones accounting for 11.8% 
of all sequences at time of RT, suggesting that BCR-independent 
subclones may have a proliferative advantage under therapy with 
BCR inhibitors (Fig. 3d). Similar results were found in patient 12 
in which the V(D)J sequence of RT carrying a new mutation was 
already identi"ed at CLL diagnosis 19.5 years before at DNA and 
RNA level (Fig. 3e). As the immunogenetic features represent a 
faithful imprint of the B cell of origin, the early identi"cation of 
the same immunogenetic subclone provides further evidence for an 
early seeding of RT.

We "nally tracked RT subclones during the disease course using 
single-cell RNA sequencing (scRNA-seq) of 19 longitudinal samples 
of "ve patients (24,800 tumor cells passing "lters, mean of 1,305 
cells per sample; Fig. 1a and Supplementary Table 22). As expected, 
RT and CLL cells had remarkably di#erent gene expression pro"les 
(Fig. 3f and Extended Data Fig. 7a–d). !e transcriptome of CLL 
cells was dominated by three main clusters identi"ed across patients 
and characterized by di#erent expression of CXCR4, CD27 and 
MIR155HG, respectively, which may represent the recirculation of 
CLL cells between peripheral blood and lymph nodes40–42 (Fig. 3f,g
and Extended Data Fig. 7a–d). Contrarily, RT intraclonal heteroge-
neity was mainly related to distinct proliferative capacities with a 
cluster of cells showing high MKI67 and PCNA expression as well 
as high S and G2M cell-cycle phase scores. !e remaining RT clus-
ters were characterized by the expression of di#erent marker genes 
among patients, including CCND2, MIR155HG and TP53INP1 (Fig. 
3f–h and Extended Data Fig. 7a–d). When considering each time 
point separately, we detected RT cells in all CLL samples before 
transformation in patient 12, 19, 63 and 3,299 but not in patient 365 
(Fig. 3i and Extended Data Fig. 7a–i). !e presence and dynamics 
of these RT subclones according to their transcriptomic pro"le reca-
pitulated the "ndings obtained by WGS, scDNA-seq and immuno-
globulin analyses in all "ve patients, suggesting that they captured 
the same cells. Indeed, using scRNA-seq we could identify the CNAs 
involved in simple and complex structural alterations found at time 
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of RT by WGS already in the dormant RT cells at CLL diagnosis 
and subsequent time points before their !nal expansion (Fig. 3j and 
Extended Data Fig. 8). "ese !ndings suggest an early acquisition 
of SVs, including chromothripsis and transcriptomic identity in RT.

To validate our observations, we reanalyzed the longitudinal 
scRNA-seq dataset from Penter et al.43 consisting of nine patients 
with CLL, one of which developed RT. In this case, we identi-
!ed RT cells in the CLL sample collected 1.6 years before the RT 
(Extended Data Fig. 7j). Overall, our integrative analyses uncovered 
a widespread early seeding of RT cells up to 19 years before their 
expansion and clinical manifestation.

OXPHOShigh–BCRlow transcriptional axis of RT. To understand 
the transcriptomic evolution from CLL to RT and its epigenomic 

regulation, we integrated genome-wide pro!les of DNA methyla-
tion, chromatin activation (H3K27ac) and chromatin accessibility 
(ATAC-seq) with bulk RNA-seq and scRNA-seq of multiple lon-
gitudinal samples of six patients treated with BCR inhibitors (Fig. 
1a). "e DNA methylome of RT mainly re#ected the naive and 
memory-like B cell derivation of their CLL counterpart, whereas 
chromatin activation and accessibility were remarkably di$er-
ent upon transformation (Fig. 4a). We identi!ed 150 regions with 
increased H3K27ac and 426 regions that gained accessibility in RT 
(Fig. 4b, Extended Data Fig. 9a and Supplementary Tables 7 and 8). 
"ese de novo active regions were enriched in transcription fac-
tor (TF) families di$erent from those known to modulate the epig-
enome of CLL44. Among them, 24 were enriched and upregulated 
in RT (Supplementary Table 7). "e top TF was TEAD4, which 
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activates genes involved in oxidative phosphorylation (OXPHOS) 
through the mTOR pathway45 and co-operates with MYCN46. 
Additional TFs were related to MYC (MAZ), proliferation/cell cycle 
(E2F family) or IRF family, among others (Fig. 4c). Notably, high 
IRF4 levels seem to attenuate BCR signaling in CLL47, whereas they 
are necessary to induce MYC target genes, OXPHOS and glycolysis 
in activated healthy B cells48.

!e RNA-seq analysis, excluding cases 19 and 3,299 (RT-PLL) 
due to their intermediate transcriptomic pro"le, identi"ed 2,248 
di#erentially expressed genes (DEGs) between RT and CLL (1,439 
upregulated and 809 downregulated) (Fig. 4a,d,e, Extended Data 
Fig. 10a and Supplementary Tables 11 and 23). A remarkable frac-
tion of upregulated/downregulated genes overlapped with regions 
with the respective increase/decrease of H3K27ac (20%) and 
chromatin accessibility (16%) at RT (Fig. 4d and Extended Data 
Fig. 9b). Contrarily, only 4% of the DEGs overlapped with any of the 
2,341 di#erentially methylated CpGs (DMCs) between RT and CLL, 
emphasizing the limited e#ect of DNA methylation on gene regu-
lation49. Most DMCs were hypomethylated at RT (2,112 of 2,341; 
90%), found in open sea and intergenic regions and correlated 
with the proliferative history of the cells measured by the epiCMIT 
score49 (1,681; 72%), which increased during CLL evolution and at 
RT (Fig. 4d,f, Extended Data Fig. 9c–g and Supplementary Table 6).

Genes upregulated in RT involved pathways that seem indepen-
dent of BCR signaling such as Wnt (WNT5A and others)50, Toll-like 

receptors (TLR9 among others)51 and a number of cyclin-dependent 
kinases. Downregulated genes included, among others, CXCR4, 
HLA-A/B and chromatin remodelers also targeted by genetic altera-
tions in some cases (Fig. 4d and Extended Data Fig. 10b,c). Gene 
sets modulated by gene expression in RT were in harmony with the 
identi"ed chromatin-based changes and included upregulation of 
E2F targets, G2M checkpoints, MYC targets, MTORC1 signaling, 
OXPHOS, mitochondrial translation, glycolysis, reactive oxygen 
species and DNA repair pathways, among others. In addition, RT 
showed downmodulation of BCR signaling (Fig. 4g,h, Extended Data 
Fig. 10d and Supplementary Table 11). !e OXPHOShigh–BCRlow

pattern observed by bulk RNA-seq in RT was further re"ned using 
scRNA-seq: two of "ve tumors had OXPHOShigh–BCRlow (12 and 63, 
although the latter showed some intercluster variability), the two 
M-CLL carrying IGLV3–21R110 had RT with BCR expression similar 
to CLL and were OXPHOShigh–BCRnormal (365) or OXPHOSnormal–
BCRnormal (19) and the RT-PLL (3,299) was OXPHOSlow–BCRlow

(Fig. 4i, Extended Data Fig. 10e–j and Supplementary Table 23). 
In addition, the scRNA-seq analysis showed that the OXPHOS/
BCR pro"les of RT were already identi"ed in the early dormant 
RT cells, suggesting that they might represent an intrinsic charac-
teristic of RT cells rather than being modulated by BCR inhibitors 
(Fig. 4j and Extended Data Fig. 10g–j). To expand these observa-
tions, we measured the expression of OXPHOS and BCR pathways 
in the scRNA-seq dataset from Penter et al.43. Case CLL9, which 
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developed RT in the absence of any therapy, showed a remarkably 
higher OXPHOS and slightly lower BCR expression at time of RT 
compared to CLL (Fig. 4k and Extended Data Fig. 10k,l).

Overall, the epigenome and transcriptome of RT converge 
to an OXPHOShigh–BCRlow axis reminiscent of that observed in 
the de novo DLBCL subtype characterized by high OXPHOS 
(DLBCL-OXPHOS) and insensitive to BCR inhibition52–54. !is axis 
might explain the selection and rapid expansion of small RT sub-
clones under therapy with BCR inhibitors.

OXPHOS and BCR activity in RT. We next validated experimen-
tally the OXPHOS and BCR activity of RT in samples of patients 
12, 19 and 63. Respirometry assays con"rmed that OXPHOShigh

RT cells (patients 12 and 63) had a 3.5-fold higher oxygen consump-
tion at routine respiration and "vefold higher electron transfer sys-
tem capacity (ETC) compared to CLL. In addition, OXPHOSnormal

RT (patient 19) showed a routine oxygen consumption similar to 
CLL, although also had a relatively higher ETC than its CLL coun-
terpart (Fig. 5a, Supplementary Fig. 3a–d and Supplementary Table 
24). BCR signaling measured by Ca2+ mobilization upon BCR stim-
ulation with IgM showed that BCRlow RT cells (patients 12 and 63) 
had a lower Ca2+ #ux compared to CLL, which contrasted with the 
higher #ux observed in the BCRnormal RT cells of patient 19, concor-
dant with its IGLV3–21R110 mutation27 (Fig. 5b, Supplementary Fig. 
4a,b and Supplementary Table 25).

To determine the biological e$ect of OXPHOShigh in RT, we per-
formed in vitro proliferation assays using IACS-010759 (100 nM), 
an OXPHOS inhibitor that targets mitochondrial complex I 
(Supplementary Figs. 3e and 4c and Supplementary Table 25). 
OXPHOShigh RT (patients 12 and 63) had a higher proliferation at 
72 h compared to OXPHOSnormal RT (patients 19) and all of them were 
higher than their respective CLL. OXPHOS inhibition resulted in a 
marked decrease in proliferation in OXPHOShigh RT (mean 49.1%), 
which contrasted with that observed in OXPHOSnormal RT (2.2% 
decrease) and CLL (23.2% decrease) (Fig. 5c and Supplementary 
Fig. 4d). Overall, these results con"rm the role of OXPHOShigh phe-
notype in high proliferation of RT and suggest its potential thera-
peutic value in RT as proposed for other neoplasms53–57.

Discussion
!e genome of RT is characterized by a compendium of driver 
alterations in cell cycle, MYC, NOTCH and NF-κB pathways, fre-
quently targeted in single catastrophic events and by the footprints 
of early-in-time, treatment-related, mutational processes, includ-
ing the new SBS-RT potentially associated with bendamustine and 
chlorambucil exposure. A very early diversi"cation of CLL leads to 
emergence of RT cells with fully assembled genomic, immunoge-
netic and transcriptomic pro"les already at CLL diagnosis up to 19 
years before the clonal explosion associated with the clinical trans-
formation. RT cells have a notable shi% in chromatin con"guration 
and transcriptional program that converges into activation of the 
OXPHOS pathway and downregulation of BCR signaling, the latter 
potentially compensated by activating Toll-like, MYC and MAPK 
pathways17,51,58,59. !e rapid expansion of RT subclones under treat-
ment with BCR inhibitors is consistent with its low BCR signaling, 
except when carrying the IGLV3–21R110 and further supported by 
the increased number of subclones carrying unproductive immu-
noglobulin genes and the development of RT with plasmablastic 
di$erentiation, a cell type independent of BCR signaling60. Finally, 
we also uncovered that OXPHOS inhibition reduced the pro-
liferation of RT cells in vitro, a "nding worth exploring in future 
therapeutic strategies55,57.

In conclusion, our comprehensive characterization of CLL 
evolution toward RT has revealed new genomic drivers and epig-
enomic recon"guration with very early emergence of subclones 
driving late stages of cancer evolution, which may set the basis for 

developing single-cell-based predictive strategies. Furthermore, 
this study also identi"es new RT-speci"c therapeutic targets and 
suggests that early intervention to eradicate dormant RT subclones 
may prevent the future development of this lethal complication 
of CLL.
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Methods
Consent and sample processing. Written informed consent was obtained 

n = 1, CLL sample of patient 1,669). Germline 

two patients (1,523 and 4,675) who had received allogeneic stem-cell transplant 
before RT, germline DNA of the donor was also collected. All extractions were 
performed using appropriate QIAGEN kits (QIAamp DNA Blood Maxi kit, cat. 
no. 51194; QIAamp DNA Mini kit, cat. no. 51304; and AllPrep DNA/RNA FFPE 

fresh/cryopreserved mononuclear cells with TRIzol reagent (Invitrogen, cat. no. 
15596026).

A speci!c "ow cytometry analysis was conducted on peripheral blood samples 
of patient 12, which were stained with the Lymphocyte Screening Tube according 
to EuroFlow protocols (https://www.euro"ow.org/protocols). At least 100,000 
cells were acquired in a FACSCanto II instrument. Analysis was conducted using 
the In!nicyt 2.0 so#ware. $e sequential gating analysis was as follows: singlet 
identi!cation in a FSC-W versus FSC-H plot; leukocyte identi!cation in SSC-A 
versus CD45 (V500-C) plot and FSC-A versus SSC-A; lymphocytes identi!ed as 
SSC-A low and CD45 high and back-gated in FSC-A versus SSC-A to exclude 
monocytes; in the lymphocyte gate, T cells were identi!ed as CD3+ cells in SSC-A 
versus CD3 (APC) followed by sequentially distinguishing TCRγδ+ T cells, 
CD4 T cells and CD8 T cells; a#er excluding T cells, B cells were selected in a 
SSC-A versus CD19 (PE-Cy7), followed by inspection of CD19 (PECy7) versus 
CD20 (PacB), CD5 (PerCPCy5.5) versus CD20 (PacB) and CD20 (PacB) versus 
CD38 (APC-H7) plots to evaluate the expression of these B cell markers and the 
assignation of κ and λ expression in a plot of IgK (PE) versus IgL (FITC); a#er 
excluding B cells, natural killer cells were identi!ed in a SSC-A versus CD56 (PE) 
plot followed by SSC-A versus CD38 (APC-H7) plot.

WGS and WES. Library preparation and sequencing. All samples available were 
subjected to WGS except the FFPE CLL, which was analyzed by whole-exome 
sequencing (WES). WGS libraries were performed using the Kapa Library 
Preparation kit (Roche, cat. no. 07961901001), TruSeq DNA PCR-Free kit 
(Illumina, cat. no. 20015963) or TruSeq DNA Nano protocol (Illumina, cat. no. 
20015965) and sequenced on a HiSeq 2000/4000/X Ten (2 × 126 bp or 2 × 151 bp) 
or NovaSeq 6000 (2 × 151 bp) instrument (Illumina). WES was performed using 
the SureSelect Human All Exon V5 (Agilent Technologies, cat. no. 5190-6209 and 
G9611B) coupled with a KAPA Hyper Prep kit (Roche, cat. no. 07962363001) 
for the DNA pre-capture library. Sequencing was performed on a HiSeq 2000 
(2 × 101 bp). We also included WGS of three published CLL/germline pairs 
(patients 12, 19 and 63)28 (Supplementary Table 1).

General considerations. Overall, 12 patients had a complete dataset (germline, CLL 
and RT samples), 6 patients lacked germline DNA and 1 patient had only the RT 
sample (case 4,676). We conducted tumor versus normal analyses in cases with 
a complete dataset. For the six patients lacking the germline sample, we used the 
CLL samples as ‘normal’ to identify SNV acquired at RT for mutational signature 
analyses. In addition, tumor-only analyses were conducted in these CLL and RT 
samples, as well as in the patient with only a RT sample available, to identify driver 
gene mutations and genome-wide CNAs (Supplementary Table 1).

Read mapping and quality control. Reads were mapped to the human reference 
genome (GRCh37) using the BWA-MEM algorithm (v.0.7.15)61. BAM !les were 
generated and optical/PCR duplicates "agged using biobambam2 (v.2.0.65, https://
gitlab.com/german.tischler/biobambam2). FastQC (v.0.11.5, www.bioinformatics.
babraham.ac.uk/projects/fastqc) and Picard (v.2.10.2, https://broadinstitute.github.
io/picard) were used to extract quality control metrics. Mean coverage was 33× and 
119× for WGS and WES, respectively (Supplementary Table 1).

Immunoglobulin gene characterization. Immunoglobulin gene rearrangements 
were characterized using IgCaller (v.1.2)62. $e rearranged sequences obtained 
were reviewed on the Integrative Genomics Viewer (IGV; v.2.9.2)63 and annotated 
using IMGT/V-QUEST (https://www.imgt.org/IMGT_vquest) and ARResT/
AssignSubsets (http://bat.infspire.org/arrest/assignsubsets).

Tumor versus normal SNVs and indel calling. SNVs were called using Sidrón28, 
CaVEMan (cgpCaVEManWrapper, v.1.12.0)64, Mutect2 (Genome Analysis Toolkit 
(GATK) v.4.0.2.0)65 and MuSE (v.1.0 rc)66 and normalized using bc#ools (v.1.8)67. 
Variants detected by CaVEMan with more than half of the mutant reads clipped 
(CLPM > 0) and with supporting reads with a median alignment score (ASMD) 
<90, <120 or <140 for sequencing read lengths of 100, 125 or 150 bp, respectively, 
were excluded. Variants called by Mutect2 with MMQ < 60 were eliminated. 
Mutations detected by at least two algorithms were considered. Short insertions/
deletions (indels) were called by SMuFin (v.0.9.4)68, Pindel (cgpPindel, v.2.2.3)69, 
SvABA (v.7.0.2)70, Mutect2 (GATK v.4.0.2.0)65 and Platypus (v.0.8.1)71. $e 
somaticMutationDetector.py script (https://github.com/andyrimmer/Platypus/

blob/master/extensions/Cancer/somaticMutationDetector.py) was used to identify 
somatic indels called by Platypus. Indels were le#-aligned and normalized using 
bc#ools67. Indels with MMQ < 60, MQ < 60 and MAPQ < 60 for Mutect2, Platypus 
and SvABA, respectively, were removed. Only indels identi!ed by at least two 
algorithms were retained. Annotation of mutations was performed using snpE%/
snpSi# (v.4.3t)72 and GRCh37.p13.RefSeq as a reference. $is approach showed 
a 93% speci!city and 88% sensitivity when benchmarked against the mutations 
found at a VAF >10% in our previous high-coverage NGS study73.

Tumor-only SNVs and indel calling. Tumor-only variant calling was restricted 
to coding regions of 243 genes described as drivers in CLL and other B cell 
lymphomas (Supplementary Table 10). Mini-BAM !les were obtained using 
Picard tools and variant calling was performed using Mutect2 (GATK v.4.0.4.0)65, 
VarScan2 (v.2.4.3)74, VarDictJava (v.1.4)75, LoFreq (v.2.1.3.1)76, outLyzer (v.1.0)77 
and freebayes (v.1.1.0, https://github.com/freebayes/freebayes). Variants were 
normalized using bc#ools (v.1.9)67 and annotated using snpE%/snpSi# (v.4.3t)72. 
Only non-synonymous variants that were identi!ed as PASS by ≥2 algorithms were 
considered. Variants reported in 1000 Genomes Project, ExAC or gnomAD with 
a population frequency >1% or reported as germline in our ICGC database of 506 
WES/WGS28 were considered as polymorphisms.

Tumor versus normal CNA calling. CNAs were called using Battenberg 
(cgpBattenberg, v.3.2.2)78 and ASCAT (ascatNgs, v.4.1.0)79. CNAs within any of the 
immunoglobulin loci were not considered. We used the tumor purities obtained 
by Battenberg in downstream analyses. $e median tumor cell content was 91.5% 
(Supplementary Table 1).

Tumor-only CNA calling. CNAs were extracted using CNVkit (v.0.9.3)80. CNAs 
<500 kb, with an absolute log2 copy ratio (log2CR) < 0.3 or located within any of the 
immunoglobulin loci were removed. CNAs were classi!ed as gains if log2CR > 0.3, 
deletions if log2CR < −0.3, high-copy gains if log2CR > 1.1 and homozygous 
deletions if log2CR < −1.1. $e log2CR cuto% was set to 0.15 for two samples 
with low tumor cell content (102-01-01TD and 4690-03-01BD). To avoid a high 
segmentation of the CNA pro!le, CNAs belonging to the same class were merged if 
they were separated by <1 Mb and had an absolute log2CR di%erence <0.25.

Array-based CNA calling in FFPE. CNAs were examined in the FFPE CLL sample 
using the Oncoscan CNV FFPE Assay kit ($ermo Fisher Scienti!c, cat. no. 
902695) and analyzed using Nexus 9.0 so#ware (Biodiscovery).

Tumor versus normal SV calling. SVs were extracted using SMuFin (v.0.9.4)68, 
BRASS (v.6.0.5)81, SvABA (v.7.0.2)70 and DELLY2 (v.0.8.1)82. SVs identi!ed were 
intersected considering a window of 300 bp around break points. We kept for 
downstream analyses the SVs identi!ed by at least two programs if at least one 
of the algorithms called the alteration with high quality (MAPQ ≥ 90 for BRASS, 
MAPQ = 60 for SvABA and DELLY2). In addition, IgCaller (v.1.2)62 was used to 
call SVs within any of the immunoglobulin loci. All SVs were visually inspected 
using IGV63. SVs were categorized into simple or complex events. Chromothripsis83 
was de!ned as ≥7 oscillating changes between two or three copy number states 
or the presence of >7 SV break points occurring in a single chromosome and 
supported by additional criteria83,84. Chromoplexy was determined by the presence 
of ≥3 chained chromosomal rearrangements, where chains were identi!ed using a 
window of 50 kb85,86. Cycles of templated insertions were de!ned as copy number 
gains in ≥3 chromosomes linked by SVs87. Breakage-fusion bridge cycles were 
de!ned as patterns of focal copy number increases and fold-back inversions, 
together with telomeric deletions. Chains of rearrangements having >2 SVs and 
not ful!lling any of the previous criteria were classi!ed as ‘other complex events’. 
Chromothripsis and ‘other complex events’ were subcategorized according to the 
number of chromosomes involved. $e longitudinal nature of our dataset allowed 
us to re!ne the obtained classi!cation based on the presence of the involved 
alterations in each time point analyzed.

Patients who underwent allogenic stem-cell transplant. In these patients, we conducted 
tumor versus patient’s germline and tumor versus donor’s germline variant calling in 
parallel. Only the intersection of variants identi!ed was considered.

Rescue of alterations based on longitudinal information. SNVs called in one sample 
were automatically added to the samples of additional time point(s) if at least one 
high-quality read with the mutation was found in the BAM !le (alleleCounter 
v.4.0.0, parameters: min_map_qual = 35; and min_base_qual = 20). Similarly, indels 
and SVs detected in one sample were added in the additional time point(s) if any of 
the algorithms detected the alteration, regardless of its !lters.

WGS-based subclonal reconstruction. A Markov chain Monte Carlo sampler 
for a Dirichlet process mixture model was used to infer putative subclones, 
to assign mutations to subclones and to estimate the subclone frequencies in 
each sample from the SNV read counts, copy number states and tumor purities 
(Supplementary Table 17)78,88. Clusters with <100 mutations were excluded. 
$e phylogenetic relationships between subclones were identi!ed following the 
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‘pigeonhole principle’, which was relaxed using a case-speci!c ‘tolerated error’88. 
Clusters not assigned to the reconstructed phylogenetic tree were excluded. Fish 
plots were generated using the TimeScape R package (v.1.6.0). "e CCF of indels 
was calculated integrating read counts, CNAs and tumor purity89. Driver indels 
subjected to validation by scDNA-seq and/or relevant to the tumor phylogeny 
were manually assigned to subclones. Similarly, driver CNAs relevant to the 
phylogeny were manually assigned. Seven SNVs found in TP53/ATM overlapping 
with CNAs were manually assigned to the most likely subclone as they were not 
automatically assigned by the Dirichlet process and were subjected to scDNA-seq 
(Supplementary Table 9).

Mutational signatures. We studied mutational signatures acting genome-wide 
and in localized regions (inter-mutation distance ≤1Kb)29,32. We integrated the 
mutations identi!ed in this CLL/RT cohort together with those of 147 CLL 
treatment-naive samples (ICGC-CLL)28 and 27 new CLL collected at relapse 
post-treatment (mean coverage 31.5×; Supplementary Table 15). "e WGS of 
these two additional cohorts was (re-)analyzed using our current bioinformatic 
pipeline (Supplementary Table 12). Mutational signatures were analyzed for SNVs 
or single-base substitutions (SBSs) according to their 5′ and 3′ #anking bases 
following three steps30:

 1. Extraction: de novo signature extraction was performed using a hierarchi-
cal Dirichlet process (HDP, v.0.1.5; https://github.com/nicolaroberts/hdp), 
SignatureAnalyzer (v.0.0.7)90 32 

). HDP was run with four 
independent posterior sampling chains, followed by 20,000 burn-in iterations 

with 10,000 burn-in iterations and 20,000 sampling iterations.
 2. Assignment: each extracted signature was assigned to a given COSMIC sig-

nature (v.3.2)32 if their cosine similarity was >0.85. Otherwise, the extracted 
signature was decomposed into ‘n’ COSMIC signatures using an expectation 
maximization (EM) algorithm91

was <0.85, we ran the EM algorithm, including all signatures reported in 
COSMIC and by Kucab et al.33 (55 mutational signatures related to environ-

signatures that together constituted COSMIC signature SBS5 to avoid split-
ting of signatures (Extended Data Fig. 4a); (2) APOBEC signatures (SBS2 and 
SBS13) were favored to be assigned to one of the signatures extracted by HDP 
and SignatureAnalyzer although it was not the best EM solution probably be-
cause they were only found in one sample, which impaired a clean extraction 
of the signatures (Extended Data Fig. 4f); and (3) one signature extracted by 
HDP and SignatureAnalyzer was directly assigned to the mutational signature 
associated with ganciclovir treatment35 (cosine similarity 0.987 and 0.993, 

considered for downstream analyses as it had less background noise than 

downstream analyses (Extended Data Fig. 4). We also performed a detailed 
review to remove signatures susceptible of being originated due to sequencing 
artifacts (Supplementary Table 13).

 3. 
the contribution of each mutational signature in each sample. Based on (1) 

that two patients received melphalan before RT, the mutational signature 
associated with melphalan therapy34 was also included in this step. To avoid 

30, we iteratively removed the 
less-contributing signature if its removal decreased the cosine similarity 

<0.01 (ref. 32). SBS1 and 
SBS5 were added if addition improved the cosine similarity32. Similarly, SBS9 

cosine similarity. We also ran mSigAct (v.2.1.1; https://github.com/stevero-
zen/mSigAct -
plementary Table 15). To assess the contribution of each signature to each 

signatures that were present in the corresponding sample and (2) removed 

subclones with low evidence.

Genomic locations and strand bias. We assessed the contribution of SBS-RT to 
coding SNVs in RT subclones (also including cases in which the CLL sample was 
used as a ‘germline’) by calculating the probability that a given mutation was caused 
by SBS-RT. To perform this calculation, we considered the signatures present in the 
subclone/sample and their signature pro!le92. "e reference epigenomes of CLL44 
were used to explore the contribution of the mutational processes in di$erent 
regulatory regions. We simpli!ed the described chromatin states in four categories: 
heterochromatin (H3K9me3_Repressed, Heterochromatin Low_Signal), polycomb 

(Posied_Promoter, H3K27me3_Repressed), enhancer/promoter (Active_Promoter, 
Strong_Enhancer1, Weak_Promoter, Weak_Enhancer, Strong_Enhancer) and 
transcription (Transcription_Transition, Weak_Transcription, Transcription_
Elongation). We also mapped the activity of mutational processes in early/late 
replication regions of the genome considering peaks/valleys of early/late replication 
as those regions of ≥1 kb with absolute replication timing >0.5 (ref. 93). All SNVs 
of the CLL and RT subclones were classi!ed in any of the four chromatin states 
and early/late replication regions before !tting mutational signatures. A cuto$ 
of 0.005 was used to remove the less-contributing signature during the !tting 
step. We also generated replication and transcriptional strand bias pro!les of the 
RT-speci!c mutations using the MutationalPatterns R package34. "e replication 
strand was annotated based on the le%/right replication direction of the timing 
transition regions94. "e transcriptional strand was annotated using the TxDb.
Hsapiens.UCSC.hg19.knownGene R package (v.3.2.2). Finally, kataegis was de!ned 
as a genomic region having six or more mutations with an average inter-mutation 
distance ≤1 kb.

High-coverage, UMI-based gene mutation analysis. Data generation. A 

WGS (Supplementary Table 18). Molecular-barcoded and target-enriched libraries 
were prepared using a Custom CleanPlex UMI NGS Panel (Paragon Genomics) 
and CleanPlex Unique Dual-Indexed PCR Primers for Illumina (Paragon 
Genomics, cat. no. 716011 and 716013). Libraries were sequenced on a MiSeq and/
or NextSeq 2000 instrument (2 × 150 bp, Illumina).

Data analysis. Raw reads were trimmed using cutadapt (https://cutadapt.
readthedocs.io; v.1.15 with parameters: -g CCTACACGACGCTCTTCCGATCT  
-a AGATCGGAAGAGCACACGTCTGAA -A AGATCGGAAGAGCGTCGTGTA 
GG -G TTCAGACGTGTGCTCTTCCGATCT -e 0.1 -O 9 -m 20 -n 2). 
Trimmed FASTQ reads were converted to unmapped BAM using Picard’s 
FastqToSam tool (v.2.10.2). UMI information was extracted and stored as 
a tag using fgbio ExtractUmisFromBam (http://fulcrumgenomics.github.
io/fgbio/; v.1.3.0 with parameters: –read structure = 16M+T 16M+T, –
single-tag = RX, –molecular-index-tags = ZA ZB). Template read was converted 
to FASTQ with Picard’s SamToFastq. Template reads were mapped against 
the human reference genome (GRCh37) and reads were merged with the 
UMI information using Picard’s MergeBamAlignment. Finally, reads were 
grouped by UMI and a consensus was called using fgbio GroupReadsByUmi 
(parameters were –strategy = adjacency, –edits = 1, –min-map = 10) and 
CallMolecularConsensusReads (parameters were –min-reads = 3), respectively. A 
minimum of three reads was required to create a UMI-based !nal read. Final reads 
were converted back to FASTQ using Picard’s SamToFastq and mapped against the 
reference genome using BWA-MEM (v.0.7.15)61. Mean coverage was determined 
using Picard’s CollectTargetedPcrMetrics (parameters: CLIP_OVERLAPPING_
READS = true, MINIMUM_MAPPING_QUALITY = 15 MINIMUM_BASE_
QUALITY = 15). Read counts were collected at all targeted genomic positions 
for all samples using bc%ools mpileup (v.1.8, parameters: -B -Q 13 -q 10 -d 
100,000 -a FORMAT/DP,FORMAT/AD,FORMAT/ADF,FORMAT/ADR -O v)67. 
Allele positions lacking mutations by WGS were used to model the background 
sequencing noise, which was uni!ed according to the trinucleotide context of each 
possible mutation. Mutations of interest were annotated as high con!dence when 
their frequency was above the background noise with a probability of 95%.

High-coverage immunoglobulin gene characterization. DNA-based.
LymphoTrack IGHV Leader Somatic Hypermutation Assay Panel, MiSeq 
(Invivoscribe Technologies, cat. no. 71210069) was performed in samples of 
two patients (Supplementary Table 21). Libraries were sequenced on a MiSeq 
instrument (2 × 301 
gene rearrangements with the same IGHV gene and IGH CDR3 amino acid 

within the FR1-CDR1-FR2-CDR2-FR3 sequence of the rearranged IGHV gene 

(v.0.36)95 to keep only high-quality reads and bases (parameters were LEADING:30 
TRAILING:30 SLIDINGWINDOW:4:30 MINLEN:100). Trimmed, paired-end 

Invivoscribe Technologies, cat. no. 75000009), which combines forward and 
reverse reads to generate full-length sequences. Identical full-length sequences 

full-length sequences were annotated using IMGT/HighV-QUEST (v.1.8.3; https://
www.imgt.org/HighV-QUEST). Finally, we (1) selected the sequences that belonged 
to the dominant productive clonotype; (2) kept only sequences with complete 
V-region (missing bases and indels within the V-region were not allowed); and (3) 
merged sequences that shared the exact V-region nucleotide sequence.

RNA-based. For patient 12, cryopreserved samples collected at four di$erent 
time points were thawed and malignant cells were enriched using the "e 
EasySep Human B Cell Enrichment kit II without CD43 depletion (Stemcell 
Technologies, cat. no. 17923). Next, 1–2 million tumor cells were used to perform 
the Omniscope BCR VDJ sequencing assay (https://www.omniscope.ai). Cells 
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were lysed and the RNA was reverse transcribed to complementary DNA with 
UMIs before ampli!cation of the V(D)J region using BCR-speci!c multiplex 
PCR. Following sequencing, reads were aligned using STARsolo (v.2.7.9a; https://
github.com/alexdobin/STAR/blob/master/docs/STARsolo.md) to the hg38 
human genome. IGV63 was used to review and quantify the mutation of interest 
(chr14:106714886C>T).

DNA methylation. Data generation and processing. DNA methylation data of 39 

n = 2; germinal 
center B cells (GCs), n = 1; memory B cells (MBCs), n = 3; tonsillar plasma cells 
(tPCs), n = 1); CLL samples without evidence of RT (n = 12) and longitudinal CLL/
RT samples (n = 20) (Supplementary Table 6). R and core Bioconductor packages, 

96, were used to integrate and normalize DNA methylation 
data49. We removed non-CpG probes, CpGs representing single nucleotide 

in B cells, CpGs in sex chromosomes and CpGs with a detection P value >0.01 in 
>
CpGs were annotated using the IlluminaHumanMethylationEPICanno.ilm10b4.
hg19 package (v.0.6). Tumor cell content of each sample was inferred from DNA 
methylation49 and samples with a tumor cell content <

n = 2; GCs, n = 1; MBCs, 
n = 3; tPCs, n = 1; CLL controls, n = 12; CLL/RT samples, n = 14 (six patients); 
Supplementary Table 6).

Di!erential analyses, CLL epitypes and epiCMIT. We compared the DNA 
methylation status of each CpG to the mean of such CpGs in NBCs to calculate 
the number of hyper- and hypomethylation changes per CLL/RT sample. Changes 
in each sample were de!ned based on a minimum di"erence of 0.25 methylation. 
To perform a di"erential analysis between CLL and RT, we compared the 
DNA methylation of each CpG in each CLL sample (!rst available time point 
used) versus their respective RT sample. Di"erentially methylated CpGs were 
considered as those showing a minimum di"erence of 0.25 in at least four of the 
!ve longitudinal cases of RT versus CLL analyzed (Supplementary Table 6). #e 
epigenetic subtypes (epitypes) and epiCMIT score for each CLL and RT sample 
were calculated49.

ChIP-seq of H3K27ac and ATAC-seq. Data generation. ChIP-seq of H3K27ac and 
ATAC-seq data were generated as described in http://www.blueprint-epigenome.
eu/index.cfm?p=7BF8A4B6-F4FE-861A-2AD57A08D63D0B58 (antibody anti 
H3K27ac, Diagenode, cat. no. C15410196/pAb-196-050, lot A1723-0041D; 
Supplementary Tables 7 and 8). Libraries were sequenced on Illumina machines 
aiming at 60 million reads/sample (Supplementary Tables 7 and 8).

Read mapping and initial data processing. FASTQ !les were aligned to the reference 
genome (GRCh38) using BWA-ALN (v.0.7.7, parameter: -q 5)61, duplicated 
reads were marked using Picard tools (v.2.8.1) and low-quality and duplicated 
reads were removed using SAMtools (v.1.3.1, parameters: -b -F 4 -q 5 -b -F 
1,024)67. PhantomPeakQualTools (v.1.1.0) were used to generate wiggle plots 
and for extracting the predominant insert-size. Peaks were called using MACS2 
(v.2.1.1.20160309, parameters for H3K27ac: -g hs -q 0.05 -keep-dup all -nomodel 
-extsize insert-size; parameters for ATAC-seq: -g hs -q 0.05–keep-dup all -f 
BAM –nomodel –shi$ −96 –extsize 200; no input control)97. Peaks with q values 
<1 × 10−3 were included for downstream analyses. For each mark separately, a 
set of consensus peaks, including regions within chromosomes 1–22 and present 
in published healthy B cells44 and CLL samples was generated by merging the 
locations of the separate peaks per individual sample. For ChIP-seq, the numbers 
of reads per sample per consensus peak were calculated using the genomecov 
function (bedtools, v.2.25.0). For ATAC-seq, the number of Tn5 transposase 
insertions per sample per consensus peak was calculated by !rst determining the 
estimated insertion sites (shi$ing the start of the !rst mate 4 bp downstream) 
before using the genomecov function. Variance stabilizing transformation (VST) 
values were calculated for all consensus peaks using DESeq2 (v.1.28.1)98, which 
were then corrected for the consensus SPOT score (the percentage of reads that fall 
within the consensus peaks) using the ComBat function (sva R package, v.3.36.0). 
To that purpose, the cell condition (tumor and di"erent healthy B cell subtypes) 
was assigned to each sample and samples were clustered in 20 bins of 5% according 
to their consensus SPOT score. #e bins on the extremes, which contained fewer 
than !ve samples, were joined with their neighboring bins to ensure that each bin 
contained !ve samples or more. PCA was generated using the corrected VST values 
of peaks that were present in more than one sample.

Detection of di!erential epigenetic regions and RT-speci"c changes. We !rst 
determined the regions with stable epigenetic pro!les in the healthy B cell 
counterparts (NBCs and MBCs) by applying a threshold of s.d. < 0.8 with respect 
to the mean value. For all these NBC/MBC stable regions, we then calculated the 
log2FC between the mean of VST-corrected healthy B cell values and each of the 
tumor samples. Due to the data distribution variability, we applied slightly di"erent 
thresholds of log2FC for each case (Supplementary Tables 7 and 8). To identify 

regions changing in RT for each case individually, we selected the regions that 
presented substantial epigenetic changes as compared to the normal counterpart 
and to the previous CLL (absolute log2FC > 1). #e ATAC-seq RT-speci!c 
signature encompassed di"erential regions common in two or more cases of RT, 
whereas the H3K27ac RT-speci!c signature included di"erential regions common 
in three or more cases. Potential protein-coding target genes were assigned to each 
of the RT-speci!c regions using two strategies. To identify close target genes, we 
took the overlap with the regions of genes of interest adding 2 kb upstream of their 
transcription start site. To identify distant target genes, we used Hi-C data from 
the GM12878 cell line and selected all genes located within the same topologically 
associated domain as the region of interest. We only considered DEGs identi!ed by 
bulk RNA-seq (Supplementary Tables 7 and 8).

Transcription factor analysis. Enrichment for TF-binding sites was analyzed in 
chromatin accessible regions within the RT-speci!c active chromatin regions. 
Accessible peaks were determined as regions with presence of ATAC peaks in 
two or more RT cases. Enrichment analysis of known TF-binding motifs was 
performed using the AME tool (MEME suite) considering the non-redundant 
Homo sapiens 2020 Jaspar database and applying one-tailed Wilcoxon rank-sum 
tests with the maximum score of the sequence, a 0.01 FDR cuto" and a background 
formed by reference GRCh38 sequences extracted from the consensus ATAC-seq 
peaks (91,671 regions). We then established the occupancy of these motifs in RT 
and CLL by calculating the percentage of the target RT-speci!c active regions and 
of the regions with increased H3K27ac in CLL, respectively, which contained these 
motifs. Finally, we selected TFs presenting an occupancy di"erence between RT 
and CLL ≥ 10% and overexpressed in RT (bulk RNA-seq, log2FC > 0, adjusted P 
value <0.01).

Bulk RNA-seq. Data generation. Bulk RNA-seq data of six patients with paired CLL 
and RT samples were analyzed. Libraries were prepared using the TruSeq Stranded 
mRNA Library Prep kit (Illumina, cat. no. 20020595) or the Stranded mRNA 
Library Prep, Ligation kit (Illumina, cat. no. 20040534) and sequenced on a HiSeq 
4000 (2 × 76 bp, Illumina) or NextSeq 2000 (2 × 100 bp, Illumina). All samples had a 
tumor purity ≥

Data analysis. Ribosomal RNA reads were !lter out using SortMeRNA (v.4.3.2)99. 
Non-ribosomal reads were trimmed using Trimmomatic (v.0.38)95. Gene-level 
counts (GRCh38.p13, Ensembl release 100) were calculated using kallisto 
(v.0.46.1)100 and tximport (v.1.14.2). A paired DEA was conducted using DESeq2 
(v.1.26.0)98. Adjusted P value <0.01 and absolute log2(fold change) > 1 were used 
to identify DEGs. Gene set enrichment analysis (GSEA) was conducted using a 
pre-ranked gene list ordered by −log10(P) × (sign of fold change) using the ‘GSEA’ 
function (clusterPro!ler R package, v.3.14.3). We focused on C2 (curated) and 
Hallmark gene sets from the Molecular Signatures Database (v.7.4) with a minimal 
size of 10 and maximal size of 250. Gene ontology (GO) GSEA was conducted 
using the pre-ranked gene list as input of the ‘gseGO’ function (clusterPro!ler) 
focusing on biological processes. Redundancy in the output list of GO terms was 
removed using the ‘simplify’ function (cuto" of 0.35).

Single-cell DNA-seq. Data generation. scDNA-seq was performed for 16 samples 
of 4 patients using the Tapestri Platform (Mission Bio, cat. no. 191335) and a 
commercial 32-gene panel (Tapestri single-cell DNA CLL panel, Mission Bio, cat. 
no. MB53-0011_J01). Cryopreserved cells were thawed on 5 ml of fetal bovine 

 °C for 5 min. 
 

Fisher, cat. no. 20012-019) with 4% bovine serum albumin (BSA; Miltenyi Biotec, 
cat. no. 130-091-376) and centrifuged at 400g for 4 min. Cell concentration and 

removed and cells were resuspended in an appropriate volume of Mission Bio cell 
 l−1. Encapsulation, lysis and 

barcoding of cells were performed following the exact manufacturer’s instructions. 

products using a High-Sensitivity dsDNA 1× Qubit kit (Qubit, Invitrogen, cat. 
no. Q32851). Final library preparation consisted of a Target Library PCR with the 
V2 Index Primer for ten cycles and a library cleanup with AMPure XP Reagent 

an Agilent Bioanalyzer High Sensitivity chip (Agilent Technologies, cat. no. 5067-
4626). Libraries were sequenced on a NovaSeq 6000 instrument (Illumina) aiming 
for 1,300 reads per cell (Supplementary Table 20).

Data analysis. FASTQ !les were analyzed through the Tapestri Pipeline (v.1, 
Mission Bio), which trims adaptor sequences, aligns reads to the human genome 
(hg19) using BWA aligner, performs barcode correction, assigns sequence reads 
to cell barcodes and performs genotype calling using GATK (v.3.7). Loom !les 
generated were analyzed using the Tapestri Insights (v.2.2, Mission Bio). For each 
patient (considering all time points together), genotypes with quality <30, read 
depth <10 or allele frequency <20% were marked as missing. Similarly, for each 
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developed RT in the absence of any therapy, showed a remarkably 
higher OXPHOS and slightly lower BCR expression at time of RT 
compared to CLL (Fig. 4k and Extended Data Fig. 10k,l).

Overall, the epigenome and transcriptome of RT converge 
to an OXPHOShigh–BCRlow axis reminiscent of that observed in 
the de novo DLBCL subtype characterized by high OXPHOS 
(DLBCL-OXPHOS) and insensitive to BCR inhibition52–54. !is axis 
might explain the selection and rapid expansion of small RT sub-
clones under therapy with BCR inhibitors.

OXPHOS and BCR activity in RT. We next validated experimen-
tally the OXPHOS and BCR activity of RT in samples of patients 
12, 19 and 63. Respirometry assays con"rmed that OXPHOShigh

RT cells (patients 12 and 63) had a 3.5-fold higher oxygen consump-
tion at routine respiration and "vefold higher electron transfer sys-
tem capacity (ETC) compared to CLL. In addition, OXPHOSnormal

RT (patient 19) showed a routine oxygen consumption similar to 
CLL, although also had a relatively higher ETC than its CLL coun-
terpart (Fig. 5a, Supplementary Fig. 3a–d and Supplementary Table 
24). BCR signaling measured by Ca2+ mobilization upon BCR stim-
ulation with IgM showed that BCRlow RT cells (patients 12 and 63) 
had a lower Ca2+ #ux compared to CLL, which contrasted with the 
higher #ux observed in the BCRnormal RT cells of patient 19, concor-
dant with its IGLV3–21R110 mutation27 (Fig. 5b, Supplementary Fig. 
4a,b and Supplementary Table 25).

To determine the biological e$ect of OXPHOShigh in RT, we per-
formed in vitro proliferation assays using IACS-010759 (100 nM), 
an OXPHOS inhibitor that targets mitochondrial complex I 
(Supplementary Figs. 3e and 4c and Supplementary Table 25). 
OXPHOShigh RT (patients 12 and 63) had a higher proliferation at 
72 h compared to OXPHOSnormal RT (patients 19) and all of them were 
higher than their respective CLL. OXPHOS inhibition resulted in a 
marked decrease in proliferation in OXPHOShigh RT (mean 49.1%), 
which contrasted with that observed in OXPHOSnormal RT (2.2% 
decrease) and CLL (23.2% decrease) (Fig. 5c and Supplementary 
Fig. 4d). Overall, these results con"rm the role of OXPHOShigh phe-
notype in high proliferation of RT and suggest its potential thera-
peutic value in RT as proposed for other neoplasms53–57.

Discussion
!e genome of RT is characterized by a compendium of driver 
alterations in cell cycle, MYC, NOTCH and NF-κB pathways, fre-
quently targeted in single catastrophic events and by the footprints 
of early-in-time, treatment-related, mutational processes, includ-
ing the new SBS-RT potentially associated with bendamustine and 
chlorambucil exposure. A very early diversi"cation of CLL leads to 
emergence of RT cells with fully assembled genomic, immunoge-
netic and transcriptomic pro"les already at CLL diagnosis up to 19 
years before the clonal explosion associated with the clinical trans-
formation. RT cells have a notable shi% in chromatin con"guration 
and transcriptional program that converges into activation of the 
OXPHOS pathway and downregulation of BCR signaling, the latter 
potentially compensated by activating Toll-like, MYC and MAPK 
pathways17,51,58,59. !e rapid expansion of RT subclones under treat-
ment with BCR inhibitors is consistent with its low BCR signaling, 
except when carrying the IGLV3–21R110 and further supported by 
the increased number of subclones carrying unproductive immu-
noglobulin genes and the development of RT with plasmablastic 
di$erentiation, a cell type independent of BCR signaling60. Finally, 
we also uncovered that OXPHOS inhibition reduced the pro-
liferation of RT cells in vitro, a "nding worth exploring in future 
therapeutic strategies55,57.

In conclusion, our comprehensive characterization of CLL 
evolution toward RT has revealed new genomic drivers and epig-
enomic recon"guration with very early emergence of subclones 
driving late stages of cancer evolution, which may set the basis for 

developing single-cell-based predictive strategies. Furthermore, 
this study also identi"es new RT-speci"c therapeutic targets and 
suggests that early intervention to eradicate dormant RT subclones 
may prevent the future development of this lethal complication 
of CLL.
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on the BCLLATLAS_10 experiment for patients 12, 19 and 3,299. Conversely, as we 
did not obtain a clear signal-to-noise separation in the HTO demultiplexing of case 
365, we analyzed the cells obtained with BCLLATLAS_29. We also found some 
cell neighborhoods that harbored a high percentage of mitochondrial expression 
and a low number of detected genes. In such cases, we were more stringent with 
the thresholds or fetched and eliminated these clusters with FindClusters. We also 
excluded some clusters of doublets that expressed markers of microenvironment 
cells (erythroblasts, T cells or natural killer cells). Finally, for patient 3,299 in which 
one sample was obtained from peripheral blood (PB), whereas the others were 
obtained from bone marrow (BM), we focused solely on the BM samples to avoid 
misinterpretations. For patient 365, the CLL and RT time points were sampled 
from PB and lymph nodes, respectively. As the same RT sample pro!led with bulk 
RNA-seq clustered with other RT samples from PB, we analyzed them jointly. 
A"er all the !ltering, we recomputed the highly variable genes and PCAs. To avoid 
overcorrection, we used the top 20 PCs as input to RunUMAP and FindNeighbors, 
without rerunning Harmony.

Clustering and annotation. Louvain clustering was performed with the FindClusters 
function, adjusting the resolution parameter for each patient independently. 
To annotate each cluster, we ran a ‘one-versus-all’ DEA for each cluster (Seurat, 
FindAllMarkers, Wilcoxon rank-sum test), keeping only upregulated genes with 
a log2FC > 0.3 and a Bonferroni-adjusted P value <0.001. If markers were speci!c 
to a subset of the cluster, we further strati!ed it with the FindSubCluster function. 
On the contrary, if two clusters possessed similar markers, we merged them. #e 
CellCycleScoring function was used to identify clusters of cycling cells.

DEA and GSEA. We conducted a DEA between RT and CLL clusters of each 
patient independently, merging cells from all time points (Seurat, FindMarkers, 
logfc.threshold = 0, only.pos = FALSE, Wilcoxon rank-sum test). To !nd 
!ner-grained gene expression changes, only nonproliferative clusters were 
considered. Genes with a Bonferroni-adjusted P value <0.05 were considered as 
signi!cant. #e resulting list of genes (sorted by decreasing log 2FC) was used as 
input to the ‘gseGO’ function of clusterPro!ler (v.3.18.1, parameters: ont = ‘BP’, 
OrgDB = org.Hs.eg.db, keyType = ‘SYMBOL’, minGSSize = 10, maxGSSize = 250, 
seed = TRUE). We then removed redundancy in the output list of GO terms with 
the ‘simplify’ function (cuto$ of 0.75) and !ltered out GO terms with an adjusted 
P value <0.05. To convert the expression of speci!c GO terms of interest into a 
cell-speci!c score, we utilized the AddModuleScore function from Seurat.

CNA inference from scRNA-seq data. For each patient separately, we ran inferCNV 
(v.1.11.1) integrating all samples together. We used CLL cells as reference 
because (1) we aimed to identify CNAs acquired at RT and (2) CLL had %at 
copy number pro!les in virtually all chromosomes according to WGS. CLL cells 
were downsampled to the number of RT cells. We initialized an ‘infercnv’ object 
(CreateInfercnvObject) using the raw expression counts and the gene-ordering !le 
https://data.broadinstitute.org/Trinity/CTAT/cnv/gencode_v21_gen_pos.complete.
txt. CNAs were predicted (infercnv, run, HMM = FALSE, denoise = FALSE) setting 
the cuto$ parameter to 1 and 0.1 for Smart-seq2 and 10x data, respectively. We 
customized the plotting with the plot_cnv function.

Analysis of an external scRNA-seq dataset. We downloaded the expression matrices 
and metadata of the dataset from Penter et al.43 with the GEOquery (v.2.62.2) 
(Gene Expression Omnibus identi!er GSE165087), created a single Seurat object 
with all cells from all samples and !ltered poor-quality cells as speci!ed in the 
original publication43. Dimensionality reduction, DEA, GSEA and gene signature 
scoring were performed as described above.

Cellular respiration. Cryopreserved cells were resuspended on RPMI-1640 
(Gibco, cat. no. 21875034) with 10% FBS (Gibco, cat. no. 10270-106) and 1% 
Glutamax (Gibco, cat. no. 35050-061) at a concentration of 3 million cells ml−1. 
A"er 1 h of incubation at 37 °C, cellular respiration was performed using 
O2k-respirometers (Oroboros Instruments). Two milliliters of cell suspension 
were added in each respirometer chamber. Cellular respiration was performed 
at 37 °C at a stirrer speed of 750 r.p.m. Respiratory control was studied by 
sequential determination of routine respiration (oxygen consumption in 
living cells resuspended on RPMI-1640 with 10% FBS and 1% Glutamax), 
oligomycin-inhibited leak respiration (2 µl ml−1, Sigma-Aldrich, cat. no. O4876, 
CAS, 1404-19-9), uncoupler-stimulated ETC measured by the sequential titration 
of the ionophore carbonyl cyanide m-chlorophenyl hydrazone (Sigma-Aldrich, 
cat. no. C2759, CAS, 555-60-2) and residual oxygen consumption a"er inhibition 
of the electron transfer system by the addition into the chamber of rotenone 
(0.5 µM, Sigma-Aldrich, cat. no. R8875, CAS, 83-79-4) and antimycin A (2.5 µM, 
Sigma-Aldrich, cat. no. A8674, CAS, 1397-94-0). Data acquisition and real-time 
analysis were performed using the so"ware DatLab 7.4 (Oroboros Instruments). 
Automatic instrumental background corrections were applied for oxygen 
consumption by the polarographic oxygen sensor and oxygen di$usion into the 
chamber109. #e same experimental work%ow was used to study cellular respiration 
in CLL and RT cells a"er 1 h of treatment with IACS-010759 (Selleckchem, cat. no. 
S8731, CAS, 1570496-34-2) at 100 nM.

Calcium !ux analysis. Cryopreserved cells were resuspended on RPMI-1640 
medium with 10% FBS, 1% Glutamax and 5% penicillin (10,000 IU ml−1)/
streptomycin (10 mg ml−1) (#ermo Fisher, cat. no. S8731) at 106 cells ml−1. A"er 
6 h of incubation at 37 °C and 5% CO2, cells were centrifuged and resuspended 
on RPMI-1640 with 4 µM Indo-1 AM (#ermo Fisher, cat. no. I1223) and 0.08% 
Pluronic F-127 (#ermo Fisher, cat. no. P3000MP) for 30 min at 37 °C and 5% 
CO2. Cells were subsequently labeled for 20 min at room temperature with surface 
marker antibodies CD19 (Super Bright 600; Invitrogen, cat. no. 63-0198-42) 
and CD5 (PE-Cy5; BD Biosciences, cat. no. 555354) for the identi!cation of 
tumoral cells (CD19+CD5+). Next, cells were resuspended on RPMI-1640 before 
%ow cytometry acquisition. Basal calcium was measured during 1 min before 
stimulation, then cells were incubated during 2 min at 37 °C with or without 
10 µg ml−1 anti-human F(ab′)2 IgM (Southern Biotech, cat. no. 2022-01) and 
3.3 mM H2O2 (Sigma-Aldrich, cat. no. H1009). Finally, 2 µM 4-hydroxytamoxifen 
(4-OHT) (Sigma-Aldrich, cat. no. H6278) was added to all conditions before 
continue recording for up to 8 min. Intracellular Ca2+ release was measured on 
LSRFortessa (BD Biosciences) using BD FACSDiva so"ware (v.8) by exciting 
with ultraviolet laser (355 nm) and appropriate !lters: Indo-1 violet (450/50 nm) 
and Indo-1 blue (530/30 nm). Bound (Indo-1 violet) and unbound (Indo-1 blue) 
ratiometric was calculated with FlowJo so"ware (v.10). Gating analysis was as 
follows: cell identi!cation in FSC-A versus SSC-A plot, singlet identi!cation in 
FSC-A versus FCS-H plot, tumoral cells (CD19+CD5+) in CD19 (Super Bright 600) 
versus CD5 (PE-Cy5) plot and Ca2+ release in time versus Indo-1 violet/Indo-1 
blue plot using a kinetics tool. Optimized dilutions for the antibodies were 1:3 for 
CD19 and 1:10 for CD5.

Cell growth assays. Cryopreserved cells were resuspended on PBS at a 
concentration of 107 cells ml−1 and labeled with 0.5 µM CFSE Cell Tracer 
(#ermo Fisher, cat. no. C34554) for 10 min. Cells were centrifuged and 
resuspended on enriched RPMI-1640 medium with 1% Glutamax, 15% FBS, 
1× insulin-transferrin-selenium (Merk, cat. no. I3146), 10 mM HEPES (Fisher 
Scienti!c, cat. no. BP299), 50 µM 2-mercaptoethanol (Gibco, cat. no. 21985-
023), 1× Non-Essential Amino Acids (Gibco, cat. no. 11140-050), 1 mM sodium 
pyruvate (Gibco, cat. no. 11360-070) and 50 µg ml−1 gentamicin (Gibco, cat. no. 
15710-064) at a concentration of 106 cells ml−1 supplemented with 0.2 µM CpG 
DNA TLR9 ligand (ODN2006-TL9; InvivoGen, cat. no. TLRL-2006) and 15 ng ml−1 
recombinant human IL-15 (R&D Systems, cat. no. 247-ILB-025)110. When 
indicated, cells were treated for 72 h with 100 nM IACS-010759. Cells were labeled 
for 20 min at room temperature with surface marker antibodies CD19 (Super 
Bright 600), CD5 (PE-Cy5) and annexin V (Life Technologies, cat. no. A35122) 
before acquisition in a LSRFortessa (BD Biosciences) using the BD FACSDiva 
so"ware (v.8) and analyzed using FlowJo (v.10). Gating analysis for divided cells 
was as follows: cell identi!cation in FSC-A versus SSC-A plot, singlet identi!cation 
in FSC-A versus FCS-H plot, alive cells in annexin V (PacB) versus SSC-A plot, 
tumoral cells (CD19+CD5+) in CD19 (Super Bright 600) versus CD5 (PE-Cy5) 
plot and proliferating cells in the CFSE histogram. Optimized dilutions for the 
antibodies were 1:3 for CD19, 1:10 for CD5 and 1:3 for annexin V.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Sequencing data are available from the European Genome–phenome Archive 
(http://www.ebi.ac.uk/ega/) under accession no. EGAS00001006327. scRNA-seq 
expression matrices, Seurat objects and corresponding metadata are available at 
Zenodo (https://doi.org/10.5281/zenodo.6631966).

Code availability
R markdown notebooks used for mutational signature, bulk RNA-seq, H3K27ac 
and ATAC-seq analyses can be found at https://github.com/ferrannadeu/
RichterTransformation. R markdown notebooks to reproduce the scRNA-seq 
analyses can be accessed at https://github.com/massonix/richter_transformation. 
Code to normalize DNA methylation data can be found at https://github.com/
Duran-FerrerM/DNAmeth_arrays. Code to calculate the tumor cell content, CLL 
epitypes and epiCMIT from DNA methylation data can be found at https://github.
com/Duran-FerrerM/Pan-B-cell-methylome.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Cohort studied and types of Richter transformation. a. Representation of the disease course of the patients included in the 
study. Each sample analyzed, treatment and date of RT are depicted. Patients labeled in gray lacked germline DNA. Patient 4676 also lacked DNA from 
the previous CLL sample. Patients are grouped based on the last line of therapy received before RT in three groups: patients developing RT before any 
treatment, after chemo(immuno)therapy, and after targeted therapy. The type of transformation (RT-DLBCL, diffuse large B cell lymphoma type; RT-
PLL, prolymphocytic transformation; RT-PBL, plasmablastic transformation) and IGHV mutational status are also shown. Additional molecular studies 
conducted in each case are also depicted. Abbreviations: Ale: alemtuzumab; AlloSCT: allogenic stem-cell transplantation; AutoSCT: autologous stem-
cell transplantation; B: bendamustine; Burkimab: rituximab, methotrexate, dexametasone, ifosfamide, vincristine, etoposide, cytarabine, doxorubicin 
and vindesine; C: cyclophosphamide; CHOP: cyclophosphamide, doxorubicin, vincristine and prednisone; CLB: chlorambucil; CLB-R: chlorambucil 
and rituximab; CP: cyclophosphamide and prednisone; F: fludarabine; FCM: fludarabine, cyclophosphamide and mitoxantrone; G-GemOx: rituximab, 
gemcitabine, and oxaliplatin; LR-ESHAP: lenalidomide, rituximab, etoposide, methyl-prednisolone, cytarabine and cisplatin; M: mitoxantrone; Prd: 
prednisone; R: rituximab; R-B: rituximab and bendamustine; R-CHOP: rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone; R-CVP: 
rituximab, cyclophosphamide, vincristine and prednisone; R-DHAP: rituximab, dexamethasone, cytarabine and cisplatin; R-ESHAP: rituximab, etoposide, 
methyl-prednisolone, cytarabine and cisplatin; RFC: fludarabine, cyclophosphamide and rituximab; RFCM: rituximab, fludarabine, cyclophosphamide 
and mitoxantrone; R-ICE: rituximab, ifosfamide, carboplatin and etoposide; TBI: total body irradiation. b. Morphology of the RT-DLBCL of patient 63 
(hematoxylin-eosin, H&E, staining). c. Morphology of the RT-DLBCL of patient 365 and Ki67 staining showing high proliferative index. d. Morphology 
of the RT-DLBCL of patient 816. e. Morphology of the RT-PLL of patient 3299. f. Morphology of the RT-PBL of patient 1669 (H&E staining), which was 
negative for CD20 and PAX5, while positive for MUM1/IRF4. Each experiment for b-f was repeated twice. The scale bars in b-f represents 20 m.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Genetic and epigenetic changes from CLL to RT, CNA profiles, and landscape of driver alterations. a. Number of somatic genetic 
alterations and epigenetic changes compared to normal counterparts along the course of the disease. Cases/time points with no grid lines correspond 
to unavailable data. b. Mutational burden, number of CNAs and number of SVs found in RT stratified according to the last therapy prior transformation. 
Targeted, targeted therapies. center line, median; box limits, upper/lower quartiles; whiskers, 1.5×interquartile range; points, individual samples. c. Copy 
number landscape of the studied cohort grouped by patient. The diagnosis, IGHV mutational status, last therapy prior RT, and total number of CNAs are 
indicated for each time point. d. Aggregated copy number profile of RT vs CLL. The first CLL samples (time point 1, T1) were considered. The plot shows 

≥
(PTPRD and CDKN2A/B) and deletions of 15q (MGA) were enriched in RT whereas deletions of ATM (11q), TP53 (17p), and 13q14 were found at similar 
frequencies in CLL and RT. e. Oncoprint of putative driver alterations. Samples, grouped by patient (patient id at the top), are represented by columns 
while genes in rows. Novel drivers in RT are labeled in blue. Genes are grouped according to their biological function or if they were previously described 
as potential driver genes in CLL and/or mature B cell lymphomas. Metadata including the type of therapy before RT, number of treatment lines before each 
sample, the spatial/longitudinal nature of the CLL/RT samples analyzed, IGHV mutational status, and diagnosis is detailed in the upper rows. In the main 
plot, mutations (SNVs and indels) are depicted with horizontal rectangles, CNAs using the background color of each cell, and SVs with vertical rectangles. 
The transparency of the color of mutations and CNAs indicates the cancer cell fraction (CCF). For patients lacking the germline sample (patient id 
indicated in gray), the CCF of the alterations could not be inferred and a CCF of 100% was used for illustrative purposes.
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Extended Data Fig. 3 | See next page for caption.

NATURE MEDICINE | www.nature.com/naturemedicine



 

 359 

 
  ARTICLESNATURE MEDICINE

Extended Data Fig. 3 | Complex genomic rearrangements affecting driver genes. a. Deletions in chr12 identified in four cases with the minimal deleted 
region affecting CDKN1B, which expression in CLL and RT sample pairs is shown on the right. The case carrying the deletion at time of RT is labeled in 
the boxplot. b. Reciprocal translocation juxtaposing CDK6 next to IGKJ5 in patient 4687. c. Deletion in chr1 affecting two cases with the minimal deleted 
region targeting ARID4B. Its expression in CLL and RT sample pairs is shown in the boxplot on the right. d. Reciprocal translocations truncating CREBBP 
and CIITA in the RT sample of patient 12. e. Expression levels of known and novel RT-driver genes in CLL and RT paired samples. Cases carrying deletions/
mutations at time of RT are labeled. f-j. Complex genomic rearrangements affecting driver genes in five selected RT samples. The circos plots show the 
SVs (inner links) and CNAs (middle circle) found in each sample. SVs are colored based on whether they are part of a complex event, while CNAs are 
painted according to their type. Chromosome-specific plots on the right show the main chromosomes affected by complex events targeting driver genes 
(annotated at the bottom). In these chromosome-specific plots, the color of both CNAs and SVs indicates their type. For patient 12 (f), the expression 
levels of three genes affected by simple (TRAF3) and complex (SPEN and TNFRS14) chromosomal alterations are shown. For patient 4675 (j), the partner 
of the translocations found in chr3 and chr8 are not specified for simplicity due to the high number of clustered structural events. All boxplots: center line, 
median; box limits, upper/lower quartiles; whiskers, 1.5×interquartile range; points, individual samples. All p values are from two-sided T tests.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Extraction and assignment of mutational signatures. a–d. Signatures extracted by the Hierarchical Dirichlet Process (HDP)  
(a), SignatureAnalyzer (b), SigProfiler (c), and sigfit (d). COSMIC signatures needed to reconstruct the extracted signatures are shown together with 
their contribution (in percentage). The cosine similarities between the extracted and reconstructed signatures are shown in brackets. e. Workflow of  
the mutational signature analysis. f. The 96-mutation profile of the RT sample of patient 839 (time point 2), which had marked evidence of APOBEC 
activity (SBS2 and SBS13). g. Comparison of the SBS-ganciclovir extracted by HDP and SignatureAnalyzer. Based on the high cosine similarity (0.996), 
we considered that both signatures represented the same mutational process and selected the one extracted by HDP for downstream analyses.  
h. Comparison of the SBS-ganciclovir extracted by HDP and the ganciclovir signature reported by de Kanter et al.35. i. Comparison of the SBS-RT 
extracted by HDP and SignatureAnalyzer. Based on the high cosine similarity (0.941), we considered that both signatures represented the same 
mutational process and selected the one extracted by HDP for downstream analyses. j. Pairwise comparisons of the SBS-RT with known signatures 
from COSMIC and Kucab et al.33. k. Decomposition of the SBS-RT in “n” known signatures using an expectation maximization approach. The low cosine 
similarity (<0.85) between SBS-RT and the best reconstituted signature obtained using any combination of known signatures suggests that SBS-RT 
represents a novel mutational signature.
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Fitting of mutational signatures, characterization of SBS-RT, and co-occurrence of RT subclones. a. Mutational processes in 
ICGC-CLL (left) and post-treatment CLL (right) cohorts. b. Correlation of SBS-RT with the total number of SNVs and other mutational processes in RT 
subclones. Gray area, 95% confidence interval. c. Activity of the mutational processes identified in regulatory regions of the genome: heterochromatin 
(Het), polycomb (Pol), enhancer/promoter (EP), and transcription (Tra). The heat map (right) shows the log2-fold change of the observed vs expected 
number of SBS-RT mutations/region. d. Contribution of the mutational processes in early/late replication regions. e-f. Replication (e) and transcriptional 
(f) strand bias of the mutational profile of RT subclones with SBS-RT. The main peaks of the SBS-RT are indicated with their context on the x-axis. 
Significant asymmetries are indicated with asterisks (exact p values are listed in Supplementary Table 16). g. Number of CNAs and SVs in RT samples. 
h. Detection (top) and variant allele frequency (VAF) (bottom) of mutations assigned to the RT subclone during the disease course in patient 19 based 
on UMI-based NGS. Mutations are grouped according to the main peaks of SBS-RT. P values by Fisher’s test. L.C., low confidence; H.C., high confidence. 
Density plot showing the distribution of the cancer cell fraction (CCF) of the SNVs assigned to the RT subclone by WGS (bottom right). i. Mutational 
profiles of kataegis in ICGC-CLL samples (row 1–2), CLL subclones from the present CLL/RT cohort (row 3–4), and RT subclones (all U-CLL) (row 5). 
Mutational processes identified are indicated together with its contribution and cosine similarity to the reconstructed profile. j. Immunoglobulin genes 
of two cases harboring RT-specific SNVs at time of RT (time points, T, highlighted in rose). PB, peripheral blood. BM, bone marrow. k. Complete flow 
cytometry analysis in case 12. Numbers along axes are divided by 1000. l. Density plot showing the comparison of the CCF of the SNVs of synchronous 
BM and PB samples analyzed in patient 12. m. Circos plots of the BM samples of patient 12 for comparison with the rearrangements observed at PB 
(Supplementary Fig. 1).
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Extended Data Fig. 6 | Clonal dynamics from CLL to RT. a. Subclonal reconstruction and clonal evolution of three cases (3299, 12 and 365) with WGS 
and scDNA-seq data available. The upper fish plot shows the clonal evolution along the course of the disease inferred from WGS analyses. Each color 
represents a different subclone and their height is proportional to their cancer cell fraction (CCF) in each time point (vertical lines). The treatments that 
the patient received and the elapsed time (in years) between samples are indicated at the top. The tissue is indicated for samples of patient 3299 in which 
different tissues were analyzed by WGS and scDNA-seq in the same time point. The phylogeny of the subclones is depicted together with the main driver 
alterations (top right). The lower bar plots show the dynamics of the different subclones according to the scDNA-seq analyses. The total number of cells 
per sample is shown at the bottom. The number of cells assigned to each subclone can be found in Supplementary Table 20. The mutation tree inferred 
from scDNA-seq data is shown at the bottom-right part. b-c. Subclonal architecture and dynamics of six cases with longitudinal samples (b) and two 
cases with spatial samples (c) analyzed by WGS.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | scRNA-seq characterization of CLL and RT. a–d. UMAP visualization of tumor cells from all time points colored by annotation and 
tissue of origin. hi, high; lo, low; PB, peripheral blood; LN, lymph node; BM, bone marrow (left). Dot plot with the expression of key markers in each cluster. 
Color and size represent scaled mean expression and proportion of cells expressing each marker gene, respectively (middle-left). Violin plots showing the 
cell-cycle phase scores (S and G-to-M) for each cluster of cells (middle-right). UMAP visualization split by time point (right). ‘n’ refers to the total number 
of cells in that time point, and the percentage refers to the proportion of cells within RT clusters. e-i. Time point-specific UMAP visualizations for each 
case. RT seed cells are depicted in rose and with an increased size. j. UMAP visualization of case CLL9 from Penter et al.43 split by time point. PB, peripheral 
blood; BM, bone marrow.
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Extended Data Fig. 8 | CNA profile of RT cells by scRNA-seq. For each patient, the CNA profile of CLL and RT samples according to WGS is shown (top) 
together with the CNA profile of each individual RT cell based on scRNA-seq (bottom). For scRNA-seq, each row represents a RT cell and the horizontal 
dashed line separates the RT cells identified in the time points previous to the diagnosis of RT (that is, seed RT cells) from those present in the sample 
collected at time of diagnosis of RT. Note that CLL cells were used as reference for CNA analyses using scRNA-seq data.
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Extended Data Fig. 9 | Epigenomic characterization of RT. a. Heatmaps showing the regions with decreased H3K27ac, increased ATAC, and decreased 
ATAC levels, respectively, in RT. b. Overlap of differentially expressed genes by bulk RNA-seq with regions with increased or decreased H3K27ac and 
ATAC levels, respectively. c. Heat map showing differentially methylated CpGs (DMC) between CLL and RT. Normal B cells, CLL, CLL at relapse, and RT 
samples are shown separately with different biological information on top. The correlation of each CpG with the epiCMIT is depicted on the right. To 
note, the epiCMIT is associated with the gain and loss of methylation upon cell division, but its transformation to 0-1 scale (for interpretability purposes) 
makes it anticorrelated with hypomethylation, as the epiCMIT=max{epiCMIT-hyper, epiCMIT-hypo}, being the epiCMIT-hyper=hypermethylation, 
and the epiCMIT-hypo=1-hypomethyaltion at relevant CpGs, as originally reported49. d. Genomic enrichment over the background for hyper- and 
hypomethylated CpGs in CLL vs RT. e. DMC distribution based on their genetic annotation and their intersection with differentially expressed genes by 
bulk RNA-seq analyses. f. DMC distribution based on the correlation of each CpG with the epiCMIT and their p values. CpGs were piled up in color-coded 
bins based on the number of CpGs in each bin to avoid overplotting. g. epiCMIT evolution in longitudinal CLL and RT samples, with the epiCMIT-hyper and 
epiCMIT-hypo scores depicted separately (RT samples being the last time point labeled in rose). The epiCMIT score used to compare among samples is 
the greater of the two (hyper and hypo).
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Extended Data Fig. 10 | Transcriptomic characterization of RT. a. Volcano plot of the differential expression analysis (RT vs CLL, bulk RNA-seq). 
b. Expression levels of selected genes in CLL and RT according to bulk RNA-seq. center line, median; box limits, upper/lower quartiles; whiskers, 
1.5×interquartile range; points, individual samples. c. Differentially expressed genes (RT vs CLL) for each case by scRNA-seq. d. GSEA plots of selected 
hallmark gene sets according to bulk RNA-seq analyses. NES, normalized enrichment score. e. UpSet plots highlighting the intersections of the 
case-specific upregulated (top) and downregulated (bottom) GO terms in RT by scRNA-seq. f. GSEA plots for the terms oxidative phosphorylation 
(OXPHOS), mitochondrial translation, and BCR signaling pathway for cases 12, 63, and 365 based on scRNA-seq. g-j. scRNA-seq-derived UMAP 
visualization of tumor cells from all time points colored by OXPHOS and BCR signaling score (left). Ridge plots showing the same scores across clusters 
(middle). Violin plots displaying the same scores across time points, stratified by CLL and RT clusters (right). k. Violin plots displaying the OXPHOS and 
BCR signaling scores across time points, stratified by CLL and RT clusters, in case CLL9 from Penter et al43. l. GSEA between RT and CLL cells of patient 
CLL9 from Penter et al.43.
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Chronic lymphocytic leukemia (CLL) is a disease commonly
diagnosed in the elderly with a median age of ~70 years.
However, CLL can also be detected in adolescent and young
adults (AYA). According to different studies, 0.85–3.7% of patients
with CLL are diagnosed in AYA and 3% of these patients had a
first-degree relative with CLL [1]. Families with multiple individuals
affected with CLL and other related B-cell tumors have been
described with contradictory findings regarding their potential
early age at diagnosis [2]. Despite these observations, our
knowledge about the molecular profile and predisposing factors
in AYA CLL is scarce [3, 4].
Comprehensive studies have dissected the (epi)genomic, and

transcriptomic landscape of CLL [5]. Approximately 9–18% of CLL
harbor del(11q) which occurs in younger patients with bulky
disease and poor survival. These deletions are frequently
associated with germline and acquired mutations of ATM [6].
Patients with the inherited disorder ataxia telangiectasia have
biallelic alterations of the ATM gene and increased susceptibility to
lymphoid malignancies [7]. Rare, protein-coding germline ATM
variants are associated with CLL in adults [8]. However, ATM
mutations are uncommon in familial CLL [9].
Here, we describe an 18-year-old woman diagnosed with CLL

whose family history included a younger brother with B-cell
acute lymphoblastic leukemia (B-ALL) and other family members
carrying germline ATM mutations. A combination of whole-
genome and single-cell characterization of this CLL at diagnosis
and during the course of the disease provided an opportunity to
understand the genomic profile of AYA CLL and the sequence of
events driving its evolution.
An 18-year-old female was diagnosed with CLL, Binet-Rai stage

AI, at another institution, in the study of a lymphocytosis detected
in a routine blood test. She had a past medical history of anxiety-
depressive syndrome during childhood and chronic headache, but
no neurological symptoms were reported. The patient had a
younger brother diagnosed with B-ALL when he was 3 years old,
and was in complete remission 13 years later, and an older sister
with epilepsy. Her parents were both healthy.
At the time of CLL diagnosis, the patient was asymptomatic

with a normal physical exam. Her white blood cell count (WBC)
was 9.08 × 109/L, with 75% lymphocytes. Hemoglobin and platelet
count were normal. Peripheral blood smear showed small atypical
lymphocytes consistent with CLL, which phenotype was CD5+,
CD23+, CD43+, CD200+, CD10−, CD20 and CD22 weakly positive
with weak kappa light chain restriction. The fluorescence in situ
hybridization (FISH) analysis for ATM (11q22), D12Z3 (cen 12), DLEU
(13q14.3), LAMP1 (13q34), and TP53 (17p13) were normal. One
year after diagnosis, the patient received two cycles of rituximab

plus fludarabine and cyclophosphamide (FCR) due to progressive
disease, achieving a complete remission. The patient was then
referred to our hospital. Physical examination was normal without
evidence of lymphadenopathy or splenomegaly. WBC count was
2 × 109/L with 10% lymphocytes, hemoglobin 117 g/L, and normal
platelet count. Watchful waiting was recommended. Five years
later, the CLL progressed with increased lymphocytosis, inguinal,
axillary, and laterocervical lymphadenopathy (2–3 cm) and sple-
nomegaly of 4 cm below the costal margin. At that time, the
karyotype was 46,XX,del[13](q12q21)[6]/46,XX[10] and a hetero-
zygous del(13q14.3) was detected by FISH in 92% of nuclei. FISH
for ATM, D12Z3, and TP53 were normal and no TP53 mutations
were observed. The sequence of the IGHV genes showed a clonal
rearrangement of the IGHV3-21 with 100% homology to the
germline, not belonging to any major stereotype subset
(Supplementary Tables 1, 2). Due to CLL progression, ibrutinib
420mg per day was started and the patient achieved a partial
response. However, after 20 months, ibrutinib had to be discon-
tinued due to the severe diarrhea and acalabrutinib 100mg every
12 h was started. Progression of CLL was observed after 13 months
of treatment and rituximab and venetoclax were initiated (Fig. 1A).
The patient was included in the CLL program of the

International Cancer Genome Consortium and the whole genomes
of the germline and tumor sample at diagnosis were sequenced
[5]. No somatically-acquired driver alterations were detected but
three germline ATM mutations were identified, including a
pathogenic 28-base frameshift deletion (p.N3003Dfs*6) and two
missense single nucleotide variants (p.K2204M and p.Y1961C).
Although the p.K2204M missense variant has not been identified
in previous studies, the p.Y1961C has been reported in a CLL
patient and its modeling showed reduced ATM kinase activity [10].
Based on this result, we studied the segregation of these
mutations in the family members by Sanger sequencing. The
mother harbored the frameshift deletion, while the father and
the sister carried the two missense variants. Both the patient and
her brother with B-ALL inherited all three variants (Fig. 1B,
Supplementary Tables 3, 4). A milder ataxia telangiectasia
phenotype, where the disease progresses at a slower pace, has
been observed in patients with reduced levels of ATM kinase
activity [11]. At time of last follow-up the two siblings (28 and
16 years old) had not developed neurological symptoms.
To better unfold the contribution of somatic alterations during

the evolution of the disease, whole-genome sequencing (WGS)
was performed at 3 additional time points over a period of 8 years
and complemented with single-cell DNA-sequencing (Fig. 1A,
Supplementary Table 1). Using a longitudinal sample-aware
mutation calling pipeline that increases sensitivity, we identified
689 genome-wide and 7 non-synonymous variants in the WGS at
diagnosis, increasing up to 1779 genome-wide and 18 non-
synonymous at the latest sample analyzed. Among them, four
mutations were found in CLL driver genes over the course of the
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disease: XPO1 (p.E571K), SF3B1 (p.G742D),MGA (p.C1238G), and POT1
(p.C44S). The mutations in XPO1 and SF3B1 were already present at
diagnosis but were missed in our previous study [5] due to their very
low frequencies. After 4 years (time point 2), their clonal size
expanded, and the remaining two driver mutations inMGA and POT1
were detected. Regarding structural alterations, only del(13q) was
clonally detected at the second time point and onwards (Fig. 1C,
Supplementary Methods, Supplementary Tables 5, 8).
Somatic driver alterations were present at different allele

frequencies through the disease course, suggesting an ongoing
clonal evolution driving the pre- and post-treatment progression of
the disease. To dissect the underlying clonal evolution, we
reconstructed the subclonal evolution and explored the mutational
processes active during the CLL course (Fig. 1D, Supplementary
Methods, Supplementary Tables 9, 10). This analysis revealed a
branching pattern of evolution in which the founding CLL clone
did not carry any recognized driver alteration beyond the ATM
germline variants. Additionally, two minor subclones were already
present at diagnosis: subclone #3 carrying del(13q), XPO1 andMGA,
and subclone #4 which originated from subclone #3 and acquired
the SF3B1 mutation (Fig. 1D). These lineage trajectories are in line
with previous literature in which ATM loss preceded del(13q) in a
familial CLL study [12] and with a recently described combinatorial
effect of ATM loss and SF3B1 mutation [13]. Intriguingly, these
small subclones at diagnosis expanded after treatment with FCR,
that, on the other hand, reduced or eliminated the initial subclones
#1 and #2, with no additional CLL drivers, suggesting that
decreased competition allowed the expansion of subclones
carrying potent drivers. Of note, subclone #4 carrying the SF3B1

mutation represented the largest subpopulation of cells at relapse
post-treatment with FCR (time point 2), in line with the poor
prognosis of SF3B1 mutated cases under FCR therapy [14].
Nonetheless, this subclone slightly diminished at time point 3
and was virtually eradicated at time point 4 after treatment with
ibrutinib, which is in line with the higher sensitivity of SF3B1
mutated CLL cells to BCR inhibition in vitro [13]. Additional
diversification was observed in subclone #3 at time point 2 which
led to the emergence of subclone #6 harboring the POT1mutation.
This subclone expanded under ibrutinib treatment and accounted
for 54% at the last time point analyzed 3 years after its detection
(Fig. 1D). To confirm these evolutionary trajectories, we performed
single-cell DNA-sequencing of 32 CLL driver genes and identified
the reported mutations in XPO1, SF3B1, and POT1 [note that MGA
was not included in the commercial gene panel used]. This single-
cell analysis confirmed the timing of acquisition of these driver
mutations and the clonal dynamics inferred from WGS (Fig. 1E,
Supplementary Methods, Supplementary Tables 11, 14).
Here we have reported the 8-year genomic evolution of a CLL

diagnosed in a young patient that inherited three ATM variants,
two of them previously reported to inactivate or reduce ATM
activity (Supplementary Table 4) [10]. The combination of these
three germline ATM variants predisposed to two distinct B-cell
neoplasm in two siblings. These ATM variants represented the only
recognized driver events in the founding CLL clone, suggesting
that ATM inactivation might be a genomic factor contributing to
CLL initiation. Tumor evolution and disease progression was
dictated by the acquisition of secondary driver alterations, which
could be detected in small subclones years before their expansion,
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and by different types of treatment that influenced subsequent
clonal dynamics. Of note, this patient responded well to initial FCR
therapy and later to ibrutinib treatment when ATM inactivation
was accompanied by an SF3B1 mutation, which is in line with the
favorable clinical behavior of del(11q) CLL under BTK inhibitors
[15]. Altogether, the lack of somatically-acquired, genetic driver
alterations in the founding CLL of this patient emphasizes the
need to study the germline as well as non-genetic aspects of the
tumors to further understand the mechanisms leading to CLL.
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