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A B S T R A C T   

Recent increase in the adulteration of spices and aromatic herbs in food industry constitutes a problem that 
requires exhaustive quality control. As every spice has a different composition with characteristic biomarkers, 
chromatographic profiles are especially valuable to authenticate these products. Thus, in this work a new high 
performance liquid chromatography (HPLC) method with UV–vis detection was developed for the character-
ization, identification and authentication of cinnamon, oregano, thyme, sesame, bay leaf, clove, cumin, and 
vanilla. Chromatographic separation was optimized based on the separation of six characteristic biomarkers 
(sesamol, eugenol, thymol, carvacrol, salicylaldehyde and vainillin) and was performed using a C18 reversed- 
phase column under a 35 min gradient elution based on 0.1% (v/v) formic aqueous solution and methanol by 
means of UV–Vis detection at 280 nm. 87 samples, purchased in local supermarkets, were analyzed and the 
obtained profiles were processed by chemometric techniques. First, data treatment was evaluated by principal 
component analysis (PCA); next soft independent modelling by class analogy (SIMCA) and partial least squares 
discriminant analysis (PLS-DA) were carried out in order to verify if classification according to their biomarkers 
was possible. The study concluded that PLS-DA (0.14–0.75% global error) classifies better the types of spice or 
aromatic herb than SIMCA (0.82–3.67% global error).   

1. Introduction 

Food authentication is defined as the analytical process that verifies 
label description of food products and it is a field of ongoing concern 
mainly due to increasing attention of our society in food quality and 
safety (Danezis et al., 2016). In particular, there is a special interest in 
food products containing bioactive compounds with health-promoting 
properties, which also may have a key role in food sensorial and func-
tional properties. In this sense, spices and herbs, which are a group of 
products that are used to add flavour and enhance organoleptic prop-
erties of food, are a rich source of phytochemicals (i.e., bioactive plant 
compounds with positive effects on health) such as phenolic compounds, 
terpenoids, carotenoids, phytosterols, alkaloids, sulfur-containing 

compounds, and organic acids such as citric (natural antioxidant) or 
ascorbic (vitamin C) (Opara & Chohan, 2014; Rubió et al., 2013; Yashin 
et al., 2017). In particular, phenolic compounds are a large class of 
chemical substances considered as secondary metabolites of plants that 
belong to a group of organic compounds that comprise an aromatic ring 
and a benzene ring with one or more hydroxyl groups including func-
tional derivatives. Phenolic compounds are extensively present in spices 
and herbs, and much attention has been devoted to these compounds not 
only due to their influence on different organoleptic parameters, such as 
taste or colour, but also owing to their antioxidant, antimicrobial and 
anti-carcinogenic potential (Pandey & Rizvi, 2009; Parthasarathy et al., 
2008; Quideau et al., 2011). Moreover, from an analytical perspective, 
phenolic compounds have been renowned as meaningful tools in the 
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study of food authenticity and fraud detection, since their profiles or the 
relative amounts of particular compounds are frequently characteristic 
of a certain plant, and any deviation from the authentic samples profile 
suggests fraudulent manipulation (Escarpa & Gonzalez, 2001; Ignat 
et al., 2011; Kartsova & Alekseeva, 2008; Khoddami et al., 2013). This is 
of particular importance considering that the market of spices and herbs, 
which involves substantial amounts of money, is under constant threat 
from fraudsters. Some condiments such as oregano, vanilla, turmeric, 
cinnamon, saffron, and paprika are especially susceptible to adulteration 
for economic gain at the expense of the consumer. This fraud entails a 
potential threat to public health since many adulterants are defined as 
carcinogenic or lethal when exposed to them for a long time. Moreover, 
it should be also considered that food labels may not be fully descriptive 
of the food content, which could lead to severe allergic reactions (Gal-
vin-King et al., 2018; Srirama et al., 2017). 

Therefore, in view of the foregoing, quality control and screening 
techniques are needed to create a correct control for both stakeholders of 
the supply chain and final consumers. In this sense, the most commonly 
used analytical technique for the characterization, identification and 
authentication of spices and herbs is liquid chromatography coupled to 
different detectors such as mass spectrometry (MS), ultraviolet–visible 
(UV–vis), electrochemical detection (EC) and fluorimetric detection 
(FD), since it can be typically applied to detect phytochemicals such as 
phenolic compounds (Serrano & Díaz-Cruz, 2022). 

Taking into account that every spice and herb have a different 
composition with dissimilar characteristic biomarkers, e.g., eugenol is 
one of the major constituent of clove and cinnamon, carvacrol of 
oregano, thymol of thyme, sesamol of sesame seeds, and vanillin of 
vanilla (Parthasarathy et al., 2008), the chromatographic profiles ob-
tained after performing the corresponding analysis can be exploited as a 
source of analytical data to characterize, identify and authenticate 
spices and herbs. 

In this direction, the current work investigates on the possibilities of 
merging liquid chromatography, to acquire profiles of the characteristic 
phenolic content of cinnamon, oregano, thyme, sesame, bay leaf, clove, 
cumin, and vanilla, with chemometric techniques for the extraction of 
characteristic profiles that allow the characterization, identification and 
authentication of considered spices and herbs samples. For this purpose, 
a reliable and simple HPLC method with UV–vis detection for the 
determination of characteristic phenolic profiles in the analysis of spices 
and herbs samples was developed. A total of six phenolic compounds 
(sesamol, vanillin, salicylaldehyde, eugenol, carvacrol and thymol) 
characteristic of studied spices and herbs were considered for the opti-
mization of the chromatographic separation. A simple and low cost 
sample treatment, based on an extraction by sonication with methanol 
and subsequent stirring, was implemented for the analysis of different 
types of cinnamon, oregano, thyme, sesame, bay leaf, clove, cumin, and 
vanilla. Chromatographic data were submitted to chemometric methods 
such as unsupervised principal component analysis (PCA) for explor-
atory data analysis, and supervised soft independent modelling by class 
analogy (SIMCA) and partial least squares discriminant analysis (PLS- 
DA) to evaluate sample discrimination and classification. 

2. Experimental section 

2.1. Chemicals and instrumentation 

Methanol HPLC Gradient grade (≥ 99.9%, Fisher Scientific, Geel, 
Belgium), formic acid (98%, PanReac AppliChem, Barcelona, Spain), 
and Milli-Q reference A+ water purification system (Millipore, France) 
were used for mobile phase preparation. Phenolic compounds, including 
sesamol, eugenol, thymol, carvacrol, salicylaldehyde and vanillin, were 
supplied by Acros Organics (Geel, Belgium). 1000 mg L− 1 standard stock 
solutions of each phenolic compound were prepared in methanol and 
stored at 4 ◦C. Milli-Q water was used for the preparation of diluted 
working solutions from standard stock solutions. 

HPLC-UV analyses were carried out by means of an Agilent 1200 
Series instrument (Palo Alto, CA, USA), which is comprised of a qua-
ternary pump (G1311A), an ultraviolet–visible detector (G1314B), an 
autosampler (G1329A) and a vacuum degasser (G1322A). The data were 
acquired and processed using Agilent ChemStation software. Reverse- 
phase separation in a Kinetex® C18 column (5 μm C18 100 Å, 100 ×
4.6 mm) supplied by Phenomenex (Torrance, CA, USA) under gradient 
elution mode using 0.1% formic acid in Milli-Q water and methanol was 
proposed for recording the HPLC-UV chromatograms. HPLC-UV chro-
matograms were captured at 280 nm keeping the chromatographic 
column at room temperature and using an injection volume of 10 μL. 
The mobile phase flow rate was 1 mL min− 1. 

2.2. Samples and sample preparation 

A total of 87 samples acquired in local supermarkets and corre-
sponding to different spices and herbs were analyzed in triplicate by 
HPLC-UV: cinnamon (16 samples), oregano (13 samples), thyme (12 
samples), sesame (12 samples), bay leaf (8 samples), clove (8 samples), 
cumin (9 samples), and vanilla (9 samples). Considered samples were 
chosen as eight representative examples of spices and herbs for 
seasoning meals or as a condiment. 

The different samples were treated as follows: 0.25 g of sample were 
weighed and 1 mL of methanol was added. The sample was sonicated for 
15 min and then stirred for 45 min at 1000 rpm. The supernatant ex-
tracts were filtered through 0.22 μm nylon filters and methanol was 
added up to 1 g. The obtained extracts were stored at − 18 ◦C until 
further analysis. 

2.3. Data treatment 

Samples were analyzed by HPLC-UV in triplicate and randomly in 
order to minimize systematic error (and to avoid introducing any trends 
in subsequent chemometric analysis), generating a total of 261 chro-
matographic profiles. Initially, six blanks of Milli-Q water were injected 
to stabilize the systems and, as a control, two more blanks were injected 
every ten analyzed samples. Chromatographic data were extracted from 
the instrument using the Agilent ChemStation software and processed in 
a Matlab® environment (Matlab Version R2021b Ed., 2021). Prior to the 
construction of chemometric models, HPLC-UV chromatograms were 
pre-treated to prevent any possible artefact derived from small time 
shifts or baseline drifts. Thus, firstly, baselines were adjusted using the 
baseline estimation and denoising with sparsity (BEADS) algorithm 
(Navarro-Huerta et al., 2017; Ning et al., 2014) using the following 
parameters: cut-off frequency = 0.003 cycles/sample, asymmetry ratio 
= 17, filter order = 1, λ0 = 0.1, λ1 = 1, λ2 = 10, and amplitude = 0.1. 
Once the baseline was adjusted, a peak alignment was performed with 
the function Variable Alignment using the correlation optimized warp-
ing (COW) algorithm, included in PLS_Toolbox (Eigenvector Research 
(PLS_Toolbox, Version 8.9.2, 2021)), with a section length of 50 and a 
slack of 5. Finally, the edges of chromatograms (before 50 s and after 30 
min) were discarded since they did not provide valuable information to 
the chromatographic profile. 

Principal component analysis (PCA), soft independent modelling of 
class analogies (SIMCA) and partial least squares – discriminant analysis 
(PLS-DA) models were built using PLS_Toolbox, which is implemented 
in Matlab. For PLS-DA and SIMCA, samples of each class were randomly 
distributed between a training and validation set following approxi-
mately a 60:40 ratio. The final training and validation sets contained 56 
and 31 samples, respectively, corresponding to a 64% and 36% of the 
total samples. The optimal PLS-DA model consisted in 7 latent variables 
(LV), which were chosen according to the first minimum in the average 
classification error obtained in cross validation performed using the 
venetian blinds sample split (Fig. S1, see supplementary material). 
SIMCA model was compiled using the following number of principal 
components (PC) in each individual PCA model: cinnamon (2 PCs), 
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oregano (4 PCs), thyme (3 PCs), sesame (2 PCs), bay leaf (1 PC), clove (4 
PCs), cumin (4 PCs), and vanilla (2 PCs). This number of PCs was 
selected according to the % of variance explained. 

3. Results and discussion 

3.1. HPLC-UV optimization 

Firstly, in order to develop the chromatographic method, the chro-
matographic separation was optimized based on six phenolic com-
pounds: sesamol, eugenol, thymol, carvacrol, salicylaldehyde and 
vanillin, which are important and characteristic constituents in the 
spices and aromatic herbs studied (Parthasarathy et al., 2008). This 
optimization sought to achieve the best separation in the shortest 
possible time as well as to procure a chromatographic profile rich in 
phenolic compounds that would allow the discrimination among 
different types of spices. Taking into account that the six phenolic 
compounds are structurally similar, the use of an elution gradient to 
perform the separation was considered. 

The best separation was achieved with the following elution gradient 
program between 0.1% formic acid in Milli-Q water (solvent A) and 
methanol (solvent B): 0–2 min, linear gradient from 5 to 20% solvent B; 
2–6 min, isocratic elution at 20% solvent B; 6–9 min, from 20 to 50% 

solvent B; 9–26 min, at 50% solvent B; 26–28 min, from 50 to 95% 
solvent B; 28–32 min, at 95% solvent B; and 32–35 min, from 95 to 5% 
solvent B. Between injections, an isocratic elution at 5% solvent B during 
5 min was used for column reequilibration. Fig. 1a displays the HPLC-UV 
chromatogram obtained under the optimized gradient conditions for a 
standard mixture of the studied phenolic compounds at a concentration 
of 15 mg L− 1 each. As it can be seen, an acceptable separation of the 
mixture was attained in 35 min. 

In the optimization of the chromatographic method it was also 
important to consider the detection step. The optimal working wave-
length to perform the UV detection of phenolic compounds was studied 
in the range from 240 to 360 nm (Fig. 1b). The wavelength chosen as 
optimal was 280 nm since, as it can be seen in Fig. 1b, at this wavelength 
the peaks corresponding to the six studied compounds could be identi-
fied and most of them were more intense than those achieved at other 
wavelengths. This optimal wavelength is in agreement with that re-
ported in the literature for direct UV-absorption detection of poly-
phenols and phenolic acids (Cetó et al., 2018; Pardo-Mates et al., 2017). 

3.2. Sample analysis 

The 87 samples of spices and herbs, previously treated by the pro-
cedure described in section 2.2, were analyzed in triplicate by the 
optimized HPLC-UV method. Fig. 2 shows the characteristic chromato-
graphic profiles registered for each type of sample. 

As shown in Fig. 2, the chromatographic profiles obtained for the 
different spices and aromatic herbs studied are, in general terms, 
significantly different from each other, being able to identify some of the 
characteristic biomarkers of each studied spice and herb such as eugenol 
in clove, cinnamon and bay leaf; salicylaldehyde in cinnamon; or 

Fig. 1. a) Chromatografic profile (blue line) obtained with the optimized 
gradient elution (red line) for the separation of sesamol (1), vanillin (2), sali-
cylaldehyde (3), eugenol (4), carvacrol (5), and thymol (6), all of them at 15 
mg L− 1 and performing the detection at 280 nm. b) Optimization of the working 
wavelength for UV-detection, using the same conditions as in (a). (For inter-
pretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 2. Characteristic chromatographic profiles recorded at 280 nm for each 
type of spice. 
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vanillin in vanilla. Nevertheless, it should be noted the considerable 
similarity existing between the chromatographic profiles of oregano and 
thyme, which is attributed to the fact that both herbs have a very similar 
composition (Gavaric et al., 2015; Parthasarathy et al., 2008). Among 
the compounds that are common in both herbs we can find, for example: 
γ-terpinene, linalool, borneol, thymol methyl ether, carvacrol methyl 
ether, trans-caryophyllene and caryophyllene oxide, all with a similar 
weight in the composition of both oregano and thyme, but not being the 
majority. Apart from these compounds both herbs also contain carvacrol 
and thymol, which are the two major compounds in both oregano and 
thyme. However, both herbs differ in the ratio of these compounds: 
oregano contains more carvacrol than thymol, whereas thyme has a 
higher content of thymol than carvacrol. 

The above-mentioned existing differences in the chromatographic 
profiles obtained by the developed HPLC-UV method for the different 
spices and herbs considered, suggest that the chromatographic profiling 
combined with the appropriate chemometric techniques, could be fully 
suitable for the characterization, identification and authentication of 
considered spices and herbs samples. 

3.3. Sample classification by means of SIMCA and PLS-DA 

Prior to the development of classification models, data preprocessing 
was optimized in order to avoid variability related to instrumental ar-
tifacts such as peak shifting and baseline irregularity. This optimization 
was based on an objective criteria that employs Silhouette (Kaufman & 
Rousseeuw, 1990) as an index to measure the obtained clusterization 
after the addition/subtraction of each preprocessing step. The optimized 
data preprocessing, which is summarized in Fig. 3, included three steps: 
i) baseline correction based on BEADS algorithm; ii) peak alignment by 
means of COW; and iii) data selection. Detailed information about this 
optimization can be found in Supplementary Material. 

Quantitative separation among the different types of spices consid-
ered was first assessed by means of SIMCA, a linear method based on 
PCA able to discriminate between a high number of classes. For this 
purpose, the 87 samples were divided into a training and validation sets 
and individual identification models were built for each class as 
described in Section 2.3. As displayed in Fig. 4, relatively good results 
were obtained for the training set using this method, although a few 
samples of sesame and thyme were misclassified as oregano and bay 
leaf, respectively. This confusion can be attributed to the closeness of 

Fig. 3. Data processing applied to chromatographic profiles and its effect on the separation observed in the scores of the PCA models generated. Effect of each 
processing step is exemplified with the chromatographic profile of a cinnamon sample. SI: Silhouette index. 
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these types of spices in the scores obtained in the PCA model (see Fig. 3, 
processed data). However, much poorer results were attained in the 
validation set, where not only sesame and thyme samples were mis-
classified but also a few replicates of clove, oregano and vanilla were 
assigned to cinnamon (Fig. 4), leading to a global classification error of 

3.67% in the external validation. This error in classification could be 
attributed to the close proximity of some classes observed in PCA scores, 
as SIMCA model is built from the assembling of individual PCA models 
constructed based on the direction of highest variation for each class, 
which is not necessarily the same direction as that of maximum 

Fig. 4. Most probable prediction plot for SIMCA model constructed using data from pretreated chromatographic profiles.  

Fig. 5. Scores diagram (a), most probable prediction (b), and VIP scores (c) plots for PLS-DA model constructed using data from pretreated chromatographic profiles. 
For VIP scores dashed red line represents the threshold value of 1. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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separation between classes (Bylesjö et al., 2006). Aiming for a better 
classification, a PLS-DA model was considered. PLS-DA is a linear 
method based on PLS in which class sample is employed as response 
matrix, thus maximizing class-separation. Fig. 5a shows the scores dia-
gram obtained with PLS-DA built using 7 LVs, which is quite different 
from the analogous PCA plot but still reveals cinnamon, clove and cumin 
as the three spices better resolved. The classification obtained for the 
training set is slightly better than that attained by SIMCA, with only one 
replicate of bay leaf and, the three replicates of one sample and one 
replicate of another sample of thyme incorrectly described by the model 
(Fig. 5b). Nevertheless, the major improvement as compared to SIMCA is 
the classification achieved for the validation set, in which a global 
classification error of 0.14% was achieved, and only one bay leaf 
replicate was misclassified as sesame. PLS-DA and SIMCA were quanti-
tatively compared in terms of sensitivity (ability to detect true posi-
tives), specificity (ability to detect true negatives) and classification 
error (model ability to perform a correct classification, considering both 
true positives and true negatives). As it can be observed in Table 1, both 
methods provided similar results for the training set, with only a few 
values of sensitivity and specificity below 1 and a total global error of 
0.75% and 0.82% for PLS-DA and SIMCA, respectively. Nevertheless, 
PLS-DA clearly outperformed SIMCA for the validation set, demon-
strating higher sensitivity and specificity as well as lower global error. 
The better performance of PLS-DA is likely attributed to its ability to 
maximize class separation, which is particularly important in this case as 
PCA scores show low within-class variability but close proximity be-
tween some of the considered classes (Bylesjö et al., 2006). 

An interesting aspect of PLS-DA is the information provided by the 
loadings, which are most frequently studied through the VIP scores. A 
close inspection to VIP scores for each class (Fig. 5c) revealed that the 
relevant variables for the classification (these above 1, red dashed line in 
Fig. 5c) are placed in the time regions where the chromatographic peaks 
of characteristic substances considered in the optimization of the chro-
matographic separation appear, but they also cover other parts of the 
chromatogram. It is observed that the vanillin peak region (retention 
times: 9.00–9.58 min) contributes significantly to the classification of all 
classes of samples. The same happens with sesamol (retention times: 
8.40–8.75 min), which contributes to the classification of all spices with 
the exception of cinnamon and thyme. Although vanillin and sesamol 
should not be present in all considered spices, it could happen that other 
relevant compounds with similar characteristics exist eluting in this 
region. This aspect should be studied more thoroughly with techniques 
allowing a more qualitative view such as mass spectrometry. The 

eugenol region (retention times: 15.25–16.37 min) is only important for 
clove and slightly contributes to the classification of thyme. Finally, the 
regions of carvacrol (retention times: 24.87–25.60 min) and thymol 
(retention times: 26.80–28.00 min) are only important in the classifi-
cation of oregano and thyme, respectively, which is in accordance to 
these two chemical spices being the main components of oregano and 
thyme. 

4. Conclusions 

The merging of HPLC-UV with chemometric methods has been 
demonstrated to be a satisfactory approach for the characterization, 
identification and authentication of cinnamon, oregano, thyme, sesame, 
bay leaf, clove, cumin, and vanilla samples, providing a quality control 
and screening tool to ensure a correct assurance of studied spices and 
herbs. 

Firstly, the HPLC-UV conditions were optimized for the determina-
tion of six characteristic biomarkers (sesamol, eugenol, thymol, carva-
crol, salicylaldehyde and vainillin), achieving a good chromatographic 
separation with an analysis time lower than 35 min using UV–Vis 
detection at 280 nm. 

The exploratory study by PCA showed the usefulness of the proposed 
three-step data pretreatment based on baseline removal, peak shifting 
correction and edge removal for the discrimination of the spices and 
herbs studied. 

The developed SIMCA and PLS-DA models were able to discriminate 
between the eight classes of spices and aromatic herbs considered. 
However, it should be noted that although the analysis by SIMCA has 
provided a correct classification, the model obtained has lower sensi-
tivity and selectivity, with a higher overall prediction error. Thus, it can 
be concluded that PLS-DA is the most effective chemometric method for 
the characterization, identification and authentication of the spices and 
herbs samples studied. 
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Coque, M. C. (2017). Assisted baseline subtraction in complex chromatograms using 
the BEADS algorithm. Journal of Chromatography A, 1507, 1–10. https://doi.org/ 
10.1016/j.chroma.2017.05.057 

Ning, X., Selesnick, I. W., & Duval, L. (2014). Chromatogram baseline estimation and 
denoising using sparsity (BEADS). Chemometrics and Intelligent Laboratory Systems, 
139, 156–167. https://doi.org/10.1016/j.chemolab.2014.09.014 

Opara, E., & Chohan, M. (2014). Culinary herbs and spices: Their bioactive properties, 
the contribution of polyphenols and the challenges in deducing their true health 
benefits. International Journal of Molecular Sciences, 15, 19183–19202. https://doi. 
org/10.3390/ijms151019183 

Pandey, K. B., & Rizvi, S. I. (2009). Plant polyphenols as dietary antioxidants in human 
health and disease. Oxidative Medicine and Cellular Longevity, 2, 270–278. https:// 
doi.org/10.4161/oxim.2.5.9498 

Pardo-Mates, N., Vera, A., Barbosa, S., Hidalgo-Serrano, M., Núñez, O., Saurina, J., 
Hernández-Cassou, S., & Puignou, L. (2017). Characterization, classification and 
authentication of fruit-based extracts by means of HPLC-UV chromatographic 
fingerprints, polyphenolic profiles and chemometric methods. Food Chemistry, 221, 
29–38. https://doi.org/10.1016/j.foodchem.2016.10.033 

Parthasarathy, V. A., Chempakam, B., & Zachariah, T. J. (Eds.). (2008). Chemistry of 
spices. Wallingford, UK ; Cambridge, MA: CABI Pub.  

PLS_Toolbox, Version 8.9.2. (2021). 
Quideau, S., Deffieux, D., Douat-Casassus, C., & Pouységu, L. (2011). Plant polyphenols: 
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