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Abstract: 

Microbiomes are vast communities of microbes and viruses that populate all natural 

ecosystems. Viruses have been considered the most variable component of microbiomes, as 

supported by virome surveys and examples of high genomic mosaicism. However, recent 

evidence suggests that the human gut virome is remarkably stable compared to other 

environments. Here we investigate the origin, evolution, and epidemiology of crAssphage, a 

widespread human gut virus. Through a global collaboratory, we obtained DNA sequences of 

crAssphage from over one-third of the world’s countries, showing that its phylogeography is 

locally clustered within countries, cities, and individuals. We also found colinear crAssphage-like 

genomes in both Old-World and New-World primates, challenging rampant viral genomic 

mosaicism and suggesting that the association of crAssphage with hominids may be millions of 

years old. We conclude that crAssphage is a benign globetrotter virus that has co-evolved with 

the human lineage and an integral part of the normal human gut virome. 

 

Main Text: 

Phages, viruses that infect bacteria and archaea, are considered to be the most diverse 

organisms in any ecosystem, including the human microbiome. They are critical for the control 

of bacterial populations in the human intestine, with an estimated ~5 x 109 phages per gram of 

human feces versus ~9 x 1010 bacteria(1, 2). Phages are thought of as transient killers that 

decimate the most abundant bacterial hosts in a population before waning, allowing resistant 

strains to emerge and contributing to a dynamic and diverse microbial community(3–5). 
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Evolutionary and genomic studies have suggested that these dynamic phage-host interactions 

are reflected in phage genomes, which show high sequence diversity and mosaicism(6, 7). 

Studies of native phages in marine aquatic ecosystems have shown that they only persist in the 

environment for one to two days(8–10), but those dynamics may be drastically different in the 

human gut microbiome, where phages can persist for over a year(11, 12). Moreover, several 

studies have found phages that are widespread and shared among the microbiomes of different 

individuals(13, 14), although the intestinal virome can also differ dramatically between 

people(11, 12). 

 

CrAssphage is stable in the human gut 

We assessed the origin, evolution, and epidemiology of one of the most ubiquitous human gut 

viruses to understand the stability of the human gut virome. We previously recovered the 

crAssphage sequence from over half of 466 fecal metagenomics datasets(13). This data 

allowed us to screen the crAssphage genome for regions that were present in many different 

datasets, where variable segments were flanked by conserved regions suitable for targeting by 

PCR primers, identifying three amplicon regions of ~1.3 kilobases (see Methods). We tested 

fecal samples from 45 healthy individuals from four cities on two continents and found that 

almost half of these volunteers (21 individuals) were crAss-positive. We followed six individuals 

over two months, showing that crAssphage status was quite stable in time (Fig. 1). While the 

titers sometimes fell below the detection limit likely due to sampling bias and/or ecological 

dynamics, DNA sequencing revealed that crAssphage strains from one individual tend to be 

phylogenetically clustered. To confirm this, we recovered twenty different crAssphage genomes 

from the fecal viromes of three adult female twin pairs and their mothers, using the same 
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datasets that we originally used to discover crAssphage(11, 13) and built a phylogenomic tree. 

Genomes sampled up to one year apart from the same individual clustered together in the tree 

(Fig. S1), consistent with a model of intra-individual evolution of gut virome populations that are 

stable in time(11, 12). CrAss-positive individuals probably acquire crAssphage at a young age, 

and its specificity for the human gut and sewage shows that humans are the major known 

reservoir(13, 15–17), although it is occasionally found in wastewater from non-human 

sources(17) and was recently identified in a termite gut metagenome from a New Orleans city 

park(18). 
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Fig. 1. CrAssphage presence/absence status is stable over time in the human gut. A-F: 

Timelines showing the crAssphage status of six volunteers between April and July 2017. Circled 

dates were tested, black and white circles indicating crAss-positive and crAss-negative samples, 

respectively. CrAssphage status was always consistent between amplicons A, B, and C. G-I: 

Unrooted maximum likelihood phylogenies of amplicons A-C show clustering of the sequences 

by volunteer (note: not all crAss-positives could be sequenced). Branches with <60% bootstrap 

support were collapsed, values <100% are displayed. 

 

CrAssphage is globally distributed and locally clustered 

The phylogenies in Fig. 1G-I and Fig. S1 suggested that individuals have a dominant and stable 

crAssphage population in their gut microbiome, but these results might be skewed by PCR 

amplification or metagenome assembly. While higher order groups including species and 

genera remain controversial in viral taxonomy(19), strains can readily be defined as unique 

sequences(20). To analyze how many strains could co-occur within one sample, we 

downloaded 95,552 metagenomics datasets from all environments from the Sequence Read 

Archive(21). Using a strain-resolved bioinformatics pipeline developed for this analysis(22) (see 

Methods), we extracted the three amplicon regions from 2,216 datasets, most of which 

contained only a single crAssphage strain (Fig. 2). One strain of amplicon C was independently 

identified up to 104 times in different datasets (listed in Supplementary File 1), showing the 

ubiquity of some strains around the world. It has been suggested that crAssphage is not 

acquired early in life(23), but our global analysis identified crAssphage in at least 134 infant 

samples (26 with locality information, see Supplementary File 2), confirming recent incidental 

findings(23, 24). Interestingly, the two samples with the most diverse crAssphage populations 
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are from young individuals, including a healthy USA child(25) containing up to 1,409 strains and 

a one-year old Finnish infant(26) containing up to 748 strains (Fig. 2; Supplementary File 3). 

Still, our phylogenomic tree based on the twin study(11) suggests that crAssphage is not always 

vertically transmitted since none of the daughter strains cluster with their mothers (Fig. S1). 

 

 

Fig. 2. Diversity of crAssphage strains in metagenomic samples. Strains for three amplicon 

regions A, B, and C were detected with Gretel(22) in 2,216 metagenomes (see Supplementary 

File 3). 

 

To investigate the global phylogeography of crAssphage, we collected data about the three 

amplicon regions from various sources and combined them in a large-scale phylogenetic 

analysis, providing the first worldwide overview of the evolution of an epitome of the human gut 

virome (Table S1). First, we launched a global collaboratory to amplify and sequence the three 
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regions of the crAssphage genome from local sites. To obtain the highest expected rate of 

detection, collaborators sampled wastewater treatment plants. We combined these sequences 

with data from the COMPARE sewage sampling project (http://www.compare-europe.eu/), and 

the sequences from our metagenomics searches and individual volunteers found above. 

Together, we analyzed 32,273 different crAssphage sequences from at least 67 countries on six 

continents (34% of the countries in the world, see Fig. 3, Fig. S2, and Supplementary File 2). 

We reconstructed phylogenetic trees for the subset of strains with locality information and 

assessed the distribution of associated sampling metadata by using permutation statistics(27). 

Sequences from the same country, location, and sampling date are significantly clustered in the 

phylogeny (p<0.001, see Fig. S3-S4), and the genetically most similar other strain tends to be 

geographically close (Fig. 3). Thus, crAssphage is a cosmopolitan inhabitant of the human gut 

the world-over, with a geographically and temporally local sequence signature that may prove 

useful in future forensic applications of fecal contamination identification and detection(15–17, 

28). 
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Fig. 3. Global locations of 2,424 crAssphage strains (amplicon A, see Fig. S2 for  amplicons B 

and C). The number of samples at each location is reflected in the intensity of the black 

markers. For each strain, a link to the genetically most similar other strain is indicated with a red 

line, the intensity of which indicates similarity: circles indicate the most similar other strain at the 

same location, lines indicate links to different locations. Inset: samples from Europe. 

 

CrAssphage has evolved with humans 

The global distribution of crAssphage led us to ask the question whether this virus was present 

in early humans and has evolved with us as we spread out and colonized the planet. 

Alternatively, and consistent with the view of viruses as rapidly evolving entities, it is possible 

that crAssphage emerged recently, perhaps through recombination of other viruses, and spread 
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around the world either via factors related to the human host, e.g. the global food supply chain 

or international travel, or via the epidemiology of our intestinal bacteria. 

 

To assess the possible ancient association of crAssphage-like phages with the human lineage, 

we screened the datasets from our global survey for remote human populations. We found a 

few crAssphage-like sequences in fecal samples from rural Malawi and from the Amazonas of 

Venezuela(29) (see Table S2). In contrast, mummified gut samples from three pre-Columbian 

Andean mummies(30) and the European iceman(31) were all crAss-negative. While this could 

suggest that these individuals were crAss-negative, it is also likely that any crAssphage DNA 

has degraded over thousands of years, in the absence of viable gut bacteria to maintain their 

titers. 

 

Next, we sequenced and assembled fifteen fecal metagenomes from five species of non-human 

primates to search for crAssphage in our most distant relatives. None of the assembled 

nucleotide sequences matched the amplicon regions used above, as only short stretches of 

nucleotide homology were identified to the crAssphage genome(32). Surprisingly, many short 

homologous regions were found in several long sequences of ~90,000 nucleotides, and when 

displayed in a dot-plot, revealed a range of near-complete, distant crAssphage relatives in apes, 

Old-World monkeys, and New-World monkeys (Fig. 4). While those genomes were distantly 

related to crAssphage they were clearly colinear, showing the long-term genomic stability of this 

widespread gut virus. Clustering and alignment of translated protein sequences allowed us to 

reconstruct a phylogenomic tree of these genomes. This tree does not reflect the phylogeny of 

the hominids, instead reflecting the presence of multiple crAssphage-like species in the gut 
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virome of non-human primates, consistent with their higher gut microbiome diversity(33) and the 

coevolution of multiple populations of the likely crAssphage hosts(13, 34). 

 

 

Fig. 4. Unrooted maximum likelihood phylogeny and dotplots showing full genomic colinearity 

between crAssphage and ten long contigs assembled from fecal metagenomes of different 

hominids. The phylogeny is based on a concatenated protein alignment of homologous ORFs. 

All branches had 100% bootstrap support, one exception <50% was collapsed. Dotplots are 

based on high-scoring segment pairs (blastn E-value <0.001) between all contigs. The figure is 

to scale, numbers to the left of the dotplot indicating genome or contig lengths. Note that circular 

permutation of some genomes leads to apparently broken diagonals in some dotplots. 

 

CrAssphage belongs to the normal human virome 

To investigate the association of crAssphage with characteristics of the human host and the 

human microbiome, we investigated the correlation between fecal crAssphage abundance and 

14 

https://paperpile.com/c/0XTmR8/lqyU
https://paperpile.com/c/0XTmR8/lqyU
https://paperpile.com/c/0XTmR8/lqyU
https://paperpile.com/c/0XTmR8/xiNw+N9Jr
https://paperpile.com/c/0XTmR8/xiNw+N9Jr
https://paperpile.com/c/0XTmR8/xiNw+N9Jr
https://paperpile.com/c/0XTmR8/xiNw+N9Jr
https://paperpile.com/c/0XTmR8/xiNw+N9Jr


a range of host factors and microbial taxa. By exploiting shotgun metagenomes and host 

metadata from the LifeLines-DEEP cohort(35, 36), we correlated the abundance of crAssphage 

across 1,135 individuals with 207 exogenous and intrinsic human variables, including 78 dietary 

factors, 41 intrinsic factors, 39 diseases, 44 drug groups, 5 smoking categories (Supplementary 

File 4), and 490 microbial taxa (Supplementary File 5). We found significant but weak 

correlations with several diet categories (Benjamini-Hochberg <5% false discovery rate), 

including protein, carbohydrates, and caloric intake, basic food groups that are probably related 

to the dietary preferences of the crAssphage host bacteria(13, 35, 37–39). The most significant 

correlations of crAssphage with microbial taxa in the LifeLines-DEEP cohort included the family 

Prevotellaceae, consistent with our previous prediction that crAssphage infects bacteria of the 

Bacteroidetes phylum(13). Diverse dietary associations have been observed for different 

Bacteroidetes members, including the genus Bacteroides that was linked to a long-term 

Western diet rich in animal protein and sugars(40), while Prevotella and Paraprevotella were 

linked to low protein and high fiber(41). The most reliable computational phage-host signal to 

date(42) is a 100% matching CRISPR spacer in Porphyromonas sp. 31_2 isolated from human 

feces (Eugene Koonin, pers. comm.), another species within the Bacteroidetes. Given the 

potentially family-scale taxonomic diversity of crAssphages(18), it is likely that they infect a 

range of hosts throughout the Bacteroidetes phylum, leading to poor abundance correlations 

between crAssphage and different host groups, given (i) the taxonomic resolution that can be 

measured by metagenomic analysis and (ii) the rate of phage host-range evolution. The 

LifeLines-DEEP cohort did not reveal a significant relationship between crAssphage and any 

human health or disease parameters, consistent with a previous study showing absence of an 

association with diarrhea(24). As crAssphage abundance is not related to any health-related 

variables, we conclude that it is a part of the normal human virome(43). 
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Conclusions 

The human gut virome mainly consists of phages that infect the abundant and diverse bacteria 

living in our gut. Phages are generally thought of as transient entities in the environment, whose 

fast infection cycle and relatively error-prone replication machinery enable rapid co-evolution 

with their hosts, which in turn would be reflected in highly diverse viral (meta-)genome 

sequences(6, 7). Indeed, we found thousands of crAssphage strains throughout human 

feces-associated environments around the world. These strains are geographically and 

temporally clustered, consistent with rapid evolution and local dispersion. However, we also 

identified identical strains in up to 104 different samples from e.g. Denmark, France, Germany, 

Israel, Italy, Japan, and USA (Supplementary File 1). We suggest that this conservation 

primarily reflects recent spread by human global migration, although a crAssphage strain with 

potentially high fitness or environmental stability cannot be ruled out. Moreover, we identified 

highly divergent but fully colinear genome sequences in all major groups of hominids, 

suggesting that crAssphage has had a stable genome structure for millions of years, and a 

stable association with the hominid lineage and its microbiome(34) since our early ancestors 

began their great migration out of Africa. 

 

Recently, the extent of gene flux and genomic mosaicism has been proposed to differ between 

temperate and virulent phages(44). Virulent phages tend to be genomically stable, while 

temperate phages fall into either high or low gene flux modes. Thus, crAssphage may be 

virulent or temperate based on its genomic stability. Our results challenge the notion of rampant 
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genomic mosaicism in viruses, showing that phage genome structure can be remarkably 

conserved in the stable environment provided by the human gut. Based on our observations, 

components of the human gut virome may be remarkably stable over millions of years, reflecting 

the environmental stability of its niche. This high stability of the hominid gut also limits the ability 

of its specialized microbes and viruses to escape to other environments. Indeed, this specificity 

makes crAssphage one of the strongest human fecal contamination markers to date(15–17). 

Taken together, our results provide the first global overview of the phylogeography of one of the 

most abundant and widespread viruses in the human gut, with evidence of both an ancient 

evolution and ongoing local dispersion. 
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List of Supplementary materials: 

● Materials and Methods 
● Supplementary Figures 

○ Fig. S1. Phylogenomic tree of crAssphage genome sequences assembled from 
the Reyes twin study shows clustering of the strains by individual, with some 
samples taken up to one year apart1 yet clustering together in the tree. Sample 
tags indicate family number (F1 through F4) and mother (M) or twins (T1 and T2). 
All branches separating different individuals have bootstrap support >90%, 
except F2T1 and F2T2 that are not monophyletic. The scale bar indicates 0.01 
mutations per site of the concatenated protein alignment. 

○ Fig. S2. Global locations of 1,896 and 1,774 sequences from amplicons B and C, 
respectively. The number of samples at each location is reflected in the intensity 
of the black markers. For each strain, a link to the genetically most similar other 
strain is indicated in red: circles indicate the most similar other strain at the same 
location, lines indicate links to different locations. Inset: samples from Europe. 

○ Fig. S3. Unrooted maximum likelihood phylogeny of crAssphage sequences 
collected from different sources. Branches are colored by country (A-C) and by 
date (D-F) for amplicons A (A/D, 1,900 sequences after alignment trimming), B 
(B/E, 1,368 sequences), and C (C/F, 1,621 sequences). Note that some 
sequences were deleted after trimming the MUSCLE alignment. Trees were 
visualized with iTOL. 

○ Fig. S4. Geographical and temporal clustering statistics in the global phylogenetic 
trees of amplicon regions A (1,900 leaves), B (1,368 leaves), and C (1,621 
leaves). Branches with increasing bootstrap values were collapsed (IQ-tree 
provides SH-aLRT and UFBoot bootstrap values, see left and right panels, 
respectively) and the statistics calculated. Next, statistics were also calculated 
based on 1,000 permutations of the leaf labels in the phylogenetic tree, but these 
statistics were never higher than with the original leaf labels. 

○ Fig. S5. Sequencing trace of amplicon B from the wastewater treatment plant in 
Leuven, Belgium (sample 52GJ06_G04_B_F, see 
https://github.com/linsalrob/crAssphage/blob/master/Global_Survey/Sequences/r
aw_data/Lavigne/52GJ06_G04_B_F.ab1). The trace contains a single sequence 
for the first 227 nucleotides and then more than one sequence (presumably 
through an indel), rendering the trace unreadable. 

○ Fig. S6. Coverage of the crAssphage genome in 10,260 metagenomes. The 
predicted ORFs are shown below the genome position (x-axis) and the 
metagenomes are on the y-axis. Each position represents the log of the average 
sequence coverage over a 1kb window as shown in the scale bar. 
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○ Fig. S7. Relationship between the average per-base read depth as reported by 
samtools depth (including zero-coverage bases) and the number of strains 
recovered for amplicon A (Pearson’s r2=0.683; p<.001), B (Pearson’s r2=0.655; 
p<0.001), and C (Pearson’s r2=0.640; p<0.001). 

○ Fig. S8. Flow chart of the sequencing analysis. Biological sample processing are 
shown in green, files and databases in red, external software in yellow, and 
software developed for this project in blue. Hexagons indicate decision steps. 
Amplicon sequencing starts with generating the sequences, while the 
metagenomics pipeline starts with publicly available sequence data. Both 
pipelines use the same downstream processing steps to generate the trees. 

● Supplementary Tables 
○ Table S1. All crAssphage sequences collected from different sources. The 

numbers indicate: (i) total sequences identified, (ii) unique sequences, and (iii) 
sequences with locality information. The information per strain is provided in 
Supplementary File 2. 

○ Table S2. Number of crAssphage reads in fecal metagenomes from rural Malawi 
and the Amazonas of Venezuela. 

○ Table S3. Primer sequences. Primer A, expected product size: 1,331 bp. Primer 
B: 1,354 bp. Primer C: 1,238 bp. 

○ Table S4. PCR reaction mixture. 
○ Table S5. PCR amplification protocols. 
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