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Simple Summary: The mutational status of certain genes can be useful to advance therapeutic
decision making and clinical management of cancer patients. In metastatic colorectal cancer, cur-
rent clinicopathological factors employed in clinical practice have low or modest individual effect
on survival, leading to a poor ability to discriminate patients at high risk. Here, we obtained
data from metastatic colorectal cancer patients undergoing molecular testing by targeted gene se-
quencing, and we identified SMAD4 and FBXW7 mutated genes as negative prognostic markers
in TP53–driven tumors, which also improved the predictive performance to discriminate high–risk
patients beyond clinical factors alone. This negative prognostic impact of co–occurring SMAD4/TP53
and FBXW7/TP53 mutations was confirmed in an independent validation analysis using publicly
available data.

Abstract: Next–generation sequencing (NGS) provides a molecular rationale to inform prognostic
stratification and to guide personalized treatment in cancer patients. Here, we determined the
prognostic and predictive value of actionable mutated genes in metastatic colorectal cancer (mCRC).
Among a total of 294 mCRC tumors examined by targeted NGS, 200 of them derived from patients
treated with first–line chemotherapy plus/minus monoclonal antibodies were included in prognostic
analyses. Discriminative performance was assessed by time–dependent estimates of the area under
the curve (AUC). The most recurrently mutated genes were TP53 (64%), KRAS or NRAS (49%), PIK3CA
(15%), SMAD4 (14%), BRAF (13%), and FBXW7 (9.5%). Mutations in FBXW7 correlated with worse
OS rates (p = 0.036; HR, 2.24) independently of clinical factors. Concurrent mutations in TP53 and
FBXW7 were associated with increased risk of death (p = 0.02; HR, 3.31) as well as double–mutated
TP53 and SMAD4 (p = 0.03; HR, 2.91). Analysis of the MSK–IMPACT mCRC cohort (N = 1095 patients)
confirmed the same prognostic trend for the previously identified mutated genes. Addition of the
mutational status of these genes upon clinical factors resulted in a time–dependent AUC of 87%.
Gene set enrichment analysis revealed specific molecular pathways associated with SMAD4 and
FBXW7 mutations in TP53–defficient tumors. Conclusively, SMAD4 and FBXW7 mutations in TP53–
altered tumors were predictive of a negative prognostic outcome in mCRC patients treated with
first–line regimens.
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1. Introduction

Colorectal cancer (CRC) accounts for 10% of all cancer incidence and mortality world-
wide, and associated deaths often occur as a consequence of disease metastases [1]. Despite
the incremental clinical benefit added by combinatorial targeted therapies over the last
two decades, global median survival at five years remains below 15% in patients with
disseminated disease [2]. Current clinicopathological factors employed for management
of metastatic CRC (mCRC), such as patient performance status, tumor stage at diagnosis,
number and diameter of liver metastases, and carcinoembryonic antigen levels, have low or
moderate individual effect on survival [3–5]. Therefore, further biomarker–driven research
on the genomic characterization of mCRC might advance our ability to predict clinical and
therapeutic outcomes.

Tumor profiling based on next–generation sequencing (NGS) can provide a molecular
rationale for effective prognostication and therapeutic decision making based on individual
genomic information. Nevertheless, current guidelines for risk stratification of patients
with mCRC are only partially based on the genomic profiling of the tumor [6,7]. Mismatch
repair (MMR) deficiency and BRAFV600E mutation are relevant genetic markers associated
with unfavorable prognosis although their prevalence in mCRC is low [8,9]. In addition,
mutations in KRAS and NRAS have been related to poor survival as well as to lack of
response to anti–EGFR therapy [10–12]. Other somatically mutated genes reported to
hold negative prognostic value affect SMAD4 [13–15] and FBXW7 in resected liver metas-
tases [16], whose frequency of alteration increases upon advanced CRC stages. Recently,
wild–type APC in patients with microsatellite–stable (MSS) tumors has been also associated
with poor prognosis in mCRC [17,18]. Coexistence of mutations in these frequently altered
genes can sometimes exhibit a synergistic effect on survival compared with mutation in
one of them alone, such as concurrent triple mutations in TP53/KRAS/SMAD4 [19].

In this study, we obtained data from 294 mCRC patients undergoing routine NGS–based
tumor testing in our hospital using the Oncomine Solid Tumor 22–gene panel, enabling us
to characterize the mutational spectrum of actionable genes in mCRC. We subsequently
aimed at assessing the effects on survival of individual and concomitant mutated genes in
patients treated with first–line regimens, i.e., chemotherapy doublets plus/minus mono-
clonal antibodies against EGFR or VEGF. Moreover, we performed predictive modelling
using machine learning–based analysis to assess whether genetic biomarkers can improve
the diagnostic accuracy over clinical parameters.

2. Materials and Methods
2.1. Cohort of Patients, Clinical Information, and Ethics Statement

The study was conceived on a retrospective cohort of 294 patients diagnosed with
metastatic CRC between January 2016 and January 2020 at the Hospital Clínic of Barcelona.
Clinicopathologic information of patients was retrospectively collected from the hospital
registry database, and follow–up data were censored in April 2020.

For each patient, disease parameters recorded included sex, age, Eastern Cooperative
Oncology Group (ECOG) performance status, stage at diagnosis, site of the primary lesion
(ascending or transverse colon were considered right; whilst descending, sigma, or rectum
were considered left), microsatellite instability (MSI) status, number and type of affected
organs, lactate dehydrogenase (LDH), alkaline phosphatase (ALP), C–reactive protein
(PCR), leukocytes, and carcinoembryonic antigen (CEA) blood levels.

Among the total screening population, 200/294 (68%) individuals were treated with
approved first–line chemotherapy doublets (FOLFOX, FOLFIRI, or CAPOX) plus/minus
anti–VEGF (bevacizumab) or anti–EGFR agents (cetuximab or panitumumab). Only those
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individuals presenting as good enough medical condition (i.e., ECOG < 2 and/or < 70 years
old) were considered suitable for receiving antibody–based targeted agents. Other treatment
options were administered to 72/294 (24.5%) patients, including metastatic resection in 50/294
(17%), radiofrequency ablation in 6/294 (2%), and capecitabine monotherapy to 16/294 (6%).
The remaining 22/294 (7.5%) patients received best supportive care (BSC) (Figure S1).

2.2. Datasets Obtained from Public Repositories

Validation analyses were carried out on publicly available data downloaded from cBio-
Portal [20]. A cohort of 1134 mCRC patients analyzed with the MSK–IMPACT capture–based
NGS of actionable cancer targets [21] was used. Out of the total 1134 cases, 1095 of them
(97%) with no missing survival data were included in subsequent prognostic analyses.

Whole–exome sequencing (WES) and RNA sequencing (RNA–Seq) data from the colon
and rectal cancer cohorts of The Cancer Genome Atlas (TCGA) (COAD, N = 398; READ,
N = 135, respectively) were downloaded from the Genomic Data Commons (GDC) portal
on https://gdc.cancer.gov/ (accessed on 29 July 2021). Only primary adenocarcinomas
were considered for this study.

2.3. Targeted Next–Generation Sequencing

A panel–based NGS strategy was followed at Hospital Clínic of Barcelona using
the Oncomine Solid Tumor DNA kit (Thermo Fisher Scientific, Waltham, MA, USA) to
interrogate a panel of 22 genes, comprising commonly mutated genes and druggable targets
in solid tumors. Tumor DNA was extracted from formalin–fixed paraffin–embedded (FFPE)
unstained sections of primary CRC specimens using the QIAmp DNA FFPE kit (Qiagen,
Hilden, Germany) and then quantified with Qubit Double–Stranded DNA High Sensitivity
assay kit and Qubit fluorometer assay (Thermo Fisher Scientific). Amplicon–enriched
libraries were prepared with the IonAmpliSeq Library kit 2.0 (Thermo Fisher Scientific,
Waltham, MA, USA) from 10 ng of input DNA per sample using specific primers from the
Oncomine Solid Tumor DNA kit (Thermo Fisher Scientific, Waltham, MA, USA). For the
massive parallel sequencing of DNA libraries, the Ion Torrent Personal Genome Machine
(PGM) platform was used (Thermo Fisher Scientific, Waltham, MA, USA) according to the
manufacturer’s instructions.

Raw data processing and downstream analyses were performed using the Torrent
Suite Software version 4.0.2 automated pipeline (Thermo Fisher Scientific), including
adapter trimming, quality controls, and alignment to GRCh37/hg19 reference genome.
Single–nucleotide variants (SNVs) and short insertions and deletions (Indels) were called
and annotated with the Ion Reporter Software (Thermo Fisher Scientific) using the Am-
pliSeq Colon and Lung Cancer v2 single sample workflow. All detected variants were
filtered and prioritized according to a minimal variant allele frequency (VAF) of at least
3%, frequency in normal population < 1% based on ExAC database (SCR_004068), appear-
ance in COSMIC, and pathogenic functional effect as annotated by the ClinVar database
(SCR_006169). For downstream analyses, events in KRAS and NRAS were pooled in a
single RAS category.

2.4. Whole–Exome Sequencing Data Analysis

Mutational profiling to identify tumors harbouring TP53, FBXW7, and SMAD4 muta-
tions was performed based on single–nucleotide variants (SNVs) and short insertions and
deletions (indels) from WES data. Annotated somatic variants were gathered in aggregated
mutation annotation format (MAF). Only common calls detected by both MuTect2 and
VarScan2 Somatic Variant Calling Pipelines were encompassed for subsequent analysis.
To minimize false–positive events, regions with coverage < 20x and alternative allele fre-
quency <10% were discarded. Truncating alterations (frameshift indels, nonsense and those
affecting splicing sites) were directly included as pathogenic. As regards to functional filter-
ing, missense variants were considered pathogenic by the next two available pathogenicity
tools: SIFT > 0.05 and/or PolyPhen2 > 0.90. In addition to fulfilling the previous criteria,

https://gdc.cancer.gov/
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calls were manually curated and prioritized for final analysis if appearing in COSMIC with
FATHMM prediction > 0.70.

2.5. RNA–Seq Data Analysis

For transcriptomic analysis, mapped gene read counts from aligned RNA–Seq data
(HTSeq–Counts) were analyzed. Gene counts were firstly processed and filtered using
filterByExpr function (edgeR library) to discard low–level counts. Library size normalization
factors were calculated per sample with TMM method by calcNormFactors (edgeR) to remove
non–biological variability. Filtered data counts were then normalized and transformed into
log2–counts per million (logCPM) using voom (limma). Gene–level differential expression
between sample groups was executed using linear models by lmFit and eBayes functions
(limma), estimating for each gene the log fold–change (FC), Benjamini–Hochberg–adjusted
p–value (or false–discovery rate, FDR), and the Bayes moderated t–statistics. Differentially
expressed genes were considered when FC > |1.5| and FDR < 0.15. In order to identify
relevant biological processes related to deregulated genes implicated in patient phenotypes
(i.e., mutated vs. wild–type tumors), gene set enrichment analysis (GSEA) was conducted
on the GSEA desktop application 4.1.0 (Broad Institute, Cambridge, MA, USA). Gene
sets or pathways were judged as enriched with a minimum normalized enrichment score
(NES) > |1.75| and p–value < 0.05.

2.6. Study Endpoints and Statistical Analysis

Two endpoints were evaluated for survival analysis: the primary objective was overall
survival (OS), defined as the time from metastatic diagnosis to the date of death by any cause
(in deceased patients) or last follow–up. The secondary objective was progression–free
survival (PFS), defined from the date of diagnosis of metastasis to the date of progression or
death (in patients with event) or last visit. A third study endpoint included in the analysis
was objective response rate, as defined in RECIST v1.1 clinical guidelines [22].

The Kaplan–Meier method was used to estimate time–related events, and a log–rank
test at 5% significance level was used to compare OS/PFS between groups. To calculate
hazard ratios (HRs) and corresponding 95% confidence intervals (CIs), univariate and
multivariable Cox regression models with proportional hazards were fitted to assess risks
of each mutated gene (individually or in combination) on OS/PFS, adjusting for baseline
clinical variables (sex, age, ECOG performance status, MSI, number of affected organs,
site of primary lesion, LDH, ALP, PCR, and leukocytes blood levels). Only those clinical
variables showing a p–value < 0.15 at the univariate setting were included as co–variates
for multivariable Cox models. Multivariate logistic regression was used to judge the
association of biomarkers with the degree of response, and odds ratios (OR) were derived
as the exponential of each beta coefficient obtained from regression equations. All tests
were two–sided, and the significance threshold of all p–values was set at the 5% level.
All statistics were carried out using R software version 3.6.

2.7. Machine Learning–Based Classifier Model

Predictive modelling was computed integrating all covariates (including clinical fea-
tures plus/minus the mutational status of selected genes) to evaluate the probability of
each patient to experience disease progression or death. Multiple imputations with chained
equations were run using package mice to replace missing data by imputed values, thereby
avoiding subsequent exclusion of these cases by the classifier algorithm. A gradient boost-
ing machine (package gbm v. 2.1.8) algorithm was employed for patient classification and
for computing individual probabilities. Feature selection was performed on each train-
ing dataset by using a Least Absolute Shrinkage Selector Operator (LASSO) regression
from R–package glmnet version 2.0–18 (SCR_015505) so that only those parameters with
a Beta–coefficient > 0 in the LASSO equation were subsequently included in the gradient
boosting machine–based classifier. The model was trained using 5–fold cross–validation
with a training/testing split ratio of 80:20% including a repeated random sub–sampling



Cancers 2022, 14, 5921 5 of 19

procedure to ensure statistical robustness. Diagnostic accuracy of machine learning–based
classifications was evaluated in terms of sensitivity, specificity, precision, and accuracy
calculated with crossval package. Discriminative ability of the biomarkers was assessed
by means of the area under the curve (AUC) based on time–dependent receiver operating
characteristic (ROC) curve analysis, computed using timeROC package.

3. Results
3.1. Clinico–Pathological Description of the Study Population

Table 1 summarizes demographic and clinico–pathological characteristics of the final
study cohort. Only those patients receiving baseline chemotherapy doublets as first–line
treatment (N = 200) were included for survival analysis to minimize prognostic biases re-
lated to therapy (Figure S1). Median age at diagnosis was 66 years (range 30–85), and 57.5%
of individuals were male. Four patients (2%) had tumors with microsatellite instability
(MSI), and 148/200 (74%) had primary tumors located on left side. Clinico–pathological
features according to tumor location are described in Table S1. Median follow–up time was
19.90 months (range 2–97.2 months). At the time of censoring, 100/200 patients (50%) had
died and 156/200 (78%) had progressed to first–line treatment, of whom 109 subsequently
underwent a second–line therapeutic option.

Table 1. Clinical description of our study cohort.

Variable All Patients
Patients Unmutated
for TP53/SMAD4 or
TP53/FBXW7

Patients Mutated
for TP53/SMAD4

Patients Mutated
for TP53/FBXW7

Num. of patients 200 (100%) 169/200 (85.5%) 17/200 (8.5%) 16/200 (8%)

Age, years (median, range) 66 (30–85) 65 (30–85) 63 (42–79) 67 (53–77)

Sex (number, %)

Male 115 (57.5%) 96 (56.8%) 11 (64.7%) 9 (56.25%)

Female 85 (42.5%) 73 (43.2) 6 (35.3%) 7 (43.75%)

Primary tumor location (number, %)

Right 52 (26%) 46 (27.2%) 4 (23.5%) 2 (12.5%)

Left 148 (74%) 123 (72.8%) 13 (76.5%) 14 (87.5%)

Stage at diagnosis (number, %)

I 6 (3%) 6 (3.6%) 0 (0%) 0 (0%)

II 13 (6.5%) 13 (7.7%) 0 (0%) 0 (0%)

III 42 (21%) 30 (17.7%) 7 (41.2%) 5 (31.3%)

IV 139 (69.5%) 120 (71%) 10 (58.8%) 11 (68.7%)

Metastatic sites (number of organs
affected) (number, %)

1 93 (46.5%) 76 (45%) 9 (53%) 9 (56.25%)

>1 107 (53.5%) 93 (55%) 8 (47%) 7 (43.75%)

ECOG PS (number, %)

0 73 (36.5%) 55 (33%) 9 (53%) 10 (62.5%)

1 87 (43.5%) 80 (47%) 5 (29.4%) 3 (18.75%)

>1 38 (19%) 32 (19%) 3 (17.6%) 3 (18.75%)

No data 2 (1%) 2 (1%) 0 (0%) 0 (0%)

LDH, units/L (median, range) 351.5 (99–18,585) 351.5 (99–18,585) 331.5 (152–967) 396.5 (137–2856)

ALP, units/L (median, range) 100 (36–902) 105 (36–902) 109 (65–450) 89 (57–473)
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Table 1. Cont.

Variable All Patients
Patients Unmutated
for TP53/SMAD4 or
TP53/FBXW7

Patients Mutated
for TP53/SMAD4

Patients Mutated
for TP53/FBXW7

PCR, mg/L (median, range) 2 (0–73.4) 2 (0–73.4) 1.62 (0–14.92) 2.4 (0.04–22.03)

Leukocytes, 106/L (median, range) 7600 (1294–32,290) 7730 (1294–32,290) 7360 (4400–15,470) 7125 (4890–14,580)

CEA, ng/mL (median, range) 19.35 (0.3–7956) 20.75 (0.9–7956) 35.2 (0.3–1274) 10.8 (2.1–1179)

1st line of treatment

Doublets (FOLFOX/FOLFIRI/CAPOX) 139 (69.5%) 114 (67.5%) 14 (82.3%) 13 (81.25%)

Doublets + anti–EGFR
(cetuximab/panitumumab) 41 (20.5%) 39 (23%) 1 (6%) 1 (6.25%)

Doublets + anti–VEGF (bevacizumab) 20 (10%) 16 (9.5%) 2 (11.7%) 2 (12.5%)

MMR status (number, %)

Proficient 195 (98%) 164 (97.5%) 17 (100%) 16 (100%)

Deficient 4 (2%) 4 (2.5%) 0 (0%) 0 (0%)

Primary tumor resected (number, %) 126 (63%) 104 (61.5%) 12 (70.6%) 10 (58.8%)

Location of metastases (number, %)

Liver metastasis 149 (74.5%) 127 (75%) 9 (53%) 13 (81.25%)

Lung metastases 65 (32.5%) 55 (32.5%) 6 (35.3%) 4 (24%)

Peritoneal metastases 30 (15%) 23 (13.65%) 6 (35.3%) 1 (6.25%)

Node metastases 68 (34%) 58 (34.3%) 4 (23.4%) 6 (37.5%)

ECOG PS, European Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; ALP, alkaline
phosphatase; PCR, protein C reactive; CEA, carcinoembryonic antigen; MMR, mismatch repair.

To evaluate the association between baseline clinical parameters and OS, Cox propor-
tional hazards models were fitted comprising the study population (N = 200) (Table 2).
The strongest independent predictor for OS was the Eastern Cooperative Oncology Group
(ECOG) performance status (p < 0.0001; HR = 2.28; 95% CI: 1.56–3.33) as a continuous
variable. Other clinicopathological parameters associated with shorter OS at the multivari-
able setting were lactate dehydrogenase (LDH) (p = 0.0009), alkaline phosphatase (ALP)
(p = 0.005), leukocytes (p = 0.005), and age (p = 0.015) as continuous measures. Moreover,
patients with left–sided tumors exhibited longer mean OS as compared to those with
right–sided ones (22 vs. 16 months, respectively, p = 0.025 in a univariate analysis) (Table 2,
Figure S2).

Table 2. Cox models for PFS/OS stratified by the annotated clinical variables.

Variable

PFS OS

Univariate Analysis Multivariable Analysis Univariate Analysis Multivariable Analysis

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Age <continuous> – 0.11 – 0.43 – 0.0001 – 0.015

Sex Female vs. Male 0.85
(0.62–1.17) 0.32 0.70

(0.48–1.02) 0.06 0.91
(0.61–1.35) 0.64 0.71

(0.43–1.16) 0.17

Location of
primary tumor Right vs. Left 1.19

(0.82–1.73) 0.36 1.09
(0.69–1.72) 0.71 1.66

(1.06–2.59) 0.025 1.16
(0.67–1.96) 0.57

Metastatic sites
(number organs
affected)

1 vs. >1 1.88
(1.35–2.61) 0.0002 1.97 (1.28–3) 0.0015 1.82

(1.21–2.75) 0.004 1.21
(0.96–1.53) 0.11

MMR status MSS vs. MSI 0.31
(0.10–0.99) 0.049 0.42

(0.56–3.21) 0.41 0.32
(0.1–1.03) 0.056 0.21

(0.03–1.61) 0.13
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Table 2. Cont.

Variable

PFS OS

Univariate Analysis Multivariable Analysis Univariate Analysis Multivariable Analysis

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

ECOG PS

1/2/3 vs. 0 1.72
(1.23–2.40) 0.002 1.30

(0.83–2.05) 0.25 3.75
(2.27–6.2) <0.0001 2.1

(1.07–4.12) 0.03

2/3 vs. 0/1 2.90
(1.98–4.25) <0.0001 2.36

(1.44–3.88) 0.0007 6.29
(4.04–9.8) <0.0001 3.39

(1.97–5.84) <0.0001

<continuous> 1.77
(1.41–2.23) <0.0001 1.57

(1.15–2.14) 0.0045 3.41
(2.53–4.6) <0.0001 2.28

(1.56–3.33) <0.0001

LDH <continuous> – <0.0001 – 0.006 – <0.0001 – 0.0009

ALP <continuous> – <0.0001 – 0.057 – <0.0001 – 0.005

PCR <continuous> – 0.0007 – 0.47 – 0.002 – 0.86

Leukocytes <continuous> – <0.0001 – 0.126 – <0.0001 – 0.008

CEA <continuous> – 0.017 – 0.85 – 0.0002 – 0.98

PFS, progression–free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; MMR, mismatch
repair; ECOG PS, European Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; ALP,
alkaline phosphatase; PCR, protein C reactive; CEA, carcinoembryonic antigen. In bold are indicated p < 0.05.

3.2. Recurrently Mutated Genes in mCRC

Multi–gene profiling of the entire 294–patient study cohort revealed a total of 526 so-
matic mutation events, comprising single–nucleotide variants (SNVs) and short insertions
and deletions (Indels). Overall, 268/294 (91%) tumors carried one or more genes mutated
(Figure 1). The most frequently mutated genes were TP53 (188 patients, 63.95%), RAS
(145 patients, 49.32%), PIK3CA (45 patients, 15.31%), SMAD4 (40 patients, 13.61%), BRAF
(39 patients, 13.27%), and FBXW7 (28 patients, 9.52%). The remaining genes appeared
mutated in less than 5% of cases. As expected, over 90% of mutations affecting RAS were
missense variants, and 83% of mutations in KRAS altered hotspot codons 12 or 13. Muta-
tions in RAS positively correlated with occurrence of PIK3CA events (p = 0.015). Tumors
with MSI (12 patients, 4.1%) were enriched for BRAF mutations (p = 0.0002), showed inferior
proportion of TP53 and RAS events (p = 0.01 and p = 0.035, respectively), and were more fre-
quent in the right than left colon (10% vs. 1.5%, respectively; p = 0.002) as compared to MSS
tumors. In addition, FBXW7 was more frequently mutated in left–sided than right–sided
colorectal tumors (11.1% vs. 6.4%, respectively; p = 0.38) (Figure S3). Although mutational
frequencies did not differ significantly among treatment groups, BRAF and PIK3CA mu-
tations were enriched in patients treated with best supportive care (BSC). Finally, rectal,
descendent colon, and sigmoid cancers were pooled together following their similar muta-
tion frequencies (Figure S4) except for RAS and FBXW7, both appearing significantly more
mutated in rectal than in left–sided tumors (Fisher’s p = 0.02 and p = 0.005, respectively).

3.3. Prognostic Estimates of PFS and OS by Individual Mutated Genes

We subsequently assessed the independent prognostic value of each mutated gene
using Cox statistics in the population of 200 patients treated with first–line regimens
(Table 3). In a univariate analysis, PIK3CA mutations were predictive of PFS and OS
(p = 0.01 and p = 0.007, respectively). At the multivariable setting, mutations in FBXW7
correlated with worse OS rates (p = 0.036) and mutations in SMAD4 predicted PFS
(p = 0.0015). Patients with BRAF–mutant tumors exhibited shorter median OS times
compared to their wild–type counterparts though this difference was not significant (14 vs.
29 months, p = 0.39). Among left–sided tumors, FBXW7 mutational status emerged as an in-
dependent predictor of both PFS and OS (p = 0.05 and p = 0.03, respectively), while SMAD4
predicted PFS only (p = 0.0075) when adjusting for clinical variables (Table S2). In contrast,
RAS mutations moderately predicted worse PFS independently of clinical features in the
right colon (p = 0.044).
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Figure 1. Mutation profiling of actionable and cancer driver genes interrogated by targeted
capture–based sequencing in patients with metastatic colorectal cancer. Oncoprint chart illus-
trating the mutation landscape of the Oncomine Solid Tumor 22–gene panel, ranked by ordered
mutational frequencies (right), for the 294 capture–sequenced colorectal tumors arranged in two
groups according to treatment received (i.e., left group comprises N = 200 patients treated with
chemotherapy doublets plus/minus monoclonal antibodies, mAbs; right group comprises N = 94 pa-
tients treated with other second-line options or BSC). Each row represents a gene and each column
an individual tumor sample. Colored bar plots (top) provide data on tumor–related and treatment
characteristics annotated in legend (bottom).

Table 3. Cox models for PFS/OS stratifying by the annotated mutated genes (individually or
in combination).

Mutated Genes

PFS OS

Univariate Analysis Multivariable
Analysis Univariate Analysis Multivariable

Analysis

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

TP53 Mut vs. wt 1.07
(0.77–1.48) 0.70 1.31

(0.84–2.04) 0.24 1.09
(0.71–1.66) 0.69 1.10

(0.65–1.86) 0.72

RAS Mut vs. wt 1.15
(0.84–1.57) 0.40 1.37

(0.92–2.05) 0.12 1.20
(0.80–178) 0.38 0.99

(0.60–1.64) 0.98

PIK3CA Mut vs. wt 1.74
(1.12–2.70) 0.014 1.42

(0.79–2.54) 0.24 2.03
(1.21–3.41) 0.007 1.53

(0.75–3.13) 0.25

SMAD4 Mut vs. wt 1.52
(0.98–2.36) 0.06 2.63

(1.45–4.79) 0.0015 1.39
(0.81–2.39) 0.23 1.74

(0.80–3.76) 0.16

BRAF Mut vs. wt 0.93
(0.54–1.58) 0.78 0.87

(0.45–1.65) 0.66 1.54
(0.84–2.79) 0.16 1.40

(0.65–3.03) 0.39
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Table 3. Cont.

Mutated Genes

PFS OS

Univariate Analysis Multivariable
Analysis Univariate Analysis Multivariable

Analysis

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

FBXW7 Mut vs. wt 1.54
(0.90–2.64) 0.12 1.69

(0.87–3.26) 0.12 1.85 (1–3.41) 0.049 2.24
(1.06–4.76) 0.036

TP53/RAS Double mut vs.
TP53 mut

1.01
(0.69–1.50) 0.94 1.36

(0.81–2.29) 0.25 1.28
(0.79–2.09) 0.32 1.08

(0.57–2.03) 0.82

TP53/PIK3CA Double mut vs.
TP53 mut

1.58
(0.82–3.07) 0.17 0.90

(0.32–2.57) 0.85 2.78
(1.35–5.71) 0.006 1.17

(9.32–4.23) 0.81

TP53/SMAD4 Double mut vs.
TP53 mut

1.94
(1.12–3.38) 0.019 4.32 (2–9.30) 0.0002 1.80

(0.91–3.55) 0.09 2.91
(1.08–7.85) 0.035

TP53/FBXW7 Double mut vs.
TP53 mut

1.72
(0.92–3.24) 0.09 2.65

(1.13–6.23) 0.025 1.83
(0.90–3.73) 0.09 3.31

(1.22–8.96) 0.019

TP53/BRAF Double mut vs.
TP53 mut

2.24
(1.19–4.20) 0.01 1.56

(0.71–3.42) 0.27 3.18
(1.56–6.50) 0.0015 1.82

(0.63–5.27) 0.27

RAS/PIK3CA Double mut vs.
RAS mut

1.58
(0.89–2.79) 0.12 0.75

(0.28–1.99) 0.56 1.82
(0.63–5.27) 0.20 0.51

(0.13–1.98) 0.33

PFS, progression–free survival; OS, overall survival; HR, hazard ratio; CI, confidence interval; Mut, mutated; wt,
wild–type. In bold are indicated p < 0.05.

3.4. Survival Modelling Based on the Combination of Mutated Genes

We next sought to investigate to what extent co–occurrence of mutations might impact
patient prognosis (Table 3). Among tumors harboring baseline TP53 mutations, concomi-
tant variants in SMAD4 (17/200 patients, 8.5%) independently correlated with reduced PFS
(p = 0.0002; HR, 4.32; 95% CI, 2–9.30) and OS (p = 0.035; HR, 2.91; 95% CI, 1.08–7.85) at the
multivariable setting (Figure 2A). Median time until progression was 6 months for TP53–
mutant cases with co–mutated SMAD4 versus 9.8 months in the SMAD4 wild–type group;
while median time until decease was 26 months versus 28.5 months for the abovementioned
groups, respectively. As regards to patients with TP53–mutant tumors with concomitant al-
tered FBXW7 (16/200 patients, 8%), they were at a significantly increased risk of progression
(p = 0.025; HR, 2.65; 95% CI, 1.13–6.23) and death (p = 0.019; HR, 3.31; 95% CI, 1.22–8.96) at
the multivariable setting (Figure 2B). Median time until progression was 4.9 months in those
high–risk cases harboring TP53/FBXW7 double mutations versus 10 months in low–risk
cases with single mutations in TP53; and median time until decease was 23.7 months versus
29.2 months, respectively. When considering left–sided tumors exclusively (N = 100, 75.8%)
within the TP53–defficient population, concurrent TP53/FBXW7 mutations exhibited in-
dependent ability to estimate PFS (p = 0.02; HR, 2.80; 95% CI, 1.14–6.89) and OS (p = 0.02;
HR, 3.65; 95% CI, 1.20–11.06), while TP53/SMAD4–mutated patients exhibited inferior PFS
only (p = 0.002). Among individuals with right–sided tumors (N = 32, 24.2%), concurrent
mutations affecting TP53/SMAD4 conferred significantly reduced PFS (p = 0.026) and OS
(p = 0.003) (Table S2).

The association of mutations in SMAD4 and FBXW7 with treatment response was
assessed by multivariate logistic regression, excluding the 24 non–evaluable response
cases due to death or loss of follow–up prior to response evaluation. Among patients
with mutations in SMAD4, only one case (4%) achieved complete response (CR), seven
cases (27%) achieved a partial response, while eighteen (69%) were non–responsive, i.e.,
presented stable disease or progressed (Fisher’s p = 0.036). Accordingly, patients with
SMAD4 mutations displayed a trend towards poor response rates (p = 0.106; OR, 1.48; 95%
CI, 0.92–2.38), which was also observed for double–mutant TP53/SMAD4 cases (p = 0.175;
OR, 1.49; 95% CI, 0.84–2.64) (Table S3). Among patients with FBXW7 or TP53/FBXW7
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mutated tumors, none of these mutations appeared to be significantly associated with
response rates.
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Figure 2. Prognostic value of double mutations in TP53/SMAD4 and TP53/FBXW7 in metastatic
colorectal cancer patients. Kaplan–Meier estimates displaying the cumulative proportion of individ-
uals (Y–axis) who were progression– or death–free over the study period (X–axis), and Cox–derived
resulting statistics for PFS and OS in the study population (N = 132/200, 66%) analyzed with the
Oncomine panel–based sequencing, stratifying by the presence or absence of coexistent mutations in
(A) TP53/SMAD4 and (B) TP53/FBXW7. p–values were obtained using the log–rank test and hazard
ratios using a Cox proportional hazards model, correcting for baseline clinical factors (see Methods).
mv., multivariable.

Intended for a validation analysis, public data from 1095 mCRC patients sequenced
with the MSK–IMPACT gene–panel were downloaded from cBioPortal [20]. We modeled
the reported oncogenic DNA mutations for their relationship with OS, correcting for the
available clinical variables (i.e., age, sex, primary tumor location, and microsatellite status).
In this independent dataset, patients with double mutations affecting both TP53/SMAD4
and TP53/FBXW7 showed a trend towards reduced OS rates at the multivariable setting
(p = 0.13 and p = 0.096, respectively) (Table S4; Figure S5A,B). In this sense, median time
until decease was 26 months for TP53/SMAD4 double–mutant patients versus 28.5 months
for TP53 single–mutated cases. Concerning those individuals with TP53/FBXW7 mutant
tumors, their median time until death was 23.7 months compared with 29.2 months for
those with individually mutated TP53.
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3.5. Gene Expression Profiling Underlying Double–Mutation Genotypes for TP53/SMAD4
and TP53/FBXW7

To evaluate potentially deregulated biological processes underlying SMAD4 and
FBXW7 mutations in the TP53–defficient CRC population, we analyzed WES and RNA–seq
data from 533 colorectal tumors conforming the TCGA cohorts COAD and READ. Within
the TP53–mutated population (N = 251/533, 47.1%), mutational frequencies for SMAD4
and FBXW7 were 11.6% and 13.1%, respectively. Differential expression analysis comparing
tumors being TP53/SMAD4 double–mutant versus TP53 single–mutated revealed 28 signif-
icantly upregulated genes, comprising SOX2, TM4SF4, and CALB1 (log2 FC > 2, p < 0.01),
and 59 significantly downregulated, including LY6G6D, SPACA3, CEACAM7, and MS4A12
(log2 FC < −2, p < 0.05) (Figure 3A). GSEA confirmed the downregulation of the TGF–beta
receptor signaling pathway as the main downregulated process (NES = −2.02, p = 0.004) in
tumors with SMAD4 mutation. In cases having double–mutated TP53/SMAD4, the most
downregulated gene sets (NES < −2.00, FDR < 0.25) were the transforming growth factor–β–
activated kinase 1 (TAK1) activity, JNK–dependent phosphorylation of c–Jun, and activation
of IKKs complex by TAK1 (Figure 3B,C).

When comparing tumors bearing a TP53/FBXW7 double–mutated genotype with
those being TP53 mutated alone, differential gene expression analysis indicated 287 signifi-
cantly upregulated genes, including MAGEA3, MAGEA12, MAGEA6, CALB1, and NPSR1
(log2 FC > 2.75, p < 0.001), and 582 downregulated genes, encompassing ACSL6, WIF1,
LY6G6D, SLC13A2, F7, and NALF2 (log2 FC < −1.75, p < 0.01) (Figure 3D). For those tu-
mors having a TP53/FBXW7 double–mutated genotype, the most significantly enriched
cancer–related signaling pathways based on a NES > |1.75| and nominal p < 0.05 were
the upregulation of glycolysis and metabolism of folate and pterines, overexpression of
TP53 activity–related signaling, defective intrinsic pathway of apoptosis, interleukin 12 fam-
ily signaling, CD28–dependent PI3K/AKT activity, homologous recombination, and alter-
ation of the Fanconi anemia pathway (Figure 3E,F). Intriguingly, the former two gene sets
were only significantly upregulated in FBXW7 mutant tumors within the TP53–deficient
population but not in the whole population.

3.6. Discriminative Performance of the Clinico–Genetic Biomarkers

Prognostic–based estimates of the AUC were calculated in a time–dependent manner,
aiming at examining the discriminatory ability of clinical parameters along with the muta-
tional status of the most frequently altered genes. Three distinct biomarker compositions
were defined: clinical–based, genetic–based, and clinico–genetic (mixed model) (Figure S6).
The entire set of risk predictors was composed by the mutational status of TP53, SMAD4,
and FBXW7, plus the clinical variables age, sex, ECOG performance status, number of
affected organs (one or more), MSI status, location of the primary tumor (right or left),
LDH, ALP, leukocytes in blood, and PCR levels.

Both the clinico–genetic and clinical–based models displayed the highest AUC for
death at the 1000–day time–point, while the genetic–based exhibited the strongest discrim-
inative ability at 400 days (Figure 4A). As expected for predicting disease progression,
the highest AUC values were achieved earlier in time than for death (Figure 4B). In the
study cohort, median times until progression and death were 9.5 and 14 months, respec-
tively, which were the time–points subsequently used to infer the optimal time–dependent
AUCs. The clinico–genetic model ranked an optimal AUC for death of 87% (95% CI,
81–92%) at the 9.5–month time–point and for progression of 77% (95% CI, 70–84%) at the
14–month time–point; the clinical–based, an AUC for death of 85% (95% CI, 79–91%) and
for progression of 0.74 (95% CI, 0.66–0.81); and the genetic–based, an AUC for death of 55%
(95% CI, 46–65%) and for progression of 55% (95% CI, 46–63%) (Figure 4).
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Figure 3. Deregulated cancer–related transcriptomic pathways underlying SMAD4 and FBXW7
mutations in TP53–defficient tumors. (A,B) Volcano plots displaying differentially expressed genes
in tumors harboring a mutated genotype for (A) TP53/SMAD4 and for (B) TP53/FBXW7. Grey
circles indicate genes with non–significant expression differences, red circles indicate significantly
overexpressed genes (with log2 FC > 0.58 and non–adjusted p < 0.05), and blue circles label signif-
icantly under–expressed genes (with log2 FC < −0.58 and non–adjusted p < 0.05). Genes that are
highlighted in green show the highest FC in gene expression (for TP53/SMAD4: log2 FC > 1.5 or
log2 FC < −1.5; for TP53/FBXW7: log2 FC > 2 or log2 FC < −2). (C,D) Most significantly enriched
gene sets and categories from REACTOME and KEGG in double–mutated (C) TP53/SMAD4 and
(D) TP53/FBXW7 tumors, according to a NES > |1.75| and nominal p < 0.05. (E,F) Exemplary GSEA
plots of those significant gene sets with the highest enrichment scores in (E) TP53/SMAD4–mutated
and (F) TP53/FBXW7–mutated cancers.
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cal outcomes of patients. (A) Time–dependent estimates of the AUC (left) for prediction of overall
survival, visualized on ROC curves for each of the three biomarker combinations, alongside a dia-
gram (right) displaying the temporal evolution of the AUC value for the different models. (B) Same
performance metrics for discerning those patients at risk of progression.

When applied to the entire clinico–genetic biomarker model, LASSO selected a median
number of 12/16 (75%) parameters per fold, ranging from 5 to 13 (Table S5). When
considering only clinical parameters, the patients’ age, ECOG performance status and
MSI status were chosen in 100% of folds, while sex and number of affected organs in 80%,
and PCR levels in 60%. Among the analysed mutated genes, SMAD4 and PIK3CA were
chosen in 100% of folds while FBXW7 was included in 40% of folds (Table S5). As regards
to the efficacy of predictions, the machine–learning model including the entire set of
clinical plus mutational parameters achieved 79% sensitivity and 71% specificity to predict
patient death status, as opposed to a 74% sensitivity and 72% specificity for the model only
containing clinical variables (Table S6).

4. Discussion

Personalized medicine requires accurate understanding of individual tumor biology
for effective prognostication and prediction of clinical outcomes, ultimately intending to
guide therapeutic interventionism. The implementation of molecular screening programs
using NGS–based assays has been already addressed at major cancer centers [6,21,23]. In the



Cancers 2022, 14, 5921 14 of 19

present study, we consecutively collected data from 294 mCRC cases that underwent routine
mutational profiling at our institution between January 2016 and January 2020 using the
Oncomine Solid Tumor panel, which comprises the most frequently mutated and actionable
genes in CRC except for APC. Our results revealed a negative prognostic effect of SMAD4
and FBXW7 mutations in patients with TP53–mutated tumors, which was partly confirmed
in a separate larger cohort of mCRC cases. The addition of these mutated genes upon
clinical factors caused an improvement in the discriminative ability to predict progression
and death. Despite the retrospective single–institution design of our study, we demonstrate
the feasibility of routinely implemented genetic testing to improve patient stratification for
treatment and prognostic procedures in mCRC.

A substantial amount of evidence has already shown that the loss of the tumor sup-
pressor SMAD4 correlates with metastasis occurrence and poor chemo–response in patients
with CRC [24,25]. Inactivating SMAD4 mutations occur in approximately 10 to 16% of col-
orectal tumors [26], similar to the 14% frequency of mutated cases appearing in our cohort.
Moreover, inactivation of SMAD4 can also be mediated by loss of heterozygosity at chromo-
some locus 18q21, exhibited by approximately 50 to 66% of CRCs [27,28]. Reduced levels
of SMAD4 are known to correlate with disease recurrence and shorter survival in mCRC
patients [13,14,29], consistent with our findings regarding the negative prognostic effect of
either sole SMAD4 mutations or combined with mutated TP53. According to our analysis,
SMAD4 mutations confer superior risk of progression and death when co–occurring with
mutant TP53 than when occurring alone or combined with RAS mutations, potentially
as a consequence of a dysregulated activity of the IKK complex and the JNK–dependent
phosphorylation of c–Jun and PTK6, which appear to be altered in SMAD4 mutant tumors
when present in the TP53–altered population exclusively. In line with recent findings [19],
the 11 patients in our cohort with triple–mutant tumors for TP53/RAS/SMAD4 exhib-
ited reduced survival compared to those with mutated RAS or TP53 alone. Nonetheless,
this triple combination did not show greater prognostic value than TP53/SMAD4 double
mutation, suggesting a synergistic functional interaction between SMAD4 and p53 loss [30].
Our results suggest that patients with SMAD4–mutated tumors encompass reduced rates
of treatment response, supporting several studies that point out SMAD4 inactivation as pre-
dictive marker for chemo–resistance to 5–fluoroacil (5FU) –based chemotherapy [29,31,32].
Furthermore, mutant BRAF is also a well–known predictor of prognosis in mCRC [33].
In our cohort, the number of BRAF–mutated individuals was relatively small (N = 23),
probably explaining the lack of statistical significance of Cox hazards models; even though,
patients with BRAF–mutant tumors displayed evident shorter median OS times compared
to wild–types. For mutated KRAS, although it has also been reported to correlate with poor
outcome in advanced CRC [34], in our set it was only prognostic for PFS at the univariate
setting in right–sided tumors. Additionally, recent reports showed that tumors lacking APC
mutations correlate with worse prognosis [17,18], in agreement with results we obtained
from the MSK–IMPACT dataset (data not shown).

Less is known about the role of FBXW7 as a prognosis marker in mCRC. FBXW7 is a
tumor suppressor gene encoding a subunit of the Skip1–Cull–F–box (SCF) ubiquitin ligase
complex, which controls proteasome–mediated degradation of various cell cycle regulators
such as cyclin E, c–Myc, Notch1, and mTOR [35]. Furthermore, FBXW7 also regulates
early apoptosis [36], stem cell differentiation [37,38], and chromosomal stability through
p53–related signaling [39,40]. Monoallelic mutations affecting FBXW7 have been frequently
detected in several cancer types, including sporadic cholangiocarcinoma (35%), T–cell
acute lymphocytic leukemia (31%), endometrial carcinoma (16%), and CRC (16%), among
others [41,42]. In our cohort, 23 patients (11.5%) were carriers of FBXW7–mutated tumors.
A novel finding is that co–occurrence of mutations in FBXW7 and TP53 in 8% of the cases
holds prognostic value in mCRC. Coexistent variants in these genes have been previously
documented in gastric cancer [43] and more recently in breast cancer, where the authors
suggested that the two mutations cooperate for breast tumorigenesis [44]. In CRC in vitro
models, the reduction of phospho–p53(Ser15) has been suggested to contribute to decrease
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the therapeutic efficacy of oxaliplatin in FBXW7–mutated cells [45]. Our transcriptomic
analysis of TP53/FBXW7 double–mutated tumors pointed to the dysregulation of pathways
related to P53 and DNA damage response (DDR). Although knowledge is still limited,
several studies already suggested that FBXW7 is involved in controlling genomic stability
by targeting a wide range of DDR regulatory proteins such as P53 [46,47], PLK1 [48],
and SOX9 [49]. Clinical significance of FBXW7 inactivating alterations in CRC remains
elusive although it is one of the most frequently mutated genes in metastic disease [50]. Loss
of FBXW7, located at chromosome 4q32, correlates with disease progression and usually
appears as a late event during the colorectal tumorigenesis [51]. As reported previously,
FBXW7 missense mutations have been also associated with shorter OS in mCRC [16] and
in patients undergoing resection of colorectal liver metastases [52]. Conversely, some
other authors reported that FBXW7 mutations do not confer differences in disease–free
survival [53]. Our results further support that patients with FBXW7–mutated tumors show
poorer OS, even at the multivariable setting when including determining clinical variables.
Remarkably, mCRC patients with concomitant FBXW7/TP53 tumor mutations showed
not only lower OS but also poorer PFS. To be mentioned, although the percentage of
patients receiving anti–EGFR agents was inferior in those TP53/SMAD4 and TP53/FBXW7
double–mutated cases as compared to their wild–type counterparts, this difference did not
appear to be statistically significant (Fisher’s p = 0.49 and p = 0.55 for TP53/SMAD4 and
TP53/FBXW7 groups, respectively). Additionally, mutations in FBXW7 resulted in a more
intense effect on OS than PFS, in contrast to SMAD4–mutated tumors, as it is illustrated by
the violation of the Cox proportional hazards showed by the FBXW7 Kaplan–Meier curve
in the MSK–IMPACT cohort. Moreover, the analysis of our cohort showed that FBXW7
mutations might be prognostic specifically in the set of patients treated with first–line
cetuximab or panitumumab, unlike the MSK–IMPACT dataset, which was composed by
treatment–disparate patient groups. To note, in our cohort a total of 18 (78%) tumors with
mutated FBXW7 were located on the left side, reinforcing the idea that FBXW7 mutations
might act as biomarkers of poor outcome associated to left–sidedness, which often exhibits
a moderately favorable prognosis compared to right–sided colon mCRC [54]. Furthermore,
FBXW7 mutations have been reported to be prevalent in patients non–responsive to anti–
EGFR treatment [55], which supports that FBXW7 inactivation in RAS wild–type tumors
confers resistance to cetuximab or panitumumab in mCRC patients [56]. In our cohort,
we found no significant association of FBXW7, SMAD4, TP53/FBXW7, or TP53/SMAD4
mutational status with treatment response, possibly due to the low number of patients
included in the mutated groups.

A number of studies have reported the limited clinical significance of single tumor
markers in terms of discriminative performance [57,58]. In our multivariable prognostic
models, we included a plethora of clinicopathological parameters routinely collected and
registered at our institution for patient clinical management. However, none of them re-
sulted in a significant increase in the discriminatory accuracy except for the ECOG PS, which
added a 10–12% on the multivariable AUC value and was selected in all cross–validation
folds along with MSI status. Likewise, despite the prognostic strength of our identified mu-
tated genes, their added predictive value was limited, resulting in only a 2–3% increase in
the time–dependent AUC score and a 5% incremental sensitivity to predict patient overall
death status, which is similar to other studies assessing the incremental diagnostic ability
by specific mutated genes [57,59]. These results emphasize the importance of including
strong prognostic clinical co–variates in multivariable predictive models in mCRC.

5. Conclusions

This study highlights a negative prognostic effect of SMAD4 and FBXW7 mutations
in mCRC patients with TP53–driven tumors when receiving first–line chemotherapy dou-
blets/minus anti–EGFR or anti–VEGF. Hence, the mutational analysis of these three genes
alongside baseline clinical parameters might serve as useful biomarkers to select those
mCRC patients at high risk of progression or death for therapeutic decision making.
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