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Abstract 
The study of animal behaviour is, even today, an unknown field due to the difficulty 

involved. Most of the time, it is unfeasible to be present to observe and analyse animal 

behaviour in a situation of freedom, and other study methods such as laboratory study 

condition the behaviour of the animal and do not allow us to study it in depth. 

It has been shown that by analysing time series of the acceleration of the animal this 

problem can be solved, as it provides very detailed information about the movement of 

the animal with a high resolution over time, allowing to determine with great precision 

what the animal was doing at a specific time, without altering its behaviour or the need 

for human presence. 

This work studies a new algorithm for segmenting and classifying animal acceleration 

data into different behaviours using tri-axial acceleration data (for each Cartesian axis), 

recorded using an accelerometer and placed in the red-billed tropicbird (Phaethon 

aethereus). This seabird lives in Cape Verde and is distinguished by flying long distances 

over the sea. The algorithms explained below are divided into three major blocks: 

segmentation, to be able to extract different behaviours from the data; grouping, to be 

able to cluster similar behaviours; and classification, using a recurrent network neuronal 

(RNN) to be able to classify previously untreated behaviours into one of the groups we 

found above.  
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Resum 

L'estudi del comportament animal és, encara avui en dia, un camp molt desconegut a 

causa de la dificultat que comporta. La major part del temps és inviable estar presents per 

observar i analitzar el comportament animal en situació de llibertat, i altres mètodes 

d'estudi com l'estudi al laboratori condicionen el comportament de l'animal i no ens 

permeten estudiar-lo en profunditat. 

S'ha demostrat que gràcies a l’anàlisi de sèries temporals de l'acceleració de l'animal es 

pot arribar a solucionar aquest problema, ja que aporta informació molt detallada sobre el 

moviment de l'animal amb una gran resolució en el temps, permetent determinar amb 

gran precisió que estava fent l'animal en un moment concret, sense alterar el seu 

comportament ni la necessitat de presència humana. 

Aquest treball és un estudi sobre un nou algorisme de segmentació i classificació de dades 

d’acceleració animal en diferents comportaments utilitzant dades d’acceleració tri-axials 

(per cada eix cartesià), enregistrades mitjançant un acceleròmetre, col·locat en el cua de 

jonc bec-roig (Phaethon aethereus). Aquest ocell marí habita a Cap Verd i es distingeix 

per volar grans distàncies sobre el mar. Els algorismes que s’expliquen tot seguit es 

divideixen en tres grans blocs, la segmentació, per ser capaç d’extreure de les dades els 

diferents comportaments, l’agrupació, per poder identificar els diferents grups de 

comportaments, i la classificació, fent servir una xarxa neuronal recurrent (RNN) per ser 

capaç de classificar comportaments no tractats prèviament en un dels grups que hem 

trobat anteriorment.  
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Resumen 
El estudio del comportamiento animal es, todavía hoy, un campo muy desconocido 

debido a la dificultad que comporta. La mayor parte del tiempo es inviable estar presentes 

para observar y analizar el comportamiento animal en situación de libertad, y otros 

métodos de estudio como el estudio en el laboratorio condicionan el comportamiento del 

animal y no nos permiten estudiarlo en profundidad. 

Se ha demostrado que gracias al análisis de series temporales de la aceleración del animal 

se puede llegar a solucionar este problema, puesto que aporta información muy detallada 

sobre el movimiento del animal con una gran resolución en el tiempo, permitiendo 

determinar con gran precisión que estaba haciendo el animal en un momento concreto, 

sin alterar su comportamiento ni la necesidad de presencia humana. 

Este trabajo es un estudio sobre un nuevo algoritmo de segmentación y clasificación de 

datos de aceleración animal en diferentes comportamientos utilizando datos de 

aceleración tri-axiales (por cada eje cartesiano), registradas mediante un acelerómetro, 

colocado en el rabo de junco pico rojo (Phaethon aethereus). Este pájaro marino habita 

en Cabo Verde y se distingue por volar grandes distancias sobre el mar. Los algoritmos 

que se explican a continuación se dividen en tres grandes bloques, la segmentación, para 

ser capaz de extraer de los datos los diferentes comportamientos, la agrupación, para 

poder identificar los diferentes grupos de comportamientos, y la clasificación, usando una 

red neuronal recurrente (RNN) por ser capaz de clasificar comportamientos no tratados 

previamente en uno de los grupos que hemos encontrado anteriormente. 
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Chapter 1 

Introduction 

1.1. Motivation 
Ethology is the scientific study of animal behaviour, especially under natural conditions 

[2]. Behaviour is how an animal or person behaves in response to a particular situation or 

stimulus [3]. 

When we think about ethology, what comes to our minds are scientists observing animals 

in their natural habitat or a laboratory, trying to understand what they are doing and why 

they are acting that way. Still, this method has a lot of limitations. 

Little is known about the behaviour of many animal species. That is because of the 

difficulty of studying them. Most of the time, ethologists cannot observe and analyse 

animals in their natural habitat, either because their habitat is inaccessible or because their 

presence changes the behaviour of the animals. Because of this last reason, studying 

animal behaviour in laboratories is also insufficient for understanding the nature of some 

animals thoroughly. 

Several studies indicate that this lack of understanding of the behaviour of some animals 

can be partly supplied with acceleration data. Raw acceleration data values recorded in 

each acceleration channel can be used to determine animal posture and movement [6] 

and, therefore, can help us identify which behaviour the subject species is performing 

through time.   

1.2. Subject species  
The red-billed tropicbird (Phaethon aethereus) is a pelagic seabird that weighs around 700 

g, measures 90–107 cm from beak to tail and has a wingspan of 99–106 cm. It mainly 

inhabits a huge range across tropical waters of the Atlantic Ocean, the northwest Indian 

Ocean and the eastern Pacific. It usually feeds on small fish caught by plunge diving. 

However, surface dives can also be expected since one of its primary food sources 

consists in flying fish (Exocoetus volitans), which are sometimes caught in flight. 

Although the conservation status of this species is ‘Least Concern’ according to the Red 

List of Threatened Species by the International Union for Conservation of Nature 

(IUCN), the colony from Cape Verde has significantly decreased in its population. As a 

result, researchers from the Seabird Ecology Lab of the University of Barcelona are 

working in Cape Verde to understand better these overlooked birds by studying different 

colonies located on Boavista island and in Ilhéu de Cima. 
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1.3. The data  
The data was collected by the members of the Seabird Ecology Lab using the Axy-trek 

Marine data logger. This tiny waterproof device includes an accelerometer, a GPS 

pressure sensor and a temperature sensor. Its size is 40 x 20 x 8 mm and weighs 14 g with 

battery and casing. These devices were attached to the lower back of the Red-Billed 

Tropicbirds using waterproof tape that does not damage the bird’s feathers (TESA tape) 

while the animals were resting at their respective colonies. 

In this study, we only work with the acceleration data, which has a 25Hz frequency, is 

measured in g (1 g = 9.8 m/s2), and is given for each axis: X (head-tail), Y (right-left) 

and Z (dorso-ventral). The data is distributed in different files of different individuals.  

 

Figure 2. Axy-trek device (Technosmart Europe srl [4]) 

Figure 1. Red-billed tropicbird. Source: Sharif Uddin 
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It is inviable to analyse such large amounts of data manually, so we need to use IT tools.  

1.4. State of the art 
Knowing that accelerometry is a potent tool for this objective, many studies have already 

conducted behaviour classification from acceleration data.  

Despite this, most of them conduct this classification as a supervised learning method 

(such as Liang Wang et al. [7]), that although giving good results for later unobserved 

behaviours, requires a manual labelling and previous observing of the subject species, 

which, as commented in section 1.1, is not always possible. Other approaches that use 

unsupervised learning methods tend to divide the data into fixed-length segments. 

A study from 2019 by Patterson et al. [8] compared different techniques for classifying 

behaviour from accelerometers for two seabird species. This work demonstrates that 

general behaviours of seabirds can be classified from acceleration profiles using a range 

of techniques and a small number of predictor variables and that the classification method 

has a negligible effect on accuracy, so simple classification methods would be adequate. 

Although we could base our project only on studies about animal behaviour classification, 

we can also use references that work with time series unrelated to accelerometry. K-Shape 

[9] is an algorithm presented in 2015 by Paparrizos and Gravano that performs an efficient 

and accurate time-series classification. Their study states that, unlike the trend in the time-

series classification field of using distance measures such as the Euclidean distance or 

Dynamic Time Warping and its variants, the cross-correlation measure is a lot more 

efficient and gives very similar results and even slightly better ones. 

Finally, this project is based on previous work [1] to create an automatic method for 

segmenting and classifying acceleration data recordings into different groups that could 

be easily interpreted as animal behaviours of ecological interest. This work consisted of 

three main blocks: segmentation, grouping and classification.  

The segmentation algorithm takes inspiration from the ADWIN algorithm [10], selecting 

a series of points over a certain threshold and applying a window to them to merge them 

with other segments if they overlap.  

The grouping algorithm uses the maximum normalized cross-correlation between each 

segment as a distance measure, grouping the ones with a higher correlation. 

The classification is based on the Reservoir computing framework (RC) [11], a 

framework for computation derived from recurrent neural networks (RNN) that 

constructs a random recurrent topology and only trains a single linear readout layer. That 
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makes it a lot more efficient and gives similar results. We will discuss the details of this 

framework in section 4.5.
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Chapter 2 

Objectives 
The objectives of this project are the following: 

 To create a pipeline to segment the acceleration temporal series and classify the 

resulting behaviours in different groups. 

 To create a segmentation algorithm that divides the data into different behaviours 

of the red-billed tropicbird. 

 To create a clustering algorithm capable of grouping the before segmented 

behaviours. 
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Chapter 3 

Planning 

3.1. Original planning 
 

 

Figure 3. Original planning. 

3.2. Final planning 
Due to technical factors, we had to wait to have access to a VPN to connect with a remote 

computer. That delayed the whole project for about a month. 

 

Figure 4. Final planning.
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Chapter 4 

Implementation 
In this chapter, in section 4.1, we will introduce the whole pipeline that we present in this 

project. In each of the other sections, we will explain the implementation of each of the 

steps of the pipeline. 

4.1. Pipeline overview 
The pipeline consists of four main steps: Data pre-processing, Segmentation, Clustering 

and Testing. 

The data pre-processing step, as its name suggests, is the first step in which we prepare 

the data to be able to treat it. Right after, the segmentation step is needed to distinguish 

the different behaviours the subject is doing that are later clustered in groups in the 

clustering step.  

Finally, to check if the clustering is good enough, we use a final testing step that consists 

of a machine learning model based on the Reservoir Computing framework that predicts 

the group of unobserved behaviours. We can loop over it, correcting the wrong classified 

segments. 

 

Figure 5. Schematic representation of the pipeline proposed in the present work. 

4.2. Data pre-processing 
As explained in section 1.3, the data was collected using the Axy-trek Marine data-logger, 

a device attached to the lower back of the subject species. This data is generated in a 

specific file format with the extension “.ard” that needs to be extracted with the X 
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Manager [5]. This program was provided to us by the members of the Seabird Ecology 

Lab. 

Using the X Manger, we can extract the data into CSV files that include the following 

information:  

 Tag ID: to identify the subject 

 Timestamp: date and time 

 X, Y and Z-axis acceleration value, measured in g (1g = 9.8m/s2) 

 Activity: whether the animal was above or below the movement threshold and 

above or below the 6m threshold in depth. 

 Pressure: in mBar 

 Temperature: in Celsius degrees 

 Latitude and longitude: degrees, minutes and decimal 

 Altitude: meters above mean sea level 

 Ground speed: real-time speed of the device in km/h 

 Satellite count: number of satellites used to take the fix. 

 Hdop: value of horizontal dilution of precision for that fix (to determine accuracy, 

lower values have higher accuracy). 

 Maximum-signal-strength: the value of satellite reception power. The higher the 

value, the better the satellite reception. This is the GSV value. 

 Sensor raw: this is the value obtained from the analog sensor. 

 Battery Voltage: the voltage of the battery 

We could also generate KML files with the position data, a file type that can be opened 

with Google Earth, but as we are only interested in the acceleration data, we won’t use it. 

With this data already to be treated, the only pre-processing modification our proposed 

pipeline applies to the acceleration signals before starting with the segmentation 

algorithm is a 4th order Butterworth filter. 

The objective of applying this filter is to smooth the signal and reduce its noise. 

 

Figure 6. Example of raw signal (left) vs filtered signal with a 4th order Butterworth filter (right). 
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4.3. Segmentation algorithm 
The data segmentation in different segment behaviours is a complex problem that we need 

to perform very precisely since having the wrong output segments would make the rest 

of our pipeline useless. 

As our resources are limited, our first approach to this problem is detecting the 

“transition” behaviours. We refer as “transition behaviours” to those with high variance, 

or what is the same, that are not constant. Behaviours like “resting” or “constant flying” 

will have constant values and a large length. We do not have enough computation power 

to process these large segments in the next steps of the algorithm, and they should be 

easier to identify as they have constant values, so we try to detect the “transition” 

behaviours, such as “landing” or “diving”, that are shorter and more difficult to 

differentiate. 

Our algorithm takes inspiration from the ADWIN algorithm [10] and the implementation 

used in the previous work [1]. The main idea is simple, we have two variable parameters: 

w (window size) and σ (threshold). 

We will iterate over the data applying a window of size w to each point. Then for each 

data point, we will calculate the standard deviation of the window, so the result will be 

an array of the same size of the data populated with the standard deviations. 

Once we have calculated the standard deviation, we get to the second step of the 

algorithm. We get the standard deviations array indexes that have a value over σ. Then, 

we join the immediately consecutive indexes and apply the third step of the algorithm for 

each of them. 

For each segment, we apply a window of size w (understanding applying a window as 

expanding both ends of the segment by w/2) and look if it overlaps with another segment. 

If it is overlapping, we merge them, recheck if it is overlapping with other segments to 

merge them again until they are not overlapping with any new segments, so we reapply 

the window again at the end from which the segment was merged. If it is not overlapping, 

we stop the window application and get on with the next segment. 

Finally, we also join the segments with a distance inferior to w/2 because they are close 

enough to be part of the same behaviour. 

The algorithm parameters must be tuned to get significant behaviours. A high w would 

merge different behaviours into a bigger one, and a low w would result in a behaviour 

subdivided into smaller ones. Also, a high σ would leave out some important segments, 

but a low σ would identify some subsections of large constant behaviours as segments. 
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Segmentation algorithm 

Given three acceleration data signals Ax, Ay, Az of size N and the parameters w (even 

number bigger than 0) and σ (bigger than 0). 

1. For each signal A, iterate over it and apply a window w, calculating the standard 

deviation of the points in the window. 

2. Find the points of each signal A with a standard deviation value > σ. 

3. Concatenate the consecutive points, forming segments. 

4. Merge the segments of the three A signals and sort them by starting point. 

5. For each segment: 

5.1. If it is not overlapping with the previous segment: 

5.1.1. Apply the window to the left 

5.2. If it is overlapping with the previous segment: 

5.2.1. Merge the segments 

5.3. If it is not overlapping with the next segment: 

5.3.1. Apply the window to the right 

5.4. If it is overlapping with the next segment: 

5.4.1. Merge the segments 

5.4.2. If it is not overlapping with the next segment: 

5.4.2.1. Apply the window to the right 

5.4.3. Go back to 5.4 

6. Join the segments that are at a distance < w/2. 

Output: List of segments 

Note: Steps from 5.1 to 5.4 are not part of an if-else statement, but sequential if 

statements. 

Figure 7. Segmentation algorithm pseudocode. 

4.4. Clustering algorithm 
Our clustering algorithm is based on the K-Shape algorithm [9] and its implementation 

by Tslearn [12]. This algorithm is very similar to a typical K-means algorithm but 

establishes its distance measure on the maximum normalized cross-correlation, 

specifically in the coefficient normalization, resulting in normalizing the cross-correlation 

by dividing it by the product of norms of the two segments. This metric is demonstrated 

in the study that gives better results. 

One difference in the use case between the presented in the K-Shape study and the present 

work is the length of the segments. K-Shape supposes and is only executable having 

fixed-length segments as input, while our segmentation algorithm produces variable-
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length segments. To adapt K-Shape to our requirements, we need to change the time-

series shape extraction algorithm that it uses, or in other words, change the way we select 

the centroids of our algorithm. 

As we are working with a lot of segments, we use a heuristic supposing that the centroid 

may be very similar to a real segment, so we select as a centroid the segment that 

maximizes the squared sum of coefficient normalized cross-correlations between all the 

segments of the cluster and itself. For k the cluster number, µk a centroid candidate for 

cluster k and x a segment:  

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑁𝐶𝐶 (𝑥 , 𝜇 )

∈

 

The computation of the NCCc is quite expensive, so to speed up the process, we will use 

the Tslearn implementation of the normalized cross-correlation [12]. To make this 

implementation work properly, we will need to pass the longer segment of both we want 

to calculate the NCCc as the first. 

Moreover, as the calculation of the NCCc is very computationally demanding, and we 

need to calculate it between more than 20000 segments, we used the python library 

“multiprocessing” to parallelize this process and take advantage of all the CPUs of our 

machine, reducing the amount of time needed by 16 times. 

We applied these modifications, creating a new model based on the KShape 

implementation of Tslearn [12] that we named KShapeVariableLength. The fitting part 

of the model is computed like the following: 
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KShapeVariableLength  

Given N the number of segments, an N x N matrix of distances between segments, k 

(number of clusters), max_iter (max. number of iterations) and n_init (number of 

random seeds to compute). 

1. For each random seed: 

1.1. Get random centroids. 

1.2. Assign each segment to the centroid at less distance. 

1.3. While iteration < max_iter: 

1.3.1. Update the centroids by selecting the segment that maximizes the sum 

of NCCc squared for all the segments in the cluster. 

1.3.2. Assign each segment to the centroid at less distance. 

1.3.3. If the assignment is the same as the last iteration, exit the loop. 

2. Save the result of the best seed 

Output: List of group labels for each segment. 

Figure 8. KShapevariableLength fit pseudocode. 

Once we solved the compatibility problems, our algorithm only takes as input the 

segments generated by the segmentation algorithm and the number of clusters we want 

to generate: 

Clustering algorithm 

Given a list of segments of size N and a parameter k (number of clusters). 

3. Calculate a matrix of distances of size N x N, with each cell corresponding to the 

NCCc of each pair of segments. 

4. Train the KShapeVariableLength model with k clusters. 

5. Extract the groups from the model result. 

Output: Groups generated. 

Figure 9. Clustering algorithm pseudocode. 

4.5. Reservoir Computing testing model 
The pipeline's last step consists of testing our final clustering with the help of an artificial 

neural network (ANN). In particular, we need a specific type of ANN, the recurrent neural 

network (RNN). RNNs are a class of ANNs that differ in that they have, as their name 

indicates, recurrent connections between their nodes, in addition to the feed-forward 

connections that use simpler ANNs.  
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We need to use RNN because they are very powerful and used for solving complicated 

time-series problems, thanks to these recurrent connections that provide it with 

“memory”. The information from previous inputs has an impact on the present and future 

ones, and that makes it able to process variable-length sequences of inputs, that is what 

we are trying to classify. 

The Reservoir Computing framework [11] is derived from RNNs. The difference is that 

it constructs a random recurrent topology and only trains a single linear readout layer. 

That makes it much more efficient, faster and computationally cheaper to train without 

losing a significant amount of performance, so it is a good option since we do not have 

much computation power and time. 

The implementation of the RC model used is the same as that used in the previous work 

[1], and its structure can be described like: 

 An input layer of K nodes. For our specific case, we use three nodes, one for each 

acceleration axis. 

 A hidden layer of N nodes. These are the only nodes that will conform to the 

model, apart from those from the input and readout layer. 

 A readout layer of L nodes. L is the number of groups that we want to be able to 

classify. 

 

Figure 10. Reservoir Computing topology example. 
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We also take three input parameters: 

 The input probability, that indicates the probability of establishing a connection 

between a node from the input layer and a node from the hidden layer. It takes a 

value between 0 and 1. 

 The reservoir probability, that indicates the probability of establishing a 

connection between two nodes from the hidden layer. It takes a value between 0 

and 1. 

 The classifier, that allow us to set the regressor method to obtain the weights of 

the connections from the internal units of our network to the output layer. We 

selected the logistic regressor for this work. 

To finalize with the definition of the RC model, the activation functions of each node are 

hyperbolic tangent functions (tanh), which are one of the most used activation functions 

for RNNs: 

tanh(𝑥) =
𝑒 − 𝑒

𝑒 + 𝑒
 

After defining the implementation of the RC model, we can now proceed to explain the 

data preparation before the training. The groups we will train the model with do not have 

the same length. That is predictable because there are more common behaviours than 

others, and without a treatment of the dataset, we could get the predictions biased towards 

the most common behaviours. 

The treatment used to prevent this bias is to apply data augmentation to all the groups, 

creating new segment variants of the ones that already are part of the groups until they 

reach the size of the largest group.  

We used the Tsaug python library [13] to apply this data augmentation. Specifically, for 

each new segment that is going to be created, we choose randomly between one of these 

two methods: 

 Adding random noise to the acceleration signals. 

 Applying a random and smooth drift to the acceleration signals. 

The parameters used to obtain the different copies of the segments are the same used in 

the previous work [1]. 
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Figure 11. Comparison between an original segment and modifications of it after performing data 

augmentation. 
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Another treatment given to the dataset is that we intercalate the segments by their group 

once the data augmentation is done. For example, if we have 6 groups, we will set the 

first 6 segments with one of each group: 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5… 

Once we have defined the structure of our model, after training it, we can create a 

confusion matrix to see the results visually: 

 

Figure 12. Confusion matrix example of a model with 6 clusters over test data. Performance of 72% of 

success. 

As this is a testing model, it classifies some segments into other groups because they 

probably belong to it.  

Due to the fact that our clustering algorithm is not perfect, we can perform various 

iterations on it, retraining a new model over again after changing to the predicted group 

the segments misclassified to improve the performance.
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Chapter 5 

Results 
In this chapter, we are going to analyse the result for each step of the pipeline individually. 

5.1. Segmentation results 
In this section, we will revise the results that the segmentation algorithm has produced. 

The result of the segmentation algorithm is a list of segments of variable length that 

represent different behaviours of the subject species where, at some point, the standard 

deviation of a slice of size w is above the threshold σ. 

 

Figure 13. Result of the segmentation algorithm for σ=0.3 and w=150. Original data (left) vs Segmented 

data (right). 
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Several interpretations can be obtained from the results produced by the segmentation 

algorithm. First, as our first objective was, the algorithm tends to leave out the large 

constant segments that we would recognize as “resting” or “flying”.  On the other hand, 

the results differ depending on the parameters on the behaviours we are trying to identify.  

The metrics we considered to decide which segmentation was the more accurate are: 

 Number of segments  

 Median segment length  

 Manual identification of important segments that should be identified 

And the parameters modified, as explained in section 4.3 are: 

 w – window length 

 σ – threshold 

A high window length tends to lower the number of segments and increment their size, 

merging nearby segments. Otherwise, a low window length will make segments very near 

each other, interpreted as different behaviours. 

Also, a high threshold tends to leave out segments with a low standard deviation that 

could be of biological significance. In contrast, a low threshold could identify slight 

increments of standard deviation that could not be interpreted as an independent 

behaviour. 

Whatever our interpretations are, it is a fact that as we increase w and σ, our number of 

segments decreases and our distance between the segments increases. On the other hand, 

the segment length increases with the increase of w but is independent of σ. 

The final tests we made in the final version of the algorithm are the combination of the 

following values for both parameters: 

 w – 50, 70, 80, 100, 150, 200 

 σ – 0.3, 0.4, 0.5, 0.6 

A total of 24 combinations. 
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Figure 14. Number of segments as a function of w for each σ. 

 

Figure 15. Median segment length as a function of w for each σ. 
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From the results of figures 10 and 11, we can extract the following conclusions: 

 The segment length is independent of the σ value. 

 For a w ≤ 100, the median segment length is < 200 and the number of segments 

for σ < 0.5 is ≥ 40000 approximately. Such values indicate that some segments 

may be part of the same behaviour. On the contrary, for a w = 200, we get a low 

number of segments and a high median segment length, which indicates that some 

independent behaviours are being merged. 

 For a σ ≥ 0.5 the number of segments is considerably lower than with lower values, 

sign that we are losing a significant number of behaviours.  

That leaves us with two options to check manually: w = 150 and σ = 0.3/0.4. 

 

Figure 16. Segment detected with w=150, σ=0.3 and not with σ=0.4 

In figure 12 we can visualize the X-axis of a segment detected only with σ=0.3. This 

segment is a clear acceleration event that for values of σ > 0.3 is not detected, so we 

concluded that the optimal value for this parameter was 0.3. 

After comparing all the results of the different combinations and discussing their 

differences, we selected as the optimal parameters to move on with the pipeline the 

following ones: 

w=150  σ=0.3 
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5.2. Clustering results 
In this section, we will look at the results produced by the clustering algorithm. As 

explained in section 4.4, we need to indicate manually how many clusters we want to 

generate. The model calculates the inertia, the sum of the squared distances between the 

segments, to get the best centroid of the clusters. To get an optimal number of groups we 

can compare the inertias given by the models: 

 

Figure 17. Loss function of the clustering algorithm. 

We can observe how, as we increment the number of clusters, the inertia tends to 

decrease. Despite this, having lower inertia does not indicate that the number of clusters 

is optimal because is possible that a group of segments could be divided into two or more 

clusters of the more similar segments inside it.  

The optimal number of clusters must be one where the loss function starts to be near 

asymptotic. 

5.3. Reservoir Computing results 
In this section, we will present the results from the Reservoir Computing model. As the 

clustering algorithm output depends on the initial number of clusters given by parameter, 

we are unaware of how many groups of behaviours are in our dataset, so we trained new 

models with a different number of clusters several times.  
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Figure 18. Confusion matrix of a model with 8 clusters over test data. Performance of 66% of success. 

 

Figure 19. Confusion matrix of a model with 8 clusters over train data. Performance of 65% of success. 
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First, we can see how the results of test and train data are very similar, which is a good 

indication that we are not overfitting our model, thanks to the measures we took to avoid 

biases in our model. 

Also, we can see how there are groups that are clearly confused with other ones, so we 

can reassign the labels of the segments misclassified to the predicted ones and retrain a 

new model again. 

 

Figure 20. Confusion matrix of a model with 8 clusters over test data, after reassigning the labels. 

Performance of 90% of success. 

We can see how the performance increases to 90% after reassigning the labels only once. 

We can keep reassigning the labels and retraining the model repeatedly until we reach the 

best possible accuracy.  

A 100% accuracy is doubtful to be possible, as some identified behaviours could not 

pertain to any group, as they could be random movements not usually done by the subject 

species.  

Here are the results for other numbers of clusters (see the Annex C for more results): 
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Figure 21. Confusion matrix of a model with 8 clusters over test data, after reassigning the labels two 

times. Performance of 94% of success. 

 

Figure 22. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels two 

times. Performance of 92% of success. 
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Figure 23. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels three 

times. Performance of 95% of success. 

 

Figure 24. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels three 

times. Performance of 92% of success. 



Alejandro Lendínez Padilla  Results 

40 

We can see how we can obtain a remarkably high performance for any number of clusters. 

This could indicate that there are groups made of two similar groups in the classification 

with a small number of clusters, or there are groups divided into different clusters in the 

classification with a high number of clusters. 

After trying different methods such as density plots of the correlation to the centroids for 

each group, comparing the medians and others, we could not identify if one of the two 

hypothetical conditions explained in the previous paragraph in any of the groups for any 

of the number of clusters. 

It is worth noting that, due to the high memory requirements of the RC model, the 5% 

largest segments needed to be discarded to train the model. 
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Chapter 6 

Conclusions 
In the present work, we have proposed a pipeline that can classify different behaviours 

into groups from raw data, generating an ethogram.  

The objectives of this project, as defined in chapter 3, were the creation of this pipeline, 

including a segmentation algorithm that divides the data into different behaviours of the 

red-billed tropicbird and a clustering algorithm capable of grouping the before segmented 

behaviours. This pipeline actually includes segmentation and clustering algorithms, so we 

can conclude that the objectives were successfully achieved, although there is still room 

for improvement. 

The segmentation algorithm gets raw acceleration data as input and, with only two 

parameters (w and σ), can divide the data into different variable-length behaviours that 

the subject species has performed. 

The clustering algorithm gets as input the segments generated by the segmentation 

algorithm and the number of groups we want to generate, and it does it by minimizing the 

distances between the segments in each group. 

Finally, using the Reservoir Computing framework, we are able to check how good the 

clustering is and loop over it, correcting the labels of the misclassified segments and 

retraining the model, in order to get the classification up to 95% of accuracy. 

Due to the lack of time, although the initial objectives were met, we could not wholly 

finalize the study and create a usable tool, as this is a very extensive and not trivial 

problem. The future work that should be done to continue this project is detailed in 

chapter 7. 

Once the project is finalized, it could be used with other species. The algorithms treat the 

acceleration data as generic time series, with only the need to tune the parameters.
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Chapter 7 

Future work 
Once analysed the results and finished our project, we thought of possible changes in our 

pipeline that could lead to better results. In this section, we will comment on these changes 

that should be considered to be implemented.  

Changes on the segmentation step 

When analysing the segmentation algorithm, we thought of two changes on it that could 

lead to a better segmentation.  

The first one is trying to use different thresholds when detecting the “transition” 

behaviours for each of the three axes. Even though our first thought was that all the axes 

are equally important, so we should put the same threshold on the three of them, after 

working with the data, we realised that the signals were significantly different in shape, 

so it could be a good option to consider that each of the axes has its own requirements to 

detect change points on them. 

The second one is to add the “constant” segments between the “transition” segments to 

the pipeline, as they could also be considered as different behaviours and be classified. 

Changes on the clustering step 

The main flaw of our clustering step is that we are not able to identify which is the optimal 

number of clusters to classify, or what is the same, we do not know how many types of 

behaviours our subject species has. This should be the main line of work to follow to 

continue this project. 

Another change that could be interesting to explore is to find a way to adapt the “Shape 

extraction” algorithm from the “KShape” model [9] for variable-length segments, to get 

more accurate centroids for each cluster. In this work, we used a heuristic approximating 

the optimal centroid as one of the segments we already have, but this can lead to 

misclassifying some segments as it is not the actual optimal centroid.
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Annex 

A. Proposals of modification of the previous work 
algorithms 
In this annex, we included proposals for modifying the algorithms of the previous work 

[1]. The final clustering algorithm is not included as it is an entirely new different 

algorithm. 

Modification of the segmentation algorithm 

Given Ax, Ay and Az the acceleration signals for each axis, w and 𝞂 

Actual algorithm: 

1. Find points where an ≥ mean(An) + 𝞂*stdev(An) or an ≤ -mean(An) + 𝞂*stdev(An) 

2. Concatenate consecutive points into the same segment 

3. Order the segments based on the starting point of each of them 

4. For each segment: 

4.1. Apply the window by adding a w/2 margin to its starting and ending point 

4.2. If it overlaps with another segment: 

4.2.1. Merge them 

4.2.2. Go back to 5.1 

4.3. Else go to the next segment 

1. Find the points of each signal A with a standard deviation value > σ. 

2. Join the consecutive points, forming segments. 

3. Merge the segments of the three A signals and sort them by starting point. 

4. For each segment: 

4.1. If it is not overlapping with the previous segment: 

4.1.1. Apply window to the left 

4.2. If it is overlapping with the previous segment: 

4.2.1. Merge the segments 

4.3. If it is not overlapping with the next segment: 

4.3.1. Apply window to the right 

4.4. If it is overlapping with the next segment: 

4.4.1. Merge the segments 

4.4.2. If it is not overlapping with the next segment: 

4.4.2.1. Apply window to the right 

4.4.3. Go back to 5.4 

5. Join the segments that are at a distance < w/2. 
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Modification proposal 1: 

1. Find points where an ≥ mean(An) + 𝞂*stdev(An) or an ≤ -mean(An) + 𝞂*stdev(An) 

2. Concatenate consecutive points into the same segment 

3. Order the segments based on the starting point of each of them 

4. For each segment: 

4.1. Apply the window by adding a w/2 margin to its starting and ending point 

4.2. If it overlaps with another segment: 

4.2.1. Merge them 

4.2.2. Apply the window in the direction where the merged segment was 

4.2.3. Go back to 4.2 

4.3. Else go to the next segment 

Modification proposal 2 (see in section 4.3): 

1. For each signal A, iterate over it and apply a window w, calculating the standard 

deviation of the points in the window. 

2. Find the points of each signal A with a standard deviation value > σ. 

3. Join the consecutive points, forming segments. 

4. Merge the segments of the three A signals and sort them by starting point. 

5. For each segment: 

5.1. If it is not overlapping with the previous segment: 

5.1.1. Apply window to the left 

5.2. If it is overlapping with the previous segment: 

5.2.1. Merge the segments 

5.3. If it is not overlapping with the next segment: 

5.3.1. Apply window to the right 

5.4. If it is overlapping with the next segment: 

5.4.1. Merge the segments 

5.4.2. If it is not overlapping with the next segment: 

5.4.2.1. Apply window to the right 

5.4.3. Go back to 5.4 

6. Join the segments that are at a distance < w/2. 
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Modification of the grouping algorithm 

Given Ax, Ay and Az the acceleration signals for each axis and thresholds ax, ay and az 

Actual algorithm: 

1. Compute the normalized cross-correlation between each of the segments for each 

acceleration axis and save its maximum value and the lag at which this value occurs. 

2. For each segment: 

2.1. Find the segments in which the maximum normalized cross-correlation in each 

axis is higher or equal than thresholds ax, ay and az, respectively 

2.2. Save them in a different list and remove them from the actual one 

Modification proposal: 

1. Compute the normalized cross-correlation between each of the segments for each 

acceleration axis and save its maximum value and the lag at which this value occurs. 

2. Find the maximum value of the normalized cross-correlation values: 

2.1. Find the segments in which the maximum normalized cross-correlation in 

each axis is higher or equal than thresholds ax, ay and az, respectively with 

both segments 

2.2. Save them in a different list and remove them from the actual one 
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B. Logs 
Segments statistics w=100 and σ=0.3 (without last joining step) 

Data loaded 

Total number of segments loaded: 40061 

Acceleration data set 

Number of segments: 40061 

 

Min distance: 1 

5 percent distance: 11 

1st quantile distance: 77 

Median distance: 357 

3rd quantile distance: 1731 

Max distance: 2658007 

 

Min length: 101 

1st quantile length: 200 

Median length: 257 

3rd quantile length: 395 

95 percent length: 1759 

Max length: 184800 

 

Number of 1-axis segments: 22690 

Max 1-axis segment length: 29183 

Min 1-axis segment length: 101 

Mean 1-axis segment length: 398.4961657117673 

Median 1-axis segment length: 203.0 

 

Number of 2-axis segments: 7088 

Max 2-axis segment length: 40120 

Min 2-axis segment length: 152 

Mean 2-axis segment length: 529.3766930022573 

Median 2-axis segment length: 257.0 

 

Number of 3-axis segments: 10283 

Max 3-axis segment length: 184800 

Min 3-axis segment length: 162 

Mean 3-axis segment length: 1140.7857629096568 

Median 3-axis segment length: 280.0 
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Segments statistics w=150 and σ=0.3 (without last joining step) 

Data loaded 

Total number of segments loaded: 28316 

Acceleration data set 

Number of segments: 28316 

 

Min distance: 1 

5 percent distance: 20 

1st quantile distance: 154 

Median distance: 676 

3rd quantile distance: 2570 

Max distance: 2658349 

 

Min length: 151 

1st quantile length: 299 

Median length: 380 

3rd quantile length: 569 

95 percent length: 2633 

Max length: 223536 

 

Number of 1-axis segments: 15123 

Max 1-axis segment length: 62772 

Min 1-axis segment length: 151 

Mean 1-axis segment length: 587.8466574092442 

Median 1-axis segment length: 301.0 

 

Number of 2-axis segments: 5986 

Max 2-axis segment length: 65321 

Min 2-axis segment length: 227 

Mean 2-axis segment length: 771.3434680922152 

Median 2-axis segment length: 382.0 

 

Number of 3-axis segments: 7207 

Max 3-axis segment length: 223536 

Min 3-axis segment length: 234 

Mean 3-axis segment length: 1707.5294852227003 

Median 3-axis segment length: 466.0 
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Segments statistics w=200 and σ=0.3 (without last joining step) 

Data loaded 

Total number of segments loaded: 22307 

Acceleration data set 

Number of segments: 22307 

 

Min distance: 1    

5 percent distance: 28 

1st quantile distance: 237 

Median distance: 954 

3rd quantile distance: 3278 

Max distance: 2658338 

 

Min length: 169 

1st quantile length: 397 

Median length: 503 

3rd quantile length: 744 

95 percent length: 3504 

Max length: 224271 

 

Number of 1-axis segments: 11654 

Max 1-axis segment length: 87736 

Min 1-axis segment length: 169 

Mean 1-axis segment length: 754.2649733996911 

Median 1-axis segment length: 399.0 

 

Number of 2-axis segments: 5184 

Max 2-axis segment length: 75579 

Min 2-axis segment length: 301 

Mean 2-axis segment length: 1027.2139274691358 

Median 2-axis segment length: 506.0 

 

Number of 3-axis segments: 5469 

Max 3-axis segment length: 224271 

Min 3-axis segment length: 312 

Mean 3-axis segment length: 2298.5774364600475 

Median 3-axis segment length: 663.0 
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Segments statistics w=150 and σ=0.3 (with joining step) 

Data loaded 

Total number of segments loaded: 24196 

Acceleration data set 

Number of segments: 24196 

 

Min distance: 76 

5 percent distance: 107 

1st quantile distance: 317 

Median distance: 1025 

3rd quantile distance: 3181 

Max distance: 2658349 

Number of segments with dist < w/2 0 

Number of segments with dist < w 2517 

 

Min length: 151 

1st quantile length: 298 

Median length: 313 

3rd quantile length: 586 

95 percent length: 3303 

Max length: 224199 

Reassigning labels 

8 clusters 

 

Initial groups lengths: [5845, 378, 1500, 3488, 2406, 1899, 4977, 2494] 

Final groups lengths: [5028, 413, 1014, 4068, 3053, 2756, 3954, 2701] 

Segments misclassified: 13909 

Augmented segments misclassified: 6064 

 

Initial groups lengths: [5845, 378, 1500, 3488, 2406, 1899, 4977, 2494] 

Final groups lengths: [5187, 417, 973, 4134, 3055, 2683, 3871, 2667] 

Segments misclassified: 13951 

Augmented segments misclassified: 6119 

 

8 clusters - 2nd iteration 

 

Initial groups lengths: [5187, 417, 973, 4134, 3055, 2683, 3871, 2667] 

Final groups lengths: [4721, 429, 1142, 4224, 2928, 3026, 3808, 2709] 

Segments misclassified: 3048 
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Augmented segments misclassified: 846 

 

8 clusters - 3rd iteration 

 

Initial groups lengths: [4721, 429, 1142, 4224, 2928, 3026, 3808, 2709] 

Final groups lengths: [4305, 437, 1349, 4245, 2758, 3237, 3841, 2815] 

Segments misclassified: 1849 

Augmented segments misclassified: 484 

 

9 clusters 

 

Initial groups lengths: [1216, 4750, 1388, 4667, 378, 1633, 2064, 4351, 2540] 

Final groups lengths: [674, 4643, 3169, 4271, 420, 437, 2503, 4372, 2498] 

Segments misclassified: 19909 

Augmented segments misclassified: 9897 

 

9 clusters - 2nd iteration 

 

Initial groups lengths: [674, 4643, 3169, 4271, 420, 437, 2503, 4372, 2498] 

Final groups lengths: [801, 4407, 2949, 3776, 427, 1264, 2667, 4289, 2407] 

Segments misclassified: 4856 

Augmented segments misclassified: 1796 

 

9 clusters – 3rd iteration 

 

Initial groups lengths: [801, 4407, 2949, 3776, 427, 1264, 2667, 4289, 2407] 

Final groups lengths: [1112, 4092, 3040, 3299, 434, 1780, 2639, 4232, 2359] 

Segments misclassified: 3352 

Augmented segments misclassified: 1035 

 

12 clusters 

 

Initial groups lengths: [2002, 2817, 332, 564, 604, 1394, 1904, 3109, 1356, 4523, 2748, 

1634] 

Final groups lengths: [927, 2780, 362, 662, 749, 2642, 1913, 3737, 2329, 3055, 2402, 

1429] 

Segments misclassified: 22876 

Augmented segments misclassified: 12712 

 

12 clusters - 2nd iteration 
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Initial groups lengths: [927, 2780, 362, 662, 749, 2642, 1913, 3737, 2329, 3055, 2402, 

1429] 

Final groups lengths: [1120, 2683, 369, 548, 790, 2900, 1888, 3672, 2416, 2947, 2417, 

1237] 

Segments misclassified: 4968 

Augmented segments misclassified: 2439 

 

12 clusters – 3rd iteration 

 

Initial groups lengths: [1120, 2683, 369, 548, 790, 2900, 1888, 3672, 2416, 2947, 2417, 

1237] 

Final groups lengths: [1226, 2690, 379, 468, 831, 3011, 1833, 3644, 2440, 2849, 2525, 

1091] 

Segments misclassified: 2903 

Augmented segments misclassified: 1412 

 

16 clusters 

 

Initial groups lengths: [1591, 2441, 258, 1216, 1444, 310, 1426, 1510, 2491, 1962, 859, 

1646, 1201, 784, 2007, 1841] 

Final groups lengths: [1594, 1448, 422, 2200, 1515, 331, 1261, 166, 2738, 2418, 2584, 

540, 764, 1070, 1250, 2686] 

Segments misclassified: 18846 

Augmented segments misclassified: 6377 

 

16 clusters - 2nd iteration 

 

Initial groups lengths: [1594, 1448, 422, 2200, 1515, 331, 1261, 166, 2738, 2418, 2584, 

540, 764, 1070, 1250, 2686] 

Final groups lengths: [1494, 1644, 483, 2040, 1597, 337, 1227, 420, 2479, 2085, 2575, 

690, 1014, 1235, 1265, 2402] 

Segments misclassified: 6125 

Augmented segments misclassified: 2628 

 

16 clusters – 3rd iteration 

 

Initial groups lengths: [1494, 1644, 483, 2040, 1597, 337, 1227, 420, 2479, 2085, 2575, 

690, 1014, 1235, 1265, 2402] 

Final groups lengths: [1492, 1755, 512, 2028, 1648, 343, 1272, 446, 2185, 2001, 2581, 

750, 1153, 1430, 1250, 2141] 

Segments misclassified: 2970 
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Augmented segments misclassified: 1099 

 

24 clusters 

 

Initial groups lengths: [1998, 743, 616, 412, 1247, 2359, 700, 23, 503, 989, 1658, 262, 

952, 317, 1008, 782, 457, 1230, 460, 1907, 1874, 770, 1347, 373] 

Final groups lengths: [2303, 15, 1122, 568, 1390, 1402, 881, 317, 926, 471, 2114, 577, 

303, 334, 1829, 45, 822, 187, 1323, 2129, 1809, 958, 333, 829] 

Segments misclassified: 30597 

Augmented segments misclassified: 17569 

 

24 clusters -2nd iteration 

 

Initial groups lengths: [2303, 15, 1122, 568, 1390, 1402, 881, 317, 926, 471, 2114, 577, 

303, 334, 1829, 45, 822, 187, 1323, 2129, 1809, 958, 333, 829] 

Final groups lengths: [2048, 73, 1197, 539, 1028, 1655, 1032, 295, 861, 615, 1812, 692, 

499, 338, 1630, 93, 926, 502, 1610, 1874, 1609, 836, 424, 799] 

Segments misclassified: 8485 

Augmented segments misclassified: 4146 

 

24 clusters -3rd iteration 

 

Initial groups lengths: [2048, 73, 1197, 539, 1028, 1655, 1032, 295, 861, 615, 1812, 692, 

499, 338, 1630, 93, 926, 502, 1610, 1874, 1609, 836, 424, 799] 

Final groups lengths: [1941, 110, 1265, 513, 958, 1672, 1184, 287, 839, 646, 1550, 718, 

669, 340, 1537, 146, 1025, 685, 1593, 1713, 1402, 801, 497, 896] 

Segments misclassified: 4421 

Augmented segments misclassified: 1854 
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C. More Reservoir Computing results 

 

Figure 25. Confusion matrix of a model with 6 clusters over train data. Performance of 74% of success. 

 

Figure 26. Confusion matrix of a model with 7 clusters over test data. Performance of 57% of success. 
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Figure 27. Confusion matrix of a model with 7 clusters over train data. Performance of 57% of success. 

 

Figure 28. Confusion matrix of a model with 8 clusters over train data, after reassigning the labels. 

Performance of 90% of success. 
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Figure 29. Confusion matrix of a model with 8 clusters over train data, after reassigning the labels two 

times. Performance of 95% of success. 

 

Figure 30. Confusion matrix of a model with 9 clusters over test data. Performance of 54% of success. 
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Figure 31. Confusion matrix of a model with 9 clusters over train data. Performance of 54% of success. 

 

Figure 32. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels. 

Performance of 88% of success. 
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Figure 33. Confusion matrix of a model with 9 clusters over train data, after reassigning the labels. 

Performance of 88% of success. 

 

Figure 34. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels two 

times. Performance of 92% of success. 
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Figure 35. Confusion matrix of a model with 9 clusters over train data, after reassigning the labels two 

times. Performance of 92% of success. 

 

Figure 36. Confusion matrix of a model with 12 clusters over test data. Performance of 57% of success. 
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Figure 37. Confusion matrix of a model with 12 clusters over train data. Performance of 58% of success. 

 

Figure 38. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels. 

Performance of 89% of success. 
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Figure 39. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels. 

Performance of 89% of success. 

 

Figure 40. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels two 

times. Performance of 93% of success. 
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Figure 41. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels two 

times. Performance of 93% of success. 

 

Figure 42. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels three 

times. Performance of 96% of success. 
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Figure 43. Confusion matrix of a model with 16 clusters over test data. Performance of 52% of success. 

 

Figure 44. Confusion matrix of a model with 16 clusters over train data. Performance of 53% of success. 
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Figure 45. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels. 

Performance of 86% of success. 

 

Figure 46. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels. 

Performance of 86% of success. 
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Figure 47. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels two 

times. Performance of 93% of success. 

 

Figure 48. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels two 

times. Performance of 93% of success. 
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Figure 49. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels three 

times. Performance of 95% of success. 

 

Figure 50. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels three 

times. Performance of 96% of success. 
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Figure 51. Confusion matrix of a model with 24 clusters over test data. Performance of 45% of success. 

 

Figure 52. Confusion matrix of a model with 24 clusters over train data. Performance of 46% of success. 
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Figure 53. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels. 

Performance of 84% of success. 

 

Figure 54. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels. 

Performance of 83% of success. 
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Figure 55. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels two 

times. Performance of 90% of success. 

 

Figure 56. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels two 

times. Performance of 90% of success. 
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Figure 57. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels three 

times. Performance of 92% of success. 


