

Treball de Fi de Grau

GRAU D'ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica

Universitat de Barcelona

SEGMENTATION AND CLASSIFICATION
OF ANIMAL BEHAVIOUR FROM

ACCELERATION DATA

Alejandro Lendínez Padilla

Director: Ignasi Cos Aguilera
Realitzat a: Departament de
Matemàtiques i Informàtica

Barcelona, 13 de juny de 2022

Alejandro Lendínez Padilla Abstract

3

Abstract
The study of animal behaviour is, even today, an unknown field due to the difficulty

involved. Most of the time, it is unfeasible to be present to observe and analyse animal

behaviour in a situation of freedom, and other study methods such as laboratory study

condition the behaviour of the animal and do not allow us to study it in depth.

It has been shown that by analysing time series of the acceleration of the animal this

problem can be solved, as it provides very detailed information about the movement of

the animal with a high resolution over time, allowing to determine with great precision

what the animal was doing at a specific time, without altering its behaviour or the need

for human presence.

This work studies a new algorithm for segmenting and classifying animal acceleration

data into different behaviours using tri-axial acceleration data (for each Cartesian axis),

recorded using an accelerometer and placed in the red-billed tropicbird (Phaethon

aethereus). This seabird lives in Cape Verde and is distinguished by flying long distances

over the sea. The algorithms explained below are divided into three major blocks:

segmentation, to be able to extract different behaviours from the data; grouping, to be

able to cluster similar behaviours; and classification, using a recurrent network neuronal

(RNN) to be able to classify previously untreated behaviours into one of the groups we

found above.

Alejandro Lendínez Padilla Abstract

4

Resum

L'estudi del comportament animal és, encara avui en dia, un camp molt desconegut a

causa de la dificultat que comporta. La major part del temps és inviable estar presents per

observar i analitzar el comportament animal en situació de llibertat, i altres mètodes

d'estudi com l'estudi al laboratori condicionen el comportament de l'animal i no ens

permeten estudiar-lo en profunditat.

S'ha demostrat que gràcies a l’anàlisi de sèries temporals de l'acceleració de l'animal es

pot arribar a solucionar aquest problema, ja que aporta informació molt detallada sobre el

moviment de l'animal amb una gran resolució en el temps, permetent determinar amb

gran precisió que estava fent l'animal en un moment concret, sense alterar el seu

comportament ni la necessitat de presència humana.

Aquest treball és un estudi sobre un nou algorisme de segmentació i classificació de dades

d’acceleració animal en diferents comportaments utilitzant dades d’acceleració tri-axials

(per cada eix cartesià), enregistrades mitjançant un acceleròmetre, col·locat en el cua de

jonc bec-roig (Phaethon aethereus). Aquest ocell marí habita a Cap Verd i es distingeix

per volar grans distàncies sobre el mar. Els algorismes que s’expliquen tot seguit es

divideixen en tres grans blocs, la segmentació, per ser capaç d’extreure de les dades els

diferents comportaments, l’agrupació, per poder identificar els diferents grups de

comportaments, i la classificació, fent servir una xarxa neuronal recurrent (RNN) per ser

capaç de classificar comportaments no tractats prèviament en un dels grups que hem

trobat anteriorment.

Alejandro Lendínez Padilla Abstract

5

Resumen
El estudio del comportamiento animal es, todavía hoy, un campo muy desconocido

debido a la dificultad que comporta. La mayor parte del tiempo es inviable estar presentes

para observar y analizar el comportamiento animal en situación de libertad, y otros

métodos de estudio como el estudio en el laboratorio condicionan el comportamiento del

animal y no nos permiten estudiarlo en profundidad.

Se ha demostrado que gracias al análisis de series temporales de la aceleración del animal

se puede llegar a solucionar este problema, puesto que aporta información muy detallada

sobre el movimiento del animal con una gran resolución en el tiempo, permitiendo

determinar con gran precisión que estaba haciendo el animal en un momento concreto,

sin alterar su comportamiento ni la necesidad de presencia humana.

Este trabajo es un estudio sobre un nuevo algoritmo de segmentación y clasificación de

datos de aceleración animal en diferentes comportamientos utilizando datos de

aceleración tri-axiales (por cada eje cartesiano), registradas mediante un acelerómetro,

colocado en el rabo de junco pico rojo (Phaethon aethereus). Este pájaro marino habita

en Cabo Verde y se distingue por volar grandes distancias sobre el mar. Los algoritmos

que se explican a continuación se dividen en tres grandes bloques, la segmentación, para

ser capaz de extraer de los datos los diferentes comportamientos, la agrupación, para

poder identificar los diferentes grupos de comportamientos, y la clasificación, usando una

red neuronal recurrente (RNN) por ser capaz de clasificar comportamientos no tratados

previamente en uno de los grupos que hemos encontrado anteriormente.

Alejandro Lendínez Padilla Acknowledgements

7

Acknowledgements
First of all, I would like to thank my family and Selena for supporting me during the

development of this project. They have encouraged me and helped in whatever they

could.

Secondly, I would like to acknowledge my tutor Ignasi Cos for letting me work on this

project and for the constant guidance given throughout its elaboration. Without him, this

project would not be possible.

Alejandro Lendínez Padilla Acknowledgements

9

Contents
Abstract ... 3

Acknowledgements ... 7

1. Introduction .. 13

1.1. Motivation ... 13

1.2. Subject species ... 13

1.3. The data ... 14

1.4. State of the art .. 15

2. Objectives .. 17

3. Planning ... 19

3.1. Original planning ... 19

3.2. Final planning .. 19

4. Implementation ... 21

4.1. Pipeline overview .. 21

4.2. Data pre-processing ... 21

4.3. Segmentation algorithm ... 23

4.4. Clustering algorithm .. 24

4.5. Reservoir Computing testing model .. 26

5. Results .. 31

5.1. Segmentation results .. 31

5.2. Clustering results ... 35

5.3. Reservoir Computing results ... 35

6. Conclusions ... 41

7. Future work .. 43

Bibliography .. 45

Annex ... 47

A. Proposals of modification of the previous work algorithms 47

B. Logs.. 50

C. More Reservoir Computing results .. 57

Alejandro Lendínez Padilla Acknowledgements

10

Figures

Figure 1. Red-billed tropicbird. Source: Sharif Uddin ... 14

Figure 2. Axy-trek device (Technosmart Europe srl [4]) ... 14

Figure 3. Original planning. ... 19

Figure 4. Final planning. .. 19

Figure 5. Schematic representation of the pipeline proposed in the present work. 21

Figure 6. Example of raw signal (left) vs filtered signal with a 4th order Butterworth filter

(right). ... 22

Figure 7. Segmentation algorithm pseudocode. ... 24

Figure 8. KShapevariableLength fit pseudocode. .. 26

Figure 9. Clustering algorithm pseudocode. ... 26

Figure 10. Reservoir Computing topology example. ... 27

Figure 11. Comparison between an original segment and modifications of it after

performing data augmentation. ... 29

Figure 12. Confusion matrix example of a model with 6 clusters over test data.

Performance of 72% of success. ... 30

Figure 13. Result of the segmentation algorithm for σ=0.3 and w=150. Original data (left)

vs Segmented data (right). .. 31

Figure 14. Number of segments as a function of w for each σ. 33

Figure 15. Median segment length as a function of w for each σ. 33

Figure 16. Segment detected with w=150, σ=0.3 and not with σ=0.4 34

Figure 17. Loss function of the clustering algorithm. .. 35

Figure 18. Confusion matrix of a model with 8 clusters over test data. Performance of

66% of success. .. 36

Figure 19. Confusion matrix of a model with 8 clusters over train data. Performance of

65% of success. .. 36

Figure 20. Confusion matrix of a model with 8 clusters over test data, after reassigning

the labels. Performance of 90% of success... 37

Figure 21. Confusion matrix of a model with 8 clusters over test data, after reassigning

the labels two times. Performance of 94% of success. ... 38

Figure 22. Confusion matrix of a model with 9 clusters over test data, after reassigning

the labels two times. Performance of 92% of success. ... 38

Figure 23. Confusion matrix of a model with 12 clusters over test data, after reassigning

the labels three times. Performance of 95% of success. ... 39

Figure 24. Confusion matrix of a model with 24 clusters over test data, after reassigning

the labels three times. Performance of 92% of success. ... 39

Figure 25. Confusion matrix of a model with 6 clusters over train data. Performance of

74% of success. .. 57

Figure 26. Confusion matrix of a model with 7 clusters over test data. Performance of

57% of success. .. 57

Alejandro Lendínez Padilla Acknowledgements

11

Figure 27. Confusion matrix of a model with 7 clusters over train data. Performance of

57% of success. .. 58

Figure 28. Confusion matrix of a model with 8 clusters over train data, after reassigning

the labels. Performance of 90% of success... 58

Figure 29. Confusion matrix of a model with 8 clusters over train data, after reassigning

the labels two times. Performance of 95% of success. ... 59

Figure 30. Confusion matrix of a model with 9 clusters over test data. Performance of

54% of success. .. 59

Figure 31. Confusion matrix of a model with 9 clusters over train data. Performance of

54% of success. .. 60

Figure 32. Confusion matrix of a model with 9 clusters over test data, after reassigning

the labels. Performance of 88% of success... 60

Figure 33. Confusion matrix of a model with 9 clusters over train data, after reassigning

the labels. Performance of 88% of success... 61

Figure 34. Confusion matrix of a model with 9 clusters over test data, after reassigning

the labels two times. Performance of 92% of success. ... 61

Figure 35. Confusion matrix of a model with 9 clusters over train data, after reassigning

the labels two times. Performance of 92% of success. ... 62

Figure 36. Confusion matrix of a model with 12 clusters over test data. Performance of

57% of success. .. 62

Figure 37. Confusion matrix of a model with 12 clusters over train data. Performance of

58% of success. .. 63

Figure 38. Confusion matrix of a model with 12 clusters over test data, after reassigning

the labels. Performance of 89% of success... 63

Figure 39. Confusion matrix of a model with 12 clusters over train data, after reassigning

the labels. Performance of 89% of success... 64

Figure 40. Confusion matrix of a model with 12 clusters over test data, after reassigning

the labels two times. Performance of 93% of success. ... 64

Figure 41. Confusion matrix of a model with 12 clusters over train data, after reassigning

the labels two times. Performance of 93% of success. ... 65

Figure 42. Confusion matrix of a model with 12 clusters over train data, after reassigning

the labels three times. Performance of 96% of success. ... 65

Figure 43. Confusion matrix of a model with 16 clusters over test data. Performance of

52% of success. .. 66

Figure 44. Confusion matrix of a model with 16 clusters over train data. Performance of

53% of success. .. 66

Figure 45. Confusion matrix of a model with 16 clusters over test data, after reassigning

the labels. Performance of 86% of success... 67

Figure 46. Confusion matrix of a model with 16 clusters over train data, after reassigning

the labels. Performance of 86% of success... 67

Alejandro Lendínez Padilla Acknowledgements

12

Figure 47. Confusion matrix of a model with 16 clusters over test data, after reassigning

the labels two times. Performance of 93% of success. ... 68

Figure 48. Confusion matrix of a model with 16 clusters over train data, after reassigning

the labels two times. Performance of 93% of success. ... 68

Figure 49. Confusion matrix of a model with 16 clusters over test data, after reassigning

the labels three times. Performance of 95% of success. ... 69

Figure 50. Confusion matrix of a model with 16 clusters over train data, after reassigning

the labels three times. Performance of 96% of success. ... 69

Figure 51. Confusion matrix of a model with 24 clusters over test data. Performance of

45% of success. .. 70

Figure 52. Confusion matrix of a model with 24 clusters over train data. Performance of

46% of success. .. 70

Figure 53. Confusion matrix of a model with 24 clusters over test data, after reassigning

the labels. Performance of 84% of success... 71

Figure 54. Confusion matrix of a model with 24 clusters over train data, after reassigning

the labels. Performance of 83% of success... 71

Figure 55. Confusion matrix of a model with 24 clusters over test data, after reassigning

the labels two times. Performance of 90% of success. ... 72

Figure 56. Confusion matrix of a model with 24 clusters over train data, after reassigning

the labels two times. Performance of 90% of success. ... 72

Figure 57. Confusion matrix of a model with 24 clusters over train data, after reassigning

the labels three times. Performance of 92% of success. ... 73

Alejandro Lendínez Padilla Introduction

13

Chapter 1

Introduction

1.1. Motivation
Ethology is the scientific study of animal behaviour, especially under natural conditions

[2]. Behaviour is how an animal or person behaves in response to a particular situation or

stimulus [3].

When we think about ethology, what comes to our minds are scientists observing animals

in their natural habitat or a laboratory, trying to understand what they are doing and why

they are acting that way. Still, this method has a lot of limitations.

Little is known about the behaviour of many animal species. That is because of the

difficulty of studying them. Most of the time, ethologists cannot observe and analyse

animals in their natural habitat, either because their habitat is inaccessible or because their

presence changes the behaviour of the animals. Because of this last reason, studying

animal behaviour in laboratories is also insufficient for understanding the nature of some

animals thoroughly.

Several studies indicate that this lack of understanding of the behaviour of some animals

can be partly supplied with acceleration data. Raw acceleration data values recorded in

each acceleration channel can be used to determine animal posture and movement [6]

and, therefore, can help us identify which behaviour the subject species is performing

through time.

1.2. Subject species
The red-billed tropicbird (Phaethon aethereus) is a pelagic seabird that weighs around 700

g, measures 90–107 cm from beak to tail and has a wingspan of 99–106 cm. It mainly

inhabits a huge range across tropical waters of the Atlantic Ocean, the northwest Indian

Ocean and the eastern Pacific. It usually feeds on small fish caught by plunge diving.

However, surface dives can also be expected since one of its primary food sources

consists in flying fish (Exocoetus volitans), which are sometimes caught in flight.

Although the conservation status of this species is ‘Least Concern’ according to the Red

List of Threatened Species by the International Union for Conservation of Nature

(IUCN), the colony from Cape Verde has significantly decreased in its population. As a

result, researchers from the Seabird Ecology Lab of the University of Barcelona are

working in Cape Verde to understand better these overlooked birds by studying different

colonies located on Boavista island and in Ilhéu de Cima.

Alejandro Lendínez Padilla Introduction

14

1.3. The data
The data was collected by the members of the Seabird Ecology Lab using the Axy-trek

Marine data logger. This tiny waterproof device includes an accelerometer, a GPS

pressure sensor and a temperature sensor. Its size is 40 x 20 x 8 mm and weighs 14 g with

battery and casing. These devices were attached to the lower back of the Red-Billed

Tropicbirds using waterproof tape that does not damage the bird’s feathers (TESA tape)

while the animals were resting at their respective colonies.

In this study, we only work with the acceleration data, which has a 25Hz frequency, is

measured in g (1 g = 9.8 m/s2), and is given for each axis: X (head-tail), Y (right-left)

and Z (dorso-ventral). The data is distributed in different files of different individuals.

Figure 2. Axy-trek device (Technosmart Europe srl [4])

Figure 1. Red-billed tropicbird. Source: Sharif Uddin

Alejandro Lendínez Padilla Introduction

15

It is inviable to analyse such large amounts of data manually, so we need to use IT tools.

1.4. State of the art
Knowing that accelerometry is a potent tool for this objective, many studies have already

conducted behaviour classification from acceleration data.

Despite this, most of them conduct this classification as a supervised learning method

(such as Liang Wang et al. [7]), that although giving good results for later unobserved

behaviours, requires a manual labelling and previous observing of the subject species,

which, as commented in section 1.1, is not always possible. Other approaches that use

unsupervised learning methods tend to divide the data into fixed-length segments.

A study from 2019 by Patterson et al. [8] compared different techniques for classifying

behaviour from accelerometers for two seabird species. This work demonstrates that

general behaviours of seabirds can be classified from acceleration profiles using a range

of techniques and a small number of predictor variables and that the classification method

has a negligible effect on accuracy, so simple classification methods would be adequate.

Although we could base our project only on studies about animal behaviour classification,

we can also use references that work with time series unrelated to accelerometry. K-Shape

[9] is an algorithm presented in 2015 by Paparrizos and Gravano that performs an efficient

and accurate time-series classification. Their study states that, unlike the trend in the time-

series classification field of using distance measures such as the Euclidean distance or

Dynamic Time Warping and its variants, the cross-correlation measure is a lot more

efficient and gives very similar results and even slightly better ones.

Finally, this project is based on previous work [1] to create an automatic method for

segmenting and classifying acceleration data recordings into different groups that could

be easily interpreted as animal behaviours of ecological interest. This work consisted of

three main blocks: segmentation, grouping and classification.

The segmentation algorithm takes inspiration from the ADWIN algorithm [10], selecting

a series of points over a certain threshold and applying a window to them to merge them

with other segments if they overlap.

The grouping algorithm uses the maximum normalized cross-correlation between each

segment as a distance measure, grouping the ones with a higher correlation.

The classification is based on the Reservoir computing framework (RC) [11], a

framework for computation derived from recurrent neural networks (RNN) that

constructs a random recurrent topology and only trains a single linear readout layer. That

Alejandro Lendínez Padilla Introduction

16

makes it a lot more efficient and gives similar results. We will discuss the details of this

framework in section 4.5.

Alejandro Lendínez Padilla Objectives

17

Chapter 2

Objectives
The objectives of this project are the following:

 To create a pipeline to segment the acceleration temporal series and classify the

resulting behaviours in different groups.

 To create a segmentation algorithm that divides the data into different behaviours

of the red-billed tropicbird.

 To create a clustering algorithm capable of grouping the before segmented

behaviours.

Alejandro Lendínez Padilla Planning

19

Chapter 3

Planning

3.1. Original planning

Figure 3. Original planning.

3.2. Final planning
Due to technical factors, we had to wait to have access to a VPN to connect with a remote

computer. That delayed the whole project for about a month.

Figure 4. Final planning.

Project

Investigation of the state of the art of the subject

Reading, understanding and executing previous work

Implementation of the code + Analysis of the results

Writing the memory

07
/0

2/
20

22

14
/0

2/
20

22

21
/0

2/
20

22

28
/0

2/
20

22

07
/0

3/
20

22

14
/0

3/
20

22

21
/0

3/
20

22

28
/0

3/
20

22

04
/0

4/
20

22

11
/0

4/
20

22

18
/0

4/
20

22

25
/0

4/
20

22

02
/0

5/
20

22

09
/0

5/
20

22

16
/0

5/
20

22

23
/0

5/
20

22

30
/0

5/
20

22

06
/0

6/
20

22

13
/0

6/
20

22

Project

Investigation of the state of the art of the subject

Reading, understanding and executing previous work

Waiting to have acces to the data and VPN

Implementation of the code + Analysis of the results

Writing the memory

07
/0

2/
20

22

14
/0

2/
20

22

21
/0

2/
20

22

28
/0

2/
20

22

07
/0

3/
20

22

14
/0

3/
20

22

21
/0

3/
20

22

28
/0

3/
20

22

04
/0

4/
20

22

11
/0

4/
20

22

18
/0

4/
20

22

25
/0

4/
20

22

02
/0

5/
20

22

09
/0

5/
20

22

16
/0

5/
20

22

23
/0

5/
20

22

30
/0

5/
20

22

06
/0

6/
20

22

13
/0

6/
20

22

Alejandro Lendínez Padilla Implementation

21

Chapter 4

Implementation
In this chapter, in section 4.1, we will introduce the whole pipeline that we present in this

project. In each of the other sections, we will explain the implementation of each of the

steps of the pipeline.

4.1. Pipeline overview
The pipeline consists of four main steps: Data pre-processing, Segmentation, Clustering

and Testing.

The data pre-processing step, as its name suggests, is the first step in which we prepare

the data to be able to treat it. Right after, the segmentation step is needed to distinguish

the different behaviours the subject is doing that are later clustered in groups in the

clustering step.

Finally, to check if the clustering is good enough, we use a final testing step that consists

of a machine learning model based on the Reservoir Computing framework that predicts

the group of unobserved behaviours. We can loop over it, correcting the wrong classified

segments.

Figure 5. Schematic representation of the pipeline proposed in the present work.

4.2. Data pre-processing
As explained in section 1.3, the data was collected using the Axy-trek Marine data-logger,

a device attached to the lower back of the subject species. This data is generated in a

specific file format with the extension “.ard” that needs to be extracted with the X

Alejandro Lendínez Padilla Implementation

22

Manager [5]. This program was provided to us by the members of the Seabird Ecology

Lab.

Using the X Manger, we can extract the data into CSV files that include the following

information:

 Tag ID: to identify the subject

 Timestamp: date and time

 X, Y and Z-axis acceleration value, measured in g (1g = 9.8m/s2)

 Activity: whether the animal was above or below the movement threshold and

above or below the 6m threshold in depth.

 Pressure: in mBar

 Temperature: in Celsius degrees

 Latitude and longitude: degrees, minutes and decimal

 Altitude: meters above mean sea level

 Ground speed: real-time speed of the device in km/h

 Satellite count: number of satellites used to take the fix.

 Hdop: value of horizontal dilution of precision for that fix (to determine accuracy,

lower values have higher accuracy).

 Maximum-signal-strength: the value of satellite reception power. The higher the

value, the better the satellite reception. This is the GSV value.

 Sensor raw: this is the value obtained from the analog sensor.

 Battery Voltage: the voltage of the battery

We could also generate KML files with the position data, a file type that can be opened

with Google Earth, but as we are only interested in the acceleration data, we won’t use it.

With this data already to be treated, the only pre-processing modification our proposed

pipeline applies to the acceleration signals before starting with the segmentation

algorithm is a 4th order Butterworth filter.

The objective of applying this filter is to smooth the signal and reduce its noise.

Figure 6. Example of raw signal (left) vs filtered signal with a 4th order Butterworth filter (right).

Alejandro Lendínez Padilla Implementation

23

4.3. Segmentation algorithm
The data segmentation in different segment behaviours is a complex problem that we need

to perform very precisely since having the wrong output segments would make the rest

of our pipeline useless.

As our resources are limited, our first approach to this problem is detecting the

“transition” behaviours. We refer as “transition behaviours” to those with high variance,

or what is the same, that are not constant. Behaviours like “resting” or “constant flying”

will have constant values and a large length. We do not have enough computation power

to process these large segments in the next steps of the algorithm, and they should be

easier to identify as they have constant values, so we try to detect the “transition”

behaviours, such as “landing” or “diving”, that are shorter and more difficult to

differentiate.

Our algorithm takes inspiration from the ADWIN algorithm [10] and the implementation

used in the previous work [1]. The main idea is simple, we have two variable parameters:

w (window size) and σ (threshold).

We will iterate over the data applying a window of size w to each point. Then for each

data point, we will calculate the standard deviation of the window, so the result will be

an array of the same size of the data populated with the standard deviations.

Once we have calculated the standard deviation, we get to the second step of the

algorithm. We get the standard deviations array indexes that have a value over σ. Then,

we join the immediately consecutive indexes and apply the third step of the algorithm for

each of them.

For each segment, we apply a window of size w (understanding applying a window as

expanding both ends of the segment by w/2) and look if it overlaps with another segment.

If it is overlapping, we merge them, recheck if it is overlapping with other segments to

merge them again until they are not overlapping with any new segments, so we reapply

the window again at the end from which the segment was merged. If it is not overlapping,

we stop the window application and get on with the next segment.

Finally, we also join the segments with a distance inferior to w/2 because they are close

enough to be part of the same behaviour.

The algorithm parameters must be tuned to get significant behaviours. A high w would

merge different behaviours into a bigger one, and a low w would result in a behaviour

subdivided into smaller ones. Also, a high σ would leave out some important segments,

but a low σ would identify some subsections of large constant behaviours as segments.

Alejandro Lendínez Padilla Implementation

24

Segmentation algorithm

Given three acceleration data signals Ax, Ay, Az of size N and the parameters w (even

number bigger than 0) and σ (bigger than 0).

1. For each signal A, iterate over it and apply a window w, calculating the standard

deviation of the points in the window.

2. Find the points of each signal A with a standard deviation value > σ.

3. Concatenate the consecutive points, forming segments.

4. Merge the segments of the three A signals and sort them by starting point.

5. For each segment:

5.1. If it is not overlapping with the previous segment:

5.1.1. Apply the window to the left

5.2. If it is overlapping with the previous segment:

5.2.1. Merge the segments

5.3. If it is not overlapping with the next segment:

5.3.1. Apply the window to the right

5.4. If it is overlapping with the next segment:

5.4.1. Merge the segments

5.4.2. If it is not overlapping with the next segment:

5.4.2.1. Apply the window to the right

5.4.3. Go back to 5.4

6. Join the segments that are at a distance < w/2.

Output: List of segments

Note: Steps from 5.1 to 5.4 are not part of an if-else statement, but sequential if

statements.

Figure 7. Segmentation algorithm pseudocode.

4.4. Clustering algorithm
Our clustering algorithm is based on the K-Shape algorithm [9] and its implementation

by Tslearn [12]. This algorithm is very similar to a typical K-means algorithm but

establishes its distance measure on the maximum normalized cross-correlation,

specifically in the coefficient normalization, resulting in normalizing the cross-correlation

by dividing it by the product of norms of the two segments. This metric is demonstrated

in the study that gives better results.

One difference in the use case between the presented in the K-Shape study and the present

work is the length of the segments. K-Shape supposes and is only executable having

fixed-length segments as input, while our segmentation algorithm produces variable-

Alejandro Lendínez Padilla Implementation

25

length segments. To adapt K-Shape to our requirements, we need to change the time-

series shape extraction algorithm that it uses, or in other words, change the way we select

the centroids of our algorithm.

As we are working with a lot of segments, we use a heuristic supposing that the centroid

may be very similar to a real segment, so we select as a centroid the segment that

maximizes the squared sum of coefficient normalized cross-correlations between all the

segments of the cluster and itself. For k the cluster number, µk a centroid candidate for

cluster k and x a segment:

𝜇∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑁𝐶𝐶 (𝑥 , 𝜇)

∈

The computation of the NCCc is quite expensive, so to speed up the process, we will use

the Tslearn implementation of the normalized cross-correlation [12]. To make this

implementation work properly, we will need to pass the longer segment of both we want

to calculate the NCCc as the first.

Moreover, as the calculation of the NCCc is very computationally demanding, and we

need to calculate it between more than 20000 segments, we used the python library

“multiprocessing” to parallelize this process and take advantage of all the CPUs of our

machine, reducing the amount of time needed by 16 times.

We applied these modifications, creating a new model based on the KShape

implementation of Tslearn [12] that we named KShapeVariableLength. The fitting part

of the model is computed like the following:

Alejandro Lendínez Padilla Implementation

26

KShapeVariableLength

Given N the number of segments, an N x N matrix of distances between segments, k

(number of clusters), max_iter (max. number of iterations) and n_init (number of

random seeds to compute).

1. For each random seed:

1.1. Get random centroids.

1.2. Assign each segment to the centroid at less distance.

1.3. While iteration < max_iter:

1.3.1. Update the centroids by selecting the segment that maximizes the sum

of NCCc squared for all the segments in the cluster.

1.3.2. Assign each segment to the centroid at less distance.

1.3.3. If the assignment is the same as the last iteration, exit the loop.

2. Save the result of the best seed

Output: List of group labels for each segment.

Figure 8. KShapevariableLength fit pseudocode.

Once we solved the compatibility problems, our algorithm only takes as input the

segments generated by the segmentation algorithm and the number of clusters we want

to generate:

Clustering algorithm

Given a list of segments of size N and a parameter k (number of clusters).

3. Calculate a matrix of distances of size N x N, with each cell corresponding to the

NCCc of each pair of segments.

4. Train the KShapeVariableLength model with k clusters.

5. Extract the groups from the model result.

Output: Groups generated.

Figure 9. Clustering algorithm pseudocode.

4.5. Reservoir Computing testing model
The pipeline's last step consists of testing our final clustering with the help of an artificial

neural network (ANN). In particular, we need a specific type of ANN, the recurrent neural

network (RNN). RNNs are a class of ANNs that differ in that they have, as their name

indicates, recurrent connections between their nodes, in addition to the feed-forward

connections that use simpler ANNs.

Alejandro Lendínez Padilla Implementation

27

We need to use RNN because they are very powerful and used for solving complicated

time-series problems, thanks to these recurrent connections that provide it with

“memory”. The information from previous inputs has an impact on the present and future

ones, and that makes it able to process variable-length sequences of inputs, that is what

we are trying to classify.

The Reservoir Computing framework [11] is derived from RNNs. The difference is that

it constructs a random recurrent topology and only trains a single linear readout layer.

That makes it much more efficient, faster and computationally cheaper to train without

losing a significant amount of performance, so it is a good option since we do not have

much computation power and time.

The implementation of the RC model used is the same as that used in the previous work

[1], and its structure can be described like:

 An input layer of K nodes. For our specific case, we use three nodes, one for each

acceleration axis.

 A hidden layer of N nodes. These are the only nodes that will conform to the

model, apart from those from the input and readout layer.

 A readout layer of L nodes. L is the number of groups that we want to be able to

classify.

Figure 10. Reservoir Computing topology example.

Alejandro Lendínez Padilla Implementation

28

We also take three input parameters:

 The input probability, that indicates the probability of establishing a connection

between a node from the input layer and a node from the hidden layer. It takes a

value between 0 and 1.

 The reservoir probability, that indicates the probability of establishing a

connection between two nodes from the hidden layer. It takes a value between 0

and 1.

 The classifier, that allow us to set the regressor method to obtain the weights of

the connections from the internal units of our network to the output layer. We

selected the logistic regressor for this work.

To finalize with the definition of the RC model, the activation functions of each node are

hyperbolic tangent functions (tanh), which are one of the most used activation functions

for RNNs:

tanh(𝑥) =
𝑒 − 𝑒

𝑒 + 𝑒

After defining the implementation of the RC model, we can now proceed to explain the

data preparation before the training. The groups we will train the model with do not have

the same length. That is predictable because there are more common behaviours than

others, and without a treatment of the dataset, we could get the predictions biased towards

the most common behaviours.

The treatment used to prevent this bias is to apply data augmentation to all the groups,

creating new segment variants of the ones that already are part of the groups until they

reach the size of the largest group.

We used the Tsaug python library [13] to apply this data augmentation. Specifically, for

each new segment that is going to be created, we choose randomly between one of these

two methods:

 Adding random noise to the acceleration signals.

 Applying a random and smooth drift to the acceleration signals.

The parameters used to obtain the different copies of the segments are the same used in

the previous work [1].

Alejandro Lendínez Padilla Implementation

29

Figure 11. Comparison between an original segment and modifications of it after performing data

augmentation.

Alejandro Lendínez Padilla Implementation

30

Another treatment given to the dataset is that we intercalate the segments by their group

once the data augmentation is done. For example, if we have 6 groups, we will set the

first 6 segments with one of each group: 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5…

Once we have defined the structure of our model, after training it, we can create a

confusion matrix to see the results visually:

Figure 12. Confusion matrix example of a model with 6 clusters over test data. Performance of 72% of

success.

As this is a testing model, it classifies some segments into other groups because they

probably belong to it.

Due to the fact that our clustering algorithm is not perfect, we can perform various

iterations on it, retraining a new model over again after changing to the predicted group

the segments misclassified to improve the performance.

Alejandro Lendínez Padilla Results

31

Chapter 5

Results
In this chapter, we are going to analyse the result for each step of the pipeline individually.

5.1. Segmentation results
In this section, we will revise the results that the segmentation algorithm has produced.

The result of the segmentation algorithm is a list of segments of variable length that

represent different behaviours of the subject species where, at some point, the standard

deviation of a slice of size w is above the threshold σ.

Figure 13. Result of the segmentation algorithm for σ=0.3 and w=150. Original data (left) vs Segmented

data (right).

Alejandro Lendínez Padilla Results

32

Several interpretations can be obtained from the results produced by the segmentation

algorithm. First, as our first objective was, the algorithm tends to leave out the large

constant segments that we would recognize as “resting” or “flying”. On the other hand,

the results differ depending on the parameters on the behaviours we are trying to identify.

The metrics we considered to decide which segmentation was the more accurate are:

 Number of segments

 Median segment length

 Manual identification of important segments that should be identified

And the parameters modified, as explained in section 4.3 are:

 w – window length

 σ – threshold

A high window length tends to lower the number of segments and increment their size,

merging nearby segments. Otherwise, a low window length will make segments very near

each other, interpreted as different behaviours.

Also, a high threshold tends to leave out segments with a low standard deviation that

could be of biological significance. In contrast, a low threshold could identify slight

increments of standard deviation that could not be interpreted as an independent

behaviour.

Whatever our interpretations are, it is a fact that as we increase w and σ, our number of

segments decreases and our distance between the segments increases. On the other hand,

the segment length increases with the increase of w but is independent of σ.

The final tests we made in the final version of the algorithm are the combination of the

following values for both parameters:

 w – 50, 70, 80, 100, 150, 200

 σ – 0.3, 0.4, 0.5, 0.6

A total of 24 combinations.

Alejandro Lendínez Padilla Results

33

Figure 14. Number of segments as a function of w for each σ.

Figure 15. Median segment length as a function of w for each σ.

Alejandro Lendínez Padilla Results

34

From the results of figures 10 and 11, we can extract the following conclusions:

 The segment length is independent of the σ value.

 For a w ≤ 100, the median segment length is < 200 and the number of segments

for σ < 0.5 is ≥ 40000 approximately. Such values indicate that some segments

may be part of the same behaviour. On the contrary, for a w = 200, we get a low

number of segments and a high median segment length, which indicates that some

independent behaviours are being merged.

 For a σ ≥ 0.5 the number of segments is considerably lower than with lower values,

sign that we are losing a significant number of behaviours.

That leaves us with two options to check manually: w = 150 and σ = 0.3/0.4.

Figure 16. Segment detected with w=150, σ=0.3 and not with σ=0.4

In figure 12 we can visualize the X-axis of a segment detected only with σ=0.3. This

segment is a clear acceleration event that for values of σ > 0.3 is not detected, so we

concluded that the optimal value for this parameter was 0.3.

After comparing all the results of the different combinations and discussing their

differences, we selected as the optimal parameters to move on with the pipeline the

following ones:

w=150 σ=0.3

Alejandro Lendínez Padilla Results

35

5.2. Clustering results
In this section, we will look at the results produced by the clustering algorithm. As

explained in section 4.4, we need to indicate manually how many clusters we want to

generate. The model calculates the inertia, the sum of the squared distances between the

segments, to get the best centroid of the clusters. To get an optimal number of groups we

can compare the inertias given by the models:

Figure 17. Loss function of the clustering algorithm.

We can observe how, as we increment the number of clusters, the inertia tends to

decrease. Despite this, having lower inertia does not indicate that the number of clusters

is optimal because is possible that a group of segments could be divided into two or more

clusters of the more similar segments inside it.

The optimal number of clusters must be one where the loss function starts to be near

asymptotic.

5.3. Reservoir Computing results
In this section, we will present the results from the Reservoir Computing model. As the

clustering algorithm output depends on the initial number of clusters given by parameter,

we are unaware of how many groups of behaviours are in our dataset, so we trained new

models with a different number of clusters several times.

Alejandro Lendínez Padilla Results

36

Figure 18. Confusion matrix of a model with 8 clusters over test data. Performance of 66% of success.

Figure 19. Confusion matrix of a model with 8 clusters over train data. Performance of 65% of success.

Alejandro Lendínez Padilla Results

37

First, we can see how the results of test and train data are very similar, which is a good

indication that we are not overfitting our model, thanks to the measures we took to avoid

biases in our model.

Also, we can see how there are groups that are clearly confused with other ones, so we

can reassign the labels of the segments misclassified to the predicted ones and retrain a

new model again.

Figure 20. Confusion matrix of a model with 8 clusters over test data, after reassigning the labels.

Performance of 90% of success.

We can see how the performance increases to 90% after reassigning the labels only once.

We can keep reassigning the labels and retraining the model repeatedly until we reach the

best possible accuracy.

A 100% accuracy is doubtful to be possible, as some identified behaviours could not

pertain to any group, as they could be random movements not usually done by the subject

species.

Here are the results for other numbers of clusters (see the Annex C for more results):

Alejandro Lendínez Padilla Results

38

Figure 21. Confusion matrix of a model with 8 clusters over test data, after reassigning the labels two

times. Performance of 94% of success.

Figure 22. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels two

times. Performance of 92% of success.

Alejandro Lendínez Padilla Results

39

Figure 23. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels three

times. Performance of 95% of success.

Figure 24. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels three

times. Performance of 92% of success.

Alejandro Lendínez Padilla Results

40

We can see how we can obtain a remarkably high performance for any number of clusters.

This could indicate that there are groups made of two similar groups in the classification

with a small number of clusters, or there are groups divided into different clusters in the

classification with a high number of clusters.

After trying different methods such as density plots of the correlation to the centroids for

each group, comparing the medians and others, we could not identify if one of the two

hypothetical conditions explained in the previous paragraph in any of the groups for any

of the number of clusters.

It is worth noting that, due to the high memory requirements of the RC model, the 5%

largest segments needed to be discarded to train the model.

Alejandro Lendínez Padilla Conclusions

41

Chapter 6

Conclusions
In the present work, we have proposed a pipeline that can classify different behaviours

into groups from raw data, generating an ethogram.

The objectives of this project, as defined in chapter 3, were the creation of this pipeline,

including a segmentation algorithm that divides the data into different behaviours of the

red-billed tropicbird and a clustering algorithm capable of grouping the before segmented

behaviours. This pipeline actually includes segmentation and clustering algorithms, so we

can conclude that the objectives were successfully achieved, although there is still room

for improvement.

The segmentation algorithm gets raw acceleration data as input and, with only two

parameters (w and σ), can divide the data into different variable-length behaviours that

the subject species has performed.

The clustering algorithm gets as input the segments generated by the segmentation

algorithm and the number of groups we want to generate, and it does it by minimizing the

distances between the segments in each group.

Finally, using the Reservoir Computing framework, we are able to check how good the

clustering is and loop over it, correcting the labels of the misclassified segments and

retraining the model, in order to get the classification up to 95% of accuracy.

Due to the lack of time, although the initial objectives were met, we could not wholly

finalize the study and create a usable tool, as this is a very extensive and not trivial

problem. The future work that should be done to continue this project is detailed in

chapter 7.

Once the project is finalized, it could be used with other species. The algorithms treat the

acceleration data as generic time series, with only the need to tune the parameters.

Alejandro Lendínez Padilla Future work

43

Chapter 7

Future work
Once analysed the results and finished our project, we thought of possible changes in our

pipeline that could lead to better results. In this section, we will comment on these changes

that should be considered to be implemented.

Changes on the segmentation step

When analysing the segmentation algorithm, we thought of two changes on it that could

lead to a better segmentation.

The first one is trying to use different thresholds when detecting the “transition”

behaviours for each of the three axes. Even though our first thought was that all the axes

are equally important, so we should put the same threshold on the three of them, after

working with the data, we realised that the signals were significantly different in shape,

so it could be a good option to consider that each of the axes has its own requirements to

detect change points on them.

The second one is to add the “constant” segments between the “transition” segments to

the pipeline, as they could also be considered as different behaviours and be classified.

Changes on the clustering step

The main flaw of our clustering step is that we are not able to identify which is the optimal

number of clusters to classify, or what is the same, we do not know how many types of

behaviours our subject species has. This should be the main line of work to follow to

continue this project.

Another change that could be interesting to explore is to find a way to adapt the “Shape

extraction” algorithm from the “KShape” model [9] for variable-length segments, to get

more accurate centroids for each cluster. In this work, we used a heuristic approximating

the optimal centroid as one of the segments we already have, but this can lead to

misclassifying some segments as it is not the actual optimal centroid.

Alejandro Lendínez Padilla Bibliography

45

Bibliography
1. Aguirrezábal, A. (2021). Segmentation and classification of animal behavior from tri-

axial accelerometry recordings.

2. "Definition of ethology". Merriam-Webster. Retrieved 7 May 2022.

3. "Definition of behaviour". Lexico. Retrieved 14 May 2022.

4. Axy-Trek Marine. Technosmart Europe srl. Available online:

https://www.technosmart.eu/axy-trek-marine (accessed on 12 June 2022).

5. X-Manager. Technosmart Europe srl. Available online:

https://www.technosmart.eu/downloads/ (accessed on 12 June 2022).

6. Shepard ELC, Wilson RP, Quintana F, Gómez Laich A and others (2008)

Identification of animal movement patterns using tri-axial accelerometry. Endang

Species Res 10:47-60. https://doi.org/10.3354/esr00084

7. Wang, L., Arablouei, R., Alvarenga, F. A. P. & Bishop-Hurleya, G. J. (2021).

Animal Behavior Classification via Accelerometry Data and Recurrent Neural

Networks. https://arxiv.org/pdf/2111.12843.pdf

8. Patterson, A., Gilchrist, H. G., Chivers, L., Hatch, S., & Elliott, K. (2019). A

comparison of techniques for classifying behavior from accelerometers for two

species of seabird. Ecology and Evolution, 9(6), 3030–

3045. https://doi.org/10.1002/ece3.4740

9. Paparrizos, J. & Gravano, L. (2016). k-Shape: Efficient and Accurate Clustering of

Time Series. ACM SIGMOD Record, 45(1), 69–76.

http://dx.doi.org/10.1145/2723372.2737793

10. Bifet, Albert & Gavaldà, Ricard. (2007). Learning from Time-Changing Data with

Adaptive Windowing. Proceedings of the 7th SIAM International Conference on Data

Mining. 7. http://dx.doi.org/10.1137/1.9781611972771.42

11. Schrauwen, Benjamin & Verstraeten, David & Campenhout, Jan. (2007). An

overview of reservoir computing: Theory, applications and implementations.

Proceedings of the 15th European Sympsosium on Artificial Neural Networks. 471-

482.

12. Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C., … Woods,

E. (2020). Tslearn, A Machine Learning Toolkit for Time Series Data. Journal of

Machine Learning Research, 21(118), 1–6. http://jmlr.org/papers/v21/20-091.html

13. Wen, T. tsaug. 2019. Available online: https://tsaug.readthedocs.io/en/stable/

(accessed on 12 June 2022).

Alejandro Lendínez Padilla Annex

47

Annex

A. Proposals of modification of the previous work
algorithms
In this annex, we included proposals for modifying the algorithms of the previous work

[1]. The final clustering algorithm is not included as it is an entirely new different

algorithm.

Modification of the segmentation algorithm

Given Ax, Ay and Az the acceleration signals for each axis, w and 𝞂

Actual algorithm:

1. Find points where an ≥ mean(An) + 𝞂*stdev(An) or an ≤ -mean(An) + 𝞂*stdev(An)

2. Concatenate consecutive points into the same segment

3. Order the segments based on the starting point of each of them

4. For each segment:

4.1. Apply the window by adding a w/2 margin to its starting and ending point

4.2. If it overlaps with another segment:

4.2.1. Merge them

4.2.2. Go back to 5.1

4.3. Else go to the next segment

1. Find the points of each signal A with a standard deviation value > σ.

2. Join the consecutive points, forming segments.

3. Merge the segments of the three A signals and sort them by starting point.

4. For each segment:

4.1. If it is not overlapping with the previous segment:

4.1.1. Apply window to the left

4.2. If it is overlapping with the previous segment:

4.2.1. Merge the segments

4.3. If it is not overlapping with the next segment:

4.3.1. Apply window to the right

4.4. If it is overlapping with the next segment:

4.4.1. Merge the segments

4.4.2. If it is not overlapping with the next segment:

4.4.2.1. Apply window to the right

4.4.3. Go back to 5.4

5. Join the segments that are at a distance < w/2.

Alejandro Lendínez Padilla Annex

48

Modification proposal 1:

1. Find points where an ≥ mean(An) + 𝞂*stdev(An) or an ≤ -mean(An) + 𝞂*stdev(An)

2. Concatenate consecutive points into the same segment

3. Order the segments based on the starting point of each of them

4. For each segment:

4.1. Apply the window by adding a w/2 margin to its starting and ending point

4.2. If it overlaps with another segment:

4.2.1. Merge them

4.2.2. Apply the window in the direction where the merged segment was

4.2.3. Go back to 4.2

4.3. Else go to the next segment

Modification proposal 2 (see in section 4.3):

1. For each signal A, iterate over it and apply a window w, calculating the standard

deviation of the points in the window.

2. Find the points of each signal A with a standard deviation value > σ.

3. Join the consecutive points, forming segments.

4. Merge the segments of the three A signals and sort them by starting point.

5. For each segment:

5.1. If it is not overlapping with the previous segment:

5.1.1. Apply window to the left

5.2. If it is overlapping with the previous segment:

5.2.1. Merge the segments

5.3. If it is not overlapping with the next segment:

5.3.1. Apply window to the right

5.4. If it is overlapping with the next segment:

5.4.1. Merge the segments

5.4.2. If it is not overlapping with the next segment:

5.4.2.1. Apply window to the right

5.4.3. Go back to 5.4

6. Join the segments that are at a distance < w/2.

Alejandro Lendínez Padilla Annex

49

Modification of the grouping algorithm

Given Ax, Ay and Az the acceleration signals for each axis and thresholds ax, ay and az

Actual algorithm:

1. Compute the normalized cross-correlation between each of the segments for each

acceleration axis and save its maximum value and the lag at which this value occurs.

2. For each segment:

2.1. Find the segments in which the maximum normalized cross-correlation in each

axis is higher or equal than thresholds ax, ay and az, respectively

2.2. Save them in a different list and remove them from the actual one

Modification proposal:

1. Compute the normalized cross-correlation between each of the segments for each

acceleration axis and save its maximum value and the lag at which this value occurs.

2. Find the maximum value of the normalized cross-correlation values:

2.1. Find the segments in which the maximum normalized cross-correlation in

each axis is higher or equal than thresholds ax, ay and az, respectively with

both segments

2.2. Save them in a different list and remove them from the actual one

Alejandro Lendínez Padilla Annex

50

B. Logs
Segments statistics w=100 and σ=0.3 (without last joining step)

Data loaded

Total number of segments loaded: 40061

Acceleration data set

Number of segments: 40061

Min distance: 1

5 percent distance: 11

1st quantile distance: 77

Median distance: 357

3rd quantile distance: 1731

Max distance: 2658007

Min length: 101

1st quantile length: 200

Median length: 257

3rd quantile length: 395

95 percent length: 1759

Max length: 184800

Number of 1-axis segments: 22690

Max 1-axis segment length: 29183

Min 1-axis segment length: 101

Mean 1-axis segment length: 398.4961657117673

Median 1-axis segment length: 203.0

Number of 2-axis segments: 7088

Max 2-axis segment length: 40120

Min 2-axis segment length: 152

Mean 2-axis segment length: 529.3766930022573

Median 2-axis segment length: 257.0

Number of 3-axis segments: 10283

Max 3-axis segment length: 184800

Min 3-axis segment length: 162

Mean 3-axis segment length: 1140.7857629096568

Median 3-axis segment length: 280.0

Alejandro Lendínez Padilla Annex

51

Segments statistics w=150 and σ=0.3 (without last joining step)

Data loaded

Total number of segments loaded: 28316

Acceleration data set

Number of segments: 28316

Min distance: 1

5 percent distance: 20

1st quantile distance: 154

Median distance: 676

3rd quantile distance: 2570

Max distance: 2658349

Min length: 151

1st quantile length: 299

Median length: 380

3rd quantile length: 569

95 percent length: 2633

Max length: 223536

Number of 1-axis segments: 15123

Max 1-axis segment length: 62772

Min 1-axis segment length: 151

Mean 1-axis segment length: 587.8466574092442

Median 1-axis segment length: 301.0

Number of 2-axis segments: 5986

Max 2-axis segment length: 65321

Min 2-axis segment length: 227

Mean 2-axis segment length: 771.3434680922152

Median 2-axis segment length: 382.0

Number of 3-axis segments: 7207

Max 3-axis segment length: 223536

Min 3-axis segment length: 234

Mean 3-axis segment length: 1707.5294852227003

Median 3-axis segment length: 466.0

Alejandro Lendínez Padilla Annex

52

Segments statistics w=200 and σ=0.3 (without last joining step)

Data loaded

Total number of segments loaded: 22307

Acceleration data set

Number of segments: 22307

Min distance: 1

5 percent distance: 28

1st quantile distance: 237

Median distance: 954

3rd quantile distance: 3278

Max distance: 2658338

Min length: 169

1st quantile length: 397

Median length: 503

3rd quantile length: 744

95 percent length: 3504

Max length: 224271

Number of 1-axis segments: 11654

Max 1-axis segment length: 87736

Min 1-axis segment length: 169

Mean 1-axis segment length: 754.2649733996911

Median 1-axis segment length: 399.0

Number of 2-axis segments: 5184

Max 2-axis segment length: 75579

Min 2-axis segment length: 301

Mean 2-axis segment length: 1027.2139274691358

Median 2-axis segment length: 506.0

Number of 3-axis segments: 5469

Max 3-axis segment length: 224271

Min 3-axis segment length: 312

Mean 3-axis segment length: 2298.5774364600475

Median 3-axis segment length: 663.0

Alejandro Lendínez Padilla Annex

53

Segments statistics w=150 and σ=0.3 (with joining step)

Data loaded

Total number of segments loaded: 24196

Acceleration data set

Number of segments: 24196

Min distance: 76

5 percent distance: 107

1st quantile distance: 317

Median distance: 1025

3rd quantile distance: 3181

Max distance: 2658349

Number of segments with dist < w/2 0

Number of segments with dist < w 2517

Min length: 151

1st quantile length: 298

Median length: 313

3rd quantile length: 586

95 percent length: 3303

Max length: 224199

Reassigning labels

8 clusters

Initial groups lengths: [5845, 378, 1500, 3488, 2406, 1899, 4977, 2494]

Final groups lengths: [5028, 413, 1014, 4068, 3053, 2756, 3954, 2701]

Segments misclassified: 13909

Augmented segments misclassified: 6064

Initial groups lengths: [5845, 378, 1500, 3488, 2406, 1899, 4977, 2494]

Final groups lengths: [5187, 417, 973, 4134, 3055, 2683, 3871, 2667]

Segments misclassified: 13951

Augmented segments misclassified: 6119

8 clusters - 2nd iteration

Initial groups lengths: [5187, 417, 973, 4134, 3055, 2683, 3871, 2667]

Final groups lengths: [4721, 429, 1142, 4224, 2928, 3026, 3808, 2709]

Segments misclassified: 3048

Alejandro Lendínez Padilla Annex

54

Augmented segments misclassified: 846

8 clusters - 3rd iteration

Initial groups lengths: [4721, 429, 1142, 4224, 2928, 3026, 3808, 2709]

Final groups lengths: [4305, 437, 1349, 4245, 2758, 3237, 3841, 2815]

Segments misclassified: 1849

Augmented segments misclassified: 484

9 clusters

Initial groups lengths: [1216, 4750, 1388, 4667, 378, 1633, 2064, 4351, 2540]

Final groups lengths: [674, 4643, 3169, 4271, 420, 437, 2503, 4372, 2498]

Segments misclassified: 19909

Augmented segments misclassified: 9897

9 clusters - 2nd iteration

Initial groups lengths: [674, 4643, 3169, 4271, 420, 437, 2503, 4372, 2498]

Final groups lengths: [801, 4407, 2949, 3776, 427, 1264, 2667, 4289, 2407]

Segments misclassified: 4856

Augmented segments misclassified: 1796

9 clusters – 3rd iteration

Initial groups lengths: [801, 4407, 2949, 3776, 427, 1264, 2667, 4289, 2407]

Final groups lengths: [1112, 4092, 3040, 3299, 434, 1780, 2639, 4232, 2359]

Segments misclassified: 3352

Augmented segments misclassified: 1035

12 clusters

Initial groups lengths: [2002, 2817, 332, 564, 604, 1394, 1904, 3109, 1356, 4523, 2748,

1634]

Final groups lengths: [927, 2780, 362, 662, 749, 2642, 1913, 3737, 2329, 3055, 2402,

1429]

Segments misclassified: 22876

Augmented segments misclassified: 12712

12 clusters - 2nd iteration

Alejandro Lendínez Padilla Annex

55

Initial groups lengths: [927, 2780, 362, 662, 749, 2642, 1913, 3737, 2329, 3055, 2402,

1429]

Final groups lengths: [1120, 2683, 369, 548, 790, 2900, 1888, 3672, 2416, 2947, 2417,

1237]

Segments misclassified: 4968

Augmented segments misclassified: 2439

12 clusters – 3rd iteration

Initial groups lengths: [1120, 2683, 369, 548, 790, 2900, 1888, 3672, 2416, 2947, 2417,

1237]

Final groups lengths: [1226, 2690, 379, 468, 831, 3011, 1833, 3644, 2440, 2849, 2525,

1091]

Segments misclassified: 2903

Augmented segments misclassified: 1412

16 clusters

Initial groups lengths: [1591, 2441, 258, 1216, 1444, 310, 1426, 1510, 2491, 1962, 859,

1646, 1201, 784, 2007, 1841]

Final groups lengths: [1594, 1448, 422, 2200, 1515, 331, 1261, 166, 2738, 2418, 2584,

540, 764, 1070, 1250, 2686]

Segments misclassified: 18846

Augmented segments misclassified: 6377

16 clusters - 2nd iteration

Initial groups lengths: [1594, 1448, 422, 2200, 1515, 331, 1261, 166, 2738, 2418, 2584,

540, 764, 1070, 1250, 2686]

Final groups lengths: [1494, 1644, 483, 2040, 1597, 337, 1227, 420, 2479, 2085, 2575,

690, 1014, 1235, 1265, 2402]

Segments misclassified: 6125

Augmented segments misclassified: 2628

16 clusters – 3rd iteration

Initial groups lengths: [1494, 1644, 483, 2040, 1597, 337, 1227, 420, 2479, 2085, 2575,

690, 1014, 1235, 1265, 2402]

Final groups lengths: [1492, 1755, 512, 2028, 1648, 343, 1272, 446, 2185, 2001, 2581,

750, 1153, 1430, 1250, 2141]

Segments misclassified: 2970

Alejandro Lendínez Padilla Annex

56

Augmented segments misclassified: 1099

24 clusters

Initial groups lengths: [1998, 743, 616, 412, 1247, 2359, 700, 23, 503, 989, 1658, 262,

952, 317, 1008, 782, 457, 1230, 460, 1907, 1874, 770, 1347, 373]

Final groups lengths: [2303, 15, 1122, 568, 1390, 1402, 881, 317, 926, 471, 2114, 577,

303, 334, 1829, 45, 822, 187, 1323, 2129, 1809, 958, 333, 829]

Segments misclassified: 30597

Augmented segments misclassified: 17569

24 clusters -2nd iteration

Initial groups lengths: [2303, 15, 1122, 568, 1390, 1402, 881, 317, 926, 471, 2114, 577,

303, 334, 1829, 45, 822, 187, 1323, 2129, 1809, 958, 333, 829]

Final groups lengths: [2048, 73, 1197, 539, 1028, 1655, 1032, 295, 861, 615, 1812, 692,

499, 338, 1630, 93, 926, 502, 1610, 1874, 1609, 836, 424, 799]

Segments misclassified: 8485

Augmented segments misclassified: 4146

24 clusters -3rd iteration

Initial groups lengths: [2048, 73, 1197, 539, 1028, 1655, 1032, 295, 861, 615, 1812, 692,

499, 338, 1630, 93, 926, 502, 1610, 1874, 1609, 836, 424, 799]

Final groups lengths: [1941, 110, 1265, 513, 958, 1672, 1184, 287, 839, 646, 1550, 718,

669, 340, 1537, 146, 1025, 685, 1593, 1713, 1402, 801, 497, 896]

Segments misclassified: 4421

Augmented segments misclassified: 1854

Alejandro Lendínez Padilla Annex

57

C. More Reservoir Computing results

Figure 25. Confusion matrix of a model with 6 clusters over train data. Performance of 74% of success.

Figure 26. Confusion matrix of a model with 7 clusters over test data. Performance of 57% of success.

Alejandro Lendínez Padilla Annex

58

Figure 27. Confusion matrix of a model with 7 clusters over train data. Performance of 57% of success.

Figure 28. Confusion matrix of a model with 8 clusters over train data, after reassigning the labels.

Performance of 90% of success.

Alejandro Lendínez Padilla Annex

59

Figure 29. Confusion matrix of a model with 8 clusters over train data, after reassigning the labels two

times. Performance of 95% of success.

Figure 30. Confusion matrix of a model with 9 clusters over test data. Performance of 54% of success.

Alejandro Lendínez Padilla Annex

60

Figure 31. Confusion matrix of a model with 9 clusters over train data. Performance of 54% of success.

Figure 32. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels.

Performance of 88% of success.

Alejandro Lendínez Padilla Annex

61

Figure 33. Confusion matrix of a model with 9 clusters over train data, after reassigning the labels.

Performance of 88% of success.

Figure 34. Confusion matrix of a model with 9 clusters over test data, after reassigning the labels two

times. Performance of 92% of success.

Alejandro Lendínez Padilla Annex

62

Figure 35. Confusion matrix of a model with 9 clusters over train data, after reassigning the labels two

times. Performance of 92% of success.

Figure 36. Confusion matrix of a model with 12 clusters over test data. Performance of 57% of success.

Alejandro Lendínez Padilla Annex

63

Figure 37. Confusion matrix of a model with 12 clusters over train data. Performance of 58% of success.

Figure 38. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels.

Performance of 89% of success.

Alejandro Lendínez Padilla Annex

64

Figure 39. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels.

Performance of 89% of success.

Figure 40. Confusion matrix of a model with 12 clusters over test data, after reassigning the labels two

times. Performance of 93% of success.

Alejandro Lendínez Padilla Annex

65

Figure 41. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels two

times. Performance of 93% of success.

Figure 42. Confusion matrix of a model with 12 clusters over train data, after reassigning the labels three

times. Performance of 96% of success.

Alejandro Lendínez Padilla Annex

66

Figure 43. Confusion matrix of a model with 16 clusters over test data. Performance of 52% of success.

Figure 44. Confusion matrix of a model with 16 clusters over train data. Performance of 53% of success.

Alejandro Lendínez Padilla Annex

67

Figure 45. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels.

Performance of 86% of success.

Figure 46. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels.

Performance of 86% of success.

Alejandro Lendínez Padilla Annex

68

Figure 47. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels two

times. Performance of 93% of success.

Figure 48. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels two

times. Performance of 93% of success.

Alejandro Lendínez Padilla Annex

69

Figure 49. Confusion matrix of a model with 16 clusters over test data, after reassigning the labels three

times. Performance of 95% of success.

Figure 50. Confusion matrix of a model with 16 clusters over train data, after reassigning the labels three

times. Performance of 96% of success.

Alejandro Lendínez Padilla Annex

70

Figure 51. Confusion matrix of a model with 24 clusters over test data. Performance of 45% of success.

Figure 52. Confusion matrix of a model with 24 clusters over train data. Performance of 46% of success.

Alejandro Lendínez Padilla Annex

71

Figure 53. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels.

Performance of 84% of success.

Figure 54. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels.

Performance of 83% of success.

Alejandro Lendínez Padilla Annex

72

Figure 55. Confusion matrix of a model with 24 clusters over test data, after reassigning the labels two

times. Performance of 90% of success.

Figure 56. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels two

times. Performance of 90% of success.

Alejandro Lendínez Padilla Annex

73

Figure 57. Confusion matrix of a model with 24 clusters over train data, after reassigning the labels three

times. Performance of 92% of success.

