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Prym varieties of bi-elliptic curves
By Juan-Carlos Naranjo at Barcelona

Introduction

Let π: C -> C be an unramified double covering of a smooth curve of genus g. One
defines the associated Prym variety s the abelian variety of dimension g — l

where Νηιπ: J(C) -> J(C) is the induced norm map of Jacobians. The principal polarization
on /(C) restricts to twice a principal polarization Ξ on P(C, C) ([Mul], p. 333). In the sequel
we shall always consider P(C, C) endowed with this canonical principal polarization. We
denote by 9t g and stfg the moduli spaces for pairs (C, C) s above and for principally
polarized abelian varieties of dimension g, respectively. The morphism:

P:

sending (C, C) to P(C, C) is called the Prym map. Beauville ([Bei]) introduces a partial
compactification &g of $g parametrizing allowable double coverings of stable curves of
genus g and he extends P to a proper map

This map P is known to be surjective for g <Z 6 and generically injective for g ^ 7
([F-S], [K], [Wel], [Del]). On the other hand Donagi associates two allowable double
coverings to an unramified double cover of a smooth tetragonal curve (i.e.: with a linear
series g^), the three coverings having the same Prym variety. This construction, called the
tetragonal construction, shows that P is non-injective for all g. Donagi conjectured:

Tetragonal conjecture (Donagi, [Do]). If two elements (C, C) and (C', C") of 0t Q
verify P(C, C) £ P(C', C') then (C', C') is obtained from (C, C) by successive applications
of the tetragonal construction (we say that the pairs are "tetragonally related").

Debarre proved in [De 2] that the conjecture is true for the fibre of P over the Prym
variety of a sufficiently general tetragonal curve of genus g ^ 13. However, it is known that
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48 Naranjo, Prym varieties of bi-elliptic curves

in general the conjecture is not true: say that a smooth curve C is bi-elliptic if it can be
represented s a ramified double covering of an elliptic curve, and denote by $B g the moduli
space for the elements (C, C) e 3ig with C bi-elliptic. One has a decomposition into
irreducible components

Then, no elements of <%'B tg are tetragonally related to another element of &g and the same
holds for #B f < l fo, but P(M'Btg) c Ρ(#Β^0) (see [De 3] or §2 for details).

Nevertheless, if (C, C) e MBtgt0 and (C', C'} e 3t'^g verify P(€, C) ^ P(C', C"), there
exists an allowable cover tetragonally related to both covers: there is a "tetragonal path"
through an allowable cover connecting (C, C) and (C', C'}. In view of these remarks it seems
convenient to extend the tetragonal construction to allowable covers. This is done in § 15
following ideas of Beauville ([Be2]). Then it makes sense to consider the extended tetragonal
conjecture by replacing 3t g by 3ig in the above conjecture. Alas there are other
counter-examples to this extended version: those given by Wirtinger coverings and those
coming from the "bi-elliptic construction" explained in §11. This seems to indicate that
Donagi's picture is too optimistic.

The purpose of this paper is to check to what extent Donagi's conjecture holds for
elements of&Bg by studying the fibre of the extended Prym map over P(C, C), where (C, C)
is a generic element of ^? ,r We obtain a complete description of this fibre. The paper is
divided into three parts. In the first part (The fibre of P over a generic element ofP(&Bg)) we
prove the following:

Theorem ((5.11), (6.4), (7.9), (8.7) and (10.10)). Lei (C, C) be a general element of&B^g
with g ^ 10 andlet (C', C') E 3l 9 besuch that P(C, C) ^ P(C', C'). Then (C', C') E @B^ and
(C, C) and (C', C'} are tetragonally related. Moreover if(C, C) belongs to $Ε,9Λ with t ̂  l
then the pairs (C, C) and (C', C') are related by Standard tetragonal constructions.

We obtain also in this part an explicit injection of 3t'E^g in ̂  ^,0 (°f· § 10).

In the second part (A bi-elliptic construction) we find allowable coverings (D, D) with
D non-tetragonal and such that P (D, D) e Ρ(β^9^- This is a new counter-example to the
injectivity of the Prym map, of non-tetragonal type.

Finally in the third part (The fibre of P on a generic element of &Btd) we obtain:

Theorem ((16.1)). Lei (C, C) be a general element of 0lBg with g ^ 10 and let
(C', C') e (%g be such that P(C, C) £ P(C', C). Then one of the following facts occurs:

i) (C, C) and (C', C') are tetragonally related, or

ii) (C', C') is obtained from (C, C) by the bi-elliptic construction. In particular
(C, C) E $B,9,4 *n ̂ is case.
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Naranjo, Prym varieties of bi-elliptic curves 49

That is to say, the tetragonal and the bi-elliptic constructions account for the whole
fibre in the (generic) bi-elliptic case. As a summary, we give a complete description of the
fibre of the extended Prym map at a generic element of ? in §20.

I am deeply indebted to Gerald E. Welters for his guidance during the preparation of
this work. I wish also to stress the influence of the work of O. Debarre in the present paper. I
am grateful to the referee for his suggestions, for his criticism, and for his careful reading of
the manuscript.

1. Notation. Throughout this paper we work over the field of the complex numbers.
We fix an integer g greater than or equal to 10. By a curve we shall mean a projective
connected curve with at most double ordinary singularities. If C is a curve we shall denote by
g(C) the arithmetic genus of C. For a subspace Fof <%g, the symbol Fdenotes the closure of F

For D, D' two divisors on a smooth curve C, the expression D = D' will indicate that
they are linearly equivalent. We shall denote by Picd(C) the set of linear equivalence classes
of degree d divisors on C. Usually we shall not make a distinction between a divisor and its
linear equivalence class in Picd(C). For two non-negative integers r, d we shall consider the
algebraic subsets of Picd(C):

Let π: C -* C be a double cover of a smooth curve, either unramified or ramified exactly at
the points l9 . . . , Qk E C. Let Δ be the discriminant divisor. Once C is given, the morphism π
and the curve C are determined by Δ and a unique element ξ e Pic(C) satisfying 2 ξ = A and

k
π* (ξ) = Σ j. We will refer to ξ and Δ s the class and the discriminant divisor, respectively

i = l
attached to the covering.

A curve C is said to be hyperelliptic if it can be represented s a double covering of the
projective line.

Let D, D1 and D2 be curves. The notation D = Dl uk D2 means that D = D^ u D2 and

The symbols [] and ~ will mean rational cohomology class and algebraic equivalence,
respectively.

If A is an abelian variety and n is a positive integer, the group of the elements χ € A such
that nx = 0 will be written nA. For a polarized abelian variety A the symbol LA denotes an
invertible sheaf defining the polarization, we call λΑ the isogeny A -> Ά induced by LA (cf.
[Mu2]) and we denote by H(LA) its kernel. We shall denote by ΞΑ an effective divisor such
that ΦΑ (ΞΑ) £ LA. When speaking of the Jacobian of a smooth curve N we shall use LN and
ΘΝ instead of LJN and EJN.
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50 Naranjo, Prym varieties of bi-elliptic curves

We shall set

where a = dim A. If X is a subvariety of A we define 7(JT) ->= {xeA\x + X a X}. This is a
closed algebraic subgroup of A.

If (A, LA) and ( , LB) are two polarized abelian varieties, the divisor ΞΑ χ 5 + A χ ΞΒ
gives on yl x 5 a polarization written Lx χ L . Let (C, C) 6 3t g and P its associated Prym
variety (cf. Introduction). There is a natural model (P*, S*) of (P, E) in Pic2*~2(C)
described s follows ([Mul])

P* = {tePic2*-2(C)|Nm ( s ^, °(f) even} ,

The Singular locus of Ξ is described (loc. cit.) s:

SingS* = Sing*S*uSing*xS

where

x *

and

:x5* = {f e ρ*\ζ = π*(0 + £>, Α°(Γ0) ̂  1, A°(0 ^ 2} .

The singularities of the first kind are called stable and the singularities of the second kind are
called exceptional. These definitions depend on π.

We refer to [Bei] for the definition of allowable double covering. We shall assume
(except in § 15) that we are in the stable case.

I. The fibre of P over a generic element of P(@tE g)

2. Summary of known results. The following facts mostly are taken from [De 3].

Let tg be the moduli space for bi-elliptic curves of genus g and let &Bt9 be the moduli
space for unramified double coverings of bi-elliptic curves.

Let us fix an element (C, C) e 0t Bg and let s: C -> E be a morphism of degree two on a
smooth elliptic curve E (ε is unique up to automorphisms ofEifg ^ 6). The Galois group of
C over E may be identified with either Z/ 2 Z or Z/ 2 Z x Z/ 2 Z. We shall denote by 0t'E g the
subset of elements with Galois group Z/ 2 Z.
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(2.1) IfGal£(C) s Z/2Zx Z/2Z,wewritefortheelementsofthegroup:Id,«,i1,i2,
where j is the Involution which interchanges the sheets of the double cover π. Let

'JJL), C2 = C/(i2) be the quotient curves.

/
\ π,

i*'\
(2.2) C Q C2

\ Ιε</ε \ φ /fi2£
where π1? π2, β! and ε2 are the obvious morphisms. We shall always assume that
g(Q) ^ g(C2). Let 0lBgtbe the subset of 0t B g consisting of the elements (C, C) with
Gal£(C) s Z/2Zx Z/2Zand g(CJ = / + l, *(C2) =*- /.

One finds that ^? , f f , ̂  ,0 ,o> · · · » ̂  ,g, P"1"] are *e irreducible components of $B ^ and
that each one has dimension 2g — 2.

(2.3) Let (C, C) e ̂ B,^,r We fix the following notation:

i) τ, τχ and τ2 are the involutions of C, Q and C2 associated to ε, ε^ and ε2,
respectively.

20-2
ii) Let J = Σ ^/ be the discriminant divisor of ε and let Pl9 ..., P2g-2 ^e the

i = l
corresponding ramification points.

iii) ξ E Pic9~1(E) is the class associated to ε. Hence 2<f = Δ.

iv) η e 2JC is the class associated to π.

We may assume that Pi9 . . . , P2t are the discriminant points of ε1 and that P2t + i^2g-2
are those of ε2. We shall denote by Α19Δ2, ξΐ and ξ2 the discriminant divisors and the classes
associated to εχ and ε2, respectively.

(2.4) It is easy to check the following facts:

ii) η^Ρ,-l· ... +Ρ2ί-ε*(ζι) = Ρ2ί + ι+ ··· +^-2-e*(f2).

iii) C^Qx £ C 2 .

(2.5) We keep the assumption (C, C) E $B^t and we write P = P(C, C). We have the
description:
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S* = {π?

Naranjo, Prym varieties of bi-elliptic curves

Κι e ̂ (Q), C2 6 »;Vi (Q), Nmei(Ci) + Nm£2(C2) = ξ] .

(2.6) For g ̂  7 we shall define in (3.7) the subvarieties V, W_2, WQ and W2 of Ξ*.
Then Sing Ξ * 2 V^jW_2^jWQ\jW2 with equality if J does not belong to the image of the
addition map | ξ \ χ | ζ \ -> 1 2 £ | (this happens if (C, C) is general). Otherwise a finite number
of new isolated singularities appear.

(2.7) The following table contains relevant Information to be used in the sequel:

t

v

W-2

Wo

W2

0 1 2 3 ^4

0

0

0

irred.
dim g — 5

0

0

0

irred.
dim g — 5

0

0

irred.
dim g — 5

irred.
dim g — 5

dim g —

0

irred.
dim g —

irred.
dimg —

7

5

5

irred.
dim g — 1

irred.
dim g — 5

irred.
dim g — 5

irred.
dim g — 5 .

When / = 3 and (C, C) is general Fhas two components (see (3.4)). The singularities
corresponding to the elements of these varieties are stable for F, exceptional for W0 and
stable and exceptional for W_2

 an^ ^2-

(2.8) Consider now the abelian varieties Pl := P(C1? E) = Ker(Nm£i) (if t ̂  1) and
P2 := JP(C2, E) = Ker(Nm£2). We define the morphisms:

φ: Pt x P2 -* P

by sending (ζΐ9 ζ2) to π? (d) + π*(ζ2), if t^ l, and

ψ: Ρ2-^Ρ

by sending ζ2 to π| (ζ2) if t — 0. Then φ and ψ are isogenies and:

= {(ef (o), ej (o))|

(2.9) Remark. The definitions of ι, τ, P19 . . . , P2g-2, Δ, ξ and 77 given in (2.3) make
still sense if (C, C) e 0t'E g and we will use them throughout.

(2.10) Now we want to apply the tetragonal construction to an element (C, C) e ̂  ,r
Assuming first that (C, C) e 0t % tff t and keeping the notation of (2.3), fix a linear seriesg| on E
inducing an involution v. Applying the tetragonal construction to (C, C) with respect to
e*(gi) one obtains two elements (C', C'} and (C", C") of & (cf. Introduction) verifying:

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 6/15/15 2:13 AM



Naranjo, Prym varieties of bi-elliptic curves 53

a) In terms of the data introduced in (2.1), one of the coverings, say ((?', C"), can be
described by the new set of data:

C'

C C, C2

\ l·'/\i/·*

Note that (C', C'} ^ (C, C) if t = 0.

If v(Fi) Φ Pj for l ^ / ̂  2i <7 ^ 2g - 2, then (C', C") e ^? >iM. In any case

fg-ll
b) We now consider the second covering (C", C"}. For 2 ̂  / <U we define

^'i = {(Λ O e ̂ 1^ = A U4 A with A' A curves of genus i — l, g — i — 2, respectively}.

Tg-Π
(Notice that i — l ^ g — / — 2, since t ̂  ——— .) We call 3tf9tt the subspace defined by the

additional condition of Γ1? Γ2 being irreducible and smooth. Then the second cover (C", C"}
is an element of ̂ ', such that the components of C" are hyperelliptic curves. If moreover
v(P.) Φ P. for l ^ /'^ 2t<j^2g- 2, then (C", Cr/) e J^r

For / = l we put

j^'fl = {(f, Γ) e 3tg\T = P1 u4T2 and Γ2 is a hyperelliptic curve} .

Again the additional condition of F2 being irreducible and smooth defines a subspace ̂  !.
Then (C", Cr/) e ̂ a. When v satisfies the same condition s above, then (C"', C"} e Jtfg\.

Finally we define for t = 0

Jf^ f 0 = {(Γ, Γ) e 3tg\T is obtained from a hyperelliptic curve by identifying
two pairs of points}.

By imposing that the hyperelliptic curve being irreducible and smooth, and each pair being
non-hyperelliptic we define a subspace Ji^ 0. Then (C", C")e ̂ '0- If v is general then

By applying the tetragonal construction to an element of 3$'B ^ we obtain two elements
of =^,0· Once again if the linear series g2 is general, then they belong to 3Cgf0.

Γα- Π
The spaces 2tfg t are irreducible and dense in Ji^f, i = 0,..., —-— . We have also
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54 Naranjo, Prym varieties of bi-elliptic curves

=3g-7 for / ^ 2 ,

f l = 2g -2 and

Notice that our definition of 3tfg 0 differs a bit ofthat of [De 3]. This change is necessary
in order to have the next property.

(2.11) Any element of 3?g 0 can be obtained by means of the tetragonal construction
from an element of $B g 0. In fact, this is a eonsequence of the construction that will be given
in § 15. On the other hand, notice that P(^g) c Ρ(^0)· Hence

(2.12) Finally we recall two lemmas borrowed from [Mu 1] and [De 2] . First we need
a definition. Let π: C -> C be a double cover of a smooth curve. We shall say that an effective
divisor on C is π-simple if it does not contain inverse images of effective divisors of C. Let
CePic(C) be the class attached to π. With this notation one has:

(2.13) Lemma ([Mul], p. 338). If <£ is an invertible sheaf on C and D is an effective
η-simple divisor on C there exists an exact sequence:

0 -> & -> π π * ( ^ ) ® 0 ( £ ) -> ^ ® 0 N m C D ) - C -» 0 .

(2.14) Lemma ([De 2], p. 550). Let π: C -+ C be an allowable double cover ofa stable
curve C, & an invertible sheaf on C and D a reduced element of\Kc® (Nm^J?))"1 1 with
non-singular support. Suppose that h° (β? ® Θ& &£ (D)) ^ l for all effective divisors D such that
Νηιπφ) = D. Then A°(J?) ^ 1.

3. Some properties of bi-elliptic curves. This section deals with properties of bi-elliptic
curves that will be used later on. In a first reading it may be skipped and kept for reference
purposes.

Let ε: C -» E be a 2-to-l morphism of smooth curves where E is an elliptic curve. We
denote by Δ and ζ the discriminant divisor and the class determining ε. By Riemann-
Hurwitz:

Let τ: C -> C be the involution which interchanges the points of each fibre.

(3.1) Lemma. Let A, B be effective divisors on E and C, respectively. Assume that B is
B-simple (cf. (2.12)). Then:

(!) + B) = h°( ) .

Proof. Use (2.13). α

(3.2) If g(C) ;> 5, then C is not trigonal (cf. [Te]).

(3.3) If g(C) ^ 4, then C is not hyperelliptic. Use (3.1).
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Naranjo, Prym varieties of bi-elliptic curves 55

(3.4) Assume that C is general, of genus 4. Then W^(C) has two different points.

(3.5) Assume that C is general, of genus 3. Then C is not hyperelliptic.

(3.6) We consider the following subvarieties of Pice(C} ~ 1 (C):

Ζ" = {β*(χ + γ) + ζ'\χ,γ€Ε,ζ'εΐν*€}-5} if

A = {ε*(χ) + ζ'\χεΕ, ζ' e ^C)_3} :DZ" if g(C) ̂  3 .

Remarks. i) If g(C) ^ 3, then A is irreducible of dimension g(C) — 2.

ii) If g(C) ̂  6, then Z' and Z" are irreducible of dimension g(C) — 4 and
Sing0* = Z' 'u Z" ([We2], Prop.3.6). If g(C) = 5, then the equality holds but Z' is not
always irreducible (in fact by [Te] there is a bijection between the set of its components and
the set of bi-elliptic structures on C).

(3.7) Now we define the varieties Fand Wa (where a e {2, 0, — 2}) mentioned in (2.5).
We use the definitions of (3.6) applied to Ci and C2. In these terms:

. 2 = i i 2 i > 2 , k) = ξ} ,

^o = {π? (d) + ^(C2)|Ci 6^ l f ζ2εΑ2, Nm^iCJ + Nm£2(C2) = f) ,

^2 = {πίίω + πΚζ^Κ, 6 β?, C 2eZJ, Nm^W + Nm.^) = f) .

(3.8) Lemma ([De 3], Lemma 5.2.10). Assume g(C) ^ 6 α«ί/^χ lePic^0

Then {ζ E Z"|Nme(0 = 1} is irreducible of dimension g(C) — 5.

In particular Z' n Z" is irreducible.

The following facts will be used throughout.

(3.9) Proposition. One has the following equalities:

i) Ifg(C) ^ 3 then I(A) = {e*( )| ePic°(£)}.

ii) Ifg(C) ^ 5 then:

(aeJC\a + Z" ciA] = {aeJC\a + Z" a &*}

= {ae/C|0 + Z'nZ" a A} = {aeJC\a + Z' nZ"

= {ε* (x) — r ~ s\xe E, r, s E C} .

iii) //g(C) ̂  5 then:
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56 Naranjo, Prym varieties of bi-elliptic curves

Proof. i) The inclusion of the second member in the first one is clear. Let aeJC such
that α + ΑαΑ.Ικ particular, for all χ E E and D e C(g ~ 3) one has A° (a + ε * (je) + D) > 0.

Now we may write a = D — ε* (Je) where D is an effective divisor of degree two
verifying

h°(D + e* (de)) > 0 for all α e Pic° (E) .

By applying (2.13) we conclude that De Im (ε*), thereby proving i).

ii) All the equalities are an easy consequence of the following one:

{ε*(χ) - r - S \ X E £ , r,sEC} .

This fact was proved by Debarre in [De 5]. We give here a sketch of the proof. We only prove
the inclusion of the left hand side member in the right hand side member. Write
a = D — s*( ), where E Picr(E) and D is effective. If we assume that D is ε-simple then
2 r ̂  g -f 1 . In fact it is not necessary to consider the case 2 r = g + l . It suffices to obtain a
contradiction if r ̂  2.

Suppose that 2 r ̂  g — 2. For a generic element B E Picr(£") there exists D' ^ 0 such
that:

* D + D' is ε-simple.

Then ε*(5) + D' E Z'n Z". By applying (2.13)

0 < h°(a + s*(B) + D') = h° (D + D' + s*(B- ))
^ h°(B- ) + A°(Nm£(Z) + D') + B- - ξ)
= h°(B- ) + A°(Nm£(£>) - -B)

which is a contradiction because B is generic. The cases 2r = g — l, g are similar.

Part iii) follows from ii). D

4. A key lemma. Let /: 7V -> 7V be a (2:1) morphism of smooth curves with ramifica-

tion divisor ]T Q{. We denote by σ the involution of N attached to /.

Let L be a line b ndle on N with L £ σ* (L). Choose an isomorphism φ normalized in
such a way that:
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Writing L [x] for the pointwise fibre of L over Je 6 7V, one obtains isomorphisms:

<?[&] : £[ J -> **(£)[&] = £!>(&)] = £[ J, ie {l, ...,*},

given by multiplication with constants λί with A? = l. We attach to L a vector
t; (L) = (/11?..., Ak) e (μ2)* which depends on the choice of φ. The ambiguity disappears when
we pass to the quotient modulo μ2 by the diagonal action. Then we have a homomorphism of
groups:

μ2

We use the notation v (D) and v(&) for D a divisor and S an invertible sheaf on N.

(4.1) Proposition. There exists a line b ndle L on N such that /*(L)^L iff
v(L) = (!,...,!).

Proof. It suffices to use [G], Th. l, p. 17. D

(4.2) Proposition. Let ̂  be an invertible sheaf on N such thata*(&) ^ S. Then there
k

exists a divisor D on N with 0 ^ D ^ £ f « f an invertible sheaf t£ on N such that
i = l

Proof. By using the exact sequence:

and by observing that G$ (- f) ^ Im (/*) (hence by (4.1) v(-Qt) Φ (l, ..., 1)) one has
r( — ̂ .) = (l, . . . , — l, . . . , 1). Then, by tensoring J^ with suitable sheaves &$ ( — f) we can
make all the coordinates of the corresponding vector equal. D

Let (C, C)e $Bt9· We keep the notations of §2. In particular η Ε 2JC is the class
determining π: C -> C.

(4.3) Corollary. O«e Aa^ (C, C)

. By (2.4) ii), τ* (η) = η when (C, C)i&t'Btg. Conversely suppose τ* (77) = >/.
Applying (4.2) we may write:

20-2
with O ^ D ^

Let Ci (resp. C2) be the double cover on E given by the class of (resp. ξ—Α) and the
discriminant divisor Nm£(Z)) (resp. Δ— Nme(D)). Observe that:
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58 Naranjo, Prym varieties of bi-elliptic curves

So due to the injectivity of ε*:

Nrn. fo) = 0 and 2^

Then C ̂  Q x£ C2 and C s Cj(il o /2)? ^ and i2 being the involutions of C attached to the
projections on Q and C2, respectively. Hence (C, C}e£%B gt for some t. n

(4.4) Lemma. Assume t> Q. We consider the commutative diagram:

n*/G! — *-> /c
τ t N
/£· — — » /C .

77ze« π * (JQ) n π * (JC2) = {π * (ε * (α)) | α e Pic° (

Proof. Fix /Te Im (π?) n Im (π|) and jSj e yCt, /?2 e /C2 such that

f t j) = π]*(τ]κ(/31))3ηαπ2*(/?2) = π* (τ* (j 2)). Sincei > 0, themorphismsπ1 andn2
are ramified hence l = tf ( ^) and )S2 = τ^(β2). Applying (4.2), there exist divisors D1 on
Q, Z)2 on C2 and classes α ΐ 5 α2 e Pic0^) such that:

(4.5) /?

where 0 ̂  Z>; ̂  ramification divisor of ε,, ι = l, 2.

Hence:

π* (ε*(α! - ά2)) = π* (D,) - π*(/)2) .

Let Λ! and 2 be effective divisors on C such that

π *(/?!> = π* (D,), π*(Α2) = π*(Ζ>2)

thus

Σ pi> o^ /? 2 ^ χ

From

π^ε^αι-α^^π*^-^),

two possibilities appear:

either i) ε* ( i — cx2) = R^ — R2

or ii) ε*(ά! — α2) Ξ j — 2 -f ^ .
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Naranjo, Prym varieties of bi-elliptic curves 59

We first suppose i). From (4.1) we have v(Rv — R2) = (!,..., 1), i.e.: v(Ri) = v(R2). By
applying the proof of (4.2) we can compute these vectors:

,, 1) with λί = — l iff

. . ,Ί20-2) with λί = -1 iff Pi £ Supp (R2).

We conclude that λί= ... = Α2 ί = A2f + x = ... = ^20-2^ ^at is to say, either Rl = R2 = 0
2t 20-2

or R1 = ]T PJ9 P2
 = Σ Λ· If Ri = R2 = 0, then D! = D2 = 0 and we finish by

2t 20-2
taking β = ± = 2. Similarly, if R^ = ]T p£, P2 = £ p. we get Z)1 = ε*(^) and

Z)2 = ε* (ζ 2 ) (see (2.3)). By replacing in (4.5):

On the other hand, by (2.4) ii):

2t 20-2

ε*(α _ α ) = y P·— y P = ε*(ξ" ~ f )
and one finally obtains β = αχ — ζι = α2 — ξ2.

In the case ii) we can imitate the above proof by replacing η by the expression of
(2.4) ii). α

5. The components ^?BjiM for t ^ 4. In this paragraph (C, C) is an element of ^Bt9tt
with t ̂  4 and P = P(C, C)/We keep the notations of §§ l and 2. In particular g ̂  10.

In order to describe the fibre of the Prym map over P we shall use ideas from [We 1] and
[De 2]. We perform intrinsic geometrical constructions to get Information on the covering
from the Prym variety. We will use the components of SingS*.

Recalling the descriptions of (3.7) one has:

(5.1) Proposition. The variety W_2c\ W2 is irreducible ofdimension g — 9 and one has
the equality:

W„2nW2 = {π* (C,) + W2*(C2)ld e Z"19 C2 e Z£, Nm^iCJ + Nm£2(C2) = ξ} .

Proof. We check first the equality. Clearly the second member is contained in the first
one. Conversely, any ζ£}¥2Γ^\ν_2 can be written s

(5.2) ζ = π*^) + π*(£2) = π?(ζί) + πξ(ζ'2)

where

^', CJeZi, ζ'2 e Θ*
Brought to you by | University of Queensland - UQ Library

Authenticated
Download Date | 6/15/15 2:13 AM



60 Naranjo, Prym varieties of bi-elliptic curves

and

^Q + Nm£2(C2) =

Then:

πϊ(ζ1-ζ'ι)

By (4.4) there exists ePic0^) such that:

ζ 2 - ζ 2 = ε * ( α ) .

In particular d = ef ( ) + ζ ί and replacing this in (5.2) we are done.

Consider now the morphism:

Let us define Γ = {(C1,C2)eZi x Z2'|Nm£l(Q + Nm£2(C2) = ξ}. Clearly ψ (Τ) = W^2nW2.
Since each fibre of the induced map T -» W_2nl¥2is isomorphic to £* (use (4.4)) it suffices to
prove that T is irreducible of dimension g — 8. To see this look at the first projection:
T -+ Z'[. Clearly Z^' is irreducible and by (3.8) the fibres are irreducible of dimension
g — t— 5 (note that g ̂  10, t ̂  4 and t + \^g-t imply g — t^ 6). Thus T is irreducible
and dim T = dim Z'{+g-t-5 = t-3 + g-t-5=g-S. n

(5.3) Proposition. The varieties W0nW_2 and WQr\W2 are both irreducible of
sion g — l and they are described s follows:dimension g

_2 = (π*^) + π*(ζ2)|ζ1 e ZI ζ2εΑ2, Nmjd) + Nm£2(C2) = ξ } ,

W2 = {πΚω + πίΟ^ε^, C2eZ2 ', Nm^^) + Nm£2(C2) = ξ] .

Proof. By symmetry only one variety has to be considered, for instance W0r>lV2.
Imitating the proof of (5.1) one finds the equality. The irreducibility and dimension may be
obtained s above replacing Ψ by the morphism:

(ζ ΐ 5 ζ 2 ) -» πίίζΟ + πίΚί)

and Tby Γ = {(ζ1; C2)e^ t x Z2'|Nm£i(C1) + Nm£2(C2) = ξ}, ο

(5.4) Remark. The second Statement of Proposition (5.3) still holds true if / ^ 2.
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Naranjo, Prym varieties of bi-elliptic curves 61

(5.5) Weput

Aa = {xeP\x+W^Wa^WQ}

where a = 2, — 2.

Because of (5.1) and (5.3) we can teil WQ among the three components of Sing H* of
dimension g — 5. Hence A_2uA2 is intrinsically recovered from P. Our next aim is to
determine Λ_2 and A2.

(5.6) Proposition. One has the equalities:

i) A_2 = {nf(zf(x)-r~s)\xEE, r, seC1? 2x = s1(r) + £i(s)} ,

ii) A2 = {n^(s*(x)-r-s)\XEE, r, s e C2, 2x = &2(r) + s2(s)} .

Proof. We only prove the second one, the first one being equivalent. Looking at (5.3)
i t is easy to check that the second member of this equality is contained in the first one (by (2.8)
its elements belong to P). We show the opposite inclusion. Fix e Λ2 . By using (2.8) we may
write = π* (04) + πζ(α2) with Nm^) = Nm£2(a2) = 0. Let π* (d) + π*(ζ2) e W0 n W2
where ζ1 e Al9 ζ2 e Z2 and Nm£i (CJ H- Nm£2(C2) = ξ (cf. (5.3)). Applying Lemma (4.4) there
exist elements ζ[€Αΐ9 ζ'2 e A2 and α e Pic0^) such that:

Therefore a1 + ^4X c: ^4t and «2 + Z2 c= >42. Then by using (3.9) i) and (3.9) ii) we finish the
proof. D

(5.7) Proposition. Assume t ̂  4. The sets A_2n2A_2 and A2n2A2 are two
Symmetrie irreducible curves. Their normalizations are Ci and C2, respectively, andr1 αηάτ2
are the involutions induced by the ( — 1) map of P.

Proof. We first observe that:

2A_2 = { n f ( x + y-ii (x) - τ, (y))\x, y e CJ ,

2A2 = {π * (χ + ̂  - τ2(χ) - τ2 (y)) \x,yeC2}.

Now, it suffices to consider the set A_2n2A_2. One has:

Indeed, since τ± has fixed points, πf (x — τ1 (χ)) e 2 A _2 for all χ E C1. Moreover:

5 Journal f r Mathematik. Band 424
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62 Naranjo, Prym varieties of bi-elliptic curves

So the right band side member of the equality is contained in the left band side member.
To see the opposite inclusion, take χ e E and r, s e Cx such that 2 χ = εχ (r) + ε2($) and
suppose that πf (ef (Je) — r — s) e 2Λ_2. We obtain a linear equivalence:

( -r -s Ξ π > > + ζ -

where >>, z e Q. Since π]" is injective:

(5.8) ε*(χ) + T! 00 + τ^ζ) = y + z + r + s .

By assumption t §: 4 and then (3.1) implies that A° (ef (x) + τ1 (y) + τ1 (z)) = l iff τί (ζ) Φ j.
If y = τ1 (z) the initial element belongs to the right band side member trivially. Thus we can
assume that (5.8) is an equality of divisors and then either y = τ1(ζ) or y = r1(y) or
z = τχ (z). In any case the inclusion follows.

Now, taking the morphism

φ^: Q -> Λ _ 2 η 2 Λ _ 2 ,

χ -> ^(χ-τ^χ))

the Statement follows by observing that φγ is birational (Q is not hyperelliptic by (3.3)) and
that φ^ (τ1 (χ)) = - φν (χ). Π

(5.9) Let π': D -* D be an unramified double cover of smooth curves such that
P (D, D) £ P. Since the singular locus of the theta divisor of P has dimension
g — 5 = dimP — 4, D is either trigonal or bi-elliptic (cf. [Mul], p. 344). If D is trigonal P is
the Jacobian of a curve (cf. [Re]). Then, by [Sh 1] C has to be either hyperelliptic or trigonal,
which contradicts either (3.2) or (3.3). Thus D is bi-elliptic.

Moreover, table (2.7) and observation (2.11) show that (j5, D)e3iB g s with s ^4.
Let Dl and D2 be the bi-elliptic curves of genus s + 1 and g — s attached to (D, D) in the
usual way (cf. (2.1)). Since s we have seen in (5.7), (Q, tj and (C2, τ2) can be recovered
from P, one has isomorphisms (pt: D{ -> Cf, i = l, 2, commuting with the corresponding
involutions. In particular the base elliptic curve is the same and s = t. Summarizing, if the
diagram attached to (D9 D) is:

Dy 4π·\ζ
D D1 D2

there exist Φ, e Aut(£), i = 1,2, such that
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Naranjo, Prym varieties of bi-elliptic curves 63

D: -i-, C,

Thus we obtain a diagram

D

D Cl C2

E. * 2 ' ° £ 2

Composing with a suitable automorphism of E we get

/\(5.10) D Q C2

where Φ e Aut (£) and Φ(Ρί) φ PJ9 for all l ^ r ^ 2 / < 7 ̂  2g - 2.

(5.11) Theorem. Lei (C, C) fo> α general element of$Bgt with t ^ 4 am/g ̂  10.
( , D) E mg such that P(D, D) ^ P(C, C). Then (D, D) e @Bg[t and (C, C) and (Z), D) are
tetragonally related.

Proof. By (5.9) it only remains to see that each diagram (5.10) can be obtained by
applying successively the tetragonal construction starting from the initial element (C, C).
By (2.10) it suffices to see the following fact:

Lemma. Assume that E is general. Then the sei

Γ = {Φ e Aut(E)\ Φ(Ρί) φ FJ9 for l ^ i ̂  2t <j ^ 2g - 2}

is generated multiplicatively by the elements ofF that correspond to the linear series g^ of E.

Proof. Left to the reader. D

6. The component StE g 3. This section is devoted to proving the analogue of the
Theorem (5.11) for the component ^ ,g,3. We begin with a general result valid for any t.

(6.1) Lemma. One has the equalities (cf. § l and (2.8) for notations, pari iii) will not be
needed here, but later on):
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64 Naranjo, Prym varieties of bi-elliptic curves

i) I(W2) = nf(Pi) fort*!,

ii) I(WQ) = π* (ε* (2JE)) for t* 2 ,

iii) /(^_2) = π*(Ρ2) for t ̂ 4.

Proof. We show first the equality i). To prove the inclusion of nf (Px) in the left hand
side member we consider nf( ) e n f ( P i ) and we take an element π*(£ι) + π*(ζ2)€ W2
where ζ1 e 0f , ζ2

 e ̂ 2 and Nm^id) + Nm£2(C2) = ξ. Since the map

is surjective, we may write

jS + d sCi + eft ), where ζ; e <9*, ρ EPic°(£) .

Then π? (j8) + π* (d) + π| (ζ2) = π* (ζ;) 4- π* (£2 -h ε$ (ρ)) e W2. To see the opposite inclu-
sion take = πf (a^ + π^(α2) E P with u^ e P19 a2 ε P2 and such that +W2a W2. By
applying Lemma (4.4) s before (see for instance the proof of (5.6)) we get a2 -h Z2 c= Z2 . By
(3.9) iii) there exists α e2 /£" such that a2 = ε^α). Therefore 5e πf

In ii), the inclusion of the right hand side member in the left hand side member
is obvious. Take now = πf (a^) + ττ|(α2) with a1^Pi and a2eP2. Assume that

+W0<^W0. Again s a consequence of Lemma (4.4) one has al + Aic:Ai and
a2 + A2c: A2. By using (3.9) i) we obtain that e π* (ε* (JE)}. This ends the proof of the
inclusion I(W0) <= π* (ε*(2/£)).

Part iii) is analogous to part i). D

We now assume t = 3. Let (C, C) be a general element of &B,g,3· There are two
components of dimension g — 5 in SingS*: W0 and W2 (cf. (2.7)). Lemma (6.1) shows that
we may distinguish between WQ and W2 because the dimension of I(W0) and I(W2) are
different.

(6.2) Proposition. One has:

U (TO-?™*(A))M*?(^

Proo/. Let <f = nf(sf(z) + r) + πξ(ζ2) be an element of W0, where zeE, r G C1?
C2 e Λ 2 and such that Nm£i (sf (z) + r) 4- Nmg2 (£2) = f. Suppose ax e P! satisfies
π * (ai) + Γ^ W^0 · % Lemma (4.4) this implies that a± + ef (z) + r e ^4 x . Hence
u^ = r ' — r + ε * (α) where α e JE, r, r ' e Q . By replacing α by je — εί (r ') for some χ E E we get

(6.3) (^0)_?ηπ*(Ρ^{π*(ε^

The inclusion of the right hand side member in the left hand side member in (6.3) is trivial.
The equality in (6.3) clearly implies the equality we wanted to prove. n
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Naranjo, Prym varieties of bi-elliptic curves 65

(6.4) Theorem. Lei (C, C) be a generic element of $BgZ with g ^ 10 and let
(A D) E 9tq such that P(A D) £ P(C, C). Then (D, D) e ΛΒ^ 3 and (C, C) and (D, D) are
tetragonally related.

Proof. First we observe that the methods used in the section 5 (i.e.: for (C, C) e 3%B ,,
t^ 4) to recover the set of data (C2, τ2) are still valid (cf. (5.4), (5.6) ii) and (5.7)). On the
other hand we have seen in (6.2) how to recognize intrinsically in P the set

{π? (ef (x) — r — s) \ χ e E, r, s e Q and 2x = εχ (r) + s^ (s)} .

Since it coincides with the set obtained in (5.6) i) we can also imitate the process given in
(5.7) to obtain the set of data (Q, τ^). Then the proof continues s in (5.11). α

7. The component 3 B,g,2· In this Paragraph we wish to prove the analogue of
Theorem (5.11) for the component 3$B,g,2- In addition to the ideas of § 5 we shall use some in-
tersections Ξ* n Bf to recover (C19 rt). We keep the assumptions and notation of § l and § 2.

Let us denote by (C, C) a general element of &Β,9,2· From (2.6) and (2.7) we may
suppose that:

(7.1) Because of (6.1) we can make a difference between both components.

(7.2) Remark. Imitating §5, one gets from P* the pair (C2, τ2) and the subvariety
).

We shall now describe a subvariety of π*(Ρχ) that determines the curve Q.

(7.3) Proposition. One has the following equalities:

i) If = n%(x — T2(jt)), where xeC2, then Ξ* ηΞ| = Fu X(a), where

Ζ(α) = {π*(ζ1) + π | (ζ2)Κι6Θ*,ζ 2 6Θ*,Α 0 (ζ 2 -χ)>0 and Nm^) + Nm£2(C2) = ξ}

is the moving part of this algebraic System and F is the fixed pari (see belowfor a description
ofF).

ii) ^ίΛΤ={π*(ζ1) + π*(ζ2)|ζ1εΘ*,Νιηει(ζ1) = ^,ζ26Ζ;}. Then:

αεΛ2κ2Λ2 -{0}

and N is the union of the irreducible components not contained in W0

iii) If = nf (a^), where ai e Pj — {0}, then:
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66 Naranjo, Prym varieties of bi-elliptic curves

Proof. i) Let ζ = nf (£x) + π£ (f 2) e Ξ* η Sa* with α = πζ(χ — τ2 (χ)). By applying
Lemma (4.4) we find elements ζ ί 6 Θ* , ζ'2 Ε Θ* and ρ e Pic°(£) such that:

(7-4) Ci = ii + e?(e),
2

Suppose first that ρ = 0. Then

If ζ2 belongs to the second set, by Riemann-Roch one has

Λ°(Χο2-ί2-τ2(χ))>0.

Define I = ?2 - Nmi2(C2), ̂  = Ci - ε*(Χ) and ^2 = ζ2 + ε*(Ι). Then

(C2))) = Λ° (-τ? (ζ^ + ef (fj) = h° (τ, (ζ,)) > Ο ,

Therefore ^«(d) + π*(ζ2) = π?^) + π*()?2) e Χ (α).

Οη the other hand if ρ φ Ο then (cf. [De 4], p. 9)

If Nm£l (d) = fi + ρ then ρ = Nm£j (d) - f t = <f2 - Nm£2 (C2) and by replacing in (7.4) one
has

Thus ζ2 e 0f n (Θ*)χ_τ2(Λ) and proceeding s above we conclude that ^e X(a). We have
proved the inclusion E* r\E£ a FvX( ), where

F= i^fid) + η*(ζ2)\ζ, e A,, ζ2 e Θ*, NmJd) + Nm.2(C2) = f}

(note that F = 0 if t ^ 1). The inclusion of X(a) in the left hand side member is trivial. Take
now ζ = nf (Ct) + π| (ζ2) e F. Since the map

Pic°(£:) x Ci9~3) -

is surjective we can write

and then π* (χ - τ2(*)) + ΓΞ π* (d + ε*(α)) + π*(£>) e S*.
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Naranjo, Prym varieties of bi-elliptic curves 67

The reader may observe that F and X(a) have pure dimension g — 3 and that
dim (FnX(a)) = g — 4 for all . This concludes the proof of i).

ii) The inclusion

W ι ; W ι ) N r- Γ\ Y(n\WQ W W 2 \J IM C- ( l A ^u;

is left to the reader.

To see the opposite inclusion let ζ = π% (Ct) + π| (ζ2) Ε X (a) for all e Λ2η2Λ2 — {0}.
Then for all x e C2 there exist ζ( e 0f, ζ2 e 0^ and ρ 6 Pic°(£) such that

There exists an irreducible component T of the fibre over ζ2 of the map

Pic°(£) x C2 x C^~4) -

which dominates C2. Suppose that the projection T -> Pic0^) is constant and let ρ0 be the
image. Then for all x e C2 we find an effective divisor D such that:

Therefore A° (C2 + ε * (ρ0) - χ) > 0 for all xeC2 and hence C2 e Sing Θ * = Z2 u Z2 . So ζ
belongs to W2 u 7V.

If Γ -^ Pic0^) is surjective we find that

for all ρ e Pic0(£"). Hence C2 e A2. Now it is not hard to deduce that <f e W^W2.

From the descriptions it is clear that no components of N are contained in W0\jW2.
This finishes the proof of ii).

iii) The inclusion of the right band side member in the left hand side member is left to
the reader. To see the opposite inclusion let ζ1 e 0f with Nm^Cj) = ζι and £2 e Z2 and
suppose that
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68 Naranjo, Prym varieties of bi-elliptic curves

Again there exist ζ[ e 6>f, ζ'2 e Θ$ and ρ e Pic°(£) with

If ρ = 0 then ζ1 e Θ? n(0f)ai. On the other band ρ φ 0 implies that

C2e6>*n(0*)_£!(i) = Λ2υ{ζ26β2*|Νιηβ2(ζ2) = ξ2-ρ} .

Since £2 e Z^, only £2 e ^42 is possible and then ξ2 e Z2 n Z2 . n

(7.5) We shall define for = π*^), ̂  e /\ - {0}

N (a) = {πΓ^ + πί^Κι^β? η(β?)β1> Nm£i(Ci) = ii,C2eZ;} .

This set is recovered from ΝηΞ* s the union of the components not contained in W2. Our
next goal is to distinguish points in πf (PJ looking at the number of components ofN( ). We
will see below that the set Θ * n (Θ f )fll n Nm~ l (ξ^) is finite. The cardinal of this set coincides
with the number of irreducible components of N (a).

(7.6) Let D be the ample divisor induced by 0i on the abelian surface Pr By
Riemann-Roch

= and h° (D)2 = deg (λ0) .

By using [Mul], p. 330 we obtain deg^) = 4 and therefore D2 = 4.

(7.7) Let Σ be the curve given by the pull-back diagram:

Σ - > C}2)

i l'·"
|f,| - . £">

the horizontal arrows being inclusions. Since Cl is general it is easy to obtain (cf. § 1 1) that Σ
is a smooth curve of genus 3 and the quotient Σ /τ{2) is an elliptic curve not isomorphic to E.

We shall denote by Σ0 the image of the map
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Naranjo, Prym varieties of bi-elliptic curves 69

(7.8) Proposition. One has:

{αεπ*(Ρι)\ number comp. N (a) < 4} = 77υ>π*(Ζ0)

where Π = {π? (x- T^x^jxe Cj.

Proof. By (7.5) we must study the cardinal of the set <9f n (Θ f)ei n Nm~ 1 (fj when
#! e P1 . It is easy to see the inclusion of Π in the left hand side member. To prove the rest of
the Statement we shall need the following properties of the quartic plane curve Cl :

• The lines determined by the divisors ε/* (χ) with χ e E all pass through a common
point O 6 P2, where Ο φ Q. (In fact O = P(H°(E9 ^(fj)1) <= P/f °(C1? KCl)*).

• The ramification points P/, . . . , P^ of ε! belong to a line / and Ο φ L

• If x, y e Cx verify εχ (χ) + εχ (>>) = ξ^ then O e Jcy.

Take now a point x + ye 0f n(0f)a inNm~1(^1). The following equalities are
well-known:

)θι (χ + >0 where r + J6|

Since ε! (Λ;) + εχ (y) = ε! (r) -h εχ (,y) = ̂  both lines pass through O. They are equal iff the
following equality of divisors holds x-\- y -}- ri(x) + ri(y) = r + s -\- τ^ (r) + τν (s), that is to
say iff nf (a^) E Π u πf (Z0).

Assume first that nf (a^ <£/7<^^f (Z0). In this case the curve 0*n(0f) f l l is not
Singular at χ + y and it suffices to show that Ο φ PTPi (0) in order to obtain transversality in
the intersection. Indeed:

ΓΡι(0) = (H»(C19 *Cl)~)* = H» (E,

On the other hand, if SR is an equation for the ramification divisor R = £ P/ then the
i = l

inclusion

s -> zf(s)sR

induces an equality PH°(E, &E) = {R}. By dualizing we get Ο φ l = ΡΓΡι(0). Observe in
particular that it follows that the set 0f n (Θ f )ei n Nm~ l (ξ^ is finite. Combining (7.6) with
transversality we find

π? (α ̂  φΠνπ? (Σ0) => number comp. N (a) = 4 .
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70 Naranjo, Prym varieties of bi-elliptic curves

Finally if a^el^ then ΡΓβ*(.χ + y) = ΡΤ(Θ·} (x + y). Thus 0fn(0f)a i is singular at
x + y·

Therefore ai e Σ0 => number comp. N (a) < 4. Ώ

(7.9) Theorem. Lei (C, C) be a generic element of $Bg 2 with g ^ 10 and let
(A /)) e ̂  be such that P(A D) * P(C, C). Then (D, D) e ΛΒ^αηά(β, D) and (C, C) are
tetragonally related.

Proof. In view of the proof of (5.11) it sufflces to show how to recognize (C1? τλ) and
(C2, τ2) from P. Observe that (7.2) says how to recover (C2, τ2). In particular we recover the
curve E. By combining (7.1), (7.2), (7.3) and (7.8) we recover the set Π u πf (Σ0) intrinsically.
By (7.7) the normalization of πf (Σ0) is an irreducible curve of genus ^ 3. If it has genus < 3
we distinguish Π s the component of the set with normalization of genus 3. Otherwise since
the quotient of Σ by the involution given by symmetry is not isomorphic to Uwe also recover
Π. Now by normalizing the Symmetrie curve Π we obtain (C19 Ό. α

8. The component 3%Β,9,ι· I*1 this section (C, C) is a general element of ^,0,1· By
(2.6) and (2.7) we can assume that Sing S* = W2 is irreducible of dimension g — 5.

(8.1) Proposition. One has the following equality.

{ eP\ + Ψ2<=:Ξ*}

= ίπ* («i) + 7r^( |(x)-r-,si)| i1e/)
1,xe£', r, ^eC2 , 2x = ε2 (r) + ε2 (5)} .

Proof. The inclusion of the second set in the first one is clear. To see the opposite
inclusion take a = nf (ax) + πξ (a2) e P where al e P19 a2 E P2 and such that a + W2 c: B*.
Let f = π*(Λ:) + π*(ζ2) e W2, with χ 6 C1? C2 e Z^ and εχ (χ) -h Nm£2(C2) = f. By applying
Lemma (4.4) one finds elements x' e Ci9 ζ'2 e Wg°.2(C2) and ρ e Pic0^) such that

(8.2) αι+χ = χ' + Β*(ρ)9

Let us define the following subvariety of Cl x Z2

F = {(x, C2) 6 Q x ZJ | l W + Nm£2 (C2) s f }

Consider now the morphism:

?P: Pic°(J?) x Q x C^"2) -* Pic^Q) x Pic*~2(C2) ,

(ρ, χ', D) -> (χ' + ε* (ρ) - α1? D - ε* (ρ) - α2) .

The equivalences of (8.2) read: Υ c Im (Ψ). Since Fis irreducible (apply (3.8) to the fibres of
the projection map from Υ to CJ there exists an irreducible component X of Ψ ~ i (Y) such
that the induced map

Φ: X -» Υ
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Naranjo, Prym varieties of bi-elliptic curves 71

is dominant. If q: X -+ Pic0^) is the first projection we call Y^:=W(q~i(Q)) for all
(jePic°CE). Two cases are possible:

either a) Y^ = Υ for some ρ Ε Ρ ί

or b) Fe Φ Υ for all ρ € Pic° (E) .

In case a) define

bi = ai - * (& and b2 = 2 + ε* (β) ·

Then (8.2) says:

A°(ft1 + x)>0, A°(62 + C 2 ) > 0 for all ( jc ,C2)e7.

Hence b± = 0 and 62 H- Z2 c 0^. Therefore by using (3.9) ii) we finish the proof.

In case b) we write λ: Υ -> C\ c Pic1 (Q) for the first projection. We claim that A j y- is
non-surjective for general ρ e Pic° (E). Otherwise for all χ e Ci one finds an element C2

 e 2^2
such that (x, C2) 6 F5. In particular A° (ufi + x — Bf (ρ)) > 0 and a± = ε* (ρ), which cannot
hold for a general ρ.

Now since 7g has codimension l in Y, it follows from the claim that, for a general ρ,
there exists JC0 e C1 such that /l"1^) c Y-Q. Hence (8.2) reads:

0 and A° (fl2 + C2 + <£ (0) > 0

for all C2 6 Z2 with Nmg2(C2) = ξ — ε1 (χ0). In particular

«2 + s2*( ) + {C2 e Zi|Nm.2(C2) s f- l(x0)} c= »2* -

The proof ends by observing that

where 2 α = ft — εχ (x0), and applying (3.9) ii). D

We shall denote by B the set described in (8.1).

(8.3) Proposition. The abelian variety nf (P^) acts on Bn2B by translation and the
quotient

Bn2B P
π

is a Symmetrie eurve with normalization C2. The reflection on Ρ/π^Ρ^) induces on C2 the
Involution τ2.
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72 Naranjo, Prym varieties of bi-elliptic curves

Proof. By using the arguments of § 5 one has:

Now the morphism

χ -> π*(χ-τ2(χ))

is birational and verifies λ(τ2(χ)) = —λ (χ). D

(8.4) The reader can prove without much work the following properties:

• Pj c JCl is an elliptic curve.

• The morphism

μ: Q -» Λ ,

χ -> χ — τι(χ)

is a double cover with two ramification points inducing on Q a new bi-elliptic structure. The
attached involution τ( is the composition of τ± with the hyperelliptic involution.

• We shall write Qi and Q2 for the fixed points of τ[ and P/, P2 f°r ie ramification
points of e^. With the notations of (2.1):

and

We write x = μ(βλ) and 2 = μ(β2). Let P0 the element of | ξ1 \.

1) = 1-T1( 1)= -(Q2 - ^(Q2)) = -μ(β2) = -g2.Mo-
reover μ*(0) = P/ + P^ = x + Q2.

Summarizing we obtain (composing with nf: Ρ^-* πf (PJ) that Q can be represented
s the double cover of πf (Px) associated to the class of the origin ( s a point of the abelian

subvariety of P) and the discriminant divisor nf(Q1) + nf (Q2)· Since the class is trivially
recovered from πf (Pt), we only need to find the divisor inside P. Moreover the involution T t
will appear when composing the canonical involution of Ct with the involution attached to
this cover.
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(8.5) Proposition. Lei = π? (χ - τχ (Λ:)) Φ Ο where χ e Cr Then:

i) Ξ* η Ξ* = F u R( ) where

= {π* (χ) + π*(ζ2)Κ2 e Θ*, β, (χ) + Nm£2(C2) Ξ ξ} .

ii) dim (Sing (Ξ * · Ξα*) -F^Xiiffs, (χ) = ξ, .

Proof. Debarre proved in [De 5] that

Ξ* · Ξ* = {ζεΞ*\Η°(ζ-π*(χ}) ^ 1} for 3 = π*(χ- TI(;C))

and

Sing(S* - S*) =3 {fe S*|A0(f- π? (χ)) ^ 2} .

Part i) comes from the equality of sets

This is straightforward.

Next note that {<fe S* | A°(f — πί (χ)) ^ 1} is the special subvariety associated to the
linear System \KC — Νιηπ(π£ (x))\ (cf. [Be2], [We3]). A characterization of Welters (loc.
cit.) of the singularities of the special subvarieties gives the inclusion

(8.6) Sing(S* - Ef) c {ζ 6 3*|A°(f- π*(χ)) ^ 2}

u {π*(χ) + π*(^) + ^» such that A, D ̂  0, A° (yi + ε* (ε^χ))) > 1} .

To prove ii) it suffices to show the following facts:

a) If si(x)e \ζ1\, then dim(/?(a) — F')n{£eE*\h°(£— π*(Χ)) ^ 2} > 0.

b) If ε ^ ( χ ) φ \ ζ ι \ 9 then R (a) — Fr intersects the second member of (8.6) in a
finite number of points.

To see a) observe that the set

{π*(χ) + π|(C2)|C2 e Z'2 - Z; nZ2", ε, (χ) = ξ,}

of dimension g — 6 is contained in the above intersection.

Assume now that s1 (χ) φ\ξ^ and take ζ = n f ( x ) + π£(ζ2) such that ζ 2 φ Α2. Then

A° (ζ - π? W) = A° (π*(£2)) = A°(C2) + A° (C2 - ε*(^)) = A°(C2) -
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74 Naranjo, Prym varieties ofbi-elliptic curves

So if Α°(Γ-π*(.χ))^2, it implies C2eSing<9* = Z2uZ^. Since ζ2φΑ2^Ζ2 and
NmE2(C2) Φ ξ2. This is a contradiction.

Suppose now there exists a divisor A ^ 0 on C such that

(ζ2) - π* (A)) > 0 and h°(A + ε*(ει(χ))) ^ 2 .

In particular A Φ 0. By using (3.1) the second inequality says that either A is not ε-simple or
deg (^4) = g — 2. In the first case we conclude that we may write

where A and are effective divisors on E and C, respectively, and is not trivial. Then

0 < A° (π* (C2 - e2* ( ))) = A° (C2 - ε* (1)) + A° (C2 - ε* ( ) - ε* (ξ,)) ,

which contradicts that C2 £ >42 . On the other band, if deg (^4) = g — 2 then π * (^4) = π£ (C2).
Taking norms one obtains that 2^4 = ε* (ε2 (ζ2)). By (3.1) there exists an effective divisor A0
of degree g — 2 on E such that 2^4 = ε*(,40). As above A not ε-simple leads to a
contradiction. If A is ε-simple, then it has support in the ramification locus of ε ΐ 5 which leaves
a finite number of possibilities. α

(8.7) Theorem. Lei (C, C}bea generic element of^B ^ ± and let (D, D) e 0t g such that
P(C,C)^P(D,D). Then (ΰ,Ο)ε@Β^ and (C,C)'and (D, D) are tetragonally
related.

Proof. By using the arguments of (5.9) we conclude that (D, D) e ̂  ,r Then, from
the number of irreducible components of Sing Ξ * (cf. (2.7)) we conclude that

As we shall see (independently) in (9.1) i) (combined with (2.11)) the property

dim{5eP|a-hSingS*c Sing S*} =1

(cf. (5.12) i)) does not hold for the elements of the components t'B %9 and ^B,^,o· So
(j , D) e ^Β,^,Ι. Arguing s in (5.1 1) it suffices to explain how to recover (C15 τλ) and (C2, τ2)
from P. The latter is recovered using Propositions (8.1) and (8.3), the former by combining
8.4 and 8.5. α

.
(8.4) and (8.5). α

9. The component ?B>^0· Let (C, C) 6 ^B,g,o- We keep the notations of § l and §2.
In this section we do not need the assumption of generality. Although W2 is not equal to
Sing S*, it is its unique component of positive dimension. Recall that t = 0 implies that εχ
and π2 are unramified. We shall denote by λ the non trivial element of π* (ε*(2/Ε')).
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(9.1) Proposition. One has t he equalities:

ii) { eP\ +W2ciE^} = {n}(s^(x)-r-s)\xeE,r,seC2y2x = 2(r)^32(s)}.

Proof. Part i) is proved in [De 3], (5.6.5). Part ii) is left to the reader. α

Let us denote by S the set described in (9.1) ii). Then

(9.2) Proposition. The set Sn2S is a Symmetrie curve with normalization C2.
Moreover τ2 is the Involution induced on C2 by the ( — 1) map of P.

Proof. It is easy to prove the following:

Sn2S = {π*(χ-τ2(χ))\χε€2} .

All the Statements are a consequence of this equality. In fact, only the birationality of the
map

φ: C2 -

χ -> π*(χ-τ2(χ))

needs to be proved. Assume that φ(χ) = <p(>0. Then

x + τ2 00 - τ2 (x) - y G Ker (π*) = {Ο, ε* (ξ,)}.

Hence:

Equality of divisors would lead to either χ = y or χ = τ2(χ). So we can suppose that
h° (2 χ -h 2τ2 (y)) ^ 2. Since all g^'s on C2 come from g2's on E one finds a divisor A e £"(2)

such that 2x -f 2T2(j) = ε* (^4) and then we have again either χ = y or χ = τ2(χ). ϋ

(9.3) Remark. The data (C2,r2) do not determine the initial element (C, C).
However, by recovering the class ε%(ζϊ)9 the curve Q (hence (C, C)) may be reconstructed
from our Information.

(9.4) Theorem. Let (C, C) and (D, D) be two elements of^Bg0verifying the condition
P(C, C) ^ P(D, D). Then: (C, C) ̂  (D, D).

Proof. By (9.1), (9.2) and (9.3) it suffices to recover ε£ (^) from P. Going back to the
proof of (9.2) one finds a morphism:

C2 -> P
inducing a morphism:

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 6/15/15 2:13 AM



76 Naranjo, Prym varieties of bi-elliptic curves

By construction one can factorize j into / o A, where

h:JC2 -» Im(Id-T*)^P2

is the obvious map and j' = π*\ρ2· Then Ker(/') = {Ο, ε^Ο^)}. Hence we obtain
cz/C D

10. The component &t'B g. Let (C, C) e ̂  ,r We keep the notations and assumptions
of § l and § 2 (see specially (2.9) and (2.11)). In particular g ^ 10. Recall that by (4.3) one has
τ* (ι;) Φι» .

(10.1) Proposition. With the above notations, Sing Ξ * has a unique irreducible
component of dimension g — 5. This component is:

Proof. It suffices to check that dim W — g — 5. D

(10.2) Proposition. One has the equality:

{ eP\ +Wc:B*} = {π*(ε*(χ))-ζ

Proof. The inclusion of the right hand side member in the left band side member is
trivial. By (9.1), {# e P\ + W a Ξ*} has dimension 2. Hence it is enough to show that it is
irreducible. This follows from the description of (9.1) and from the fact that for generic χ in
E, the Galois group of the composition of ε with the g\ given by \2x\ is Z/2Z. D

Let us denote by S" the set { eP\ + Wc:E*}.

(10.3) Proposition. The following inclusions hold:

S' n2S' c T = (D - i* (D) eJC\De Wf(C), Νηιπφ) e Im (ε*)} c S' .

Proof. Let us define

U= {D-i*(D)\De ^°(£),Nm (/5)eIm(e*)} .

By (10.2) one has 2 S' c U. So, our Statements follow from the claim:

" = T' .

The inclusion T' c U n S' is clear. We prove the opposite inclusion. Let D — i*(D)e U
and f,seE such that Nmre (j ) = ε * (f H- s). If we suppose that D — i* (D) e 5" then one finds
elements J5' e C(4) and χ Ε Ε such that

(10.4) i*( ) + D' = D + n* (ε* (Je)) .

We may write .D = n*( ) + B where B ̂  0 is π-simple and A is effective. Looking at the
degree of A we have three possibilities:
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Naranjo, Prym varieties of bi-elliptic curves 77

a) deg (A) = 2. In this case D - i* (D) = 0 e T .
b) deg(^) = 1. Therefore deg (B) = 2. By replacing in (10.4)

The equality of divisors would imply B ^ π* (ε* (je)). Since B is π-simple, Νηιπ(^) = ε* (Je)
and then

We suppose now that 2 ̂  A° (S + π* (ε* (Je))). By applying (2.13)

2 ^ Α°(ε*φ) + Α°(Νηιπ(£) 4- e*(;c) - ij) = l + Α°(Νιηπ(Α) + ε* (Je) - η) .

On the other band Nmn( ) = Νηιπ0) - 2 A = ε* (r + s) - 2 A. So

0 < Α0(Νιηπ(Α) 4- ε* (Je) - η) = Λ°(ε*(Γ + s + je) - 24 - r/) .

Then we get τ* (77) = T/, which is a contradiction.

c) deg(yi) = 0. Then D is π-simple. We go back to (10.4). If there is an equality, then
D = π* (ε* (Je)) and one has a contradiction. Otherwise, by applying (2.13)

2 ^ h° (D + π* (ε*(χ))) ^ 1 + A° (ε* (Je) + Νηιπ0) - η) .

Since Νηιπ (ι * (/))) = ε * (r + s) one has h° (ε * (Je + r + s) — η) > 0. Again this implies
τ* (η) = η, which is a contradiction. D

(10.5) By (9.2), S' n 2 S" is a Symmetrie irreducible curve and its normalization has
genus g. Since T' is also a curve we conclude that S' n 2 S" is an irreducible component of T'.

In order to study the curve T' we define T s the variety given by following pull-back
diagram:

T - > C(2)

It is not hard to see that the morphism

C(2) -»P ,

sends Γ birationally to 7". We shall denote by j the involution of T induced by i ( 2 } .

6 Journal f r Mathematik. Band 424
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78 Naranjo, Prym varieties of bi-elliptic curves

(10.6) Proposition. T is an irreducible smooth curve of genus g and the equality
T' = S' r\ 2 S' holds. Moreover T is Symmetrie and the multiplication by — l induces on T the
Involution j.

Proof. Because the Galois group of ε ° π is Z/2Z, Γ is irreducible. A local
computation shows that ε* (E) is transverse to the diagonal, therefore Tis smooth, hence T'
is irreducible and equal to S' n 2 S'. D

(10.7) Comparing with the construction made in § 9, we note that (TJ) play the role
of (C2, τ2). There we obtained a point of 2(JC2) which allowed us to reconstruct Ci. By
translating this to the present context we can conclude that there exists an intrinsic way to
recognize a certain element of 2JT. Moreover this class appears in Im (/j*), where /x is the
map T ~» T/j.

Our next aim is to compute this point in terms of the initial data. To do this we imitate
the proof of (9.4).

Let γ: T -> P be the composition of the normalization map with the inclusion T' c» P.
The induced map between JT and P factorizes through a morphism

y: (Id -j*)(JT) = Ker (Nm/i) -> P .

We want to find the kernel of f.

(10.8) Proposition. Ker (y) = f* (2JE).

Proof. Let f e Pic2 (C). Consider the morphism T o> C(2) —=^-> JC and the induced
morphism v: JT -> JC. Then: Ιΐϊΐ(ι>|ΚβΓ(Νηι i}) c P. A straightforward computation shows
that the restriction ΰ: Ker (Nm ) -> P is y./i'

On the other hand it is easy to see that v o/*: JE -» JC coincides with 2 (ε ο π)*.
Therefore

Since the unique non zero element of the kernel of ΰ appears in Im (ff) = Im (/*) one has
Ker (#)=/* (2JE) and we are done. α

(10.9) Theorem. Let (C, C), ( , D) e 0t 'B g such that P(C, C) s P0, D). Then

Proof. It suffices to show that the initial data are determined by Γ, j and f*(2JE).
Indeed the non-zero element of /* (2JE) gives a point of2J(T/j) that allows us to recover the
morphism /2: T/j — » E (where / = /2 °/i)·
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Now consider the pull-back diagram

X - > Γ(2)ι ι
E -

Then, the morphism

C -> X,

χ -> (x + x') + (x + i(x'))

where n(x) + π(χ') e Im (ε*), is an isomorphism and the Involution y (2) of Γ(2) induces on
C the involution i. D

(10.10) Theorem. Lei (C, C)e^ ^0u^ am/ fe/ (D,D}z@g such that
P (A D) ̂  P(C, C). Then (D, D) e 9tB%9^ u ̂  ara/(C, C) am/ (Z), D) are tetragonally related
(in the general sense explained in the Introduction).

Proof. By arguing s in (5.9) one obtains that D is bi-elliptic. The table (2.7) implies
that

By comparing (6.1) i) with (9.1) i) we exclude the first possibility. If (C, C) and (D, D)
belong to the same component, then the Statement is a consequence of (9.4) and (10.9).
If they belong to different components, say (D,D)e l'Btg and (C, C)e^? ^ 0, then after
two tetragonal constructions starting in (Z), D) (via <^,o> °f· (2.11) and § 15) one finds an
element (D0, Z)0) E ̂ 0 with P(D, D} * P(D0, D0). By (9.4), (C, C) = 00, D0) and we
are done. D

We now compare the constructions used to prove theorems (9.4) and (10.9) in order to
obtain an injection from $'B g in ̂  ^,0 commuting with the Prym map. A posteriori (see
proof of (10.10)) the injection is obtained by two tetragonal constructions (via ̂ 0)·

Let (C', C'} 6 @i'Bg. Suppose that ε': C' -> E' is a bi-elliptic structure of C.

Construct the pull-back diagram

T - » £'(2)

l I
J?' (£/)* > £"(2)
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80 Naranjo, Prym varieties of bi-elliptic curves

The Involution /(2) restricts to an involution j of T. Then T/j is an elliptic curve. We call
ε1: E' -> Γ/7 to the transposed map. By taking again a pull-back diagram we get

fj rri

i I"
£'-*-> T / j .

The curve C has two involutions attached to the projections; call / the composition of this
involutions. Then (C, C/ι) e 0tB,g,Q is the image of (C, C'}.

There is a natural way of inverting the injection above: Start with an element
(C, C) e ^B,0,o· With the notations of §2, observe that t = 0 implies that Cx is also elliptic.
We call f ^ . E -+ C± to the transposed morphism. Then the pull-back diagram

C - > C<2)

Q -1L-* £(2)

gives an element (C', C')e$g, where C' = C'/*> ι being the restriction to C' of the
involution /(2). In general this element belongs to <%Btg and in this case its image by the
injection given above is (C, C). In any case (C', C') e &B g and C' is a double covering of a
smooth curve of genus l .

II. A bi-elliptic construction

For all this part we fix a generic element (C, C) of $Β,0Λ and a linear series g\ on the
elliptic curve E (we keep the notations of §§1 and 2). The first section (§11) is devoted
to the description of four allowable covers constructed from this set of data. These covers
belong to the fibre of P over P(C, C). The proof of this fact is given in § 13.

11. The construction. We shall give the description of the attached coverings in
three Steps.

Step 1. The curve Cx is bi-elliptic of genus 5. Since it is general it has a unique
bi-elliptic structure. It is well known that (cf. [A-C-G-H], p. 270, or remark ii in (3.6))

where D1 = {(e ^(CJINm^iQ = fj is a smooth curve of genus 7. The intersection

consists of four different points.
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The variety W£ (Ct) is invariant by the action ζ -> KCi - ζ and, by passing to the
quotient, we get an allowable double cover ^/(CJ -> Z)1u/, where Dl is a smooth
irreducible plane quartic and / is a line intersecting D1 in four different points.

There is an isomorphism of principally polarized abelian varieties ([Ma], [Be3] and
[K-K]) JC, * P ( Wj; (Q), D, u /).

Step 2. Let us'consider the commutative pull-back diagram

D2 - » C<2 >
(ii.i) J |e?>

pl _lL_> £(2) β

The involution τ^2) leaves invariant the curve D2. Call D2 the quotient curve. For simplicity
we will suppose that the linear series g\ is general. Then D2 and D2 are smooth, connected
by (16.1), and D2 is hyperelliptic of genus g — 6.

Step 3. To construct an allowable cover (Z), D) from the pairs (/51? Z^) and (Z)2, Z)2)
we identify the ramification points of both covers (and the discriminant points correspon-
dingly) in the following way:

Let ήί e Pic2(J?), such that 2ή{ = ζ1, i = l, . . ., 4. The classes ef (//·) correspond to the
ramification points of Di -* Dv Note that

{0, ^! - ή2, ή ι - ή^ ήι - ή4} = 2JE .

On the other hand the ramification points of D2 -» D2 are εξ (x^ e C(
2
2) where

\, i = l, ...,4. One has also {0, xv — x2,xi — x3,x1 — x4} = 2JE.

(11.2) Let σ be a bijection

such that //; — i/y and σ(^) — σ(^·) coincide in 2/J?. It is easy to see that four such bijections
exist. We then identify ef(^) with β|(σ(^)), / = 1,... ,4, thus obtaining an allowable
covering (D, D). The corresponding covering map will be denoted by p: D -> D. Moreover,
after changing the indices of the xt we may assume that xt = σ(^), / = l, . . . , 4.

(11.3) Theorem. There exists an isomorphism of principally polarized abelian
varieties

, C) £

The proof will be given in § 13.
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(l 1.4) Remark. Observe that the curve D is neither tetragonal nor stable reduction of
a tetragonal curve. Therefore (D, D) and (C, C) are not tetragonally related (cf. § 15 for the
definition of tetragonal relation).

12. The isogenies gi and ht. In this section we keep the notations p: D -> D, (Di9 Dt),
i = l, 2, to refer to the coverings constructed in §11. We put Pi-— p\D ,., ι = l, 2.

For a line b ndle L on Z); invariant by the covering involution we defined in § 4 an
element

We shall take the ordering of the factors of (μ2)4 for vi and v2 compatible with the
identifications made in Step 3 of § 1 1 .

The aim of this section is to prove the following technical result:

(12.1) Proposition. There exist isogenies

and

h,: P(Q, E) -> P( i9 DJ for i = l, 2

satisfying h{ ° gt = 2 and such that

ii)

iii)

iv) tf ie2P( t,Dd, then

vl(Si) = v2 (S2) iff 3 ρ e 2/£· iwc/i ί/ζαί gf ( f) = ε? (ρ) ,

i')

ii')

i ')

ybr 1 = 1,2, where LP(^. Di^ and LP(C. E) are the polarizations induced by the inclusions in the
respective Jacobians.

Proof. We first consider the case / = l . The inclusion Di c> Nm~ i (ξ 1) ̂  ^(C^ £),
yields a morphism ^j: JD1 -> P(C19 £). We define gt «= (gO

It is convenient to describe the map g[ explicitely. Let z e Dif We denote by <£> the
corresponding element of Pic4(C1). Then
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Naranjo, Prym varieties of bi-elliptic curves 83

( (Σ ni^ = Σ nt <fi>' where Σ ni = ° ·

(12.2) Lemma. One has g[ (p^JDj) = 0. In particular gi

Proof. Let £ n{z{ e JD1 with £ «t = 0. Then
i i

g( (ΡΪ (Σ «.·ζ.·)) = g( (Σ «X (*<)) = Σ "ι <Ρ*

On the other band in Proposition (4.7) of [C-G-T] the following result is proved: for a
general bi-elliptic curve Γ the Jacobian JF is isogenous to a product of an elliptic curve by
a simple abelian variety. Thus g^ Φ 0 implies that g^ is an isogeny. To study the behaviour of
g ι with respect to the points of order two we use the following result:

(12.3) Lemma. One has an equality

z1? z2 e D1 ramification points of p±] .

Proof. Let α 6 2ΡΦι> ̂ i)· Since it is invariant by the involution on Di we can apply
Proposition (4.2). We get that there exists an effective divisor contained in the ramification
divisorof/?! such that + epf(Pic(Di)). In particular 0 ̂  deg^i ̂  4 and deg is even.
Since the ramification divisor belongs to pf(P'ic(Dl)\ the cases deg = 0,4 imply

epf(2JDl). When deg = 2 there exist two ramification points z1? z2 such that
α 4- f ! + z2 e /?f (Pic1 (D^) and we are done. D

(12.4) Corollary. Let z1? z2 be two ramification points ofpi such that <
<z2> = ε* (ή 2) and p* (γ) - ^ - z2 e P(Z>19 DJ for some y 6 Pic1 (D^. Then

g i (P ι (7} -?i- z 2) = ει* W i ~ ^2)

Proof. By using the explicit description of g[ one has

g i (P* (7) ~ *i - z2) = </?f (y)> - ε f 0^) - ε* (ή2)
= ef (f 0 - f (i/i) - ε * (f/2) = ε? (q1 - ^2) . D

Clearly this implies ii) of Proposition (12.1).

To prove i) we shall see that deg(gt) = 26(= # 2
JDi)- This wil1 be enough because of

(12.2). We begin with:
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84 Naranjo, Prym varieties of bi-elliptic curves

(12.5) Lemma. In P(C15 E) one has the equality of cohomology classes (cf. §1 for
notatiori)

[/)1] = ζρ(€ι E} .

Proof. One has an exact sequence

0_> 2 /£_^ P(C,,E)xJE -^/Q -> 0,

( x 9 y ) - > χ + β*0>)

and σ*<9€ι - SP(Ci>£) χ JE Λ- 2P(C19 £) x {0} (cf. [Mul], p. 330). On the other hand the
following equality holds in JC1

(cf. [A-C-G-H], p. 320, Th.4.4). By applying σ*:

x {0}] 4- 4[{0} x /£] = 2a*(CCl) = |f

19 E) x {O}]4

= ™ [SpV*) x ̂ 1 + |j ' 4 · 2[SF
3

(ClJO x {0}] .

Therefore ID1 x {0}] = [SP(Ci £)]3/3! x {0} and we are done. D

(12.6) Lemma. The isogeny gv has degree 26.

Proof. Taking quotient by a maximal isotropic subgroup of f f ( L P ( C i E } ) = s f ( 2 J E )
we get an isogeny of degree 2

c:P(Cl9E) -> A

where A has a principal polarization LA such that c*(Z^) ~ ^P(c1?£)· By the projection
formula c*(CP(Cl £)) = 2ζΑ. Thus (12.5) implies that c*0x) is twice the minimal class in A.
Hence the principal polarization of (JDif induces on A twice the principal polarization,
that is to say, there is a commutative diagram

Ά

(12-7) 2A;'|

A ^— P(C„E) < - J i
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Naranjo, Prym varieties of bi-elliptic curves 85

In particular

On the other band, since gl is an isogeny and g[(pf(JD1)) = Q, we get
(Kerg{)° = pf(JDj). Now let us consider the diagram

(12.8) 0 —

0 —

0
4

(Ker g[)° -=->
4

__» Ker g( >
4

-* Kersi/(Kergi)° > ,
4
0

0
4

JD1pn
JD1

4
r/5 / D * (

4
0 .

P(C„E} - > 0
I I

P(CltE) - » 0

Combining (12.7) and the dual diagram of (12.8) one gets a commutative diagram

P(Clt E) ^- JDl
P/* . ^^ \

P(CltEr -^ JD~ ' l
t ,P( l,D1)

'=·/'

P(CltE) -^

where v is the inclusion map (gi = g ( ° v ) and the commutative diagram

JD^ ^^ JDl

T -^ P( 1,D1)

is a consequence of the relation (p*)~= λΒί °Nmpl ο λ^ (cf. [Mul], p. 328). Then
26 = deg(^) = deg(g0) · deg^). By (12.2) we have deg^) ^ 26. Thus deg(g0) = l and
degigj = 26. This finishes the proof of Lemma (12.6) and hence of part i) of Proposition
(12.1). α

To prove iii) we use part i). One has Kergj = H(LP(£>i Di}). Hence there exists an
isomorphism of abelian varieties a: P(Di, D±f -> P(C15 Ct) such that α ο λρ(οί Di) = gr

From part ii) it then follows that
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86 Naranjo, Prym varieties of bi-elliptic curves

We then have the following diagram

0

0

0
l

ΐΡφί,ΰ!) >

i
P(f) Γ} \ p(*>i,Di)

JL \U j, -*-^l/

•2l

ρφί,ο^ -4*
i
0

0
1

H(Lp(Ci<E)) —
i

v P(C!,E)
l v,.«

P(C1S £f
1
0

— ». 0

—v 0

with β an isomorphism of abelian varieties, and

Since End (P(C1? £*)) ^ Z, one has de ο β = Id and

so part iii) follows.

The isogeny hi: P(Cl5 E) -> P(Di, D±) is defined by the condition h1^ gi = 2. It is
then easy to deduce i'), ii') and iii') from i), ii) and iii). All this for i = l, of course.

We consider now the case / = 2. The inclusion D2 ^ C^2} gives a map
g'2: JD2 -+ P(C2, E). That is

(12.9) SUZ M<) = 1 ,̂1 + ̂ ,2)
i i

where £ «f = 0 and zf α + z i f2 e C2
2} is the divisor corresponding to the point zte D2.

i

It is straightforward to check that g'2 (/?*(/ 2)) = 0- Let g2
 = ^2|ρφ2,ί)2)· ^s ^n ^e

case / = l, g 2 is an isogeny and g2 (p* (2*^2)) = 0.

We can reverse the construction of diagram (11.1): by using the linear series g2
 on ^2

given by the hyperelliptic structure and normalizing the curve obtained from the natural
pull-back diagram we get

c2 —
l l

Moreover the Involution of J52
2) induces on C2 an involution that coincides with τ2.

Imitating the construction of g2 we get an isogeny A2: P(C2,E) -> P(D2,D2) verifying
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Naranjo, Prym varieties of bi-elliptic curves 87

A2 (ε| (2JE)) = 0. By using the descriptions of g2 and H2 we obtain h2°g2 = 2. Now parts
i), ii), i') and ii') are obvious. Part iii) is ( s in case i = 1) a formal consequence of i) and
ii) and the fact that End(P(C2, E)) = I. Now h2°g2 = 2 and iii) give iii').

It remains only to prove iv). First of all we note that the Lemma (12.3) is still valid for
2P(D2, D2). Let a2 = /?£ (y) — x{ — xj e 2P(D2, D2) with je,·, χ. e D2 ramification points given
by the divisors e|(Jcf) and ε^^·), respectively. Then by using (12.9) one has

(12.10) £2 («2) = <£(** -*/)·

Let a1 = p* (y') - ε*(>/Γ) - ε* (>/;,), yf e Pic1 (DJ. From (12.4) and (12.10) it follows

(12.11) 3 ρ such that ^(aj = ε* (ρ) and £2(α2) - ε* (ρ) ο ην - Y\y = xt - χ. .

Hence, by (11.2)

3 ρ such that g^aj = ε* (ρ) and g2(a2) = ε* (ρ)
o either {1,7, ι',/} = {l, 2, 3, 4} or {/,;} = {i',/} or / =7 and /' =/ .

On the other hand Vif i) (resp. ^2(a2)) gives — l in the entries /' and j' (resp. / and 7)
when V Φ j' (resp. /φ/)· If 1=7 (resp. i'=j'\ then ^^α^ = (1,1,1,1) (resp.
v2(S2) = (1,1,1,1)). We finally get

(12.12) 3 ρ such that ^(«J = ε* (ρ) and g2(a2) = ε* (ρ) o ^(aj = t?2(a2) .

This ends the proof of Proposition (12.1). D

By combining (12.11) and (12.12) one finds:

(12.13) Remark. Once a bijection σ

(cf. §11 for definitions) is given, the following two facts are equivalent:

Ο ή ι — nj and ff (ή i) — σ(ή]) coincide in 2JE for all ij = l, . . . , 4,
ii) for all ax e ^(D^ DJ and a2 e 2Ρφ2, D2):

vl(ii) = v2 (a2) iff 3 ρ € 2/£" such that ^(ά^ = ε/* (ρ), ι = l, 2 .

In other words, the property we require in (11.2) and property (12.1) iv) are equivalent.

13. Proof of Theorem (11.3). We define the morphism

Φ: P( , D) -£-> P( l9 D,) x P( 29 D2) ̂ ^ P(Q, E) x P(C2, E) -?U P(C C)
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88 Naranjo, Prym varieties of bi-elliptic curves

where/: D± u D2 -> D is the desingularization of D, gl9 g2 are the isogenies defined in § 12
and φ is the map given in (2.8). In [De 3], Debarre proves that

By (12.1) iii)

On the other hand the pull-back of the polarization of P(D±9 D^ x P(D2, D2) induces on
P (Z), D) twice the principal polarization (cf. [Bei]). Thus:

(13.2)

Theorem (11.3) follows in an obvious way from (13.2) and the next

(13.3) Lemma. The following equality holds: Ker(#) = 2P(D, D).

Proof. Since deg/* = deg φ = 4 and degfo x #2) = 22(*(Dl) + 9(I>2)) (cf. (12.1) i)) we
get deg Φ = # 2^* (A ̂ )· Therefore the Statement can be written alternatively

(13.4) /*(2P(A /))) c Ker (φ o (gl x g2)) = (gl x g2)-i (Ker<p) .

Since Ker φ = {(ef (S), ej(5))| 2 e/£} (see (2.8)), one has

(13.5) (^χ^Γ

= {(de, e P019 />!> x P(752, D^lg^a) = e*( ), g2(]8) = β*(ά) and e

= {(a, j5)e 2P01? £>ι) χ 2^Φ2? i>2)l?i(a) = «*(«), ̂ ( = e2*(a) and

(in the second equality use (12.1) ii)). If we prove that

(13.6) /*(2P(A D)} = {(a, fte2P( l9 D,} x 2P02, /)2)|^(α) = v2(fi}

then (13.3) will follow from (13.6) and (12.1) iv).

We check equality (13.6). We first prove the inclusion of the left hand side member in
the right hand side member. Let (de, /?)e/*(2P(/5, Z))). Denote by L(a) and L( ) the
corresponding line bundles on Di and D2, respectively. Then there exists a line b ndle
LeP(D, D) such that L0 2 is trivial and /* (L) = (L (a), L (/?)). Let xeD^D^^Q call xi
(resp. Jc2) the point x when viewed s a point of Dl (resp. D2). Taking pointwise fibres we
obtain an isomorphism A:L(a)\_xi~] — ̂ -+ L($)[x2] as the composition of the natural
Identification L(a)[JcJ — ̂ -* L[_x] <-^

Since Nmp(L) = 0, L®i*(L) is trivial So i*(L) ^ L"1 ̂  L. We choose an iso-
morphism φ: L -> /*(£) normalized in order to have /*(<p) ° φ = Id. The morphism φ
induces by restriction
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Naranjo, Prym varieties of bi-elliptic curves 89

By construction one has a commutative diagram

Thus i?t (L (a)) = f2 (L(ß)) (see §4 for the definition of i^) and therefore

/* (L) e {(«, $ e 2P015 DJ x 2P02, D2)K (a) = p2

Now, to obtain (13.6) we prove that both sets have the same cardinality. Form (12.3)
(applied to both P(ß1, DJ and P(D2, D2)) one gets

v, (2P(b„ D,)) = v2 (2P(D2, £>2)) {( ,, . . . , 4) e ( 2)4/ 2 \ ^=1}).

Since Ker^ = pf(2JDj)9 i = l, 2 (cf. (4.1)) we conclude

# {(a, fl) e 2P(ß±, D,) x 2P(ß2, D2)\Vi(S) = v2(ß)}

= # 2P(ßl9 D,) · # Ker(i>2) = l- # 2P(D19 DJ · * 2P02, /)2) = #/*

This finishes the proof of Theorem (11.3). D

III. The fibre of P over a generic element of P(fflB g)

This part is devoted to studying the fibre of the extended Prym map for generic
elements of 3%B r The results we obtain are summarized in Theorem (16.1). Essentially we
prove that the elements described in Part II yield the unique counterexamples to the extended
tetragonal conjecture that exist generically in the bi-elliptic case.

Some results on special subvarieties of divisors for ramified double coverings appear in
§14. In §15 we extend the tetragonal construction to allowable covers and we apply this
construction to the coverings considered in our Situation. In §16 we Start the proof of
Theorem (16.1). In § 20 we give a complete description of the fibre of P over P(C, C) with
(C, C) a generic element of £%B^·

14. Special subvarieties of divisors for ramified double coverings. In this section we
shall collect various results. They are generalizations of known results (cf. [We3], [Be2]).
The proofs are not given because they are similar to those of [We3].
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90 Naranjo, Prym varieties of bi-elliptic curves

Let JVbe a projective irreducible smooth curve of genus g and let π: N -> 7V be a double
cover ramified at the points R19 . . . , R2n. Let Λ be a linear system on N of degree d (not
necessarily complete) of dimension ^ l . The special subvariety determined by A is, by
definition, the variety XA given by the following pull-back diagram:

XA -t-

(14.1) Proposition (Connectedness criterion). If Λ is base-point-free, then ΧΛ is
connected.

(14.2) Proposition (Irreducibility criterion). If Λ is base-point-free and the codimen-
sion of Sing XA in XA is greater than or equal to 2, then XA is irreducible.

(14.3) Proposition (Smoothness criterion). Assume that A is complete and
base-point-free. Let De A and let DeXA such that nA(D) = D. Put

D = π* (A) + + Rti + ... + Rik, ij Φ ι}, ifj Φ/

with A, B effective and B simple with respect to π and not containing r amification points. Then
XA is smooth at D if and only if

h°(D-A- π(4) - ...- n(Rik)) = h* (D) - deg (A) -k.

15. The generalized tetragonal construction. In this section we give a natural way to
extend the tetragonal construction (cf. [Do], [Be2]) to allowable double covers. We follow
the idea suggested by Beauville in [Be2], Remarque 4, p. 364. We do not need here the
hypothesis of stability on the curves. We do not give the proofs.

Let π: Z) -> D an allowable double covering with ce(D, D) = 0 (cf. [Bei]) and ι the
associated involution on D. We say that D is tetragonal if it can be represented s a
four-to-one cover of the projective line. We denote by Oivd(D) and Oivd(D) the varieties
which parametrize the effective Cartier divisors of degree don D and D, respectively. Recall
that the group of Cartier divisors on D is:

Div(£)= φ Zx+ 0 R*/O*
xeCreg ssingular

where ?is the ring of rational functions on D. Choosing uniformizing parameters t± and t2 at
the preimages s t and S2 in the normalization of D of a Singular point s one finds an
isomorphism Kf / Θ§* —^-* C * x Z χ Ζ.
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Naranjo, Prym varieties of bi-elliptic curves 91

The four-toone covering γ: D -* P1 induces an inclusion P1 —-—> Div4(Z)). On the
other band there exists a norm map ([Bei], p. 158):

Νηιπ:Οίν4(Ζ)) -> Div4(Z)).

Imitating the tetragonal construction for the smooth case (cf. [Do]), we obtain two
allowable double covers (X^ Χ±) and (X29 X2)9 where Xi and X2 are tetragonal.

(15.1) Proposition. The following properties hold:

i) The tetragonal construction applied to (X^X^ (resp. (X2,X2)) with its inherited
tetragonal structure yields (X29 X2) (resp. (Xi9 XJ) and (D, D).

ii) P(X,, X,) * P(X2, X2) s P( , D).

(15.2) Next we indicate how to apply the tetragonal construction to a covering
(Z), D) G Jffgt o such that D is obtained from an irreducible hyperelliptic curve H by
identifying two non-hyperelliptic pairs of points xi9 x2 and yl9y2. The curve D is tetragonal
in two different ways:

a) The curve D is the stable reduction of the curve /)' = P1 u//u P1 where H
intersects the first copy of P1 in two points: xl and jc2? the second copy in the points y1 and y2
and the two P1 are disjoint. The curve D' is clearly tetragonal. Applying the tetragonal
construction we obtain a single cover. One shows that it belongs to ̂  ^?0·

b) Let xl9 x2, yl9 y2 e P1 be the images o f x l 9 x 2 9 y ^ 9 y2 by the hyperelliptic morphism.
There is a unique double covering P1 (2:1)> P1 sending each pair xl9 x2 and yl9 y2 to a
single point. The four-to-one covering H -» Px obtained by composing the hyperelliptic
map with the (2:1) morphism above factorizes through D. In this case the tetragonal
construction gives two covers: one in JfJ 0 and the other in $'B g (compare with (2.10)) (in
fact, with the notations of (16.3), this second element belongs to ̂  ^).

16. The Main Theorem. In this section we state the central Theorem of Part III.

(16.1) Theorem. Let (C, C) be a generic element of@B^g and let (Z), D) e $g such that
P(C, C) £ P(D9 D). Then one (and only one} of the following twofacts occurs:

i) (C, C) and (D, D) are tetragonally related.

ii) (C, C) e $B g 4 and (D, D) is obtained from (C, C) s in the bi-elliptic construction
(«*§!!).

Let (C, C) be a generic element of @B,g. Let (D,D)e$g be such that
P(D, D) £ P(C, C). The theta divisor of P(D, D) is singular in codimension 3 and
P(D,D) is not a Jacobian (cf. [Shl] and (3.2), (3.3)). Then, [Bei], Th. 5.4 implies that
ce(D, D) = 0. On the other hand in Th. (4.10) of loc. cit. there is a list of coverings with
ce = 0 and dimension of the singular locus of the theta divisor equal to g — 5. Since
P(C, C) is not a Jacobian and g S> 10, we are in, at least, one of the following cases:
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92 Naranjo, Prym varieties of bi-elliptic curves

(16.2) a) D is a double cover of a stable curve of genus l,

b) (£/>)G*V.o,
c) (A/>)ejr; f l,
d) (A /)) e jr;t ( where 2 g i ̂  ^^

(cf. (2.10) for definitions).

(16.3) Remark. We shall use the notations

#it,fi = {(f, Γ) e £Bt9tt\r verifies (16.2) a)}, t = 0, . . . ,

^B,0 = W,)' = {(Λ Γ) e J;t, | Γ verifies (16.2) a)} .

r>-nThe spaces 3tf'gfi, ^ ^ t for f = 0,. . . , ^—— and #£ff are not closed in dtg.

The aim of this section is to prove the theorem in the cases (16.2) a), (16.2) b) and (16.2)c).
The possibility (16.2) d) will be considered in sections 17, 18 and 19.

We first treat the possibility (16.2) b).

(16.4) Proposition. Lei (C, C) be a generic element of3iBg. Lei (D, D) e ̂ 0 be such
that P(D, D) £ P(C, C). Then (C, C) and (D, D) are tetragonally related.

Proof. Let H be a hyperelliptic curve such that D is constructed from H by identifying
two pairs of points. If any of the pairs is hyperelliptic, then D is obtained from a hyperelliptic
curve by identifying a pair of points. By (4.10) in [Bei], P (D, D) is a Jacobian and we get a
contradiction. Now, an easy dimension count shows that the genericity of (C, C) implies that
H is irreducible. By (15.2), the tetragonal construction gives a cover (C'9C')e3lBtgtQ
tetragonally related with (/5, Z)). Then by (10.10) and (9.4) either (C', C'} = (C, C) or (C, Q
is tetragonally related with (C', C") (and hence with (/), /))). α

Now we treat the possibility (16.2) a).

(16.5) Proposition. Let (C, C) be a general element of3%B g and let (D, D) 6 $g be such
that D is a double cover of a stable curve EQ of genus l and P(D, D) ^ P(C, C). Then (C, C)
and (D, D) are tetragonally related.

Proof. If D is smooth, then the Statement is a consequence of the results of Part I.
Assume that D is singular. Observe that a stable curve of genus l is irreducible with, at most,
one double point.

If D is reducible, it consists in the union of two curves of genus ^ l intersecting in, at
most, g + l points, hence belongs to a subspace of codimension at least 2 in $B,g. But this is
impossible since dimP(^B g t) ^ 2g — 3 and (C, C) is generic. Therefore D is irreducible.
For the same reasons D either has one singularity or two singularities with image a
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singularity of £0. In the second case the element (JÖ, D) belongs to Jfy 0 and by (16.4) the
Statement follows. In the rest of the proof we assume that D has one singularity.

If E0 is Singular then D is obtained by identifying a pair of points on a hyperelliptic
curve. By [Bei], (4.10) this implies that P(D, D) is the Jacobian of a curve and we get a
contradiction with [Shl]. Hence E0 is smooth.

We treat first the case Gal£o (D) = Z/ 2 Z Z/2 Z. There exist two involutions i( and i'2
on D lifting the involution on D. By construction, i[ and ^ exchange the branches of the
singularity of D. Then one obtains the following commutative diagram:

,ß

D Di D2

\i/

where Dt -= D / i - , i = l, 2, are smooth curves and the discriminant divisors of Dl -> E and
D 2 -> £"0 intersect in a point (in particular / ^ 1). By (2.10) this element is obtained by
applying the tetragonal construction to an element of &B g t for some t. By the results of
Part I (D, D) and (C, C) are tetragonally related.

Finally assume that Ga\E(D) ^ Z/2Z. Then (D,D)e<%£g (cf. (16.3)). Proposition
(16.5) is now a consequence of the following Lemma and the results of Part I.

(16.6) Lemma. With these assumptions, there exists an element (C', C')eä?ß ^0
tetragonally related to (D, D).

Proof. It is easy to check that the injection j: $B g c» ^?ß^i0 (commuting with the
Prym map) given in § 10 extends to $B g (replace the Symmetrie products D(2\ D(2} by the
varieties of effective Cartier divisors of degree 2 Div2 (J5), Div2 (D)). Since for all (D, D), the
elements (D, D) and j(D, D) are tetragonally related (cf. § 10) we are done. D

Before proceeding to cases (16.2) c) and (16.2) d), we prove the following two facts,
which will be very useful in the rest of the paper.

(16.7) Lemma. Lei (C, C) be a general element of&Bgt with f > 1. Then P(C, C) is
isogenous to aproduct oftwo simple abelian varieties ofdimensions t and g — t — 1. If(C, C) is
a generic element of 3tB g 0u3iB g, then P(C, C) is simple.

Proof. By (2.8) and (2.1 1) all we have to prove is simplicity. This is a consequence of
Proposition (4.7) in [C-G-T]. D

(16.8) Corollary. Lei (C, C) be a generic element of@B^g and let (D, D) e ̂  with
^\ such that P(C,C}^P(D,D). We write D = D^4D2 where g(Dl) = t-\ and

= g-t-2. Then:
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94 Naranjo, Prym varieties of bi-elliptic curves

a) t he curves D1 and D2 are irreducible,
b) (C,C)e^B)iM.

Proof. It is left to the reader. G

Next we consider the case (16.2) c).

(16.9) Proposition. Lei (C, C) be a generic element of@Bg and let (D, D) e ^'9Λ be
such that P(D, D) £ P(C, C). Then (C, C) and (D, D) are tetragonally related.

Proof. WewriteD = P1u4D2whereD2isahyperellipticcurve(cf.(2.10)).By(16.8)a)
D2 is irreducible. By applying the tetragonal construction (see §15) one finds an element
(C', C'} E @'Β,9Λ tetragonally related to (D, D). By (16.5) we are done. D

17. The case (16.2) d). The aim of this section is to prove the following (compare
with (16.2)):

(17.1) Proposition. Let (C, C) be a general element of $B g and let

t ^2
s =

such that P(C, C) £ P(D, D) (see (16.3)). Then (C, C) and (D, D) are tetragonally related
or at least one of the following facts occurs:

a) j5 = /)1u4JD2, D ~ ^i^4^2 and D\ is an irreducible plane quartic. Writing
Dlr\D2 — {xi + ... + x4}, one has &Di(xi + ... +x4) = o)Di. The curve D2 is irreducible
and hyperelliptic of genus g — 5. In this case (C, C) 6 &Β,9,4·

b) D = D1 u4 D2 and D = D1 u4 D2 withDl9D2 irreducible hyperelliptic curves of genus
t — l and g —t-2 respectively, with 12> 2. In this case (C, C) e ΛΒ^ν

(17.2) Remark. In §18 we shall prove that possibility (17.1) a) implies that ( ,D)
is constructed from (C, C) s in § 11. In § 19 we shall see that possibility (17.1) b) implies that
(C, C) and (j5, D) are tetragonally related. These facts complete the proof of (16.1).

Proof. Recall that P(C, C) is not a Jacobian and that g ̂  10. By (16.8) b)
(C,C)eMBgt. On the other hand D = Diu4D2 where D^ and D2 are irreducible
(cf. (16.8) a)).

The following fact is a particular case of (5.12) in [Sh2]:

(17.3) Proposition. Let n: D -> D s above and let X an irreducible component of
Sing S of dimension g — 5. Then we are in one of the cases a), b), c), d), e) below and X,
thought in the natural model Ξ*, is contained in the respective varieties Zfl, Zfe, Zc, Zd, or
Ze (cf. [Sh2], (3.21) and§lfor definitions):
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Naranjo, Prym varieties of bi-elliptic curves 95

a) D is obtainedby identifying twopairs ofpoints on a curve H. There exists a morphism
γ: H -» P1 of degree 2 over the generic point of P1. Lei

H — £-* D•i i-
H - > £>

&e iAe partial desingularizations. Then

Za = closure of{LeP(D, D)*\h°(L) = ?*(y*(CV (l )))(!)

is a« effective divisor with non Singular support] .

b) Lei D — Di<u4D2· I f f i s the partial desingularization of D at Dlr\D2, then

Zb = (f°)-*(E**Ei).

In this case the codimension of Zf in P(Dt, />,·)*, i = l, 2 is exactly 2 and dimZb = g — 5.

c) Lei D = D1^J4D2. A component of D, say, D± is hyperelliptic with γ the attached
(2:1) map. I f f i s the partial desingularization of D at DnD2, then

where

ex* = closure o f { n * ( y * ( O p l ( l ) ) ) * ( ) € P ( l9D1)\
where Ά is an effective divisor with non Singular support} .

d) Dl a plane quartic. Writing D± n D2 = {x1 + . . . -h x4}, it is

^D,(XI+ ··· +*4) = ωΒΓ

One has

Zd = closure of {L = π*(Μ)(Α) e P(D,D)*\ is an effective divisor with non singular
support and MePic4(D) with A°(M ) ̂  2 and M|Di = ωοι} .

e) There exists a morphism ε: D -> £"0 0«to a cwri;e £0 consisting of at most two
irreducible components\ the genus ofE0 is equal to l and the morphism ε has degree 2 over the
generic point s of E0. We will not need the description of Ze.

We shall call in each case Za
m, Zb

m, Zc
m, Zd

m, (S*)m and (e;c*)m the union of the
components of maximal dimension.

We use (17.3) to identify the components of Sing Ξ of dimension g - 5 in P (Z), D). Note
that t 2> 2 implies that Η^0 Φ 0 for all t.
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96 Naranjo, Prym varieties of bi-elliptic curves

(17.4) Lemma. Lei C, C) and (D, D) be s above. Then Z™ is irreducible and via the
isomorphism P(D, D) = P(C, C) it corresponds to the component WQ 0/SingS* (cf. (2.7) and
(17.3) for definitions and notations}.

Proof. Indeed, let X± and X2 be components of (Sf )m and (S|)m, respectively. Then
(/°)~ * C^i x AT2) *s irreducible: if not, diiferent components of Sing Ξ * of dimension g — 5
would be exchanged by translations. From the definitions of Wi9 i= — 2, 0, 2 (cf. (2.6), (3.7))
it is easy to check this is not possible in P(C, C) and we get a contradiction.

On the other hand

By (16.7), P( l9 DJ and P02, £>2) are simple. Thus, for i = l, 2 either 7(J$Q is finite or
I(X.) = /»(£)., Dt). Let L{ be a generic element of Xi9 i = 1,2. Then A0^) = l (recall that
codimP(Atl)4) JTg = 2). Now (cf. e.g. (3.14) of [Sh2]) A° (£;(*; - *'(*;))) = 0, where je,, is a
generic point in Di and i' is the natural involution. Therefore jcf — ϊ (Jct·) ^ /(A^·). We conclude
that /(jy, /(Jr2) and /ft/0)"1^ x JT2)) are finite. Hence (/°)~1(lr

1 x JT2) is an
irreducible component of Sing S* invariant only by a finite group. Only the component WQ
verifies this property (cf. (6.1)), therefore Xi = (Hi*)m, for / = l, 2 and Z™ is an irreducible
component of Sing S* corresponding to WQ. Ώ

In the Situation of (17.4), deg(/*) = 4 (cf. [Bei], (3.6)), thus from the proof of (17.4)
one also obtains that /((S,*)"1) = Ο, ι = l, 2, and 7(Zfc

m) = ker/*.

(17.5) Lemma. Assume that one of the components of D, say Di9 is hyperelliptic and
that dimZc = g — 5 (cf. (17.3)). Then the corresponding variety Z™ is irreducible.

Proof. Arguing s in Lemma (17.4), if X is a component of (exf)m, then
(70)"1 (Χ χ ΡΦ2* ^2)*) is irreducible. Suppose that Υ is another component of (ejcf)m.
Since Z^1 is non empty and corresponds to WQ, then the isomorphism P(D9 D) = P(C9 C)

2)*)to f^_ 2 u HK2 . On the other hand

Hence we get a contradiction because

/( W2) n /(HK_ 2 ) is finite.

Therefore (exf)m and Zc
m are irreducible. α

(17.6) Lemma. With our hypothesis, if (D, D) verifies also (17.3) a), then
dimZ f l

m<g-5.

Proof. The unique configuration of the type of (17.3) a) compatible with
D = Di u4D2, Dl and D2 irreducible, and ( , D) φ Jf^ 0 is the following one:

The normalization of D at two points of Di n D2 is a curve H admiting a (2 : 1) map
γ: H -» P1 which is constant on one of the curves, say D2.
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Naranjo, Prym varieties of bi-elliptic curves 97

Assume that dim Zfl
m = g - 5. We call H the curve obtained by normalizing D at the

two points corresponding to the above ones, and we write q for the double cover H -* H.
Let 319 32e H be the preimages of the remaining points in D^r^D2. Let g the partial
desingularization of H in 3l9 32. One has the isogenies (cf. [Sh2], (3.21))

P( , />)* -^U P(ff,

where A is the desingularization of Z) at ̂  n/)2. Let L be a general element of Za, then
K°(L) = 9 *(y*(0p1 (l )))(>?), with an effective divisor with non singular support. Thus

ι - 32), & 2(- 3, - 22)( 2))

where 0p 04),^ = ^(^iX ' = 1,2. Hence:

tAGSfl^iAi-J^

It is easy to check that the dimensions of the sets on the right hand side are less than or
equal to (a posteriori equal to) dimP(Dl9 Dx) — 3 and dimP(Z)2, D2) — l, respectively.
Therefore, if X is a component of Z™, there exist irreducible components Xl and X2 of the
sets on the right hand side such that g° (Κ0(Χ)) Χ± x X2. Arguing s in Lemma (17.4), one
finds that x — i'(x) does not belong to I(Xt) if x is general in D and /' is the involution.
Therefore the simplicity of P(Di9 Dt) (cf. (16.7)) implies that I(Xt) is finite for / = l, 2.
In particular I(X) is finite. Hence X corresponds to W$ by the isomorphism
P (D, D) = P(C, C). Since the components Zfl

m and Z5
m are diiferent (take f=g°h and

compare /°(Za) computed above with /0(Zfc) = Sf x Ξ|) one gets a contradiction with
(17.4).

(17.7) Lemma. Keeping our assumptions, suppose that (D, D) verifies (l 7.3) d) and that
dim Zd = g — 5. Then Zd is irreducible (in particular Zd = Z™).

Proof. Writing / for the partial normalization of D at D± n D2 one easily checks that

where Γ is the ramification divisor of D1-^Di. Since (/VHi/} x P(D2,D2)*) is
irreducible and has dimension g — 5 the result follows. n

Now we end the proof of Proposition (17.1). We can apply (17.3) in order to recognize
the components of maximal dimension in Sing 2*. By (17.4) the component W$ corresponds
to Z*. Since t _· 2 other components of maximal dimension exist (cf. (2.7)). According to
(17.6), case (17.3) a) does not provide any component. Let us consider case e). One obtains
that the only configuration of type (17.3) e) compatible with our hypothesis is:
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98 Naranjo, Prym varieties of bi-elliptic curves

Dl9 D2 are two hyperelliptic curves and D1nD2 consists of two pairs of hyperelliptic
points for both curves.

These elements parametrize a subspace of g of dimension 2g —4 and this contradicts
the genericity of (C, C).

We conclude that ( , D) verifies the hypothesis of (17.3) c) or (17.3) d). By (17.5) and
(17.7) the components W2 and W_2 correspond to types Zc

m when t Φ 4, that is to say: the
curves Di and D2 are hyperelliptic. If t = 4, then one has a new possibility: one of the
components corresponds to a variety of type ZJ, therefore the pair ( , D) verifies (17.1) a).
This finishes the proof of (17.1). n

18. The plane quartic case. This section is devoted to prove the following.

(18.1) Proposition. Lei (C, C) be a generic element of$tBg and let (D, D} e 3tfg Λ be
such that P (D, D) ~ P(C, C), D = D± u4Z)2 and D^ is an irreducible plane quartic. Suppose
also that ifDir\D2 = {x1,..., x4}, then &Dl (xi+ ... + x4) = ωβι, and that the curve D2 is
irreducible and hyperelliptic of genus g — 5.

Then (D, D) is constructed from (C, C) s in the bi-elliptic construction o/§ 11.

Proof. It follows from (16.8) b) that (C, C) e ̂ fBtg,4. From the proof of (17.1) we get
that the isomorphism P(D, D) P(C, C) identifies Zfe

m with W0, Z™ with W2 and Zd
m = Zd

with MK_2(see(17.3)).

We shall use again the variety

Λ2 = {aeP(C, C)\ + W^W2^ W0}

defined in (5.5).

One has

(18.2) Lemma. With the hypothesis o/(18.1) the following facts hold:

a) The curve Λ2Γ\2Λ2 is birational to the curve B2 obtained by the pull-back diagram

B2 - > N?
(18.3)

where N2 and N2 are the normalizations ofD2 and D2 respectively, and g\ is the linear series
induced by the hyperelliptic structure of D2 .

b) The curve C2 (see (2.1)) is the normalization of B2.

c) The involution τ2 in C2 corresponds to the Involution of B2 given by the restriction of
the natural involution

Brought to you by | University of Queensland - UQ Library
Authenticated

Download Date | 6/15/15 2:13 AM



Naranjo, Prym varieties of bi-elliptic curves 99

d) There exists a linear series g\ on E such that one gets a pull-back diagram

ι i
Moreover the involution C42))|£2 exchanges the sheets of D2.

Proof. We first see a). By using the identifications WQ = Z™ and W2 = Zc
m, and the

definitions of Zfe
m, Zc

m (cf. (17.3)) it is easy to see that

where/is the normalization of D at D1nD2. On the other hand, by (5.3) the dimension of
this set is g — 7. This forces to have (ex^ )m c= (Sf)m. Hence

Λ = (/T1 ({( l9 2) e P( i, D,) x P( 29 D^ , + (S*)* c (S*)"1, 52 + (*jc2*)"· c (S2*)w}) ·

In the proof of (17.4) we saw that /((Sf)m) = (0). Therefore

Λ2 = (7*)'1 ({0} x {α2 e P02, /)2)|e2 + (ex$)m c (S2*)"}) .

Since (S|)m is irreducible (cf. (17.4)) and Sing S* has no components of dimension g — 6, it is
not hard to see that (S|)m is the closure of the set of effective divisors with non-singular
support A such that Nm(^4) = ω02. By using this one checks the inclusion

/)2)|Jc^

Thus one has

(7*)~H{0}* closure {i + f

From this inclusion a straightforward computation gives

{0} x closure {x + y - i'(x) - i'(y) e P( 2, D2)\x, ye 02)reg,

where ϊ is the natural involution on D2. Since the curve on the right hand side is irreducible
(cf. (5.7)) one has an equality. By using the description ofA2n2A2 in P(C, C) one obtains
that Λ2 π 2A2 is birationally isomorphic ΙοΛ2η2Λ2/π* (ε* (2/E)) = /* (Λ2 π 2A2) (recall
that Ker(/*) = π*(ε*(2Λ?))). On the other hand there exists a natural map from the
normalization of B2 to the set of the left hand side in the inclusion above. Since C2 is the
normalization of A2r\2A2 we get a morphism from the normalization of B2 to C2. Using
(14.3), one checks that the genus of the normalization of B2 isg(C2). Therefore C2 and B2 are
isomorphic and a) is proved.
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100 Naranjo, Prym varieties of bi-elliptic curves

Part b) is a corollary of a). To see c) it suffices to recall that the multiplication by ( — 1)
induces on C2 the involution τ2 . Note that in this context this multiplication coincides on B2
with the restriction of the involution on N (

2
} .

Finally, we prove d). We first observe that c) implies that E is the normalization of
B 2 / (involution). Since this last curve has an obvious hyperelliptic structure given by diagram
(18.2) we obtain on E a linear series g\. The rest is left to the reader. D

As a consequence (j52, D2) is obtained from ((C2, E), g2) s in Step 2 of § 11.

Next we concentrate on the relation between (C19 E) and (D19 D^). We shall consider s
above the surface

A_2 = {

defined in (5.5). From the descriptions of Z™ and Zd (cf. (17.3)) one gets

where Tis the ramification divisor of D1 -» D1. We call S the surface ((Ef )m — {/} χ {0}).
That is to say the group

acts on Λ _ 2 and the quotient is S. We study first this surface in the more transparent context
of P(C, C).

(18.4) Proposition. The surfaces S and C[2) are birationally equivalent.

Proof. We borrow from (5.6) the equality

Λ_2 = {nf (ef (x) — r — s)\xeE,r9seCl92x = sl(r) + 6^5)} .

Let Xa C[2} x E be the preimage of Λ_2 by the morphism

E -» /C,

(r + s, x) -> nf(r + s — ef (x)) .

Then Xis an unramified covering of degree 4 of CJ2). One obtains the commutative diagram

X - » yl_2

I I
C<2> - v ^1_2/π*(ε*
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Naranjo, Prym varieties of bi-elliptic curves 101

The morphism C{2) -> S is an isomorphism away from the origin 0 and the preimage of 0 is
the irreducible curve ef (E), of positive genus. Thus S is exactly singular at the origin and C{2)

is the minimal resolution of the singularity. D

We shall consider the plane quintic given by the union of 1̂  and the line r containing
the discriminant points of Di -> D^ . We call E' the elliptic curve obtained s the double cover
of r with diseriminant divisor rnD1. By identifying in the natural way the ramification
points of D1 -> D1 and E' -> r one constructs an allowable double cover of the plane quintic
mentioned above. By [Be3], Proposition (6.23), there exists a smooth non hyperelliptic
curve Γ of genus 5 such that

W£(T}I involution — =-> Z^ur .

No w to prove that (Dl9 DJ is constructed from C1 s in Step l of § 1 1 i t suffices to show that
Γ SQ.

(18.5) Proposition. The surfaces S and Γ (2) are birationally equivalent.

Proof. Thedescriptionof S s a subset of P( i9 DJ x P(D2, D2)(cf. (17.3))givesthe
isomorphism S = (Sf )m. The general element of (Ξ *)m is an effective divisor of degree 4 with
non-singular support. Its norm is a divisor on Dl consisting of 4 points on a line. By
construction the general point ofD^ corresponds to a linear series #4 on Γ that does not come
from linear series on E'.

Let x, y be general points of Γ. To contain the line xy is a linear condition for a quadric
containing the canonical image of Γ in P4. The intersection of the pencil of quadrics so
obtained with D1 provides four singular quadrics containing ~xy. Consequently there exist
exactly four linear series g\ on Γ passing through the divisor χ + y. These four linear series
define an effective divisor of degree 4 on D1 and the image in Dl are four collinear points. We
obtain a generically injective rational map from Γ(2) to (Sf)m and we are done. α

(18.6) Corollary. The curves C1 and Γ are isomorphic.

Proof. By (18.4) and (18.5) it follows that C{2} and Γ(2) are birationally equivalent.
Now the result is a consequence of a Theorem of Martens ([M]), α

Having established that (Dt, Dt) is obtained from (Ci9 E), i =J, 2, s in Part II we end
the proof of (18.1) showing that ( , D) comes from ( l9 DJ and (J52, D2) s in the Step 3 of
§11. Note first that the results just obtained make possible to use all the parts of (12.1) except
the part iv). All we have to do to end the proof of (18.1) is to show that (12.1) iv) holds.
Keeping this strategy in mind one constructs a commutative diagram
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102 Naranjo, Prym varieties of bi-elliptic curves

0 o
1 i

0 - > 2JE - » ε?(2/£) x ε*(2/£) - > π*(β*(2/Ε)) = Ker/*

l i i
0 - > 2/E - > P(C1? £) x P(C2, E} -*-> P(C, C) P0, £>)

PGD1? DO x Ρφ2, Z)2) - PCD15 £g x PGD2, Z>2)
I ^ I
o o

where/is the normalization of D at D1r^D2 (cf. (2.8) for the definition of φ and cf. (17.4)
and (6.1) for the top right comer). Since EndP(Di,Di) ^ I (cf. [C-G-T], (4.7)),

). Hence

(18.7) /* (2P(A D)) = (h, x A2) (φ- 1 (2P(C, C))) .

In (13.6) we saw that

/* (2P(A /))) = {(a1? 2) e 2P015 D,) x 2P(£2, D,)!^ (aj = i;2(a2)}

(cf. §§4 and 12 for definitions). On the other hand i t is easy to check that

= {(al9 2) e 2P(C1? £) x 2P(C2, E)\ 3ρ E 2JE such that 2^ = ε*(ρ), 2α2 = ε* (ρ)} .

Thus by applying g± x g2 to (18.7) one has

(18.8) gl x g2({(oe1,a2)e2P01,/)1) x P( 29D2)\O1(&l) = v2( 2)})

Finally we show that (18.8) implies

vi(6t1) = v2 (a2) iff 3 ρ E 2/£ such that gt (af) = ef* (ρ)

for all o?! e P(D^ D^) and a2 e P(D2, D2). The part => is clear. Suppose that g± (at) = ε* (ρ)
and g2 (a2) = ε^ (ρ) for ρ e 2JE. Then by (18.8) there exist (α^, α2) such that ι;χ (α (} = v2 (α2)
and g^dEJ = ^(dc;), g2(a2) = g2(a2). Since Kergf = pf(2JDj9 i = 1,2 (cf. (12.1) i)) and
these elements do not change the value of vt the part <= follows. This finishes the proof of
(18.1). α

19. The hyperelliptic case. In this section we end the proof of Theorem (16.1). Recall
that (16.4), (16.5), (16.9) and (17.1) reduced the proof to two cases. In (18.1) we have treated
the first. So, to finish the proof of Theorem it suffices to prove the following
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Naranjo, Prym varieties of bi-elliptic curves 103

(19.1) Proposition. ^ Lei (C, C) be ageneralelement of@Bg andlet (D, D) e Jf^,, t ̂  2
swcA ίΑαί P(C, C) P(jD>, D). We write D = Di u4D2 . Assume that D^ D2 are irreducible
hyperelliptic curves of genus t — l and g - t — 2, respectively. Then (C, C) and (D, D) are
tetragonally related.

(19.2) Remark. Recall that in this case (C, C)e^ ^, and with the notations of
(17.3), the isomorphism P (D, D) ̂  P(C, C) identifies Zfc

m with W0 and the two varieties
of type Zc

m corresponding to the two hyperelliptic components with W2 and W_ 2 (one of
them is empty exactly when W_2 = $.

Proof. If we prove that D is tetragonal we can apply the tetragonal construction to
(D, D) and we find elements of^ggt tetragonally related with (D, D). Then, by (16.5), these
elements will be tetragonally related to elements of 3tB,g>t and (C, C) and (D, D) will be
tetragonally related. Therefore the proposition is a consequence of the following fact.

(19.3) Proposition. There exists afinite morphism of degree four, y: D -> P1, whose
restrictions to D^ and D2 coincide with the respective hyperelliptic morphism and such that
y(D1r\D2) consists of four different points.

Proof. What we have to do is to glue the hyperelliptic morphisms y{. D{ -> P1. Let
D±c\D2 = [d^ ..., d4}. It suffices to prove the equality of cross ratios

(19.4) ΙΤι(^ι ) :7ι (^ 2 ) : ?ι (^3 ) : Τι(^4)Ι = l72(^i) : ̂ 2(^2) : ^2(^3) : Ίι(ά^\ ·

Recall that we obtained in (18.2) that the irreducible curve A2n2A2 (cf. (5.5) and (5.7)) is
birationally equivalent to the curve B2 given by the pull-back diagram

B2 > N™

! I
where N2 and N2 are the normalizations of D2 and D2, respectively. Moreover the involution
οηΛ2η2Λ2 attached to the multiplication by -1 equals the involution on B2 inherited from
the involution of N(

2
2}. According to (5.7) we have that C2 is the normalization of B2 and

therefore E is the normalization of 52/ (involution). Then from the analysis of the diagram
(19.5) we get that the cross ratio \y^(d^) : yv(d2}: y^(d^ : yl(d4)\ coincides with the cross
ratio of the four discriminant points of the obvious two-to-one covering E-+ P1. In
particular the points 7(4% / = l , . . . , 4, are all diiferent.

When t ;> 4 the same argument works when replacing A2r\2A2byA_2n2A_2 and B2
by the curve Bi given by the pull-back diagram analogous to (19.5). So the cross ratio at the
right band side in (19.4) also equals the cross ratio of the four discriminant points of certain
two-to-one morphism from E to a projective line. This clearly implies the equality (19.4).

To conclude the proof we only need to consider cases t = 2 and t = 3.
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104 Naranjo, Prym varieties of bi-elliptic curves

Assume first t = 3. We denote by /the desingularization of D at Dir\D2. We call nl
and π2 to the ramified double covers Di -> Diy i = 1,2, induced by the partial desingulariz-
ation. One has (compare with (6.1) i) and (6.2)):

(19.6) Lemma. Thefollowing equalities hold (cf. (17.3) for definitions):

a) 7(Zc
m) = (?*Γι(Ρφ^ D,) x {0}) (this is true for t ̂  1).

b) U ((ΖΠ-ΐη/(ΖΓ)) = (/^

Proof. We first see a). According to (6.1) and (19.2), the set /(Zc
m) is an abelian variety

of dimension / containing I(WQ) = I(Z™} = Ker (/*) (see (17.4)). On the other hand the
very definitions imply that /* (/(Zc

m)) z> P(D^ DJ x {0}. Hence

Equality of dimensions concludes the proof of a).

In part b) we only show the inclusion of the left hand side member in the right hand
side member. The opposite inclusion is left to the reader. Fix L E Z™. By definition
/° (L) = (L,, L2) e (3*)m x (3*)m. Then

(Z™)_£n/(Zc
m) = { eP(D,D)\?*(&) = ( ^O) and α + Le Z™}

= { e P(D, D)\f*(S) = ( l5 0) and a, + L, e (Ξ*)"1}

and we are done. D

Let us denote by Λ_2 the 2-dimensional variety obtained in (19.6) b) (observe that
dim (Ξ*)"1 = dim P( it J - 2 = t - 2 = 1).

(19.7) Lemma. One has the equality:

Proof. One has /* (Λ _ 2 n 2 Λ _ 2) = /* (Λ _ 2) n 2/* (/f _ 2). This set is an irreducible
curve. Since both sets in the equality of the Statement have dimension l, we only have to
prove the inclusion of the right hand side member in the left hand side member and this is
straightforward. α

Observe that the normalization of the curve B1 given by the pull-back diagram

S, - . ft?>i i
has a natural morphism onto {L — if (L)|Le(Sf)m, Νηιπι(£) = Τ?(0Ρι(1))}. since ci
is the normalization of Λ_2η2Λ_2 and Λ_2η2Λ_2 is birationally equivalent to
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?*(Λ_2η2Λ__2) (use the explicit description of Λ _ 2 η 2 Λ _ 2 in P(C, C) and that
Ker/* = π*(ε*(2/Ε))) we obtain a morphism from the normalization of Bv to C\. By
comparing genera one gets that Cv is also the desingularization of ^. The proof of (19.3)
follows s in the case t ̂  4.

Finally we observe that in case t = 2 the curve D is always tetragonaL Indeed, in this
case the genus ofDi is 1. To simplify assume it is smooth. Then the cross ratio of the images
of the four points Dl r\D2 by the two-to-one morphisms Di -» P1 induced by the linear
series gl on Dl is not constant. Hence with a suitable such morphism we construct a
four-to-one morphism D -> Pl. This concludes the proof of (19.3) and therefore of Theorem
(16.1). D

20. Description of the fibre. As a consequence of the description (2.10), the
construction of §11 and Theorems (5.11), (6.4), (7.9), (8.7), (10.10) and (16.1) we get a
description of the fibre of P over a generic element (C, C) of $B g (we keep the notation of
§ 2, in particular E is the elliptic curve associated with the unique bi-elliptic structure of C):

a) If t Φ 0, l, 4, it is the disjoint union of

• two copies of E contained in $'B,g,t,

• a copy of E x E contained in 3F^t.

b) If / = 4, it is the disjoint union of

• two copies of E contained in ̂ ,^4,

• a copy of E x E contained in ̂ 4,

• a curve contained in -#y>4.

c) If t = l, it is the disjoint union of

• two copies of E contained in 3%'B,g,i,

• an irreducible curve contained in Jf^ 1.

d) If / = Oor(C, C)e#i§,

• a single point in each component ^ ,g,

• a copy of £" contained in J«f ̂  0.
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