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Introduction

Let n: € — C be an unramified double covering of a smooth curve of genus g. One
defines the associated Prym variety as the abelian variety of dimension g — 1

P(C,C) = Ker(Nm_)°,

where Nm_: J(C) - J(C)is the induced norm map of Jacobians. The principal polarization
on J(C) restricts to twice a principal polarization = on P(C, C) ([Mul], p. 333). In the sequel
we shall always consider P(C, C) endowed with this canonical principal polarization. We
denote by #, and &/, the moduli spaces for pairs (C, C) as above and for principally
polarized abelian varieties of dimension g, respectively. The morphism:

PR, > oA,

sending (C, C) to P(C, C) is called the Prym map. Beauville ([Be1]) introduces a partial
compactification %, of #, parametrizing allowable double coverings of stable curves of
genus g and he extends P to a proper map

PR, — ol,_,.

This map P is known to be surjective for g < 6 and generically injective for g = 7
([F-S], [K], [We1], [De1]). On the other hand Donagi associates two allowable double
coverings to an unramified double cover of a smooth tetragonal curve (i.e.: with a linear
series gl), the three coverings having the same Prym variety. This construction, called the
tetragonal construction, shows that P is non-injective for all g. Donagi conjectured:

Tetragonal conjecture (Donagi, [Do]). If two eleme~nts (€, C) and (€', C’) of R,
verify P(C, C) =~ P(C’, C’) then (C’, C’) is obtained from (C, C) by successive applications
of the tetragonal construction (we say that the pairs are “tetragonally related”).

Debarre proved in [De2] that the conjecture is true for the fibre of P over the Prym
variety of a sufficiently general tetragonal curve of genus g = 13. However, it is known that
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in general the conjecture is not true: say that a smooth curve C is bi-elliptic if it can be
represented as a ramified double covering of an elliptic curve, and denote by #; , the moduli
space for the elements (C, C)e R, with C bi-elliptic. One has a decomposition into
irreducible components

[5]

—_ !
‘%B,g - ‘@B.g Y U '%B,g,t
t=0

Then, no elements of #; , are tetragonally related to another element of 2, and the same
holds for % , o, but P(#3 ,) = P(#p,, o) (see [De3] or §2 for details).

Nevertheless, if (C, C) e # , o and (', C') e Ry, verify P(C, C) = P(C’, C’), there
exists an allowable cover tetragonally related to both covers: there is a “tetragonal path”
through an allowable cover connecting (C, C) and (C’, C’). In view of these remarks it seems
convenient to extend the tetragonal construction to allowable covers. This is done in §15
following ideas of Beauville ([ Be2]). Then it makes sense to consider the extended tetragonal
conjecture by replacing #, by %, in the above conjecture. Alas there are other
counter-examples to this extended version: those given by Wirtinger coverings and those
coming from the “bi-elliptic construction” explained in §11. This seems to indicate that
Donagi’s picture is too optimistic.

The purpose of this paper is to check to what extent Donagi’s conjecture holds for
elements of 2, , by studying the fibre of the extended Prym map over P(C, C), where (C, C)
is a generic element of %, ,. We obtain a complete description of this fibre. The paper is
divided into three parts. In the first part (The fibre of P over a generic element of P(Z; ,)) we
prove the following:

Theorem ((5. 11) (6.4),(7.9), (8.7)and (10. 10)) Let (C C)bea general element of R ,
wzthg = 10andlet(C’ C’) e R, be such that P(C, C) =~ P(C’ C"). Then (C’, C") € Rp, 4 and
(C,C)and (C’, C’) are tetragonally related. Moreover if (C, C) belongs to Rp, g0 With t 21
then the pairs (C, C) and (C', C') are related by standard tetragonal constructions.

We obtain also in this part an explicit injection of %5 , in Z; , , (cf. §10).

In the second part (A bi-elliptic construction) we find allowable coverings (D, D) with
D non-tetragonal and such that P(D, D) € P(%y,, ,) This is a new counter-example to the
injectivity of the Prym map, of non-tetragonal type.

Finally in the third part (The fibre of P on a generic element of Z; ;) we obtain:

Theorem ((16.1)). Let (C C) be a general element of Ry, with g 210 and let
(¢, C)He R, be such that P(C,C)= P(C’, C"). Then one of the following facts occurs:

i) (C,C) and (C', C') are tetragonally related, or

ii) (C', C") is obtained from (C,C) by the bi-elliptic construction. In particular
(C,C)e Rp. g4 in this case.
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That is to say, the tetragonal and the bi-elliptic constructions account for the whole
fibre in the (generic) bi-elliptic case. As a summary, we give a complete description of the
fibre of the extended Prym map at a generic element of 2 , 1 §20.

I am deeply indebted to Gerald E. Welters for his guidance during the preparation of
this work. I wish also to stress the influence of the work of O. Debarre in the present paper. I
am grateful to the referee for his suggestions, for his criticism, and for his careful reading of
the manuscript.

1. Notation. Throughout this paper we work over the field of the complex numbers.
We fix an integer g greater than or equal to 10. By a curve we shall mean a projective
connected curve with at most double ordinary singularities. If C is a curve we shall denote by

g(C) the arithmetic genus of C. For a subspace F of Z,, the symbol F denotes the closure of F
in Z,.

For D, D' two divisors on a smooth curve C, the expression D = D’ will indicate that
they are linearly equivalent. We shall denote by Pic?(C) the set of linear equivalence classes
of degree d divisors on C. Usually we shall not make a distinction between a divisor and its
linear equivalence class in Pic?(C). For two non-negative integers r, d we shall consider the
algebraic subsets of Pic?(C):

Wi (C) = {{ePic (O Q) 2 r+1}.

Let n: € — C be a double cover of a smooth curve, either unramified or ramified exactly at
the points 0, ..., 0, € C. Let 4 be the discriminant divisor. Once Cis given, the morphism

and the curve C are determined by 4 and a unique element & € Pic(C) satisfying 2¢ = 4 and
k

n* (&) = ), Q.. We will refer to ¢ and A as the class and the discriminant divisor, respectively
i=1
attached to the covering.

A curve Cis said to be hyperelliptic if it can be represented as a double covering of the
projective line.

Let D, D, and D, be curves. The notation D = D, u, D, means that D = D, u D, and
#D,nD, =k.

The symbols [ ] and ~ will mean rational cohomology class and algebraic equivalence,
respectively.

If A is an abelian variety and 7 is a positive integer, the group of the elements x € 4 such
that nx = 0 will be written ,4. For a polarized abelian variety 4 the symbol L, denotes an
invertible sheaf defining the polarization, we call 1, the isogeny 4 — A mduced by L, (cf.
[Mu2]) and we denote by H(L,) its kernel. We shall denote by =, an effective divisor such
that 0, (8,)= L,. When speaking of the Jacobian of a smooth curve N we shall use Ly and
Oy instead of L,y and Z,,.
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We shall set

(4= [EA]a—l/(a— ne,

where a = dim 4. If X is a subvariety of 4 we define I(X):={xe A|x+ X < X}. Thisis a
closed algebraic subgroup of 4.

If (4, L,) and (B, Lg) are two polarized abelian varieties, the divisor £, X B+ 4 x Z,
gives on A X B a polarization written L, X L. Let (C, C) e A, and P its associated Prym
variety (cf. Introduction). There is a natural model (P*, £*) of (P, Z) in Pic??~2(C()
described as follows ([Mu1])

P* = {{ePic?* 2(C)|Nm,({) = K., h°()) even},
Ex={leP¥n°()22}.

The singular locus of = is described (loc. cit.) as:
Sing £* = Singl, Z* U Singl, £ *
where
Singf £% = {{e P*|h°(0) 2 4)
and
Singf, % = {{e P*|{=n* () + {6, i C) 21, () 2 2} .

The singularities of the first kind are called stable and the singularities of the second kind are
called exceptional. These definitions depend on .

We refer to [Bel] for the definition of allowable double covering. We shall assume
(except in §15) that we are in the stable case.

1. The fibre of P over a generic element of P(.@,,’ )

2. Summary of known results. The following facts mostly are taken from [De3].

Let 4, be the moduli space for bi-elliptic curves of genus g and let #, , be the moduli
space for unramified double coverings of bi-elliptic curves.

Let us fix an element (C, C) € Ay ,and let e: C — E be a morphism of degree two on a
smooth elliptic curve E (¢ is unique up to automorphisms of Eif g = 6). The Galois group of
C over E may be identified with either Z/2 Zor Z/2 Z % Z|2 Z. We shall denote by Ry , the
subset of elements with Galois group Z/2Z.
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2.1) IfGalE(C~') = 7|27 % Z|2Z, we write for the elements of the group:1d, 1,1,,1,,
where 1 is the invglution which interchanges the sheets of the double cover 7. Let
C, =C/@), C, = C/(1,) be the quotient curves.

One has a commutative diagram:

C
AN
2.2) c ¢

where m;, m,, & and &, are the obvious morphisms. We shall always assume that
g(Cy) = g(Cy). Let #y ,., be the subset of #, , consisting of the elements (C, C) with
Galg(C)= Z/2Z%x Z]2Zand g(C)) =t+1,8(C,) =g—1.

One finds that & B.g> ’.%B’ 5.00 s Ry g, [e51]are the irreducible components of Z, ,and
that each one has dimension 2g — 2.

23) Let(C,C)e Rp. 4. We fix the following notation:

i) 1, 7, and 1, are the involutions of C, C; and C, associated to ¢, ¢, and ¢,,
respectively.

2g—2

ii) Let A= ) P, be the discriminant divisor of ¢ and let P,,..., P,,_, be the
i=1
corresponding ramification points.

iii) £ePic? "!(E) is the class associated to &. Hence 2& = 4.
iv) n e ,JC is the class associated to .

We may assume that P,, ..., P,, are the discriminant points of ¢; and that P, ,, P, _,
are those of ¢,. We shall denote by 4, 4,, &, and &, the discriminant divisors and the classes
associated to ¢, and &,, respectively.

(2.4) It is easy to check the following facts:

i) E=E§+&,4=4,+4,.

i) =P+ ...+ Py, —e*E) =Pyt ... + Py, —e* ().

i) €= C, %;C,.

(2.5) We keep the assumption (C, C) € #5 , ,and we write P = P(C, C). We have the
description:
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E*={nt )+ 3N e W2 (C), LeW,_(C), Nm, ({,) + Nm,, () =&} .

(2.6) For g = 7 we shall define in (3.7) the subvarieties V, W_,, W, and W, of Z*.
Then SingZ* 2 Vu W_,u W, u W, with equality if 4 does not belong to the image of the
addition map | &| x | €| — |2 ] (this happens if (C, C) is general). Otherwise a finite number
of new isolated singularities appear.

(2.7) The following table contains relevant information to be used in the sequel:

t 0 1 2 3 >4
|14 0 1] 0 dimg—7 irred.
dimg—7
W_, 0 0 0 0 irred.
dimg—>5
W, 0 0 irred. irred. irred.
dimg—>5 dimg—>5 dimg—5
w, irred. irred. irred. irred. irred.
dimg-—>5 dimg-—5 dimg—35 dimg—>5 dimg—5.

When ¢ = 3 and (C, C) is general V has two components (see (3.4)). The singularities
corresponding to the elements of these varieties are stable for V, exceptional for W, and
stable and exceptional for W_, and W,.

(2.8) Consider now the abelian varieties P,:= P(C,, E) = Ker(Nm, ) (if 2 1) and
P,:=P(C,, E) = Ker(Nm,,). We define the morphisms:

¢: Px P, > P
by sending ({,, {,) to n¥(,) + n¥((,), if t =1, and
p: Py, > P
by sending {, to n¥({,) if 1 = 0. Then ¢ and y are isogenies and:
Ker(¢) = {(c¥(@), e3 @)@ e JE},
Ker(p) = {0, £3(£))} -

(2.9) Remark. The definitions of 1,7, Py, ..., P,,_,, 4, & and 7 given in (2.3) make
still sense if (C, C)e &}, 5., and we will use them throughout

(2.10) Now we want to apply the tetragonal construction to an element (C, C) € # B.g"
Assuming first that (C, C) e # 5.9, and keeping the notation of (2.3), fix a linear series g on E
inducing an involution v. Applymg the tetragonal construction to (C, C) with respect to

¢*(gl) one obtains two elements (C’, C’) and (C”, C") of A, (cf. Introduction) verifying:
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a) In terms of the data introduced in (2.1), one of the coverings, say (C’, C’), can be
described by the new set of data:

C’ Cl C2
N
E

Note that (¢, C") = (G, C) if t = 0.

I y(P)# P, for 15i<21<j<2g—2, then (C',CYeRy,, In any case
(C,CYeRg ;..

b) We now consider the second covering (C”, C"). For 2 <t < g_;I_ we define

Hy = {(T,T) €R,\I' =Ty v, I, with I'}, I, curves of genus 1 — 1, g — ¢ — 2, respectively}.

. . -1
(Notice that t —1 < g—t—2,since t < [g_2—:|) We call i, , the subspace defined by the

additional condition of I';, I', being irreducible and smooth. Then the second cover (C”, C”)
is an element of #, such that the components of C” are hyperelliptic curves. If moreover
v(P)+ Pfor 1 £i<2t<j<2g—2 then (C",C"eX,,

For t =1 we put
#H, ={,I'eR,|[ = P'u,TI, and I, is a hyperelliptic curve} .

Again the additional condition of I', being irreducible and smooth defines a subspace %, ;.
Then (C”, C") € #,,. When v satisfies the same condition as above, then (C”, C") € #, ;.

Finally we define for t =0

Hyo= (I, e @gIF is obtained from a hyperelliptic curve by identifying
two pairs of points}.

By imposing that the hyperelliptic curve being irreducible and smooth, and each pair being
non-hyperelliptic we define a subspace J, ,. Then (C", C")e . If v is general then
(C”, C/I)E %’0‘

By applying the tetragonal construction to an element of #5 , we obtain two elements
of #; o. Once again if the linear series g3 is general, then they belong to J#, ,.

. -1
The spaces #, , are irreducible and dense in 5 ,,t=0,..., [g——:l We have also

2
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dims#,, =3g—7 for t =2,
dims#, , =2g—2 and
dim#, ,=2g—1.

Notice that our definition of #, , differs a bit of that of [De 3]. This change is necessary
in order to have the next property.

(2.11) Any element of #, , can be obtained by means of the tetragonal construction
from an element of # , ,. In fact, this is a consequence of the construction that will be given
in §15. On the other hand, notice that P(%; ,) c P(#, ). Hence P(%y ,) = P(Rp , o)-

(2.12) Finally we recall two lemmas borrowed from [Mu1] and [De 2]. First we need
a definition. Let n: € — C be a double cover of a smooth curve. We shall say that an effective
divisor on € is n-simple if it does not contain inverse images of effective divisors of C. Let
{ € Pic(C) be the class attached to n. With this notation one has:

(2.13) Lemma ([Mul], p.338). If % is an invertible sheaf on C and D is an effective
n-simple divisor on C there exists an exact sequence:

0> & - 1, (1*(£) ®pp Uc(D)) > & ®y.Oc(Nm, (D) =) - 0.
(2.14) Lemma ([De2], p. 550). Let n: C — C be an allowable double cover of a stable
curve C, £ an invertible sheaf on C and D a reduced element of | K, ® (Nm, (Z)) ™| with

non-singular support. Suppose thath® (? ®, 0¢ (D)) = 1 for all effective divisors D such that
Nm, (D) = D. Then h°(£) = 1.

3. Some properties of bi-elliptic curves. This section deals with properties of bi-elliptic
curves that will be used later on. In a first reading it may be skipped and kept for reference
purposes.

Let &: C — E be a 2-to-1 morphism of smooth curves where E is an elliptic curve. We

denote by A and & the discriminant divisor and the class determining ¢. By Riemann-
Hurwitz:

degd =2g—2, degf=g—1.
Let 7: C — C be the involution which interchanges the points of each fibre.

(3.1) Lemma. Let A, B be effective divisors on E and C, respectively. Assume that B is
e-simple (cf. (2.12)). Then:

deg(A) + deg(B) <g(C)—1 = h°(e*(4) + B) = h°(A) .
Proof. Use (2.13). O
(3.2) If g(C) =5, then C is not trigonal (cf. [Te]).

(3.3) If g(C) = 4, then C is not hyperelliptic. Use (3.1).
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(3.4) Assume that C is general, of genus 4. Then W' (C) has two different points.
(3.5) Assume that C is general, of genus 3. Then C is not hyperelliptic.
(3.6) We consider the following subvarieties of Pic?© ~1(C):

Z' = {{ e Sing @*|Nm,({) = &},
Z'={e*x+ )+ X, JEE e W5t if g(C)=5,
A={e*X)+{'|X€E, e Wi, s} 2Z" if g(C)23.
Remarks. i) If g(C) = 3, then A4 is irreducible of dimension g(C) — 2.
ii) If g(C)=6, then Z' and Z” are irreducible of dimension g(C)—4 and
Sing@* = Z'uZ" ([We2], Prop.3.6). If g(C) = 5, then the equality holds but Z’ is not
always irreducible (in fact by [Te] there is a bijection between the set of its components and

the set of bi-elliptic structures on C).

(3.7 Now we define the varieties ¥ and W, (wherea € {2, 0, —2}) mentioned in (2.5).
We use the definitions of (3.6) applied to C, and C,. In these terms:

V={ntl)+n3C)I{eZ], (e Z3},
W_, = {n} () +n3 I € 2], (€ O0F, Nm,, ({) + Nm,,({,) = &},
Wo = {nt )+ a3 €4y, (€4, Nm,, ({}) +Nm, () =&},
W, ={nf ) +n3(C)I, € O0F, {,€Z), Nm,, ({,) + Nm,,({;) =} .

(3.8) Lemma ([De 3], Lemma 5.2.10). Assume g(C) = 6 and fix 1ePic?©~1(E).
Then {{ € Z"|Nm,({) = 1} is irreducible of dimension g(C) — 5.

In particular Z'nZ" is irreducible.

The following facts will be used throughout.

(3.9) Proposition. One has the following equalities:
i) Ifg(C) 23 then I(A) = {e*(@)|a e Pic® (E)}.
i) Ifg(C)=5 then:

{aeJCla+Z"c A} ={aeJCla+Z"c OF}
={aeJCla+Z'nZ"c A} ={acJCla+Z'nZ" < O*}

={e*(X)—r—s|XeE,rseC}.
iii) If g(C) = S then:

I(Z"y={aeJCla+2Z'nZ"<=Z"} = {e*(a)|ae Pic°(E)} .
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Proof. 1) The inclusion of the second member in the first one is clear. Let a € JC such
that a + 4 < A. In particular, for all xe E and D e C®~ ¥ one has h° (a + ¢*(¥) + D) > 0.
Then A°(a + *(x)) > 0.

Now we may write a = D —g*(x) where D is an effective divisor of degree two
verifying

h° (D + e*(@)) > 0 for all & € Pic®(E).
By applying (2.13) we conclude that D € Im (¢*), thereby proving i).
ii) All the equalities are an easy consequence of the following one:
{aeJCla+Z'nZ"cO*} ={e*(X)—r—s|xXx€eE, r,seC}.
This fact was proved by Debarre in [De 5]. We give here a sketch of the proof. We only prove
the inclusion of the left hand side member in the right hand side member. Write
a= D — e*(A), where 4 € Pic"(E) and D is effective. If we assume that D is e-simple then

2r < g+ 1. In fact it is not necessary to consider the case 2r = g + 1. It suffices to obtain a
contradiction if r = 2.

Suppose that 2r < g — 2. For a generic element B € Pic"(E) there exists D' = 0 such
that:

* D+ D’ is g-simple.

« 2B+ Nm,(D) =

Then ¢*(B) + D' € Z'nZ". By applying (2.13)
0<h(a+e*(By+ D) =h°(D+ D' +¢*(B— A))

SHB-A)+h(Nm,(D+D)+B—-A4-7F)
= h°(B — A)+ h°(Nm,(D) — 4 — B)

which is a contradiction because B is generic. The cases 2r = g — 1, g are similar.

Part iii) follows from ii). 0O

4. A key lemma. Let f: N - N bea (2:1) morphism of smooth curves with ramifica-
k

tion divisor )’ J.. We denote by ¢ the involution of N attached to f.
i=1

Let I be a line bundle on N with £ = ¢*(£). Choose an isomorphism ¢ normalized in
such a way that:

o*(p)o o =1d; .
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Writing L[%] for the pointwise fibre of L over % € N, one obtains isomorphisms:
‘P[Qi] : E[Q;] - U*(E)[Qi] = E[U(Q:)] = E[Qz]’ ie{l,....k},

given by multiplication with constants A, with A? =1. We attach to L a vector
v(L) = (A4, .-, 4) € (1,)* which depends on the choice of ¢. The ambiguity disappears when
we pass to the quotient modulo p, by the diagonal action. Then we have a homomorphism of
groups:

1273

v: Ker(o*—1) —»

We use the notation v(D) and v(Z) for D a divisor and £ an invertible sheaf on N.

4.1) Proposntion. There exists a line bundle L on N such that f*(L)=~L iff
v(Dy=01,..., 1.

Proof. 1t suffices to use [G], Th.1, p.17. O

(4.2) Proposition. Let 2 be an invertible sheaf on N such that 6*(2) =~ L. Then there
k

exists a divisor D on N with0 £ D < Y 0, and an invertible sheaf & on N such that

i=1
[*(&)= 2 0y(—D).
Proof. By using the exact sequence:
0 - Oy(—0) - Oy > Uz, > 0
and by observing that Oz (—0) ¢Im(f*) (hence by 4.1) v(=0)+(,...,1) 1)) one has

v(-0)=0,. ,1). Then, by tensoring £ with suitable sheaves (ON( 0,) we can
make all the coordmates of the corresponding vector equal. O

Let (C,C)e Ry, ,- We keep the notations of §2. In particular 7€ ,JC is the class
determining n: € - C.

(4.3) Corollary. One has (C, C)e Ry , iff T*(n) + 1.

Proof. By (2.4) ii), t*(n) = n when (C~, C) ¢ Rp ,. Conversely suppose t*(n) = 1.
Applying (4.2) we may write:
2g—2
n=D-—¢*(d) with 0D ) P,.

i=1

Let C, (resp. C,) be the double cover on E given by the class of A4 (resp. & — 4) and the
discriminant divisor Nm,_(D) (resp. 4 — Nm,(D)). Observe that:

e*(Nm,(n)) =27 =0.
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So due to the injectivity of ¢*:
Nm,(#) =0 and 24 = Nm,(D).

Then € = C, %, C, and C = C/(1 o 1,), 1, and 1, being the involutions of C attached to the
projections on C; and C,, respectively. Hence (C, C) e #p , , for some t. O

(4.4) Lemma. Assume t > 0. We consider the commutative diagram:

Jc, -1, Jé
JL — JIC2 .
Then n} (JC) Nnn¥(JC,) = {n*(e*(&)|a e Pic®(E)}.
Proof. Fix feIm(n¥)nIm(n¥) and B, € JC,, B, € JC, such that
B =ntB)=n3@B)
Thenn¥ (8,) = n} (t¥(B,)) and n¥(B,) = n¥ (x¥(B,)). Since ¢ > 0, the morphisms r, and =,
are ramified hence 8, = t¥(f,) and f, = 15 (B,). Applying (4.2), there exist divisors D, on
C,, D, on C, and classes &,, &, € Pic®(E) such that:
(4.5) pr=¢er@)—Dy, p,=¢3@,)—D,
where 0 < D; < ramification divisor of ¢;, i=1,2.
Hence:
n* (6% (@, — &) = 7 (Dy) —nF(Dy).
Let R, and R, be effective divisors on C such that

n*(Ry) = nf(Dy), ©*(Ry) =n3(D,)

thus

From
n* (e* (&, — &) = n*(R, — R;),
two possibilities appear:
either 1) ¢e*(@, —a,)=R;—R,

or i) e*(@,—a)=R,—R,+1.
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We first suppose i). From (4.1) we have v(R, — R,) =(1,...,1), i.e.: v(R,) = v(R,). By
applying the proof of (4.2) we can compute these vectors:

V(R) =4y, -y Ay, 1,...,1) with A, = —1 iff P,eSupp(R,),

v(Rz)=(1,...,1,12”1,...,129_2) with 4,=—1 iff P,eSupp(R,).

We conclude that 4, = ... = 4,, = 4,,,, = ... = 4,,_,, that is to say, either R, = R, =0
2t 2g—2
or R,=) P, R,= ) P.If Ry=R,=0, then D, =D, =0 and we finish by
i=1 i=2t+1
2t 2g-2

taking f = a, = &,. Similarly, if R, = Z P, R,= ) P we get D,=¢}() and
i=2t+1
D, = ¢¥(&,) (see (2.3)). By replacing in (4 5)

On the other hand, by (2.4) ii):

2t 29-2 B
e¥(@, —&)= Y Pi— Y P=¢*E -E)
i=1 i=2+1

and one finally obtains f = a, — &, = a, — &,.

In the case ii) we can imitate the above proof by replacing n by the expression of
2.4)ii). O

S. The components %, , , fort 2 4. In this paragraph (C, C) is an element of Rp. g1
with >4 and P = P(C, C) We keep the notations of §§1 and 2. In particular g > 10.

In order to describe the fibre of the Prym map over P we shall use ideas from [We 1] and
[De2]. We perform intrinsic geometrical constructions to get information on the covering
from the Prym variety. We will use the components of Sing =Z*.

Recalling the descriptions of (3.7) one has:

(5.1) Proposition. The variety W_, N W, is irreducible of dimension g — 9 and one has
the equality:

W_,nW, ={nf() + 1), €Z], (e Z),Nm, ({;) + Nm,,({,) = &} .

Proof. We check first the equality. Clearly the second member is contained in the first
one. Conversely, any { € W, n W_, can be written as

(5.2) {=n¥)+nF) =nF)+n3({3)
where

(,e®F, (,eZ), (1eZ], (,€0%
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and

Nm,, ({,) + Nm,,({;) = Nm,,({;) + Nm,,({;) = £.
Then:
(€ — D=3 —0).

By (4.4) there exists & € Pic®(E) such that:

L-li=et@®,

L-L=e®.
In particular {, = ¢f (&) + {; and replacing this in (5.2) we are done.

Consider now the morphism:

Y:Z!x Z) - Pic?*"2(0),
(€1, 85) = nf )+ 7).
Let us define 7= {({,,{,)e Z{ x Z;|Nm,, ({,) + Nm, ({,) = &}. Clearly ¥(T) = W_,n W,.
Since each fibre of the induced map T'— W_, n W, isisomorphic to E (use (4.4)) it suffices to
prove that T is irreducible of dimension g — 8. To see this look at the first projection:
T - Z]. Clearly Z/ is irreducible and by (3.8) the fibres are irreducible of dimension

g—t—5S5(notethatg=10,¢t=4and t+1 =< g— ¢t imply g — ¢t = 6). Thus T is irreducible
and dm7 =dimZ;/+g—t—5=t—-34+g—t—-5=g—-8. O

(5.3) Proposition. The varieties WynW_, and Wyn W, are both irreducible of
dimension g — 7 and they are described as follows:

Won W_p = {nf () +n3 (Il € Z], (€ 4y, Nm,, ({y) + Nm,, ({,) = &},
Won Wy = {nt () +n3 (Il €4y, e Z), Nm, (§y) + Nm, ({,) = &}

Proof. By symmetry only one variety has to be considered, for instance W, W,.
Imitating the proof of (5.1) one finds the equality. The irreducibility and dimension may be
obtained as above replacing ¥ by the morphism:

P': 4, x Z) - Pic?2((),
(€1, 8) = nf () +nF()

and T by T" = {({;, {,) € 4, X Z;|Nm,, ({,) + Nm,,({;) = {}. O

(5.4) Remark. The second statement of Proposition (5.3) still holds true if ¢ = 2.
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(5.5) We put
A, ={XeP|XZ+ WynW,c Wy}
where a =2, —2.

Because of (5.1) and (5.3) we can tell W, among the three components of Sing Z* of
dimension g — 5. Hence 4_, U 4, is intrinsically recovered from P. Our next aim is to
determine 4_, and 4,.

(5.6) Proposition. Orne has the equalities:

) Ad_,={n¥(EfX) —r—s)|XeE r,seCy,25=¢,(r)+¢,(5)},
i) A,={nf(eX(X)—r—s)|XeE, r,seC,, 2% =¢,(r)+¢,(5)} .
Proof. We only prove the second one, the first one being equivalent. Looking at (5.3)
itis easy to check that the second member of this equality is contained in the first one (by (2.8)
its elements belong to P). We show the opposite inclusion. Fix d € 4,. By using (2.8) we may
write d = n{ (a,) + n5 (a,) with Nm, (a,) = Nm,, (a,) = 0. Let n}({,) + n¥({,) e Won W,
where {, € 4,,({, € Z; and Nm, ({,) + Nm,,({,) = &(cf. (5.3)). Applying Lemma (4.4) there
exist elements {; € 4,, {} € A, and & € Pic®(E) such that:
a,+0 =0 +ef@ed,,
a,+{,=0—¢ef(@)ed,.

Therefore a, + A, < A, and a, + Z; = A,. Then by using (3.9) i) and (3.9) ii) we finish the
proof. O

(5.7) Proposition. Assume t=4. The sets A_,Nn2A_, and A,n2A4, are two
symmetric irreducible curves. Their normalizations are C, and C,, respectively, and t, and 1,
are the involutions induced by the (—1) map of P.

Proof. We first observe that:

24_, ={n¥f(x+y—1,(x) =1, ()%, yeC,},
24, ={nf (x+y—1,(0) —1,(M)|x, ye C,} .

Now, it suffices to consider the set 4_,n2A4_,. One has:
A_,n24_, = {nf(x—1,(0))IxeC,}.
Indeed, since 7, has fixed points, n¥ (x — 7, (x)) € 24 _, for all x e C,. Moreover:

nr(x—1,(0) = nf (6 (6, () — 27, (0) €4, .

5 Journal fiir Mathematik. Band 424
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So the right hand side member of the equality is contained in the left hand side member.
To see the opposite inclusion, take X € E and r, se C, such that 2x = ¢,(r) + ¢,(s) and
suppose that 7 (¢*(¥) —r —s) €24 _,. We obtain a linear equivalence:

@ -r—s)=nt(r+z-1,0)-1,0)
where y, z € C,. Since n§ is injective:
(5.8) @+, M+t @D=y+z+r+s.

By assumption ¢ = 4 and then (3.1) implies that #° (¢ (X) + 1, () + 7, (2)) = 1iff 7, (2) * ».
If y = 1,(2) the initial element belongs to the right hand side member trivially. Thus we can
assume that (5.8) is an equality of divisors and then either y = 1,(2) or y =17,(y) or
z = 17,(2). In any case the inclusion follows.

Now, taking the morphism

0;:C, - A_,n24_,,

x - nf(x—1,(x)

the statement follows by observing that ¢, is birational (C, is not hyperelliptic by (3.3)) and
that ¢, (1,(x)) = —¢,(x). O

(5.9) Let n’: D - D be an unramified double cover of smooth curves such that
P(D, D)~ P. Since the singular locus of the theta divisor of P has dimension
g — 5 =dim P — 4, D is either trigonal or bi-elliptic (cf. [Mu1], p. 344). If D is trigonal P is
the Jacobian of a curve (cf. [Re]). Then, by [Sh1] C has to be either hyperelliptic or trigonal,
which contradicts either (3.2) or (3.3). Thus D is bi-elliptic.

Moreover, table (2.7) and observation (2.11) show that (D, D) e Rp,g.s Xvith s =4
Let D, and D, be the bi-elliptic curves of genus s + 1 and g — s attached to (D, D) in the
usual way (cf. (2.1)). Since as we have seen in (5.7), (C,, 7,) and (C,, 7,) can be recovered
from P, one has isomorphisms ¢;: D; - C;, i =1, 2, commuting with the corresponding
involutions. In particular the base elliptic curve is the same and s = ¢. Summarizing, if the
diagram attached to (D, D) is:

~

7N

D D, D,

xl‘;%
E

there exist @; € Aut(E), i =1, 2, such that
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Di—(pi_”ci

Tt

Thus we obtain a diagram

D
AN
D ¢ G
Vj A D;loe,
E.

Composing with a suitable automorphism of E we get

(5.10) D C G

where @ € Aut(E) and #(P) + P, forall 1 S i<21<j<2g—2.

. (5.11) Theorem. Let (C, C) be a general element of Ry 4, witht 2 4 and g 2 10. Let
(D, D) € R, such that P(D, D) = P(C, C). Then (D, D)e Ry, , and (C, C) and (D, D) are
tetragonally related.

Proof. By (5.9) it only remains to see that each diagram (5.10) can be obtained by
applying successively the tetragonal construction starting from the initial element (C, C).
By (2.10) it suffices to see the following fact:

Lemma. Assume that E is general. Then the set
I'={®ecAut(E)|®(P)+ P, for 1 =i<2t<j<2g-2}
is generated multiplicatively by the elements of T that correspond to the linear series g} of E.

Proof. Left to the reader. O

6. The component 2, , ;. This section is devoted to proving the analogue of the
Theorem (5.11) for the component %5 , ;. We begin with a general result valid for any .

(6.1) Lemma. One has the equalities (cf. § 1 and (2.8) for notations, part iii) will not be
needed here, but later on):
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1) I(W,) =n=n¥P) for t=>1,
iy I(Wy)=n*(e*(,LJE)) for t=2,
i) I(W_,) = n¥(P,) for t=4.

Proof. We show first the equality i). To prove the inclusion of 7§ (P,) in the left hand
side member we consider n(f)enf(P;) and we take an element n¥((,) + n3¥((,) e W,
where {, € O}, {,€Z; and Nm, ({,) + Nm,,({,) = &. Since the map

Pic®(E) x C - Pic'(C,)
is surjective, we may write
B+ =L +¢ef@, where ([ e®Ff, gePic®(E).

Then n¥ (B) + ¥ ((,) + nX((,) = n¥ () + n¥ ({, + £X(2)) € W,. To see the opposite inclu-
sion take @ = nf(a,) + n¥(a,) € P with a, € P, a, € P, and such that a+ W, c W,. By
applying Lemma (4.4) as before (see for instance the proof of (5.6)) we get a, + Z; < Z;. By
(3.9) iii) there exists @ €, JE such that a, = ¢ (&). Therefore de nf (P,).

In ii), the inclusion of the right hand side member in the left hand side member
is obvious. Take now d=nf(a,)+ n¥(a,) with a, € P, and a, € P,. Assume that
a+ Wyc W,. Again as a consequence of Lemma (4.4) one has g, + 4, < A4, and
a,+ A, = A,. By using (3.9) i) we obtain that de n* (¢*(JE)). This ends the proof of the
inclusion I(W,) < n* (¢*(,JE)).

Part iii) is analogous to parti). O

We now assume ¢ = 3. Let (C, C) be a general element of %, 4,3+ There are two
components of dimension g — 5 in Sing £*: W, and W, (cf. (2.7)). Lemma (6.1) shows that
we may distinguish between W, and W, because the dimension of I(W,) and I(W,) are

different.

(6.2) Proposition. One has:

U (W) _gnaf(Py)) ={n¥(ef(®)—r—s)|X€E;r,seCyand 23 = ¢,(r) + &, (5)} .
leWo

Proof. Let {=n¥(e¥(2)+r) +n¥(,) be an element of W,, where Z€ E, re C,,
{,eA, and such that Nm, (¢}(?)+r)+Nm, ({,) =& Suppose a,e€P, satisfies
n*(a,)+CeW,. By Lemma (44) this implies that a, +&*(Z)+red,. Hence
a,=r'—r+ef(@)whereae JE, r,r' € C,. By replacing a by X — ¢, (') for some x € E we get

6.3)  (Wy)_znnf(P)c{nt (ef(®)—r—s)|XeE,se C;and 2% = ¢,(r) + &, (5)} .

The inclusion of the right hand side member in the left hand side member in (6.3) is trivial.
The equality in (6.3) clearly implies the equality we wanted to prove. O
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(6.4) Theorem. Let (C,C) be a generic element of Rp 43 With g 210 and let
(D, D) e R, such that P(D, D) = P(C, C). Then (D, D)e Ry , 5 and (C, C) and (D, D) are
tetragonally related.
Proof. First we observe that the methods used in the section 5 (i.e.: for (C, C) e %y , ,,
t = 4) to recover the set of data (C,, 7,) are still valid (cf. (5.4), (5.6) ii) and (5.7)). On the
other hand we have seen in (6.2) how to recognize intrinsically in P the set

{n¥(E¥(X)—r—s)|xeE,r,seC,and 2% = &,(r) + &,(s)} .

Since it coincides with the set obtained in (5.6) i) we can also imitate the process given in
(5.7) to obtain the set of data (C,, 7,). Then the proof continues as in (5.11). O

7. The component #j , ,. In this paragraph we wish to prove the analogue of
Theorem (5.11) for the component % , ,. In addition to the ideas of § 5 we shall use some in-
tersections = * N ZX to recover (C,, 7,). We keep the assumptions and notation of § 1 and § 2.

Let us denote by (C, C) a general element of Ry, ,- From (2.6) and (2.7) we may
suppose that:

Sing=* = Wy,u W, .
(7.1) Because of (6.1) we can make a difference between both components.

(7.2) Remark. Imitating §5, one gets from P* the pair (C,, 7,) and the subvariety
i (Py).

We shall now describe a subvariety of nf(P,) that determines the curve C,.

(7.3) Proposition. One has the following equalities:

i) If @ = n¥(x —1,(x)), where x € C,, then E* N E} = Fu X (@), where
X(@)={nf)+nFC)I,€0F,(,€0F h°((, —x)>0 and Nm, ({,) + Nm,,({,) = &}

is the moving part of this algebraic system and F is the fixed part (see below for a description

of F).
ii) Let N={n¥({)+n3()I{, €O Nm, ((,) =&, {,€Z}}. Then:

N X (@ = WyuW,UN,

deAan2A4;— {0}
and N is the union of the irreducible components not contained in Wy, L W,.
iii) If a = n}¥(a,), where a, € P, — {0}, then:

NnEF = {n¥(y) + 1 (C)I €0Fn (O, Nm,, () =&, (€ Z}
U {n¥ ) +nFC)I €OF, Nm,, (() =&, (,eZ;nZ3} .



66 Naranjo, Prym varieties of bi-elliptic curves

Proof. i) Let {=n¥({,) +n¥ () e E*NE¥ with @ = n* (x — 1,(x)). By applying
Lemma (4.4) we find elements {{ € ©F, {, € ©@F and g € Pic®(E) such that:

(7.4) (i=Ci+ef(@),
() —x+{=0-¢50)-

Suppose first that g = 0. Then
(,€0FN (Ot =1{€OFIR(,—x) >0} u{l,eOF R+ 1,(0) 2 2} .
If {, belongs to the second set, by Riemann-Roch one has
R (Ko, — {5 —1,(x))>0.
Define 2 = &, — Nm,,({,), B; =, — ¢} () and B, = {, + &} (4). Then

h°(B,) = h° (Cl —&f (Ez —Nmez(gz))) = h°(—Tf(Cl) +&f (&) = ho(ﬁ(cl)) >0,
ho(ﬁz —x)=h° (KC2 — 15y _x) =h° (Kcz —{,— Tz(x)) >0.

Therefore 1} ({,) + 73 () = n#(B) + 7 (B,) € X (@).
On the other hand if g & 0 then (cf. [De4], p.9)
(LEOFN(OF);p =41V {{,€@FNm, ({)=& +a}.

IfNm,, ({;) = &, + ¢theng = Nm, ({,) — &, = &, — Nm,,({,) and by replacing in (7.4) one
has

() +x—1,(x) = Kcz—llz .

Thus {, € @3 N (OF), _ ., and proceeding as above we conclude that Te X (@). We have
proved the inclusion E* N E¥ < Fu X (@), where

F={nt{)+nF )l €4, €0 Nm, () +Nm,((,) = I}

(note that F = @ if ¢ < 1). The inclusion of X () in the left hand side member is trivial. Take
now { = n*({,) + n¥((,) € F. Since the map

Pic®(E) x C¥~ - Pic?™3(C,),
(@ D) » ey (@ +D

is surjective we can write
x—=1,(x)+{, =D+ ey (@)

and then ¥ (x — 7,(x)) + { = n¥* ({, + £¥ (@) + n* (D) e E*.
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The reader may observe that F and X (@) have pure dimension g —3 and that
dim (Fn X (d)) = g — 4 for all 4. This concludes the proof of i).

ii) The inclusion

W,uW,uUNc (] X@

aeAr;n2A; — {0}

is left to the reader.

To see the opposite inclusionlet { = n¥ ({,) + n¥({,) € X (@) forallde A,n2 4, — {0}.
Then for all x € C, there exist {{ € ©F, {, € ©F and g € Pic®(E) such that

(5 —x) >0,
ClECi-*-BT(Q_),
L=0—e3().

There exists an irreducible component T of the fibre over {, of the map

Pic®(E) X C, X C$™9 - Pic?™3(C,)
(é9x’D) - X+D_8;(é)

which dominates C,. Suppose that the projection 7' — Pic®(E) is constant and let g, be the
image. Then for all x e C, we find an effective divisor D such that:

,=x+D—¢e5(0) -

Therefore h°({, + e¥(d,) — x) > 0 for all xe C, and hence {, € Sing@% = Z;UZ;. So {
belongs to W, UN.

If T — Pic®(E) is surjective we find that
K (L, +83(@) > 0
for all g € Pic®(E). Hence {, € 4,. Now it is not hard to deduce that {e W, U W,.

From the descriptions it is clear that no components of N are contained in W,u W,.
This finishes the proof of ii).

iii) The inclusion of the right hand side member in the left hand side member is left to
the reader. To see the opposite inclusion let {, € @ with Nm, ({,) = &, and {, € Z} and
suppose that

nf(—a, + () +ny()eE*.
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Again there exist {{ € O F, {, € ©F and g € Pic®(E) with
—a;+{ =L +ef(0),
L=0-¢3(0)-
If ¢ =0 then {, e @F N (OF),,. On the other hand ¢ # 0 implies that

(,eO@FN(OF)_ =A2U{CZE@;‘|Nm52(Cz)=é_z—é}.

£3(2)
Since {, € Z,, only &, € A, is possible and then (,e Z,nZ,. O

(7.5) We shall define for @ = n}(a,), a, € P, — {0}

N@) = {nf )+ () €OF N (OF),,, Nm, ({y) =&, (€ Z5} .

—
&

This set is recovered from N n =¥ as the union of the components not contained in W,. Our
next goal is to distinguish points in 7 (P, ) looking at the number of components of N (@). We
will see below that the set @} N (@), » Nm,, ! (£,) is finite. The cardinal of this set coincides
with the number of irreducible components of N(d).

(7.6) Let D be the ample divisor induced by @, on the abelian surface P,. By
Riemann-Roch

2

h°(D) = % and h°(D)? = deg(4,).

By using [Mu1], p. 330 we obtain deg(4,) = 4 and therefore D? = 4.
(7.7) Let X be the curve given by the pull-back diagram:

ry —— C®
l [*
1
the horizontal arrows being inclusions. Since C| is general it is easy to obtain (cf. § 11) that
is a smooth curve of genus 3 and the quotient X'/ t{? is an elliptic curve not isomorphic to E.

We shall denote by X, the image of the map

Z - P,
x+y > x+y—1,()-1,0).
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(7.8) Proposition. One has:
{aen}¥(P,)| number comp. N(d) <4} =ITun}(Z,)
where I1 = {n}¥(x —1,(x))|xe€ C,}.

Proof. By (7.5) we must study the cardinal of the set @ N (@), nNm_, ' (£,) when
a, € P,. Itis easy to see the inclusion of II in the left hand side member. To prove the rest of
the statement we shall need the following properties of the quartic plane curve C,:

* The lines determined by the divisors ¢* (X) with x € E all pass through a common
point O € P2, where O ¢ C,. (In fact O = P(H(E, 05(&,))*) =« PH®(C,, K¢,)®).

* The ramification points Py, ..., P, of ¢, belong to a line / and O ¢ .
* If x, ye C, verify ¢,(x) +¢,(y) = &, then O e Xy.

Take now a point x+ye @Fn(@F), NNm_ '(£,). The following equalities are
well-known:
Xy = PT@}(X +y) = PTye,(x+y) = PH(C,, Ke)*,
rs = PTg, (x+y) where r+selx+y—a,l.
Since &, (x) + &, () = &, (r) + &, (s) = &, both lines pass through O. They are equal iff the

following equality of divisors holds x + y + 7, (x) + 7, (¥) = r + s + 7, (r) + 7, (s), that is to
say iff nf(a,)e Hunf(Z,).

Assume first that nf(a,) ¢ Tunf(Z,). In this case the curve OFf N (@), is not
singular at x + y and it suffices to show that O ¢ P T} (0) in order to obtain transversality in
the intersection. Indeed:

Tp,(0) = (H°(Cy, Ke,) 7)* = HO (E, 05(E)* = HO(E, Op)* < H°(Cy, K¢ )* .

4
On the other hand, if s, is an equation for the ramification divisor R = ) P/ then the
i=1
inclusion

HO(E, Op) o HO(Cla Kc,) )
5 = ef(5)sg
induces an equality PH(E, Og) = {R}. By dualizing we get O ¢ / = PT, (0). Observe in

particular that it follows that the set @ N (O §),, " Nm_, 1(&,) s finite. Combining (7.6) with
transversality we find

n¥(a,)¢Mun}(Z,) = number comp. N(d@) =4.
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Finally if a, € Z, then PTg:(x +y) = PTEO})..I(X"'}’)' Thus ©fn(©F),, is singular at
X+ y.

Therefore a, € 2, = number comp. N(@) <4. O

. (7.9) Theorem. Let (C,C) be a generic element of Rp.,, With g 210 and let
(D, D) € R, be such that P(D, D)= P(C,C). Then (D, D) e Ry, 4., and (D, D) and (C, C)are
tetragonally related.

Proof. In view of the proof of (5.11) it suffices to show how to recognize (C,, t,) and
(C,, t,) from P. Observe that (7.2) says how to recover (C,, 7,). In particular we recover the
curve E. By combining (7.1), (7.2), (7.3) and (7.8) we recover the set IT U ¥ (2)) intrinsically.
By (7.7) the normalization of nf(Z) is an irreducible curve of genus <3. If it has genus <3
we distinguish IT as the component of the set with normalization of genus 3. Otherwise since
the quotient of X by the involution given by symmetry is not isomorphic to E we also recover
I1. Now by normalizing the symmetric curve IT we obtain (C,,7,). O

8. The component 2, , ,. In this section (C, C) is a general element of Rp. 4.1 By
(2.6) and (2.7) we can assume that Sing Z* = W, is irreducible of dimension g — 5.

(8.1) Proposition. One has the following equality:
{dePla+ W,c 5%}
={n¥@,) +n¥(eX(X)—r—s)|a,e P, X€E,r,5€Cy, 2% = &,(r) + £,(5)} .

Proof. The inclusion of the second set in the first one is clear. To see the opposite
inclusion take @ = nf(a,) + n5(a,) € P where a, € P,, a, € P, and such that 4+ W, c Z*.
Let { = n}¥(x) + n}((,) € W,, with xe C,, {, € Z} and ¢, (x) + Nm,, ({,) = . By applying
Lemma (4.4) one finds elements x’' € Cy, {5 € W,°,(C,) and ¢ € Pic® (E) such that

8.2) a, +x=x"+¢¥0),
a,+{,=0-¢5(0).
Let us define the following subvariety of C,; X Z)
Y={(x,{,)eCyx Zj|e,;(x) + Nm,,({,) =&} .
Consider now the morphism:
¥: Pic®(E) x C; x C¥~? - Pic!(C,) x Pic?"2(C,),
@x,D) » (x'+ef(@) —a, D—£ @ —ay).

The equivalences of (8.2) read: Y = Im (). Since Yis irreducible (apply (3.8) to the fibres of
the projection map from Y to C,) there exists an irreducible component X of ¥ ~! (Y) such
that the induced map

. X->Y
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is dominant. If ¢: X — Pic®(E) is the first projection we call Y,:=¥ (¢ 1(g)) for all
0 € Pic°(E). Two cases are possible:

either a) Y,=Y forsome ¢ePic’(E)
or b) Y,+Y forall 0 € Pic®(E).

In case a) define
by=a,—¢f(@ and b,=a,+¢e¥(0).
Then (8.2) says:
Wb, +x)>0, hb,+¢)>0 forall (x,{,)eY.
Hence b, = 0 and b, + Z; = ©F. Therefore by using (3.9) ii) we finish the proof.
In case b) we write A: Y — C, < Pic'(C,) for the first projection. We claim that Ay, 18
non-surjective for general g € Pic® (E). Otherwise for all x € C, one finds an element {, € Z}

such that (x, {,) € Y,. In particular h°(a, + x — ¢} (@)) > 0 and a, = ¢} (@), which cannot
hold for a general g.

Now since Y, has codimension 1 in Y, it follows from the claim that, for a general g,
there exists x, € C, such that ™' (x,) < ¥,. Hence (8.2) reads:

h(a, +x,—¢e¥@) >0 and h°(a,+ ¢, +e¥(@)>0
for all {, € Z) with Nm,,({,) = & — &, (x,). In particular
ay + €50 + {{,€ Z;INm,, ({,) = £ —¢,(x)} < OF .
The proof ends by observing that
{{2€Z;INm,,({) =& —&,(x0)} =5 (@) + Z;0Z;
where 2& = &, — ¢, (x,), and applying (3.9) ii). O
We shall denote by B the set described in (8.1).

(8.3) Proposition. The abelian variety n}(P,) acts on Bn2B by translation and the
quotient

BmZBC P
nf(P)  nf(Py)

is a symmetric curve with normalization C,. The reflection on P[n{ (P;) induces on C, the
involution t,.
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Proof. By using the arguments of § 5 one has:
Bn2B={nf(a,)+n¥(x—1,(x))|a, eP, xeC,}.

Now the morphism

Bn2B
=
n¥(Py)

A: C,
x - ny (x— Tz(x))
is birational and verifies 1(7,(x)) = —A(x). O

(8.4) The reader can prove without much work the following properties:

* P, c JC, is an elliptic curve.

* The morphism

uwCy — Py,
x - x—1,(x)

is a double cover with two ramification points inducing on C, a new bi-elliptic structure. The
attached involution 77 is the composition of 7, with the hyperelliptic involution.

* We shall write Q, and Q, for the fixed points of 7; and P, P, for the ramification
points of ¢,. With the notations of (2.1):

0,+0,=P +P, =K
and

7,(Qy) = 05, 81(Q1)=£1(Q2)€|E1‘,
(P = Py w(P) = p(P}) =0.

We write 0, = u(Q,) and @, = u(Q,). Let P, the element of |, |.

* Note that @, = u(Q,) = @, — 7,(Q,) = —(Qz - TI(QZ)) = —u(Q,) = —0,. Mo-
reover u*(0) =P+ P, =Q,+ 0,.

Summarizing we obtain (composing with n{*: P, — n}¥(P,)) that C, can be represented
as the double cover of 73 (P,) associated to the class of the origin (as a point of the abelian
subvariety of P) and the discriminant divisor ¥ (Q,) + n}(Q,). Since the class is trivially
recovered from n ¥ (P,), we only need to find the divisor inside P. Moreover the involution 7,
will appear when composing the canonical involution of C, with the involution attached to
this cover.
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(8.5) Proposition. Let @ =n¥(x —1,(x)) # 0 where x € C,. Then:

i) E¥NnEX = F U R(Q) where

F' ={n¥(y)+n3()lyeCy, (€A, (y)+Nm, ((,) =&},
R@) = {n}¥(x) + 1} ()|, €0F, &, (x) + Nm,, ({,) = &} .

ii) dim (Sing(E*-EX) — F) >0 iff ¢, (x) = &,.
Proof. Debarre proved in [De5] that
E*x . E¥ = {{eE*|h°({—n¥(x)) =1} for d = n} (x — 7,(x))
and
Sing (8% - 5) > {{e Z* |l ({ - n}(x) 2 2} .
Part i) comes from the equality of sets
FUR@ = {{ez*|n°({-n(x) 21}.

This is straightforward.

Next note that {{e £*|h°({— n¥(x)) = 1} is the special subvariety associated to the
linear system | K. — Nm, (n¥(x))| (cf. [Be2], [We3]). A characterization of Welters (loc.
cit.) of the singularities of the special subvarieties gives the inclusion

(8.6) Sing(E*-EH) < {{eE*|h°((—n¥(x) =2}
U {n¥(x) + n*(4) + D such that 4, D = 0, h° (4 + &* (¢, (x))) > 1} .

To prove ii) it suffices to show the following facts:

a) If & (x)el&|, thendim(R(@) —F)n{leZ*|h°{—n¥(x)=2}>0.

b) If & (x)¢|&,|, then R(4)— F’ intersects the second member of (8.6) in a
finite number of points.

To see a) observe that the set
{nfxX)+n¥()I,€Z,—Z3n 25, e,(x) =&}
of dimension g — 6 is contained in the above intersection.
Assume now that ¢, (x) ¢ |€, | and take { = n}*(x) + n¥({,) such that {, ¢ 4,. Then

WO (=t (0) = h°(nf () = K () + h° (L — &3 (ED) = h° (L) .-
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So if K°({—=m¥(x)) =2, it implies {,eSing@% = Z’ Z;. Since {,¢A,>Z) and
Nm, ({,) *+ &,. ThlS is a contradiction.

Suppose now there exists a divisor 4 = 0 on C such that
W (m¥((,) —n*(4)) >0 and A° (A4 +e*(e;(x))) = 2.

In particular 4 + 0. By using (3.1) the second inequality says that either 4 is not e-simple or
deg(A4) = g — 2. In the first case we conclude that we may write

n¥ () =n*(e*(4) + B
where 4 and B are effective divisors on E and C, respectively, and A is not trivial. Then
0<h(n} (L, —ed (D)) = h° (L, — &3 (D) + h°((, —e3 (D) — e3(E)

which contradicts that {, ¢ 4,. On the other hand, if deg(4) = g — 2 then n*(4) = n¥ ({,).
Taking norms one obtains that 24 = e*(&,((;))- By (3.1) there exists an effective divisor 4,
of degree g —2 on E such that 24 =¢*(A4,). As above A not e-simple leads to a
contradiction. If 4 is e-simple, then it has support in the ramification locus of ¢,, which leaves
a finite number of possibilities. O

(8.7) Theorem. Let (C, C) be a generic element of Ry, 4,1 and let (D,D)e R, such that
P(C,C)x~ P(D,D). Then (D,D)e Rp,g1, and (C,C) and (D,D) are tetragonally
related.

Proof. By using the arguments of (5.9) we conclude that (D, D) e Rp .- Then, from
the number of irreducible components of Sing Z* (cf. (2.7)) we conclude that

(5’ D) € '%Ili,gu'%B,g,O U‘%B,q,l .
As we shall see (independently) in (9.1) i) (combined with (2.11)) the property
dim{de P|a+ Sing E* < Sing E*} =1

(cf (5.12) i)) does not hold for the elements of the components %5, and #; , ,. So
(D,D)e Ry, 4.1- Arguing asin (5.11) it suffices to explain how to recover (Cy, t,) and (C,, 7,)
from P. The latter is recovered using Propositions (8.1) and (8.3), the former by combining
(8.4) and (8.5). O

9. The component &, , ,. Let (C, C)e Ry, o We keep the notations of §1 and §2.
In this section we do not need the assumption of generality. Although W, is not equal to
Sing E*, it is its unique component of positive dimension. Recall that ¢ = 0 implies that ¢,
and 7, are unramified. We shall denote by A the non trivial element of n* (¢*(,JE)).
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(9.1) Proposition. One has the equalities:
i) I(W,) ={0,A}.
ii) {dePla+ W,cE*} ={nf(ef(X)—r—s)|XeE,r,seC,,2X =¢,(r) + &,(5)} .
Proof. Part i) is proved in [De3], (5.6.5). Part ii) is left to the reader. O

Let us denote by S the set described in (9.1) ii). Then

(9.2) Proposition. The set SN2S is a symmetric curve with normalization C,.
Moreover 1, is the involution induced on C, by the (—1) map of P.

Proof. 1t is easy to prove the following:
SN2S = {n¥(x—1,(x))|xeC,}.

All the statements are a consequence of this equality. In fact, only the birationality of the
map

p:C, > SN2S,
x > nf(x —1,(x)
needs to be proved. Assume that ¢(x) = @ (y). Then
x+1,(p) — 1, (x) — ye Ker (n¥) = {0, e5 (,)}.
Hence:

2x4+21,(y) =2y +21,(x).

Equality of divisors would lead to either x =y or x = 7,(x). So we can suppose that
h°(2x + 27,(y)) = 2. Since all gi’s on C, come from gi’s on E one finds a divisor 4 € E
such that 2x + 21, (y) = ¢*(A4) and then we have again either x = y or x = 7,(x). O

(9.3) Remark. The data (C,,t,) do not determine the initial element (C, C).

However, by recovering the class ¢ (Z,), the curve C, (hence (C, C)) may be reconstructed
from our information.

(9.4) Theorem. Let (C, C)and (~5, D) be two elements of Ry,  verifying the condition
P(C,C) = P(D, D). Then: (C, C) ~ (D, D).

Proof. By (9.1), (9.2) and (9.3) it suffices to recover & (£,) from P. Going back to the
proof of (9.2) one finds a morphism:

inducing a morphism:
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By construction one can factorize j into j' o h, where
h:JC, » Im(Id—t¥) = P,

is the obvious map and ;' =nJp,. Then Ker(j') = {0,¢f(£,)}. Hence we obtain
ef(E)eP,cJC,. DO

10. The component #y ,. Let (€, C)e Ry, ,- We keep the notations and assumptions
of § 1 and § 2 (see specially (2.9) and (2.11)). In particular g = 10. Recall that by (4.3) one has

™) *+ 1.

(10.1) Proposition. With the above notations, SingZ* has a unique irreducible
component of dimension g — 5. This component is:

W={n*@E*(x+y)+leP*|x,5eE [e W) _,(C)}.

Proof. It suffices to check that dm W =g—5. O

(10.2) Proposition. One has the equality:

{GdePla+WcE*) = {n*(e*(x)) — (e P|xeE [e W2(C)).

Proof. The inclusion of the right hand side member in the left hand side member is
trivial. By (9.1), {@€ P|da + W < E*} has dimension 2. Hence it is enough to show that it is
irreducible. This follows from the description of (9.1) and from the fact that for generic x in
E, the Galois group of the composition of ¢ with the g} given by |2x|is Z/2Z. O

Let us denote by S’ the set {de P|la+ W < E*}.

(10.3) Proposition. The following inclusions hold:

§'n28S" T ={D—1*(D)eJC|De WX (C), Nm, (D)e Im(¢*)} = S".
Proof. Let us define

U={D—1*D)|Dew2(C), Nm,(D) e Im(¢*)} .

By (10.2) one has 2.5’ = U. So, our statements follow from the claim:
UnS'=T'".

The inclusion 7 < Un S’ is clear. We prove the opposite inclusion. Let D — 1*(D)e U
and 7, § € E such that Nm_, (D) = ¢*(7 + §). If we suppose that D — 1*(D) € S’ then one finds
elements D' e C™® and x € E such that

(10.4) 1*(D)+ D' =D +n*(e*(%) .

We may write D = n*(A) + B where B = 0 is n-simple and A is effective. Looking at the
degree of 4 we have three possibilities:
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a) deg(A) = 2. In this case D —1*(D)=0€eT".
b) deg(A) = 1. Therefore deg(B) = 2. By replacing in (10.4)

D' +1*(B) = B+ n*(e* (%)) .

The equality of divisors would imply B < n* (¢*(X)). Since B is n-simple, Nm_(B) = ¢* (%)
and then

D—1*D)=B—1*(B)eT' .
We suppose now that 2 < h° (B + n* (¢*(x))). By applying (2.13)
2 < h%(e* (X)) + h° (Nm_ (B) + e*(¥) — ) = 1 + h° (Nm_(B) + ¢* (%) — 1) .
On the other hand Nm_(B) = Nm_(D) —2A4 = e¢*(7 + 5 —2A4. So
0<h(Nm,(B)+e*(X)—n) = h°(e*(F+5+%) —24—1n).
Then we get 7* () = 5, which is a contradiction.

_ ¢) deg(4) =0. Then D is n-simple. We go back to (10.4). If there is an equality, then
D = n*(e*(x)) and one has a contradiction. Otherwise, by applying (2.13)

2<ho(D+n*(e*(%)) <1+ h°(e* (%) + Nm, (D) —n).

Since Nm, (1*(D)) = e*(7 4+ 5) one has h°(e*(X+7+5) —#n)>0. Again this implies
*(n) = 5, which is a contradiction. O

(10.5) By (9.2), S'n2S" is a symmetric irreducible curve and its normalization has
genus g. Since T" is also a curve we conclude that S’ n 2 S’ is an irreducible component of 7.

In order to study the curve T” we define T as the variety given by following pull-back
diagram:

T — C?®

7 [ =

E-2s c®.
It is not hard to see that the morphism

C?» 5 p,
D - D—1*(D)

sends T birationally to T’. We shall denote by j the involution of T induced by 1.

6 Journal fir Mathematik. Band 424
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(10.6) Proposition. T is an irreducible smooth curve of genus g and the equality
T' = S'"n2S" holds. Moreover T' is symmetric and the multiplication by —1 induces on T the
involution j.

Proof. Because the Galois group of ¢om is Z/2Z, T is irreducible. A local
computation shows that ¢* (E) is transverse to the diagonal, therefore T is smooth, hence T’
is irreducible and equal to S'n2S’. O

(10.7) Comparing with the construction made in § 9, we note that (7, j) play the role
of (C,, t,). There we obtained a point of ,(JC,) which allowed us to reconstruct C,. By
translating this to the present context we can conclude that there exists an intrinsic way to
recognize a certain element of ,J7. Moreover this class appears in Im ( f;*), where f] is the
map T - T/j.

Our next aim is to compute this point in terms of the initial data. To do this we imitate
the proof of (9.4).

Lety: T — P be the composition of the normalization map with the inclusion 77 ¢, P.
The induced map between JT and P factorizes through a morphism

7:(Id —j*)(JT) = Ker(Nm,) — P.
We want to find the kernel of 7.
(10.8) Proposition. Ker (7) = f*(,JE).

Proof. Let (e Pic?(C). Consider the morphism 7' ¢, C® =, JC and the induced
morphism v: JT — JC. Then: Im (v ker (nm,,)) < P- A straightforward computation shows
that the restriction &: Ker (Nm_) — P is 7.

On the other hand it is easy to see that vo f*: JE - JC coincides with 2(g o m)*.
Therefore

Ker (Uumf;) = Ker (vympe) =*JE) .

Since the unique non zero element of the kernel of # appears in Im (f;*) = Im (f*) one has
Ker (¥) = f*(,JE) and we are done. O

_ (10.9) Theorem. Let (C,C),(D,D)e Ry, such that P(C,C)= P(D,D). Then
(¢, C) = (D, D).

Proof. 1t suffices to show that the initial data are determined by 7, j and f*(,JE).
Indeed the non-zero element of f* (,JE) gives a point of ,J(7'/j) that allows us to recover the
morphism f,: T/j — E (where f= f, o f)).
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Now consider the pull-back diagram

X — T®

L

E L (1.

Then, the morphism

~

C-X,
o EF+x)+E+1(x))

where 7(%) + n(%’) € Im (¢*), is an isomorphism and the involution j® of T‘® induces on
C the involution ;. O

(10.10) Theorem. Let (C,C)e Rp g0 Ry, and let (D, D)e R, such that
P(D, D)= P(C, C). Then(D, D) e Rp.g.0Y R, and(C, C) and (D, D) are tetragonally related
(in the general sense explained in the Introduction).

Proof. By arguing as in (5.9) one obtains that D is bi-elliptic. The table (2.7) implies
that

(5, D) e(@B,gylu@B,g'ouﬂl’,,g

By comparing (6.1) i) with (9.1) i) we exclude the first possibility. If (C, C) and (D, D)
belong to the same component, then the statement is a consequence of (9.4) and (10.9).
If they belong to different components, say (D,D)e Rg,, and (€, 0)e Ry 40> then after
two tetragonal constructions startmg in (D, D) (via , ,, cf (2. 11) and §15) one finds an
element (D,, D 0) € Ry 4.0 With P(D, D) = P(D,, D,). By 9.4), (C, C) = (D,, D,,) and we
are done. O

We now compare the constructions used to prove theorems (9.4) and (10.9) in order to
obtain an injection from %5 , in #5 , , commuting with the Prym map. A posteriori (see
proof of (10.10)) the injection is obtained by two tetragonal constructions (via 5 ,).

Let (C',C)e Ry 4 Suppose that ¢: C' — E’ is a bi-elliptic structure of C’.
Construct the pull-back diagram

T — C'?

o

E (s * C/(2)
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The involution :‘?) restricts to an involution j of 7. Then T/j is an elliptic curve. We call
g,: E" > T/j to the transposed map. By taking again a pull-back diagram we get

C— T
L s
E - TJj.

The curve C has two involutions attached to the projections; call i the composition of this
involutions. Then (C, C/1) € &, , is the image of (C', C").

There is a natural way of inverting the injection above: Start with an element
(C, C)e Ry, o- With the notations of § 2, observe that t = 0 implies that C, is also elliptic.
We call f;: E - C, to the transposed morphism. Then the pull-back diagram

&

|

c, s @

gives an element (C’, C')e R,, where C' = C’/1,1 being the restriction to €’ of the
involution :®. In general this element belongs to #; , and in this case its image by the
injection given above is (C, C). In any case (C', C') € Ry, , and C’is a double covering of a
smooth curve of genus 1.
II. A bi-elliptic construction
For all this part we fix a generic element (C, C) of Rp . 4 and a linear series g5 on the
elliptic curve E (we keep the notations of §§1 and 2). The first section (§11) is devoted

to the description of four allowable covers constructed from this set of data. These covers
belong to the fibre of P over P(C, C). The proof of this fact is given in §13.

11. The construction. We shall give the description of the attached coverings in
three steps.

Step 1. The curve C, is bi-elliptic of genus 5. Since it is general it has a unique
bi-elliptic structure. It is well known that (cf. [A-C-G-H], p. 270, or remark ii in (3.6))

W (Cy) = D uet (Pic*(E))
where D, = {tew}r(C DINm, ({) = &,} is a smooth curve of genus 7. The intersection
D, nef (Pic2(E)) = {e¥(X+ J)|X, 7 e Eand 25 + 2§ = ,}

consists of four different points.
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The variety W,!(C,) is invariant by the action { - K., — { and, by passing to the
quotient, we get an allowable double cover W,'(C,) > D, ul, where D, is a smooth
irreducible plane quartic and / is a line intersecting D, in four different points.

There is an isomorphism of principally polarized abelian varieties ((Ma], [Be3] and
[K-K]) JC, = P(W/}(Cy), D, V).

Step 2. Let us’consider the commutative pull-back diagram
(11.1) 1 1652)
pt £, gO)
The involution 7{? leaves invariant the curve D,. Call D, the quotient curve. For simplicity

we will suppose that the linear series gl is general. Then D, and D, are smooth, connected
by (16.1), and D, is hyperelliptic of genus g — 6.

Step 3. To construct an allowable cover (D, D) from the pairs (D,, D,) and (D,, D,)
we identify the ramification points of both covers (and the discriminant points correspon-
dingly) in the following way:

Let 77, € Pic?(E), such that 217, = {,, i = 1, ..., 4. The classes ¢} (7,) correspond to the
ramification points of D, — D,. Note that

On the other hand the ramification points of D, > D, are ¢} (%)) e C{*) where
2x,€g3, i=1,...,4. One has also {0, X, — X,, X; — X3, X, — X4} = ,JE.

(11.2) Let o be a bijection

{ﬁi}i=1,...,4 - {xi}i=l,....4 )
; = o(;)
such that 7, — 7; and ¢ (;) — o () coincide in ,JE. It is easy to see that four such bijections
exist. We then identify &*(77,) with e*(a(77,)), i =1, ..., 4, thus obtaining an allowable

covering (D, D). The corresponding covering map will be denoted by p: D — D. Moreover,
after changing the indices of the x; we may assume that x; = o(77,), i =1, ..., 4.

(11.3) Theorem. There exists an isomorphism of principally polarized abelian
varieties

P(C,C)=P(D, D).

The proof will be given in §13.



82 Naranjo, Prym varieties of bi-elliptic curves

(11.4) Remark. Observe that the curve D is neither tetragonal nor stable reduction of
a tetragonal curve. Therefore (D, D) and (C, C) are not tetragonally related (cf. § 15 for the
definition of tetragonal relation).

12. The isogenies g, and A;,. In this section we keep the notations p: D - D, (ﬁi, D)),
i =1, 2, to refer to the coverings constructed in §11. We put p;:=p|p,, i =1,2.

For a line bundle £ on D, invariant by the covering involution we defined in §4 an
element

4
v,.(E)e(—"i, i=1,2.

Uy

We shall take the ordering of the factors of (u,)* for v, and v, compatible with the
identifications made in Step 3 of §11.

The aim of this section is to prove the following technical result:
(12.1) Proposition. There exist isogenies
8i: P(ﬁi’ D;) - P(C, E)
and
h;: P(C,E) - P(D,,D)) for i=1,2
satisfying h; o g; = 2 and such that
i) Ker(g)=p*ID),
i) g (2P(D~i, Di)) = ¢*(,JE),
lll) gi* (LP(C:'.E)) ~ Lg%ivDi)’
iv) if @ e ,P(D,, D)), then
v, (&) = v,(&,) iff 3¢ € ,JE such that g;(&;) = &* (@) ,
i) Ker(h) = o* LJE),
i) h;(,P(C;, E)) = p*(;JD)),

iii") h*(Lps,py) ~ LEE. 5 »

fori=1,2, where Ly, p, and Lp, g, are the polarizations induced by the inclusions in the
respective Jacobians.

Proof. We first consider the case i = 1. The inclusion D, ¢ Nm, *(§,) = P(C,, E),
yields a morphism g}: JD, —» P(C,, E). We define g, := (81)\pB1.Dy)-

It is convenient to describe the map g/ explicitely. Let 7€ D,. We denote by (Z) the
corresponding element of Pic*(C,). Then
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g (X mz) =Y n(Z>, where Y n,=0.

(12.2) Lemma. One has g;(p}¥(JD,)) = 0. In particular g, (p¥(,JD,)) = 0.

Proof. Let) n;z;eJD, with ) n,= 0. Then

g (Pi.< (Z nizi)) =g (Z n;p* (Zi)) = Z n{p*(z,)>

=Y mKe, = n) Ke,,=0. O
On the other hand in Proposition (4.7) of [C-G-T7] the following result is proved: for a
general bi-elliptic curve I" the Jacobian JI is isogenous to a product of an elliptic curve by

a simple abelian variety. Thus g, # 0 implies that g, is anisogeny. To study the behaviour of
g, with respect to the points of order two we use the following resuit:

(12.3) Lemma. One has an equality

2P(D~1’D1) =Pf(2JD1)U{Pf(V)_51 -—Z~2€P(D~1,D1)|yePicl(D1),

%,, %, € D, ramification points of Pi}-

Proof. Letde,P(D,,D,). Sinceitis invariant by the involution on D, we can apply
Proposition (4.2). We get that there exists an effective divisor A contained in the ramification
divisor of p, such that & + 4 € p¥ (Pic(D,)). In particular 0 < deg 4 < 4 and deg A is even.
Since the ramification divisor belongs to p*(Pic(D,)), the cases deg A4 = 0,4 imply
dep¥(,JD,). When deg A =2 there exist two ramification points #,, Z, such that
d+%,+ 2,€ p*(Pic'(D,)) and we are done. O

(12.4) Corollary. Let Z,, Z, be two ramification points of p, such that {(Z,) = e{(7],),
(Z,> = e¥(ij,) and p¥(y) — 2, — £, € P(D,, D,) for some y € Pic' (D,). Then

& (pr(y) — 2, — %) = et (1, — 1) .
Proof. By using the explicit description of g, one has

g (pr() — 2, — £,) = {pF () —ef (7,) — &F (7,)
=¥ (&) —ef () —e¥ () =ef (i, —1,). O

Clearly this implies ii) of Proposition (12.1).

To prove i) we shall see that deg(g,) = 2°(= # ,JD,). This will be enough because of
(12.2). We begin with:
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(12.5) Lemma. In P(C,, E) one has the equality of cohomology classes (cf. §1 for
notation)

[§1] = EP(C;,E) .

Proof. One has an exact sequence

0 —» JE 20 P(C, E)x JE —"— JC, - 0,
(x,y) — x+¢&f(y)

and 0*O¢, ~ Epc,.p X JE+ 2P(Cy, E) x {0} (cf. [Mu1], p.330). On the other hand the
following equality holds in JC,

[D,+ E]=[W!(C)] = 2L,

(cf. [A-C-G-H], p. 320, Th. 4.4). By applying o*:

4[D1 x {0}]+4[{0} x JE] =20*(¢,) = — G*([@Cl])
= 2 [Zpeun X JE+2P(C,L E) X (0)1°
2 2
= Z‘, [E;(Cl,E) JE] + —4: 2[-P(C1 B % {0}] .

Therefore [D, x {0}] = [Ep(, 5]3/3! X {0} and we are done. O
(12.6) Lemma. The isogeny g, has degree 2°.

Proof. Taking quotient by a maximal isotropic subgroup of H(Lp, ) = f (LJE)
we get an isogeny of degree 2

¢: P(C,E) > A

where A has a principal polarization L, such that ¢*(L,) ~ Lp(, - By the projection
formula c.({p(, ) = 2{4- Thus (12.5) 1mp11es that c. (D ) is twice the minimal class in A4.
Hence the principal polarization of (JD,)” induces on A4 twice the principal polarization,
that is to say, there is a commutative diagram

N (gl

A - P(C,, By =25 (JD,)
(12.7) u;ll ,11 z;,.;,l
A «— P(C,,E) «— JD,.
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In particular

deg(ZA; 1) B 22dimA
deg(c)? 4

deg () = =2°.

On the other hand, since g, is an isogeny and g;(p¥(JD,)) =0, we get
(Kerg)® = p¥(JD,). Now let us consider the diagram

0 0
| . !
(Ker g))° = JD,
! rl ,
(12.8) 0 —— Kerg) — JD, %5, P(C,,E) — 0
| ) I
0 —— Kerg|/(Kerg;)® —— JD,/p¥(JD,) —*> P(CLE) — 0
! !
0 0.

Combining (12.7) and the dual diagram of (12.8) one gets a commutative diagram

~

P(C,,E) <& D,

P(CI,E)A/ SCARE VN > I
TS P(Dy, D,)

P(C.E) " (JD,/pt(UDy)
where v is the inclusion map (g, = g; o v) and the commutative diagram

JD; —=»  JD,

(Jﬁl/PT(JDl))A — P(D~1’D1)
is a consequence of the relation (p¥) = Ap, o Nm,, o Ap! (cf. [Mu1], p.328). Then
2% = deg (u) = deg(g,) - deg(g,). By (12.2) we have deg(g,) = 2°. Thus deg(g,) =1 and

deg(g,) = 2°. This finishes the proof of Lemma (12.6) and hence of part i) of Proposition
(12.1). o

To prove iii) we use part i). One has Kerg, = H(Lp, p,). Hence there exists an
isomorphism of abelian varieties a: P(D,, D,) — P(Cy, Cy) such that ao App, p,, = &;.

From part ii) it then follows that

o‘(}“P([)l,p,)(2P(D~1, D1))) =¢ef (LJE) = H(LP(Cl,E)) .
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We then have the following diagram

0 0
! !
0 — Pik(z']DD — 2P(ﬁ1’D1) EE— H(Lp(cl,E)) — 0
I l ) l
0 —— p¥(JD) — P{D,, D) —22 P(C,E) — 0
~2l l'lmc,.s)
P(D,D) L5 PCLE)
! ) l
0 0

with f an isomorphism of abelian varieties, and

A
81°Apc,p)° 81 = IP(D“D,) o @ Apc,.p) ° % ° Ap(By.py) = 2IP(131,D1) obof.

Since End (P(C,, E)) = Z, one has ¢ - f = Id and

g¥ (Lec,p) ~ LEG,.0y) >
so part iii) follows.

The isogeny h,: P(C,, E) - P(D,, D,) is defined by the condition 4, - g, = 2. It is
then easy to deduce 1), ii') and iii") from i), ii) and iii). All this for i = 1, of course.

We consider now the case i=2. The inclusion D, ¢, C{¥ gives a map
g5:JD, - P(C,, E). That is

(12.9) g (Z n; Zi) = Zni(zi,l +2;,,)

where Y n; =0 and z; , + z; , € C{? is the divisor corresponding to the point %€ D,.

13

It is straightforward to check that g; (p}(JD,)) = 0. Let g, = g3,p(5,.p,- As in the
case i = 1, g, is an isogeny and g, (p¥(,JD,)) = 0.

We can reverse the construction of diagram (11.1): by using the linear series g3 on D,
given by the hyperelliptic structure and normalizing the curve obtained from the natural
pull-back diagram we get

C, — DY

I

1
pt %, pP.

Moreover the involution of D{? induces on C, an involution that coincides with ,.
Imitating the construction of g, we get an isogeny h,: P(C,, E) - P(D,,D,) verifying
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h, (¥ (,JE)) = 0. By using the descriptions of g, and h, we obtain 4, o g, = 2. Now parts
i), ii), 1) and ii") are obvious. Part iii) is (as in case i = 1) a formal consequence of i) and
ii) and the fact that End (P(C,, E)) = Z. Now h, o g, = 2 and iii) give iii’).

_It remains only to prove iv). First of all we note that the Lemma (12.3) is still valid for
2P(D,, D,). Letd, = p¥(y) — X; — X;€ ,P(D,, D,) with X;, X; € D, ramification points given
by the divisors &5 (x;) and &5 (X)), respectively. Then by using (12.9) one has

(12.10) 82(0) = e3 (% — %)) .
Let &, = p¥(y") — e} () — e} (1), v’ € Pic' (D). From (12.4) and (12.10) it follows
(12.11) 3¢ such that g, (&) = ¢f (¢) and g,(&,) = &3 (2) = Ay — f; = X; — X;.
Hence, by (11.2)
3¢ such that g, (@,) = ¢f (¢) and g,(&;) = £ (0)
<> either {i,,i',j'} ={1,2,3,4} or {i,j} ={i',j'} ori=j and i' =] .
On the other hand v, (&,) (resp. v,(&,)) gives —1 in the entries i’ and j' (resp. i and j)
when "+ j' (resp. i+j). If i=j (resp. i'=j'), then v,(d&,)=(1,1,1,1) (resp.
v,(d,) = (1,1,1,1)). We finally get
(1212) 3§ such that g, (&,) = £¥(@) and g,(d,) = 3 (@) = v,(d,) = v,(&,).
This ends the proof of Proposition (12.1). O
By combining (12.11) and (12.12) one finds:
(12.13) Remark. Once a bijection o
{ﬁi}i=1,...,4 = {%lici4s
f; = o (1)
(cf. §11 for definitions) is given, the following two facts are equivalent:

i) #7;,—1; and o (7)) — o () coincide in ,JE for all i,j =1, ..., 4,
ii) for all &, € ,P(D, D,) and &, € ,P(D,, D,):

v,(&,) = v,(&,) iff 3¢ € ,JE such that g;(&) = &*(0),i=1,2.

In other words, the property we require in (11.2) and property (12.1) iv) are equivalent.

13. Proof of Theorem (11.3). We define the morphism

@: P(D, D)~ P(D,, D,) x P(Dy, D,) 228 P(C,, E) x P(C,, E) —* P(C,C)



88 Naranjo, Prym varieties of bi-elliptic curves

where f* D, 11 D, — D is the desingularization of D, g,, g, are the isogenies defined in § 12
and ¢ is the map given in (2.8). In [De3], Debarre proves that

®*(Lpc,c) ~ Lec,.py * Lo, by
By (12.1) iii)
(81X g)*0*(Lpe,c) ~ L;‘?uzil,m) x L;?(%z,Dz) :

On the other hand the pull-back of the polarization of P(D,, D,) x P(D,, D,) induces on
P (D, D) twice the principal polarization (cf. [Be1]). Thus:

(13.2) P*(Lpe,c) ~ L¥b.p)-
Theorem (11.3) follows in an obvious way from (13.2) and the next

(13.3) Lemma. The following equality holds: Ker (®) = ,P(D, D).

Proof. Since deg f* = degp = 4 and deg (g, X g,) = 22@@V+9D) (cf (12.1) i) we
get deg @ = # ,P(D, D). Therefore the statement can be written alternatively

(13.4)  f*(LP(D, D)) cKer(po (g, X g,)) = (g, X 8&,) ' (Kerg) .

Since Ker ¢ = {(¢} (), e¥(%))|&, € JE} (see (2.8)), one has

(13.5) (g, % g2)" ' (Ker 9)
={(@ Py e P(D,,D,) x P(D,, D,)|g,(@) = e} (@), g,(f) = £¥(@) and & & ,JE}
= {(@, B)E P(Dp D,) x 2P(D2,D2)|g1(oc) = ¢f (@), gz(ﬁ) =¢¥(x) and a € ,JE}

(in the second equality use (12.1) ii)). If we prove that

(13.6) ]‘* (zP(D~a D)) ={(, E)E 2P(D~1, D) x 2P(D~2, D,)|v, (@) = Uz(ﬁ)}
then (13.3) will follow from (13.6) and (12.1) iv).

We check equality (13.6). We first prove the inclusion of the left hand side member in
the right hand side member. Let (&, f) e f* (LP(D, D)). Denote by L(&) and L(f) the
correspondmg line bundles on D, and D,, respectlvely Then there exists a line bundle
L e P(D, D) such that £®? is tr1v1al and f*(L) = (L(o?) L(B)) Let e D,nD,. We call %,
(resp. X,) the point X when viewed as a pomt of D, (resp. D,). Taking poth1se fibres we
obtain an isomorphism A: L(&)[X,] —=-> L(/?)[xz] as the composition of the natural
identification L(#)[%,] —=— L[] <= L(B)[%,].

Since Nm,(£) =0, L@ 1*(L) is trivial So 1*(L)= L' =~ L. We choose an iso-
morphism ¢: L — 1*(L) normalized in order to have 1*(¢) o ¢ = Id. The morphism ¢
induces by restriction

¢, L@ —=- 1*(L(@©®),
?;: L(B) —= ¥ (L(ﬁ)) .
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By construction one has a commutative diagram
I A A\
L@[x]1 %> L]
= | 0.0 = | oate

*(L@)[%,] *(L(B)[%,]

L] —2> LA
Thus v, (L(&)) = v, (L(B)) (see §4 for the definition of v,) and therefore
f*(i) e{@, Pye 2P(ﬁ1a D,) x ZP(D~2, Dy)|v, (@) = Uz(ﬁ)} .

Now, to obtain (13.6) we prove that both sets have the same cardinality. Form (12.3)
(applied to both P(D,, D,) and P(D,, D,)) one gets

4

v, (P(Dy, D)) = v, (GP(D,, D)) (= {Gs - 20 € (12)* 1, U Ai=1}).

Since Ker (v;) = p*(,JD,), i =1, 2 (cf. (4.1)) we conclude

# {(@ B e ,P(Dy, D,) x ,P(D,, D,)|v,(8) = v, (P)}

~ 1 - ~ -
= # ,P(D, Dy)- # Ker(v,) = 2 # ,P(Dy,D,)- #,P(D,,D,) = #f* (ZP(D, D))

This finishes the proof of Theorem (11.3). O

II1. The fibre of P over a generic element of P(#; ,)

This part is devoted to studying the fibre of the extended Prym map for generic
elements of Z5 ,. The results we obtain are summarized in Theorem (16.1). Essentially we
prove that the elements described in Part I1 yield the unique counterexamples to the extended
tetragonal conjecture that exist generically in the bi-elliptic case.

Some results on special subvarieties of divisors for ramified double coverings appear in
§14. In §15 we extend the tetragonal construction to allowable covers and we apply this
construction to the coverings considered in our situation. In §16 we start the proof of
Theorem (16.1). In § 20 we give a complete description of the fibre of P over P(C, C) with
(C, C) a generic element of Ry, g

14. Special subvarieties of divisors for ramified double coverings. In this section we
shall collect various results. They are generalizations of known results (cf. [We 3], [Be2]).
The proofs are not given because they are similar to those of [We3].
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Let N be a projective irreducible smooth curve of genus g and let n: N — N be a double
cover ramified at the points R, ..., R,,. Let 4 be a linear system on N of degree d (not
necessarily complete) of dimension =1. The special subvariety determined by A is, by
definition, the variety X, given by the following pull-back diagram:

X, i @

d;
n'(X)A = n"l 1 n@

A —L NO,

(14.1) Proposition (Connectedness criterion). If A is base-point-free, then X, is
connected.

(14.2) Proposition (Irreducibility criterion). If A is base-point-free and the codimen-
sion of Sing X, in X, is greater than or equal to 2, then X is irreducible.

(14.3) Proposition (Smoothness criterion). Assume that A is complete and
base-point-free. Let D € A and let D € X, such that n ,(D) = D. Put

D=n*(A)+B+ R, + ...+ R, =i, ifj+]j

with A, B effective and B simple with respect to m and not containing ramification points. Then
X, is smooth at D if and only if

W({D—-A-nR)— ... —n(R))=h"(D)—deg(4) —k.

15. The generalized tetragonal construction. In this section we give a natural way to
extend the tetragonal construction (cf. [Do], [Be2]) to allowable double covers. We follow
the idea suggested by Beauville in [Be2], Remarque 4, p.364. We do not need here the
hypothesis of stability on the curves. We do not give the proofs.

Let n: D - D an allowable double covering with c,(D, D) = 0 (cf. [Be1]) and 1 the
associated involution on D. We say that D is tetragonal if it can be represented as a
four-to-one cover of the projective line. We denote by Div?(D) and Div?(D) the varieties
which parametrize the effective Cartier divisors of degree d on D and D, respectively. Recall
that the group of Cartier divisors on D is:

DiviD)= @ Zx+ @ K}/o}

x€Creg ssingular

where K is the ring of rational functions on D. Choosing uniformizing parameters ¢, and ¢, at
the preimages §; and §, in the normalization of D of a singular point § one finds an
isomorphism K}/ O} —=->C*x Zx Z.
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The four-to-one covering y: D — P! induces an inclusion P! —2" Div#(D). On the
other hand there exists a norm map ([Be1], p. 158):

Nm_: Div*(D) - Div*(D).

Imitating the tetragonal construction for the smooth case (cf. [Do]), we obtain two
allowable double covers (X;, X;) and (X,, X,), where X, and X, are tetragonal.

(15.1) Proposition. The following properties hold:

i) The tetragonal construction appliecz to (X,, X,) (resp. (X,, X,)) with its inherited
tetragonal structure yields (X,, X,) (resp. (X,, X,)) and (D, D).

i) P(X,, X,) =~ P(X,, X,) = P(D, D).

. (15.2) Next we indicate how to apply the tetragonal construction to a covering
(D,D)e #, , such that D is obtained from an irreducible hyperelliptic curve H by

identifying two non-hyperelliptic pairs of points x,, x, and y,, y,. The curve D is tetragonal
in two different ways:

a) The curve D is the stable reduction of the curve D'= P'UHU P! where H
intersects the first copy of P! in two points: x, and x,, the second copy in the points y, and y,
and the two P! are disjoint. The curve D’ is clearly tetragonal. Applying the tetragonal
construction we obtain a single cover. One shows that it belongs to Z; , ,.

b) Let x,, X,, J,, J, € P! be the images of x,, x,, y,, ¥, by the hyperelliptic morphism.
There is a unique double covering P* 21, P! sending each pair %,, %, and j,, 7, to a
single point. The four-to-one covering H — P! obtained by composing the hyperelliptic
map with the (2:1) morphism above factorizes through D. In this case the tetragonal
construction gives two covers: one in #, , and the other in g_i’,;,g (compare with (2.10)) (in
fact, with the notations of (16.3), this second element belongs to Zj ,).

16. The Main Theorem. In this section we state the central Theorem of Part III.

(16.1) Theorem. Let (C, C) be a generic element of Ry, , and let (D,D)e R, such that
P(C, C) = P(D, D). Then one (and only one) of the following two facts occurs:

i) (C, C) and (D, D) are tetragonally related.

ii) (C,C)e Rp, 44 and (D, D) is obtained from (C, C) as in the bi-elliptic construction
(see §11).

Let (C,C) be a generic element of %y s Let (D, D)e #, be such that
P(D, D)~ P(C,C). The theta divisor of P(D, D) is singular in codimension 3 and
P(D, D) is not a Jacobian (cf. [Sh1] and (3.2), (3.3)). Then, [Be1], Th. 5.4 implies that
¢,(D, D) = 0. On the other hand in Th. (4.10) of loc. cit. there is a list of coverings with
¢, =0 and dimension of the singular locus of the theta divisor equal to g — 5. Since
P(C, C) is not a Jacobian and g = 10, we are in, at least, one of the following cases:
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(16.2) a) D is a double cover of a stable curve of genus 1,
b) (D, D)e #,,,
¢) D,DyeH,,,
d) (D, D)ye#  where 2t < [g——z——i:l

(cf. (2.10) for definitions).

(16.3) Remark. We shall use the notations

Ry oo = (I 7)€ Ry, T verifies (16.2) a)}, 1 =0, ..., [5-5—1} :

Ry, = (Ry' ) = {([,I')e Ry ,|T verifies (16.2) a)} .
—1 _
The spaces #, ,, #p ,,for t =0, ..., ['gT] and Zy , are not closed in £,

The aim of this section is to prove the theorem in the cases (16.2) a), (16.2) b) and (16.2)c).
The possibility (16.2) d) will be considered in sections 17, 18 and 19.

We first treat the possibility (16.2) b).

(16;4) Proposmon Let (C,C)bea generic element of Ry ,. Let (D, D)e H, o be such
that P(D, D) =~ P(C, C). Then (C, C) and (D, D) are tetragonally related.

Proof. Let H be a hyperelliptic curve such that D is constructed from H by identifying
two pairs of points. If any of the pairs is hyperelliptic, then D is obtained from a hyperelliptic
curve by identifying a pair of points. By (4.10) in [Be1], P(D, D) is a Jacobian and we get a
contradiction. Now, an easy dimension count shows that the genericity of (C, C) implies that
H is irreducible. By (1 5.2~), the tetragonal construction gives a cover (C~ "CheR ’B.g.0
tetragonally related with (D, D). Then by (10.10) and (9.4) either (C’, C") = (C, C) or (C, C)
is tetragonally related with (C’, C’) (and hence with (D, D)). ©

Now we treat the possibility (16.2) a).

(16.5) Proposition. Let (C, C) be a general element of Rp.q and let (D D) e R, be such
that D is a double cover of a stable curve E, of genus 1 and P(D, D) P(C, C). Then (C,C)
and (D, D) are tetragonally related.

Proof. If D is smooth, then the statement is a consequence of the results of Part I.
Assume that D is singular. Observe that a stable curve of genus 1 is irreducible with, at most,
one double point.

If D is reducible, it consists in the union of two curves of genus <1 intersecting in, at
most, g + 1 points, hence belongs to a subspace 9f codimension at least 2 in %5, 4 But thisis
impossible since dim P(%#5 , ) = 2g — 3 and (C, C) is generic. Therefore D is irreducible.
For the same reasons D either has one singularity or two singularities with image a
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singularity of E,. In the second case the element (D, D) belongs to H#, o and by (16.4) the
statement follows. In the rest of the proof we assume that D has one singularity.

If E, is singular then D is obtained by identifying a pair of points on a hyperelliptic
curve. By [Be1], (4.10) this implies that P(D, D) is the Jacobian of a curve and we get a
contradiction with [Sh1]. Hence E, is smooth.

We treat first the case Galg (D) Z|27Z % Z[2Z. There exist two-involutions 7; and 7}
on D lifting the involution on D By construction, 7; and i, exchange the branches of the
singularity of D. Then one obtains the following commutative diagram:

/\
\l/

where D;:= D /1], i =1, 2, are smooth curves and the discriminant divisors of D, — E and
D, — E, intersect in a point (in particular ¢ = 1). By (2.10) this element is obtained by
applylng the tetragonal construction to an element of %, , , for some ¢. By the results of
Part I (D, D) and (C, C) are tetragonally related.

Finally assume that Galg(D) = Z/2Z. Then (D, D)e #j , (cf. (16.3)). Proposition
(16.5) is now a consequence of the following Lemma and the results of Part I.

(16.6) Lemma. With these assumptions, there exists an element (C',C')e Ry 4.0
tetragonally related to (D, D).

Proof. It is easy to check that the injection j: #p , & &g , o (commuting with the
Prym map) given in § 10 extends to #; , (replace the symmetric products D® D@ by the
varieties of effective Cartier divisors of degree 2 Div2 (D), Div?(D)). Since for all (D, D), the
elements (D, D) and j(D, D) are tetragonally related (cf. §10) we are done. 0O

Before proceeding to cases (16.2) ¢) and (16.2) d), we prove the following two facts,
which will be very useful in the rest of the paper.

(16.7) Lemma. Let (C, C) be a general element of Ry, 4, Witht 2 1. Then P(C C)is
isogenous to a product of two simple abelian varieties of dimensions t andg — t — 1. If (C, C) is
a generic element of Ry , oV Rp ,,» then P(C, C) is simple.

Proof. By (2.8) and (2.11) all we have to prove is simplicity. This is a consequence of
Proposition (4.7) in [C-G-T]. O

(16.8) Corollary Let (C, C) be a generic element of Ry , and let (D, D)e #,, with
t>1 such that P(C,C) =~ P(D,D). We write D= D,u,D, where g(D,) = t——l and
g(D,)=g—t—2. Then:

7 Journal fir Mathematik. Band 424
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a) the curves D, and D, are irreducible,

b) (C,C)e Ry,
Proof. 1t is left to the reader. 0O
Next we consider the case (16.2) c).

(16.9) Proposition. Let (C, C) be a generic element of Ry, and let (D, D)e #/, be
such that P(D, D) = P(C, C). Then (C, C) and (D, D) are tetragonally related.

Proof. Wewrite D = P'u, D, where D, is a hyperelliptic curve (cf. (2.10)). By (16.8)a)
D, is irreducible. By applying the tetragonal construction (see § 15) one finds an element
(€', C")e Ry, tetragonally related to (D, D). By (16.5) we are done. O

17. The case (16.2) d). The aim of this section is to prove the following (compare
with (16.2)):

(17.1) Proposition. Let (C, C) be a general element of Ry, , and let
(D,Dye #,,— (H,) 0 H,) U ([ U Rp.gs)V Ry ) with t 22

such that P(C,C) = P(D, D) (see (16.3)). Then (C, C) and (D, D) are tetragonally related
or at least one of the following facts occurs:

a) D u4 D,, D=D,u,D, and D, is an irreducible plane quartic. Writing
D,nD, = {x1 .+ x,}, one has Op, (xy+ ... + x,) = wp,. The curve D, is irreducible
and hyperelliptic of genus g — 5. In this case (C~, C)eRp g4

b)D = D v, D,and D = D, u, D, withD,, D, irreducible hyperelliptic curves of genus
t—1andg—1—2 respectwely, w1th t = 2. In this case (C, C) e Rp.g.t-

(17.2) Remark. In §18 we shall prove that possibility (17.1) a) implies that (D, D)
is ~constructed from (C, C)asin§11. In § 19 we shall see that possibility (17.1) b) implies that
(C, C) and (D, D) are tetragonally related. These facts complete the proof of (16.1).

_ Proof. Recall that P(C,C) is not a Jacobian and that g=10. By (16.8) b)
(C,C)e Ry, On the other hand D = D,u,D, where D, and D, are irreducible
(cf. (16.8) a)).

The following fact is a particular case of (5.12) in [Sh2]:

(17.3) Proposition. Let n: D — D as above and let X an irreducible component of
Sing E of dimension g — 5. Then we are in one of the cases a), b), c), d), e) below and X,
thought in the natural model E*, is contained in the respective varieties Z,, Z,, Z,, Z,, or
Z, (¢f. [Sh2], (3.21) and §1 for definitions):
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a) D is obtained by identifying two pairs of points on a curve H. There exists a morphism

y: H — P! of degree 2 over the generic point of P'. Let

be the partial desingularizations. Then
[) = ¢* (7* (O (1)) (A)

= closure of {L e P(D, D)*|h°(L)
where A is an effective divisor with non singular support}

b) Let D = D, u, D,. If f is the partial desingularization of D at D ND,, then
=/ EFrxED.
- 5.

In this case the codimension of £ in P(D,, D,)*, i =1,2 is exactly 2 and dimZ, = g

¢) Let D=D,u,D,. A component of D, say, D, is hyperelltptzc with y the attached
(2:1) map. If f is the partial desingularization of D at Dr\DZ, then
=(fO! (ext x P(Dz’Dz) )

where
ext = closure of {n* (y* (0p: (1)) *(D) € P(D,, D,)|

where A is an effective divisor with non singular support}
d) D, a plane quartic. Writing D, D, = {x; + ... + X,}, it is

Op,(xy+ ... +x4) = @p,.

One has
= closure of {L = n*(M)(A) € P(D, D)*| 4 is an effective divisor with non singular

support and M e Pic*(D) with h°(M) 2 2 and M|, = wp, }

€) There exists a morphism ¢: D — E, onto a curve E, consisting of at most two
irreducible components; the genus of E, is equal to 1 and the morphism ¢ has degree 2 over the

generic points of E,. We will not need the description of Z
Zr, (E*)™ and (ex*)™ the union of the

We shall call in each case zr zZy,

components of maximal dimension.
We use (17.3) to identify the components of Sing Z of dimension g — 5in P(D, D). Note

that 7 = 2 implies that W, & 0 for all ¢
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aa7.4) Lemma. Let C, C) and (D, D) be as above. Then Z}" is irreducible and via the
isomorphism P(D, D) = P(C, C) it corresponds to the component W, of Sing £* (cf. (2.7) and
(17.3) for definitions and notations).

Proof. Indeed, let X, and X, be components of (£§)™ and (£5)™, respectively. Then
(f9)~'(X, % X,) is irreducible: if not, different components of Sing Z* of dimension g — 5
would be exchanged by translations. From the definitions of W, i = —2,0, 2 (cf. (2.6), (3.7))
it is easy to check this is not possible in P(C, C) and we get a contradiction.

On the other hand
FHUWT) (X, x X)) = 1(X,) x I(X,).

By (16.7), P(D,, D,) and P(D,, D,) are simple. Thus, for i = 1, 2 either 7(X)) is finite or
I(X;) = P(D,, D). Let L, be a generic element of X;, i = 1,2. Then #°(L;) =1 (recall that
codimpp, p, X; = 2). Now (cf. e.g. (3.14) of [Sh2]) 4 (L;(%; — ¥'(%))) = 0, where %, is a
generic point in D; and 1’ is the natural involution. Therefore X; — 1’ (X;) ¢ 1(X;). We conclude
that I(X,), I(X,) and I((f°) '(X,x X,)) are finite. Hence (f°) (X, X X,) is an
irreducible component of Sing Z* invariant only by a finite group. Only the component W,
verifies this property (cf. (6.1)), therefore X; = (£¥)™, for i = 1,2 and Z;" is an irreducible
component of Sing Z* corresponding to W,. O

In the situation of (17.4), deg (*) = 4 (cf. [Be1], (3.6)), thus from the proof of (17.4)
one also obtains that I((E*)™) =0, i =1,2, and I(Z)") = ker f*.

1

(17.5) Lemma. Assume that one of the components of D, say D,, is hyperelliptic and
that dim Z, = g — 5 (cf. (17.3)). Then the corresponding variety Z is irreducible.

Proof. Arguing as in Lemma (17.4), if X is a component of (ex})™, then
(f%~*(x x P(D,, D,)*) is irreducible. Suppose that Y is another component of (ex§)™.
Since Z;" is non empty and corresponds to W, then the isomorphism P(D, D) = P(C, C)
sends (f°) "' (X x P(D,, D,)*)u(f°) (Y x P(D,, D,)*) to W_, U W,. On the other hand

AWM (x x P(D,, D)) nI(f°) (Y x P(D,, D,)*)) > {0} x P(D,, D,).
Hence we get a contradiction because
I(Wy)nI(W_,) is finite .

Therefore (ex})™ and Z are irreducible. O

(17.6) Lemma. With our hypothesis, if (D, D) verifies also (17.3) a), then
dimZI'< g—>5.

Proof. The unique configuration of the type of (17.3) a) compatible with
D =D,u,D,, D, and D, irreducible, and (D, D) ¢ #, , is the following one:

The normalization of D at two points of D, N D, is a curve H admiting a (2:1) map
y: H - P* which is constant on one of the curves, say D,.
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Assume that dim Z" = g — 5. We call H the curve obtained by normalizing D at the
two points corresponding to the above ones, and we write ¢ for the double cover H — H.
Let d,, d, € H be the preimages of the remaining points in ﬁlnﬁz. Let ¢ the partial
desingularization of H in d,, d,. One has the isogenies (cf. [Sh2], (3.21))

P(D, D)* —s P(A, H)* —2°5 P(D,, D,)* x P(D,, D,)*

where /'is the desingularization of D at D, nD,. Let L be a general element of Z,, then
R°(L) = q* (y*(0p,(1)))(A), with 4 an effective divisor with non singular support. Thus

g0(R°(D)) = §°(g* (7* (0p: (1)) (A))
= (g* G* (O ) (A)y5,(—dy — D), ¢* (* (Op, 1)) (A),5,(—d, — d}))
=(05,2d, +2d)(A)(—d, — ), Os,(—d, — d,)(4,))
= (05,d, + d,)(4)), O5,(—d, — d,)(4),)),

where (9,3(1),[,‘, = @5i(ﬂi), i=1,2. Hence:
§°h°(Z)c (L, e E¥|h° (L (—d, —d,)) > 0} x {L, e P(D,, D)*|h°(L,(d, + d,)) > 0} .

It is easy to check that the dimensions of the sets on the right hand side are less than or
equal to (a posteriori equal to) dim P(D,, D,) — 3 and dim P(D,, D,) — 1, respectively.
Therefore, if X is a component of Z", there exist irreducible components X, and X, of the
sets on the right hand side such that §° (A°(X)) X, x X,. Arguing as in Lemma (17.4), one
finds that % — ¢/(%) does not belong to 1(X,) if & is general in D and ¢’ is the involution.
Therefore the simplicity of P(D;, D;) (cf. (16.7)) implies that I(X)) is finite for i =1, 2.
In particular 7(X) is finite. Hence X corresponds to W, by the isomorphism
P(D, D) = P(C,C). Since the components Z™ and Z are different (take f= g° h and
compare f°(Z,) computed above with f°(Z,) = £ x £¥) one gets a contradiction with
(17.4).

(17.7) Lemma. Keeping our assumptions, suppose that (D, D) verifies (17.3) d) and that
dimZ, = g — 5. Then Z, is irreducible (in particular Z; = Z7").

Proof. Writing f for the partial normalization of D at D, n D, one easily checks that
J0(Z) = {I} x P(D,, Dy)*

where [ is the ramification divisor of D, —» D,. Since (f°) *({I} x P(D,, D,)*) is
irreducible and has dimension g — 5 the result follows. O

Now we end the proof of Proposition (17.1). We can apply (17.3) in order to recognize
the components of maximal dimension in Sing = *. By (17.4) the component W, corresponds
to Z;. Since ¢ = 2 other components of maximal dimension exist (cf. (2.7)). According to
(17.6), case (17.3) a) does not provide any component. Let us consider case €). One obtains
that the only configuration of type (17.3) e) compatible with our hypothesis is:
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D,, D, are two hyperelliptic curves and D, n D, consists of two pairs of hyperelliptic
points for both curves.

These elements parametrize a subspace of %, of dimension 2g — 4 and this contradicts
the genericity of (C, C).

We conclude that (D, D) verifies the hypothesis of (17.3) ¢) or (17.3) d). By (17.5) and
(17.7) the components W, and W_, correspond to types Z when ¢ # 4, that is to say: the
curves D, and D, are hyperelliptic. If # = 4, then one has a new possibility: one of the
components corresponds to a variety of type Z7, therefore the pair (D, D) verifies (17.1) a).
This finishes the proof of (17.1). O

18. The plane quartic case. This section is devoted to prove the following.

(18.1) l:roposmon Let (C, C) be a generic element of Ry, , and let (D, D) € H, 4 be
such that P(D, D) = P(C, C), D = D, u, D, and D, is an irreducible plane quartic. Suppose
also that if D, D, = {x,, ..., X4}, then Op, (xy+ ... +x,) = 0y, and that the curve D, is
irreducible and hyperelliptic of genus g — 5.

Then (D, D) is constructed from (C, C) as in the bi-elliptic construction of §11.
Proof. It follows from (16.8) b) that (C, C) e Ry, ,.4- From the proof of (17.1) we get
that the isomorphism P(D, D) =~ P(C, C) identifies Z;" thh W,, ZI" with W, and Z}' = Z,
with W_, (see (17.3)).
We shall use again the variety
={de P(C,C)|a+ Wyn W, c W,}
defined in (5.5).
One has
(18.2) Lemma. With the hypothesis of (18.1) the following facts hold:
a) The curve A, N2 A, is birational to the curve B, obtained by the pull-back diagram
B, — A®
(18.3) 1 l
P! =2 E@

where N, and N, are the normalizations of D, and D, respectively, and g} is the linear series
induced by the hyperelliptic structure of D,.

b) The curve C, (see (2.1)) is the normalization of B,.

¢) The involution 1, in C, corresponds to the involution of B, given by the restriction of
the natural involution of N§?.
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d) There exists a linear series g3 on E such that one gets a pull-back diagram

!

pt %, g@
Moreover the involution (1$?)) 5, exchanges the sheets of D,.

Proof. We first see a). By using the identifications W, = Z;" and W, = Z™, and the
definitions of Z;", Z" (cf. (17.3)) it is easy to see that

Worn Wy =(FHHEDH™ x (ex)" N (EH™)

where f'is the normalization of D at D, n D,. On the other hand, by (5.3) the dimension of
this set is g — 7. This forces to have (ex¥)™ < (£¥)™. Hence

= (7' ({@,, a) € P(D;, D)) x P(D;, D)|d, + (EH™ = (EH™, d, + (exP)" = (ENH™}) .
In the proof of (17.4) we saw that 7((£)™) = (0). Therefore
A, = (fH71({0} x {@y € P(Dy, D,y)|d, + (ex})" = (EP™}) .
Since (£¥)™ is irreducible (cf. (17.4)) and Sing £ * has no components of dimension g — 6, it is

not hard to see that (£¥)™ is the closure of the set of effective divisors with non-singular
support 4 such that Nm(4) = wp,. By using this one checks the inclusion

(F+7—F—5e P(D,, Dy)|%, 5,7, 5€(D,),ep Nm(X+ J) € g3} + exF < (EP™.
Thus one has
(F*)71({0} x closure {% + j — 7 — §€ P(D,, D,)|%, §, 7, § € (D,) e Nm(x + y) € g3}) = 4,.
From this inclusion a straightforward computation gives

{0} x closure {X + 7 — /(%) — ' () e P(D,, D,)|%, je (D~2),eg, Nm (% + J) € g3}
< f*(4,024,),

where 1’ is the natural involution on D,. Since the curve on the right hand side is irreducible
(cf. (5.7)) one has an equality. By using the description of 4,24, in P(C, C) one obtains
that 4, N2 A4, is birationally isomorphic to 4,24, /n* (e*(LJE)) = F*(4,n24,) (recall
that Ker (f *) = n* (¢*(,JE))). On the other hand there exists a natural map from the
normalization of B, to the set of the left hand side in the inclusion above. Since C, is the
normalization of 4,24, we get a morphism from the normalization of B,to C,. Using
(14.3), one checks that the genus of the normalization of B, is g(C,). Therefore C, and B, are
isomorphic and a) is proved.



100 Naranjo, Prym varieties of bi-elliptic curves

Part b) is a corollary of a). To see c) it suffices to recall that the multiplication by (—1)
induces on C, the involution 7,. Note that in this context this multiplication coincides on B,
with the restriction of the involution on N{?).

Finally, we prove d). We first observe that c) implies that E is the normalization of
B, /(involution). Since this last curve has an obvious hyperelliptic structure given by diagram
(18.2) we obtain on E a linear series g5. The rest is left to the reader. O

As a consequence (D,, D,) is obtained from ((C,, E), g}) as in Step 2 of §11.

Next we concentrate on the relation between (C,, E)and (D,, D,). We shall consider as
above the surface

A_,={aeP(C,C)la+ WynW_,c W,}
defined in (5.5). From the descriptions of Z;" and Z, (cf. (17.3)) one gets
A, =D (EH™—{T}) x {0})

where [is the ramification divisor of D, — D,. We call S the surface ((Z¥)" — {I} x {0}).
That is to say the group

Ker /* = I(W,) = n* (e*(JE))

actson A4 _, and the quotient is S. We study first this surface in the more transparent context
of P(C, C).

(18.4) Proposition. The surfaces S and C* are birationally equivalent.
Proof. We borrow from (5.6) the equality
A_,={n¥@E*¥X) —r—s)|XeE, r,seC,2x=¢,(r) +&,(5)} .
Let X = C{® x E be the preimage of A_, by the morphism

COXE > JC,
r+sx) — ni“(r+s—e;“()2)).

Then X is an unramified covering of degree 4 of C{?). One obtains the commutative diagram

X — A_,

l 1

CP —— A_,/n*(e*(JE) = S.
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The morphism C{* — §'is an isomorphism away from the origin 0 and the preimage of 0 is
theirreducible curve ¢ (E), of positive genus. Thus Sis exactly singular at the origin and C{?
is the minimal resolution of the singularity. 0O

We shall consider the~plane quintic given by the union of D, and the line r containing
the discriminant points of D, — D,. We call E’ the elliptic curve obtained as the double cover
of r with discriminant divisor rn D,. By identifying in the natural way the ramification
points of D, — D, and E’ - r one constructs an allowable double cover of the plane quintic

mentioned above. By [Be 3], Proposition (6.23), there exists a smooth non hyperelliptic
curve I' of genus 5 such that

w,L(I) —=5 D,UE’

| l

W} (I')/involution —=— D, uUr.

Now to prove that (D,, D,) is constructed from C, as in Step 1 of § 11 it suffices to show that
r=c,.

(18.5) Proposition. The surfaces S and I'® are birationally equivalent.

Proof. Thedescription of S as a subset of P(D,, D,) X P(D,, D,)(cf. (17.3)) gives the
isomorphism S = (Z)™. The general element of (£ )™ is an effective divisor of degree 4 with
non-singular support. Its norm is a divisor on D, consisting of 4 points on a line. By
construction the general point of D, corresponds to a linear series g} on I' that does not come
from linear series on E'.

Let x, y be general points of I'. To contain the line Xy is a linear condition for a quadric
containing the canonical image of I" in P*. The intersection of the pencil of quadrics so
obtained with D, provides four singular quadrics containing xy. Consequently there exist
exactly four linear series g} on I' passing through the divisor x + y. These four linear series
define an effective divisor of degree 4 on D, and the image in D, are four collinear points. We
obtain a generically injective rational map from I'® to ()™ and we are done. O

(18.6) Corollary. The curves C, and I are isomorphic.

Proof. By (18.4) and (18.5) it follows that C{? and I'® are birationally equivalent.
Now the result is a consequence of a Theorem of Martens ((M]). O

Having established that (5i, D)) is obtained from (C;, E), i = 1, 2, as in Part II we end
the proof of (18.1) showing that (D, D) comes from (D,, D,) and (D,, D,) as in the Step 3 of
§ 11. Note first that the results just obtained make possible to use all the parts of (12.1) except
the part iv). All we have to do to end the proof of (18.1) is to show that (12.1) iv) holds.
Keeping this strategy in mind one constructs a commutative diagram
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0 0

! 1
0 > ,JE > g¥(GJE) X eX(LJE) —— n*(e*(LJE)) =Kerf* —— 0

0 — ,JE —— P(C,,E)xP(C,,E) —¢*> P C)=PD,D) — 0
hlxhzl ]*l
P(D,,D,) x P(D,,D,) —2> P(D,, D)) x P(D,,D,)

l l
0 0

where f'is the normalization of D at D, n D, (cf. (2.8) for the definition of ¢ and cf. (17.4)
and (6.1) for the top right corner). Since End P(D,, D)=~ Z (cf. [C-G-T], (4.7)),
0 = (+1d) + (£ Id). Hence

(18.7) 17* (2P(§’ D)) = (hy X hy) ((P_l (2P(C~, C))) .
In (13.6) we saw that
]* (2P(5’ D)) ={(d,dy) € 2P(D~1, D,) x 2P(§2s D,)|v, (&) = v, (&)}

(cf. §§4 and 12 for definitions). On the other hand it is easy to check that

(p‘—l(ZP(C’." C))
= {(&,, &,) € ,P(C,, E) X ,P(C,, E)|3g € ,JE such that 2d, = ¢} (0), 2d, = ¢} (0)} .

Thus by applying g, X g, to (18.7) one has

(188) g, xg,({(@, &) e,P(Dy, D,)x P(Dy, D)o, (@) = v,(3,)})
= {(e* @), e2(@))|a € ,JE} .

Finally we show that (18.8) implies
v, (@) =v,(&,) iff 3Jge€,JE suchthat g;(d)=¢*(0)

forall&, € P(D,, D,) and &, € P(D,, D,). The part = is clear. Suppose that g, (&,) = £*(0)
and g, (@,) = €5 () for g € ,JE. Then by (18.8) there exist (&, d3) such that v, (&}) = v, (&}
and g, (&) = g,(d}), £,(&,) = g,(d). Since Kerg, = p*(,JD,), i =1,2 (cf. (12.1) i)) and
these elements do not change the value of v; the part < follows. This finishes the proof of
(18.1). O

19. The hyperelliptic case. In this section we end the proof of Theorem (16.1). Recall
that (16.4), (16.5), (16.9) and (17.1) reduced the proof to two cases. In (18.1) we have treated
the first. So, to finish the proof of Theorem it suffices to prove the following
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19.1) Proposmon Let (C, C) be a general element of Ry, , and let (D, D)e #, el =2
such that P(C, C) = P(D, D). We write D = D, v, D,. Assume that Dy, D, are irreducible

hyperelliptic curves of genus t —1 and g — t — 2, respectively. Then (C, C ) and (D, D) are
tetragonally related.

(19.2) Remark. Recall that in this case (C, C)e Ry, and with the notations of
(17.3), the isomorphism P(D, D) =~ P(C, C) identifies Z;" with W, and the two varieties
of type Z" corresponding to the two hyperelliptic components w1th W, and W_, (one of
them is empty exactly when W_, = 0.

Proof. If we prove that D is tetragonal we can apply the tetragonal construction to
(D, D) and we find elements of Ry, ,.. tetragonally related with (D, D). Then, by (16.5), these
elements will be tetragonally related to elements of %, , , and (C, C) and (D, D) will be
tetragonally related. Therefore the proposition is a consequence of the following fact.

(19.3) Proposition. There exists a finite morphism of degree four, y: D — P!, whose
restrictions to D, and D, coincide with the respective hyperelliptic morphism and such that
y(D, N D,) consists of four different points.

Proof. What we have to do is to glue the hyperelliptic morphisms y,: D; - P!. Let
D,nD, ={d,,...,d,}. It suffices to prove the equality of cross ratios

(19.4) [7:(dy) i y1(dy) vy (ds) 1y, (d) | = |y,(dy) 2 7,(dy) :7,(d3) 1 7,(d))]

Recall that we obtained in (18.2) that the irreducible curve 4, "2 4, (cf. (5.5) and (5.7)) is
birationally equivalent to the curve B, given by the pull-back diagram

o)

y N(2)
2

l

Pt ——s N;Z)

2

—

where N, and N, are the normalizations of D, and D,, respectively. Moreover the involution
on A, N2 A, attached to the multiplication by — 1 equals the involution on B, inherited from
the involution of N{?). According to (5.7) we have that C, is the normalization of B, and
therefore E is the normalization of B,/ (involution). Then from the analysis of the diagram
(19.5) we get that the cross ratio |y, (d,):y,(d,) : 7,(d3) : y,(d,)| coincides with the cross
ratio of the four discriminant points of the obvious two-to-one covering E —» P'. In
particular the points y(d,), i =1, ..., 4, are all different.

When ¢ = 4 the same argument works when replacing 4, n24,by A _,n2A4_,and B,
by the curve B, given by the pull-back diagram analogous to (19.5). So the cross ratio at the
right hand side in (19.4) also equals the cross ratio of the four discriminant points of certain
two-to-one morphism from E to a projective line. This clearly implies the equality (19.4).

To conclude the proof we only need to consider cases ¢ = 2 and ¢ = 3.
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Assume first ¢ = 3. We denote by f the desingularization of D at D, n D,. We call =,
and 7, to the ramified double covers D, —» D,, i = 1, 2, induced by the partial desingulariz-
ation. One has (compare with (6.1) i) and (6.2)):

(19.6) Lemma. The following equalities hold (cf. (17.3) for definitions):

a) 1(Z™ = (f*) Y (P(D,, D,) x {0}) (this is true for t = 1).
b) U (ZN-inI@ZM)=(*""({L-MePD, D)L Me(E}HN"} x {0}).

Lezy

Proof. Wefirst see a). According to (6.1) and (19.2), the set 7(Z™) is an abelian variety
of dimension ¢ containing I(W,) = I(Z") = Ker (f*) (see (17.4)). On the other hand the
very definitions imply that f*(1(Z™)) > P(D,, D,) % {0}. Hence

1z = (/%" (P(Dy, Dy) < {0}).
Equality of dimensions concludes the proof of a).

In part b) we only show the inclusion of the left hand side member in the right hand
side _member. ~The opposite inclusion is left to the reader. Fix Le Z. By definition
JOE) = (L,, L) e EPHmx (EH™. Then

(ZM_inI(ZM) = {de P(D, D)|f*(d) = (d;,0) and 4+ Le Z"}
= {de P(D,D)|f*(@ = (&,,0) and &, + L, e (E*)™}

and we are done. O

Let us denote by A _, the 2-dimensional variety obtained in (19.6) b) (observe that
dim(E}H)" =dimP(D,,D,)—-2=1t—-2=1).

(19.7) Lemma. Orne has the equality:
T*U_yn24_) = {L— 1} (D)e P(B,, D) Le(EH" Nm, (£) = 77 (Ops (1))} % {0} .
Proof. Onehas f*(A_,Nn2A4_,) = f*(A_,)n2f*(A_,). This set is an irreducible
curve. Since both sets in the equality of the statement have dimension 1, we only have to
prove the inclusion of the right hand side member in the left hand side member and this is
straightforward. O

Observe that the normalization of the curve B, given by the pull-back diagram

B, — F®

L

P! —— N9

has a natural morphism onto {L —1*(L)|Le(E¥)™, Nm,, (L) = y*(0p:(1))}. Since C,
is the normalization of 4_,n2A4_, and 4_,n2A4_, is birationally equivalent to
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f*(A_,n2A4_,) (use the explicit description of A_ ,N2A4_, in P(C,C) and that
Ker f* = n* (¢*(,JE))) we obtain a morphism from the normalization of B, to C,. By
comparing genera one gets that C, is also the desingularization of B,. The proof of (19.3)
follows as in the case ¢t = 4.

Finally we observe that in case ¢ = 2 the curve D is always tetragonal. Indeed, in this
case the genus of D is 1. To simplify assume it is smooth. Then the cross ratio of the images
of the four points D, " D, by the two-to-one morphisms D; — P! induced by the linear
series g3 on D, is not constant. Hence with a suitable such morphism we construct a
four-to-one morphism D — P'. This concludes the proof of (19.3) and therefore of Theorem
(16.1). o

20. Description of the fibre. As a consequence of the description (2.10), the
construction of §11 and Theorems (5.11), (6.4), (7.9), (8.7), (10.10) and (16.1) we get a
description of the fibre of P over a generic element (C, C) of Ry, , (We keep the notation of
§ 2, in particular E is the elliptic curve associated with the unique bi-elliptic structure of C):

a) If 1 0,1, 4, it is the disjoint union of

« two copies of E contained in #p , ,,

« a copy of E x E contained in 3 ,.

b) If t =4, it is the disjoint union of
+ two copies of E contained in %5, 4,
« a copy of E x E contained in 5, ,,

- a curve contained in ¥ ,.

¢) If t =1, it is the disjoint union of
+ two copies of E contained in #5, ,,

« an irreducible curve contained in 7 ;.

d) Ifr=00r (C,C)e %,
« a single point in each component % , , and X ,,

+ a copy of E contained in #, ,.

References

[A-C-G-H] E. Arbarello, M. Cornalba, P. A. Griffiths, J. Harris, Geometry of Algebraic Curves, vol. 1, Grundl.
math. Wiss. 267, Berlin—Heidelberg—New York 1985.

[Be1] A. Beauville, Prym varieties and the Schottky problem, Invent. Math. 41 (1977), 149-196.

[Be2] A. Beauville, Sous-variétés spéciales des variétés de Prym, Comp. Math. 45 (1982), 357-383.
[Be3] A. Beauville, Variétés de Prym et Jacobiennes Intermédiaires, Ann. Sci. E.N.S. 10 (1977), 304-392.
[C-G-T] C. Ciliberto, G.v. Geer, M. Teixidor, On the number of parameters of curves whose Jacobians possess

non-trivial endomorphisms, Preprint, University of Amsterdam, 1989.



106

[Detl]
[De2]
[De3]
[Ded]
[De5]
[Do]
[D-8]
[F-5]
[G]
(K1
[K-K]

M]
[Ma]

[Mu1]
[(Mu2]
[R]
[Sh1]
[Sh2]
[Te]
[Wel]
[We2]

[We3]

Naranjo, Prym varieties of bi-elliptic curves

0. Debarre, Sur le probléme de Torelli pour les variétés de Prym, Amer. J. Math. 111 (1989), 111-134.
0. Debarre, Sur les variétés de Prym des courbes tétragonales, Ann. Sci. E.N.S. 21 (1988), 545-559.
0. Debarre, Sur les variétés abéliennes dont le diviseur théta est singulier en codimension 3, Duke
Math. J. 57 (1988), 221-273.

O. Debarre, Sur la démonstration de A. Weil du Théoréme de Torelli pour les courbes, Comp. Math.
38 (1986), 3-11.

0. Debarre, Variétés de Prym, conjecture de la trisécante et ensembles d’Andreotti et Mayer, Theése,
Université Paris Sud, Centre d’Orsay, 1986.

R. Donagi, The tetragonal construction, Bull. Amer. Math. Soc. 4 (1981), 181-185.

R. Donagi, R. Smith, The structure of the Prym map, Acta Math. 146 (1981), 25-102.

R. Friedman, R. Smith, The generic Torelli Theorem for the Prym map, Invent. Math. 67 (1982),
473-490.

A. Grothendieck, Techniques de descente et Théorémes d’existence en Géométrie Algébrique I, Sem.
Bourbaki 190 (1959-1960).

V. Kanev, The global Torelli theorem for Prym varieties at a generic point, Math. USSR Izvestija 20
(1983), 235-258.

V. Kanev, L. Katsarkov, Universal properties of Prym varieties of singular curves, C. R. Acad. Bulgare
Sci. 41 (1988), 25-27.

H.H. Martens, An extended Torelli Theorem, Amer. J. Math. 87 (1965), 257-260.

L. Masiewicki, Universal properties of Prym varieties with an application to algebraic curves of genus
five, Trans. Amer. Math. Soc. 222 (1976), 221-240.

D. Mumford, Prym varieties I, in Contributions to Analysis, New York 1974.

D. Mumford, Abelian varieties, London 1970.

S. Recillas, Jacobians of curves with g;’s are the Pryms of trigonal curves, Bol. Soc. Mat. Mexicana
19 (1974), 9-13.

V.V. Shokurov, Distinguishing Prymians from Jacobians, Invent. Math. 65 (1981), 209-219.

V.V. Shokurov, Prym varieties: Theory and applications, Math. USSR Izvestija 23 (1984), 83-147.
M. Teixidor, For which Jacobi varieties is Sing® reducible?, J. reine angew. Math. 354 (1984),
141-149.

G. Welters, Recovering the curve data from a general Prym variety, Amer. J. Math. 109 (1987),
165-182.

G. Welters, The surface C-C on Jacobi varieties and 2nd order theta functions, Acta Math. 157 (1986),
1-22.

G. Welters, Abel-Jacobi isogenies for certain types of Fano threefolds, MC Tract 141, CWI,
Amsterdam 1981.

Departament d’Algebra i Geometria, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

Eingegangen 12. September 1990, in revidierter Fassung 16. Januar 1991



