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PRYM VARIETIES OF DOUBLE COVERINGS OF ELLIPTIC

CURVES

VALERIA ORNELLA MARCUCCI AND JUAN CARLOS NARANJO

Abstract. We prove the generic injectivity of the Prym map P : R1,r → Aδ
r

2

sending a double covering of an elliptic curve ramified at r ≥ 6 points to its
polarized Prym variety. For r = 6 the map is birational and both R1,6 and
Aδ

3
are unirational.

1. Introduction

The classical Prym map P : Rg −→ Ag−1 has been widely studied and it is
known that it is generically injective for g ≥ 7, generically finite of degree 27 for
g = 6, and dominant with positive dimensional fibres for g ≤ 5. The ramified
case has deserved less attention in the literature. Recently the first author and
Pirola have performed a systematic study of the injectivity for g ≥ 2 (see [MP10]
and also [Mar11]). They proved that, apart from two sporadic cases, the map is
generically injective when the dimension of the source space is strictly lower than
the dimension of the target. In the only equidimensional case it was known by
[BCV95] and [NR95] that the map is dominant of degree 3.

Our paper deals with the study of the Prym map in the case of double coverings
of elliptic curves ramified at r points. When r ≤ 4 the generic fibre has positive
dimension and for r = 4 it is completely described in [Bar87]. Our main result
completes the study of the ramified Prym map. Namely we prove (see Section 2 for
the notation):

Theorem 1.1. The Prym map

P : R1,r −→ Aδ
r

2

is generically injective for r ≥ 6.

In contrast with the previous cases we get the generic injectivity also for r = 6,
when the two moduli spaces have the same dimension. In this case we obtain as a
byproduct the unirationality of R1,6 and Aδ

3 (see Corollary 3.2). The case of the
moduli of abelian threefolds was obtained by Kanev in [Kan04].

In Section 3 we prove the birationality of the Prym map when r = 6. The
rational inverse is explicitly given and its definition is based on a construction by
Del Centina and Recillas (see [DCR89]). In Section 4 we prove the theorem for

2010 Mathematics Subject Classification. 14H40, 32G20, 14E05.
J.C.Naranjo has been partially supported by the Proyecto de Investigación MTM2009-14163-

C02-01.
V. Marcucci has been partially supported by 1) FAR 2010 (PV) "Varietà algebriche, calcolo

algebrico, grafi orientati e topologici"; 2) INdAM (GNSAGA) 3) PRIN 2009 “Spazi di moduli e
teorie di Lie” .

1

http://arxiv.org/abs/1111.3340v1


2 VALERIA ORNELLA MARCUCCI AND JUAN CARLOS NARANJO

r ≥ 8. Starting from the previous case we proceed by induction on r by using a
degeneration argument. The proof is a refinement of that given in [MP10]. The
existence of a non-finite group of automorphisms of the elliptic curve yields technical
problems and it is not possible to apply the same method word by word. The
key point is Lemma 4.1, which is a generalization of [MP10, Lemma 3.4]. This
result allows us to compute the degree of the Prym map by specializing to certain
subvarieties.

2. Notation and preliminaries

We work over the field C of complex numbers. We will use the following conven-
tions:

• Rg,r is the moduli space of irreducible double coverings of a curve of genus
g ≥ 1 ramified at r ≥ 0 points. A covering of this type is determined by
the base curve C, a line bundle η ∈ Pic

r

2 (C), and a divisor B ∈ |η2|. The
dimension of Rg,r is 3g − 3 + r.

• Rg := Rg,0 is the moduli space of étale coverings. A point of this space
corresponds to a curve C of genus g and a non-trivial point σ ∈ J(C) of
order 2.

• To a double covering D → C we attach the norm map J(D) → J(C).
The Prym variety P (D,C) is the identity component of the kernel of this
map. Its dimension is g− 1+ r

2 and the polarization LD of J(D) induces a
polarization of type δ := (1, . . . , 1, 2, . . . , 2) on P (D,C), where 2 is repeated
g times. In the étale case LD induces twice a principal polarization on
P (D,C).

• We denote by

P : Rg,r → Aδ
g−1+ r

2

the Prym map which associates to a covering its Prym variety.
• Given a covering (C, η,B) we denote by Cη the image of the projective map

corresponding to |ωC ⊗ η|. We call Cη the semicanonical curve.
• Cr denotes the r symmetric product of C.

3. Del Centina–Recillas construction

In this section we prove the generic injectivity of the Prym map for the case of
6 branch points. The main tool we need is a construction provided by Del Centina
and Recillas in [DCR89]. They attach to a generic element (C, σ) ∈ R3 an étale
covering of a bielliptic curve. Since we will use the explicit construction we recall
how it works.

Given a generic (C, σ) ∈ R3, set

X̃ := W2(C) ∩ (W2(C) + σ) ⊂ Pic2 (C);

then X̃ is a smooth connected curve of genus 7 with 3 involutions

iσ : L 7→ L⊗ σ,

iωC
: L 7→ ωC ⊗ L−1,

and the composition

i′σ := iωC
◦ iσ.
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The quotient of X̃ by the 3 involutions gives a diagram of degree 2 morphisms as
follows

(1)

X̃
ẽ

��>
>>

>>
>>

π

��

π′

��~~
~~

~~
~~

X ′

ε′
  A

AA
AA

AA
A X

ε

��

Ẽ

e
����

��
��

��

E

where E is the quotient of X̃ by the Z2×Z2 group given by the 3 involutions. More
precisely

• X = X̃/〈iσ〉, X
′ = X̃/〈i′σ〉, Ẽ = X̃/〈iωC

〉;

• X and X ′ have genus 4 and Ẽ has genus 1;
• π, π′, and e are étale;
• ε and ε′ have the same branch divisor B of degree 6;
• ε : X → E is determined by B and a line bundle η ∈ Pic3 (E) such that
B ∈ |η2|, in the same way ε′ : X ′ → E is given by B and η′ ∈ Pic3 (E) and

the non-trivial 2 order point µ := η′ ⊗ η−1 defines the covering e : Ẽ → E;

• X̃ is the fibred product X ×E Ẽ, hence E, η,B, and µ determine the whole
diagram.

Motivated by these properties, we consider the moduli space B4 of the classes
of elements (E, η,B, µ) such that E is an elliptic curve and η,B, µ are defined as
before. The main theorem in [DCR89] states that the rational map

ρ : R3 99K B4

(C, σ) 7→ (E, η,B, µ)

is birational (see [DCR89, Theorem 2.3.2]). The inverse rational map can be de-

scribed in the following way: the Prym variety P (X̃,X ′) is isomorphic, as a princi-

pally polarized abelian variety, to J(C). Moreover, the pullback map J(E) → J(X̃)

sends the subgroup of 2 order points to Z2 ⊂ P (X̃,X ′) and the corresponding non-
trivial generator is mapped to σ through the isomorphism.

To relate this construction to our Prym map we need to consider the moduli

space Aδ,2
3 of polarized abelian threefolds (P,L) of type δ := (1, 1, 2) with a marked

non-trivial (2 torsion) point ω such that t∗ωL ≃ L. It is not hard to see that there
is a well defined map

P̃ : B4 −→ Aδ,2
3

(E, η,B, µ) 7→ (P (X,E), ε∗µ).

We get a commutative diagram

B4

p1

��

P̃ // Aδ,2
3

p2

��
R1,6

P

// Aδ
3
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where p1 and p2 are the forgetful map which are étale coverings of degree 3. In

order to prove that P is birational we will prove that P̃ is.
Consider the rational map

ϕ : Aδ,2
3 99K R3

defined as follows. Given a generic (P, ω) ∈ Aδ,2
3 , let A be the quotient of P by the

group of order 2 generated by ω and let f : P → A be the projection morphism.
Then, there exists a principal polarization M on A such that f∗M ≃ L and there
is a smooth curve C of genus 3 such that A and J(C) are isomorphic as principally
polarized abelian varieties. We denote by σ the unique non-zero point in the image
of {x ∈ P | t∗xL ≃ L} in J(C) and we set

ϕ(P, ω) := (C, σ).

Theorem 3.1. The Prym map

P : R1,6 −→ Aδ
3

is generically injective.

Proof. The statement is an easy consequence of the commutativity of the next
diagram since ρ is birational

R3ρ

zz

`cf
i

m
p

t

B4

p1

��

P̃

// Aδ,2
3

p2

��

ϕ

=={
{

{
{

R1,6
P

// Aδ
3

To show that ϕ ◦ P̃ ◦ ρ = Id we fix a generic (C, ω) ∈ R3. By keeping the notation
of diagram (1), we have to prove that

ϕ(P (X,E), ε∗µ) = (C, σ).

It is easy to see that π∗ : J(X) → J(X̃) restricts to an isogeny

π∗|P (X,E) : P (X,E) −→ P (X̃,X ′) ≃ J(C)

such that kerπ∗|P (X,E) = 〈ε∗µ〉. Therefore it is enough to prove that the pullback

of the principal polarization of P (X̃,X ′) is the (1, 1, 2) polarization of P (X,E).
This follows easily from the well known fact (see [Mum74]) that (π∗)∗O

J(X̃)(ΘX̃
)

is algebraically equivalent to OJ(X)(2ΘX). �

It is well known that R3 and therefore B4 are rational (see e.g. [Dol08] and
references therein). Thus we obtain:

Corollary 3.2. The moduli spaces R1,6 and Aδ
3 are unirational.

Remark 3.3. The unirationality of Aδ
3 is proved in [Kan04] by a complete different

method.
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4. Proof of the theorem

The whole section is devoted to the proof of Theorem 1.1. We proceed by
induction with respect to r ≥ 6 and even. The initial step r = 6 has been proved in
the previous section, now we give the proof of the induction step. We follow closely
the techniques used in [MP10] to prove a similar theorem for greater genus. In our
situation the existence of a non-finite group of automorphisms of the base curve
yields technical problems and it is not possible to apply the same method word by
word. We have to refine some tools of that proof, this will be especially clear in
Lemma 4.1. Nevertheless, the general strategy is similar, so we only sketch the proof
and we refer to [MP10] for further details. First we notice that the codifferential of
the Prym map

dP∗ : Sym2 H0(E, η) −→ H0(E,OE(B))

is generically surjective and therefore P is generically finite (see [MP10, Proposition
2.2]). Moreover ker dP∗ is the space of quadrics vanishing on the semicanonical
curve Eη and it is not hard to prove that Eη is the intersection of these quadrics (see
[MP10, Theorem 2.8]). It follows by a standard argument of infinitesimal variation
of Hodge structures that the generic Prym variety determines the base curve E and
the line bundle η.

Now we use a degeneration argument by keeping fixed the elliptic curve and
allowing branch points coincide. We observe that the compactification of the Prym
map defined in [MP10, Section 3] also works in the case of genus 1. So we consider

Υ :=
{
(η,B) ∈ Pic

r

2 (E)× Er |B ∈
∣∣η2

∣∣
}
,

and the partition

Υ =

r⊔

k=1

Yk,

where

Yk :=

{
(η,

∑

i

niyi) ∈ Υ |
∑

i

(ni − 1) = k − 1

}
.

We remark that Υ is an étale 4-covering of the symmetric product Er of E and
each Yk maps to the k-diagonal of Er. In particular, Y1 is an étale covering of the
open set of divisors with no multiple points. The rational map

T : Υ 99K R1,r

(η,B) 7→ (E, η,B),

is regular on Y1 and

(2) T −1(T (η,B)) = Xη,B ∪Xi∗η,i∗B,

where i is an hyperelliptic involution on E and Xη,B := {(t∗eη, t
∗
eB)}e∈E . Thus the

generic fibre of T consists of two disjoint copies of E. We emphasize that this is the
point in which our situation differs from that considered in [MP10], since in that
case the base curve has a finite number of automorphisms.

Let us consider the rational map

PE : Υ 99K Aδ
r

2

that is the composition of T with the Prym map. Obviously this map is regular on
Y1. As in [MP10] one can see that PE extends to Y2 once we replace Aδ

r

2

with the



6 VALERIA ORNELLA MARCUCCI AND JUAN CARLOS NARANJO

E

D

P1

x

qx

px
P
1

Figure 1. Admissible double covering corresponding to z

normalized blowing-up Āδ
r

2

of its Satake compactification. Namely, the map PE

extends to a map
P̄E : Υ 99K Āδ

r

2

whose indeterminacy locus is contained in
⊔

k≥3 Yk. By blowing up in a convenient
centre we get a regular map

P̃E : Υ̃ −→ Āδ
r

2

.

Given a point x ∈ E we take

z := (η′ ⊗OE(x), B
′ + 2x) ∈ Y2.

The admissible covering (in the sense of [HM98, Chapter 3, Section G]) correspond-
ing to z is as in Figure 1 and the image in Āδ

r

2

is described by the following data:

• the compact Prym variety P (D,E);
• the class ±[px − qx] in the Kummer variety of P (D,E).

Now we want to compute the degree of the Prym map by looking at the behaviour

of P̃E along Y2. To this end we will need the following generalization of [MP10,
Lemma 3.4] (see also [Mar11, Lemma 2.15]).

Lemma 4.1. Let f : X → Z be a surjective, proper morphism of varieties over an

algebraically closed field k such that dimZ ≥ 2. Consider an integral, locally closed

subset Y of X of codimension 1, not contained in the singular locus of X, and set

H := f(Y ) ∩ f(Y c). Assume that:

(1) the codimension of H in Z is at least 2;
(2) the differential of f is surjective at a generic point of Y ;

(3) the generic fibre at a point of f(Y ) has n connected components.

Then the generic fibre of f has m ≤ n connected components.

Proof. By using Stein factorization theorem (see [Gro63, Corollaire 4.3.3])) the
statement is a straightforward extension of the proof of [MP10, Lemma 3.4]. �
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We set f := P̃E and we want to consider Y = Y2. The same proof as in [MP10,
Section 3] shows that Y2 satisfies the hypotheses of the lemma. We finish the proof

of the theorem by noticing that (2) implies that the generic fibre of P̃E has at least
2 connected components. Due to the lemma we know that they are exactly 2. Since
all the elements of these 2 fibres identify the same covering of E, we are done.
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