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Abstract: Let X be an irreducible projective variety and let f : X → ℙn be a morphism. We give a new proof of
the fact that the preimage of any linear variety of dimension k ≥ n+1−dim f(X) is connected.We show that the
statement is a consequence of the Generalized Hodge Index Theorem using easy numerical arguments that
hold in any characteristic. We also prove the connectedness Theorem of Fulton and Hansen as an application
of our main theorem.
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1 Introduction
In this note we consider the Bertini Theorem. Eugenio Bertini (1846–1933) was a student of Luigi Cremona,
one of the founders of the Italian school of Algebraic Geometry, who lived and worked in Pavia from 1880 to
1892. In his paper [1] dated 1880 and published in 1882, he proved that for a nonsingular projective variety
X ⊆ ℙn the general hyperplane section is nonsingular, that is, there is a nonempty Zariski open set U ⊆ (ℙn)∨

such that for every H ∈ U, the subvariety H ∩ X is regular at every point. Moreover, if the dimension of the
variety is at least two, the general hyperplane section is connected. For more details on the life and work of
Bertini and on the history of this theoremwe refer the reader to the paper of Kleiman [9]. This famous theorem
has been generalized in many directions, especially in the context of the theory of linear series. For further
details, see the book of Jouanolou [8].

We consider here a slightlymore general statement: let X be an irreducible projective variety defined over
an algebraically closed field of any characteristic and let f : X 󳨀→ ℙn be a morphism. Then the preimage of a
linear variety L ⊆ ℙn is connected if dim L + dim f(X) > n.

Over the complex numbers, the statement is usually proved using the Generic Smoothness Theorem,
which fails in positive characteristic (see for instance [7, Corollary 10.7] for the statement of the Generic
Smoothness Theorem and [11, Theorem 3.3.1, Theorem 3.3.3] for a proof of the Bertini Theorem in this case).
A characteristic free proof of the irreducibility is [14, Theorem 17, IX.6] and [12, Theorem 9]. Our aim is to
give a new direct proof of the connectedness statement without using the Generic Smoothness Theorem. The
main interest of our approach is the use of numerical connectedness to deduce topological connectedness
on the preimages of linear varieties. In particular, we show that the connectedness is a consequence of the
Generalized Hodge Index Theorem. Hence our proof works in any characteristic. More precisely, we prove the
following theorem; see also [7, Theorem 7.1] and [11, Theorem 3.3.1].

Theorem 1.1. Let X be an irreducible projective variety and let f : X → ℙn be a morphism. Then for any linear
subvariety L ∈ 𝔾(k, n) of dimension k ≥ n + 1 − dim f(X), the preimage f−1(L) is connected.
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The steps of our proof are the following. First, in Section 3.1, we prove that we can assume that f is dom-
inant and that the linear variety L is general in the corresponding Grassmannian. Then in Section 3.2 we
prove the statement when k = 1: first we assume that n = 2 and use the fact that big and nef divisors are
1-connected, see Proposition 3.3; then we generalize to any n. Finally, we conclude with a proof by induction
on the dimension of L (Section 3.4).

In Section 5, following an idea of Deligne, we deduce the connectedness Theorem of Fulton and Han-
sen [4]. This theorem is a striking generalization of the Bertini Theorem with many interesting geometric
applications, see [5]. For instance, Zak [15] has used the connectedness theorem to establish a famous result
on tangencies to a smooth subvariety X ⊆ ℙm of dimension n, from which he deduced that if 3n > 2(m − 1)
then X is linearly normal, as predicted by Hartshorne’s conjecture. Moreover, over the complex numbers, it is
possible to obtain information about the fundamental groups by applying these connectivity results to a cov-
ering space of the variety. In this context, Deligne [3] generalized the connectedness theorem to a statement
about the fundamental group π1 and π0, and then its work has been extended to higher homotopy groups,
see [5, Section 9] and [13]. It would be interesting to see whether using our methods some of these problems
can be generalized to the algebraic setting; many nice questions remain open.

2 Preliminaries
In this paper all the varieties are considered with the Zariski topology. We recall some definitions.

Definition 2.1. Let X be a complete variety and D a divisor on X, we say that D is nef (numerically effective)
if D ⋅ C ≥ 0 for all irreducible curves C ⊆ X.

Definition 2.2. A line bundle L on an irreducible projective variety X is big if it has maximal Kodaira dimen-
sion k(X, L) = dim X.

Definition 2.3. A line bundle L on an irreducible projective variety X is semiample if there exists an integer r
such that L⊗r is globally generated.

We will use the following characterization of bigness for nef divisors, see [11, I, Theorem 2.2.16].

Theorem 2.4. Let D be a nef divisor on an irreducible projective variety X of dimension n. Then D is big if and
only if its top self-intersection is strictly positive: Dn > 0.

A central tool in the proof of numerical connectedness on surfaces is the following version of the Hodge
Index Theorem, which is more general than the usual one for surfaces and can be easily deduced from the
standard version (see [7, V, Theorem 1.9]):

Theorem 2.5 (Hodge Index Theorem). Let S be a smooth projective surface and let H be a divisor with H2 > 0.
Let D be a divisor such that D ⋅ H = 0. Then either D2 < 0 or D is numerically trivial.

Generalizations of this classical result have arisen in many directions. We will use the following inequal-
ity, see [11, Theorem 1.6.1, Formula (1.24)]:

Theorem 2.6 (Generalized inequality of Hodge type). Let X be an irreducible complete variety of dimension n,
and let β1, . . . , βn−1, h be numerical classes of nef divisors. Then

(β1 ⋅ ⋅ ⋅ ⋅ ⋅ βn−1 ⋅ h)n−1 ≥ ((β1)n−1 ⋅ h) . . . ((βn−1)n−1 ⋅ h).

One of themain problems in positive characteristic is the lack of resolution of singularities for varieties of
dimension greater than three. Instead of the resolution of singularities, wewill use several times the existence
of alterations.

Definition 2.7 (See [2]). Let X be a variety over an algebraically closed field k. An alteration of X is a proper
dominant morphism X󸀠 → X of varieties over k with dim X󸀠 = dim X. An alteration is regular if X󸀠 is smooth.
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Thanks to [2, Theorem 3.1], there always exists a regular alteration.

Remark 2.8. In Theorem 1.1 we can assume X to be nonsingular. Indeed, assume by contradiction that there
exists a variety X, amorphism f : X → ℙn and a linear subvariety L such that f−1(L) is disconnected. Consider
a regular alteration a : X̃ → X. Then the components of a−1f−1(L) are disconnected.

3 The main theorem
This section is devoted to the proof of Theorem 1.1. Observe that for n = 1 there is nothing to prove because the
only possible choice is L = ℙ1; so we can assume n ≥ 2. By Remark 2.8 we can assume that X is nonsingular.

3.1 Reduction to f dominant and L general

It is enough to prove the theorem for a general linear variety. This is a consequence of an argument of
Jouanolou; see the proof of [11, Theorem 3.3.3]. So from now on we assume the generality of L.

Let f : X → ℙn be amorphism and L ⊆ ℙn a linear variety; we assume that k = dim L ≥ n+1−dim f(X). If
f is not dominant and L is general, L is not contained in f(X). Then there exists a point p ∈ L \ f(X). We project
from the point p to a hyperplane H = ℙn−1 and let f 󸀠 : X → ℙn−1 be the composition of f with this projection.
The intersection L ∩ H is a linear subvariety L󸀠 ⊂ H such that

dim L󸀠 = k − 1 ≥ dimH + 1 − dim f 󸀠(X)

(observe that dim f 󸀠(X) = dim f(X)). If the theorem is true for the map f 󸀠, then f 󸀠−1(L󸀠) = f−1(L) is connected.
Therefore it is enough to prove the theorem for f 󸀠. If f 󸀠 is not dominant, we perform successive projections
until we reach a dominant map. So we can assume for the rest of the proof that f is dominant.

3.2 Connectedness of the preimage of a line by a generically finite map

The aim of this subsection is to prove the following particular case of Theorem 1.1.

Proposition 3.1. Let X be a projective variety of dimension n defined over an algebraically closed field and let
f : X → ℙn be a generically finite map. Let L ⊆ ℙn be a general line. Then f−1(L) is connected.

We start with the simplest case.

3.2.1 Case n = 2
Since the map f is generically finite, this implies that X is a surface. We need some numerical connectedness
considerations:

Definition 3.2. Let X be a projective surface. A divisor H is 1-connected if for any nontrivial effective divisors
A and B such that A and B do not have common components and H = A + B, we have A ⋅ B ≥ 1.

The proof of the following lemma is contained in Lemma 3.11 in [10].

Proposition 3.3. Let H be a big and nef divisor on a smooth projective surface X. Then H is 1-connected.

Proof. Let H be a big and nef divisor and let A and B be nontrivial effective divisors such that H = A+B. Since
X is projective, there exist very ample divisors on X, hence A and B are not numerically trivial. H nef gives

A2 + A ⋅ B = H ⋅ A ≥ 0
A ⋅ B + B2 = H ⋅ B ≥ 0.
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Now if A ⋅ B ≤ 0 then A2B2 ≥ (A ⋅ B)2 ≥ 0 contradicts the Hodge Index Theorem, see Theorem 2.6. Thus
A ⋅ B ≥ 1 and H is 1-connected. 2

Let X be a smooth projective surface, let f : X → ℙ2 be a dominant map and let L ⊂ ℙ2 be a line. Let
H = f∗(L) be the pullback of L through f . We claim that H is big and nef. Indeed, let C be any irreducible
curve on X; then by the projection formula

H ⋅ C = f∗(L) ⋅ C = L ⋅ f∗(C) ≥ 0.

Therefore H is nef. The selfintersection of H is

H2 = f∗(L) ⋅ f∗(L) = f∗(f∗(L)) ⋅ L = deg(f)L2 > 0.

Thus by Theorem 2.4 H is big. Let us suppose by contradiction that the preimage of a line is not connected.
Then there exist two effective nontrivial divisors A and B such that A + B = H and A ⋅ B = 0. This contradicts
Proposition 3.3.

3.2.2 Proof of Proposition 3.1

It is enough to show how to reduce to the case n = 2. Let H ⊆ ℙn be a general hyperplane. Let D := f∗(H) be
the preimage of H. The divisor D ⊂ X might be non-irreducible, so we write D = ∑i niDi where the Di are all
the irreducible components of D. Since H is a general ample divisor, D is nef, big and semiample. Moreover,
the restriction of f∗(H) to Di gives a linear series without base points, because if there was a base point it
would be also a base point of |f∗(H)|. Thus the Di have to move algebraically and given any point p we can
find Dj numerically equivalent to Di that does not have p in its support. This implies that f does not contract
Di: otherwise, since Di covers X, the fiber of the general point of ℙn would have dimension greater than one.
We set f∗(Di) = kiH with ki > 0.

We will use the following notation: A = ∑i∈S niDi and B = ∑i∈T niDi such that S ∩ T = 0 and A + B = D.

Lemma 3.4. With the notation above, A ⋅ Dn−1 > 0 and B ⋅ Dn−1 > 0.

Proof. It is enough to prove that Di ⋅ Dn−1 > 0 for each i. We have

Di ⋅ Dn−1 = Di ⋅ f∗(Hn−1) = f∗(Di) ⋅ Hn−1 = kiHn = ki > 0. 2

Lemma 3.5. With the above notation, the following holds:

Hn−2 ⋅ f∗(A ⋅ B) = f∗(Hn−2)(A ⋅ B) = Dn−2 ⋅ A ⋅ B > 0

Proof. We assume by contradiction that Dn−2 ⋅ A ⋅ B = 0. So we have

(A + B)n−2 ⋅ A ⋅ B =
n−2
∑
k=0
(
n − 2
k )

Ak+1Bn−1−k = 0. (1)

Since A and B are nef, all the coefficients are positive and all the addends of the sum are zero. In particular

(i) An−1 ⋅ B = 0 corresponding to k = n − 2;
(ii) A ⋅ Bn−1 = 0 corresponding to k = 0.

Using now the generalized inequality of Hodge type, see 2.6, we have

0 = (A ⋅ B ⋅ D . . . D⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n−2
)n−1

≥ (An−1 ⋅ D)(Bn−1 ⋅ D) (Dn−1 ⋅ D) . . . (Dn−1 ⋅ D)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
n−2

≥ 0.

Since Dn > 0 by Theorem 2.4, either An−1 ⋅ D = 0 or Bn−1 ⋅ D = 0. We assume to be in the first case; the
proof is the same for the second case. Using (i), we have that An−1 ⋅ D = An + An−1 ⋅ B = An = 0. Therefore
A ⋅ Dn−1 = ∑n−1k=0 Ak+1Bn−1−k = 0, since the term corresponding to k = n − 1 is An and all the other addends
are zero because they appear in (1). This is in contradiction with Lemma 3.4. 2
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Now we finish the proof of Proposition 3.1. We proceed by induction on n ≥ 2. The initial step has been
proved in Subsection 3.2.1. Let L ⊆ ℙn be a general line and let H be a general hyperplane containing L. As
before, we write f∗(H) =: D = ∑i niDi and the restrictions of f to Di

fi : Di 󳨀→ ℙn−1 = H

are dominant. Since Di might be singular we have to consider a regular alteration ai : D̃i → Di where the D̃i
are smooth. By the inductionhypothesiswe can assume that the a−1i f−1i (L) are connected curves. In particular
the f−1i (L) = Ci are also connected (otherwise the preimages via ai of the components of Ci would disconnect
a−1i f−1i (L)). We have to prove that C := ∪ iCi is connected. Let Z := ∪ i∈SCi and Y := ∪ i∈TCi with S ∩ T = 0 and
let A and B be two divisors on X whose supports are

[A] := ⋃
i∈S

Di and [B] := ⋃
i∈T

Di .

We will prove that Z ∩ Y ̸= 0. We set Σ := [A] ∩ [B] ⊆ X. Then Γ := f(Σ) is a subvariety in ℙn such that
Γ ∩ Hn−2 is a curve, otherwise Hn−2 ⋅ f∗(A ⋅ B) = 0 in contradiction with Lemma 3.5. Since Hn−2 is a plane
in ℙn that contains L, Γ has to intersect L. Let p ∈ Γ ∩ L. We can find a point q ∈ X such that f(q) = p and
q ∈ [A] ∩ [B] ∩ f−1(L) = Z ∩ Y. Thus Z ∩ Y ̸= 0 and f−1(L) is connected.

This concludes the proof of the proposition.

3.3 Connectedness of the preimage of a line for a dominant morphism

We want now to prove the following proposition:

Proposition 3.6. Let X be a projective variety of dimension n defined over an algebraically closed field and let
f : X → ℙn be a dominant morphism. Let L ⊆ ℙn be a general line. Then f−1(L) is connected.

Proof. Using the Stein Factorization of f , see [7, III, Corollary 11.5], we obtain the following diagram

X

f 󸀠

""

f
// ℙn

Y

g

<<

where f 󸀠 has connected fibers and g is a finite map into ℙn. Let λ : Ỹ → Y be a regular alteration of Y.

X

f 󸀠

""

f
// ℙn

Y

g

<<

Ỹ

λ

OO
g̃

EE

Since the map g̃ is generically finite and Ỹ is nonsingular, using Proposition 3.1 we get that g̃−1(L) is con-
nected, for any general line L ⊆ ℙn. Thus g−1(L) is connected, otherwise g̃−1(L) = λ−1g−1(L) would not be
connected. Since the fibers of f 󸀠 are connected, f−1(L) is connected. 2
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3.4 Connectedness of a linear variety of higher dimension

Finally, we have to consider the case where L has arbitrary dimension. Let H ∈ (ℙn)∨ be a hyperplane and let
p ∉ H a general point. We consider the projection Π : ℙn \ {p} → H. We can identify H with the projective
space of the lines through p. Then the blow-up of ℙn in the point p can be seen as

Bp = {(x, l) ∈ ℙn × H | x ∈ l}.

The exceptional divisor is Ep = {p} × H and the first projection gives the birational map εp : Bp → ℙn. Since
we resolved the indeterminacy locus, the map εp ∘ Π is now a morphism.

We can now consider the fiber product X̃ := X ×ℙn Bp. We obtain a well-defined dominant morphism
f 󸀠 : X̃ → ℙn−1. The fiber f−1(p)might be singular because of the failure of the Generic Smoothness Theorem
in positive characteristic. Therefore singularities might arise in X̃. As before, we consider a regular alteration
f 󸀠󸀠 : X󸀠󸀠 → X̃ of X̃, where X󸀠󸀠 is a smooth irreducible variety.

X󸀠󸀠

f 󸀠󸀠

��

X̃
̃f

//

̃ε

�� f 󸀠

��

Bp

εp

��

X
f

// ℙn

Π

��

ℙn−1

We put h := f 󸀠󸀠 ∘ f 󸀠. Assuming the connectedness statement for h, we get that h−1(L) is connected for any
linear variety L ⊆ ℙn−1 of dimension k ≥ 1. Thus f 󸀠󸀠(h−1(L)) is connected too, otherwise the preimages via f 󸀠󸀠

of the components would disconnect h−1(L). Since f−1(L ∨ p) = ε̃(f 󸀠󸀠(h−1(L)), the connectedness statement
is true for any linear variety of ℙn containing p of dimension k󸀠 ≥ 2. To obtain the assertion for every linear
variety L contained inℙn of dimension k󸀠 ≥ 2, it is sufficient to consider a point p ∈ L and repeat the previous
construction. Observe thatwith this procedurewe donot reach the one-dimensional case thatwe have proved
in Proposition 3.6. This concludes the proof of Theorem 1.1.

4 The classical Bertini Theorem
If in Theorem 1.1 we consider the inclusion map, we get the classical version of the Bertini Theorem. The
theorem states that a general hyperplane section of a nonsingular variety in a projective space is again non-
singular and connected if the dimension of the variety is greater than two. It holds over an arbitrary alge-
braically closed field of any characteristic and can be proved by computing the dimension of nontransverse
hyperplanes to the variety; see [7, Theorem II.8.18].

Theorem 4.1 (Bertini Theorem). Let X be a nonsingular closed subvariety of ℙnk , where k is an algebraically
closed field. Then there exists an hyperplane H ⊆ ℙnk , not containing X, such that the scheme H ∩ X is regular at
every point. If dim X ≥ 2, then H ∩ X is also connected. Furthermore, the set of hyperplanes with this property
is an open dense subset of the complete linear system |H|, considered as projective space.
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5 The connectedness theorem of Fulton and Hansen
We give a very short proof of the connectedness theorem of Fulton and Hansen where we re-elaborate an idea
of Deligne; see also [11, Theorem 3.3.6].

Theorem 5.1. Let X be an irreducible projective variety and let F : X 󳨀→ ℙn × ℙn be a morphism such that
dim F(X) > n. Let ∆ ⊆ ℙn ×ℙn be the diagonal. Then the inverse image F−1(∆) ⊆ X of the diagonal is connected.

Proof. We consider ℙn × ℙn with homogenous coordinates [zi] and [wj]. Let f : X → ℙn and g : X → ℙn be
morphisms such that F = (f, g). Then we can consider the following line bundles on X:

L := f∗Oℙn (1), M := g∗Oℙn (1)

with sections si = f∗(zi) and tj = g∗(wj). Let E := L ⊕ M be the rank two bundle and let π : ℙ(E) → X be the
associated projective space bundle. We have the tautological exact sequence

0 // N // π∗(E)
φ
// OE(1) // 0

where N is defined as the kernel of the map φ. The bundle π∗(E) is generated by the 2n + 2 sections π∗(si)
and π∗(wj), and their images via the map φ generate OE(1). Therefore we have the map Q : ℙ(E) → ℙ2n+1

associated to π∗(E), in coordinates:

P 󳨃󳨀→(π∗s0(P), . . . , π∗sn(P), π∗t0(P), . . . , π∗tn(P)).

We remark that dimQ(ℙ(E)) = dim F(X) + 1. If we consider the embedding of ℙn × ℙn into ℙ2n+1, the image
of the diagonal ∆ is given by the n-dimensional linear subspace L ⊆ ℙ2n+1 defined be the equations {zi = wi}.
Then

F−1(∆) = π(Q−1(L))

and the assertion follows from Theorem 1.1. 2

From Theorem 1.1 we can deduce a connectedness theorem for flag manifolds and Grassmannians.

Theorem 5.2 ([6, Section 1]). Let 𝔽 be any flag manifold in ℙn, and let ∆F be the image of the diagonal embed-
ding of 𝔽 in 𝔽 × 𝔽. Further, let X be an irreducible variety and let f : X → 𝔽×𝔽 be a morphism. Then f−1(∆F) is
connected if codim(f(X),𝔽 × 𝔽) < n.

For the proof it is enough to follow the construction in [6] and then apply Theorem 5.1.
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