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Abstract. We give a bound for the number of rational maps between algebraic varieties of general
type under mild hypothesis on the canonical map. We use an idea inspired by Tanabe’s work. Instead
of attaching a morphism of Hodge structures to a rational map we simply associate to it a piece
of the integral Hodge lattice. This procedure does not give an injective map, but by means of a
geometric argument, we can estimate the number of maps with the same image.

1. Introduction. De Franchis proved in 1913 (see [3]) that the set of mor-
phisms between two Riemann surfaces of genus at least 2 is finite. In other words,
he showed the finiteness of the set

M(X, Z) = {f : X −→ Z | f nonconstant},

where X, Z are curves of genus at least 2. Martens (cf. [9]) gave an effective
bound of the number of elements m(X, Z) of this set. Other estimates can be
deduced from the effective bounds for the number elements of

M(X) = {f : X −→ Y | f nonconstant, Y smooth curve of genus ≥ 2},

obtained in [6], [7] and [1].
Probably the most interesting open problem in the topic (see [5]) is whether

m(X, Z) can be bounded by a polynomial on the genus of the curves. Kani ([7])
showed that this is not true for M(X).

In [10] Tanabe has improved the known bounds for m(X, Z). In all the pre-
vious proofs morphisms of homological lattices were used to represent maps, or
even correspondences, on curves. The main idea of Tanabe’s work is to represent
each map by a single element of the singular homology group of X. This enables
him to control, with a geometric argument, the number of maps represented by
the same element. In fact, his proof can be separated into two parts. In the first
he shows that, fixing a holomorphic form α on the target, two maps in which
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the pull-backs of α are the same “differ” in a finite number of choices depending
polynomially on the genus.

In the second part he assumes that α is the (1, 0)-part of an element α̃ of the
integral lattice with minimal norm. Then he attaches to the map the pull-back
of α̃. This is an element in the integral lattice of the source. He then shows that
we can reduce the lattice modulo d with d greater than twice the degree of the
map, without losing information.

We refer to the first argument as the “geometric part” and to the second as
the “torsion part” of Tanabe’s work.

This paper concerns the same problem in a higher dimension, that is, we
consider

M(X, Z) = {f : X ��� Z | f rational dominant map },

for X, Z varieties of general type of the same dimension. As above, m(X, Z)
denotes the number of elements of M(X, Z).

It was proved by Kobayashi-Ochiai that m(X, Z) is finite (see [8] and also [2]).
Moreover there is an effective bound in [5] for complex manifolds with ample
canonical bundle obtained by means of Chow varieties. This method provides
necessarily a bound with a very high exponential.

In this paper we use an idea inspired by Tanabe’s work. Instead of attaching a
morphism of Hodge structures to a rational map we simply associate to it a piece
of the integral Hodge lattice. This procedure does not give an injective map, but,
by means of a geometric argument we can estimate the number of maps with the
same image.

We do not need the restrictive hypothesis which guarantees the injectivity of
the representation of the elements of M(X, Z) as maps of Hodge structures. We
can thus find good bounds under weak hypotheses. In fact, we find much better
bounds for n-dimensional varieties than the ones currently known.

We use two approaches. The first works in dimensions 1, 2 and 3 and gives
better results. The second applies in any dimension, under a more restrictive
hypothesis.

Now we explain the ideas of the proofs: First we generalize the geometric
part of Tanabe’s work to surfaces with pg at least 2 by using appropriate pencils
of 2-forms on Z. Since m(X, Z) is a birational invariant we may assume that X
and Z are minimal. Next we represent the map using couples of elements in the
transcendental lattice of the source variety. Roughly speaking, the transcendental
lattice is the complement of the Neron-Severi group in the second cohomology
group of the surface. The geometric part allows us to estimate the number of
maps which are represented by the same couple of elements of the lattice. To do
this we use the following fact, which is elementary but very useful: there exists
an open set where all the maps are well-defined and such that for each point of
this open set two different maps take different values. Then, by using the fact
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that the curves are moving in a pencil and thus cut this open set, one can reduce
the proof to the one-dimensional case.

Next, instead of the torsion lemma we use a packing lemma due to Kani. To
do so we give a lower estimate for the distance of two different elements. We
obtain a bound of m(X, Z) in terms of K2

X , K2
Z and the second Betti number b2(X)

(see 1.2). By combining Bogomolov-Miyaoka-Yau and Noether inequalities one
can obtain an estimate in terms of the Euler characteristic (see 1.3).

Observe that, since we are not assuming that X, Z are canonical, the repre-
sentation of the maps in M(X, Z) as maps of transcendental Hodge structures is
not injective in general.

Note also that using the packing lemma (instead of the torsion lemma) in
the 1-dimensional case, we obtain a result which is slightly better than Tanabe’s
(see 1.1).

Then, with some additional hypotheses we can give a bound for threefolds
following a similar argument. Note the difference in the arguments for surfaces
and threefolds. In the first case, to prove the geometric lemma we reduce the
proof to the one for curves. Instead, in the case of threefolds we need to use the
full result on surfaces.

Apparently this “inductive procedure” does not extend to higher dimensions
due to the method used and to the lack of a smooth minimal model in higher
dimension.

In the last section we extend the torsion part in Tanabe’s work. We use this
to give a bound in general (see 1.5). This bound is clearly worse than the one
obtained for surfaces and threefolds.

The paper is organized as follows: in §2 we give some preliminaries, mainly
on Hodge structures. We also recall Kani’s packing lemma.

To give the statements of the following theorems, we introduce the following
function

P(a, e) = (a + 1)e − (a− 1)e, a ∈ R, e ∈ N.

This is a polynomial on a. Its leading term is

2eae−1.

We also denote

ρ = ρ(X, Z) =
Kn

X

Kn
Z

where X, Z are n-dimensional varieties (if n = 1, then ρ = g(X)−1
g(Z)−1 ).

Let bi(X) be the Betti number dim Hi(X,C).
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In §3 we prove the theorem on curves:

THEOREM 1.1. Let X, Z be smooth irreducible projective curves of genus ≥ 2.
Then

m(X, Z) ≤ 4(g(X)− 1)ρP(2ρ, 2g(X))

= 8(g(X)− 1) ρ

[(
2g(X)

1

)
(2ρ)2g(X)−1 +

(
2g(X)

3

)
(2ρ)2g(X)−3 · · ·

]
.

Section 4 is devoted to the proof of:

THEOREM 1.2. Let X, Z be smooth irreducible projective minimal surfaces of
general type. Assume pg(Z) ≥ 2. Then

m(X, Z) ≤ 4(K2
X)2 P(4

√
2 ρ, 2b2(X)− 2).

Since ρ ≤ K2
X ≤ 9χ(OX) (Bogomolov-Miyaoka-Yau) and

b2(X) = χtop(X) + 4q(X)− 2 = 12χ(OX)− K2
X + 4q(X)− 2

= 8χ(OX) + 4pg(X)− K2
X + 2 ≤ 17χ(OX) + 10

(we use Noether’s formula and Noether’s inequality) we immediately obtain a
bound for surfaces in terms of the Euler characteristic:

COROLLARY 1.3. Let X, Z be smooth irreducible projective surfaces of general
type. Assume pg(Z) ≥ 2. Put χ = χ(OX). Then

m(X, Z) ≤ 4 · 92 χ2 P(36
√

2χ, 34χ + 18).

In 1.3 we do not assume the surfaces are minimal. This will be useful in the
proof of the next theorem for threefolds, which will be given in §5.

THEOREM 1.4. Let X, Z be smooth irreducible projective complex threefolds of
general type. Assume that KX , KZ are nef, pg(Z) ≥ 2 and the image of Z by the
bicanonical map has dimension at least 2. Then

m(X, Z) ≤ 4 · 92 h2 K3
X P(36

√
2 h, 34h + 18) · P(4

√
2ρ, 2b3(X)),

where
h = h0(X,O(2KX)) + h0(X, Ω2

X)− pg(X) + 1.

Finally in §6 we find a bound for n-dimensional varieties by extending Tan-
abe’s torsion part to higher dimension. The result we obtain is:
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THEOREM 1.5. Let X, Z be two n-dimensional varieties of general type such
that KX , KZ are nef and dim (ϕ|KZ |(Z)) ≥ n− 1. Then:

m(X, Z) ≤ 2n(Kn
X)2(2ρ + 1)bn(Z)·bn(X).

In the case of birational automorphisms we obtain a bound with a lower
exponent than the one given in [5]:

COROLLARY 1.6. Let X be a variety of general type with KX nef and such that
dim (ϕ|KX |(X)) ≥ n− 1, then

#aut(X) ≤ 2n (Kn
X)2 3bn(X)2

.

Acknowledgments. We are grateful to M. A. Barja and A. Collino for valu-
able suggestions during the preparation of this paper.

The work was completed during the second author’s stay at the Institut de
Matemàtiques de la Universitat de Barcelona (IMUB). This stay was supported
by the Generalitat de Catalunya’s PIV programm.

2. Notations and preliminaries.

2.1. Notations. Throughout the paper we use the symbols M(X, Z) and
m(X, Z) as in the introduction: the former is the set of rational dominant maps
from to X to Z and the latter is its number of elements.

Analogously, Mr(X, Z) is the subset of maps with fixed degree r and the
number of its elements is mr(X, Z).

We also keep the notations:

ρ = ρ(X, Z) =
Kn

X

Kn
Z

, where n = dim X = dim Z,

and

bi(X) = dim Hi(X,C).

We work over the complex numbers. In this paper variety means irreducible,
smooth, projective, complex variety.

2.2. Hermitian spaces. Let (V , hV ) be a hermitian of finite dimension space
we shall denote the norms for v ∈ V by

‖v‖ =
√

hV (v, v).
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We recall that, for any map f : V → W between two hermitian spaces, we may
define the adjoint map g: W → V as the unique linear map such for all v ∈ V
and w ∈ W

hW( f (v), w) = hV (v, g(w)).

2.3. Hodge structures and morphisms. Let X be a complete smooth al-
gebraic variety of dimension n. Let Hn(X) be the Hodge structure on X on the
n-cohomology of X. The lattice HZ, is

Hn(X,Z)/torsion

and the standard Hodge decomposition: HZ⊗C = Hn(X,C) = ⊕Hp,q, Hp,q = Hq,p.
Integration gives a natural polarization:

Q: Hn(X,C)× Hn(X,C)→ C

which is unimodular, by Poincaré duality, on HZ. We recall that a Hodge sub-
structure R of H is given by a sublattice RZ ⊂ HZ such that RC = RZ⊗C = ⊕Rp,q,
where Rp,q = Hp,q ∩ RC. The restriction of Q gives a polarization of R nonnec-
essarily unimodular over the integers. The polarization makes possible to define
the orthogonal Hodge structure R′. Set R′

Z
= {γ ∈ HZ | Q(γ,β) = 0 ∀β ∈ RZ}.

One has RC ⊕ R′
C

= HC.

Definition 2.1. The transcendental Hodge structure of X is the smallest
Hodge substructure TX of Hn(X) containing Hn,0(X). Its lattice TZ,X will be called
the transcendental lattice of X. For any integer d ≥ 2 let Td,X = TZ,X/d · TZ,X .
Observe that if n is even then there exists a ( n

2 , n
2 )-integral class induced by a

projective immersion; therefore TX �= Hn(X,C) and dim TX ≤ bn(X)− 1.

Note that TX is a birational invariant of X. Since TX is contained in the
primitive cohomology, then (due to the Hodge-Riemann relations, see [4], page
123) the cup-product modified with the Weil operator induces on TX a hermitian
product that we denote simply by (, ).

Let Z be another smooth complete variety of dimension n and

f : X ��� Z

be a dominant rational map of degree r = deg f . We then have two Hodge structure
morphisms:

f ∗: TZ → TX , f∗: TX → TZ .

We have that they are adjoint maps; in other words:

(α, f∗(β)) = ( f ∗(α),β).(2.2)
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We may also define the group homomorphism fd: Td,Z → Td,X induced by f ∗.
We have the following:

LEMMA 2.3.
(a) If γ ∈ TZ then f∗f ∗(γ) = rγ.
(b) If γ ∈ TZ then ‖f ∗(γ)‖ =

√
r ‖γ‖.

(c) For any β ∈ TX ‖f∗(β)‖ ≤
√

r ‖β‖ and ‖f∗(β)‖ =
√

r ‖β‖ if and only if
there is γ ∈ TZ: β = f ∗(γ).

Proof. Parts (a) and (b) are well known. To see (c), we write β = f ∗(β0) + η,
where η is orthogonal to the image of f ∗. Therefore:

( f∗( f ∗(β0) + η), f∗( f ∗(β0) + η)) = ( f∗( f ∗(β0)), f∗( f ∗(β0)))

= deg ( f )2(β0,β0) = deg ( f ) ( f ∗(β0), f ∗(β0))

≤ deg ( f ) (β,β).

2.4. Packing lemma. We will need the following lemma, which appears in
[7]. To state it more clearly we define:

P(a, e) = (a + 1)e − (a− 1)e,

where a ∈ R and e ∈ N. Observe that a ≤ a′ implies P(a, e) ≤ P(a′, e). Also
e ≤ e′ implies P(a, e) ≤ P(a, e′).

LEMMA 2.4. Let v1, . . . , vN ∈ Rv , ‖vi‖ = R > 0, ∀i. Assume ‖vi − vj‖ ≥ 2d,
∀i, j, i �= j, then

N ≤ P
(

R
d

, v
)

= 2

[(
v

1

)(
R
d

)v−1

+

(
v

3

)(
R
d

)v−3

+ · · ·
]

.

2.5. Degree of rational maps. Let X, Z be two n-dimensional varieties of
general type such that KX and KZ are nef. One has:

LEMMA 2.5. Let f : X ��� Z be a rational dominant map. Then

deg ( f ) ≤ ρ(X, Z).

Proof. For n = 1 it is a consequence of Riemann-Hurwitz formula. Assume
n ≥ 2. Since KX , KZ are nef, by taking l >> 0, the linear systems |lKZ|, |lKX|
are base-point-free. Then, we can think of f as a linear projection in a projective
space. Then the degree of f is bounded by the quotient of the degrees of ϕ|lKX |(X)
and ϕ|lKZ |(Z); hence deg( f ) ≤ Kn

X/Kn
Z .
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2.6. Rational domain. With two n-dimensional varieties of general type
X, Z fixed, recall that M(X, Z) is finite (see [8]). Assuming that it is not empty,
we label its elements M(X, Z) = {fi}, i = 1, . . . , m(X, Z).

Definition 2.6. A Zariski open set W ⊂ X will be called a rational domain
for X and Z if any fi ∈ M(X, Z) defines a regular morphism fi|W : W → Z and for
any point x ∈ W fi(x) = fj(x) implies i = j.

A rational domain always exists since the closure of the sets
fi = fj, i �= j are proper algebraic subsets of X. Note for x ∈ W,

#{zi = fi(x)} = m(X, Z).

3. Curves. We consider the case of curves, so 1 = dim X = dim Z.

3.1. Tanabe’s geometric lemma. Our first goal is to rewrite the geometric
part of Tanabe (see [10]). We fix a holomorphic form on Z, 0 �= α ∈ H0(Z, KZ)
and we say that two maps f , g are equivalent if and only if f ∗(α) = g∗(α). We
want to give a bound of the number elements of the equivalence class [ f ] of a
map f .

Let x be a zero of f ∗(α) and put z = f (x) ∈ Z. Let us denote by D the Poincaré
disk and p: D→ X and q: D→ Z be the universal coverings such that p(0) = x
and q(0) = z. To any holomorphic map f : X → Z such that f (x) = z, there is a
unique lifting holomorphic map F: D → D such F(0) = 0 and q(F(t)) = f (p(t))
for all t ∈ D. Assume g ∈ [ f ] is another nonconstant holomorphic function with
g(x) = z and lifting G: D→ D, G(0) = 0.

We give the following global version of Tanabe’s lemma.

LEMMA 3.1. Under the previous hypothesis,
(a) There is a constant c such that F(t) = c G(t).
(b) If n is the order of α at z then cn+1 = 1.

Proof. Let us consider the pull-back of the form α on D:

q∗(α) = k(t)dt.

The condition f ∗(α) = g∗(α) translates into

k(F(t)) · dF(t) = k(G(t)) · dG(t).

If K(t): D→ R is the primitive of k(t) such that K(0) = 0 we obtain:

K(F(t)) = K(G(t)).

Now if k(t) has order n at zero, K(t) has a zero of order n + 1 and we can find
a function w(t) defined near zero such that w(K(t)) = tn+1. From w(K(F(t))) =
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w(K(G(t))) we obtain

F(t)n+1 = G(t)n+1.

That is, F(t) = c G(t), cn+1 = 1.

COROLLARY 3.2. The number of elements of [ f ] is less than or equal to
4(g(X)− 1).

Proof. Due to the lemma, for each zero x of f ∗(α) we have at most

ordf (x)(α) + 1

maps of [ f ] with the same image at x. Consider for any x ∈ ( f ∗(α))0 the set

Ax = {g ∈ [ f ] | g(x) = z},

where z is a fixed zero of α. Observe that

[ f ] =
⋃

x∈( f ∗(α))0

Ax.

Therefore

#[ f ] ≤
∑

x∈( f ∗(α))0

(ordf (x)(α) + 1) ≤
∑

x∈( f ∗(α))0

(ordx( f ∗(α)) + 1)

≤ 2g(X)− 2 +
∑

x∈( f ∗(α))0

1 ≤ 4(g(X)− 1).

3.2. Proof of Theorem 1.1. Let α̃ be a nontrivial element in TZ,Z with
minimal norm. We denote by α its (1, 0)-part. So

α̃ = α + α.

We define the equivalence relation ∼ in M(X, Z) as follows:

f ∼ g if and only if f ∗(α̃) = g∗(α̃).

It is obvious that

f ∼ g if and only if f ∗(α) = g∗(α).

In particular, the class of f under the relation ∼ is the set [ f ] considered in the
§3.1.
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Let us fix a positive integer r. Observe that ∼ is in fact an equivalence
relation in Mr(X, Z), since ‖f ∗(α̃)‖ =

√
deg( f ) ‖α̃‖. By 2.5 the constant r is

bounded above by ρ. So, due to 3.2, we get

m(X, Z) =
ρ∑

r=1

mr(X, Z) ≤ 4(g(X)− 1)
ρ∑

r=1

#(Mr(X, Z)/ ∼).

Now we use the injection

Mr(X, Z)/ ∼ ↪→ H1(X,Z)⊗ R
f �−→ vf := (1/‖α̃‖) f ∗(α̃)

to bound the number of elements of the quotient Mr(X, Z)/ ∼. Observe that the
image belongs to the sphere of radius

√
r centered at the origin in a real vector

space of dimension 2g(X).

PROPOSITION 3.3. Let f , g: X −→ Z be two maps of degree r such that f ∗(α) �=
g∗(α). Then

‖vf − vg‖ ≥
1√
r

.

Proof. Observe that

(( f∗ − g∗)( f ∗(α̃)− g∗(α̃)), α̃) = ( f ∗(α̃)− g∗(α̃), f ∗(α̃)− g∗(α̃)) �= 0,

hence we can assume f∗( f ∗(α̃)− g∗(α̃)) �= 0. Therefore by using the minimality
of the norm of α̃:

‖α̃‖ ≤ ‖f∗( f ∗(α̃)− g∗(α̃))‖ ≤
√

r ‖f ∗(α̃)− g∗(α̃)‖,

which implies the statement.

By Lemma 2.4 with d = 1
2
√

r
, v = 2g(X) and R =

√
r, we get

#(Mr(X, Z)/ ∼) ≤ P(2r, 2g(X)) ≤ P(2ρ, 2g(X)).

Together, this gives

m(X, Z) ≤ 4(g(X)− 1) ρP(2ρ, 2g(X)),

proving 1.1.
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Remark 3.4. Notice that

P(2ρ, 2g(X)) =

[(
2g(X)

1

)
(2ρ)2g(X)−1 +

(
g(X)

3

)
(2ρ)2g(X)−3 + · · ·

]
,

so the dominant term of the bound has exponent 2g(X)−1 instead of the exponent
2g(X) that appears in Tanabe’s bound.

Remark 3.5. One can improve the bound given above by finding a better

lower bound for ‖vf − vg‖. In fact we can prove: ‖vf − vg‖ ≥
√

r2+1
r3 .

4. Surfaces. In this section we assume that X and Z are surfaces of general
type and that pg(Z) ≥ 2. The general strategy to find a bound for m(X, Z) is
similar to that used for curves: we find a bound for the number of maps which
fix a pencil of 2-holomorphic forms minimal in some sense. Then we use the
transcendental lattice to represent the maps and we prove a result similar to 3.3.

4.1. Generalization of the geometric lemma. We fix two independent (2, 0)
forms α and β on Z. We define the following equivalence relation on M(X, Z):

f ∼ g ⇐⇒ f ∗(α) = g∗(α) and f ∗(β) = g∗(β).

Remark 4.1. If f ∼ g then | f ∗(β)|2 = |g∗(β)|2 then deg f = deg g, that is, the
above relation gives a equivalence relation on Mr(X, Z).

As in §3, we would like to evaluate the number of elements in an equivalence
class [ f ]. To do so we take the pencil L generated by α and β. We also let B be
the base curve (it could be B = ∅) of L. We may assume that β is the general
element of L. Then the zero divisor (β)0 of β can be written as

(β)0 = B +
s∑

i=1

Ci,

where Ci are reduced and irreducible curve of geometric genus g with g ≥ 2. We
may also assume that Ci · Cj ≥ 0.

Now we denote by L′ the pencil f ∗(L), which is independent of the choice
of a map in [ f ].

Then we obtain

( f ∗(β))0 = B′ +
s′∑

i=1

C′i ,

where B′ is the base divisor of the pencil and C′i are irreducible reduced curves of
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genus g′ ≥ 2. We denote by Ni (respectively N′i ) the normalization of the curve
Ci (respectively C′i). We have the following lemma:

LEMMA 4.2. Let s be the number of irreducible components of (β)0−B. Then:
(a) s ≤ K2

Z.
(b) g(Ni) ≤ K2

Z + 1, g(N′i ) ≤ K2
X + 1.

Proof. (a) Since Ci moves, then KZ · Ci ≥ 1. Therefore:

s ≤ KZ ·
s∑

i=1

Ci = KZ · (KZ − B) ≤ K2
Z .

(b) The proof is given on Z. Observe that, since KZ is nef:

(KZ + Ci)(KZ − Ci) ≥ Ci(KZ − Ci) ≥ 0.

So, K2
Z ≥ C2

i . In fact, if there is more than one component, by 2-connectivity
Ci(KZ − Ci) ≥ 2 and then K2

Z ≥ C2
i + 2. Then we have

g(Ni) ≤ pa(Ci) =
1
2

(C2
i + Ci · KZ) + 1 ≤ 1

2
(K2

Z + K2
Z) + 1 = K2

Z + 1.

Let us consider Z′ −→ P
1 to be the minimal resolution of the pencil

Z ��� P1.

Let X′ −− → P
1 be the minimal resolution of the pencil on X ×Z Z′. Then the

map f and the forms α, β pull-back to f ′, α′, β′ and we obtain

[ f ] = [ f ′] = {g′: X′ ��� Z′ | f ′∗(α′) = g′∗(α′), f ′∗(β′) = g′∗(β′)}.

Observe that an irreducible component of a general fibre of the pencil on X′

(resp.Z′) is N′i (resp. Ni).
Now we fix the component N′1. Then [ f ′] is the union of the subsets of maps

which send N′1 to Ni, i = 1, . . . , s:

[ f ′] =
⋃

i

{g ∈ [ f ′] | g(N′1) = Ni}.

Observe that N′1 intersects the rational domain of X′ and Z′ (see 2.6) because it
is a component of a generic element of a pencil. Moreover by taking the residue
of α′ ⊗ α′/β′ along Ni a 1-form α̂i is induced on Ni (see [4], pp. 500–505). By
definition, the pull-back of α̂i is the same for all the maps in [ f ]. Therefore

{g ∈ [ f ′] | g(N′1) = Ni} ⊂ {g: N′1 −→ Ni | g∗(α̂i) fixed}.
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We are ready to prove:

PROPOSITION 4.3. One has the inequality:

#[ f ] ≤ 4K2
Z K2

X .

Proof. We use 3.2 in the last inclusion of sets and we obtain, by means of 4.2:

#[ f ] = #[ f ′] ≤
s∑
1

4(g(N′1)− 1) = 4s K2
X ≤ 4K2

Z K2
X .

4.2. Proof of 1.2. Let α̃ ∈ TZ,Z be an element of the transcendental lattice
in Z with minimal norm (see 2.1). Put α the (2, 0)-component of α̃. The smallest
Hodge substructure containing α̃ is denoted by 〈α̃〉. If 〈α̃〉 = TZ , then β̃ is any
(2, 0)-form linearly independent with α. If, on the contrary, 〈α̃〉 �= TZ we can find
a decomposition of Hodge structures TZ = 〈α̃〉⊕⊥R. Then we choose an element
β̃ ∈ RZ with minimal norm. By construction its (2, 0)-component β is linearly
independent with α.

Definition 4.4. Two rational maps f , g ∈ M(X, Z) are equivalent if and only
if f ∗(α̃) = g∗(α̃) and f ∗(β̃) = g∗(β̃).

We denote this relation also by ∼, since by the next lemma it coincides with
the relation given in 4.1.

LEMMA 4.5. Let f , g ∈ M(X, Z). With the notations above:

f ∗(α̃) = g∗(α̃) if and only if f ∗(α) = g∗(α)

and similarly for β̃.

Proof. One implication is obvious. In the opposite direction, we have

f ∗(α) = g∗(α) and f ∗(α) = g∗(α).

Therefore f ∗(α̃)− g∗(α̃) is a (1, 1) integral element, so it does not belong to the
transcendental lattice.

Let us consider the injection

Mr(X, Z)/ ∼ ↪→ (TX,Z × TX,Z)⊗ R

[ f ] �−→ vf := (
1
‖α̃‖ f ∗(α̃),

1

‖β̃‖
f ∗(β̃)).

Then:
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PROPOSITION 4.6. Let f , g ∈ Mr(X, Z) such that g /∈ [ f ]. Then:

‖vf − vg‖ ≥
1

2
√

r

Proof. Assume first that f ∗(α̃) �= g∗(α̃). Then, by arguing as in 3.3 we obtain

‖vf − vg‖ ≥ ‖
1
‖α̃‖ f ∗(α̃)− 1

‖α̃‖g∗(α̃)‖ ≥ 1√
r
>

1
2
√

r
.

If f ∗(α̃) = g∗(α̃), then f and g coincide on 〈α̃〉, which implies 〈α̃〉 �= TX .
Observe that

(( f∗ − g∗)( f ∗(β̃)− g∗(β̃)), α̃) = ( f ∗(β̃)− g∗(β̃), f ∗(α̃)− g∗(α̃)) = 0

and

(( f∗ − g∗)( f ∗(β̃)− g∗(β̃)), β̃) = ‖f ∗(β̃)− g∗(β̃)‖2 �= 0.

Hence, ( f∗ − g∗)( f ∗(β̃) − g∗(β̃)) is a nontrivial element in the lattice RZ,
being R = 〈α̃〉⊥ the orthogonal Hodge structure to 〈α̃〉 in TX . Hence its norm is
greater or equal to ‖β̃‖. We get

‖β̃‖ ≤ ‖( f∗ − g∗)( f ∗(β̃)− g∗(β̃))‖
≤ ‖f∗( f ∗(β̃)− g∗(β̃))‖ + ‖g∗( f ∗(β̃)− g∗(β̃))‖ ≤ 2

√
r‖f ∗(β̃)− g∗(β̃)‖

and the proposition follows.

Finally, by using the packing lemma with R =
√

2r, d = 1
4
√

r
and the fact that

r ≤ ρ (see 2.5) and 4.3 we have:

m(X, Z) ≤ 4K2
Z K2

X

ρ∑
r=1

#(Mr(X, Z)/ ∼)

≤ 4K2
Z K2

X ρP(4
√

2 ρ, 2 dim TX)

≤ 4K2
X K2

X P(4
√

2 ρ, 2b2(X)− 2),

the last inequality comes from dim TX ≤ b2(X)− 1. Therefore the proof of 1.2 is
finished.

5. Threefolds. We now consider the 3-dimensional case. As we will see
below, we can concentrate on the geometric part of the proof, since the repre-
sentation of Mr(X, Z)/ ∼ in the transcendental lattice and the estimation of the
distance work, word by word, in the same way.
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We assume X, Z of general type, KX , KZ are nef, pg(Z) ≥ 2 and

dim (ϕ|2KZ |(Z)) ≥ 2.

Fix two linearly independent (3, 0) forms α and β. As in the precedent sections,
given f : X ��� Z dominant, we focus in the estimation of the number of elements
of

[ f ] = {g: X ��� Z | f ∗(α) = g∗(α), f ∗(β) = g∗(β)}.

Remark 5.1. We use a pencil on Z to reduce the proof to the case of surfaces.
We could instead fix 3 forms and try to reduce directly to curves. This method
fails, since the corresponding map to P2 could not be dominant. Observe that we
cannot choose generic forms since in order to apply packing arguments we need
to fix them with some minimal properties.

We follow closely the case of surfaces: we have a pencil on Z, β is a general
element of the pencil and its divisor of zeros is:

B + S1 + · · · + Ss,

where B is the base divisor.
In the same way, the divisor of zeros of f ∗(β) can be written:

B′ + S′1 + · · · + S′s′ ,

where B′ is the base divisor.
Denote r = deg ( f ). Then:

LEMMA 5.2. One has the following inequality:

s ≤ K3
Z .

Proof. Since Si moves, a convenient pluricanonical map sends Si to a surface.
Therefore, for l >> 0, (lKZ)2Si > 0, so K2

ZSi > 0. Hence, by the nefness of KZ:

s ≤
s∑

i=1

K2
ZSi = K2

Z(KZ − B) ≤ K3
Z .

Consider Z′ −→ Z to be the minimal resolution of the pencil Z ��� P1

induced by α and β and let X′ be the minimal resolution of the induced pencil
on X ×Z Z′. The general fibre of the pencil on Z′ is a disjoint union of smooth
surfaces T1, . . . , Ts, being Ti a desingularization of Si. We have in the same way
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the smooth surfaces T ′1, . . . , T ′s′ on X′. Then the map f and the forms α, β pullback
to f ′, α′, β′ and we obtain

[ f ] = [ f ′] = {g′: X′ ��� Z′ | f ′∗(α′) = g′∗(α′), f ′∗(β′) = g′∗(β′)}.

Now we divide the set [ f ′] into subsets depending on the image of the fixed
surface T ′1:

[ f ′] =
⋃

i

{g ∈ [ f ′] | g(T ′1) = Ti} ⊂
⋃

i

M(T ′1, Ti).

The second inclusion follows since the surface T ′1 intersects the rational domain
for X −− → Z.

PROPOSITION 5.3. One has:

#[ f ] ≤ 4 · 92 K3
Z h2 P(36

√
2 h, 34h + 18),

where h = h0(X,OO(2KX)) + h0(X, Ω2
X)− pg(X) + 1.

Proof. By the inclusion above

#[ f ] = #[ f ′] ≤
s∑

i=1

m(T ′1, Ti).

The surfaces T ′1, Ti are of general type, since they move in a rational pencil and
the threefolds are of general type.

Observe that, since the image of ϕ|2KZ | has dimension ≥ 2 , there exist at
least two elements α1,α2 ∈ H0(Z′,ω⊗2

Z′ ) such that the residues

Res Ti

(
α1

β′

)
, Res Ti

(
α2

β′

)

define on each component Ti two linearly independent holomorphic 2-forms.
Therefore pg(Ti) ≥ 2. With these hypothesis we can apply corollary 1.3 to obtain

m(T ′1, Ti) ≤ 4 · 92χ2 P(36
√

2χ, 34χ + 18),

where χ is χ(OT′1
).

To finish the proof we have to bound χ by h and use s ≤ K3
Z .
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Let us consider the exact sequence of sheaves on X′:

0→ ωX′ −→ ωX′(T
′
1) −→ ωT′1

→ 0.

By taking the attached long exact sequence in cohomology we obtain

pg(T ′1) ≤ h1(X,ωX) + h0(X,ω⊗2)− pg(X) = h0(X, Ω2
X) + h0(X,ω⊗2)− pg(X).

Since χ ≤ pg(T ′1) + 1 we are done.

To prove 1.5 we can imitate the proof of 1.2 given in the last section. The
only difference is that the analogous statement to Proposition 4.5 is no longer
true. However the obvious implication

f ∗(α̃) = g∗(α̃) ⇒ f ∗(α) = g∗(α)

is enough to ensure that the equivalence class of f is contained in [ f ].
Then, by using 5.3:

m(X, Z) ≤ 4 · 92 K3
Z h2 P(36

√
2 h, 34h + 18) ρP(4

√
2ρ, 2dim TX).

The statement of 1.4 follows replacing ρ with
K3

X
K3

Z
.

6. Torsion lemma. In this section we generalize the torsion part of Tanabe’s
work to higher dimensions. With some hypotheses, this allows us to produce
bounds for m(X, Z) in any dimension.

Let f : X → Z and g: X → Z be dominant maps of degree r. We let f∗, f ∗,
fd, g∗, g∗ and gd induced maps (see §2).

We have the following:

LEMMA 6.1. If fd = gd for some d > 2r then f ∗ = g∗.

Proof. Let h = f ∗ − g∗ we have to prove that TZ = ker (h). If not, let V be
Hodge polarized structure orthogonal to ker h. Let h′: V → TZ be the restriction
of h. Now h′ is injective. Set µ ∈ VZ such that its norm is minimal in the lattice.
We consider

λ = h′(µ) = f ∗(µ)− g∗(µ).

We would have that λ �= 0. Moreover from the hypothesis fd = gd we have that
λ = d · σ where σ ∈ TZ,Z is an integral class.

We also consider βf = f∗(λ) and βg = g∗(λ). We have that βf (and βg)) are in
V . To see this, first we remark that f∗f ∗ = g∗g∗, since

f∗f
∗(α) = r · α = g∗g

∗(α).
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Now fix α ∈ ker (h), f ∗(α) = g∗(α), we have

(α,βf ) = (α, f∗(λ)) = ( f ∗(α),λ) = ( f ∗(α), f ∗(µ)− g∗(µ))

= ( f ∗(α), f ∗(µ))− ( f ∗(α), g∗(µ)) = ( f∗f
∗(α),µ))− ( f ∗(α), g∗(µ))

= (g∗g
∗(α),µ))− ( f ∗(α), g∗(µ)) = (g∗(α), g∗(µ))− ( f ∗(α), g∗(µ))

= (h(α), g∗(µ)) = 0.

Then we have

βf − βg = ( f∗ − g∗)(λ) = ( f∗ − g∗)( f ∗ − g∗)(µ)

is not zero. Indeed

(βf − βg,µ) = (( f ∗ − g∗)(µ), f ∗ − g∗)(µ)) = ‖λ‖2 �= 0.

It follows that either βf or βg are not zero.
We may assume now that βf = f∗(λ) �= 0. Recall that we have that λ = d · σ

where σ ∈ TZ,Z . We have then

‖f∗(( f ∗ − g∗)(µ))‖ = ‖f∗(λ)‖ = d · ‖f∗(σ)‖ ≥ d · ‖µ‖,

by the minimality of ‖µ‖.
In addition:

‖f∗(( f ∗ − g∗)(µ))‖ ≤
√

r ‖( f ∗ − g∗)(µ))‖ ≤
√

r (‖f ∗(µ)‖ + ‖g∗(µ)‖) = 2r‖µ‖.

Hence

d ≤ 2r.

The rest of the section is devoted to the proof of Theorem 1.5. We fix X, Z
two n-dimensional varieties of general type, n ≥ 2, such that KZ is nef and
dim (ϕ|KZ |(Z)) ≥ n− 1 (in particular pg(Z) ≥ n).

Definition 6.2. We say that two maps f , g ∈ M(X, Z) are equivalent if f ∗ = g∗

on TZ .

As usual we would like to compute the number of elements of the class [ f ]
of a map f . We consider a general projection of the image of the canonical map
of Z. Then we obtain a rational dominant map φ: Z ��� Pn−1. By definition
φ ◦ f = φ ◦ g.

Observe φ can be written as Z ��� P(V∗), where V is a n-dimensional vector
space contained in H0(Z,ωZ(−F)), F being the fixed divisor of the linear system
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attached to V . The general fibre of φ is

C1 + · · · + Cs

and can be thought of as the common zeros of {s1, . . . , sn−1}, where si ∈ V . Let
sn be another element in V such that s1, . . . , sn is a basis of V .

The fibre of φ ◦ f is of the form

C′1 + · · · + C′s′ .

We consider a resolution π: Z′ −→ Z of the singularities of φ. We put
π∗(si) = s′i · sE0 , where E0 is the fixed divisor of the pull-back of the linear system
and sE0 is an equation for this divisor. Then

〈
s′1, . . . , s′n

〉
⊂ H0(Z′,π∗(ωZ(− F))(− E0))

defines the map φ′ = φ ◦ π: Z′ −→ P
n. The normalizations Ni of Ci are the

components of the general fibres of φ′. By construction we see N1 + · · ·+Ns as the
common zeros of {s′1, . . . , s′n−1}. In particular we have the rational equivalence
of 1-cycles,

N1 + · · · + Ns ∼rat (π∗(KZ)− E)n−1,

where E = E0 + π∗(F) is an effective divisor (and h0(π∗(KZ) − E) > 0 by
construction).

Notice also that s′⊗n
n restricts to Ni giving a holomorphic form α.

Locally this form is computed as the following residue:

Res Ni

(
s′n · · · · · s′n · sE0

s′1 · · · · · s′n−1

)
.

Analogously we can resolve the singularities of the map X ��� Pn and the general
fibre is N′1 + · · · + N′s′ , being N′i the desingularization of C′i .

Then, since N′1 intersects the rational domain of X and Z (defined in 2.6):

[ f ] =
s⋃

i=1

{h: N′1 −→ Ni | h∗(α) fixed}.

By 3.2 we obtain

#[ f ] ≤ s · 4(g(N′1)− 1).

To go further, we need the following
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LEMMA 6.3. With our hypothesis
(a) s ≤ Kn

Z .

(b) g(N′i ) ≤
nKn

X
2 + 1, g(Ni) ≤

nKn
Z

2 + 1.

Proof. (a) Since Ci moves, KZ Ci ≥ 1. Then

s ≤ KZ

(
s∑

i=1

Ci

)
= π∗(KZ)

(
s∑

i=1

Ni

)
= π∗(KZ)(π∗(KZ)− E)n−1.

To see s ≤ Kn
Z , it is enough to prove that

π∗(KZ)(π∗(KZ)− E)n−1 ≤ Kn
Z ,

which follows from the positivity of

π∗(KZ)(π∗(KZ)n−1 − (π∗(KZ)− E)n−1)

= π∗(KZ)E(π∗(KZ)n−2 + π∗(KZ)n−3(π∗(KZ)− E) + · · ·)

(using the fact that KZ is nef).
(b) We give the proof on Z. Observe that pa(Ci) ≤ pa(

∑
i Ci) since

pa(C1) = · · · = pa(Cs) ≥ 2 and all the curves are reduced. Therefore

g(Ni) ≤ pa(Ci) ≤ pa(
∑

i

Ci)

and

2pa

(∑
i

Ci

)
− 2 = (KZ + (n− 1)(KZ − F))(KZ − F)n−1

= (nKZ − (n− 1)F)(KZ − F)n−1 ≤ nKn
Z .

The last inequality is proved as in the first part. We are done.

A direct consequence of the lemma and the discussion above is the inequality:

PROPOSITION 6.4. We have the bound:

#[ f ] ≤ 2nKn
XKn

Z .

Now we fix a degree r and we consider the map

Mr(X, Z)/ ∼−→ Hom(TZ,Z/(2r + 1)TZ,Z, TX,Z/(2r + 1)TX,Z)

which sends f to fd. The injectivity is an application of 6.1.
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Then, by 6.4:

m(X, Z) ≤ 2n Kn
XKn

Z

ρ∑
i=1

(2r + 1)dim TZ ·dim TX

≤ 2n Kn
XKn

Z ρ (2ρ + 1)bn(X) bn(Z).

This finishes the proof of 1.5.
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