
J. reine angew. Math. 560 (2003), 221—230 Journal für die reine und
angewandte Mathematik
( Walter de Gruyter

Berlin � New York 2003

Fourier transform and Prym varieties

By Juan Carlos Naranjo1) at Barcelona

Abstract. Let P be the Prym variety attached to an unramified double covering
~CC ! C. Let X ¼ X ð ~CC;CÞ be the variety of special divisors which birationally parametrizes
the theta divisor in P. We prove that X is the projectivization of the Fourier-Mukai trans-
form of a coherent sheaf p�ðM Þ, where M is an invertible sheaf on ~CC and p : ~CC ! P is the
natural embedding. We apply this fact to give an algebraic proof of the following Torelli
type statement proved by Smith and Varley in the complex case: under some hypothesis the
variety X determines the covering ~CC ! C.

1. Introduction

The Jacobian variety JðCÞ of a smooth irreducible projective curve C of genus g is
a principally polarized abelian variety (ppav in the sequel). This means that JðCÞ comes
equipped with a class, modulo algebraic equivalence, of an ample line bundle L, with
h0ðLÞ ¼ 1. Let Y be the e¤ective divisor in the linear series jLj. The image of the Abel map

C ðg�1Þ ! Picg�1ðCÞ;

D 7! OCðDÞ

is a divisor Ycan and the Riemann’s Parametrization Theorem says that Ycan corresponds
to Y under a convenient translation isomorphism

Picg�1ðCÞ ! Pic0ðCÞ ¼ JðCÞ:

It was proved by Schwarzenberger in [8] that C ðg�1Þ is the projectivization of (the
image by an automorphism on JðCÞ of ) a coherent sheaf F on JðCÞ supported on Y
called Picard sheaf (see §2 for a precise statement). In terms of the usual Fourier-Mukai
transform FJðCÞ attached to the normalized Poincaré bundle on JðCÞ � dJðCÞJðCÞ, the sheaf F
can be seen, up to a shift, as FJðCÞ

�
j�ðMÞ

�
, where M A Picg�1ðCÞ and j : C ,! JðCÞ.
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In a recent paper, Beilinson and Polishchuk ([2]) find an intrinsic characterization of
the sheaves FJðCÞ

�
j�ðMÞ

�
in terms of the ppav

�
JðCÞ;Y

�
. By applying the involutive prop-

erty of the Fourier-Mukai transform they recover the curve C, hence the Torelli Theorem is
proved.

In this paper we study the ‘‘Prym Picard sheaves’’ FP

�
p�ðM Þ

�
, where P is the Prym

variety attached to an unramified double covering

~CC ! C;

p is a natural embedding of the curve ~CC in P, and M a convenient invertible sheaf on ~CC.
In analogy with the Jacobian situation one has a variety X ð ~CC;CÞH ~CC2g�2 (see 2.10 for a
precise definition) and a map

Xð ~CC;CÞ ! Pcan HPic2g�2ð ~CCÞ

such that the fibre at D is PH 0ð ~CC;DÞ. Then the translation to P of the image of this map
is a divisor representing the polarization. We will prove in section 3 that Xð ~CC;CÞ is iso-
morphic to the projectivization (of the image by an automorphism on P) of a Prym Picard
sheaf. By using again the involutive property of the Fourier transform we get in section 4
an algebraic proof of the following theorem proved by Smith and Varley in the complex
case ([9]): under some weak hypothesis ð ~CC;CÞ can be recovered from the variety X ð ~CC;CÞ.

Acknowledgements. This paper is dedicated to my wife Anna. I am in debt to J. I.
Burgos, M. A. Barja and G. Welters for valuable conversations during the preparation of
this paper.

2. Notation, preliminaries and statements

2.1. All the varieties are defined over an algebraically closed field of characteristic
32. The projections of a product of varieties X � Y into each of its factors will be denoted
by pX and pY respectively.

2.2. Fourier-Mukai transform. Let ðA;YAÞ be a ppav of dimension g. We will
denote by ÂA the corresponding dual ppav. The polarization induces an isomorphism

lYA
: A ! ÂA; a 7! Pa :¼ OAðYa �YÞ:

Translation by a A A will be denoted by ta : A ! A, taðxÞ ¼ xþ a.

Let PA be the normalized Poincaré bundle on A� ÂA, that is:

PA j f0g�ÂAGOÂA; PA jA�fxgG x; Ex A ÂA:

Following Mukai ([5]), one can define a functor ŜS of OA-modules into the category of OÂA-
modules by

ŜSð�Þ ¼ pÂA�
�
p�
Að�ÞnPA

�
:

Naranjo, Fourier transform and Prym varieties222



The derived functor RŜS of ŜS induces an equivalence of categories between the two derived
categories DðAÞ and DðÂAÞ ([5], Theorem 2.2).

The Weak Index Theorem (W.I.T.) is said to hold for a coherent sheaf M on A

if there exists an index iðMÞ such that RiŜSðMÞ ¼ 0 for all i3 iðMÞ. We will denote the
coherent sheaf l�

YA

�
RiðMÞŜSðMÞ

�
on A by FAðMÞ.

2.3. Involutive property of the Fourier-Mukai transform. The Corollary 2.4 in [5] says,
with our notation: If W.I.T. holds for M, then so does FAðMÞ and i

�
FAðMÞ

�
¼ g� iðMÞ.

Moreover FA

�
FAðMÞ

�
is isomorphic to ð�1AÞ�ðMÞ.

2.4. Translation property of the Fourier-Mukai transform. Let lYA
ðaÞ ¼ Pa A ÂA be

an algebraically trivial line bundle on A, then

FAðMnPaÞG t�a
�
FAðMÞ

�
:

2.5. Here we recall the main Theorem of [8].

Let C be a smooth irreducible projective curve and fix a point c A C. Consider the
Poincaré bundle L over C � JðCÞ normalized by the condition Ljfcg�JðCÞ GOJðCÞ. We see
C ðg�1Þ as a JðCÞ-variety with the morphism

C ðg�1Þ ! JðCÞ;

D 7! OC

�
D� ðg� 1Þc

�
:

Then there is an isomorphism of JðCÞ-varieties

P
�
ð�1JðCÞÞ�t�oCðð2�2gÞcÞR

1pJðCÞ�
�
p�
C

�
OC

�
ðg� 1Þc

��
nL

��
GC ðg�1Þ:

2.6. We want to express the last theorem in terms of the Fourier-Mukai transform.

By seesaw lemma it is easy to see that LG ð j � lYJðCÞ Þ
�ðPJðCÞÞ, where j : C ! JðCÞ

is the natural embedding x 7! OCðx� cÞ. Since j � lYJðCÞ is a closed embedding, then
Rð j � lYJðCÞ Þ� ¼ ð j � lYJðCÞ Þ�. Hence

R1pJðCÞ�
�
p�
C

�
OC

�
ðg� 1Þc

��
nL

�

G
ð1Þ

R1pJðCÞ�
�
p�
C

�
OC

�
ðg� 1Þc

��
n ð j � lYJðCÞ Þ

�PJðCÞ
�

G
ð2Þ

l�
YJðCÞ

R1pcJðCÞ�ð j � lYJðCÞ Þ�
�
p�
C

�
OC

�
ðg� 1Þc

��
n ð j � lYJðCÞ Þ

�PJðCÞ
�

G
ð3Þ

l�
YJðCÞ

R1pcJðCÞ�

�
ð j � lYJðCÞ Þ�p�

C

�
OC

�
ðg� 1Þc

��
nPJðCÞ

�

G
ð4Þ

l�
YJðCÞ

R1pcJðCÞ�

�
p�
JðCÞ j�

�
OC

�
ðg� 1Þc

��
nPJðCÞ

�

G
ð5Þ

FJðCÞ
�
j�
�
OC

�
ðg� 1Þc

���
:
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In (1) we have replaced L by ð j � lYJðCÞ Þ
�ðPJðCÞÞ, in (2) we use that the projection

pJðCÞ : C � JðCÞ ! JðCÞ agrees with l�
YJðCÞ

� pcJðCÞ � ð j � lYJðCÞ Þ, in (3) we have applied

projection formula, (4) follows from base change with respect to the diagram

C � JðCÞ ����!
j�lYJðCÞ

JðCÞ � dJðCÞJðCÞ

pC

???y
???ypJðCÞ

C ����!j JðCÞ

and (5) is the definition of FJðCÞ.

Observe that W.I.T. holds with index 1 for j�
�
OC

�
ðg� 1Þc

��
by Corollary 2 in [8].

2.7. We can also rewrite the isomorphism by using 2.4 to delete the translation:

t�oCðð2�2gÞcÞFJðCÞ
�
j�
�
OC

�
ðg� 1Þc

���
GFJðCÞ

�
j�
�
OC

�
ðg� 1Þc

��
nPoCðð2�2gÞcÞ

�
:

Hence, by projection formula and the equality j � ¼ l�1
YJðCÞ

, this sheaf is isomorphic to

FJðCÞ
�
j�
�
oC

�
ð1� gÞc

���
:

2.8. All together gives the following statement, equivalent to 2.4 above:

P
�
ð�1Þ�JðCÞFJðCÞ

�
j�
�
oC

�
ð1� gÞc

����
GC ðg�1Þ:

2.9. Now we look to other structural maps

fM : C ðg�1Þ ! JðCÞ;

D 7! OCðDÞnM�1;

for any M A Picg�1ðCÞ.

By applying to 2.8 a base change with respect to a convenient translation on JðCÞ, we
obtain the following isomorphism of JðCÞ-varieties (via fM):

P
�
ð�1JðCÞÞ�FJðCÞ

�
j�ðoC nM�1Þ

��
GC ðg�1Þ:

2.10. Prym varieties. We recall some basic facts of the theory of Prym varieties. We
quote [7] for the details.

Let ~CC ! C be an irreducible unramified double covering of an irreducible projective
smooth curve C of genus g. The kernel of the attached norm map

Nm : Jð ~CCÞ ! JðCÞ

has two irreducible components. The component containing the origin is an abelian variety,
P ¼ Pð ~CC;CÞ, called the Prym variety attached to the covering. The principal polarization
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on Jð ~CCÞ restricts to twice a principal polarization on P, an e¤ective divisor representing the
polarization (determined up to translation) is denoted by X. Therefore ðP;XÞ is a ppav.

We will fix a point ~cc A ~CC and we will denote by s the involution in ~CC associated to the
covering. We define p : ~CC ! P the embedding given by pð~xxÞ ¼ ~xx� sð~xxÞ þ ~cc� sð~ccÞ.

The theta divisor can be defined canonically in

P can ¼ P canð ~CC;CÞ :¼ fL A Pic2g�2ð ~CCÞ jNmðLÞ ¼ oC ; h
0ð ~CC;LÞ eveng;

as Xcan ¼ fL A P can j h0ð ~CC;LÞ > 0g.

The analogue of the symmetric product for the Prym variety is the subvariety
X ¼ Xð ~CC;CÞ of ~CCð2g�2Þ given by the e¤ective divisors with norm in the complete linear
system joC j and h0 even. If C is non hyperelliptic, then X is irreducible and normal (cf. [1]).

2.11. Statements. In the next section we will prove the following result:

Theorem 2.1. For any Prym variety, and for an M A P can there is an isomorphism

X GPð�1PÞ�
�
FP

�
p�s

�ðM Þ
��
:

By applying this theorem and the properties of the Fourier-Mukai transform we will
prove in section 4 the following theorem:

Theorem 2.2. Let ~CC ! C be an irreducible unramified double covering of a smooth

complete irreducible curve of genus gf 3, and let ðP;XÞ be its attached Prym variety. We

assume C is non hyperelliptic and dimSingðXÞe g� 6. Then the variety X ð ~CC;CÞ determines

the covering ~CC ! C.

3. Prym Picard sheaves

In this section we will prove Theorem 2.1. We fix an unramified double covering
~CC ! C as in 2.8, and a point ~cc. From now on the map j : ~CC ! Jð ~CCÞ will be the embedding
given by jð~xxÞ ¼ O~CC

�
~xx� sð~ccÞ

�
. We keep the notations introduced in section 2.

3.1. Let M A P canHPic2g�2ð ~CCÞ. Observe that the genus of ~CC is 2g� 1, so
2g� 2 ¼ gð ~CCÞ � 1. One has a pull-back diagram

X ¼ Xð ~CC;CÞ R��! ~CCð2g�2Þ
???y

???yfM

P ¼ Pð ~CC;CÞ R��! Jð ~CCÞ:

Therefore, by applying the isomorphism in 2.9, we get

X GP
�
ð�1Jð ~CCÞÞ

�FJð ~CCÞ
�
j�ðo ~CC nM�1Þ

�
jP
�
:
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3.2. Remark. The behaviour of the Fourier-Mukai transform with respect to maps
of abelian varieties is only easy to handle in the case of isogenies. In general, it seems dif-
ficult to relate the tranforms FJð ~CCÞ and FP. However we only need to compare the values
on some coherent sheaves supported on the curve ~CC, and in this case we have the following
result.

Proposition 3.1. For any M A Pcan, the restriction to P of the sheaf

FJð ~CCÞ
�
j�ðM Þ

�

is isomorphic to:

FP

�
p�ðM Þ

�
:

Notice that this proposition implies (replace M by o ~CC nM�1) the Theorem 2.1.

Proof. We begin by noticing that arguing as in 2.6, we can write:

3.3.

FJð ~CCÞ
�
j�ðM Þ

�
GR1pJð ~CCÞ�

�
p�

~CC
ðM Þn ~LL

�
;

where ~LL is the Poincaré bundle on ~CC � Jð ~CCÞ normalized by the condition

~LLjfsð~ccÞg�Jð ~CCÞ GOJð ~CCÞ:

We will prove a similar fact for the transform FP. We will use the next result.

Lemma 3.2. For all a A P the following equality holds:

OPðXa � XÞj ~CC ¼ a:

Proof. This is a standard fact on Prym varieties (see for instance [9], section 8). For
the convenience of the reader we give the sketch of a proof. By the Theorem of the square
we can assume that X is of the form Xcan

�a where a is a convenient element in P can. We
assume that h0ðaÞ ¼ 2 and h0

�
aþ ~cc� sð~ccÞ

�
¼ 1. Put p1 þ � � � þ p2g�2 for the e¤ective

divisor in the linear series jaþ ~cc� sð~ccÞj. Then p
�
sðpiÞ

�
¼ sðpiÞ � pi þ ~cc� sð~ccÞ A Xcan

�a .
Since ~CC � X ¼ 2g� 2, we get the isomorphism

OPðXcan
�a Þj ~CC GO~CC

�
sðaÞ þ sð~ccÞ � ~cc

�
:

The statement follows easily. r

Corollary 3.3. The invertible sheaf on ~CC � P:

LP :¼ ðp� lXÞ�ðPPÞ

satisfies

LP j fsð~ccÞg�P ¼ OP; LP j ~CC�fag ¼ a:
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Proof. Straightforward application of the lemma and seesaw. r

3.4. Now we can use the argument in 2.6 by replacing j by p, lYJðCÞ by lX, and using
the corollary. Then:

FP

�
p�ðM Þ

�
GR1pP�

�
p�

~CC
ðM ÞnLP

�
:

Now, by applying seesaw lemma once more,

3.5.

~LLj ~CC�P GLP:

Finally,

FJð ~CCÞ
�
j�ðM Þ

�
jP G

ð1Þ
R1pJð ~CCÞ�

��
p�

~CC
ðM Þn ~LL

��
jP

G
ð2Þ

R1pP�
��
p�

~CC
ðM Þn ~LL

�
j ~CC�P

�

G
ð3Þ

R1pJð ~CCÞ�
�
p�

~CC
ðMÞnLP

�

G
ð4Þ

FP

�
p�ðM Þ

�
:

We have applied 3.3 in (1), 3.5 in (3), 3.4 in (4) and base change with respect to the fol-
lowing diagram in (2)

~CC � P R��! ~CC � Jð ~CCÞ

pP

???y
???ypJð ~CCÞ

P R��! Jð ~CCÞ: r

3.6. Chern classes. In [8] the Chern classes of the Picard sheaves are computed.
Since we work up to translation we are interested in the groups Ai of classes of cycles
modulo algebraic equivalence. The statement in [8] can be translated to

ci
�
FJð ~CCÞ

�
j�ðM Þ

��
¼ ½Wi� A Ai

�
Jð ~CCÞ

�
Q
; i ¼ 1; . . . ; ~gg

where Wi stand for the Brill-Noether loci W 0
i ð ~CCÞ.

Since P � ~YY ¼ 2X and ½Wi� ¼ ½~YY� i=i!, then Proposition 3.1 implies that

ci
�
FP

�
p�ðM Þ

��
¼ 2 i � ½X� i=i!;

in particular

c1
�
FP

�
p�ðM Þ

��
¼ 2 � ½X�; c2

�
FP

�
p�ðM Þ

��
¼ 2 � ½X�2:
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4. A Torelli type theorem

The aim of this section is to prove Theorem 2.2. We assume in all the section the
hypothesis of the theorem. In particular, C is non hyperelliptic of genus gf 3. Therefore X
is normal and irreducible.

In comparison with the argument given in [9], the main di¤erence is that we represent
the variety X by means of a coherent sheaf which comes from the theory of the Fourier-
Mukai transform. This allows to finish quickly the proof by using the involutive property of
the transform, instead of using the Narasimhan-Ramanan invariant.

4.1. The first step is to recover the ppav ðP;XÞ and the map X ! X from the variety
X (see [9], section 4 for an analytic proof of the next proposition).

Proposition 4.1. The morphism X ! XHP is an Albanese map for X.

Proof. Restricting the map X ! X to a suitable open set U HX we get a
product U � P1 ! U . Since the Albanese variety is a birational invariant and
AlbðU � P1Þ ¼ AlbðUÞ we obtain that AlbðX Þ ¼ AlbðXÞ. Hence it su‰ces to show that
the inclusion XHP is an Albanese map for X. This is done in [6], Th. 1.2. r

4.2. We fix an Albanese map for X . This means that we look at X as a P-variety

X ! P; D 7! O~CCðDÞnM�1;

M A P can. Then we can apply Theorem 2.1 and express X as the projectivization of a
coherent sheaf on P supported on Xcan

�M ¼ X. To simplify notations we put

E0 :¼ FP

�
p�s

�ðM Þ
�
;

hence X GP
�
ð�1PÞ�E0

�
. In order to recover the sheaf E0 from X we need the

following property (observe that in this lemma we only need the hypothesis
dimSingXe g� 5 ¼ dimX� 3):

Lemma 4.2. Let u : Xsm ,! X be the inclusion of the open set of smooth points of X.
Then

u�u
�ðE0ÞGE0:

Proof. Consider an e¤ective divisor E on ~CC of degree dg 0. By applying the func-
tors p�; p

�
P andnPP to the exact sequence

0 ! M ! MnO~CCðEÞ ! MnOE ! 0

we get

0 ! p�
P

�
p�ðM Þ

�
nPP ! p�

P

�
p�
�
MnO~CCðEÞ

��
nPP

! p�
P

�
p�ðMnOEÞ

�
nPP ! 0:
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Now we apply the functor pP̂P�. Since

pP̂P�
�
p�
P

�
p�ðM Þ

�
nPP

�
¼ 0 ¼ R1pP̂P�

�
p�
P

�
p�
�
MnO~CCðEÞ

��
nPP

�
;

and

pP̂P�
�
p�
P

�
p�
�
MnO~CCðEÞ

��
nPP

�
; pP̂P�

�
p�
P

�
p�ðMnOEÞ

�
nPP

�

are locally free, we obtain (by applying l�
X) a short exact sequence:

0 ! F ! G ! E0 ! 0;

where F ;G are locally free of the same rank. Notice that this implies that X ¼ SuppE0 is a
determinantal variety, hence locally Cohen-Macaulay.

In order to prove the lemma it su‰ces to check that

H0
Z ðE0Þ ¼ H1

Z ðE0Þ ¼ 0

where Z :¼ X� Xsm ¼ SingX (cf. [3], section 3). By using the short exact sequence above
one reduces to prove that

H0
Z ðFÞ ¼ H1

Z ðFÞ ¼ H0
Z ðGÞ ¼ H1

Z ðGÞ ¼ 0:

Since X is locally Cohen-Macaulay

3e codimX Z ¼ depthZðOXÞ ¼ depthZðFÞ ¼ depthZðGÞ

and this implies the desired vanishing. r

4.3. We want to prove that the coherent sheaf E0 is determined, up to tensoring with
an element of Pic0ðPÞ, by the following intrinsic properties:

a) E0 is supported on a translated of the theta divisor and is locally free of rank 2 on
the open set of the smooth points.

b) u�
�
u�ðE0Þ

�
GE0, where u is the inclusion of the smooth open set in the theta

divisor.

c) P
�
ð�1PÞ�E0

�
GX , as P-varieties.

d) c1ðE0Þ ¼ 2 � ½X�, c2ðE0Þ ¼ 2 � ½X�2.

Proposition 4.3. Let E be a coherent sheaf on P satisfying the properties a), b), c) and
d). Then, there exists an invertible sheaf L A Pic0ðPÞ such that E0 GEnL.

Proof. Let E as in the statement. Combining a) and c) we get that there exists an
invertible sheaf L 0 over Xsm such that

u�ðE0ÞG u�ðEÞnL 0:
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Since the dimension of the singular locus of X is eg� 6 ¼ dimX� 4, then X is locally
factorial and L 0 can be extended to an invertible sheaf L on X, so we replace L 0 by u�ðLÞ.
By applying b) and projection formula one has E0 GEnL. By the Lefschetz theorem for
Picard groups (cf. [4]), PicðPÞGPicðXÞ, hence we can extend L to an invertible sheaf on P

and think of the last isomorphism in P.

To show that L A Pic0ðPÞ we compare the chern character of E0 and that of EnL.
By means of the property d) we get the relation 2X � c1ðLÞ ¼ 0. The intersection product
with X is injective, hence c1ðLÞ is algebraically trivial, up to torsion. Since the Néron-Severi
group of an abelian variety is torsion-free we arrive to c1ðLÞ ¼ 0. r

4.4. Now, the involutive and the translation property of the Fourier-Mukai trans-
form imply that we recover from X a coherent sheaf of the type p�ðM Þ. By taking the
support we get, up to translation, the curve ~CC naturally embedded in the Prym variety. To
complete the proof of the Theorem 2.2 we need to show how to recover the involution s

on ~CC. This follows by an argument of Welters (cf. [10], (2.2), p. 96): the map p : ~CC ! P

(composed with any translation) induces, by the universal property of the Albanese variety,
a unique morphism u : Jð ~CCÞ ! P. Then tuu, is the projection 1� s, hence u determines the
involution s ¼ 1� tuu in Jð ~CCÞ. Since ~CC is non hyperelliptic, by the strong Torelli Theorem,
the involution s in ~CC is recovered.

This finishes the proof of Theorem 2.2.
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Departament d’Àlgebra i Geometria, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain

e-mail: naranjo@mat.ub.es

Eingegangen 3. April 2002, in revidierter Fassung 10. September 2002

Naranjo, Fourier transform and Prym varieties230


