Fourier transform and Prym varieties

By Juan Carlos Naranjo¹⁾ at Barcelona

Abstract. Let *P* be the Prym variety attached to an unramified double covering $\tilde{C} \to C$. Let $X = X(\tilde{C}, C)$ be the variety of special divisors which birationally parametrizes the theta divisor in *P*. We prove that *X* is the projectivization of the Fourier-Mukai transform of a coherent sheaf $p_*(M)$, where *M* is an invertible sheaf on \tilde{C} and $p : \tilde{C} \to P$ is the natural embedding. We apply this fact to give an algebraic proof of the following Torelli type statement proved by Smith and Varley in the complex case: under some hypothesis the variety *X* determines the covering $\tilde{C} \to C$.

1. Introduction

The Jacobian variety J(C) of a smooth irreducible projective curve C of genus g is a principally polarized abelian variety (ppav in the sequel). This means that J(C) comes equipped with a class, modulo algebraic equivalence, of an ample line bundle L, with $h^0(L) = 1$. Let Θ be the effective divisor in the linear series |L|. The image of the Abel map

$$egin{aligned} C^{(g-1)} & o \operatorname{Pic}^{g-1}(C), \ D &\mapsto \mathscr{O}_C(D) \end{aligned}$$

is a divisor Θ^{can} and the Riemann's Parametrization Theorem says that Θ^{can} corresponds to Θ under a convenient translation isomorphism

$$\operatorname{Pic}^{g-1}(C) \to \operatorname{Pic}^0(C) = J(C).$$

It was proved by Schwarzenberger in [8] that $C^{(g-1)}$ is the projectivization of (the image by an automorphism on J(C) of) a coherent sheaf \mathscr{F} on J(C) supported on Θ called Picard sheaf (see §2 for a precise statement). In terms of the usual Fourier-Mukai transform $\mathscr{F}_{J(C)}$ attached to the normalized Poincaré bundle on $J(C) \times \widehat{J(C)}$, the sheaf \mathscr{F} can be seen, up to a shift, as $\mathscr{F}_{J(C)}(j_*(\mathscr{M}))$, where $\mathscr{M} \in \operatorname{Pic}^{g-1}(C)$ and $j: C \hookrightarrow J(C)$.

¹⁾ Partially supported by the EU project Eager (HPRN-CT-2000-00099) and the Proyecto de Investigación BFM2000-0799-01.

In a recent paper, Beilinson and Polishchuk ([2]) find an intrinsic characterization of the sheaves $\mathscr{F}_{J(C)}(j_*(\mathscr{M}))$ in terms of the ppav $(J(C), \Theta)$. By applying the involutive property of the Fourier-Mukai transform they recover the curve *C*, hence the Torelli Theorem is proved.

In this paper we study the "Prym Picard sheaves" $\mathscr{F}_P(p_*(M))$, where P is the Prym variety attached to an unramified double covering

$$\tilde{C} \to C$$
,

p is a natural embedding of the curve \tilde{C} in *P*, and *M* a convenient invertible sheaf on \tilde{C} . In analogy with the Jacobian situation one has a variety $X(\tilde{C}, C) \subset \tilde{C}^{2g-2}$ (see 2.10 for a precise definition) and a map

$$X(\tilde{C}, C) \to P^{\operatorname{can}} \subset \operatorname{Pic}^{2g-2}(\tilde{C})$$

such that the fibre at \mathscr{D} is $\mathbb{P}H^0(\tilde{C}, \mathscr{D})$. Then the translation to P of the image of this map is a divisor representing the polarization. We will prove in section 3 that $X(\tilde{C}, C)$ is isomorphic to the projectivization (of the image by an automorphism on P) of a Prym Picard sheaf. By using again the involutive property of the Fourier transform we get in section 4 an algebraic proof of the following theorem proved by Smith and Varley in the complex case ([9]): under some weak hypothesis (\tilde{C}, C) can be recovered from the variety $X(\tilde{C}, C)$.

Acknowledgements. This paper is dedicated to my wife Anna. I am in debt to J. I. Burgos, M. A. Barja and G. Welters for valuable conversations during the preparation of this paper.

2. Notation, preliminaries and statements

2.1. All the varieties are defined over an algebraically closed field of characteristic ± 2 . The projections of a product of varieties $X \times Y$ into each of its factors will be denoted by π_X and π_Y respectively.

2.2. Fourier-Mukai transform. Let (A, Θ_A) be a ppav of dimension g. We will denote by \hat{A} the corresponding dual ppav. The polarization induces an isomorphism

$$\lambda_{\Theta_A}: A \to \hat{A}, \quad a \mapsto P_a := \mathcal{O}_A(\Theta_a - \Theta).$$

Translation by $a \in A$ will be denoted by $\tau_a : A \to A$, $\tau_a(x) = x + a$.

Let \mathcal{P}_A be the normalized Poincaré bundle on $A \times \hat{A}$, that is:

$$\mathscr{P}_{A|\{0\}\times\hat{A}}\cong \mathscr{O}_{\hat{A}}, \quad \mathscr{P}_{A|A\times\{\xi\}}\cong \xi, \quad \forall \xi\in A.$$

Following Mukai ([5]), one can define a functor $\hat{\mathscr{S}}$ of \mathcal{O}_A -modules into the category of $\mathcal{O}_{\hat{A}}$ -modules by

$$\hat{\mathscr{S}}(-) = \pi_{\hat{A}*} \big(\pi_A^*(-) \otimes \mathscr{P}_A \big).$$

The derived functor $\mathbf{R}\hat{\mathscr{S}}$ of $\hat{\mathscr{S}}$ induces an equivalence of categories between the two derived categories D(A) and $D(\hat{A})$ ([5], Theorem 2.2).

The Weak Index Theorem (W.I.T.) is said to hold for a coherent sheaf \mathcal{M} on A if there exists an index $i(\mathcal{M})$ such that $R^i \hat{S}(\mathcal{M}) = 0$ for all $i \neq i(\mathcal{M})$. We will denote the coherent sheaf $\lambda_{\Theta_4}^* \left(R^{i(\mathcal{M})} \hat{S}(\mathcal{M}) \right)$ on A by $\mathcal{F}_A(\mathcal{M})$.

2.3. Involutive property of the Fourier-Mukai transform. The Corollary 2.4 in [5] says, with our notation: If W.I.T. holds for \mathcal{M} , then so does $\mathcal{F}_A(\mathcal{M})$ and $i(\mathcal{F}_A(\mathcal{M})) = g - i(\mathcal{M})$. Moreover $\mathcal{F}_A(\mathcal{F}_A(\mathcal{M}))$ is isomorphic to $(-1_A)^*(\mathcal{M})$.

2.4. Translation property of the Fourier-Mukai transform. Let $\lambda_{\Theta_A}(a) = P_a \in \hat{A}$ be an algebraically trivial line bundle on A, then

$$\mathscr{F}_{A}(\mathscr{M}\otimes P_{a})\cong \tau_{a}^{*}(\mathscr{F}_{A}(\mathscr{M})).$$

2.5. Here we recall the main Theorem of [8].

Let *C* be a smooth irreducible projective curve and fix a point $c \in C$. Consider the Poincaré bundle \mathscr{L} over $C \times J(C)$ normalized by the condition $\mathscr{L}_{|\{c\} \times J(C)} \cong \mathscr{O}_{J(C)}$. We see $C^{(g-1)}$ as a J(C)-variety with the morphism

$$egin{aligned} C^{(g-1)} &
ightarrow J(C), \ D &\mapsto \mathscr{O}_Cig(D-(g-1)cig) \end{aligned}$$

Then there is an isomorphism of J(C)-varieties

R

$$\mathbb{P}\big((-1_{J(C)})^*\tau^*_{\omega_C((2-2g)c)}R^1\pi_{J(C)*}\big(\pi^*_C\big(\mathscr{O}_C\big((g-1)c\big)\big)\otimes\mathscr{L}\big)\big)\cong C^{(g-1)}.$$

2.6. We want to express the last theorem in terms of the Fourier-Mukai transform.

By seesaw lemma it is easy to see that $\mathscr{L} \cong (j \times \lambda_{\Theta_{J(C)}})^*(\mathscr{P}_{J(C)})$, where $j : C \to J(C)$ is the natural embedding $x \mapsto \mathscr{O}_C(x-c)$. Since $j \times \lambda_{\Theta_{J(C)}}$ is a closed embedding, then $\mathbf{R}(j \times \lambda_{\Theta_{J(C)}})_* = (j \times \lambda_{\Theta_{J(C)}})_*$. Hence

$$\begin{split} ^{1}\pi_{J(C)*}\left(\pi^{*}_{C}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\otimes\mathscr{L}\right) \\ &\stackrel{(1)}{\cong} R^{1}\pi_{J(C)*}\left(\pi^{*}_{C}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\otimes\left(j\times\lambda_{\Theta_{J(C)}}\right)^{*}\mathscr{P}_{J(C)}\right) \\ &\stackrel{(2)}{\cong}\lambda^{*}_{\Theta_{J(C)}}R^{1}\pi_{\widehat{J(C)}*}\left(j\times\lambda_{\Theta_{J(C)}}\right)_{*}\left(\pi^{*}_{C}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\otimes\left(j\times\lambda_{\Theta_{J(C)}}\right)^{*}\mathscr{P}_{J(C)}\right) \\ &\stackrel{(3)}{\cong}\lambda^{*}_{\Theta_{J(C)}}R^{1}\pi_{\widehat{J(C)}*}\left((j\times\lambda_{\Theta_{J(C)}})_{*}\pi^{*}_{C}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\otimes\mathscr{P}_{J(C)}\right) \\ &\stackrel{(4)}{\cong}\lambda^{*}_{\Theta_{J(C)}}R^{1}\pi_{\widehat{J(C)}*}\left(\pi^{*}_{J(C)}j_{*}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\otimes\mathscr{P}_{J(C)}\right) \\ &\stackrel{(5)}{\cong}\mathscr{F}_{J(C)}\left(j_{*}\left(\mathscr{O}_{C}\left((g-1)c\right)\right)\right). \end{split}$$

In (1) we have replaced \mathscr{L} by $(j \times \lambda_{\Theta_{J(C)}})^*(\mathscr{P}_{J(C)})$, in (2) we use that the projection $\pi_{J(C)}: C \times J(C) \to J(C)$ agrees with $\lambda^*_{\Theta_{J(C)}} \circ \pi_{\widehat{J(C)}} \circ (j \times \lambda_{\Theta_{J(C)}})$, in (3) we have applied projection formula, (4) follows from base change with respect to the diagram

$$egin{array}{ccc} C imes J(C) & \xrightarrow{j imes\lambda_{\Theta_{J(C)}}} & J(C) imes \widehat{J(C)} \ & & & & & & \\ \pi_{C} igg| & & & & & & & & \\ \pi_{J(C)} & & & & & & & \\ C & \xrightarrow{j} & & & & & & J(C) \end{array}$$

and (5) is the definition of $\mathscr{F}_{J(C)}$.

Observe that W.I.T. holds with index 1 for $j_*(\mathcal{O}_C((g-1)c))$ by Corollary 2 in [8].

2.7. We can also rewrite the isomorphism by using 2.4 to delete the translation:

$$\tau^*_{\omega_C((2-2g)c)}\mathscr{F}_{J(C)}(j_*(\mathscr{O}_C((g-1)c))) \cong \mathscr{F}_{J(C)}(j_*(\mathscr{O}_C((g-1)c)) \otimes P_{\omega_C((2-2g)c)}).$$

Hence, by projection formula and the equality $j^* = \lambda_{\Theta_{I(C)}}^{-1}$, this sheaf is isomorphic to

$$\mathscr{F}_{J(C)}(j_*(\omega_C((1-g)c))).$$

2.8. All together gives the following statement, equivalent to 2.4 above:

$$\mathbb{P}\left((-1)_{J(C)}^* \mathscr{F}_{J(C)}\left(j_*\left(\omega_C\left((1-g)c\right)\right)\right)\right) \cong C^{(g-1)}$$

2.9. Now we look to other structural maps

$$\phi_M: C^{(g-1)} o J(C),$$
 $D \mapsto \mathscr{O}_C(D) \otimes M^{-1},$

for any $M \in \operatorname{Pic}^{g-1}(C)$.

By applying to 2.8 a base change with respect to a convenient translation on J(C), we obtain the following isomorphism of J(C)-varieties (via ϕ_M):

$$\mathbb{P}\big((-1_{J(C)})^*\mathscr{F}_{J(C)}\big(j_*(\omega_C\otimes M^{-1})\big)\big)\cong C^{(g-1)}.$$

2.10. Prym varieties. We recall some basic facts of the theory of Prym varieties. We quote [7] for the details.

Let $\tilde{C} \to C$ be an irreducible unramified double covering of an irreducible projective smooth curve *C* of genus *g*. The kernel of the attached norm map

$$Nm: J(\tilde{C}) \to J(C)$$

has two irreducible components. The component containing the origin is an abelian variety, $P = P(\tilde{C}, C)$, called the *Prym variety* attached to the covering. The principal polarization

on $J(\tilde{C})$ restricts to twice a principal polarization on P, an effective divisor representing the polarization (determined up to translation) is denoted by Ξ . Therefore (P, Ξ) is a ppav.

We will fix a point $\tilde{c} \in \tilde{C}$ and we will denote by σ the involution in \tilde{C} associated to the covering. We define $p: \tilde{C} \to P$ the embedding given by $p(\tilde{x}) = \tilde{x} - \sigma(\tilde{x}) + \tilde{c} - \sigma(\tilde{c})$.

The theta divisor can be defined canonically in

$$P^{\operatorname{can}} = P^{\operatorname{can}}(\tilde{C}, C) := \{ L \in \operatorname{Pic}^{2g-2}(\tilde{C}) \mid Nm(L) = \omega_C, h^0(\tilde{C}, L) \text{ even} \},\$$

as $\Xi^{\operatorname{can}} = \{ L \in P^{\operatorname{can}} | h^0(\tilde{C}, L) > 0 \}.$

The analogue of the symmetric product for the Prym variety is the subvariety $X = X(\tilde{C}, C)$ of $\tilde{C}^{(2g-2)}$ given by the effective divisors with norm in the complete linear system $|\omega_C|$ and h^0 even. If C is non hyperelliptic, then X is irreducible and normal (cf. [1]).

2.11. Statements. In the next section we will prove the following result:

Theorem 2.1. For any Prym variety, and for an $M \in P^{can}$ there is an isomorphism

$$X \cong \mathbb{P}(-1_P)^* \big(\mathscr{F}_P \big(p_* \sigma^*(M) \big) \big).$$

By applying this theorem and the properties of the Fourier-Mukai transform we will prove in section 4 the following theorem:

Theorem 2.2. Let $\tilde{C} \to C$ be an irreducible unramified double covering of a smooth complete irreducible curve of genus $g \ge 3$, and let (P, Ξ) be its attached Prym variety. We assume C is non hyperelliptic and dim $\operatorname{Sing}(\Xi) \le g - 6$. Then the variety $X(\tilde{C}, C)$ determines the covering $\tilde{C} \to C$.

3. Prym Picard sheaves

In this section we will prove Theorem 2.1. We fix an unramified double covering $\tilde{C} \to C$ as in 2.8, and a point \tilde{c} . From now on the map $j : \tilde{C} \to J(\tilde{C})$ will be the embedding given by $j(\tilde{x}) = \mathcal{O}_{\tilde{C}}(\tilde{x} - \sigma(\tilde{c}))$. We keep the notations introduced in section 2.

3.1. Let $M \in P^{\operatorname{can}} \subset \operatorname{Pic}^{2g-2}(\tilde{C})$. Observe that the genus of \tilde{C} is 2g-1, so $2g-2 = g(\tilde{C}) - 1$. One has a pull-back diagram

$$\begin{array}{cccc} X = X(\tilde{C},C) & & \frown & \tilde{C}^{(2g-2)} \\ & & & & \downarrow \\ & & & \downarrow \\ P = P(\tilde{C},C) & & \frown & J(\tilde{C}). \end{array}$$

Therefore, by applying the isomorphism in 2.9, we get

$$X \cong \mathbb{P}\big((-1_{J(\tilde{C})})^* \mathscr{F}_{J(\tilde{C})}\big(j_*(\omega_{\tilde{C}} \otimes M^{-1})\big)_{|P}\big).$$

3.2. Remark. The behaviour of the Fourier-Mukai transform with respect to maps of abelian varieties is only easy to handle in the case of isogenies. In general, it seems difficult to relate the transforms $\mathscr{F}_{J(\tilde{C})}$ and \mathscr{F}_P . However we only need to compare the values on some coherent sheaves supported on the curve \tilde{C} , and in this case we have the following result.

Proposition 3.1. For any $M \in P^{can}$, the restriction to P of the sheaf

$$\mathscr{F}_{J(\tilde{C})}(j_*(M))$$

is isomorphic to:

 $\mathscr{F}_P(p_*(M)).$

Notice that this proposition implies (replace M by $\omega_{\tilde{C}} \otimes M^{-1}$) the Theorem 2.1.

Proof. We begin by noticing that arguing as in 2.6, we can write:

3.3.

$$\mathscr{F}_{J(\tilde{C})}(j_*(M)) \cong R^1 \pi_{J(\tilde{C})*}(\pi^*_{\tilde{C}}(M) \otimes \mathscr{\hat{L}}),$$

where $\tilde{\mathscr{L}}$ is the Poincaré bundle on $\tilde{C} \times J(\tilde{C})$ normalized by the condition

$$\tilde{\mathscr{L}}_{|\{\sigma(\tilde{c})\}\times J(\tilde{C})}\cong \mathcal{O}_{J(\tilde{C})}.$$

We will prove a similar fact for the transform \mathscr{F}_P . We will use the next result.

Lemma 3.2. For all $a \in P$ the following equality holds:

$$\mathcal{O}_P(\Xi_a - \Xi)|_{\tilde{C}} = a$$

Proof. This is a standard fact on Prym varieties (see for instance [9], section 8). For the convenience of the reader we give the sketch of a proof. By the Theorem of the square we can assume that Ξ is of the form $\Xi_{-\alpha}^{can}$ where α is a convenient element in P^{can} . We assume that $h^0(\alpha) = 2$ and $h^0(\alpha + \tilde{c} - \sigma(\tilde{c})) = 1$. Put $p_1 + \cdots + p_{2g-2}$ for the effective divisor in the linear series $|\alpha + \tilde{c} - \sigma(\tilde{c})|$. Then $p(\sigma(p_i)) = \sigma(p_i) - p_i + \tilde{c} - \sigma(\tilde{c}) \in \Xi_{-\alpha}^{can}$. Since $\tilde{C} \cdot \Xi = 2g - 2$, we get the isomorphism

$$\mathcal{O}_P(\Xi_{-\alpha}^{\operatorname{can}})|_{\tilde{C}} \cong \mathcal{O}_{\tilde{C}}(\sigma(\alpha) + \sigma(\tilde{c}) - \tilde{c}).$$

The statement follows easily. \Box

Corollary 3.3. *The invertible sheaf on* $\tilde{C} \times P$:

$$\mathscr{L}_P := (p \times \lambda_{\Xi})^* (\mathscr{P}_P)$$

satisfies

$$\mathscr{L}_{P|\{\sigma(\tilde{c})\}\times P} = \mathscr{O}_P, \quad \mathscr{L}_{P|\tilde{C}\times\{a\}} = a.$$

Proof. Straightforward application of the lemma and seesaw. \Box

3.4. Now we can use the argument in 2.6 by replacing *j* by p, $\lambda_{\Theta_{J(C)}}$ by λ_{Ξ} , and using the corollary. Then:

$$\mathscr{F}_P(p_*(M)) \cong R^1 \pi_{P*}(\pi^*_{\tilde{C}}(M) \otimes \mathscr{L}_P).$$

Now, by applying seesaw lemma once more,

3.5.

$$\tilde{\mathscr{L}}_{|\tilde{C}\times P}\cong \mathscr{L}_P$$

Finally,

$$\begin{aligned} \mathscr{F}_{J(\tilde{C})}(j_{*}(M))_{|P} & \stackrel{(1)}{\cong} R^{1}\pi_{J(\tilde{C})*}(\left(\pi_{\tilde{C}}^{*}(M)\otimes\tilde{\mathscr{L}}\right))_{|P} \\ & \stackrel{(2)}{\cong} R^{1}\pi_{P*}(\left(\pi_{\tilde{C}}^{*}(M)\otimes\tilde{\mathscr{L}}\right)_{|\tilde{C}\times P}) \\ & \stackrel{(3)}{\cong} R^{1}\pi_{J(\tilde{C})*}(\pi_{\tilde{C}}^{*}(M)\otimes\mathscr{L}_{P}) \\ & \stackrel{(4)}{\cong} \mathscr{F}_{P}(p_{*}(M)). \end{aligned}$$

We have applied 3.3 in (1), 3.5 in (3), 3.4 in (4) and base change with respect to the following diagram in (2)

$\tilde{C} imes P$	$\subset \!$	$ ilde{C} imes J(ilde{C})$
π_P		$\pi_{J(\tilde{C})}$
\downarrow		\downarrow \checkmark
Р	$\subset \!\!\!\! \longrightarrow$	$J(ilde{C})$.

3.6. Chern classes. In [8] the Chern classes of the Picard sheaves are computed. Since we work up to translation we are interested in the groups A^i of classes of cycles modulo algebraic equivalence. The statement in [8] can be translated to

$$c_i\left(\mathscr{F}_{J(\tilde{C})}(j_*(M))\right) = [W_i] \in A^i\left(J(\tilde{C})\right)_{\mathbb{Q}}, \quad i = 1, \dots, \tilde{g}$$

where W_i stand for the Brill-Noether loci $W_i^0(\tilde{C})$.

Since $P \cdot \tilde{\Theta} = 2\Xi$ and $[W_i] = [\tilde{\Theta}]^i / i!$, then Proposition 3.1 implies that

$$c_i(\mathscr{F}_P(p_*(M))) = 2^i \cdot [\Xi]^i/i!,$$

in particular

$$c_1(\mathscr{F}_P(p_*(M))) = 2 \cdot [\Xi], \quad c_2(\mathscr{F}_P(p_*(M))) = 2 \cdot [\Xi]^2.$$

4. A Torelli type theorem

The aim of this section is to prove Theorem 2.2. We assume in all the section the hypothesis of the theorem. In particular, C is non hyperelliptic of genus $g \ge 3$. Therefore X is normal and irreducible.

In comparison with the argument given in [9], the main difference is that we represent the variety X by means of a coherent sheaf which comes from the theory of the Fourier-Mukai transform. This allows to finish quickly the proof by using the involutive property of the transform, instead of using the Narasimhan-Ramanan invariant.

4.1. The first step is to recover the ppav (P, Ξ) and the map $X \to \Xi$ from the variety X (see [9], section 4 for an analytic proof of the next proposition).

Proposition 4.1. The morphism $X \to \Xi \subset P$ is an Albanese map for X.

Proof. Restricting the map $X \to \Xi$ to a suitable open set $U \subset \Xi$ we get a product $U \times \mathbb{P}^1 \to U$. Since the Albanese variety is a birational invariant and $Alb(U \times \mathbb{P}^1) = Alb(U)$ we obtain that $Alb(X) = Alb(\Xi)$. Hence it suffices to show that the inclusion $\Xi \subset P$ is an Albanese map for Ξ . This is done in [6], Th. 1.2. \Box

4.2. We fix an Albanese map for X. This means that we look at X as a P-variety

$$X \to P, \quad D \mapsto \mathcal{O}_{\tilde{C}}(D) \otimes M^{-1},$$

 $M \in P^{can}$. Then we can apply Theorem 2.1 and express X as the projectivization of a coherent sheaf on P supported on $\Xi_{-M}^{can} = \Xi$. To simplify notations we put

$$\mathscr{E}_0 := \mathscr{F}_P(p_*\sigma^*(M)),$$

hence $X \cong \mathbb{P}((-1_P)^* \mathscr{E}_0)$. In order to recover the sheaf \mathscr{E}_0 from X we need the following property (observe that in this lemma we only need the hypothesis dim Sing $\Xi \leq g - 5 = \dim \Xi - 3$):

Lemma 4.2. Let $u : \Xi_{sm} \hookrightarrow \Xi$ be the inclusion of the open set of smooth points of Ξ . Then

$$u_*u^*(\mathscr{E}_0)\cong \mathscr{E}_0.$$

Proof. Consider an effective divisor E on \tilde{C} of degree $d \gg 0$. By applying the functors p_*, π_P^* and $\otimes \mathscr{P}_P$ to the exact sequence

$$0 \to M \to M \otimes \mathcal{O}_{\tilde{\mathcal{C}}}(E) \to M \otimes \mathcal{O}_E \to 0$$

we get

$$0 \to \pi_P^* \big(p_*(M) \big) \otimes \mathscr{P}_P \to \pi_P^* \big(p_* \big(M \otimes \mathscr{O}_{\tilde{\mathcal{C}}}(E) \big) \big) \otimes \mathscr{P}_P$$
$$\to \pi_P^* \big(p_*(M \otimes \mathscr{O}_E) \big) \otimes \mathscr{P}_P \to 0.$$

Now we apply the functor $\pi_{\hat{P}_*}$. Since

$$\pi_{\hat{P}*}\big(\pi_P^*\big(p_*(M)\big)\otimes\mathscr{P}_P\big)=0=R^1\pi_{\hat{P}*}\big(\pi_P^*\big(p_*\big(M\otimes\mathscr{O}_{\tilde{C}}(E)\big)\big)\otimes\mathscr{P}_P\big),$$

and

$$\pi_{\hat{P}*}\big(\pi_P^*\big(p_*\big(M\otimes \mathcal{O}_{\tilde{C}}(E)\big)\big)\otimes \mathscr{P}_P\big), \quad \pi_{\hat{P}*}\big(\pi_P^*\big(p_*(M\otimes \mathcal{O}_E)\big)\otimes \mathscr{P}_P\big)$$

are locally free, we obtain (by applying λ_{Ξ}^*) a short exact sequence:

$$0 \to F \to G \to \mathscr{E}_0 \to 0,$$

where F, G are locally free of the same rank. Notice that this implies that $\Xi = \text{Supp } \mathscr{E}_0$ is a determinantal variety, hence locally Cohen-Macaulay.

In order to prove the lemma it suffices to check that

$$\mathscr{H}^0_Z(\mathscr{E}_0)=\mathscr{H}^1_Z(\mathscr{E}_0)=0$$

where $Z := \Xi - \Xi_{sm} = \text{Sing }\Xi$ (cf. [3], section 3). By using the short exact sequence above one reduces to prove that

$$\mathscr{H}^0_Z(F)=\mathscr{H}^1_Z(F)=\mathscr{H}^0_Z(G)=\mathscr{H}^1_Z(G)=0.$$

Since Ξ is locally Cohen-Macaulay

$$3 \leq \operatorname{codim}_{\Xi} Z = \operatorname{depth}_{Z}(\mathcal{O}_{\Xi}) = \operatorname{depth}_{Z}(F) = \operatorname{depth}_{Z}(G)$$

and this implies the desired vanishing. \Box

4.3. We want to prove that the coherent sheaf \mathscr{E}_0 is determined, up to tensoring with an element of Pic⁰(*P*), by the following intrinsic properties:

a) \mathscr{E}_0 is supported on a translated of the theta divisor and is locally free of rank 2 on the open set of the smooth points.

b) $u_*(u^*(\mathscr{E}_0)) \cong \mathscr{E}_0$, where *u* is the inclusion of the smooth open set in the theta divisor.

- c) $\mathbb{P}((-1_P)^* \mathscr{E}_0) \cong X$, as *P*-varieties.
- d) $c_1(\mathscr{E}_0) = 2 \cdot [\Xi], c_2(\mathscr{E}_0) = 2 \cdot [\Xi]^2.$

Proposition 4.3. Let \mathscr{E} be a coherent sheaf on P satisfying the properties a), b), c) and d). Then, there exists an invertible sheaf $L \in \text{Pic}^{0}(P)$ such that $\mathscr{E}_{0} \cong \mathscr{E} \otimes L$.

Proof. Let \mathscr{E} as in the statement. Combining a) and c) we get that there exists an invertible sheaf L' over Ξ_{sm} such that

$$u^*(\mathscr{E}_0) \cong u^*(\mathscr{E}) \otimes L'.$$

Since the dimension of the singular locus of Ξ is $\leq g - 6 = \dim \Xi - 4$, then Ξ is locally factorial and L' can be extended to an invertible sheaf L on Ξ , so we replace L' by $u^*(L)$. By applying b) and projection formula one has $\mathscr{E}_0 \cong \mathscr{E} \otimes L$. By the Lefschetz theorem for Picard groups (cf. [4]), Pic(P) \cong Pic(\Xi), hence we can extend L to an invertible sheaf on P and think of the last isomorphism in P.

To show that $L \in \text{Pic}^0(P)$ we compare the chern character of \mathscr{E}_0 and that of $\mathscr{E} \otimes L$. By means of the property d) we get the relation $2\Xi \cdot c_1(L) = 0$. The intersection product with Ξ is injective, hence $c_1(L)$ is algebraically trivial, up to torsion. Since the Néron-Severi group of an abelian variety is torsion-free we arrive to $c_1(L) = 0$. \Box

4.4. Now, the involutive and the translation property of the Fourier-Mukai transform imply that we recover from X a coherent sheaf of the type $p_*(M)$. By taking the support we get, up to translation, the curve \tilde{C} naturally embedded in the Prym variety. To complete the proof of the Theorem 2.2 we need to show how to recover the involution σ on \tilde{C} . This follows by an argument of Welters (cf. [10], (2.2), p. 96): the map $p: \tilde{C} \to P$ (composed with any translation) induces, by the universal property of the Albanese variety, a unique morphism $u: J(\tilde{C}) \to P$. Then ${}^{t}uu$, is the projection $1 - \sigma$, hence u determines the involution $\sigma = 1 - {}^{t}uu$ in $J(\tilde{C})$. Since \tilde{C} is non hyperelliptic, by the strong Torelli Theorem, the involution σ in \tilde{C} is recovered.

This finishes the proof of Theorem 2.2.

References

- [1] A. Beauville, Sous-variétés speciales des variétés de Prym, Compos. Math. 45 (1982), 357-383.
- [2] A. Beilinson and A. Polishchuk, Torelli theorem via Fourier-Mukai transform, Moduli of abelian varieties (Texel Island), Progr. Math. 195, Birkhäuser, Basel (1999), 127–132.
- [3] A. Grothendieck, Local Cohomology, Lect. Notes Math. 41, Springer-Verlag, Berlin 1967.
- [4] *A. Grothendieck*, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux, SGA 2, North Holland Publisher Co., Amsterdam 1969.
- [5] S. Mukai, Duality between D(X) and $D(\hat{X})$ with its application to Picard sheaves, Nagoya Math. J. 81 (1981), 153–175.
- [6] J. Muñoz Porras, Characterization of Jacobian varieties in arbitrary characteristic, Compos. Math. 61 (1987), 369–381.
- [7] D. Mumford, Prym Varieties I, Contributions to Analysis (L. Ahlfors, ed.), Academic Press, New York 1974.
- [8] R. Schwarzenberger, Jacobians and Symmetric Products, Ill. J. Math. 7 (1963), 257–268.
- [9] *R. Smith* and *R. Varley*, A Torelli theorem for special divisor varieties X associated to doubly covered curves \tilde{C}/C , Internat. J. Math. **13** (2002), 67–91.
- [10] G. Welters, Curves of twice the minimal class on principally polarized varieties, Proc. Con. Ned. Wetensch. A 90 (1987), 878–909.

Departament d'Àlgebra i Geometria, Universitat de Barcelona, Gran Via 585, 08007 Barcelona, Spain e-mail: naranjo@mat.ub.es

Eingegangen 3. April 2002, in revidierter Fassung 10. September 2002