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GEOMETRY OF PRYM SEMICANONICAL PENCILS AND AN

APPLICATION TO CUBIC THREEFOLDS

MARTÍ LAHOZ, JUAN CARLOS NARANJO, AND ANDRÉS ROJAS

Abstract. In the moduli space Rg of double étale covers of curves of a fixed genus g, the locus

formed by covers of curves with a semicanonical pencil consists of two irreducible divisors T
e
g

and T
o
g . We study the Prym map on these divisors, which shows significant differences between

them and has a rich geometry in the cases of low genus. In particular, the analysis of T o
5 has

enumerative consequences for lines on cubic threefolds.

1. Introduction

Let Tg ⊂ Mg be the subset of (isomorphism classes of) complex, smooth, irreducible curves C

of genus g ≥ 3 with a semicanonical pencil, that is, with a theta-characteristic L ∈ Picg−1(C)

such that h0(C,L) is even and positive. This divisor was studied in [TiB88], where Teixidor

proved its irreducibility and computed the class of its closure in the rational Picard group of

the Deligne-Mumford compactification Mg.

When pulled back to the moduli space of smooth Prym curves

Rg = {(C, η) | [C] ∈ Mg, η ∈ JC2 \ {OC}}/ ∼=

via the forgetful map, it breaks up into two divisors according to the parity (as a theta-

characteristic) of the semicanonical pencil tensored with the 2-torsion line bundle defining the

Prym curve. We denote by T e
g and T o

g the divisors of even and odd Prym semicanonical pencils

respectively (for simplicity, we use the same notation for the divisors in Rg and for their closures

in the Deligne-Mumford compactification Rg).

Recently, Maestro and the third author have proved in [MPR21] that T e
g and T o

g are irreducible

for g 6= 4, and have computed their classes in the rational Picard group of Rg. The irreducibility

for g = 4 will be obtained as a consequence of our results.

The main goal of this paper is to investigate the geometry of T e
g and T o

g , specially in relation

to the Prym map Pg : Rg −→ Ag−1 and its Beauville extension P̃g to a proper map. The Prym

map has well-known generic fibers for g ≤ 6 and is generically injective for g ≥ 7; nonetheless, its

restriction to divisors is often far from being understood. For instance, the restriction of P̃g to

the divisor of Beauville admissible covers of nodal curves has recently received attention, since

its study is equivalent to that of the so-called ramified Prym map (see [MP12] and [NO20]).
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The problem we are facing can be found in the literature for genus 5 in two very remarkable

works. On the one hand, the even case T e
5 was considered by Beauville in [Bea77a], where he

proved that T e
5 is irreducible and equals the preimage of θnull ⊂ A4 via P̃5. On the other hand,

Izadi proved that T o
5 dominates A4 (see [Iza95, Proof of Theorem 6.14], where T o

5 is denoted by

θnull 2). We extend this analysis to other values of g, and in the case of T o
5 we provide a more

detailed description with unexpected connections to the geometry of cubic threefolds.

Let us first consider the even cases T e
g . According to Mumford’s description [Mum74] of the

singularities of the theta divisor of a Prym variety and [CM09], it is well known that Pg maps

T e
g to the divisor θnull ⊂ Ag−1 of principally polarized abelian varieties whose theta divisor

contains a singular 2-torsion point of even multiplicity. Combining this with results of Teixidor

on the loci of curves with unexpected theta-characteristics ([TiB87]), one proves item (1) and

part of (3) in the following theorem, whereas (2) is essentially a consequence of Recillas’ trigonal

construction:

Theorem A. The divisors T e
g of even semicanonical pencils satisfy:

(1) T e
g = P−1

g (θnull) for g ≥ 3.

(2) The fiber of P4 on a general hyperelliptic Jacobian JX ∈ A3 is birationally equivalent to its

Kummer variety. In particular, the divisor T e
4 is irreducible.

(3) For g ≥ 6, the restricted Prym map Pg |T e
g
is generically finite onto its image. In particular,

deg(P6 |T e
6
) = 27.

On the other hand, the behavior of the divisors T o
g of odd semicanonical pencils differs consid-

erably from that of the even cases. Indeed, for low values of g (as long as dimT o
g ≥ dimAg−1),

T o
g dominates Ag−1.

Our results for the divisors T o
g are summarized in the following theorem. For the case g = 5,

let us recall that Donagi [Don92] established a birational map between A4 and the set RC+

of pairs (V, δ), where V ⊂ P4 is a smooth cubic threefold and δ ∈ JV2 is a 2-torsion point of

its intermediate Jacobian with a certain parity condition. We will denote by F (V ) the Fano

surface of lines contained in V .

Theorem B. The divisors T o
g of odd semicanonical pencils satisfy:

(1) The map P3 |T o
3
: T o

3 −→ A2 is dominant, and its general fiber is isomorphic to the comple-

ment in the projective plane of six lines and a smooth conic. In particular, T o
3 is rationally

connected.

(2) The map P4 |T o
4

: T o
4 −→ A3 is surjective, and the fiber of a general Jacobian JX is the

complement in the projective plane of the union of the canonical model of X and its 28

bitangent lines. Moreover, T o
4 is irreducible and rationally connected.

(3) (Izadi) The restricted Prym map P̃5 |T o
5
is dominant, and the fiber at a general (V, δ) ∈ RC+

is a partial desingularization of the curve Γ ⊂ F (V ) defined by

Γ = {l ∈ F (V ) | There exist a 2-plane π and a line r ∈ F (V ) with V · π = l + 2r} .

(4) For every g ≥ 6 the restricted Prym map Pg |T o
g
is generically finite onto its image.
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Observe that after (4) two natural questions arise: the computation of the degree of Pg |T o
g

(for g ≥ 6 but specially for g = 6) and an intrinsic description of the divisor P6(T
o
6 ) in A5.

With respect to the first question, we are only able to prove that the degree of P6 |T o
6
is strictly

smaller than 27. Moreover, in Section 7 we propose a possible natural geometric description for

P6(T
o
6 ).

The main tool for our reproof of (3) is the class of T o
5 in Pic(R5)Q. Simultaneously, this

approach reveals interesting properties of a general cubic threefold V ⊂ P4, which a priori seem

difficult to detect via more direct techniques. Indeed, Donagi’s description of the general fiber

of P̃5 ([Don92]) realizes (a double cover of) the Fano surface of lines F (V ) as a subvariety of

R5, where the rational Picard group and the canonical class are well understood. This enables

us to prove:

Theorem C. For every smooth cubic threefold V ⊂ P4, the curve Γ ⊂ F (V ) is numerically

equivalent to 8KF (V ). Furthermore, for V general, Γ is irreducible and its singular locus consists

of 1485 nodes.

To the best of the authors’ knowledge, the numerical class of Γ has never been computed. On

the other hand, its natural counterpart

Γ′ = {r ∈ F (V ) | There exist a 2-plane π and a line l ∈ F (V ) with V · π = l + 2r}

(namely the curve formed by lines of the second type) had been greatly studied in the literature

(see e.g. [CG72, Section 10]). Theorem C has immediate consequences for the enumerative

geometry of lines on a cubic threefold. For instance, the geometric interpretation of the nodes

of Γ and the intersection points of Γ with Γ′ establishes the following result:

Corollary D. For a general smooth cubic threefold V ⊂ P4, the following statements hold:

(1) There are exactly 1485 lines l ⊂ V for which there exist 2-planes π1, π2 ⊂ P4 and lines

r1, r2 ⊂ V satisfying V · πi = l + 2ri (i = 1, 2).

(2) There are exactly 720 lines l ⊂ V for which there exist 2-planes π1, π2 ⊂ P4 and lines

r1, r2 ⊂ V satisfying V · π1 = l + 2r1 and V · π2 = 2l + r2.

Structure of the paper. After some preliminaries on the divisors T e
g and T o

g and on Prym

varieties, in Section 3 we determine P−1
g

(
θnull

)
, which proves Theorem A.(1). The rest of the

paper essentially deals with the odd cases, and the study of each genus occupies a section.

Section 4 is devoted to Theorem B.(1), whose proof is based on Mumford’s results on Prym

varieties of covers of hyperelliptic curves. In Section 5 we study the case of genus 4. Using

involutions on certain moduli spaces, we prove that T o
4 corresponds under Recillas’ trigonal

construction to smooth genus 3 curves endowed with a non-complete g14 linear series, which

gives the arguments for proving Theorem B.(2). In this section, we also prove Theorem A.(2).

Section 6 addresses the case of genus 5. As explained above, we prove Theorem B.(3) using a co-

homological approach. A more detailed analysis also gives Theorem C and several enumerative

consequences, including Corollary D as well as a more precise description of the desingulariza-

tion appearing in Theorem B.(3) (see Corollary 6.6). Finally, in Section 7 we study the cases of

genus g ≥ 6. After proving Theorem B.(4) and Theorem A.(3), we propose a natural geometric
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description for the divisor P6(T
o
6 ) ⊂ A5, based on a close relation between T o

g and the locus of

Prym curves (C, η) for which the Brill-Noether-Prym locus V 2(C, η) is singular.

Acknowledgements. We are pleased to thank Alessandro Verra for his useful comments at

the beginning of this project. We are also grateful to Daniel Huybrechts for pointing out an

inaccuracy in a previous version, and to the referees for their careful reading of the paper.

2. Preliminaries

We work over the complex numbers. As usual, a point of a variety is called general (resp. very

general) if it lies outside a nontrivial Zariski-closed subset (resp. outside a union of countably

many nontrivial Zariski-closed subsets). Given an abelian variety A, we denote by A2 the

subgroup of 2-torsion points of A.

2.1. The divisors of Prym semicanonical pencils. If C is a smooth curve of genus g ≥ 3, by

semicanonical pencil on C we mean an even, effective theta-characteristic. The locus of curves

with a semicanonical pencil defines an irreducible divisor Tg ⊂ Mg, whose general element C

admits a unique semicanonical pencil L and satisfies h0(C,L) = 2 (see [TiB87, TiB88]). In the

literature our semicanonical pencils are called vanishing theta-nulls, but later we will use the

theta-null divisor in the context of abelian varieties, and we prefer to call semicanonical pencils

the even effective theta-characteristics to avoid any confusion.

Let Rg denote the moduli space of smooth Prym curves of genus g. Since the parity of theta-

characteristics remains constant in families ([Mum71]), the pullback of Tg by the natural for-

getful map π : Rg → Mg decomposes as π−1(Tg) = T e
g ∪ T o

g , where

T e
g =

{
(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) even

}

T o
g =

{
(C, η) ∈ Rg | C has a semicanonical pencil L with h0(C,L⊗ η) odd

}

Abusing notation, T e
g and T o

g will also denote the closures of these divisors in the Deligne-

Mumford compactification Rg or in Beauville’s partial compactification R̃g by admissible covers.

The classes of T e
g and T o

g in the rational Picard group Pic(Rg)Q have recently been com-

puted in [MPR21]. The reader is referred to [FL10, Section 1] for the definition of the classes

λ, δ′0, δ
′′
0 , δ

ram
0 , δi, δg−i, δi:g−i (1 ≤ i ≤ [g/2]) generating Pic(Rg)Q. We do not specify the coeffi-

cients of δi, δg−i, δi:g−i since they are not useful for us.

Theorem 2.1 ([MPR21]). Let [T e
g ], [T

o
g ] ∈ Pic(Rg)Q denote the cohomology classes of T e

g , T
o
g

in the Deligne-Mumford compactification Rg. Then, the following equalities hold:

[T e
g ] = 2g−3(2g−1 + 1)λ− 22g−7δ′0 − 2g−5(2g−1 + 1)δram0 − . . .

[T o
g ] = 22g−4λ− 22g−7δ′0 − 22g−6δ′′0 − 2g−5(2g−1 − 1)δram0 − . . .

Furthermore, for g 6= 4 the divisors T e
g and T o

g are irreducible.
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2.2. Prym varieties and the Andreotti-Mayer locus. We recall some basic facts on Prym

varieties, most of them coming from the seminal work [Mum74].

Given a smooth Prym curve (C, η) ∈ Rg, denote by f : C̃ −→ C the étale, smooth, irreducible

double cover associated to η. The kernel of the norm map Nmf : JC̃ −→ JC breaks into two

connected components; the Prym variety P = P (C, η) of (C, η) is the component containing

the origin of JC̃. Its 2-torsion subgroup P2 fits into a short exact sequence

0 −→ 〈η〉 −→ 〈η〉⊥
f∗

−→ P2 −→ 0

where 〈η〉⊥ ⊂ JC2 denotes the orthogonal of 〈η〉 with respect to the Weil pairing on JC2 (see

[Mum74, Page 332, Corollary 1]). Furthermore, the principal polarization on JC̃ restricts to

twice a principal polarization on P , giving rise to the Prym map

Pg : Rg −→ Ag−1.

The singularities of a theta divisor Ξ representing the principal polarization can be described

as follows. Let

P+ = {M ∈ Pic2g−2(C̃) | Nmf (M) = ωC and h0(C̃,M) is even}

be a “canonical presentation” of the Prym variety P in Pic2g−2(C̃) = Picg(C̃)−1(C̃), and let

Θ
C̃
⊂ Pic2g−2(C̃) denote the canonical theta divisor of JC̃. Then P+ ·Θ

C̃
= 2Ξ+, where

Ξ+ = {M ∈ P+ | h0(C̃,M) ≥ 2}

is a canonical presentation of the theta divisor of P , and singularities of Ξ+ may arise in two

different situations: stable singularities given by M ∈ Ξ+ with h0(C̃,M) ≥ 4, and exceptional

singularities of the form M = f∗L⊗A ∈ Ξ+ with h0(C,L) ≥ 2 and h0(C̃, A) > 0.

An elementary example of exceptional singularity is given by f∗L, where L is a semicanonical

pencil on C such that h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η) is even (i.e., h0(C,L⊗ η) is even).

Therefore Pg(T
e
g ) ⊂ N0, where N0 ⊂ Ag−1 denotes the Andreotti-Mayer locus of principally

polarized abelian varieties (ppav) whose theta divisor has singularities.

More precisely one has Pg(T
e
g ) ⊂ θnull, where θnull ⊂ Ag−1 is the divisor of ppav whose (symmet-

ric) theta divisor contains a singular 2-torsion point of even multiplicity. Indeed, the singularity

being a 2-torsion point follows from the fact that the symmetric models of the theta divisor in

P ⊂ Pic0(C̃) are obtained when (P+,Ξ+) is translated by a theta-characteristic lying in P+; in

particular, the 2-torsion points of P in the canonical model P+ are the theta-characteristics of

C̃ lying in P+. Moreover, the multiplicity is two for the general element in Pg(T
e
g ) thanks to

[CM09, Theorem 2], so even in any case.

Note that N0 = θnull = A1 × A1 in A2, and N0 = θnull ⊂ A3 is the divisor of hyperelliptic

Jacobians. For g ≥ 5, the Andreotti-Mayer locus of Ag−1 is the union of two irreducible divisors

([Mum83, Deb92]):

N0 = θnull ∪ N ′
0.

Whereas the theta divisor of the general element of θnull has a unique singular point (which

is 2-torsion), the theta divisor of a general element of N ′
0 has exactly two singular (opposite)
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points. Using this fact, Mumford computed the multiplicity of each component (see [Mum83]),

proving the following equality as cycles: N0 = θnull + 2N ′
0.

For g = 5 this was already proved in [Bea77a], where Beauville showed that N0 ⊂ A4 has

two irreducible components, namely the Jacobian locus and the divisor θnull. In that paper,

Beauville extended Pg to a proper map

P̃g : R̃g −→ Ag−1

by considering admissible covers of stable curves; R̃g ⊂ Rg denotes the moduli space of admis-

sible covers.

2.3. Brill-Noether loci on Prym varieties. In contrast to the even case, an odd semicanon-

ical pencil L for a smooth Prym curve (C, η) does not provide singularities in the canonical theta

divisor Ξ+, since the pullback f∗L lands in the other component of Nm−1
f (ωC):

P− =
{
M ∈ Pic2g−2(C̃) | Nmf (M) = ωC and h0(C̃,M) is odd

}
.

To understand the situation, following Welters [Wel85], we consider the Brill-Noether-Prym loci

V r(C, η) :=
{
M ∈ Pic2g−2(C̃) | Nmf (M) = ωC , h

0(C̃,M) ≥ r + 1, h0(C̃,M) ≡ r + 1(mod 2)
}

with the scheme structure defined by P+ ∩W r
2g−2(C̃) (r odd) or P− ∩W r

2g−2(C̃) (r even).

For instance V 0(C, η) = P−, V 1(C, η) = Ξ+ and V 3(C, η) ⊂ Ξ+ is the set of stable singularities.

Moreover, for g ≥ 4 and C non-hyperelliptic the scheme-theoretic equality V 2(C, η) = T (C̃)

holds (see [LN13, Theorem A], or [Iza95] for a first set-theoretic version when g = 5). Here the

theta-dual T (C̃) parametrizes the translates of the Abel-Prym curve C̃ ⊂ P contained in the

theta divisor.

Observe that for (C, η) ∈ T o
g with an odd semicanonical pencil L, we have f∗L ∈ V 2(C, η).

Moreover, f∗L is a singular point of V 2(C, η) thanks to the following result, which is essentially

an application of [Hoe12, Lemma 3.1]:

Lemma 2.2. Let (C, η) ∈ Rg be a non-hyperelliptic Prym curve of genus g ≥ 5. If M ∈

V 2(C, η) \ V 4(C, η), then M is a singular point of V 2(C, η) if and only if M = f∗L ⊗ A, for

line bundles L and A satisfying h0(C,L) ≥ 2 and h0(C̃, A) > 0.

Proof. Since V 2(C, η) has pure dimension g − 4 (see [LN13, Lemma 4.1]), the “only if” part

is exactly the statement of [Hoe12, Lemma 3.1] for r = 2. Following that proof, the converse

statement is obtained as well, if one uses that every element of
∧2H0(C̃,M) is decomposable

by the assumption h0(C̃,M) = 3. �

3. Even semicanonical pencils and the theta-null divisor

In this short section, we specify the covers in Rg whose Prym variety has a theta divisor with

a singular 2-torsion point (of arbitrary multiplicity), and we will deduce that P−1
g (θnull) equals

the divisor T e
g .
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Proposition 3.1. For every g ≥ 3, the preimage under the Prym map of the locus of ppav

whose theta divisor has a singular 2-torsion point is

(3.1) T e
g ∪

{
(C, η) ∈ Rg

∣∣∣∣∣
C has an odd theta-characteristic L such that

h0(C,L) ≥ 3 and L⊗ η is also odd

}
.

Proof. Let C̃
f
−→ C be the double étale cover defined by (C, η) ∈ Rg, and let σ : C̃ → C̃ be

the induced involution exchanging sheets. Throughout this proof, we consider the canonical

presentation (P+,Ξ+) in Pic2g−2(C̃) of the Prym variety; recall that the 2-torsion points of P

correspond to theta-characteristics of C̃ lying in P+.

We have already seen in Section 2.2 that the inclusion T e
g ⊂ P−1

g (θnull) holds. Moreover, if C

has an odd theta-characteristic L with h0(C,L) ≥ 3 and L⊗ η odd, then

h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η) ≥ 4

and hence f∗L is a theta-characteristic on C̃ defining a stable singularity of Ξ+.

Therefore, to finish the proof it suffices to check that if (C, η) /∈ T e
g and Pg(C, η) has a theta

divisor with a singular 2-torsion point, then C has an odd theta-characteristic L with h0(C,L) ≥

3 and L⊗ η odd.

So let M ∈ Ξ+ be a singular point, corresponding to a theta-characteristic on C̃. If h0(C̃,M) =

2, then the singularity M is exceptional with M = f∗L ⊗ A and h0(C,L) = 2, h0(C̃, A) > 0.

Let us check that this cannot happen under the assumption (C, η) /∈ T e
g .

Indeed, if degL = g − 1 then A = O
C̃

and M = f∗L. Since ωC = Nmf (M) = L⊗2, it follows

that either L or L⊗ η is an even semicanonical pencil for the cover f , which is a contradiction.

If degL < g − 1, then, under the assumption M2 = ω
C̃
, we have

f∗L2 ⊗A⊗ σ(A) = f∗(Nmf (M)) = f∗ωC = ω
C̃
=M2 = f∗L2 ⊗A2

and therefore A is invariant by the action of the involution σ. This allows us to express M =

f∗(L′) for a line bundle L′ of degree g − 1, which again leads to a contradiction.

Now assume that M ∈ Ξ+ is defining a stable singularity, namely h0(C̃,M) ≥ 4. There is a

chain of equalitites

M2 = ω
C̃
= f∗ωC = f∗Nmf (M) =M ⊗ σ(M)

giving M = σ(M), which is equivalent to M = f∗L for a line bundle L of degree g − 1 on C.

Moreover, the condition Nmf (M) = ωC reads as L being a theta-characteristic on C, for which

4 ≤ h0(C̃, f∗L) = h0(C,L) + h0(C,L⊗ η).

By the assumptionM ∈ Ξ+, the two summands must have the same parity, and cannot be even

since (C, η) 6∈ T e
g . It follows that the summands must be odd, which finishes the proof. �

The following corollary includes Theorem A.(1):

Corollary 3.2. The divisor of even semicanonical pencils T e
g satisfies:

(1) For g ≥ 3, the equality T e
g = P−1

g

(
θnull

)
holds.

(2) For g ≥ 6, the irreducible components of (3.1) of Proposition 3.1 outside T e
g have codimen-

sion 3.
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Proof. Let us first prove (1) when 3 ≤ g ≤ 5, by checking that in this range the locus (3.1)

described in Proposition 3.1 equals T e
g . Indeed, a smooth curve C of genus g ≤ 4 has no theta-

characteristic L with h0(C,L) ≥ 3 (otherwise it would contradict Clifford’s theorem). When

g = 5, such a theta-characteristic is necessarily a g24 , so C must be hyperelliptic (it has Clifford

index 0). Since covers of hyperelliptic curves are contained in T e
g for g ≥ 4, the claim follows.

Item (2) is a direct consequence of [TiB87, Theorem 2.17]. Finally, to prove (1) for g ≥ 6 one

simply combines (2) with the observation that P−1
g (θnull) must have pure codimension 1 (since

it is the preimage of a divisor). �

Remark 3.3. Let (C, η) ∈ Rg be a general point of one of the codimension 3 components

of (3.1) of Proposition 3.1. Again by [TiB87, Theorem 2.17], there exists a unique odd theta-

characteristic L on C with h0(C,L) ≥ 3, which satisfies h0(C,L) = 3 and h0(C,L⊗ η) = 1. Let

C̃
f
−→ C denote the double étale cover associated to (C, η). The 2-torsion pointM = f∗L ∈ Ξ+ is

both a stable and an exceptional singularity, having multiplicity 3 in Ξ+ by [CM09, Theorem 2].

When g = 6, there is a classical construction providing one of these codimension 3 components.

For a smooth cubic threefold V ⊂ P4, let JV denote its intermediate Jacobian; its (canonical)

theta divisor has multiplicity 3 at the origin, which is its unique singularity (see [CG72] and

[Bea82]).

Over the 10-dimensional locus C ⊂ A5 of intermediate Jacobians of cubic threefolds, the Prym

map P6 fails to be finite: the fiber P−1
6 (JV ) is 2-dimensional, given by (an open subset of) the

Fano surface of lines on V ([DS81, Part V]). Then the preimage P−1
6 (C) equals

RQ− =
{
(Q, η) ∈ R6 | Q is a smooth plane quintic, h0(Q,OQ(1)⊗ η) is odd

}

and, since RQ− is not contained in T e
6 (a general quintic admits no semicanonical pencil), it

follows that RQ− is one of the codimension 3 components mentioned above.

4. Genus 3 and hyperelliptic Prym curves

In the case of smooth curves of genus 3, a semicanonical pencil is the same as a g12 , so the divisor

T3 ⊂ M3 equals the hyperelliptic locus H3. At the level of Prym curves, the irreducible divisors

T e
3 and T o

3 admit an easy description in terms of the number of Weierstrass points needed to

express the 2-torsion line bundle (see [MPR21, Example 2.1]).

Recall that the Prym map (on smooth covers) P3 : R3 → A2 is surjective. When we consider its

restriction to T e
3 and T o

3 , two distinct behaviors arise. On the one hand, T e
3 = P−1

3 (θnull) as we

saw in Corollary 3.2.(1), where θnull = A1×A1 ⊂ A2 is the locus formed by products of elliptic

curves. On the other hand, as stated in Theorem B.(1), the restriction to T o
3 is dominant with

general fiber isomorphic to the complement in P2 of six lines and a smooth conic.

Proof of Theorem B.(1). Let C ′ be a smooth curve of genus 2. Since C ′ is hyperelliptic, by

[Mum74, page 346], expressing JC ′ as the Prym of a cover of a genus 3 hyperelliptic curve C is
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equivalent to the construction of a diagram

C̃

��⑧⑧
⑧⑧
⑧⑧
⑧⑧

  
❅❅

❅❅
❅❅

❅❅

C

p
��
❅❅

❅❅
❅❅

❅❅
C ′

p′~~⑥⑥
⑥⑥
⑥⑥
⑥⑥

P1

where: the double cover p is branched at the six branch points of p′ and two extra points, and

C̃ is the normalization of C ×P1 C ′. This proves the dominance of P3 |T o
3
.

In order to determine the fiber, we consider a curve C ′ which is general in the following sense:

if p1, . . . , p6 are the branch points of the double cover p′ : C ′ → P1, then there is no nontrivial

projective transformation of P1 mapping four points of {p1, . . . , p6} to four points (possibly not

the same four) in {p1, . . . , p6}. Under this assumption, the fiber P3 |
−1
T o
3
(JC ′) parametrizes all

the possible choices of two non-repeated points in P1 \ {p1, . . . , p6}, according to the previous

description.

Consider the natural isomorphism (P1)(2) ∼= (P2)
∗
identifying a pair of points on a smooth plane

conic with the line joining them. Under this identification (P1 \ {p1, . . . , p6})
(2) is isomorphic

to the complement in (P2)∗ of six lines (no three of them concurrent), since we are considering

lines passing through none of the six marked points of the conic.

To finish the description of the general fiber P3 |
−1
T o
3
(JC ′), simply note that we are avoiding lines

that are tangent to the conic as well, since we are considering pairs in (P1 \ {p1, . . . , p6})
(2)

formed by two distinct points.

Finally, since a variety which dominates a rationally connected variety with rationally connected

generic fibers is rationally connected ([GHS03]), we obtain that T o
3 is rationally connected. �

Remark 4.1. We can be more precise regarding the image of T o
3 via the Prym map and the

rational connectedness of T e
3 and T o

3 :

(1) Since the semicanonical pencil on a curve of T3 is unique, the divisors T
e
3 and T o

3 are disjoint.

Therefore, thanks to the equality P−1
3 (θnull) = T e

3 we obtain that P3 |T o
3
is dominant, but

not surjective. Indeed, P3(T
o
3 ) = A2 \ θnull.

(2) It is not difficult to prove directly that both divisors T e
3 and T o

3 are rationally connected

using their description in terms of Weierstrass points. Indeed, any two smooth Prym curves

of T e
3 (resp. T o

3 ) can be connected by a chain of (at most five) rational curves contained in

T e
3 ⊂ R3 (resp. T o

3 ⊂ R3); basically, each rational curve parametrizes hyperelliptic Prym

curves with all but one of its branch points remaining constant.

5. Genus 4 and Recillas’ trigonal construction

In this section, we carry out an analysis of the case of genus 4, which leads to the proof of

Theorem B.(2) and Theorem A.(2). Recillas’ trigonal construction provides an isomorphism

between two moduli spaces, each of them endowed with a natural involution. Our strategy
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exploits the fact that these involutions are compatible and that the divisors T o
4 and T e

4 are

contained in the locus of fixed points of one of these involutions.

Recall that a smooth hyperelliptic curve C of genus 4 has ten distinct semicanonical pencils,

corresponding to the sum of the g12 as movable part with a Weierstrass base point. For non-

hyperelliptic C, the canonical map C → P3 embeds C as the complete intersection of a quadric

Q and a cubic surface S.

If Q is smooth, then the curve C has exactly two g13 , which parametrize the intersection of S

with the lines in each of the rulings of Q. Observe that the sum of the two g13 is the canonical

system of C and the curve C has no semicanonical pencil. On the other hand, if the quadric

Q is singular, then C has a unique g13 which is a semicanonical pencil; moreover, g13 is given by

the intersections of S with the system of lines in Q containing the singular point.

It follows that H4 ⊂ T4 ⊂ M4, where H4 stands for the hyperelliptic locus. Notice that T4 is the

closure of the locus of non-hyperelliptic curves whose canonical model is contained in a singular

quadric. Moreover, since the semicanonical pencil of a non-hyperelliptic curve of T4 is unique,

we have RH4 = T e
4 ∩ T o

4 , where RH4 = π−1(H4) ⊂ R4 denotes the locus of hyperelliptic Prym

curves.

Now we address the problem of understanding the restriction of the Prym map P4 : R4 → A3

to the divisors T e
4 and T o

4 . Consider the following moduli spaces:

RG 1
4,3 = {(C, η,M) | (C, η) ∈ R4 \ RH4 and M is a g13 on C}/ ∼=

G 1
3,4 = {(X,L) | X ∈ M3 and L is a (not necessarily complete) base-point-free g14 on X}/ ∼= .

That is, RG 1
4,3 parametrizes (isomorphism classes of) covers of non-hyperelliptic genus 4 curves

endowed with a g13 , and G 1
3,4 parametrizes genus 3 curves endowed with a base-point-free g14 .

Both moduli spaces have projection maps forgetting the linear series:

• The projection RG 1
4,3

ϕ
−→ R4 \ RH4 is generically finite of degree 2. Moreover, RG 1

4,3 carries

a natural involution σ defined by

(5.1) σ(C, η,M) = (C, η, ωC ⊗M−1),

which exchanges the two sheets of the open subset of RG 1
4,3 where ϕ is finite.

• Let us study the fiber of the projection G 1
3,4

ψ
−→ M3 over a curve X ∈ M3. First of all,

note that the scheme G1
4(X) of g14 linear series on X is easily identified with the blow-up

of Pic4(X) at the canonical sheaf ωX . This scheme carries a natural involution, given by

L 7→ ω2
X ⊗ L−1; indeed, this involution, defined outside the exceptional divisor of G1

4(X),

extends as the identity on the exceptional divisor as proved in [FNS21, Proposition 6.1].

If X is non-hyperelliptic and we regard it as a quartic plane curve, the g14 ’s on X with base

points are exactly those given by pencils of lines through points of X. Linear series with base

points are thus parametrized by X, and are contained in the exceptional divisor of G1
4(X).

If X is hyperelliptic, tetragonal series with base points are those of the form g12 + p + q and

hence the open subset of G1
4(X) parametrizing series without base points is the complement

of a copy of X(2).
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According to this description, it follows that for any smooth curve X the open subset of

G1
4(X) formed by base-point-free tetragonal series remains invariant by the involution. Since

this involution is compatible as well with the automorphisms of X, we obtain an involution

τ : G 1
3,4 → G 1

3,4 defined by

(5.2) τ(X,L) = (X,ω2
X ⊗ L−1).

Recillas’ trigonal construction (cf. [Rec74]) yields a morphism R : RG 1
4,3 −→ G 1

3,4 making the

following diagram commutative:

RG 1
4,3

R
//

ϕ

��

G 1
3,4

ψ

��

R4 \ RH4

P4
$$❏

❏❏
❏❏

❏❏
❏❏

❏
M3

Torelli
}}④④
④④
④④
④④

A3

More precisely, R provides an isomorphism of RG 1
4,3 with the open set (G 1

3,4)
ns

⊂ G 1
3,4 of

tetragonal pairs (X,L) with the property that the g14 L is not special, i.e., L contains no divisor

of the form 2p+ 2q or 4p (see [Don92, Theorem 2.9]). This open set dominates M3.

Note that G 1
3,4 is clearly irreducible, since M3 and all the fibers of the projection G 1

3,4 → M3

are so. Therefore (G 1
3,4)

ns
and RG 1

4,3 are also irreducible.

Now our purpose is to prove that Recillas’ construction commutes with the natural involutions

σ and τ (defined in (5.1) and (5.2)), namely:

Proposition 5.1. The equality R ◦ σ = τ ◦R holds.

By irreducibility, it is enough to check that σ ◦R−1 = R−1 ◦ τ on an open set U . We define U

to be the intersection of (G 1
3,4)

ns
with the open set of pairs (X,L) where X is non-hyperelliptic

and L is not contained in the canonical bundle of X.

Hence let X ∈ M3 be non-hyperelliptic, regarded as a quartic plane curve, and consider L ∈

Pic4(X) \ {ωX} a complete g14 on X such that the linear system |L| contains no divisor of the

form 2p+ 2q or 4p; this is true for L ∈ Pic4(X) \ {ωX} general.

The element R−1(X,L) ∈ RG 1
4,3 can be explicitly described as follows: the curve

C ′
L = {p + q ∈ X(2) | h0(L(−p− q)) 6= 0}

is smooth of genus 7, with a fixed-point-free involution iL sending p + q to the unique divisor

r+ s ∈ |L(−p− q)|. The quotient CL = C ′
L/〈iL〉 has genus 4 and naturally comes with a degree

3 map to P1, corresponding to a g13 that we denote by ML. Then

R−1(X,L) = (CL, ηL,ML)

where ηL ∈ (JCL)2 defines the étale cover C ′
L → CL.
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Now we denote L̃ = ω2
X ⊗ L−1, so that τ(X,L) = (X, L̃). Hence Proposition 5.1 boils down to

proving that

(CL, ηL, ωCL
⊗M−1

L ) = σ(R−1(X,L)) = R−1(τ(X,L)) = (C
L̃
, η
L̃
,M

L̃
),

which will be a consequence of the following two lemmas:

Lemma 5.2. There is an isomorphism C ′
L

ρ
−→ C ′

L̃
such that ρ ◦ iL = i

L̃
◦ ρ.

Proof. For a point p+ q ∈ C ′
L, we let ρ(p+ q) ∈ X(2) be the residual intersection of X with the

line pq (this line being the tangent line to X at p, if p = q). Writing r + s = iL(p + q), then

the eight points obtained by intersection of X with the lines pq and rs give a divisor in |ω2
X |.

This implies |ρ(p + q) + ρ(r + s)| ∈ |L̃|, which gives ρ(p + q) ∈ C ′

L̃
(i.e., ρ is well-defined) and

i
L̃
(ρ(p + q)) = ρ(r + s) = ρ(iL(p+ q)).

To finish the proof, simply note that ρ is an isomorphism since it has an obvious inverse. �

It follows that (CL, ηL) = (C
L̃
, η
L̃
) as elements of R4. To finish the proof of σ(R−1(X,L)) =

R−1(τ(X,L)), we only need to check that the isomorphism CL → C
L̃
induced by ρ (that we

denote by ρ as well, abusing notation) sends ωCL
⊗M−1

L to M
L̃
.

Lemma 5.3. ρ∗(ωCL
⊗M−1

L ) =M
L̃
.

Proof. Since CL (hence C
L̃
) is a non-hyperelliptic curve of genus 4, by the discussion at the

beginning of this subsection it turns out that CL has at most two g13 (namely ML and ωCL
⊗

M−1
L ). Therefore, it suffices to check that ρ∗ML 6=M

L̃
.

Take D = p1+ p2+ p3+ p4 ∈ |L|. Then, ML is the line bundle on CL represented by the divisor

{p1 + p2, p3 + p4}+ {p1 + p3, p2 + p4}+ {p1 + p4, p2 + p3}

and therefore ρ∗ML on C
L̃
is represented by the divisor

{a12 + b12, a34 + b34}+ {a13 + b13, a24 + b24}+ {a14 + b14, a23 + b23}

where for i, j ∈ {1, 2, 3, 4} the points aij, bij are the residual intersection of X with the line pipj.

We may take D with p1, p2, p3, p4 distinct, and such that for every i 6= j we have aij 6= bij.

If the equality ρ∗ML =M
L̃
were true, then we would have equalities in X(4)

a12 + b12 + a34 + b34 = a13 + b13 + a24 + b24 = a14 + b14 + a23 + b23

with this divisor representing the line bundle L̃. But these equalities are easily seen to imply

that the points p1, p2, p3, p4 are collinear, which is a contradiction since L 6= ωX . �

This finishes the proof of Proposition 5.1. As a consequence of it, we deduce that τ leaves

invariant the image of R, and the fixed points of the two involutions correspond by R.

First, let us study the fixed points of σ. If (C, η,M) ∈ RG 1
4,3 with C non-hyperelliptic, then

M ∼= ωC⊗M−1 if and only ifM is the unique g13 on C, namely C ∈ T4 andM is the semicanonical

pencil of C. Therefore, the locus of fixed points of σ consists of two pieces:

(a1) Triples (C, η,M) ∈ RG 1
4,3 with (C, η) ∈ (T e

4 ∪ T o
4 ) \ RH4 and M a semicanonical pencil

on C.
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(a2) The set of (C, η,M) ∈ RG 1
4,3 with (C, η) /∈ T e

4 ∪ T o
4 having a nontrivial automorphism

exchanging the two g13 ’s on C.

The locus of fixed points of τ is formed by the following pieces:

(b1) The P2-bundle on M3 given by the union of the exceptional divisors in G1
4(X) moving

X, that is:
⋃

X∈M3

(|ωX |
∗ \X) /Aut(X).

(b2) Pairs (X,L) ∈ G 1
3,4 with X hyperelliptic. Indeed, the hyperelliptic involution on X

exchanges any L ∈ Pic4(X) with ω2
X ⊗ L−1.

(b3) The set of pairs (X,ωX ⊗ η) with X ∈ M3 and η ∈ JX2 \ {OX}. This set is naturally

identified with R3.

(b4) The (closure of) the set of pairs (X,L) ∈ G 1
3,4 with X non-hyperelliptic, having a

nontrivial automorphism sending L to ω2
X ⊗ L−1.

Remark 5.4. The piece (b3) corresponds, under R−1, to the irreducible component of (a2)

formed by covers of bielliptic curves of genus 4.

Indeed, consider (X,L) with X a quartic plane curve and L = ωX ⊗ η, η ∈ JX2 \ {OX}. We

can express L = θ1 ⊗ θ2 for two distinct odd theta-characteristics θ1 and θ2; namely, |L| has a

divisor given by the contact points of two distinct bitangent lines. Moreover, using the theory

of syzygetic triads ([Dol12, Section 5.4.1]) it is easy to check that |L| contains exactly six such

“distinguished” divisors (i.e., formed by contact points of two bitangent lines).

Then, the curves CL and C
L̃
are equal by definition. Moreover, the involution ρ : CL → CL

has exactly six fixed points, lying over the six distinguished divisors of |L|. It follows that CL

is bielliptic, and the bielliptic involution ρ exchanges the two g13 ’s on CL by Lemma 5.3.

Conversely, Recillas’ trigonal construction applied to a cover of a bielliptic curve is well known

to give an element of (b3), see [Dol08, Section 3].

Keeping all this in mind, we are now ready to prove that P4 |T o
4
is surjective, and show that its

fiber over a general Jacobian JX ∈ A3 is the complement in the projective plane of the union

of the canonical model of X and the 28 lines that are bitangent to it. Moreover, we conclude

that T 0
4 is irreducible and rationally connected.

Proof of Theorem B.(2). We will first prove that P4 |T o
4
is dominant, by describing the fiber of

a general Jacobian JX ∈ A3 (in particular, showing its non-emptiness). To this end, we take

a non-hyperelliptic curve X ∈ M3 without automorphisms, and denote G1,ns
4 (X) = ψ−1(X) ∩

(G 1
3,4)

ns
. That is, G1,ns

4 (X) parametrizes g14 linear series on X with no divisor of the form 2p+2q

or 4p.

Observe that, since the whole fiber P−1
4 (JX) is contained in R4 \ RH4, according to Recillas’

diagram, the fiber P4 |
−1
T o
4
(JX) equals ϕ

(
R−1(cG1,ns

4 (X))
)
∩ T o

4 . The latter is isomorphic to

R−1
(
G1,ns
4 (X)

)
∩ ϕ−1(T o

4 ), since the restriction ϕ |ϕ−1(T o
4
) is an isomorphism; note that the

intersection R−1
(
G1,ns
4 (X)

)
∩ ϕ−1(T o

4 ) lies in the piece (a1) of the locus of fixed points of σ.

On the other hand, by our assumptions on X, the intersection of G1,ns
4 (X) with the locus of

fixed points of τ consists of a 2-dimensional irreducible component (intersection with the piece
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(b1)) and finitely many points (intersection with the piece (b3)). Therefore, the intersection of

R−1
(
G1,ns
4 (X)

)
with the locus of fixed points of σ consists of finitely many points of the piece

(a2) and a 2-dimensional component.

We claim that this 2-dimensional component must be R−1
(
G1,ns
4 (X)

)
∩ ϕ−1(T o

4 ). Indeed, if

this were not the case then the piece (b1) would correspond to (a2); hence (a2) would be

8-dimensional, which is absurd since the locus of (non-hyperelliptic) curves of genus 4 with

automorphisms is well known to have lower dimension (see [Cor87]).

All in all, we obtain that the fiber is isomorphic to the intersection of G1,ns
4 (X) with the locus

(b1) of the fixed locus of τ . This intersection is the set of all the non-complete, base-point-free

g14 on X containing no divisor of the form 2p + 2q or 4p. Such a g14 is defined by the pencil of

lines through a fixed point of P2, outside the curve X and lying in no bitangent line to X.

Now we proceed to prove that the map P4 |T o
4

: T o
4 → A3 is not only dominant, but also

surjective. For this, note that we have shown that ϕ−1(T o
4 ) is mapped via R to the locus (b1);

it follows that Jacobians JX ∈ A3 of non-hyperelliptic curves X with automorphisms lie in

the image of P4 |T o
4
as well. In addition, every element of θnull (i.e., a hyperelliptic Jacobian or

product of Jacobians in A3) can be obtained as the Prym variety of a cover in RH4 ⊂ T o
4 ; this

follows from Mumford’s description of Prym varieties of covers of hyperelliptic curves ([Mum74,

Page 346]), that we already used in section 3.

Therefore, we have proved that P4 |T o
4
: T o

4 → A3 is surjective, with all the fibers of elements

in A3 \ θnull being irreducible of the same dimension. Moreover, since P−1
4 (θnull) = T e

4 by

Corollary 3.2.(1), we have P4 |
−1
T o
4
(θnull) = T o

4 ∩ T e
4 = RH4.

Thus if T o
4 were not irreducible, it would have RH4 as an irreducible component, contradicting

the equidimensionality of T o
4 .

Finally, the rational connectedness of T o
4 follows again from the results in [GHS03]. �

We end this section by showing that the fiber P−1
4 (JX) ⊂ T e

4 of a general hyperelliptic Jacobian

JX ∈ θnull is birationally equivalent to its Kummer variety. As a consequence, we get that T e
4

is irreducible.

Proof of Theorem A.(2). Take a general hyperelliptic curve X ∈ H3 (in particular, having the

hyperelliptic involution as its only nontrivial automorphism). The intersection P−1
4 (JX)∩RH4

can be described following Mumford’s trick for covers of hyperelliptic curves, as we did in the

case of genus 3: this intersection is the complement in P2 of the union of eight lines and a conic.

Now, we proceed to describe the “non-hyperelliptic” part of the fiber P−1
4 (JX). As usual,

denote by G1,ns
4 (X) = ψ−1(X) ∩ (G 1

3,4 )
ns
; due to the action of the hyperelliptic involution on

G1
4(X), G1,ns

4 (X) is birationally equivalent to the Kummer variety of JX.

According to the commutative diagram given by Recillas’ construction, P−1
4 (JX) \ RH4 is

ϕ(R−1(G1,ns
4 (X))), which is isomorphic to R−1(G1,ns

4 (X)) since the restriction ϕ |ϕ−1(T e
4
) is an

isomorphism. It follows that P−1
4 (JX) \ RH4 is birational to the Kummer variety of JX.

Finally, we point out that the whole fiber P−1
4 (JX) is irreducible. This follows from our study

of P−1
4 (JX) \ RH4 and P−1

4 (JX) ∩RH4, as well as from the equidimensionality of T e
4 . �
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6. Genus 5 and cubic threefolds

Similarly to the cases g = 3 and g = 4, the behavior of the Prym map on T o
5 is quite different

from its behavior on T e
5 ; indeed, T

o
5 dominates A4 as already observed by Izadi in [Iza95, Proof

of Theorem 6.14]. In this section we first give a brief different proof of this fact, by means of the

cohomology classes of T o
5 and T e

5 (Proposition 6.1); then we study in more detail the generic

fiber of P̃5|T o
5
, whose geometry reveals enumerative properties of cubic threefolds.

We start by recalling Donagi’s description [Don92, Section 5] of the generic fiber of the (proper,

surjective) Prym map P̃5 : R̃5 → A4. There is a birational map

κ : A4 99K RC+

where RC+ denotes the moduli space of pairs (V, δ) with V ⊂ P4 a smooth cubic threefold

and δ ∈ JV2 an even 2-torsion point (i.e., δ /∈ ΘV for the canonical choice of the theta divisor

ΘV ⊂ JV ). Izadi [Iza95] explicitly describes an open subset of A4 on which κ is an isomorphism.

Then the fiber of κ ◦ P̃5 over a generic (V, δ) is isomorphic to the double étale cover F̃ (V ) of

the Fano surface of lines F (V ) defined by δ (recall that Pic0(F (V )) ∼= JV ).

Proposition 6.1. The restricted Prym map P̃5|T o
5
: T o

5 → A4 is dominant.

Proof. For A ∈ A4 general, we write (V, δ) = κ(A) and let F̃ (V ) = (P̃5)
−1(A) be its fiber by

P̃5. If ι : F̃ (V ) →֒ R̃5 →֒ R5 denotes the inclusion, then the pullback map

ι∗ : Pic(R5)Q → Pic(F̃ (V ))Q

annihilates the classes δ′0, δ
′′
0 , δ1, δ2, δ3, δ4, δ1:4 and δ2:3.

Indeed, the generic element of the divisors ∆i (i = 1, . . . , 4) and ∆i:5−i (i = 1, 2) is an admissible

cover whose Prym variety is a decomposable ppav; hence P̃5(∆i∩R̃5) and P̃5(∆i:5−i∩R̃5) have

positive codimension in A4, so ∆i ∩ R̃5 and ∆i:5−i ∩ R̃5 are disjoint with the general fiber

F̃ (V ). On the other hand ∆′′
0 is formed by Wirtinger covers, so P̃5(∆

′′
0 ∩R̃5) is contained in the

Jacobian locus, which is a divisor in A4; this again implies that ι∗(δ′′0 ) = 0. Finally, ι∗(δ′0) = 0

since F̃ (V ) ⊂ R̃5 and the general element of ∆′
0 is a non-admissible cover.

Since T e
5 is mapped by P̃5 to θnull ⊂ A4, the divisor T e

5 does not intersect the generic fiber

F̃ (V ). Hence, by Theorem 2.1, we obtain

0 = ι∗[T e
5 ] = 68ι∗λ− 17ι∗δram0

which implies the relation ι∗δram0 = 4ι∗λ.

Now, the restriction of T o
5 to the fiber F̃ (V ) has cohomology class

ι∗[T o
5 ] = 64ι∗λ− 15ι∗δram0 = 4ι∗λ,

which is clearly nonzero since the Hodge structure cannot remain constant along the (open)

subset of F̃ (V ) formed by smooth covers. Therefore, the restriction of T o
5 to the generic fiber

is not trivial and T o
5 dominates A4. �
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In the previous proof, observe that the class ι∗[T o
5 ] equals ι

∗δram0 . This is consistent with the fact

that the involution j : F̃ (V ) → F̃ (V ) (induced by the double étale cover) exchanges T o
5 ∩ F̃ (V )

and ∆ram
0 ∩ F̃ (V ). In order to understand this, we need to recall the geometric description of

j given also by Donagi in [Don92, Section 5].

Given a smooth cover (C, η) ∈ F̃ (V ), there exists a unique representation JC = P̃6(Q, ν) as

the Prym of a cover of a plane quintic Q (the theta-characteristic OQ(1)⊗ ν on Q being even).

More explicitly, (Q, ν) is the double cover induced by the involution −1JC on the symmetric

curve W 1
4 (C) ⊂ JC.

Consider the short exact sequence

0 → 〈ν〉 → 〈ν〉⊥ → JC2 → 0

where 〈ν〉⊥ ⊂ JQ2 is the orthogonal for the Weil pairing on JQ2. Then the preimage of

〈η〉 ⊂ JC2 is a totally isotropic subgroup of four elements 0, ν, σ and σ ⊗ ν; moreover, the

theta-characteristics OQ(1) ⊗ σ and OQ(1)⊗ σ ⊗ ν on Q have opposite parities.

Say OQ(1) ⊗ σ ⊗ ν is even. Then P̃6(Q,σ ⊗ ν) is the Jacobian of a genus 5 curve C ′, and

ν ∈ 〈σ ⊗ ν〉⊥ ⊂ JQ2 induces a nonzero element η′ ∈ (JC ′)2; one has j(C, η) = (C ′, η′).

This picture beautifully closes with the observation that P̃6(Q,σ) ∼= JV as ppav and the even

2-torsion point δ ∈ JV2 is induced by ν ∈ 〈σ〉⊥ ⊂ JQ2. In particular, the double cover

F̃ (V ) → F (V ) sends (C, η) to the line l ∈ F (V ) having Q as discriminant curve for the conic

bundle structure defined by l.

Remark 6.2. In [Iza95, Section 3], Izadi gives an alternative realization of the involution j.

Given a smooth cover (C̃, C) = (C, η) ∈ R5, the theta-dual T (C̃) = V 2(C, η) ⊂ P−(C, η) is a

symmetric curve (when properly translated to P (C, η)). If C ′ is the quotient of T (C̃) by −1,

then the cover (T (C̃), C ′) corresponds to (C̃, C) under the involution j.

For any smooth cubic threefold V ⊂ P4, we consider the set

Γ = {l ∈ F (V ) | ∃ a 2-plane π and a line r ∈ F (V ) with V · π = l + 2r}

parametrizing the lines l ∈ F (V ) whose conic bundle structure has a singular discriminant curve

([Bea77b, Proposition 1.2]). In other words, Γ parametrizes presentations of JV as the Prym

variety of an (admissible) cover of a singular (plane quintic) curve.

The set Γ is well known to have pure dimension 1 and it is irreducible for a general cubic

threefold V ; assuming the irreducibility of Γ (which will be proven in Proposition 6.4), let us

determine the behavior of the general fiber of P̃5|T o
5
under the involution j of F̃ (V ).

Proposition 6.3. For a generic (V, δ) ∈ RC+, the preimage Γ̃ ⊂ F̃ (V ) of Γ by the double étale

cover consists of two irreducible components, namely T o
5 ∩ F̃ (V ) and ∆0

ram ∩ F̃ (V ). These two

components are exchanged by the involution j.

Proof. We will see in Proposition 6.4 (note that the first paragraph of its proof is independent

of this proposition) that Γ is irreducible. Hence, Γ̃ has at most two irreducible components.
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Thus, for the first statement, it suffices to check that both T o
5 ∩ F̃ (V ) and ∆0

ram ∩ F̃ (V ) are

contained in Γ̃.

On the one hand, if (C, η) ∈ T o
5 ∩ F̃ (V ) with C smooth, then the associated quintic Q =

W 1
4 (C)/〈±1〉 is singular; indeed, the semicanonical pencil on C is a point of W 1

4 (C) fixed by

the involution.

On the other hand, given a general element (C, η) ∈ ∆0
ram the expression of the (semi-abelian)

variety JC as a Prym variety necessarily comes from a non-admissible cover (Q,σ). In partic-

ular, Q is singular as well.

The fact that j exchanges the components of Γ̃ is nothing but [Iza95, Lemma 3.14]. This is also

immediately observed from Remark 6.2, and the fact that for smooth covers (C̃, C) = (C, η) ∈

T o
5 the theta-dual T (C̃) = V 2(C, η) is singular by Lemma 2.2. �

It follows that the general fiber of P̃5|T o
5
: T o

5 → A4 is a curve dominating Γ, which concludes

the proof of Theorem B.(3).

In the rest of this section, we concentrate on the geometry of both curves Γ and T o
5 ∩ F̃ (V ); in

particular, Corollary 6.6 will provide a more precise description of the partial desingularization

of Γ appearing in Theorem B.(3). To this end, we consider for any smooth cubic threefold

V ⊂ P4 the curve

Γ′ = {r ∈ F (V ) | ∃ a 2-plane π and a line l ∈ F (V ) with V · π = l + 2r}

formed by lines of second type. In contrast to Γ, this curve has received considerable attention

in the literature. For instance:

(1) ([CG72, Proposition 10.21]) Γ′ has pure dimension 1 and, as a divisor in the Fano surface

F (V ), is linearly equivalent to twice the canonical divisor KF (V ).

(2) In [Mur72, Corollary 1.9], it is stated that Γ′ is smooth for every V . In fact, what Murre’s

local computations really show is that the singularities of Γ′ correspond to lines r ∈ F (V )

for which there exists a 2-plane π satisfying V · π = 3r.1

An easy count of parameters shows that, for a general V , such lines do not exist (namely

the curve Γ′ is smooth).

For every r ∈ Γ′, there exist a unique 2-plane π and a unique l ∈ F (V ) such that V · π = l+2r

(see [NO19, Lemma 2.4]). This naturally defines a surjective morphism Γ′ → Γ. Even if one

would be tempted to think that it defines an isomorphism between Γ′ and Γ, this is not the

case2:

Proposition 6.4. For a general smooth cubic threefold V , the following hold:

(1) Γ′ is smooth and irreducible.

(2) Γ is irreducible and singular, with only nodes as singularities.

(3) The map Γ′ → Γ is birational (i.e., Γ′ is the normalization of Γ).

1For the interested reader, the linear polynomial l appearing in equation (13) of [Mur72, Page 167] not only

depends on the variables u and v, but also on the variable x (see also [BB22]).
2In particular, this fixes an inaccuracy in the original published version of [NO19, Proposition 2.6], already

corrected in the arXiv version arXiv:1708.06512.v3.

https://arxiv.org/abs/1708.06512


18 M. LAHOZ, J.C. NARANJO, AND A. ROJAS

Proof. The smoothness of Γ′ being known by the discussion above, for the irreducibility of Γ′

(and hence that of Γ) one argues as in the proof of [NO19, Proposition 2.6]. In particular, the

irreducibility of Γ completes the proof of Proposition 6.3.

In order to prove that Γ′ → Γ is birational, we need to prove that a general l ∈ Γ has a unique

preimage in Γ′. Note that the preimages of a line l ∈ Γ correspond to nodes on the discriminant

(plane quintic) curve Ql of the conic bundle structure defined by l.

Fix an even 2-torsion point δ ∈ JV2 (such that the pair (V, δ) ∈ RC+ is general), and denote

by ϕ : F̃ (V ) → F (V ) the étale double cover defined by δ. If (C, η) ∈ R̃5 denotes a Prym curve

lying in both T o
5 and ϕ−1(l), then by Proposition 6.3 the nodes of Ql are also in correspondence

with the semicanonical pencils on the curve C ∈ T5. Since the general curve of T5 has a unique

semicanonical pencil, the birationality of Γ′ → Γ follows.

Now we proceed to prove that the curve Γ is always singular. For this, it suffices to check

that there exist points of Γ with (at least) two preimages in Γ′. Namely, that there exist lines

l ⊂ V such that there are two distinct 2-planes π1, π2 and lines r1, r2 ⊂ V with the property

V · πi = l + 2ri (i = 1, 2).

Take a reference system in P4 so that l ∩ r1 = [0 : 0 : 0 : 1 : 0], l ∩ r2 = [0 : 0 : 0 : 0 : 1],

[0 : 1 : 0 : 0 : 0] ∈ r1 and [0 : 0 : 1 : 0 : 0] ∈ r2. Denoting by x, y, z, u, v the homogeneous

coordinates in this reference system, a cubic threefold V will satisfy V · πi = l+2ri (i = 1, 2) if

and only if it admits an equation of the form

F (x, y, z, u, v) = x ·Q(x, y, z, u, v) + λ15y
2z + λ16yz

2 + λ17yzu+ λ18yzv + λ19yv
2 + λ20zu

2

with Q a quadratic polynomial. This family of equations forms a 20-dimensional linear variety

in the projective space P34 of cubic equations in five variables (up to constant).

On the other hand, the projective transformations which leave the lines l, r1, r2 invariant depend

on ten projective parameters. Therefore, the moduli space of cubic threefolds V for which there

exist lines l, r1, r2 ⊂ V and 2-planes π1, π2 as asserted is 10-dimensional. In other words, every

smooth cubic threefold V admits such a configuration.

A similar parameter count shows that for a general cubic threefold V :

• There are no lines l ∈ Γ admitting three or more preimages in Γ′.

• There are no lines l ∈ Γ admitting two distinct preimages r1, r2 ∈ Γ′ with the property

l ∩ r1 = l ∩ r2.

This shows that, for a general cubic threefold V , the curve Γ is singular and its singular points

are of multiplicity 2. Hence to finish the proof, it only remains to check that such singular

points are ordinary. We will prove the following: for any singular point l ∈ Γ, the tangent

directions to Γ′ at the two preimages r1, r2 ∈ Γ′ of l are mapped to independent directions

in the tangent space to F (V ) at l. We will use the local analysis of Γ′ performed by Murre

([Mur72, Section 1A]).

According to our discussion, the singularities of Γ′ correspond to lines l ⊂ V for which there

exist two distinct 2-planes π1, π2 and (disjoint) lines r1, r2 ⊂ V such that V · πi = l + 2ri
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(i = 1, 2). Taking coordinates as before, we let

F (x, y, z, u, v) = λ0x
3+λ1x

2y+λ2x
2z+λ3x

2u+λ4x
2v+λ5xy

2+λ6xyz+λ7xyu+λ8xyv+λ9xz
2

+λ10xzu+λ11xzv+λ12xu
2+λ13xuv+λ14xv

2+λ15y
2z+λ16yz

2+λ17yzu+λ18yzv+λ19yv
2+λ20zu

2

be the equation defining V . Observe that λ19 6= 0 and λ20 6= 0, otherwise V would contain one

of the 2-planes π1 : x = z = 0, π2 : x = y = 0 and hence V would be singular.

In the Grassmannian G(1, 4) of lines in P4, we take local coordinates x′, x′′, y′, y′′, z′, z′′ for lines

l′ around l, given by

l′ ∩ {v = 0} = [x′ : y′ : z′ : 1 : 0], l′ ∩ {u = 0} = [x′′ : y′′ : z′′ : 0 : 1].

Since F can be written as F = x · f(x, y, z, u, v) + y · g(x, y, z, u, v) + z · h(x.y, z, u, v) with

f(x, y, z, u, v) = λ12u
2 + λ13uv + λ14v

2 + terms of lower degree in u, v,

g(x, y, z, u, v) = λ19v
2 + terms of lower degree in u, v,

h(x, y, z, u, v) = λ20u
2 + terms of lower degree in u, v,

following [Mur72, Section 1A] the tangent plane TlF (V ) to F (V ) at l is described by the four

independent equations

λ12x
′ + λ20z

′ = λ13x
′ + λ12x

′′ + λ20z
′′ = λ14x

′ + λ13x
′′ + λ19y

′ = λ14x
′′ + λ19y

′′ = 0.

Since λ19, λ20 6= 0, observe that the coordinates x′, x′′ are independent in this tangent plane.

Similarly, we take local coordinates a′, a′′, b′, b′′, c′, c′′ for lines r′ around r1 in G(1, 4), where

r′ ∩ {u = 0} = [a′ : 1 : b′ : 0 : c′], r′ ∩ {y = 0} = [a′′ : 0 : b′′ : 1 : c′′].

Following again [Mur72, Section 1A], Tr1F (V ) is described by the independent equations

λ5a
′ + λ15b

′ = λ7a
′ + λ5a

′′ + λ17b
′ + λ15b

′′ = λ12a
′ + λ7a

′′ + λ20b
′ + λ17b

′′ = λ12a
′′ + λ20b

′′ = 0,

which are equivalent to a′ = a′′ = b′ = b′′ = 0. Therefore, we may take c′, c′′ as coordinates in

the tangent plane Tr1F (V ), which is naturally identified with the set of lines contained in the

2-plane π1 (and avoiding the point [0 : 0 : 0 : 0 : 1] ∈ π1).

Under our assumptions of generality on V , the analysis in [Mur72, Section 1A] shows that Γ′ is

smooth at r1, with tangent line

Tr1(Γ
′) : (λ7λ20 − λ12λ17)c

′ + (λ12λ15 − λ5λ20)c
′′ = 0

(again, λ7λ20−λ12λ17 and λ12λ15−λ5λ20 are not simultaneously zero by the smoothness of V ).

Let us assume that λ7λ20 − λ12λ17 6= 0. Given c′′ ∈ C, we denote by r1,c′′ ∈ Tr1(Γ
′) the line

r1,c′′ =
[
0 : 1 : 0 : 0 :

λ5λ20 − λ12λ15
λ7λ20 − λ12λ17

c′′
]
∨ [0 : 0 : 0 : 1 : c′′].

Using the description in [Mur72, 1.3], elementary (but tedious) calculations show that the first

order deformation r1,c′′ of r1 along Γ′ yields a first order deformation of the 2-plane π1 given by

π1,c′′ = r1,c′′ ∨
[ λ19λ20
λ7λ20 − λ12λ17

c′′ : 0 : −
λ12λ19

λ7λ20 − λ12λ17
c′′ : 0 : 1

]
,
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and thus a first order deformation lc′′ of l along Γ given by the following local coordinates

around l:

x′(lc′′) = 0, y′(lc′′) = −
λ13λ20

λ7λ20 − λ12λ17
c′′, z′(lc′′) = 0,

x′′(lc′′) =
λ19λ20

λ7λ20 − λ12λ17
c′′, y′′(lc′′) = −

λ14λ20
λ7λ20 − λ12λ17

c′′, z′′(lc′′) = −
λ12λ19

λ7λ20 − λ12λ17
c′′.

In other words, the first order deformation of r1 along Γ′ defines the tangent direction x′ = 0

to Γ at l. A similar analysis shows that the first order deformation of r2 along Γ′ induces the

tangent direction x′′ = 0 to Γ at l. Since these directions are distinct, it follows that l is a node

of the curve Γ, which finishes the proof. �

In view of the existence of singularities of Γ and their geometric significance, it seems a natural

enumerative question to ask about the number of nodes of the curve Γ for a general cubic

threefold V .

Let us recall that for V very general, the Fano surface F (V ) has Picard number 1 ([Rou11,

Section 1.3]). The (numerical) Néron-Severi group NS(F (V )) ∼= Z is generated by the class L

of the incidence divisor

Cs = (closure of) {l ∈ F (V ) | l ∩ s 6= ∅, l 6= s} ⊂ F (V )

of lines intersecting a given line s ∈ F (V ) (note that Cs ⊂ JV is the Abel-Prym curve for the

Prym presentation of JV using the conic bundle structure defined by s).

We have L2 = 5, as this is the number of lines on a smooth cubic surface intersecting two given

skew lines on it. Moreover, KF (V ) = 3L in NS(F (V )) and Γ′ is linearly equivalent to 2KF (V )

(see [CG72, Section 10]).

Theorem 6.5. For every smooth cubic threefold V , the curve Γ is numerically equivalent to

8KF (V ) in F (V ).

Proof. Since both Γ and KF (V ) are the restriction to F (V ) of divisors in the universal Fano

variety of lines in cubic threefolds, it is enough to prove the result when V is very general.

Pick an even 2-torsion point δ ∈ JV2, and consider the étale double cover ϕ : F̃ (V ) → F (V )

defined by δ. Recall from Proposition 6.3 that Γ̃ = ϕ−1(Γ) has T o
5 ∩ F̃ (V ) and ∆ram

0 ∩ F̃ (V ) as

irreducible components (exchanged by the natural involution on F̃ (V )).

Let us write mL for the class of Γ in NS(F (V )). Recall from the proof of Proposition 6.1 that,

if ι∗ : Pic(R5)Q → Pic(F̃ (V ))Q is the natural pullback map, then ι∗([T o
5 ]) = ι∗(δ0ram) = 4ι∗λ

and ι∗ annihilates any other basic divisor class of Pic(R5)Q. Therefore, we have an equality

mϕ∗L = ϕ∗Γ = 8ι∗λ

in NS(F̃ (V ))Q. Now we will compare the classes ϕ∗L and ι∗λ by means of the canonical divisor

K
F̃ (V )

of F̃ (V ).

On the one hand, note that F̃ (V ) ⊂ R̃5 is the general fiber of P5 : R5 99K A4, the rational

map extending P̃5 outside a locus of codimension ≥ 2 in R5 (here A4 denotes any toroidal

compactification of A4, see for instance [CMGHL17]).
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It follows that K
F̃ (V )

= ι∗(K
R5

) in Pic(F̃ (V ))Q. Using the expression for the canonical class

K
R5

given in [FL10, Theorem 1.5], we obtain

K
F̃ (V )

= ι∗
(
13λ− 2(δ′0 + δ′′0 )− 3δram0 − . . .

)
= 13ι∗λ− 3ι∗δram0 = ι∗λ.

On the other hand, applying the Hurwitz formula to the étale double cover ϕ yields an equality

K
F̃ (V )

= ϕ∗KF (V ) = 3ϕ∗L

in NS(F̃ (V )). Comparing the two expressions for K
F̃ (V )

, we find the equality ι∗λ = 3ϕ∗L in

NS(F̃ (V ))Q, and hence

mϕ∗L = ϕ∗Γ = 8ι∗λ = 24ϕ∗L

from which we deduce that m = 24. �

Now we can answer the question above, namely, count the number of nodes in the curve Γ for a

general cubic threefold V . Indeed, this number arises as the difference between the arithmetic

genus and the geometric genus of Γ.

The geometric genus g(Γ) of Γ is that of its normalization Γ′. Since ωΓ′ = OΓ′(Γ′ +KF (V )) by

adjunction, we have

2g(Γ′)− 2 = 6L · (6L+ 3L) = 54L2 = 270

from which the equality g(Γ′) = 136 follows.

On the other hand, since Γ = 24L in NS(F (V )) by Theorem 6.5, again by adjunction the

arithmetic genus of Γ satisfies

2pa(Γ)− 2 = 24L · (24L+ 3L) = 648L2 = 3240

and thus pa(Γ) = 1621. Therefore, Γ has exactly 1485 nodes (which together with Theorem 6.5

concludes the proof of Theorem C).

Geometrically these nodes translate as in Corollary D.(1), whereas the good control of the

intersection of Γ and Γ′ reads as Corollary D.(2). In other words, if V ⊂ P4 is a general smooth

cubic threefold:

• V contains exactly 1485 lines l for which there exist 2-planes π1, π2 ⊂ P4 and lines r1, r2 ⊂ V

satisfying V · πi = l + 2ri.

• V contains exactly 720 lines l with the following property: there exist 2-planes π1, π2 ⊂ P4

and lines r1, r2 ⊂ V such that V · π1 = l + 2r1 and V · π2 = 2l + r2.

Coming back to our description of the general fiber of the restricted Prym map P̃5|T o
5
, we find:

Corollary 6.6. For a general (V, δ) ∈ RC+, the following hold:

(1) T o
5 ∩ F̃ (V ) is a partial desingularization of Γ, with exactly 765 nodes.

(2) The intersection of T o
5 ∩ F̃ (V ) and ∆ram

0 ∩ F̃ (V ) is transverse, and consists of 1440 points.

Proof. As usual, let us denote by ϕ : F̃ (V ) → F (V ) the double étale cover induced by δ, whose

associated involution exchanges the two components T o
5 ∩F̃ (V ) and ∆ram

0 ∩F̃ (V ) of Γ̃ = ϕ−1(Γ).
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Since the morphism ϕ : Γ̃ → Γ is étale and Γ has only nodes as singularities, it follows that

T o
5 ∩ F̃ (V ) and ∆ram

0 ∩ F̃ (V ) have only nodes as singularities, and intersect transversely.

Conversely, the preimage of a node of Γ must consist of:

• Either a node of T o
5 ∩ F̃ (V ) and a node of ∆ram

0 ∩ F̃ (V ).

• Or two intersection points of T o
5 ∩F̃ (V ) and ∆ram

0 ∩F̃ (V ) (where the intersection is transverse).

Therefore the proof is reduced to computing the intersection number [T o
5 · ∆0

ram]F̃ (V )
. Using

the projection formula and Theorem 6.5, we deduce that

2[T o
5 ·∆0

ram]F̃ (V )
= [T o

5 ·∆0
ram]F̃ (V )

+ [T o
5 · T o

5 ]F̃ (V )
= [T o

5 · ϕ∗Γ]
F̃ (V )

=

= [ϕ∗(T
o
5 · ϕ∗Γ)]F (V ) = [Γ · Γ]F (V ) = 2880

(the first equality follows from the fact that T o
5 and ∆0

ram have the same class in F̃ (V )).

It turns out that [T o
5 · ∆0

ram]F̃ (V )
= 1440. According to the previous description, these 1440

intersection points form the preimage by ϕ of 720 nodes of Γ. The remaining 765 nodes of Γ

lift to nodes of T o
5 ∩ F̃ (V ) and ∆ram

0 ∩ F̃ (V ). �

7. Genus at least 6

7.1. Generic finiteness on T e
g and T o

g . Our first purpose in this section is to prove that, for

g ≥ 6, the restrictions of the Prym map Pg : Rg → Ag−1 to T e
g and T o

g are generically finite

onto their image (which in particular implies Theorem B.(4)). The result is actually valid for

restrictions to arbitrary divisors when g ≥ 8, whereas in the cases g = 6, 7 the use of specific

cohomology classes is required in our approach:

Theorem 7.1. For every g ≥ 6 the restricted Prym maps Pg |T e
g

and Pg |T o
g

are generically

finite onto their image.

Proof. It is well known (see the proof of the main theorem and the remark in [Nar96]) that,

if (C, η) ∈ Rg is a point where the differential dPg fails to be injective, then Cliff(C) ≤ 2.

According to classical results of Martens ([Mar80, Beispiel 7 and 8]), this means that either C

has a g14 or C is a plane sextic; of course the latter may only happen if g = 10.

If g ≥ 8, the locus in Mg of tetragonal curves has codimension at least 2, whereas the locus of

plane sextics in M10 has codimension 8. Hence, for g ≥ 8, dPg is injective at the general point

of any divisor D ⊂ Rg and Pg |D is generically finite onto its image.

If g = 7, the Brill-Noether number ρ(7, 1, 4) equals −1. This implies (see [EH89]) that the Brill-

Noether locus M 1
7,4 of tetragonal curves in M7 is an irreducible divisor, whose cohomology

class in Pic(M7)Q is known up to a scalar:

[M 1
7,4] = c

(
10λ−

4

3
δ0 − 6δ1 − 10δ2 − 12δ3

)
,

for some c ∈ Q. On the other hand, the class of T7 ⊂ M7 is

[T7] = 16(129λ − 16δ0 − 63δ1 − 93δ2 − 105δ3)
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(see [TiB88]). Comparing the two expressions, we conclude that the general elements of T e
7 and

T o
7 are not covers of tetragonal curves.

For the case g = 6, note that the locus in R6 where the infinitesimal Prym-Torelli theorem

fails is, by definition, the ramification divisor3 U6,0 of the generically finite map P6. In [FL10,

Theorem 0.6] (see also [Far12, Theorem 8.6]), using an analysis of the syzygies of Prym-canonical

curves, the class of this locus is computed to be

[U6,0] = 7λ−
3

2
δram − δ′0 − . . .

Furthermore, the divisor U6,0 is irreducible (see [FGSMV14, Theorem 0.4], where this ramifi-

cation divisor is denoted by Q, and references therein). By comparison with the cohomology

classes of Theorem 2.1, it follows that the supports of T e
6 and T o

6 are different from that of U6,0,

which finishes the proof. �

In the rest of the paper, we will focus on the case g = 6. Recall that the Prym map P6 : R6 → A5

is dominant and generically finite of degree 27 ([DS81]). Moreover, the correspondence induced

on a general fiber by the tetragonal construction (cf. [Don81]) is isomorphic to the incidence

correspondence on the 27 lines of a smooth cubic surface ([Don92, Section 4]).

Therefore, from Corollary 3.2 and Theorem 7.1 one immediately deduces that P6 |T e
6
is gener-

ically finite of degree 27, which concludes the proof of Theorem A.(3) and indicates that T e
6

remains invariant under the tetragonal construction. In fact:

Proposition 7.2. Let (Ci, ηi,Mi) (i = 1, 2, 3) be a tetragonally related triple of smooth Prym

curves (Ci, ηi) ∈ R6 with a g14 Mi on Ci.

(1) If (C1, η1) ∈ T e
6 is general, then (C2, η2), (C3, η3) ∈ T e

6 as well.

(2) If (C1, η1) ∈ T o
6 is general, then JC2, JC3 ∈ P7(T

o
7 ).

Proof. According to [Don92, Lemma 5.5], giving the tetragonally related triple (Ci, ηi,Mi) is

equivalent to giving a trigonal curve R ∈ M7 and a subgroup W = {0, µ1, µ2, µ3} ⊂ JR2

(totally isotropic with respect to the Weil pairing), in such a way that:

• (R,µi) corresponds to (Ci,Mi) under Recillas’ trigonal construction.

• The 2-torsion point ηi ∈ (JCi)2 is the projection of µj ∈ 〈µi〉
⊥ (j 6= i).

Fix a general (C1, η1) ∈ T e
6 (resp., a general (C1, η1) ∈ T o

6 ), and consider any g14 M1 on C1.

By generality, C1 admits a unique theta-characteristic L1 with h0(C1, L1) ≥ 2, which is a

semicanonical pencil with h0(C1, L1) = 2 and L1 ⊗ η1 even (resp. odd).

Let R ∈ M7 be the trigonal curve and let W ⊂ JR2 be the totally isotropic subgroup defin-

ing the tetragonally related triple. Since P7(R,µ1) = JC1 ∈ θnull ⊂ A6, it follows from

Corollary 3.2.(1) that (R,µ1) ∈ T e
7 , so R has a semicanonical pencil LR such that h0(R,LR⊗µ1)

is even. Moreover, if f1 : R1 → R is the cover determined by (R,µ1) ∈ R7, then the 2-torsion

3The divisor U6,0 is a particular case of the loci U2i+6,i ⊂ R2i+6 of Prym curves whose Prym-canonical model

has a nonlinear i-th syzygy. According to the Prym-Green conjecture, every U2i+6,i is expected to be a divisor in

R2i+6; see [Far12, Section 8] for more details.
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singular point L1 of the canonical theta divisor ΘC1
⊂ Pic5(C1) corresponds to f

∗
1LR under the

identification of (P+(R,µ1),Ξ
+(R,µ1)) with

(
Pic5(C1),ΘC1

)
.

Now we want to determine the parity of the theta-characteristics LR⊗µ2 and LR⊗µ3. Observe

that the two parities are equal, since the Riemann-Mumford relation (see [Mum71] or [Har82,

Theorem 1.13]) gives

h0(R,LR) + h0(R,LR ⊗ µ1) + h0(R,LR ⊗ µ2) + h0(R,LR ⊗ µ3) ≡ 〈µ1, µ2〉 ≡ 0 (mod 2),

where we use that µ3 = µ1 ⊗ µ2.

Following [Don92, Theorem 1.5] and the notations therein, this means that for i ∈ {2, 3} we

have LR ⊗ µi ∈ (µ1)
⊥′

, and hence:

h0(R,LR ⊗ µi) ≡ qJR(LR ⊗ µi) ≡ qP (R,µ1)(f
∗
1 (LR ⊗ µi))

≡ qJC1
(L1 ⊗ η1) ≡ h0(C1, L1 ⊗ η1) (mod 2).

If (C1, η1) ∈ T o
6 , then L1 ⊗ η1 is an odd theta-characteristic on C1, and hence we obtain

(R,µi) ∈ T o
7 for i ∈ {2, 3}. Therefore JCi = P7(R,µi) ∈ P7(T

o
7 ), which proves (2).

If (C1, η1) ∈ T e
6 , then L1⊗η1 is an even theta-characteristic on C1 and thus (R,µ2), (R,µ3) ∈ T e

7 .

For i ∈ {2, 3} this gives JCi = P7(R,µi) ∈ θnull ⊂ A6, namely Ci ∈ T6 admits a (unique, by

generality) semicanonical pencil Li.

Therefore, to finish the proof of (1) we only have to check that (Ci, ηi) ∈ T e
6 , namely that Li⊗ηi

is even. This is again a consequence of [Don92, Theorem 1.5]:

h0(R,LR ⊗ µ1) ≡ qJR(LR ⊗ µ1) ≡ qJCi
(Li ⊗ ηi) ≡ h0(Ci, Li ⊗ ηi) (mod 2). �

At present, we lack an interpretation for the Jacobian of a curve C ∈ M6 being the Prym variety

of a trigonal cover in T o
7 . This prevents us from completely understanding the tetragonal

construction applied to elements of T o
6 , and hence describing the (divisorial) components of

P−1
6 (P6(T

o
6 )). Another natural question would be to find the degree of the map P6 |T o

6
.

In this direction, partial information is obtained from cohomology classes. Once again, this

reveals differences between the odd and the even cases:

Proposition 7.3. P−1
6 (P6(T

o
6 )) contains other divisorial components apart from T o

6 . In par-

ticular, the degree of the generically finite map P6 |T o
6
is strictly smaller than 27.

Proof. Let us denote by P : R6 99K A5 the rational Prym map obtained by extending the Prym

map to the open subset of R6 lying over the locus of stable curves in M6 with at most one

node. Here A5 stands for the perfect cone compactification of A5, whose rational Picard group

Pic(A5)Q is generated by the Hodge class L and the class D of the irreducible boundary divisor.

According to [FGSMV14, Theorem 7.4], the pushforwards of the basic divisor classes of R6 are:

P∗λ = 18 · 27L− 57D, P∗δ
ram
0 = 4(17 · 27L− 57D), P∗δ

′
0 = 27D,

P∗δ
′′
0 = P∗δi = P∗δg−i = P∗δi:g−i = 0 for 1 ≤ i ≤ [g/2]
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On the other hand, the pullback map P
∗
: Pic(A5)Q → Pic(R6)Q satisfies

P
∗
L = λ−

1

4
δram0 , P

∗
D = δ′0

(see [GM14, Theorem 5]). The boundary divisors δ′′0 , δi, δg−i, δi:g−i do not appear since they are

contracted by P .

Using the cohomology class [T o
6 ] ∈ Pic(R6)Q given by Theorem 2.1, we have

P∗[T
o
6 ] = 10584L − 1320D

Observe that this class equals d · [P6(T
o
6 )], where d = deg(P6 |T o

6
) and [P6(T

o
6 )] ∈ Pic(A5)Q is

the class of (the closure in A5 of) P6(T
o
6 ). Pulling back we obtain

P
∗
P∗[T

o
6 ] = 10584λ − 1320δ′0 − 2646δram0

Since these coefficients are not proportional to the corresponding ones in [T o
6 ], it follows that

T o
6 cannot be the unique divisorial component of P−1

6 (P6(T
o
6 )). �

7.2. T o
6 and singular surfaces of twice the minimal class. In this final subsection we

give the first steps towards an intrinsic description of the locus P6(T
o
6 ) in A5, with the help of

Brill-Noether loci on Prym varieties. In order to be consistent with the notation in the proof

of Theorem 7.1, we denote by U6,0 ⊂ R6 the ramification divisor of P6.

Recall that the Andreotti-Mayer locus N0 in A5 is the union of two irreducible divisors θnull

and N ′
0. The theta divisor of a general element of θnull has a unique singular point (which

is 2-torsion), whereas the theta divisor of a general element of N ′
0 has exactly two singular

(opposite) points.

The relation between P6 and the component N ′
0 of the Andreotti-Mayer locus in A5 is described

in [FGSMV14, Sections 6 and 7]. In particular, the following statements hold:

(1) The divisor N ′
0 ⊂ A5 is the branch divisor of P6 (see also [Don92, pages 93 and 97]).

(2) The preimage P−1
6 (N ′

0) has two divisorial components: the ramification divisor U6,0 and an

antiramification divisor U . As cycles, there is an equality

P∗
6N

′
0 = 2U6,0 + U .

(3) U6,0 is the set of (C, η) ∈ R6 for which V 3(C, η) 6= ∅ (i.e., the theta divisor of P (C, η) has a

stable singularity), and is mapped six-to-one to N ′
0 (see [Don81, Corollary 2.3]).

(4) U = π∗(GP 1
6,4 ) is the pullback to R6 of the Gieseker-Petri locus

GP 1
6,4 =

{
C ∈ M6 | ∃L ∈W 1

4 (C) such that the Petri map µ0,L is not injective
}

and is mapped fifteen-to-one to N ′
0.

As usual, for (C, η) ∈ R6 let us denote by f : C̃ → C the corresponding double étale cover, and

by σ : C̃ → C̃ the involution exchanging sheets.

Proposition 7.4. If (C, η) ∈ R6 is a non-hyperelliptic Prym curve with V 4(C, η) = ∅, then

V 2(C, η) is singular if and only if (C, η) ∈ U ∪ T o
6 .
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Proof. According to Lemma 2.2, singular points M ∈ V 2(C, η) are exactly those of the form

M = f∗L⊗A

with h0(C,L) ≥ 2 and h0(C̃, A) > 0. In order to prove the statement, we distinguish the

possible values of d = degL allowing the existence of such an M .

For d ≤ 4, this condition is equivalent to the existence of L ∈W 1
d (C) and A effective satisfying

h0(C̃, f∗L⊗A) = 3 and ωC = L2⊗Nmf (A). This happens if and only if there exists L ∈W 1
d (C)

with ωC ⊗L−2 effective: the “only if” part being clear, if ωC ⊗L−2 is effective then Mumford’s

parity trick ([Mum83, bottom of page 186]) allows us to findA effective with Nmf (A) = ωC⊗L
−2

and h0(C̃, f∗L⊗A) = 3.

If there exists L ∈ W 1
3 (C), then one immediately checks that ωC ⊗ L−2 is effective. Moreover,

take x ∈ C such that ωC ⊗ L−2(−x) is effective. Since Cliff(C) ≥ 1 by assumption, one has

h0(C,L(x)) = 2 and the kernel of the Petri map

µ0,L(x) : H
0(C,L(x)) ⊗H0(C,ωC ⊗ L−1(−x)) −→ H0(C,ωC)

is ker(µ0,L(x)) ∼= H0(C,ωC ⊗ L−2(−x)) 6= 0 by the base-point-free pencil trick ([ACGH85,

page 126]). In other words, the two statements SingV 2(C, η) 6= ∅ and (C, η) ∈ U hold whenever

C is trigonal.

Now assume that C is not trigonal. We claim that the existence of L ∈W 1
4 (C) with ωC ⊗ L−2

effective is equivalent to C ∈ GP 1
6,4 , namely to (C, η) ∈ U . Indeed, if one can write ωC = L2(a+b)

for points x, y ∈ C, then ωC ⊗L−1 = L(x+ y) and thus the Petri map µ0,L fails to be injective.

Conversely, if the Petri map

µ0,L : H0(C,L) ⊗H0(C,ωC ⊗ L−1) −→ H0(C,ωC)

of a certain L ∈ W 1
4 (C) has nonzero kernel, then the line bundle ωC ⊗ L−2 is effective since

ker(µ0,L) ∼= H0(C,ωC ⊗ L−2) by the base-point-free pencil trick.

Now we can assume that there exists no L ∈W 1
4 (C) with ωC⊗L−2 effective. It only remains to

check the case d = 5: the condition reads f∗L ∈ V 2(C, η), which is equivalent to the existence

of a theta-characteristic L on C with

h0(C,L) + h0(C,L⊗ η) = 3.

Under our assumption on W 1
4 (C), this is equivalent to either L or L ⊗ η being an odd semi-

canonical pencil for the cover f , namely to (C, η) ∈ T o
6 . �

Remark 7.5. Let us comment first on the hypothesis V 4(C, η) = ∅.

(1) If V 4(C, η) 6= ∅, then V 2(C, η) is automatically singular at points M ∈ V 4(C, η) (this is an

immediate application of [ACGH85, Proposition IV.4.2]).

On the other hand, for M ∈ V 4(C, η) one immediately deduces from Mumford’s parity

trick that M(x− σ(x)) ∈ V 3(C, η) for every x ∈ C̃. As a consequence, V 3(C, η) is at least

1-dimensional whenever V 4(C, η) 6= ∅ (in particular, (C, η) ∈ U6,0).

(2) Let C ∈ GP 1
6,4 be general, so that there is a unique L ∈ W 1

4 (C) and unique x, y ∈ C

satisfying L2(x + y) = ωC . If x̃, σ(x̃) (resp. ỹ, σ(ỹ)) are the two points of C̃ lying over x
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(resp. over y), then the four candidates for a singularity of V 2(C, η) are:

f∗L(ã+ b̃), f∗L(σ(ã) + b̃), f∗L(ã+ σ(̃b)), f∗L(σ(ã) + σ(̃b)).

By Mumford’s parity trick, these line bundles can be divided into two pairs (namely

f∗L(ã+ b̃), f∗L(σ(ã)+σ(̃b)) and f∗L(σ(ã)+ b̃), f∗L(ã+σ(̃b))) according to the component

of Nm−1(ωC) = P+ ∪ P− in which they live.

Since (C, η) /∈ U6,0 by genericity (and thus V 3(C, η) = ∅), it follows that two of them satisfy

h0 = 2 and the other two satisfy h0 = 3. In other words, for a general (C, η) ∈ U the theta

divisor Ξ+ has two exceptional singularities (hence, P (C, η) ∈ N ′
0) and the Brill-Noether

locus V 2(C, η) has two singular points.

Let us recall that, for a non-hyperelliptic Prym curve (C, η) = (C̃, C) ∈ Rg, the Brill-Noether lo-

cus V 2(C, η) (when properly translated to P (C, η)) is a subvariety of twice the minimal class (see

[DCP95, Theorem 9] and [LN13, Corollary 4.4]). Moreover V 2(C, η) is symmetric in P (C, η), if

the translation is performed with a theta-characteristic of C̃ lying in P−.

Combining this observation with Proposition 7.4 and Remark 7.5, it is tempting to propose the

following analogue of the decomposition of the Andreotti-Mayer locus:

Question 7.6. Let V ⊂ A5 be (the closure of) the locus of ppav (A,Θ) containing an integral

surface S with the following properties:

(1) The cohomology class of S is twice the minimal class: [S] = 2 [Θ]3

6 in H6(A,Z).

(2) S is symmetric.

(3) S has singular points.

Does V decompose as the union of two irreducible divisors? Namely, the closure of P6(T
o
6 )

(whose general element contains at least one such surface S with a unique singular point, which

is 2-torsion) and N ′
0 (whose general element contains fifteen such surfaces S, with two singular

opposite points each).
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number −1. Ann. Sci. École Norm. Sup. (4), 22(1):33–53, 1989. 22

[Far12] Gavril Farkas. Prym varieties and their moduli. In Contributions to algebraic geometry, EMS Ser.

Congr. Rep., pages 215–255. Eur. Math. Soc., Zürich, 2012. 23
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[MPR21] Carlos Maestro Pérez and Andrés Rojas. The divisors of Prym semicanonical pencils, 2021. To

appear in Int. Math. Res. Not. IMRN. arXiv:2103.01687. 1, 4, 8

[Mum71] David Mumford. Theta characteristics of an algebraic curve. Ann. Sci. École Norm. Sup. (4), 4:181–
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