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The application of themultivariate curve resolution method to the analysis of temporal and spatial data variabil-
ity of hourly measured O3 and NO2 concentrations at nineteen air quality monitoring stations across Catalonia,
Spain, during 2015 is shown. Data analyzed included ground-based experimental measurements and predicted
concentrations by the CALIOPE air quality modelling system at three horizontal resolutions (Europe at
12 × 12 km2, Iberian Peninsula at 4 × 4 km2 and Catalonia at 1 × 1 km2). Results obtained in the analysis of
these different data sets allowed a better understanding of O3 and NO2 concentration changes as a sum of a
small number of different contributions related to daily sunlight radiation, seasonal dynamics, traffic emission
patterns, and local station environments (urban, suburban and rural). The evaluation of O3 and NO2

concentrations predicted by the CALIOPE system revealed some differences among data sets at different spatial
resolutions. NO2 predictions, showed in general a better performance than O3 predictions for the three model
resolutions, specially at urban stations. Our results confirmed that the application of the trilinearity constraint
during the multivariate curve resolution factor analysis decomposition of the analyzed data sets is a useful tool
to facilitate the understanding of the resolved variability sources.
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1. Introduction

Air pollution is a serious threat to both human and environmental
health, being currently one of the most pressing challenges for cities
in Europe and around the globe (EEA, 2019; WHO, 2016). In 2016,
91% of the world population was living in places where the World
Health Organization (WHO) air quality guideline levels were not met.
Having information about air pollution contributions and dynamics is
essential to design adequate policies to improve air quality and reduce
the negative impacts of pollution on health (European Environmental
Agency (EEA), 2011; Nieuwenhuijsen, 2018).

Monitoring and modelling of air pollutants are essential tasks to
evaluate the impact from the continuous increase of human activities
on the environment and public health. Therefore, current research ef-
forts aremainly focused on the improvement of monitoring andmodel-
ling systems, and on accurately forecasting the behavior of hazardous
air pollutants in order to understand their origin, transport, geographi-
cal distribution and time evolution (Schaap et al., 2015; Pay et al.,
2019; Massagué et al., 2019). Ozone (O3) and nitrogen dioxide (NO2)
are among the major air pollutants directly associated with negative
effects on the human health (Bell et al., 2004; WHO, 2013; Vicedo-
Cabrera et al., 2020).

Roughly 90% of O3 is distributed in the stratosphere and around 10%
in the troposphere. The origins of O3 in the troposphere include its
migration from the stratosphere and its formation from various
photochemical reactions among carbon monoxide (CO), peroxy
radicals (generated by the photochemical oxidation of volatile organic
compounds, VOCs) and nitrogen oxides (NOx) (Crutzen, 1974). High
temperatures, high solar radiation and low precipitation also favor
positively the formation of tropospheric O3 (Otero et al., 2016).
Photochemical and oxidation reactions take place specially when the
sunlight interacts with NOx and VOCs, mostly derived from
anthropogenic emissions, thus converting the industrial and traffic
emissions in additional contributions of O3 formation. In these urban
and industrialized areas, the concentrations of O3 sharply peak at
sunny middays, because of the rapid interconversion of O3 and NOx.
Conversely, when the impact of sunlight decreases in the evenings,
destruction of O3 occurs because of its reaction with NO from different
activities, such as the evening rush hour car traffic. The circulation of
air masses also controls the short and long-range transport of O3,
affecting its lifetime in the atmosphere and its levels in rural and
remote areas (Monks et al., 2015; Pay et al., 2019). For example, the
transport of precursors emitted in urban and industrialized areas has
been shown to cause O3 production downwind (Holloway et al., 2003;
Querol et al., 2017).

NO2 is also considered to be an important trace gas in the
atmosphere. Apart from its participation in the photocatalytic
formation of O3 in the troposphere, NO2 can also produce secondary
aerosols and acid rain (Chan et al., 2015). Generally, NO2 can have
both natural and anthropogenic origins, and most of the anthropogenic
contributions are related to fossil fuel combustion, biomass burning,
and various types of industrial emissions (Tack et al., 2015; Gratsea
et al., 2016; Chan and Chan, 2017). Across industrial and urban areas,
the air pollution is largely due to emissions of pollutants from motor
vehicles, industrial plants and generation of energy (i.e. power plants)
(Khan et al., 2018). Sudden increases in pollutants’ concentrations are
correlated with the intensive morning and evening car traffic.

The European Directive on Ambient Air Quality and Clean Air
(European Commission, 2008) stands for air quality monitoring
and modelling as useful tools to understand the dynamics of air pol-
lutants, analyze and forecast air quality, develop plans to reduce
emissions and alert the population when health-related episodes
occur (EEA, 2011). In line with these objectives, the CALIOPE air
quality forecasting system (Baldasano et al., 2008a, 2008b; http://
www.bsc.es/caliope/es, last access: 15 March 2021) has been devel-
oped to forecast the air quality in Spain. CALIOPE, which runs on
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high-performance computing platforms, uses multi-model inputs
about meteorology, atmospheric composition and emissions, to
predict the air quality at three different spatial resolutions:
12 × 12 km2 for the European domain (EU12); 4 × 4 km2, for the
Spanish Iberian Peninsula domain (IP4); and 1 × 1 km2 for the
Catalonian domain (CAT1); in all cases with 1 h time resolution for
the next 48 h.

Air quality modelling requires the use of physicochemical paramet-
ric models strongly dependent on accurate prior knowledge about the
atmospheric processes that involve air pollutants’ transport dispersion
and reaction. In the CALIOPE system, all possible local contributions
of pollution for a given territorial domain, together with the possible in-
fluence from more distant geographical zones - transboundary trans-
port models – should be explicitly considered and, in general, need
long computation time, especially when they are run at high spatial
resolutions.

Various studies have been conducted with the objective to compare
the pollutants’ concentrations predicted by CALIOPE with the real ex-
perimental concentrations measured by the ground-based monitoring
stations (Pay et al., 2010, 2012; Baldasano et al., 2011; Aguilera et al.,
2013). Satisfactory results have been observed in reproducing the tem-
poral and spatial distribution of various pollutants, including O3 and
NO2, at different resolutions (Pay et al., 2014).

In this work, a multivariate data analysis approach based on
chemometrics soft modelling methods is used to evaluate the CALIOPE
forecasts of O3 and NO2 concentrations. Unlike the more traditional
parametric approaches, based on complex physicochemical and
meteorological forecasting models, the proposed chemometrics
approach offers the possibility to directly investigate the hidden
information present in the experimental data without the assumption of
a physical model. This is achieved by the application of a multilinearity
constraint during the factor analysis decomposition of the experimental
data arranged in multiway/multimode data structures (Norris et al.,
2014; Belis et al., 2019; Malik and Tauler, 2013; Alier et al., 2009;
Dadashi et al., 2020).

In this work, we apply a chemometric analysis to both the experi-
mental O3 and NO2 concentrations and to the concentrations
predicted by the CALIOPE system at three different spatial resolutions
(EU12, IP4 and CAT1) during the year 2015 at 19 air quality monitoring
stations across Catalonia. The comparison of the results of the analysis of
experimental and CALIOPE predicted data allowed us to identify the ap-
plications for which the CALIOPE system is already fit-for-use and the
aspects that can be improved for a better performance. This study up-
grades previous investigations for Europe (Schaap et al., 2015) and for
the Iberian Peninsula (Pay et al., 2014), as it includes a full year simu-
lated data at higher spatial resolution (1×1 km2) for thewhole territory
of Catalonia.

2. Datasets

2.1. Experimental dataset

Hourly O3 and NO2 concentration data were obtained from the
Catalan air quality monitoring network (named Xarxa de Vigilància i
Previsió de la Contaminació Atmosfèrica, XVPCA), which provides a
relatively dense geographical coverage of the Catalan territory. The
network contributes to the European Environment Information andOb-
servation Network (EIONET; https://www.eionet.europa.eu/, last ac-
cess: April 2019). For 2015, O3 and NO2 measurements were obtained
from 19 monitoring stations across Catalonia with a temporal
coverage higher than 85% on an hourly basis (Fig. 1). As defined by
the European Environment Agency (EU, 2011), depending on the distri-
bution/density of buildings, the area surrounding the station is classified
as urban (6 stations, u1-u6 in Fig. 1), suburban (5 stations, s7-s11) and
rural (8 stations, r12- r19), from coastal to mountain sites. All measure-
ments were recorded in UTC time.

http://www.bsc.es/caliope/es
http://www.bsc.es/caliope/es
https://www.eionet.europa.eu/


Fig. 1. Location of the EIONET O3 and NO2 monitoring stations in Catalonia, Spain. Different icons represent the three environment defined by the EEA. Urban stations: u1 - Cuitadella dis-
trict (Barcelona), u2 - Vall d’Hebron district (Barcelona), u3 - Tarragona, u4 -Mataró, u5 - Sant Cugat, u6 - Rubí. Suburban stations: s7 -Manlleu, s8 - Amposta, s 9 - Gavà, s10 - Vilafranca de
Penedès, s11 - Viladecans. Rural stations: r12 - Berga, r13 - Tona, r14 - Juneda, r15 - Bellver, r16 - Cap de Creus, r17 - Els Torms, r18 - Montsec, r19 - Montseny.
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2.2. CALIOPE predicted datasets

The CALIOPE air quality forecasting system (http://www.bsc.es/
caliope/es, last access: 15 March 2021) was used to predict the NO2

and O3 concentrations over Catalonia during year 2015 using three
spatial grid resolutions. The system, described in previous works
(Baldasano et al., 2008a, 2011; Pay et al., 2010), is based in numerical
modelling including a full and precise description of the processes
involved for gas-phase and particulate matter modelling, both impor-
tant factors to obtain accurate results of air pollutant concentrations in
a complex region as Spain. CALIOPE is composed of the HERMES v2.0
emissionmodel (Guevara et al., 2013), theWRF-ARW v3.6 meteorolog-
ical model (Skamarock and Klemp, 2008), the CMAQ v5.0.2 chemical
transport model (Byun and Schere, 2006) and the BSC-DREAM8bv2
mineral dust model (Basart et al., 2012).

CALIOPE first runs over Europe at a 12 × 12 km2 horizontal resolu-
tion (EU12 domain), then over the Iberian Peninsula at a 4 × 4 km2 res-
olution (IP4 domain) and finally over Catalonia at a 1 × 1 km2 resolution
(CAT1 domain). The WRF-ARW system provides the meteorological
fields required by the CMAQ chemical transport model. In the present
work, this system has been configured with 38 sigma layers up to
50 hPa to resolve the troposphere-stratosphere exchanges properly.
The planetary boundary layer (PBL) is characterized by approximately
11 layers, and the bottom layer's depth is 39 m. The EU12 domain
usesmeteorological initial and boundary conditions from the final anal-
yses provided by the National Centers of Environmental Prediction
(FNL/NCEP) at a 0.5°× 0.5° resolution. Thefirst 12h of eachmeteorolog-
ical run are treated as cold start, and the next 23 h are provided to the
chemical transport model. The CMAQ chemical transport model com-
bines current knowledge in atmospheric science and air quality model-
ling with multiprocessor computing techniques in an open-source
framework to deliver concentration estimates of themain air pollutants.
CMAQ v5.0.2 uses the CB05 chemical mechanism (Yarwood et al.,
2005), the AERO5 for aerosol modelling, and the in-line photolysis cal-
culation. CALIOPE considers desert dust contribution by means of the
BSC-DREAM8bv2, which runs offline at a 0.5° × 0.5° resolution covering
Europe, North Africa and the Middle East.
3

The emissions model HERMESv2.0 uses information and the state-of-
the-art methodologies for the estimation of emissions (Baldasano et al.,
2008b; Guevara et al., 2013). For the non-Spanish countries included
the IP4 domain, HERMESv2.0 processes the original annual European
Monitoring and Evaluation Programme (EMEP) gridded emissions
(50 × 50 km2), performing a Selected Nomenclature for Air Pollution
(SNAP) sector-dependent spatial and temporal (1 h) disaggregation as
well as a speciation treatment (top-down approach). For the IP4 and
CAT1 domains, HERMESv2.0 uses a combination of local information
and state-of-the-art methodologies (mostly bottom-up approaches) to
estimate anthropogenic and biogenic emissions at a high spatial
(1 × 1 km2) and temporal (1 h) resolution over the whole Spanish terri-
tory, which for the case of the IP4 are then aggregated to a 4 × 4 km2 res-
olution (Guevara et al., 2013). Hourly simulations of NO2 and O3

concentrations for year 2015 covering the territory of Catalonia from
the EU12, IP4 and CAT1 domains were used for this study. For each
domain, the grid cells coinciding with the location of the monitoring
stationswere used for comparisonof simulated resultswith observations.

2.3. Data arrangement

During 2015, each monitoring station (k = 1,..,19) produced two
long data vectors, (dk), one for O3 and another for NO2, with 24-h re-
cordings for the 365 days (with dimensions 1 × 8760). These row
vectors for every station were concatenated one on the top of the
other giving the datamatrixD*with size: 19 stations× 8760 recordings,
as shown in Fig. 2a.

In a second type of data arrangement (Fig. 2b), the O3 or NO2 data
vectors (dk) for every data station (k = 1,.0.19) were first individually
arranged in a data matrix Dk with 365 rows (days) and 24 columns
(hours). In the simultaneous analysis of the data from the 19 stations,
these individual matrices Dk, were vertically concatenated in a column-
wise augmented data matrix, Daug of size 6935 rows (365 days × 19
stations) and 24 columns (hours). These data arrangements were
applied to the experimental and to the CALIOPE predicted data at the
three spatial resolutions (EU12, IP4 and CAT1). Less than 5% of the O3

and NO2 measured concentrations were missing in the experimental

http://www.bsc.es/caliope/es
http://www.bsc.es/caliope/es
Image of Fig. 1


Fig. 2.Data arrangement and application of (a) PCA and (b)MCR-ALS bilinear and trilinear. Hourly O3 and NO2 concentrations experimentally observed during one yearwere arranged in
long row vectors,dk for the differentmonitoring stations (k=1,... 19), in thewide datamatrixD*with 19 rows and 8760 columns, (as shown in Fig. 2a), inmultiple individual station data
matrices Dk with 365 rows and 24 columns and as column-wise augmented data matrix Daug with 365 × 19 = 8760 rows and 24 columns, as shown in Fig. 2b). PCA, MCR bilinear and
MCR-ALS trilinear decompositions are also shown graphically (see Sections 3.1 and 3.2 and Eqs. (1)–(4)).
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data. For the CALIOPE data sets, missing values were below 1%. In this
work, missing values in the individual data matrices Dk were replaced
by the mean (average) in the same column of the data matrix. Since
this number was relatively small, the results will not be affected
significantly by the imputation method and more rigorous techniques
for data missing imputation (Stanimirova, 2013) were not required.
Additionally, the Whittaker smoother (Eilers, 2003) was used for offset
correction in O3 and NO2 data matrices.

3. Methods

3.1. PCA and bilinear MCR-ALS

Different chemometric methods have been proposed in the litera-
ture for the analysis of environmental data. Principal Component Anal-
ysis (PCA) (Jolliffe, 2002) is themethodmostwidely used to analyze the
variance sources and patterns of variation of environmental datasets.
Moreover, the US Environmental Protection Agency (EPA) recommends
the application of PositiveMatrix Factorization (PMF) for factor analysis
in air quality studies (Hopke, 2008; Norris et al., 2014). Similarly to PMF,
Multivariate Curve Resolution Alternating Least Squares (MCR-ALS) is a
frequently used method in spectrochemical mixture data analysis,
which can also be easily extended to the analysis of environmental
source apportionment data sets (Alier and Tauler, 2013; Alier et al.,
2011). MCR-ALS is a flexible soft-modelling factor analysis tool which
allows for the application of natural constraints (see below) and can
be easily adapted to the analysis of complex multiway (multimode)
data structures, such as three-way and four-way environmental data
sets using trilinear and quadrilinear models (Tauler et al., 1998;
Smilde et al., 2004; Malik and Tauler, 2013; Marín-García and Tauler,
2020). In this work, PCA and MCR-ALS methods are used to reveal and
compare the information present in the experimental and CALIOPE pre-
dicted O3 and NO2 data sets.
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Both, PCA andMCR-ALSmethods, are based on a bilinear model that
performs the factor decomposition of a two-way data set (i.e. a data
table or a data matrix). Eq. (1) summarizes this bilinear model in its
element-wise form, while Eq. (2) presents the same model in a matrix
linear algebra format:

dij ¼ ∑N
n¼1xi,nyj,n þ ei,j i ¼ 1, ::I rowsð Þ, j ¼ 1, . . . J columnsð Þ ð1Þ

D ¼ X YT þ E ð2Þ

In Eq. (1), the individual data values, di,j elements (in this case the
O3 or NO2 concentration values) are decomposed as the sum of a
number of components (contributions), n = 1,..N, each one of them
defined by the product of two factors, xi,n (scores) and yj,n
(loadings). In addition, the term ei,j is the residual part of di,j, which
cannot be explained by these N components and accounts for the ex-
perimental noise and uncertainties. In Eq. (2), the data matrix, D, of
dimensions IxJ is decomposed into the scores factor matrix X (IxN)
and the loadings factor matrix, YT (NxJ). The number of components,
N, is selected to explain as much as possible the data variance, while
the unexplained small contributions of data variance and experi-
mental noise are in E.

In the case of PCA, the components are obtained under the con-
straints of orthogonality and maximum variance, and they are
ranked in descending order of explained variance (see Jolliffe, 2002
for more details). Thus, a reduced set of N (N≪ J or I) principal com-
ponents (PCs) are selected, which contain most of the relevant vari-
ance (not noise) in the original data matrix. The constraints used in
PCA provide mathematical unique solutions, but they imply negative
values in the resolved component profiles, which for example in the
case of O3 and NO2 concentrations have not a direct physical
meaning.

Image of Fig. 2
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Multivariate Curve Resolution (Tauler, 1995) performs a similar bi-
linearmodel decomposition as shown in Eq. (2) but in this case different
constraints are applied to provide more interpretable and meaningful
factor profiles. The bilinear model factor decomposition is performed
using an alternating least squares (ALS) optimization under constraints
fulfilled naturally by the real data, for example, non-negativity con-
straints (Bro and de Jong, 1997; de Juan and Tauler, 2003). In the
MCR-ALS method, an initial selection of the number of components is
required. This can be gathered from PCA or singular value decomposi-
tion (Golub and van Loan, 1989) of the analyzed data set, by inspection
of the sizes of the singular (or eigen) values of the analyzed datamatrix.
This selection can also bemade by taking into account the amount of ex-
plained variance by the successive components, thus avoiding compo-
nents associated with noise, usually with the smaller singular (eigen)
values. Models with different numbers of components can be tested
and a final decision is taken considering the data fit and the shapes of
the resolved profiles. The ALS algorithm also needs initial estimates of
either X or YT factor matrices. These initial estimates can be obtained
from the ‘more ‘dissimilar’ rows or columns of the original data matrix
(Windig and Guilment, 1991). Eq. (2) for D is solved iteratively using
an ALS optimization, which updates the solutions (vector profiles in X
andYTmatrices) until theyfit the data optimally and fulfill the proposed
constraints. The profiles inX and YTmatrices are constrained to be non-
negative and they are directly interpretable in physical terms. The bilin-
ear data modelling used in Eqs. (1) and (2) can be applied to the exper-
imental and CALIOPE predicted data sets explained in the previous data
section (data matrices D* and Daug) and in Fig. 2.

3.2. Trilinear MCR-ALS

The bilinear factor decomposition model given for a two-way data
matrix can be extended to a three-way dataset, D, using a trilinear
model. This model can be expressed individually for every data value
as given by Eq. (3).

dijk ¼ ∑N
n¼1xi,nyj,nzk,n þ ei,j,k ð3Þ

where di,j,k are the individual data values (concentrations of O3 or NO2)
in the three experimental datamodes: the day of the year i=1,…,365,
the hour of the day j = 1, …,24, and the station k = 1,..,19, (urban, u,
suburban, s, and rural, r). Data are modeled as the sum of a number of
components (contributions), n = 1,..N, defined by the product of three
factors: xi,n, yj,n, and zk,n, These factors are related with the three data
modes respectively. ei,j,k is the part of dijk not explained by the
contribution of these N components. This trilinearmodel can bewritten
in a matrix form using the decomposition of every individual Dk data
slice (every individual matrix Dk) in Eq. (4).

Dk ¼ XZkY
T þ Ek for k ¼ 1, :::19 ð4Þ

Under the trilinear model, all individual data matrices, Dk(I,J) are
simultaneously decomposed with the same number of components
N and the same daily, X (I,N) and hourly YT (N,J) profiles. Thus,
they differ only in a diagonal matrix Zk(N,N) different for every one
of the k = 1,... 19 stations (station profiles), which gives the
relative amounts of the N components in every data matrix (station),
Dk. These N diagonal elements of the Zk can also be grouped in the
third factor matrix Z (K,N). Therefore, the proposed trilinear model
takes advantage of the natural structure of the analyzed data sets,
especially in relation to their different temporal modes (i.e. hourly,
daily, seasonal) and to the different type of monitoring stations
analyzed simultaneously.

Fig. 2b shows the practical implementation of the trilinear model in
the MCR-ALS analysis of a three-way data set. Nineteen individual data
sets (one per station), were arranged in the column-wise augmented
data matrix Daug of dimensions 365 days × 19 stations = 6935 rows
5

and 24 hourly measures in columns. The application of the trilinearity
constraint implies that the augmented profiles of every component n,
xnaug, of dimensions 6935 × 1, is first refolded (step 1) in a data matrix
Xn
aug of dimensions 365 days × 19 stations. Then this matrix is

decomposed by SVD considering only the first component into the
product of two vector profiles, xn (365× 1) describing the 365daily pro-
files, and zn (19× 1) describing differences among the different stations.
The application of this trilinearity constraint implies that for every com-
ponent, the daily changes are described by the same single xn vector
profile which changes station by station by the corresponding scalar
value in zn. See previous works for amore detailed description of the al-
gorithm used for the practical implementation of the trilinearity con-
straint in MCR-ALS (Tauler et al., 1998; de Juan and Tauler, 2001).
MCR-ALS allows for the implementation of the trilinearity (or
multililinearity) constraint separately for every component and it also
allows for the relaxation of the synchronization of the component pro-
files, permitting therefore building mixed bilinear-trilinear models. It
is worth also to mention that the application of the trilinearity con-
straint in MCR-ALS converges fast. MCR-ALS with the trilinearity con-
straint gives similar results to PARAFAC as we have shown in previous
works (Tauler, 1995; Tauler et al., 1998; De Juan and Tauler, 2001),
and solves the rotational ambiguity problem associated to MCR-ALS
bilinear.

The evaluation of the MCR-ALS fitting results is performed calculat-
ing the explained data variances (R2) using Eq. (5),

R2 ¼ 100� 1−
∑19

k¼1∑
365
i¼1∑

24
j¼1 dijk − bdijk

� �2

∑19
k ∑365

i¼1∑
24
j¼1d

2
ijk

0
B@

1
CA ð5Þ

where dijk are the experimental or CALIOPE predicted O3 (or NO2)
concentrations, and bdijk are the corresponding calculated values by
MCR-ALS using either the bilinear (Eqs. (1)–(2)) or the trilinear model
(Eqs. (3)–(4)).

3.3. Accuracy of CALIOPE predicted data

The accuracy of the CALIOPE predicted data at three spatial resolu-
tions can be assessed with the calculation of the Root Mean Square
Error (RMSE) between the experimental and the CALIOPE model
predicted data, averaging them according to Eqs. (6) and (7),
respectively.

RMSEdaily ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑19

k¼1∑
24
j¼1 dijk − bdijk

� �2

19x24

vuut
ð6Þ

RMSEhourly ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑19

k¼1∑
365
i¼1 dijk − bdijk

� �2

19 x 365

vuut
ð7Þ

where dijk are the experimental or CALIOPE predicted O3 or NO2

concentrations at day i = 1, …,365, hour j = 1, …,24 and station
k = 1, …,19 and bdijk are the corresponding experimental
concentrations. RMSEdaily and RMSEhourly profiles (Eqs. (6) and (7))
are the representative daily and hourly mean profiles averaged for all
stations.

To further compare and summarize the prediction accuracy, addi-
tional mean scalar values were calculated for all the data values averag-
ing all data values per day, hour and station.

RMSEavg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑19

k¼1∑
365
i¼1 ∑

24
j¼1 dijk − bdijk

� �2

19 x 365 x 24

vuut
ð8Þ

This gives a single scalar value RMSEavg for all stations or they can
grouped also according to the urban, suburban and rural types for
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comparison purposes (see experimental data set Section 2.1, Fig. 1 and
Table 2 of results).

3.4. Chemometrics software

All data were transferred toMATLAB computer and visualization en-
vironment (The Mathworks, Natick, USA) for their analysis. PCA was
performed using PLS 8.5 Toolbox software (Eigenvector Research Ltd.,
Manson, WA, USA) and MCR-ALS analysis of the different data sets
was performed using the MCR toolbox (Jaumot et al., 2015; http://
www.mcrals.info/).

4. Results and discussion

In the Supplementary Material section, a brief description of the ex-
perimental O3 and NO2 concentration data is given. Supplementary
Fig. S1 shows the average profiles of O3 and NO2 experimental
concentrations measured over 365 days (a and b), over the 24 h of the
day (c and d), and for the different stations (e and f). Values from
urban, suburban and rural stations have been marked in different
colors. Supplementary Fig. S2 shows the average concentration
profiles of O3 (a) and NO2 (b) experimental (black) and predicted by
CALIOPE (EU12 green, IP4 red and CAT1 blue) over the 24 h.

4.1. PCA and MCR-ALS results

PCA results of the mean-centered O3 and NO2 column-wise aug-
mented experimental data matrices (see Fig. 2a) of the 24 h × 365 days
Fig. 3. PCA results of themean-centered O3 andNO2 2015 experimental datamatrixD*. Upper p
urban, suburban and rural. Lower panels show PC1 vs PC2 loadings for the analysis of O3 (c) a

6

concentration values at the 19 stations in 2015, D*O3 and D*NO2, are
given in Fig. 3. PC1 and PC2 of the O3 matrix explain 52.2% and 9.9% of
the total data variance, respectively. In the PC1vsPC2 scores plot
(Fig. 3a), the 19 stations can be well distinguished in three groups
according to the station type. The urban (blue triangles) and rural
(green diamonds) type of stations are significantly separated one from
another, while the suburban stations (red squares) occupy intermediate
positions between them. This separation agrees well with the stations
classification given by the local environmental agencies. In the loadings
plot (Fig. 3c), the different symbols and colors refer to the different
seasons. Loadings on PC1 are mostly positive in all seasons with a
homogeneous distribution. In the case of NO2 (Fig. 3b and d), PC1 and
PC2 explain 67.8% and 5.7% of the total data variance. The 19 stations
are again distinguished in three different groups for NO2 concentrations
(Fig. 3b). The dominating group in this plot corresponds to urban
stations (blue triangles), showing a wider dispersion, while suburban
and rural stations are distributed around the axis origin. No clear
seasonal pattern can be observed in the loadings plot (see Fig. 3d).
In summary, PCA results in Fig. 3 show some differences in the trends
of O3 and NO2 concentrations according to the type of station
whereas these differences are smaller among the different seasons.
In a similar way, PCAwas also applied to the three CALIOPE predicted
data sets at different resolutions, D*EU12,O3 and D*EU12,NO2; D*IP4,O3
and D*IP4,NO2 and D*CAT1,O3 and D*CAT1,NO2. The results of PCA analy-
sis of CALIOPE predicted data are given in more detail in the Supple-
mentary material.

Table 1 summarizes the explained data variances obtained in the
analysis of experimental and CALIOPE predicted data by MCR-ALS
anels show PC1 vs PC2 scores for the analysis of O3 (a) andNO2 (b) colored by station type:
nd NO2 (d), colored by season: autumn, winter, spring, summer.

http://www.mcrals.info/
http://www.mcrals.info/
Image of Fig. 3


Table 1
Summary of the PCA and MCR-ALS (bilinear and trilinear) explained variances (in %) for
the different data sets (experimental, EU12, IP4 and CAT1), using three components in
all cases.

Data MCR-ALS
Bilinear

MCR-ALS
Trilinear

O3 Experimental Totala 98.4 Totala 93.9
C1 49.6 C1 59.6
C2 44.8 C2 42.1
C3 43.3 C3 33.6
Sumb 137.7 Sumb 135.3

O3 EU12 model Totala 99.5 Totala 98.5
C1 61.3 C1 30.2
C2 48.9 C2 90.7
C3 36.9 C3 8.7
Sumb 147.1 Sumb 129.6

O3 IP4 model Totala 99.3 Totala 97.7
C1 56.1 C1 63.1
C2 52.6 C2 56.1
C3 36.5 C3 26.2
Sumb 145.2 Sumb 145.4

O3 CAT1 model Totala 99.2 Totala 97.3
C1 53.3 C1 68.6
C2 54.3 C2 47.3
C3 34.4 C3 14.3
Sumb 142.0 Sumb 130.2

NO2 Experimental Totala 93.6 Totala 85.7
C1 43.8 C1 41.6
C2 44.9 C2 38.9
C3 37.1 C3 36.9
Sumb 125.8 Sumb 117.4

NO2 EU12 model Totala 96.8 Totala 92.8
C1 37.3 C1 34.8
C2 46.3 C2 42.3
C3 41.9 C3 44.1
Sumb 125.5 Sumb 121.2

NO2 IP4 model Totala 95.4 Totala 89.7
C1 50.3 C1 41.6
C2 34.0 C2 32.5
C3 39.4 C3 45.8
Sumb 123.7 Sumb 119.9

NO2 CAT1 model Totala 94.4 Totala 86.7
C1 47.3 C1 40.6
C2 36.0 C2 34.1
C3 37.5 C3 37.4
Sumb 120.8 Sumb 112.1

a Total states for the percentage of explained variance byMCR-ALS bilinear and trilinear
models with all components.

b Sum states for the sum of the percentages of explained variances by the individual
MCR-ALS components C1, C2 and C3. This Sum can be above 100% due to overlapping of
information among the different MCR-ALS components.
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bilinear and trilinear (i.e. with trilinearity constraint) using three com-
ponents. In the MCR-ALS results, all three components explained rela-
tively similar amounts of data variance for O3 and NO2. With the same
number of components (three), the explained variances by the
bilinear (98.4%, 93.6%) and trilinear (93.9%, 85.7%) MCR-ALS models
for O3 and NO2 were rather similar. This suggests the convenience of
applying the trilinearity constraint for this type of data, which has also
the advantage of providing a more simplified interpretation of the
results. MCR-ALS models for all O3 datasets showed higher amounts of
overlapping variance than the models for NO2 data sets, suggesting a
more complex behavior in the case of O3 concentrations. Overlapping
information for MCR-ALS is reduced with the application of the
trilinearity constraint.

The results of MCR-ALS analysis of the experimental data and of the
data predicted by the EU12, IP4 and CAT1 CALIOPE models are given in
Fig. 4 (O3) and Fig. 5 (NO2). According to the MCR-ALS first component
(C1), O3 daily profiles (Fig. 4a) have a similar shape in all cases, although
for the experimental data analyzed by MCR-ALS (in black in Fig. 4a), it
has a higher intensity in the warmer seasons. C1 O3 hourly profiles
(Fig. 4b) are also similar in shape but a time shift of two hours is
7

observed for the experimental data profile (peak maximum around
20:00 h, in the evening) compared with the homologous profiles for
the CALIOPE predicted data (peak maximum around 18:00 h). C1 O3
station profiles for IP4 and CAT1 (Fig. 4c) resemble very much the pro-
file obtained in the analysis of the experimental data, showing that this
C1 contribution ismore important for rural stations. However, the C1 O3

EU12 profile in Fig. 4c has a rather constant contribution for all the
monitoring stations, without differentiating rural from the other types
of stations. This indicates that the EU12 data had not enough spatial
resolution to capture the local changes among different monitoring
stations.

C2 O3 daily profiles in Fig. 4d have similar shapes for all data sets but
with rather different intensities. In this case, the EU12 O3 daily profile
has the highest intensity, while the IP4 and CAT1 profiles have lower
intensities than the experimental profile. C2 O3 EU12 hourly profile
(Fig. 4e) is different to the homologous experimental, IP4 and CAT1
profiles. While hourly profiles for IP4 and CAT1 have peak maxima
at 02:00 h and 04:00 h respectively, the EU12 hourly profile keeps
a flat shape. Again, in this case, a 2 h’ time shift is observed for the
experimental profile compared to IP4 and CAT1 profiles. C2 O3

station profiles in Fig. 4f show no significant differences among the
four different data sets. In all cases, the C2 O3 station profile has
higher values for the rural stations, with a more pronounced O3

night peak.
Finally, C3 O3 daily profile (Fig. 4g) has a more pronounced peak

shape in the experimental profile than in the CALIOPE profiles. C3 O3

hourly profiles in Fig. 4h show a pronounced peak maximum around
noon, shifted again by 2 h in the case of the experimental data. This O3

profile clearly shows the ozone formation due to the increasing solar
radiation at noon and afternoon time. C3 O3 station profiles in Fig. 4i
show similar trends for the different monitoring stations, decreasing
from urban to rural stations.

Fig. 5 shows the comparison of the daily, hourly and station MCR-
ALS profiles obtained in the investigation of NO2 data sets
(experimental, EU12, IP4 and CAT1). C1 NO2 daily profiles in Fig. 5a
show some differences in their shape throughout the year.
Whereas in the case of the experimental data (black line), the
profile has a pronounced U-shape with their maxima in autumn
and winter (increase of NO2), the C1 NO2 annual daily profiles for
the CALIOPE predicted data are almost flat lines. The C1 hourly
(Fig. 5b) and station (Fig. 5c) profiles are very similar in shape and
intensity in all cases. In this case, no pronounced time shift was ob-
served and the evening peak maximum of the C1 NO2 hourly
profile coincides around 21:00 h in all cases. The C1 NO2 station
profiles are also coincident, describing similar urban and suburban
background NO2 pollution.

C2 NO2 daily profiles (Fig. 5d) are also similar for all the investigated
data sets. Only the C2 NO2 daily profile obtained for the experimental
data presents slightly more pronounced changes, mainly in spring.
Hourly and station C2 NO2 profiles (Fig. 5e and f) are practically
identical in all cases, suggesting a great similarity in the results
obtained in theMCR-ALS analysis of the experimental and CALIOPE pre-
dicted data.

C3 NO2 daily profiles in Fig. 5g are also coincident in all cases. As for
C1 andC2NO2 daily profiles, a similar seasonal trendwith aU shapewas
observed, with their peak minima in the summer and their peak
maxima in autumn and winter. A small difference can be observed for
the C3 NO2 hourly CALIOPE profiles (Fig. 5h) compared to the experi-
mental data. A double humped plateau with two peaks and a valley at
14:00 h is more pronounced for the profile obtained from experimental
data, and it is not sowell defined for the profiles obtained from the three
CALIOPEmodels. In contrast, the latter have a more pronounced second
peak maximum at 17:00 h, which is higher than the first peak at
09:00 h.

A more detailed comparison of the hourly profiles for O3 and NO2

detected in the MCR-ALS analysis of the experimental data, shows that



Fig. 4.MCR-ALS results obtained in the analysis of O3 experimental data (black) and of the three CALIOPE EU12 (green), IP4 (red) and CAT1 (blue) predicted data. C1, C2 and C3 daily (a, d
and g), hourly (b, e and h) and station (c, f, i) profiles of the three MCR-ALS components. MCR-ALS explained variances are given in Table 1.
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the first maximum of NO2 profile at 08:00 h (see C2 Fig. 5e) comes
before the C3 O3 hourly profile starts to increase in the morning (see
Fig. 4h). This confirms that the sunlight was triggering the reaction
between NO (from morning traffic) and O3 to form NO2, thus resulting
in O3 concentration depletion (Alier et al., 2011). After reaching its
maximum at the end of the rush traffic hours at 8:00 AM, with the
accumulation of solar irradiance hours, the photochemical catalytic
reactions turn again in favor of O3 formation, which reached its daily
maximum between 14:00 and 16:00 h. This phenomenon can be
observed in detail in Fig. 6a where the maximum of the O3 hourly
profile at 14:00 h coincides with the bottom of the valley in the
humpback NO2 profile. Fig. 6b and c provide additional information
about the behavior of the O3-NO2 interconnected patterns, e.g. the
maximum of O3 concentrations at 14:00 h occurred for all days,
8

including working days and weekends (Fig. 6b), whereas the NO2

humpback profile was more pronounced in working days, in
agreement with the increased traffic and industrial activities (Fig. 6c).
It is worth mentioning here that the simultaneous MCR-ALS analysis
of both parameters, O3 and NO2, have been also attempted. However,
the results did not show any other interaction between them than
the one already explained above for the independent analysis of
both.

4.2. Comparison of prediction errors using the different CALIOPE model
resolutions

Comparison of the experimental data with the predicted data by
CALIOPE at differentmodel resolutions is performed using the RMSEdaily

Image of Fig. 4


Fig. 5.MCR-ALS results obtained in the analysis of NO2 experimental data (black) and of the three CALIOPE EU12 (green), IP4 (ref) and CAT1 (blue) predicted data. C1, C2 and C3 daily (a, d
and g) hourly (b, e and h) and station (c, f, i) profiles of the three MCR-ALS components. MCR-ALS explained variances are given in Table 1.
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and RMSEhourly profiles calculated by Eqs. (6) and (7). Fig. 7a shows the
RMSEdaily O3 profiles obtained for the CALIOPE predicted data. Results
present some bias, with curved RMSE profiles in the case of CAT1 and
IP4 models. The EU12 predictions gave a RMSEdaily profile without a
significant seasonal dependence. In summer, when the highest O3

concentrations are reported, the CAT1 and IP4 prediction errors also
increased. In winter, the CAT1 and IP4 models yield lower RMSEdaily
values than the EU12 model, meaning both models are working better
in the lower range of O3 concentrations. This can be related to the
different spatial resolution adjustments used in the CALIOPE system.
9

Fig. 7b shows RMSEdaily NO2 profiles obtained for the CALIOPE predicted
data. Slight increases of the RMSEdaily rofile can be observed for the
winter season, coinciding with the higher NO2 concentrations
reported during this season. In this case, the discrepancies among the
CALIOPE predicted data and the experimental data were lower and
more similar. Fig. 7c shows the RMSEhourly (Eq. (7)) O3 profiles
obtained for the CALIOPE predicted data. Larger RMSEhourly peak
shaped O3 profiles were obtained for the EU12, IP4 and CAT1 data. The
RMSEhourly O3 profile for the EU12 data had a completely different
shape to those obtained for the IP4 and CAT1 data. This suggests

Image of Fig. 5


Fig. 6. Comparison of MCR-ALS third component (C3) O3 and NO2 hourly and daily profiles. (a) C3 hourly O3 (red circles) and NO2 (red triangles) profiles; (b) C3 daily O3 profiles for
weekends (red diamonds) and working days (green squares) and(c) C3 daily NO2 profiles for weekends (red diamonds) and working days (green squares).

S. Platikanov, M. Terrado, M.T. Pay et al. Science of the Total Environment 806 (2022) 150923
differentmodelling abilities regarding the photochemical processes that
occur at noon and in the afternoon, when the solar radiation tends to be
higher.

Table 2 summarizes the prediction accuracies of the CALIOPE system
at different model resolutions The RMSEavg value was calculated
(Eq. (8)) between the modeled and experimental data, averaging
RMSE values per hour, day and station for O3 and NO2. In average, for
the three resolutions, CALIOPE predicted NO2 concentrations better
(RMSEavg values between 16 and 17) than O3 concentrations (RMSEavg
values between 33 and 34). EU12 slightly over performed the IP4 and
CAT1 predictions for O3 and NO2, but only by just 1-1.5 units. RMSEavg
values for CALIOPE predictions were also calculated for the different
types of stations separately, as shown in Table 2. For O3 in the urban
areas, RMSEavg values were similar in the range 29-33. IP4 and CAT1
predicted slightly better than EU12with 2-3 RMSE units lower. In the
case of NO2 in urban stations, RMSEavg values were higher than those
calculated for all types of stations together. For the suburban areas,
RMSEavg values were similar to those obtained for all stations, both
for O3 and NO2. However, NO2 suburban RMSEavg values were
lower than those in urban areas (urban RMSEavg) . For rural areas,
O3 RMSEavg EU12 values were lower than those of IP4 and CAT1,
whereas NO2 rural RMSEavg for the three CALIOPE predicted data
were similar.

5. Conclusions

The application of MCR-ALS to the analysis of hourly measured O3

and NO2 concentrations at nineteen air quality monitoring stations
across Catalonia, Spain, during 2015 allowed the resolution of three
major variability contributions of these two pollutants, described by
their hourly, daily, and spatial profiles, which can be correlated with
themajor physicochemical and pollution patterns acting over the inves-
tigated region.

The results obtained by MCR-ALS analysis of the measured experi-
mental data were compared with those obtained by the MCR-ALS anal-
ysis of the CALIOPE predicted data. In particular, a time lag of 2 h in the
10
O3 hourly resolved profiles was observed when compared to the
analysis of experimental data recorded in UTC time. This delay could
be attributed to a combination of uncertainties in the modelling of the
planetary boundary layer inWRF and to the temporal emission profiles
for medium-cities, which were adjusted by population density. In gen-
eral, MCR-ALS hourly, daily and station profiles obtained in the analysis
of concentrations predicted by CALIOPE IP4 and CAT1 models with
higher spatial resolution were more similar to those obtained in the
MCR-ALS analysis of experimental concentrations, than those obtained
in the analysis of EU12 data. These similarities between IP4 and CAT1
predictions can be attributed to the fact that they are both based on
the same emission estimation approach (mainly bottom-up), mean-
while EU12 predictions are based on spatial and temporal disaggrega-
tion of the EMEP gridded emissions. However, both datasets, IP4 and
CAT1, still appeared to underestimate the O3 daily profiles, compared
to the ones obtained from the MCR-ALS analysis experimental data.
The EU12 model predictions differed in the stations O3 profile of the
first component and in the hour profile of the second component,
with the midnight maximum around 02:00 h not well described.
Prediction accuracy of the three CALIOPE models was affected by
the daytime, the season and the pollutant. Globally, the accuracy of
NO2 predictions was better than the accuracy of O3 predictions in
the three model resolutions, with low differences in their hourly
and seasonal predictions. However, the station local environment
influenced more the accuracy of NO2 CALIOPE predictions than the O3

CALIOPE ones, with larger errors in urban and suburban areas than in
rural areas.

Future work could envisage the possibility of extending the same
type of analysis to larger geographical regions in Spain and Europe
and for longer time periods of several years. Moreover, it will be also in-
teresting to compare the results of this study with those obtained using
other modelling approaches, also including the chemical transportation
and transformation of the investigated pollutants. Finally, another pos-
sible application of the proposed combined MCR-ALS analysis of exper-
imental and CALIOPE predicted data could be its use as a real time
monitoringwarning tool of pollution episodes,whenCALIOPE predicted

Image of Fig. 6


Fig. 7. O3 and NO2 RMSEdaily (a and b) and (c and d) RMSEhourly profiles from EU12 (green), IP4 (red) and CAT1 (blue) CALIOPE predicted data.
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concentrations differ significantly from experimental ones and urgent
actions are needed to limit emission sources and to avoid critical epi-
sodes.
Table 2
O3 and NO2 RMSEavg values as μg/m3 for MCR-ALS and CALIOPE predicted data for all
stations and separately for urban suburban and rural stations (see experimental
Section 2.1, Fig. 1 and Eq. (8)).

O3 NO2

RMSEavg
EU12 31.8 15.6
IP4 33.2 16.6
CAT1 33.5 16.1

Urban RMSEavg
EU12 32.5 22.5
IP4 29.1 23.5
CAT1 29.9 23.6

Suburban RMSEavg
EU12 33.5 14.9
IP4 32.0 15.9
CAT1 32.4 14.5

Rural RMSEavg
EU12 30.0 8.0
IP4 36.6 8.9
CAT1 36.6 8.2
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