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Abstract: Galleria mellonella is an alternative animal model of infection. The use of this species presents
a wide range of advantages, as its maintenance and rearing are both easy and inexpensive. Moreover,
its use is considered to be more ethically acceptable than other models, it is conveniently sized for
manipulation, and its immune system has multiple similarities with mammalian immune systems.
Hemocytes are immune cells that help encapsulate and eliminate pathogens and foreign particles.
All of these reasons make this insect a promising animal model. However, cultivating G. mellonella
hemocytes in vitro is not straightforward and it has many difficult challenges. Here, we present a
methodologically optimized protocol to establish and maintain a G. mellonella hemocyte primary
culture. These improvements open the door to easily and quickly study the toxicity of nanoparticles
and the interactions of particles and materials in an in vitro environment.
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1. Introduction

Galleria mellonella is an alternative animal model of infection. Over the past few years,
it has become quite popular due to its multiple advantages. The rearing and maintenance of
the larvae of this species are not expensive and do not require specific facilities. The larval
size ensures ease of manipulation and allows injection of precise doses of pathogens and
drugs. G. mellonella is also a valuable model because it reduces the number of mammals
used in research. Moreover, this insect presents an immune system that is similar to mam-
malian immune systems and can be divided into both cellular and humoral defenses [1,2].

Molecules such as opsonins and antimicrobial peptides or enzymatic processes such
as melanization confer the humoral response. The synthesis of melanin during hemolymph
coagulation shows the combined activity of both humoral and cellular immunity. Hemo-
cytes, which mostly freely circulate in the hemolymph, are involved in the cellular response.
Overall, these mechanisms contribute to the pathogen’s encapsulation and elimination [3,4].

At least eight types of hemocytes have been described in insects. However, not
all insects present all classes. In G. mellonella, plasmatocytes and granulocytes are the
most abundant cells and the only hemocytes capable of adhesion; they also carry out
phagocytosis. Plasmatocytes are larger and circular, although their shape changes once they
adhere to a surface by developing pseudopodia. These hemocytes have been implicated
in nodulation. On the other hand, granulocytes are smaller and spherical. Their granular
content is released when interacting with a foreign body. Spherulocytes, which are cells
that present inclusions and seem to oversee some transport functions, can also be found.
Oenocytoids are large cells mainly involved in the melanization process and the release of
nucleic acids. Finally, prohemocytes are believed to be the precursors of all other types of
hemocytes [5–7].
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Cell cultures provide a wide range of useful applications. Primary cell cultures are
those in which cells have been taken from original tissue, whereas subsequent cultures
from cell multiplication are known as secondary cultures. Primary cultures more closely
resemble the tissue of origin than cell lines, which is why they are appropriate model
systems. Since the beginning of the 20th century, insect cells have been cultured but
have encountered many obstacles. In 1962, Grace developed the first insect cell line by
modifying a previously utilized type of culture media to more closely resemble insect
hemolymph [8–10].

Establishing and maintaining a primary culture of G. mellonella hemocytes for an
extended period of time is still a struggle due to its several difficulties. In addition, in-
vertebrate cells generally proliferate slowly [11], and few studies on this subject can be
found. However, the limitations and improvements described in G. mellonella and other
invertebrate cell cultures helped us to move forward. Here, we report some method-
ological optimizations for the establishment and maintenance of G. mellonella hemocyte
primary cultures.

The field of nanomedicine is becoming increasingly more popular, promising, and
extensive every day. Nanoparticles and carriers made of all sorts of materials with multiple
and diverse properties and targets can be found. Nanomedicine still faces several challenges
even after more than two decades of study [12]. Once the particles are characterized, the first
assays are performed in vitro. These models are much less complex than an actual in vivo
organism but are essential to perform a first screening of compounds to evaluate their
potential toxicity and effects. Most of these experiments are carried out in cell lines, and
the use of primary cells is increasing. Cell culture allows the performance of biochemical
assays and the staining and study of cell interactions, cellular uptake, and intracellular
localization [13].

Primary G. mellonella hemocyte cultures can potentially allow the quick and easy study
of nanoparticle toxicity and the interactions of particles and materials with cells, so we
hope other researchers can test it. Moreover, after performing these sorts of experiments,
we can move to the G. mellonella animal model and continue more studies in vivo.

2. Results and Discussion
2.1. Optimization of a G. mellonella Hemocyte Primary Culture

This work aimed to optimize and establish a straightforward methodology that could
allow the use of G. mellonella hemocytes for further biological studies without requiring
specific facilities. Here, as proof of concept, we examined their use by studying nanoparticle–
cell interactions.

The literature contains different protocols for G. mellonella hemocyte isolation and
use [14–16]. As a summary of such protocols, in our laboratory, we obtained hemocytes
from larvae of approximately 250 mg. The larvae were sterilized in a solution of 70%
ethanol before being anesthetized on ice. To obtain hemolymph, their tails were carefully
cut in the more distal segment to avoid the disruption of the gut. Once the hemocyte cells
were isolated and washed, they were quantified with trypan blue and incubated at room
temperature with Grace’s supplemented insect medium with 2% penicillin–streptomycin,
2.5 µg/mL amphotericin B, and 10% fetal bovine serum added to the media (Figure 1).

Surprisingly, our results after following the literature [14–16] showed that almost
all of the hemocytes isolated directly from larvae (Figure 2A) were nonviable after 24 h
of isolation (Figure 2B) and completely dead after 6 days (see Figure 2C). Clearly, these
apparently easy protocols described for the cultivation of G. mellonella hemocytes had some
limitations, as a similar survival rate was expected during isolation and incubation. For
this reason, we commenced hemocyte cultivation method optimization to increase their
viability throughout the isolation methodology and protocol.
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Figure 1. General methodology used to establish a primary culture of G. mellonella hemocytes. The 
process included the recovery of larval hemolymph (1), centrifugation, washing (2), and quantifying 
and seeding the hemocytes in supplemented culture medium (3) (see Sections 3.1 and 3.2). Created 
with www.Biorender.com (accessed on 28 September 2022). 
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this reason, we commenced hemocyte cultivation method optimization to increase their 
viability throughout the isolation methodology and protocol. 

 
Figure 2. Evolution of the hemocyte primary cell culture. The red square indicates a magnification 
of the indicated image. Live cells appear refractive, whereas dead cells can be identified by their 
darker color (see arrows). (A) Hemocytes directly extracted and washed from the hemolymph of 
larvae. (B) Hemocytes in Grace medium on Day 1 of culture. (C) Hemocytes in Grace medium on 
Day 6 of culture. Substantial cell debris can be seen in the amplified images. 

Figure 1. General methodology used to establish a primary culture of G. mellonella hemocytes. The
process included the recovery of larval hemolymph (1), centrifugation, washing (2), and quantifying
and seeding the hemocytes in supplemented culture medium (3) (see Sections 3.1 and 3.2). Created
with www.Biorender.com (accessed on 28 September 2022).
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Figure 2. Evolution of the hemocyte primary cell culture. The red square indicates a magnification of
the indicated image. Live cells appear refractive, whereas dead cells can be identified by their darker
color (see arrows). (A) Hemocytes directly extracted and washed from the hemolymph of larvae.
(B) Hemocytes in Grace medium on Day 1 of culture. (C) Hemocytes in Grace medium on Day 6 of
culture. Substantial cell debris can be seen in the amplified images.

To increase hemocyte viability, we first attempted to optimize hemocyte cell culture
using different media, supplements, and incubation conditions (Table 1). Cells were grown
in DMEM/F12 (Dulbecco’s modified eagle medium nutrient mixture F12, Gibco) or Grace’s
supplemented insect medium. In each experiment, the media was supplemented with
2% penicillin–streptomycin and 2.5 µg/mL amphotericin B [14]. In addition, we tested
different percentages of FBS supplementation, different temperatures, and incubation under
microaerophilic conditions (5% CO2).

www.Biorender.com
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Table 1. Test of different culture conditions (media, FBS supplementation, temperature, and CO2

presence) during the cell culture optimization process and the effect of each variable on cell viability.
An approximation of the cell viability was determined by examining the appearance of the cells on
Day 1 of cell culture in a series of 3–5 different experiments.

Medium Fetal Bovine Serum (FBS) Temperature CO2 Day 1 Cell Viability

1 DMEM 10% (v/v) 37 ◦C Yes 0%

2 DMEM 10% (v/v) 25 ◦C No <10%

3 Grace 10% (v/v) 37 ◦C Yes <5%

4 Grace 15% (v/v) 37 ◦C Yes <5%

5 Grace 20% (v/v) 37 ◦C Yes <5%

6 Grace 10% (v/v) 37 ◦C No <5%

7 Grace 10% (v/v) 25 ◦C No ≈15%

8 Grace 15% (v/v) 25 ◦C No ≈15%

9 Grace 20% (v/v) 25 ◦C No ≈15%

Several of the different tests (examining culture media, temperature, and CO2 incuba-
tion) led to unsuccessful cultures with abundant cell death, with the highest cell viability of
15% (Table 1). Grace’s supplemented insect medium was established as the best medium
for culturing hemocytes, as it gave higher cell viability. Regarding the temperature, it
was observed that 37 ◦C was associated with a significant loss of cell viability (>95%).
Dead cells looked darker than the healthy cells (data not shown), which are refractive and
rounded [9]. Therefore, the temperature was established as 25 ◦C (room temperature) with
an atmospheric CO2 concentration to maintain the physiological pH. FBS supplementation
did not make such a large difference, and was optimized at 10%, which is the percentage
commonly used for cell culture. After bibliographic investigation, our optimizations were
in accordance with other insect cell cultures [9,15], although hemocyte viability was still
low (≈15%) and unsuitable for further experiments.

Once the best hemocyte culture conditions were established, one of the main issues for
cell maintenance was the early appearance of melanization, especially in areas with greater
hemocyte density. Thus, the next step in our optimization was to prevent the melanization
process by blocking phenoloxidase, a key enzyme in melanin synthesis.

With the addition of 0.6 mg/mL L-cysteine [10], melanization was inhibited entirely in
our cultures. Other compounds, such as phenylthiourea (PTU) [17] or glutathione [10], are
also useful inhibitors, as described by others. During the hemolymph collection process,
melanization was prevented by keeping the samples on ice, so we added L-cysteine only as
a media supplement in all hemocyte cell cultures. With this improvement, we tested cell
viability again in both Grace’s medium and DMEM to validate that our chosen conditions
were suitable, with hemocyte viability increased by 15% in one day (Figure 3). Again, we
confirmed that the use of DMEM and 37 ◦C damaged the cells, as also seen in Table 1.
Activation of the melanization enzymatic cascade in G. mellonella hemocyte cultures is a
well-known problem [18], and growing the cells without the use of melanization inhibitors
is a major challenge (Figure 4A). This observation has also been reported in cell cultures of
other invertebrates that possess hemocytes [18–20].
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different media and at different temperatures. Three independent experiments were performed. The
error bars indicate a positive standard deviation.
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Figure 4. Microscopic images of hemocyte cultures. (A) Culture with melanized areas shown in black.
(B) Culture with a large cell aggregate. (C) Culture with cells attached to the well. (D) Optimized culture
where there are no clumps or melanization due to the use of both L-cysteine and the anticoagulant
solution. All images belong to different cultures on Day 1 of observation. Images (A–C) were taken at a
magnification of 10×, while image (D) was taken with a magnification of 20×.
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However, another issue observed was the presence of cell aggregates (Figure 4B)
during cultivation. In vitro, hemocytes tend to clump due to cell instability [21]. Thus, we
tested the use of an anticoagulant solution [22] during the hemocyte washing steps to help
reduce cell clumping. Furthermore, we observed that mixing cells with the anticoagulant
solution added directly to the cell culture medium containing FBS induced high aggregation
rates. To avoid such aggregation, a period of 30 min was added before the cells settled
in FBS-free medium, and then, 10% FBS was added to the cell culture [18]. This strategy
reduced the clumping of cells in the plate, helping the attachment of hemocytes to the
wall surface and improving hemocyte appearance and viability (Figure 4C,D). Thus, it was
found that avoiding cell aggregation was crucial for establishing hemocyte cultures. The
final optimal protocol for culturing hemocytes in vitro is summarized in Figure 1.

2.2. Quantification of Hemocyte Viability

While optimizing the conditions of our cell cultures, we faced the challenge of finding
an optimal method for monitoring hemocyte viability over time. As summarized in
Figure 5, different procedures were investigated. In adherent microtiter plate cultures, cells
are usually dissociated enzymatically or mechanically, so viability can be easily measured
with trypan blue. Both trypsin (Fisher Scientific, Waltham, MA, USA) and TrypLE Express
(Fisher Scientific), standard enzyme solutions in cell biology laboratories, were tested
unsuccessfully. Hemocyte detachment with a cell scraper was also attempted, but none of
these procedures were well-suited for hemocytes, as they appeared to be both ineffective
and highly damaging (data not shown).
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Other methodologies were investigated to measure the evolution of hemocyte culture
over time. Fast live cell assays were also performed, which utilized viability reagents such
as methylthiazol tetrazolium (MTT) (Sigma-Aldrich, St. Louis, MO, USA) or PrestoBlue
(Fisher Scientific). Both assays are colorimetric and measure cell metabolic activity. The
MTT assay is based on the reduction of the tetrazolium salt (MTT) by mitochondrial succinic
dehydrogenases in viable cells. This yields purple formazan crystals that need to be solubi-
lized in isopropanol [23]. The absorbance can then be measured with a spectrophotometer.
The PrestoBlue assay is similar to the MTT assay, but in this case, the reagent exhibits a color
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change due to the conversion of resazurin to resorufin, a highly red fluorescent compound
generated by metabolically active cells. This produces a shift in the fluorescence, allowing
for quantification by either a fluorometric or spectrophotometric approach [24].

During the initial steps of methodological optimization in this work, the number of
active cells was low because the MTT assay did not appear work in those cultures, giving a
low absorbance signal. In the case of PrestoBlue, fluorescence is the preferred detection
method, as it is more sensitive than absorbance. As we improved our hemocyte cultures,
the fluorescence signal also increased, and a change in color was directly visible and more
evident in the first days of culture.

All of these assays are usually performed in a 96-well plate, but we noticed that the
cells were in worse shape under these conditions than when the cells had more space, as in
a 24-well microtiter plate (see Section 3.2). Another limitation of the PrestoBlue assay was
that we could not determine the percentages of active and inactive cells, as we only had the
fluorescence value for each measurement.

For all of these reasons, we tested the live/dead staining method (Figure 5). The
dyes (SYTO 9 and propidium iodide) were added to the respective wells. Cells with intact
membranes stained fluorescent green, whereas cells with a damaged membrane (dead or
dying cells) stained fluorescent red [25]. To carry out this procedure, more than 60 images
were taken per well per day to cover almost the entire surface of each well. These images
were later processed by ImageJ FIJI to count the proportion of each cell type (Figure 6). This
was the most accurate method to determine culture viability on each day of measurement
while also growing the cells in a larger microtiter plate.
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Figure 6. Hemocyte viability in the optimized culture over time. Cell survival was measured over
7 days. The left Y-axis indicates the number of cells counted from multiple images taken each day,
and the results are shown in the bar graph. The right Y-axis indicates the percentage of each cell
type, represented as a line graph. Two independent experiments were performed. The error bars in
the line graph indicate a positive standard deviation. Green and red colors represent live and dead
cells, respectively.

In Figure 6, Day 0 refers to hemocyte viability in the initial culture measured 4 h after
hemocyte extraction (Figure 1). Large differences in hemocyte viability were observed
between our very first results (Table 1) and those in this graph. If we gather all viability
data from process optimization, L-cysteine supplementation provided a 17% increase in cell
viability from 15% (Table 1) to 32.38% on Day 1 (Figure 3). Then, the use of the anticoagulant
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solution was crucial for increasing cell viability to yield 50% live cells, which is the value
represented in Figure 6. One aspect to consider in this graph is that on Day 0, half of the cell
population was already dying cells despite the hemocytes having a perfect appearance and
morphology. Knowing this, the loss of viability reported after one week is not that large
(30%), so these data start on Day 0 from just 50% viability. If we look at the line graph, the
percentages of live cells counted on all measured days are larger than those of dead cells.
This is because the number of cells counted each day decreased over time due to cell death.

G. mellonella larvae are small, so hemolymph needs to be extracted and pooled from
several animals. When hemolymph is exposed to air, immediate blood coagulation takes
place, as is the case for many insects [26]. That is why the use of an anticoagulant solution
is key for avoiding cell lysis, degranulation, and clotting, all of which occur when the
harvested cells are suddenly introduced in a saline buffer [27]. The use of anticoagulant
solutions when working with insects and other invertebrates is not a new idea, as it was
used in the 1980s [28]. However, many recent publications do not include this step. Without
the prevention of melanization and cell clotting, our cultures would have never become
stable and viable enough for further experiments.

2.3. Hemocyte Functionality and Activity

Our next step was to evaluate the ability of the hemocytes to perform phagocyto-
sis after long-term culture, which is a good indicator that they are alive and active. For
this, a suspension of fluorescent-tagged Mycobacteroides abscessus and fluorescent nanopar-
ticles [29] were added to different cultures and visualized after 24 h under a confocal
microscope to evaluate the cell response to these stimuli. It was observed that in both
2- and 6-day cultures, there were many active hemocytes that were able to phagocytize the
bacteria and nanoparticles. In particular, after Imaris software (version 7.4.2, Abingdon,
UK) reconstruction, the bacteria and nanoparticles were clearly observed to be internalized
by the hemocytes (Figure 7).

Next, we were interested in evaluating the activity of the cultured hemocytes by
measuring changes in the gene expression of different G. mellonella immune-relevant genes.
For this, G. mellonella RNA was extracted from hemocytes in culture three hours after
the cells had been stimulated with Mycobacteroides abscessus (Figure 8). A methodological
limitation in this procedure was the low RNA concentrations obtained from the primary
cell culture. Thus, to increase RNA yield, many larvae were needed in the first step to
increase the number of initial cells; still, the RNA concentrations were low. Among the
analyzed genes, there were opsonins (hemolin), antimicrobial peptides (gloverin), and
enzymes (NOS, GST). RNA was retrotranscribed, and real-time PCR was performed (see
Section 3.5). As shown in Figure 8, we observed the induction of gene expression of all of
the above genes in response to bacterial inoculation.

The highest induction (10.84 times) was seen for hemolin, an opsonin exclusive to
Lepidoptera. Hemolin is part of the immunoglobulin family and is able to recognize
and bind to different pathogen-associated molecular patterns (PAMPs) on the bacterial
surface. Hemolin also participates in the immune response by agglutinating bacteria and
inhibiting hemocyte aggregation in vitro. Upregulation of its transcription after bacterial
infection has been previously described in Lepidoptera [30–32]. Gloverin is a glycine-
rich antimicrobial peptide that is also specific to lepidopteran insects. It seems to have
an effect on filamentous fungi and both Gram-positive and Gram-negative bacteria [33].
Upregulation of its transcription has already been reported in larvae that were challenged
for 24 h with different species of Bacillus [34]. In Manducta sexta, another Lepidoptera
species, gloverin has also been shown to be induced both transcriptionally and at the
protein level by different kinds of microorganisms, including both Gram-positive and
Gram-negative bacteria [35]. In our case, a 5.19-fold induction was observed.

Regarding the analyzed enzymes, nitric oxide synthase (NOS) produces nitric oxide,
which inhibits bacterial growth with other ROS. It has been reported that bacterial infections
significantly increase the transcription levels of ROS-related genes [36]. NOS mRNA
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levels were induced in a tissue-dependent manner in M. sexta previously infected with
Photorhabdus luminescens. This and previous studies suggest a relevant role of NOS in the
immune system of several insects, including G. mellonella [37]. In our experiment, we found
a fold change of 7.85.
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Finally, glutathione S-transferases (GSTs) are an extensive and diverse family of detox-
ification enzymes found in most organisms. GSTs help to protect cells from oxidative
stress and play a role in detoxification [38]. Foreign infections in host cells cause oxidative
stress and the production of ROS, which disturbs the balance in antioxidant defenses. It
has been observed in other insects that ROS can induce the expression of some GSTs [39].
G. mellonella larvae infected with Bacillus thuringiensis showed increased GST activity in
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their midgut. As other studies have shown, this suggests the involvement of GST in the
elimination of ROS in an early stage of infection [40]. In our hemocytes, GST was induced
8.5-fold. Overall, our results showed an in vitro response to the bacterial inoculum by the
cultured hemocytes.
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one experiment performed in triplicate. The error bars indicate a positive standard deviation.

Some recent publications [17,41] describe the use of G. mellonella hemocytes primary
cultures for different purposes, as described in this work. These authors have successfully
performed short-term experiments with their cultures by following a different methodology.
However, we were interested in cultivating and maintaining the hemocytes for several
days, which is the main difference from the published previous work.

Therefore, in this study, we established and maintained an optimized G. mellonella
hemocyte primary culture and proved their activity in vitro. This straightforward, inex-
pensive, and quick methodology has potential for studying the toxicology of nanoparticles
and their interactions with cells, as well as other functional studies involving this cell type.
However, much work is still needed in the field of invertebrate hemocyte primary cell
culture, particularly in Galleria mellonella. For this, we hope future work will be able to
further increase the stability and viability of hemocytes in culture.

3. Materials and Methods
3.1. Galleria mellonella Maintenance and Hemolymph Extraction

G. mellonella larvae were fed an artificial diet (15% corn flour, 15% wheat flour, 15%
infant cereal, 11% powdered milk, 6% brewer’s yeast, 25% honey, and 13% glycerol) and
reared at 34 ◦C in darkness. Between 50 and 60 larvae of approximately 250 mg (35–40 days
old at latest larval stage) were swabbed with 70% ethanol and anesthetized on ice for
at least 10 min. Larvae tails were cut off with a size 23 sterile surgical blade, and their
hemolymph was collected into Eppendorf tubes on ice to avoid melanization. Hemolymph
was pooled from at least 10 larval groups, added to 100 µL of anticoagulant solution (26 mM
sodium citrate, 30 mM citric acid, 100 mM glucose, and 140 mM NaCl, pH = 4.11) [22], and
centrifuged at 200× g and 4 ◦C for 5 min. Pellets were resuspended in 50 µL of anticoagulant
solution and washed three times. Finally, 10 µL of the solution was mixed with 10 µL of
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trypan blue (Sigma-Aldrich) to determine the cell concentration with a hemocytometer
(Figure 1). The average cell density was approximately 5 × 106 cells/mL.

3.2. Maintenance of a Hemocyte Primary Cell Culture

With our optimized procedure, the washed cell suspension was added to a polystyrene
24-well flat bottom microtiter plate (SPL Life Sciences, Busan, Korea) with 900 µL of Grace’s
insect medium (Gibco, Billings, MT, USA) supplemented with 2% penicillin–streptomycin
(Gibco), 2.5 µg/mL amphotericin B (Gibco), and 0.6 mg/mL L-cysteine (Sigma-Aldrich).
After approximately 30 min, when the cells had settled, 100 µL of fetal bovine serum
(FBS) (Gibco) was added. Cultures were maintained in the dark at 25 ◦C. The medium
was replaced every 2–3 days, and the cells were observed regularly under an inverted
fluorescence microscope (ECLIPSE Ti−S/L100, Nikon) coupled with a DS-Qi2 camera
(Nikon) using the 10×/0.25 Ph1 objective.

3.3. Quantification of Hemocyte Viability in Culture
3.3.1. PrestoBlue Cell Viability Assay

A total of 105 hemocytes/well were placed in a polystyrene 96-well flat bottom mi-
crotiter plate (Corning Costar) with 200 µL of Grace’s supplemented insect medium. Once
the cells had attached to the well surface, the media was removed, and a solution containing
10 µL of PrestoBlue (Invitrogen) and 90 µL of media was added to each well. After a 2-h
incubation, the fluorescence was measured according to the PrestoBlue Protocol in a Spark
multimode microplate reader (TECAN). The gain was adjusted to the optimal value of 65.
The Z-position was established as 30,000 µm, and the integration time was set to 40 µs.
This procedure was performed on different days to measure cell viability over time. The
results were plotted with GraphPad Prism 9.0 software (San Diego, CA, USA).

3.3.2. Live/Dead Cell Viability Assay

A total of 105 cells/well were used to study hemocyte culture viability for one week in
a polystyrene 24-well flat bottom microtiter plate (SPL Life Sciences). For this purpose, a
Live/Dead Viability Kit (Invitrogen) was used according to the manufacturer’s protocol to
dye both active and damaged cells by taking multiple images of the well with an inverted
fluorescence microscope (ECLIPSE Ti−S/L100, Nikon) coupled with a DS-Qi2 camera
(Nikon) using the 20×/0.45 Ph1 objective with GFP and Texas Red filters for green and red
fluorescence, respectively. Cells were counted with ImageJ FIJI (version 1.52p), and the
results were plotted with GraphPad Prism 9.0 software. The statistical analyses were also
performed with GraphPad Prism 9.0 software.

3.4. Hemocyte Imaging by Confocal Microscopy

Different cultures were set in 35 mm culture confocal cell dishes (VWR). Approximately
104 cells were placed in 2 mL of culture medium. Between 2 and 6 days later, 10 µL of red
fluorescent rhodamine nanoparticles (100 µg/mL) [29] and 10 µL of a smooth suspension
of Mycobacteroides abscessus (ATCC_19977) transformed with the plasmid pFPV27 encoding
a constitutive GFP [42] were added to each culture and incubated at room temperature in
darkness for 24 h. Cells were stained with 300 nM DAPI (Invitrogen, Waltham, MA, USA)
and at 5 µg/mL FMTM 4–64 (Invitrogen). After approximately 30 min, hemocytes were
observed under an LSM 800 confocal laser scanning microscope (Zeiss, Aalen, Germany)
with a 63×/1.4 oil objective. Images were analyzed with ImageJ FIJI (version 1.52p) and
Imaris Cell Imaging Software (version 7.4.2; Abingdon, UK).

3.5. RNA Extraction, Reverse Transcription, and Real-Time PCR

To measure the expression of some G. mellonella immune-relevant genes, approximately
7.5 × 105 cells/condition were placed in a polystyrene 6-well flat bottom microtiter plate
(Caplugs Evergreen, Caplugs, CA, USA) with 2 mL of the optimized supplemented medium
(see Section 3.2). After 72 h, 100 µL of 1× PBS pH 7.5 (Fisher Scientific) and 106 CFUs
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(100 µL) of M. abscessus were added to the respective cell cultures and incubated for 3 h.
A cell scraper was used to detach the cells. Cells were recovered with 200 µL of 1× PBS
and homogenized with 300 µL of lysis buffer in a 20 G syringe. RNA was purified using
the GeneJETTM RNA Purification Kit (Fisher Scientific) according to the manufacturer’s
protocol. TURBO™ DNase (Fisher Scientific) was used to remove DNA contamination, and
a DNA absence test was performed by PCR for verification.

For cDNA synthesis, RNA was quantified using a NanoDropTM 1000 spectropho-
tometer (Fisher Scientific). Reverse transcription PCR was carried out with Maxima Re-
verse Transcriptase (Fisher Scientific) to obtain cDNA, and from that, quantitative real-
time PCR (qRT-PCR) was performed using PowerUpTM SYBRTM Green Master Mix (Ap-
plied Biosystems) according to the manufacturer’s instructions in a StepOnePlusTM Real-
Time PCR System (Applied Biosystems, Foster City, CA, USA). All qRT-PCRs used spe-
cific gene primers (Hemolin-For, 5′-CCCGAAGACGCTGGTGAATA-3′; Hemolin-Rev, 5′-
CGCACGTTCATTTGCTGTTC-3′; Gloverin-For, 5′-AGATGCACGGTCCTACAG-3′; Gloverin-
Rev, 5′-GATCGTAGGTGCCTTGTG -3′; NOS-For, 5′- ATGAAGGTGCTGAAGTCACAA -3′;
NOS-Rev, 5′-GCCATTTTACAATCGCCACAA-3′; GST-For, 5′-GACAGAAGTCCTCCGGTCA
G -3′; NOS-Rev, 5′-TCCGTCTTCAAGCAAAGGCA-3′; 18S-For, 5′-ATGGTTGCAAAGCTGAA
ACT-3′; 18S-Rev, 5′-TCCCGTGTTGAGTCAAATTA-3′).The 18S ribosomal RNA gene was
used as an internal standard because its expression is vital and constant in G. mellonella. For
each sample, three replicates were performed. The results were analyzed using the compara-
tive Ct (cycle threshold) method (∆∆Ct) and plotted with GraphPad Prism 9.0 software as
previously described [43]. The statistical analyses were also performed with GraphPad Prism
9.0 software.
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