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HIGHLIGHTS 

 Decay rates of five faecal indicator organisms in a Mediterranean stream affected by a 

wastewater treatment plant are reported. 

 Air temperature and streamflow are the main drivers of indicator behaviour. 

 Decay rates of microbial indicators have been modelled seasonally. 

 The impact of a WWTP has been modelled in terms of stream self-depuration.  

 The self-depuration distance metric could be a useful tool in water management 

strategies. 
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ABSTRACT 24 

Faecal pollution modelling is a valuable tool to evaluate and improve water management 25 

strategies, especially in a context of water scarcity. The reduction dynamics of five faecal 26 

indicator organisms (E. coli, spores of sulphite-reducing clostridia, somatic coliphages, GA17 27 

bacteriophages and a human-specific Bifidobacterium molecular marker) were assessed in an 28 

intermittent Mediterranean stream affected by a wastewater treatment plant (WWTP). Using 29 

Bayesian inverse modelling, the decay rates of each indicator were correlated with two 30 

environmental drivers (temperature and streamflow downstream of the WWTP) and the 31 

generated model was used to evaluate the self-depuration distance (SDD) of the stream. A 32 

consistent increase of 1-2 log10 in the concentration of all indicators was detected after the 33 

discharge of the WWTP effluent. The decay rates showed seasonal variation, reaching a 34 

maximum in the dry season, when SDDs were also shorter and the stream had a higher capacity 35 

to self-depurate. High seasonality was observed for all faecal indicators except for the spores of 36 

sulphite-reducing clostridia. The maximum SDD ranged from 3 km for the spores of sulphite-37 

reducing clostridia during the dry season and 15 km for the human-specific Bifidobacterium 38 

molecular marker during the wet season. The SDD provides a single standardized metric that 39 

integrates and compares different contamination indicators. It could be extended to other 40 

Mediterranean drainage basins and has the potential to integrate changes in land use and 41 

catchment water balance, a feature that will be especially useful in the transient climate 42 

conditions expected in the coming years. 43 

 44 

 45 

 46 

 47 
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1. INTRODUCTION 48 

Water scarcity is currently threatening many areas of the planet, with severe implications 49 

both for ecosystems and the well-being of human societies. One such area is the Mediterranean 50 

basin, where already 80 million people are living below the water poverty threshold of 500 51 

m
3
·person

-1
·year

-1
 (Milano et al., 2013), and ca. 60% of the renewable freshwater resources are 52 

currently being used by the population (Thivet and Blinda, 2011).  53 

The Mediterranean climate is characterized by a strong seasonality in precipitation, with 54 

most of it concentrated in early spring and late autumn (Lionello et al., 2006). Recurrent 55 

summer drought stress drastically reduces the flow of Mediterranean rivers (Otero et al., 2011; 56 

Bonada and Resh, 2013). Moreover, climate projections for the 21
st
 century predict a sharp 57 

increase in global temperature, a 10 to 15% decrease in precipitation in the Mediterranean by 58 

the year 2050, a concentration of precipitation in fewer but more intense events, and an increase 59 

in rain seasonality, thus reducing not only summer but also winter and spring precipitation 60 

(Lionello et al., 2014; Lionello and Scarascia, 2018). The higher temperatures will also reduce 61 

water availability due to higher levels of evapotranspiration (IPCC, 2013; Mariotti et al., 2015; 62 

Serrano-Notivoli et al., 2018). Under such circumstances, a reduction in streamflow during 63 

summer is expected, as well as longer zero-flow periods. In addition, anthropogenic pressure, 64 

understood as an increase in water demand and faecal pollution discharge into rivers, is 65 

predicted to increase in Mediterranean ecosystems in the next decades, thus amplifying the 66 

impacts of climate change (Bonada and Resh, 2013; IPCC, 2013; Stella et al., 2013). 67 

Wastewater treatment plants (WWTP) are designed to reduce pollutant concentration and to 68 

avoid the direct discharge of wastewater into rivers. However, their effluents are still an 69 

important source of pollutants and faecal microorganisms, including pathogens. In the 70 

Mediterranean summer, reductions in water flow lead to higher concentrations of these 71 

pollutants (Merseburger et al., 2005; Mosley, 2015), and WWTP effluents may constitute most 72 

of the flow in intermittent streams (Muñoz et al., 2009). Extreme rainfall events are also 73 

associated with a higher concentration of waterborne pathogens, caused by the re-mobilization 74 
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of river sediments to which they are attached (García-Aljaro et al., 2017; Jamieson et al., 2005; 75 

Martín-Díaz et al., 2017). Intense precipitation may also lead to an oversaturation and disruption 76 

of WWTP functionality (Curriero et al., 2001), as well as a reduction of the decay rates of faecal 77 

microorganisms due to decreased river bio-reactivity (Jonsson and Agerberg, 2015; 78 

Merseburger et al, 2005). Increases in pollutant concentrations may result in human health risks 79 

due to pathogen exposure (Auld et al., 2004; Curriero et al., 2001; Rose et al., 2010; Super et 80 

al., 1981), thereby compromising water usability (WHO, 2017).  81 

Faecal microorganisms, including pathogens, are released by WWTP effluents into rivers 82 

and subjected to inactivation while being transported downstream (Agulló-Barceló et al., 2013; 83 

Jonsson and Agerberg, 2015). The assessment of the entire range of pathogen microorganisms 84 

would be difficult and expensive, so microbial indicators are frequently used in water quality 85 

management (García-Aljaro et al., 2018; Saxena et al., 2015; WHO, 2009, 2001). However, 86 

each microbial indicator may respond differently to exogenous factors such as water 87 

temperature, solar irradiance, dilution, predation, sedimentation or re-suspension (Auer and 88 

Niehaus, 1993; Ballesté et al., 2018; Martín-Díaz et al., 2017). Self-depuration distance (SDD) 89 

is proposed here as a standardized metric (in km) integrating all available indicator information 90 

to assess the distance needed to recover water quality downstream of the WWTP. 91 

Five faecal indicator organisms (FIO) were selected and their in-stream decay rates were 92 

monitored downstream of the WWTP. The SDD, defined as the distance needed to return to the 93 

indicator concentrations upstream of the WWTP, was assessed as a measure to provide 94 

information about the spread of faecal pollution in water. Previous studies of FIOs in rivers 95 

have focused on inactivation time rather than distance (Dankovich et al., 2016; Fiorentino et al., 96 

2018; Jonsson and Agerberg, 2015; Muirhead et al., 2004; Vinten et al., 2004). However, the 97 

pollutant travel distance per unit of time for a given river is dependent on river discharge 98 

(Runkel, 1998). The purpose of the SDD metric is to evaluate how far downstream the WWTP 99 

may negatively impact the water quality, taking into account the impact of seasonal variations 100 
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on river discharge. This impact is implicit in the metric, rather than being added a posteriori, as 101 

it is based on inactivation distance rather than inactivation time. 102 

The aims of this research were to: i) study and compare the seasonal dynamics of different 103 

faecal indicator organisms in a low-order Mediterranean stream affected by a WWTP effluent; 104 

ii) assess the SDD considering seasonal variations; iii) model in-stream pollutant SDD 105 

dynamics according to different environmental drivers, and iv) use the SDD metric to integrate 106 

and compare modelled pollutant dynamics. 107 

The initial hypotheses of the study were: i) the inactivation of microbial indicators, and 108 

consequently the SDD, presents a seasonal behaviour, assuming that ii) the main factors 109 

explaining the SDD are streamflow and temperature (Ballesté and Blanch, 2010; Burkhardt et 110 

al., 2000; García-Aljaro et al., 2018), and iii) the decay rates of most conservative microbial 111 

indicators are less dependent on environmental conditions (Martín-Díaz et al., 2017). 112 

2. MATERIAL AND METHODS 113 

2.1 Study site 114 

The Riera de Cànoves is a third-order stream ca. 50 km north-east from Barcelona (NE 115 

Spain). Its source is located in the Natural Park and Biosphere Reserve of the Montseny 116 

mountain range and it has a catchment of 16.4 km
2
 until the Cànoves-Samalús WWTP. The 117 

catchment is dominated by a siliceous substrate of granite and schist and it has smooth slopes 118 

(2%) (Catalan Cartographic Institute, 2018). Forest cover of the catchment is 77% and land uses 119 

include irrigated agriculture of cereals and legumes (15%) and a small cattle ranching industry 120 

(~0.1%). Although the urbanized fraction of the area is small (~5%), it is disseminated 121 

throughout the catchment in residential zones, thus implying concomitant basal human 122 

pollution. Climate characteristics correspond to sub-humid Mediterranean, with mild winters, 123 

wet springs, and dry summers. In the 1996-2017 period, the mean annual temperature averaged 124 

12.0°C (Catalan Meteorological Service) and the annual precipitation averaged 780.8 mm, with 125 

values ranging from 600 to 1000 mm·year
-1

. Located in the first 4 km of the stream, the 126 
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Vallforners reservoir, with a 2.1 hm
3
 maximum storage capacity and a consistent output flow of 127 

about 0.005 m
3
·s

-1
 throughout the year, strongly regulates the streamflow dynamics 128 

downstream. As a result of water demand, evapotranspiration and lack of rainfall, waterflow 129 

between the reservoir and the WWTP is sometimes zero.   130 

The WWTP of Cànoves-Samalús treats the water of 9,200 inhabitant-equivalents. The plant 131 

consists of a pre-treatment and biological treatment system using activated sludge, with a 132 

complete mixture and two concentric reactor-decanter lines. Daily discharge of the WWTP 133 

ranges from 0.008 to 0.02 m
3
·s

-1
, with slightly higher values in spring and winter than in 134 

summer and autumn (Figure 1). The riverbed downstream of the WWTP is a mixture of rock 135 

and stones (5%), gravel (40%), sand (40%) and silt and clay (15%).  136 

Twelve sampling campaigns were performed during 2016-2017. Water samples were 137 

collected at 9 different points of the Riera de Cànoves: i) a site located 150 meters upstream of 138 

the WWTP, ii) the WWTP effluent, iii) a 450 m-long stretch downstream of the WWTP where 139 

6 samples were collected every 75 m (75 m, 150 m, 225 m, 275 m, 350 m and 450 m 140 

downstream of the WWTP) and iv) a point located 1000 m downstream of the WWTP. Water 141 

samples were collected from the surface of the stream in sterile containers and transported to the 142 

laboratory at 4°C. Analyses were performed within 8 hours of collection.  143 

2.2 Microbial detection and enumeration 144 

Culturable Escherichia coli and spores of sulphite-reducing clostridia (SSRC) were selected 145 

as bacterial indicators, as they show different behaviour: E. coli is a non-conservative microbial 146 

indicator mostly used to detect faecal pollution, whereas the highly resistant SSRC is a 147 

conservative indicator that proxies the presence of protozoa oocysts and helminth ova (Agulló-148 

Barceló et al., 2013).  149 

Culturable E. coli were enumerated using a pour plate method in Chromocult
®
 agar (Merck, 150 

Darmstadt, Germany). Dark blue and/or purple colonies were counted after an overnight 151 

incubation at 44˚C (Astals et al., 2012). 152 
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To enumerate SSRC, samples were subjected to a thermal shock at 80˚C for 10 minutes, 153 

anaerobically cultured by mass inoculation in Clostridium perfringens selective agar (Scharlab, 154 

Barcelona, Spain) and incubated overnight at 44˚C, as previously described (Ruiz-Hernando et 155 

al., 2014). 156 

Two bacteriophages were used as viral indicators: somatic coliphages (SOMCPH), related to 157 

general faecal pollution, and bacteriophages infecting Bacteroides thetaiotaomicron strain 158 

GA17 (GA17PH), associated with human pollution and used as microbial source tracking 159 

(MST) markers to determine the origin of pollution in water (Jofre et al., 2014). SOMCPH and 160 

GA17PH were enumerated by the double agar layer technique as indicated in the ISO standards 161 

10705-2 and 10705-4 (ISO, 2001, 2000), respectively. In order to detect human-specific 162 

bacteriophages, the ISO standard 10705-4 was modified by using Bacteroides thetaiotaomicron 163 

strain GA17 (Muniesa et al., 2012). 164 

A molecular marker targeting human-specific Bifidobacterium (HMBif) was also analysed 165 

by qPCR as in previous studies (Gómez-Doñate et al., 2012). For this, DNA was extracted from 166 

different sample volumes (from 0.2 to 0.5 l) according to the amount of suspended particles able 167 

to saturate the membranes. Samples were concentrated by filtration through a polycarbonate 168 

membrane with a pore size of 0.22 µm (SO-PAK, Millipore, Darmstadt, Germany). Membranes 169 

were then placed in 0.5 ml of GITC buffer (5 M guanidine thiocyanate, 100 mM EDTA [pH 170 

8.0], 0.5% sarkosyl) and frozen at -20°C in lysis buffer until DNA extraction. The DNA was 171 

extracted using the QIAamp DNA Blood Mini Kit (Qiagen GmbH, Hilden, Germany) with 172 

some modifications (Gourmelon et al., 2007). Samples, negative controls, DNA extraction 173 

controls and five points on the standard curve were analysed for two replicates by qPCR, as 174 

previously described (Gómez-Doñate et al., 2012). 175 

2.3 Streamflow calculation 176 

In order to calculate the streamflow above the WWTP, twelve additions of NaCl, a 177 

conservative tracer, were performed (Gordon et al., 1992). Briefly, this method estimates the 178 

streamflow from a known concentration of a conservative tracer, whose signal records in-stream 179 
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conductivity. In each addition, 1 l of solution of known conductivity was added to the stream, 180 

and the streamflow was estimated by the integration of the in-stream conductivity breakthrough 181 

curve corrected by basal conductivity. To obtain the conservative-tracer breakthrough curves, 182 

electrical conductivity (EC, μS·cm
-1

) was measured with a portable conductivity meter (WTW, 183 

Weilheim, Germany) at the bottom of the reach every 5 seconds during the solute injection. 184 

Additionally, one piezometer was placed in the riverbank 150 m upstream of the WWTP at a 185 

depth of 50 cm. A pressure sensor (HOBO
®
 U20-001-04 Water Level Logger) was placed 186 

inside the piezometer to record changes in pressure corresponding to changes in streamflow. In 187 

order to differentiate between pressure changes due to increases in water level and atmospheric 188 

pressure, another sensor was placed near the stream but outside the water. A continuous daily 189 

discharge time-series was obtained by non-linear regression between the daily averaged water 190 

level record against the twelve discrete streamflow measurements by conservative tracer 191 

addition. Gaps in the atmospheric pressure register were filled with observations from a nearby 192 

meteorological station. 193 

Daily effluent discharge (Qeffluent) values were obtained from the WWTP register during the 194 

same period. During heavy rainfall or maintenance operations, the WWTP allowed a bypass of 195 

non-treated water, thus exponentially increasing its discharge into the stream. The Qeffluent time-196 

series has been corrected to avoid these anomalous flow peaks by assuming a Qeffluent equal to 197 

the monthly median Qeffluent when Qeffluent was higher than 95% monthly values or lower than 5% 198 

monthly values. This correction was applied to 21 registers, which corresponded to less than 3% 199 

of the daily values. No seasonal trend was observed. 200 

The streamflow was classified to study its seasonality. The dry season was defined as the 201 

period when the streamflow upstream of the WWTP was lower than 0.005 m
3
·s

-1
 and the 202 

dilution factor was lower than 0.1, which corresponded to summer. The wet season was the 203 

period when the streamflow was higher than 0.005 m
3
·s

-1
 and the dilution factor was higher than 204 

0.1, which corresponded to the other seasons (Figure 1d). 205 
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Meteorological data (i.e. daily mean air temperature and atmospheric pressure) was supplied 206 

by MeteoCat (Catalan Meteorological Service) from Tagamanent meteorological station, 207 

located ca. 9.5 km northwest of the WWTP.  208 

2.4 Data analysis and modelling approach 209 

2.4.1 Data analysis 210 

A two-sample T-test was performed to analyse seasonal differences for each FIO 211 

concentration before and after the WWTP. Normality of log-transformed FIO concentrations 212 

was confirmed by a Shapiro-Wilk test.  213 

2.4.2 Measured self-depuration distance 214 

The concentration of each individual indicator was obtained after the WWTP effluent (I0) for 215 

each sampling campaign [in (log(cfu·l
-1

), log(pfu·l
-1

) or log(GC·l
-1

)]. 216 

Eq.1]        
                                    

                 
 217 

where Istream is the indicator concentration in the stream before the WWTP effluent 218 

[(log(cfu·l
-1

), log(pfu·l
-1

) or log(GC·l
-1

)], Qstream is the flow upstream of the WWTP effluent 219 

(m
3
·s

-1
), Ieffluent is the indicator concentration in the WWTP effluent [(log(cfu·l

-1
), log(pfu·l

-1
) or 220 

log(GC·l
-1

)] and Qefflluent is the discharge of the WWTP effluent (m
3
·s

-1
). 221 

For each sampling campaign and studied indicator, the natural logarithm of the concentration 222 

obtained at sampling points downstream of the WWTP was related to the distance to the WWTP 223 

effluent by a linear least squares approach, the decay rate (k,  in km
-1

) thus being the negative 224 

slope of the linear relationship between the concentration of a given indicator and the distance. 225 

Each indicator concentration at d distance after the WWTP effluent (Id) was modelled by an 226 

exponential decay rate depending on an indicator-specific decay rate (k) and the distance to I0, 227 

according to the logarithm form of Chick's equation (Chick, 1908) 228 

Eq.2]           
      229 
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where Id is the indicator concentration [(log(cfu·l
-1

), log(pfu·l
-1

) or log(GC·l
-1

)] at a given 230 

distance (d) from the WWTP effluent (d, in km) and k the decay rate, which varies between 231 

each sampling campaign and indicator. 232 

From "in situ" Istream, I0, and k measurements, and assuming no changes in streamflow 233 

downstream of the WWTP, equation 2 was re-arranged in order to calculate the SDD (in km) 234 

for each microbial indicator. 235 

Eq.3]         
                   

 
 236 

2.4.3 Modelling k from streamflow and temperature 237 

In order to model how changes in temperature and streamflow affected the SDD, the 238 

relationship of the k coefficient with measured streamflow and air temperature was modelled for 239 

each sampling campaign according to 240 

Eq.4]                         241 

where ki is the decay rate (k) for a given FIO and campaign, Ti is the mean daily air 242 

temperature during the i campaign, Di is the mean daily flow during the i campaign and  i is the 243 

error. Air temperature was used instead of water temperature due to the reliability of the 244 

meteorological data and the fact that air temperature and water temperature are highly correlated 245 

in low-discharge rivers on a daily basis (Morrill et al., 2005; Pilgrim et al., 1998). Thus, it was 246 

assumed that k responses to air temperature were reproducing k responses to water temperature. 247 

Theoretically, it was expected that a higher temperature would accelerate the decay rate due 248 

to enhanced biological, physical and chemical processes, while an increasing streamflow would 249 

reduce it (Jonsson and Agerberg, 2015). Thus, equation 5 dependencies on temperature and 250 

streamflow may be expressed as: 251 

Eq.5]           
 

            
 252 

Eq.6]                                 
  253 
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where a, b, c, d and e are empirically determined unitless coefficients, Ti is the daily mean 254 

temperature in °C, and Qdownstream is the mean daily streamflow after WWTP discharge (i.e. 255 

Qdownstream = Qstream + Qeffluent). 256 

A likelihood-based inverse Bayesian model calibration (Hartig et al., 2012) was used. This 257 

robust approach has proved to be a very useful tool when data is scarce, or when using models 258 

with a high number of parameters (Hartig et al., 2014; Lagarrigues et al., 2015; O’Hara et al., 259 

2002; Purves et al., 2007). However, as complete Bayesian calibration may be computationally 260 

expensive, only the set of parameters providing the optimal fit of the model to observations was 261 

considered (i.e. a maximum “a posteriori” estimation approach). A double-exponential 262 

(Laplace) error function was selected, as it makes the likelihood function less sensitive to 263 

outliers compared to the Gaussian error distribution function (Augustynczik et al., 2017). 264 

Bayesian approaches were also needed for prior parameter distributions. A flat, wide, non-265 

informative uniform prior distribution for all parameters was assumed with boundaries 266 

determined by expert judgment. After building the likelihood function and establishing the prior 267 

distribution, Bayesian optimizations were run using the "DEOptim" R package (Ardia et al., 268 

2011; Mullen et al., 2011), which performs a Bayesian parameter optimization using a 269 

Differential-Evolution MCMC with a memory and snooker update sampler (Ter Braak and 270 

Vrugt, 2008). 271 

2.4.4 Obtaining monthly ki and SDD 272 

Daily ki values were calculated from equations 4, 5 and 6 with the empirical coefficients 273 

obtained for each FIO and daily observed Q and T. Then, I0 was calculated daily following 274 

equation 1, and according to daily measured Qstream and Qeffluent. As no significant seasonal trend 275 

in Istream and Ieffluent was observed throughout the experiment, the uncertainty of SDD related to 276 

unknown FIO concentrations was evaluated as follows: for each FIO and for Istream and Ieffluent, 277 

mean ± SD were obtained, as well as their 95% CI. Then, the sensitivity of model outputs to 278 

Istream and Ieffluent was assessed by obtaining 1,000 random samples of daily Istream and Ieffluent for 279 

each FIO, according to a truncated normal N (  =mean, 
2
=sd, min =5%CI, max=95%CI). No 280 
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temporal autocorrelation was accounted for in daily random sample generation. For a given I0, 281 

Istream and ki, the daily SDD was calculated for the 2016-2017 period according to equation 3. 282 

Finally, SDD values were integrated as median daily ± 95% CI values from the 1,000 random 283 

samples. Daily ki and SDD values were reported as median monthly values (± 95CI in the case 284 

of SDD to account for Istream and Ieffluent uncertainty in model projections), to make the results 285 

more easily understandable. 286 

3. RESULTS AND DISCUSSION 287 

3.1 Observed flow data 288 

Even considering the constant output from the Vallforners reservoir, the flow of the Riera de 289 

Cànoves was strongly seasonal above the WWTP due to fluctuating precipitation, 290 

evapotranspiration and water extraction for agricultural purposes. The flow data upstream of the 291 

WWTP obtained during 2016-2017 ranged from 0 m
3
·s

-1
 to 0.015m

3
·s

-1
, with dry season values 292 

of zero or close to zero. WWTP contributions to streamflow were also slightly seasonal, with 293 

values ranging from 0.015 m
3
·s

-1
 during the wet season to 0.007 m

3
·s

-1
 during the dry season. 294 

Downstream of the WWTP, streamflow ranged from about 0.007 m
3
·s

-1
 during the summer to 295 

an observed peak of 0.03 m
3
·s

-1
 in the spring of 2017 (Figure 1). The dilution factor ranged from 296 

0 in the dry season to 0.5 in the wet season, thus reflecting the high impact of WWTP water 297 

input on the Riera de Cànoves. Continuous Q records were used to calculate k and SDD for the 298 

different FIOs as a model input. 299 

3.2 Seasonal faecal indicator dynamics. 300 

A basal faecal pollution was consistently and repeatedly detected above the WWTP due to 301 

human-origin diffuse pollution from isolated houses with septic systems, and the presence of 302 

wildlife and farming activities in the surrounding area. The concentrations observed were in 303 

accordance with reports for similar streams (Ishii and Sadowsky, 2008; Nguyen et al., 2018) 304 

(Table 1). Nonetheless, a statistically significant increase of 1-2 log10 was observed in the 305 

concentration of each FIO downstream of the WWTP compared to the values obtained upstream 306 
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(p<0.05), indicating that the WWTP effluent constituted an input of faecal pollution into the 307 

stream. No statistically significant differences were found in seasonal FIO concentrations 308 

downstream of the WWTP, with within-season variability higher than between-season, which 309 

suggested that most of the FIOs belonged to the WWTP effluent (Table 1). Moreover, no 310 

differences in FIO concentrations were observed below the WWTP, even considering that 311 

during the wet season Qstream provided ca. 45-50% of the downstream streamflow, while during 312 

the dry season Qdownstream consisted almost entirely of Qeffluent, indicating that dilution was not a 313 

crucial factor.  314 

A gradual reduction in concentration was observed for all the studied FIOs downstream of 315 

the WWTP, with indicator-specific decay rates (Table 2). Irrespective of season, the decay rates 316 

were higher for E coli, the non-conservative indicator, than for SSRC, the conservative 317 

indicator, whereas the viral and MST markers, as semi-conservative indicators, presented 318 

intermediate values. Additionally, decay rates for all FIOs presented seasonal differences, being 319 

higher in the dry season, though statistically significant differences were only observed for 320 

SOMCPH (p<0.05).  321 

Also showing seasonality, the measured SDDs for all target FIOs were higher in the wet than 322 

the dry season (Table 2).  Nevertheless, those differences were only statistically significant for 323 

E. coli (p<0.01), which presented an SDD of 0.6 km during the dry season and 3.1 km during 324 

the wet season. In this study, the dry season, when the flow upstream of the WWTP was nearly 325 

0 m
3
·s

-1
, coincided with the highest temperatures. These results are in agreement with previous 326 

studies (Ballesté et al., 2018; Ballesté and Blanch, 2010; Bonjoch et al., 2009; Fauvel et al., 327 

2017; Wu et al., 2016) where the seasonality of decay rates for different FIOs was strongly 328 

correlated to changes in temperature. Concurrently, SDDs were related with decay rates, 329 

indicating that in the wet season the stream capacity to self-depurate decreased, as longer 330 

transport distances were needed to return to the concentrations upstream of the WWTP. In 331 

contrast, in the dry season, increased evapotranspiration due to higher temperatures and lower 332 

precipitation reduced the streamflow, increasing the water residence time and therefore the 333 
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decay rates. The higher decay rates may be due to enhanced in-stream biotic processes such as 334 

predation (Romo et al., 2013), but also to abiotic processes such as increased sedimentation 335 

(Yakirevich et al., 2013) or longer exposure to sunlight (Sinton et al., 2002) 336 

3.3 Modelling environmental drivers for faecal indicator organisms 337 

After calibration, the statistical model successfully captured the effect of environmental 338 

drivers [i.e. daily mean air temperature (T, in °C) and daily mean flow after the WWTP effluent 339 

(Qdownstream, in m
3
·s

-1
)] upon k coefficients (Figure 2, Supplementary material 1). Regarding the 340 

FIOs, the R
2
 between the observed and modelled k ranged from 0.6 for SSRC to 0.96 for 341 

GA17PH, with a root mean square error (RMSE) ranging from 7·10
-4

 in E. coli to 1·10
-4

 in 342 

SSRC. Among the bacterial indicators, E. coli presented the best model fit (R
2
 = 0.77, RMSE= 343 

7·10
-4

) to measured k, whilst SSRC presented the worst (R
2
 = 0.6, RMSE = 1·10

-4
). On the other 344 

hand, the model reproduced well the observed k values for the viral and MST indicators, with R
2
 345 

scores of 0.85-0.96, and RMSE values of roughly 2·10
-4

 for each of the three FIOs. The poorer 346 

predictive capacity for SSRC may be attributable to the low correlation between SSRC decay 347 

rates and environmental factors. Some authors have reported that SSRC decay rates are less 348 

related to climate than to other aspects not taken into account in the current study, such as 349 

predation, sedimentation and resuspension (Galfi et al., 2016; García-Aljaro et al., 2017). 350 

Moreover, previous studies have reported similar responses of non-conservative E. coli and 351 

semi-conservative viral and MST indicators to environmental factors (Ahmed et al., 2014; 352 

Bonjoch et al., 2009; Davies et al., 1995; Jonsson and Agerberg, 2015; Sinton et al., 2002), with 353 

temperature and solar irradiance being the most important parameters explaining their 354 

behaviour. Other environmental determinants (e.g. oxygen, redox potential and particle re-355 

suspension) were indirectly taken into account in our study, due to their correlation with the 356 

seasonality of the streamflow (Capello et al., 2016). Solar radiation, which can play an 357 

important role in bacterial inactivation (Sinton et al., 2002), was implicitly included in air 358 

temperature changes, as it is difficult to discriminate between the effect of these two highly 359 
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correlated parameters (Spearman's r=0.75) (Hassan et al., 2016; Li et al., 2014; Prieto et al., 360 

2009). 361 

All FIOs responded similarly to the two environmental drivers considered, with maximum 362 

decay rates at higher temperatures and lower streamflow. Conversely, the decay rates were 363 

lower during conditions of low flow and lower temperatures (Figure 3). All FIOs responded 364 

similarly to changes in flow, except for SSRC, which were practically unaffected by flow 365 

increases (Figure 3a). This trend could be explained by the higher velocity of a stronger 366 

streamflow, which implies a shorter water residence time. No dilution effect on inactivation 367 

constants was observed, suggesting it is negligible compared to other factors, including those 368 

accounted for in the model, i.e. total river discharge and temperature.  369 

FIO decay rates differed in response to temperature increments (Figure 3b); for instance, E. 370 

coli and GA17PH were more affected by environmental factors and temperature increases 371 

compared to SOMCPH and HMBif. These results confirm the non-conservative behaviour of E. 372 

coli (Bonjoch et al., 2009; Davies et al., 1995), and the semi-conservative behaviour of 373 

SOMCPH and HMBif (Ballesté et al., 2018; García-Aljaro et al., 2018; Sinton et al., 1999). 374 

Although SSRC are resistant and conservative indicators (Agulló-Barceló et al., 2013; Galfi et 375 

al., 2016; Pascual-Benito et al., 2015), they may have been affected by the stimulatory effect of 376 

high temperatures on biological processes such as predation (Beveridge et al., 2018). The low 377 

concentrations of the semi-conservative viral indicator GA17PH could also explain its strong 378 

response to temperature increases.  379 

Finally, to shed light on the contribution of temperature and streamflow to the decay rates, 380 

the fraction of the total decay rate caused by temperature was calculated for the whole study 381 

period (Figure 4). The contribution of temperature was strongly seasonal, increasing in autumn, 382 

peaking in winter and decreasing in spring to reach the lowest values in the summer months. 383 

This trend was repeated for each FIO, albeit with some differences. The SSRC decay rate could 384 

be explained by temperature throughout the period, the contribution ranging from 80% in 385 

summer to 100% in autumn. In contrast, the contribution of temperature to the HMBif decay 386 
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rate ranged from 5% in summer to 40% in winter; and for E. coli, SOMCPH and GA17PH 387 

decay rates showed similar variations, the contribution ranging between 20% in summer and 388 

90% in winter. Although the highest contributions of temperature to the total decay rates were 389 

expected in summer, the results showed otherwise. This may be explained by the very low 390 

summer streamflow, which increased water residence time and led to streamflow replacing 391 

temperature as the most important factor in the decay rate.   392 

3.4 Modelling seasonal k and SDD for faecal indicator organisms 393 

The decay rates of the studied FIOs were modelled for the 2016-2017 period with 394 

environmental data (i.e. T and Q) (Figure 5). Seasonal variations in modelled k were observed 395 

for all FIOs and the general trend was an increase of k from May to September followed by a 396 

sharp decline in autumn and winter in both years. Those variations were more or less robust 397 

depending on the indicator behaviour. However, very low seasonal variations in SSRC k were 398 

observed, which indicates a high decoupling of the decay rates from environmental drivers. This 399 

is in accordance with what is expected from a resistant microbe and confirms its conservative 400 

indicator behaviour. SSRC are therefore of great value for assessing the impact of a WWTP in 401 

rivers using SDD measurements. 402 

The modelled SDD also showed quite pronounced seasonal variations according to the 403 

studied FIO (Figure 6). The highest SDD was found for HMBif in the winter of 2017, when ca. 404 

15 km were required to decrease its concentration to the levels observed upstream of the 405 

WWTP. When all FIOs were considered together, the minimum modelled distance needed for 406 

the stream to self-depurate was just under 3 km; SSRC and HMBif had the most impact during 407 

the dry season, whereas the maximum SSD was found in winter, driven by HMBif. However, 408 

the strong seasonal changes may be attributable to the particularly high concentrations of 409 

HMBif upstream of the WWTP, and the fact that it is detected in both active and inactive forms. 410 

Regarding SSRC, constant SDD values reflect that these indicators were practically unaffected 411 

by environmental conditions. It should be noted that the minimum modelled SDDs were lower 412 
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than 1 km for E. coli and GA17PH in August, when WWTP dilution was null, indicating the 413 

stream had a high capacity for self-depuration. 414 

A combined maximum SDD could be particularly useful for water management practices, 415 

since it would allow a distance threshold to be established, below which river water would be 416 

considered unsuitable for human use due to the health risks associated with WWTP water 417 

pouring. During the wet season, the combined SDD was 5-fold higher than during the dry 418 

season. This extremely marked seasonal behaviour indicates the need for season-specific water 419 

management practices, especially in summer, when water availability in the Mediterranean area 420 

is expected to fall in the future (Cook et al., 2014; Orlowsky and Seneviratne, 2013). 421 

Many models have been developed to describe the origin, transport, fate and processes 422 

related to faecal microbial pollution as well as to predict the faecal microbial load in 423 

catchments, using different tools and techniques such as Geographic Information Systems and 424 

simulations (Cho et al., 2016). Moreover, inactivation distances have been used previously by 425 

researchers to provide valuable information for water management (Fauvel et al., 2017; Jonsson 426 

and Agerberg, 2015). The model presented here, based on multiple FIOs and their 427 

environmental drivers, which are easy to measure in the field, constitutes a new tool to 428 

determine the spread of faecal pollution and predict the impact of a WWTP on water quality. 429 

Furthermore, the SDD provides a metric capable of integrating all types of water quality 430 

indicators when assessing WWTP impacts, not only FIOs but also ecological and chemical 431 

factors. Thus, the developed model could provide cross-cutting knowledge for water 432 

management that may be crucial in the coming years. Climate change, leading to higher 433 

temperatures and lower streamflow, is expected to reduce the SDD for all FIOs. However, land 434 

use changes together with growing human pressure may increase Qeffluent and FIO load, thus 435 

increasing faecal microbial concentration downstream of the WWTP. Under such 436 

circumstances, non-linear responses of SDD should be expected, as SDD is dependent on k, but 437 

also sensitive to FIO concentration (Figure 6). Likewise, the clear relationship found between 438 

the SDD for FIOs and easily measurable environmental drivers opens an interesting field of 439 
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research focused on anticipating how global change will affect water quality in the near future, 440 

and how in-stream self-depuration processes will interact with ever-increasing human pressure.  441 

Further research should be directed to obtaining a broader range of "in-situ" decay rate 442 

estimates in order to increase the predicative power of the model, as well as to include in the “k” 443 

coefficient other processes found to affect FIO inactivation rates, such as sedimentation, 444 

sediment resuspension or predation. Adding them to the model might help to differentiate their 445 

effect from that of temperature and streamflow, although the inclusion of highly correlated 446 

covariates has been observed to hinder model performance (Andrade et al., 1999; Zhao and Yu, 447 

2006). Finally, implementing the model in other contrasting catchments is essential to test its 448 

strengths.  If the SDD metric demonstrates its robustness when applied to other study cases 449 

under different climate conditions, it might become a crucial tool for assessing WWTP impacts 450 

on water quality in future climate conditions, and therefore for evaluating the optimum water 451 

management practices in a drier and warmer Mediterranean region. 452 

CONCLUSIONS 453 

- The WWTP effluent significantly increased the concentration of all faecal microbial 454 

indicators downstream of the WWTP. While being transported downstream, the FIOs 455 

were reduced to a greater or lesser degree according to their inherent characteristics and 456 

the environmental drivers, although no seasonality was observed in their concentrations.  457 

- The lowest SDDs were observed during the dry season, indicating this is when the 458 

capacity of the stream to recover from the WWTP impact is highest.  459 

- Temperature and streamflow successfully explained decay rates and SDDs. Temperature 460 

contribution was minimal in summer, when the contribution of a low flow was more 461 

relevant. 462 

- Seasonal differences in the SDD of a range of FIOs were captured by the developed SDD 463 

metric. This approach allows different faecal pollutants to be integrated in a single 464 

standardized metric.   465 
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- If validated in other Mediterranean water courses, the SSD metric has the potential to help 466 

water managers to anticipate the effects of climate change on water quality depending on a 467 

few environmental drivers, thus improving their ability to adapt to future climate 468 

conditions. 469 
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 737 

 738 

 739 

 740 

 741 

Table 1. Mean concentrations and standard deviation of faecal indicator organisms (FIO) 742 

before and after the wastewater treatment plant (WWTP) for the wet (n=7) and dry season 743 

(n=3). Data is given in log10 CFU per 100 ml for E. coli and spores of sulphite-reducing 744 

clostridia (SSRC), in log10 PFU per 100 ml for SOMCPH and GA17PH and log10 GC per 100 745 

ml for HMBif. Statistically significant differences after a t-test between Before (upstream of the 746 

WWTP) and After (75 m downstream of the WWTP) concentrations for each season (bold font) 747 

and between After concentrations during wet and dry seasons (font) are also noted (p<0.05, n 748 

(Wet season) =7, n (Dry season) = 3). 749 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 750 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 751 

 

Wet season concentration 

 

Dry season concentration 

Indicator Before WWTP After WWTP 

 

Before WWTP After WWTP 

E. coli 2.64±0.5 4.25±0.5 
 

3.46±0.0 4.21±0.3 

SSRC 2.23±0.4 3.36±0.4 

 
2.22±0.9 3.42±0.2

 

SOMCPH 1.80±0.7 3.93±0.2 

 
1.75±0.4 4.21±0.1 

GA17PH 0.17±0.3 1.29±0.6 

 
0.79±1.1 1.83±0.4 

HMBif 3.60±0.8 5.52±0.6 

 
3.67±0.0 4.19±1.4 

 752 

 753 

 754 
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 755 

 756 

 757 

 758 

 759 

Table 2. Mean decay rates (k, in km
-1

) and self-depuration distances (SDD, in km) with the 760 

standard deviation for the five faecal indicator organisms (FIO). Decay rate (unit less) is given 761 

in k ·10
-3

, while SDD is given in km. Statistically significant differences after a t-test between 762 

Dry and Wet seasons are noted in bold font (p<0.05, n (Wet) =7, n (Dry) = 3). 763 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 764 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 765 

 k (km
-1

)  SDD (km) 

Indicator Dry season 

 

Wet season  Dry season Wet season 

E. coli -3.6±2.0 

 

-1.2±0.5  0.6±0.4 3.1±0.7 

SSRC -1.2±0.0 

 

-0.8±0.4  2.1±1.8 4.4±3.8 

SOMCPH -1.6±0.5 

 

-0.9±0.4  4.0±0.5 5.5±1.6 

GA17PH -2.5±1.0 

 

-0.7±0.5  2.7±1.9 4.3±3.4 

HMBif -1.8±0.0 

 

-1.2±0.8  2.0±0.0 5.0±3.5 

 766 

 767 

 768 

 769 

 770 

 771 
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 772 

 773 

 774 

 775 

Figure 1. Evolution of: a) precipitation (light blue) and cumulative precipitation (dark blue), in 776 

mm; b) Qstream (blue line), Qeffluent (red line) and Qdownstream (green line) in 10
-3

·m
3
·s

-1
; c) 777 

maximum (red line) and minimum temperature (blue line), in °C and d) contribution of the 778 

Qstream to the Qdownstream (dilution factor) during 2016-2017. 779 

 780 

 781 

 782 

 783 
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 784 

 785 

 786 

 787 

Figure 2. Agreement between observed and modelled k values for all sampling campaigns and 788 

each faecal indicator organism (FIO). Regression (dashed line) compared to 1:1 (solid line), 789 

RMSE and R
2
 are noted for each FIO. 790 

The intercept was always not statistically different from zero after a Student t-test. RMSE 791 

measures the error for each individual k estimate. R
2
 is the variability within the data explained 792 

by the model. All modes were visually checked for homoskedasticity and normality of their 793 

residuals. 794 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 795 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 796 

 797 

 798 

 799 
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 800 

 801 

 802 

 803 

Figure 3. Response of faecal indicator organisms (FIO) to streamflow and temperature 804 

according to equations 5 and 6.  805 

E. coli (solid blue line); SSRC: spores of sulphite-reducing clostridia (dashed blue line); 806 

SOMCPH: somatic coliphages (solid red line); GA17PH: GA17 bacteriophages (dashed red 807 

line); HMBif: human-specific Bifidobacterium marker (dotted red line). 808 

 809 

 810 

 811 

 812 

 813 

 814 
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 815 

 816 

 817 

 818 

Figure 4. Monthly median contribution of temperature (T) to the total decay rate (k). 819 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 820 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 821 

 822 

 823 

 824 
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 825 

 826 

 827 

 828 

Figure 5. Modelled decay rate (k, in m
-1

) for the studied faecal indicator organisms. 829 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 830 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 831 

 832 

 833 

 834 

 835 

 836 
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 837 

 838 

 839 

 840 

Figure 6. Modelled self-depuration distance (SDD) for the studied faecal indicator organisms. 841 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 842 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 843 
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 850 

 851 

 852 

Supplementary Material 1. Coefficients to calculate the dependences on streamflow (Q) and 853 

temperature (T) according to equations 5 and 6, and R
2
 and RMSE between observed and 854 

simulated k. 855 

E. coli; SSRC: spores of sulphite-reducing clostridia; SOMCPH: somatic coliphages; GA17PH: 856 

GA17 bacteriophages; HMBif: human-specific Bifidobacterium molecular marker. 857 

 

f(Qdownstream) 

 

f(Tair) 

   Indicator a b 

 

c d e   R
2
 RMSE 

E. coli 4.91 -4.09 

 

1.1·10
-4

 0.42 0.12 

 

0.77 7·10
-4

 

SOMCPH 0.097 -2.3 

 

1.1·10
-3

 0.11 1.95 

 

0.84 2·10
-4

 

SSRC 0.024 -2.4 

 

2·10
-3

 0.1 1.85 

 

0.6 1·10
-4

 

GA17PH 4.99 -4.21 

 

1.3·10
-4

 0.17 0.1 

 

0.96 2·10
-4

 

HMBif 0.212 -2.31   1.6·10
-4

 0.2 1.16   0.92 2·10
-4
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