
Treball final de grau

GRAU DE ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

Optimizing Deep Learning
Models using Topological

Descriptors

Author: Oriol Saguillo González

Director: Dr. Sergio Escalera and Rubén Ballester
Realized at: Department of Computer Science and Mathematics
Barcelona, 12 de juny de 2022





Contents

Abstract iii

1 Introduction 1

2 Theory 5
2.1 Topological Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Abstract Simplicial Complex . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Vietoris-Rips Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.4 Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.5 Persistent Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Differentiability of Persistence Diagrams . . . . . . . . . . . . . . . . . . . . . 11
2.3 Topological Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Deep Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Multi Layer Perceptron . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.3 Backpropagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Experiments 23
3.1 Framework Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Deep Learning architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 From Graph to a Space Representation . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Persistence Diagram Computation . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Optimization of activation vectors . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Results 29
4.1 Point Cloud Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Multi Layer Perceptron Topology Optimization . . . . . . . . . . . . . . . . . 30

4.2.1 Total Persistence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Group Persistence Results . . . . . . . . . . . . . . . . . . . . . . . . . . 31

i



5 Conclusions 33
5.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Bibliography 35

Result Figures 37



Abstract

The combination of persistent homology and deep learning has been used frequently
in recent years in the state of the art. Some of the most important works in this combina-
tion are about explaining the behaviour of neural networks or the application to improve
the segmentation of elements in images. This project studies an application of persistent
homology, a tool that describes holes of a point cloud, which tries to optimize the topo-
logical structure of the neural network in the training process.

Persistent homology is the most widely used mechanism in topological data analysis.
Its main objective is to focus on the description of holes in a point cloud through a persis-
tence diagram, this being a collection of these topological holes. Therefore, a topological
descriptor can be obtained with such a diagram; a function whose main objective is to get
a value that represents the complexity of the point cloud. For example, if a point cloud
has multiple holes, a topological descriptor can get a number that represents them.

Deep learning has been a cutting-edge field for the last decades. It can be set as the
representation of the human brain computationally, which is the most potent model in
artificial intelligence. But, in all deep learning and machine learning problems attempted
(image classification, sentiment analysis, etc.), overfitting will always be a significant threat
during model training. It remains a problem that currently has no solution.

The proof-of-concept optimization framework of the project is to use differentiable topol-
ogy and to show the viability of distinct topological descriptors that can optimize the
network. Then, this could be used towards regularizing the learning of a network to im-
prove its performance. This framework will become the first step towards my own attempt
at avoiding the problem of overfitting and making networks learn rather than memorizing
the training dataset.



iv Abstract

Resum

La combinació d’homologia persistent i aprenentatge profund s’ha utilitzat amb fre-
qüència en els últims anys en l’estat de l’art. Algunes de les obres més importants en
aquesta combinació són sobre l’explicació del comportament de les xarxes neuronals o
l’aplicació per millorar la segmentació d’elements en les imatges. Aquest projecte estu-
dia una aplicació d’homologia persistent, una eina que descriu els forats d’un núvol de
punts, que intenta optimitzar l’estructura topològica de la xarxa neuronal en el procés
d’entrenament.

L’homologia persistent és el mecanisme més utilitzat en l’anàlisi topològica de dades.
El seu objectiu principal és centrar-se en la descripció dels forats en un núvol de punts a
través d’un diagrama de persistència, sent aquesta una col·lecció d’aquests forats topològ-
ics. Per tant, es pot obtenir un descriptor topològic amb aquest diagrama; una funció
l’objectiu principal de la qual és obtenir un valor que representa la complexitat del núvol
de punts. Per exemple, si un núvol de punts té múltiples forats, un descriptor topològic
pot obtenir un nombre que els representa.

L’aprenentatge profund ha estat un camp d’avantguarda durant les últimes dècades. Es
pot establir com la representació del cervell humà, que és el model més potent de la in-
tel·ligència artificial. Però, en tots els problemes d’aprenentatge profund i d’aprenentatge
automàtic intentats (classificació d’imatge, anàlisi de sentiment, etc.), l’adaptació excessiva
sempre serà una amenaça significativa durant l’entrenament de models. Continua sent un
problema que actualment no té solució.

El framework de la prova del concepte del projecte és utilitzar la topologia diferenciable
i mostrar la viabilitat de diferents descriptors topològics que poden optimitzar la xarxa.
Llavors, això es podria utilitzar per regularitzar l’aprenentatge d’una xarxa per millorar el
seu rendiment. Aquest framework es convertirà en el primer pas cap al meu propi intent
d’evitar el problema del overfitting i l’aprenentatge de les xarxes en lloc de memoritzar el
conjunt de dades de formació.



Abstract v

Resumen

La combinación de homología persistente y aprendizaje profundo se ha utilizado con
frecuencia en los últimos años en el estado del arte. Algunas de las obras más importantes
en esta combinación son sobre la explicación del comportamiento de las redes neuronales
o la aplicación para mejorar la segmentación de elementos en las imágenes. Este proyecto
estudia una aplicación de homología persistente, una herramienta que describe los agu-
jeros de una nube de puntos, que intenta optimizar la estructura topológica de la red
neuronal en el proceso de entrenamiento.

La homología persistente es el mecanismo más utilizado en el análisis topológico de datos.
Su objetivo principal es centrarse en la descripción de los agujeros en una nube de pun-
tos a través de un diagrama de persistencia, siente esta una colección de estos agujeros
topológicos. Por lo tanto, se puede obtener un descriptor topológico con este diagrama;
una función el objetivo principal de la cual es obtener un valor que representa la comple-
jidad de la nube de puntos. Por ejemplo, si una nube de puntos tiene múltiples agujeros,
un descriptor topológico puede obtener un número que los representa.

El aprendizaje profundo ha sido un campo de vanguardia durante las últimas décadas.
Se puede establecer como la representación del cerebro humano, que es el modelo más
potente de la inteligencia artificial. Pero, en todos los problemas de aprendizaje pro-
fundo y de aprendizaje automático intentados (clasificación de imagen, análisis de sen-
timiento, etc.), la adaptación excesiva siempre será una amenaza significativa durante el
entrenamiento de modelos. Continúa siendo un problema que actualmente no tiene solu-
ción.

El framework de la prueba del concepto del proyecto es utilizar la topología diferencia-
ble y mostrar la viabilidad de diferentes descriptores topológicos que pueden optimizar
la red. Entonces, esto se podría utilizar para regularizar el aprendizaje de una red para
mejorar su rendimiento. Este framework se convertirá en el primer paso hacia mi pro-
pio intento de evitar el problema del overfitting y el aprendizaje de las redes en lugar de
memorizar el conjunto de datos de formación.



vi Abstract



Chapter 1

Introduction

Discrete mathematics is the study of mathematical structures that can be represented in
integer format (discrete) instead of in a real format (continuous). The research in this area
increased in the latter half of the twentieth century, partly due to the development of digi-
tal computers, which operate in "discrete" steps and store data in "discrete" bits. Concepts
and notations from the field are useful in studying and describing objects and problems
in branches of computer science. The subfield of interest for this project is computational
topology with Topological Data Analysis, which develops topological techniques for ro-
bust analysis of scientific data.

The research growth in Topological Data Analysis area is the motivation of this project.
Or, in more specific terms, understanding what persistent homology is and how to apply
the tool in the Deep Learning field. I thought of this project as an opportunity to innovate
and contribute to the scientific community.

Persistent homology is a computational method, for finding features of a simplicial com-
plex in different filtrations. But what are simplicial complexes and filtrations? First of all,
to define what a simplicial complex S is, we need to have point cloud P. To construct
the simplicial complex S of the point cloud P, we have to imagine the points as the cen-
tre of circumferences with the same radius. The grouping of interactions among these
circumferences, or the absence of it, can result in various S that need to be studied. In
simpler words, depending on the intersection between the circumferences, multiple geo-
metric structures will be defined in this S. As an example, some of these structures can
be: points (No intersection with other points), line segments (one intersection between
two points), triangles (three intersections among three points) and more of these geome-
try constructions, depending on the intersection among the balls defined by the points, or
other condition previously defined. All in all, S is the set of all of those geometric struc-
tures. Furthermore, filtration is the concatenation of simplicial complexes S from the same
point cloud P. This concatenation of different S is achieved for different radius values,
r ∈ [0, ∞).

However, why can this tool be useful in computer science, especially in Artificial Intel-

1



2 Introduction

ligence? There have been several scientists trying to implement persistent homology in
machine learning classifiers to solve the overfitting problematic. The overfitting issue in
machine learning modelling occurs when the creation of a function that extrapolates the
input data does not generalize well. In consequence, when new data arrives, this function
performs poorly in comparison with the training data. As a first attempt, Chao Chen and
others proposed the following regularizer in 2018: "A Topological Regularizer for Classifiers
via Persistent Homology" [8]. After this first approach to avoid the mentioned issue, several
investigations tried to implement this topological regularizer [4, 15].

The chosen models to be combined with persistent homology optimization are Deep Neu-
ral Networks, which are models that try to replicate humans’ brain functionality. To
make this union possible, Ballester et al., "Towards explaining the generalization gap in neural
networks using topological data analysis" work will be used, in which a pipeline has been
developed to get persistence diagrams from computational graphs. These diagrams are
a collection of information on topological features, obtained with persistent homology
performed on computational graphs. Finally, it has been demonstrated, in some cases,
that overfitting can be explained with the aforementioned Persistent Homology, achieving
great results in the state-of-the-art. [3]

The purpose of this work is to, given a persistence diagram from a Deep Neural Network,
get a personalized topological optimization, the first step to achieve a personalized topo-
logical regularizer. To be able to achieve this optimization, checking if the differentiability
of persistence diagrams is possible is needed first. There has been explanations of the
differentiability of a point cloud given its persistence diagram [11]. Later some Oxford re-
searchers came with a more general framework in [20]. In these works, it has been shown
that the differentiability of a given point cloud can be performed from the persistence dia-
gram generated from it. The idea will be to differentiate these persistence diagrams from
the topological descriptors, which are scalars generated from the persistence diagram.
Two descriptors are used for this project and each of them will try to achieve different
topologies during the optimization in the neural network. As this project will work only
with the Vietoris-Rips filtration, differentiability will be explained from this filtration. This
filtration will be detailed in theory.

The novelty proposed in this bachelor’s thesis is the combination of the differentiabil-
ity of persistence diagrams on the representation of neural networks to vector spaces.
Therefore, our aim will be building a framework which optimizes neural networks based
on its topology. Neural networks are going to be represented by the space defined in
[3]. By the end of this thesis, the potential of this framework will be discussed and how
it could become a solution for overfitting which, currently, does not have an automatic
solution.



3

Report Organization

In chapter 2, all the theoretical content, which is needed to understand this project, can
be found. For instance, section 2.1 contains the mathematical background to understand
topological data analysis. Furthermore, the differentiability of persistence diagrams and
topological descriptors is explained. Therefore, all the maths-related content will be pro-
vided in this section. Next, the basics of Deep Learning will be described alongside the
pipeline to get a point cloud from the deep learning model.

Chapter 3 explains the development of the framework, as well as the processes required
to perform the topological optimization. The datasets and the different architectures used
to validate the proper functioning will also be detailed. And finally, the different sub-
processes to perform the point cloud optimization will be discussed.

In chapter 4 you will find the results of the experiments and an interpretation of the
results produced. At the end of each section, the results will be judged as to whether they
have fulfilled the project’s objectives.

Finally, in Chapter 5 the conclusions of the project will be drawn, as well as possible
new possibilities for this model and how it can evolve.



4 Introduction



Chapter 2

Theory

2.1 Topological Data Analysis

This section explains the basis of the concepts applied for the project related to Topo-
logical Data Analysis. To achieve this the homology will be explained among other con-
cepts. For more information, I extracted the major part of the information from: "Compu-
tational Topology An Introduction" [10].

2.1.1 Complexes

There are many ways to represent a point cloud, this being a set of data points in a
space, one of them being a decomposition into simple pieces. It is qualified as a complex if
the pieces are topologically simple and their common intersections are lower-dimensional
pieces of the same kind.

Let u0, u1, ..., uk be points in Rd. A point x = ∑k
i=0 λiui is an affine combination of the

ui if the λi sum to 1. If the k + 1 points are affinely independent, by which we mean that any
two affine combinations, x = ∑ λiui and y = ∑ νiui, are the same if only if λi = νi for all
i. The k + 1 points are affinely independent if only if the k vectors u1 − u0, for 1 ≤ i ≤ k,
are linearly independent. An affine combination, x = ∑ λiui, is a convex combination, if all
λi are non-negative. The convex hull is the set of convex combinations.2.1

Definition 2.1 (k-simplex). A k-simplex is the convex hull of k + 1 affinely independent points,
σ = conv{u0, u1, .., uk}.

For some dimensions special names are used, vertex for 0-simplex, edge for 1-simplex,
triangle for 2-simplex, and tetrahedron for 3-simplex. A graphical example can be seen at
2.2.

Definition 2.2 (Face). A face of σ is the convex hull of a non-empty subset of the ui and it is
proper if the subset is not the entire set.

Sometimes τ ≤ σ is written if τ is a face and τ < σ if it is a proper face of σ. The
boundary of σ, denoted as bdσ, is the union of all proper faces, and the interior is everything

5



6 Theory

Figure 2.1: Given three points x1, x2, x3 in a plane as shown in the figure, the point P is a
convex combination of the three points, while Q is not. Q is however an affine combination
of the three points.

Figure 2.2: From left to right: a vertex, an edge, a triangle, and a tetrahedron. We note that
an edge has two vertices, a triangle has three edges, and a tetrahedron has four triangles
as faces.[10]

else, intσ = σ − bdσ. A point x ∈ σ belongs to intσ if only if all the coefficients λi are
positive.

Definition 2.3 (Simplicial Complex). A simplicial complex is a finite collection of simplices K
such that σ ∈ K and τ ≤ σ implies τ ∈ K, and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face
of both.

The dimension of K is the maximum dimension of any of its simplices. The underlying
space denoted as |K|, is the union of its simplices together with the topology inherited
from the ambient Euclidean space in which the simplices live.2.3

Figure 2.3: An example of a simplicial complex. It consists of 17 points (0-simplex), 22
edges (1-simplex), 8 triangles (2-simplex) and 1 tetrahedron (3-simplex).



2.1 Topological Data Analysis 7

2.1.2 Abstract Simplicial Complex

First, a definition of the data structure used in topological data analysis will be given.

Definition 2.4. An abstract simplicial complex is a finite collection of sets A such that α ∈A and
β ⊆ α implies β ∈A

To understand better this concept, we can visualize an example in [28]:

Example 2.5. [Chess-board Complex] Let V be the positions on a chess board. ∑ collects
position subsets of V where one can place queens without capturing each other.

If σ ∈ ∑ is a set of "safe" positions, then any subset τ ⊆ σ is also a set of "safe"
positions.

2.1.3 Vietoris-Rips Complex

In order to generate the simplicial complexes algorithmically, the points need to be
thought of as the center of "balls" and will be defined with the same radius in all of them.
Now it is easier to define how it is formed a Vietoris-Rips complex. As an example, we
can imagine this complex in an Euclidean space R2, which leads to think of the "balls" as
circles.

Before defining the Vietoris-Rips complex, first we need to define the diameter of a
simplicial complex:

Definition 2.6 (Diameter of a set). The diameter of a set in Euclidean space is the supremum
over the distances between its points. Since the simplices of K are point sets in Euclidean space,
their diameters are well defined.

The Vietoris-Rips complex can be defined as follows:

Definition 2.7. The Vietoris-Rips Complex of a finite set S of points in Rd, and a radius r, it is
formed by all subsets of diameter at most 2r.

Vietoris-Rips(r) = {σ ∈ S|diam σ ≤ 2r}

Figure 2.4: Example of a Vietoris-Rips complex. The 18 points are 0-simplices. Two 0-
simplices form a 1-simplex (an edge) if their ε/2-neighbourhoods (yellow circles) intersect.
Three vertices form a 2-simplex (a triangle) if they are pairwise connected by edges. Four
vertices form a 3-simplex (a tetrahedron) if they are pairwise connected by edges. [26]



8 Theory

2.1.4 Homology

Homology is a mathematical formalism for talking in a quantitative and unambiguous
manner about how a space is connected. It provides a mathematical language for the
holes in a point cloud. Its main ingredients are group operations and maps that relate
topologically meaningful subsets of a space with each other.

Before starting with the construction of what homology is, lets define what is a group
and the quotient space.

Definition 2.8 (Group[6]). A group is a set G together with a binary operation on G, here denoted
” · ”, that using the operation with 2 elements a, b ∈ G, such that the following three requirements,
known as axioms of group, are satisfied

• Associativity: For all a, b, c ∈ G, one has (ab)c = a(bc).

• Identity element: There exists and element e ∈ G such that, for every a ∈ G, one has
ea = a and ae = a. Such element is unique, It is called the identity element of the group.

• Inverse element: For each a ∈ G there exists and element b ∈ G such that ab = e and ba =

e, where e is the identity element. For each a, the element b is unique; it is called the inverse
of a and is commonly denoted as a−1.

To understand better the definition of what a group is, the following example is given:

Example 2.9. Given the set of integers, Z = {..,−2,−1, 0, 1, 2, ...} and the addition op-
eration form a group. Given a, b ∈ Z the sum a + b ∈ Z. This says that + is a binary
operation on Z. [6]

Definition 2.10 (Quotient Space[7]). Let V be a vector space over a field K, and let N be a
subspace of V. We define an equivalence relation ∼ on V by stating that x ∼ y if x - y ∈ N. That
is, x is related to y if one can be obtained from the other by adding an element of N. From this
definition, one can deduce that any element of N is related to the zero vector; more precisely, all the
vectors in N get mapped into the equivalence class of the zero vector.

To understand better the definition of what a quotient space is, the following example
is given:

Example 2.11. Let X = R2 be the standard Cartesian plane, and let Y be a line through
the origin in X. Then the quotient space X/Y can be identified with the space of all lines
in X which are parallel to Y. That is to say that, the elements of the set X/Y are lines in
X parallel to Y. Note that the points along any one such line will satisfy the equivalence
relation because their difference vectors belong to Y.

Definition 2.12 (Chain Complexes). Let K be a simplicial complex and p a dimension. A p-chain
is a formal sum of p-simplices in K.

The standard notation for this is c = ∑ aiσi, where the σi are the p-simplices and the
ai are the coefficients. In computational topology, we mostly work with coefficients ai that
are either 0 or 1, called modulo 2 coefficients.



2.1 Topological Data Analysis 9

Two p-chains are added componentwise, like polynomials. Specifically, if c = ∑ aiσi
and c′ = ∑ biσi, then c + c′ = ∑(ai + bi)σi. The p-chains together with the addition
operation form the group of p-chains denoted as (Cp,+), or simply, Cp = Cp(K) if the
operation is understood.

We have a group of p-chains for each integer p. For p less than zero and greater than
the dimension of K this group is trivial, consisting only of the neutral element. To relate
these groups, we define the boundary of a p-simplex as the sum of its (p− 1)-dimensional
faces. Writing σ = [u0, u1, ..., up] for the simplex spanned by the listed vertices, its bound-
ary is,

∂pσ =
p

∑
j=0

[u0, ..., ûj, ..., up],

where the hat indicates that uj is omitted. For a p-chain, c = ∑ aiσi, the boundary is the
sum of the boundaries of its simplices, ∂pc = ∑ ai∂pσi. Hence, taking the boundary maps a
p-chain to a (p− 1)-chain, and write ∂p : Cp → Cp−1. Notice also that taking the boundary
commutes with addition, that is, ∂p(c + c′) = ∂pc + ∂pc′. This is the defining property of
a homomorphism, a map between groups that commutes with the group operation. We
will therefore refer to ∂p as the boundary homomorphism or, shorter, the boundary map
for chains.

Definition 2.13 (Cycle). A p-cycle is a p-chain with empty boundary, ∂c = 0.

Since ∂ commutes with addition, we have a group of p-cycles, denoted as Zp = Zp(K),
which is a subgroup of the group of p-chains. In other words, the group of p-cycles is the
kernel of the p− th boundary homomorphism, Zp = ker ∂p

Definition 2.14 (Boundary). A p-boundary is a p-chain that is the boundary of a (p + 1)-chain,
c = ∂d with d ∈ Cp+1

Since ∂ commutes with addition, we have a group of p-boundaries, denoted by Bp =

Bp(K), which is again a subgroup of the p-chains. In other words, the group of p-
boundaries is the image of the (p + 1)-st boundary homomorphism, Bp = im ∂p+1.

Definition 2.15 (Homology). The p− th homology group is the p− th cycle group modulo the
p− th boundary group,

Hp(X) = ker ∂p/im ∂p+1

Definition 2.16 (P-th Betti Number). The p− th Betti number is the rank of this group, βp =

rank Hp

An element of Hk(X) is called homology (equivalence class), and a choice of repre-
sentative for a class is called a generator. The dimension of Hk(X) counts the number of
k-dimensional features of X. For example, dim Hk(0) counts the number of connected
components ,dim Hk(1) counts the number of holes, and so on. [4]



10 Theory

2.1.5 Persistent Homology

Persistent Homology can be used to measure the scale or resolution of a topological
feature. There are two ingredients, one geometric, defining a function on a topological
space, and the other algebraic, turning the function into measurements.

Consider a simplicial complex, K, and a function f : K → R. Letting m be the num-
ber of simplices in K, we get n + 1 ≤ m + 1 different subcomplexes, which we arrange as
an increasing sequence,

∅ = K0 ⊆ K1 ⊆ ... ⊆ Kn = K

In other words, if a1 < a2 < ... < an are the function values of the simplices in K and
a0 = −∞ then Ki = K = ai for each i. We call this sequence of complexes the filtration of
f (x), with the radius as x for different simplicial complexes.

For every, i ≤ j we have an inclusion map from the underlying space of Ki to that of
Kj and therefore an induced homomorphism, f i,j

p : Hp(Ki) → Hp(Kj), for each dimen-
sion p. The filtration thus corresponds to a sequence of homology groups connected by
homomorphisms,

0 = Hp(K0) ⊆ Hp(K1) ⊆ ... ⊆ Hp(Kn) = Hp(K)

again, one for each dimension p. As we go from Ki−1 to Ki, we gain new homology
classes, and we lose some when they become trivial or merge with each other. We collect
the classes that are born at or before a given threshold and die after another threshold in
groups.

Definition 2.17 (Persistent Homology). The p− th persistent homology groups are the images
of the homomorphisms induced by the inclusion, Hi,j

p : im( f i,j
p ) for 0 ≤ i ≤ j ≤ n.

Definition 2.18 (P-th persistent Betti Numbers). The corresponding p− th persistent numbers
are the ranks of these groups, β

i,j
p = rankHi,j

p .

The persistent homology groups consist of the homology classes of Ki that are still
alive at Kj or, more formally, Hi,j

p : Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).
We note that births and deaths can also be defined for a sequence of vector spaces

that are not necessarily homology groups. All we need is a finite sequence and homo-
morphisms from left to right which, for vector spaces, are usually referred to as linear
maps.

Persistence Diagram. We visualize the collection of persistent Betti numbers by draw-
ing points in two dimensions 2.5. Some of these points may have infinite coordinates
and some might be the same, so we really talk about a multiset of points in the extended
real plane R2. Letting ν

i,j
p be the number of p-dimensional classes born at Ki and dying

entering Kj, we have

ν
i,j
p = (β

i,j−1
p − β

i,j
p )− (β

i−1,j−1
p − β

i−1,j
p ),



2.2 Differentiability of Persistence Diagrams 11

for all i < j and all p. Indeed, the first difference on the right hand side counts the
classes that are born at or before Ki and die entering Kj, while the second difference counts
the classes that are born at or before Ki−1 and die entering Kj. Drawing each point (ai, aj)

with multiplicity ν
i,j
p , we get the p− th persistence diagram of the filtration, denoted as

Dgmp( f ).

Figure 2.5: Persistence diagram plot extracted from, [17]

2.2 Differentiability of Persistence Diagrams

In this section we are going to understand, how is possible the differentiation of per-
sistence diagrams with respect to its point cloud, [11]. The following explanation will be
detailed for Vietoris-Rips filtration. For a more general understanding, I recommend [20].

Let Dl(XP) be the persistence diagram of a filtration XP constructed from a finite set
P. By choosing the birth and death times in the persistence diagram that are finite, we can
express Dl(XP) as a point

v = (b1, d1, ..., bs, ds, bs+1, ..., bs+t) ∈ Rm

where m = 2s + t. Important to mention that the expression of Dl(XP) as a point is
not unique as the points in the diagonal can permute and give different orders. Then
recalling the identification of P and u ∈ Rn be a single variable to P, we can consider the
persistent homology as giving a single correspondence between the point cloud P and the
persistence diagram of a filtration Dl(XP):

Rn 3 u→ v ∈ Rm

Now we need to define an appropriate set O ⊂ Rn such that this single correspondence
is extended to a map f : O ⊂ Rn → Rm computing persistence diagrams with f (u) = v.



12 Theory

Definition 2.19. A metric space (X, dx) consists of a non-empty set X and a function d : X ∗X →
[0, ∞) such that:

• (Positivity) For all x, y ∈ x, dx(x, y) ≤ 0 with equality if and only if x = y.

• (Symmetry) For all x, y ∈ X, dx(x, y) = dx(y, x).

• (Triangle Inequality) For all x, y, z ∈ X

d(x, y) ≤ d(x, z) + d(z, y)

A function dx satisfying all conditions, is called a metric on X. [25]

Definition 2.20. For a metric space (X, dx) the Hausdorff distance dH between two subsets
A, B ⊂ X is defined by

dH(A, B) = maxsupa∈AdX(a, B), supb∈BdX(b, A)

where dX(a, B) = infb∈BdX(a, b) and dX(b, A) is defined symmetrically.

Definition 2.21. The Gromov-Hausdorff distance dGH between two metric spaces (X, dY) and
(Y, dY) is defined by:

dGH(X, Y) = inf f ,gdH( fX→Z(X), gY→Z(Y))

where fX→Z and gY→Z denote isometric embeddings of X and Y into a metric space (Z, dZ),
respectively, and the Hausdorff distance between fX→Z(X) and gY→Z(Y) is measured using the
metric dZ.

Let ∆ be the points on the diagonal with multiplicity ∞. The norm ‖p‖∞ = d∞(p, 0)
by the distance d∞(p, q) = max |p1 − q1|, |p2 − q2| on R2.

Let P and P′ be two point clouds in RL with |P| = |P′| = M. Then δ = d∞(Dl(XP), ∆)
and for ε < δ/2, we can let for Vietoris-Rips filtrations,

Oε
u = u′ ∈ Rn|dGH(P(u), P′(U′)) < ε

Let X = (Xr)r∈R≤0 be a Vietoris-Rips filtration with a saturation time R, and let us set
Wl = XR

l and W = ∪lWl . The correspondence is decomposed into two parts:

u
g

−−−−−−−−−→ r = (rσ)σ∈W
h−−−−−−−−−→ v

Where g constructs the simplicial complex filtration, and h computes the persistence
diagram. We extend the decomposition f = h ◦ g of this single correspondence to that of
a map f . To this aim, we need to construct a proper subset in Ou in which the set W is
invariant.

In the case of Vietoris-Rips filtration, W is given by all the faces of the (M− 1)-simplex
for |P| = M, independently of the configuration u. Thus, the decomposition f = h ◦ g of
the correspondence is extended naturally to the map



2.3 Topological Descriptors 13

OVR
g

−−−−−−−−−→ Rd h−−−−−−−−−→ Rm

where OVR = Oε
u ∩UVR, g : OVR 3 u → r = (rσ)σ∈W ∈ Rd, and h : Rd 3 r → v ∈ Rm

with d = |W|.

Lemma 2.22. On the open set OVR, the map g is of class C∞

Lemma 2.23. The map h is of class C∞ on Rd.

It can be proved that the map f is of class C∞ on OVR. This follows from the chain rule
and Lemmas 2.22, 2.23.

2.3 Topological Descriptors

A topological descriptor can be understood as a function that expresses the properties
of a persistence diagram. Therefore, its topological structure can be understood. This
descriptor is what will give us the semantics of a certain point cloud.

For this project, two of them will be defined and will be used for the experimentation
of the framework: total persistence and group persistence.

Total Persistence The Total Persistence descriptor is a function that computes the dis-
tance of the points with respect to the diagonal. The function is the following:

total_persistence (dgm) = ∑
(bi ,di)∈dgm

di − bi

This descriptor, used to minimize the total persistence, will make the cloud features
vanish, as it will try to approximate the death to little margin from the birth, bringing it
closer to the diagonal. For example, in homology 0 it will create connected components
from the cloud points. In case of minimizing, −total_persistence(dgm), the points will
be moved away from the diagonal, in other words, move the death away from the birth.
One drawback of this function is that it will not necessarily optimize all points from their
respective position. As the descriptor, although it computes the sum of all the points, it
does not compute the distance between them or a joint description. For this reason, not
all points will be optimized and only some of them may be optimized.

For the training experiment it will be used to maximize the total persistence. This is be-
cause it will be possible to better appreciate the optimization in the persistence diagrams.
If the total persistence is optimized by minimizing it, there may be problems during the
optimization, due to the attempt to make the death smaller than the birth. This is by
definition not possible. On the other hand, a positive optimization will be run on a point
cloud with many points in order to be able to see how the structure of the point cloud



14 Theory

changes during the iterations.

The explanation of the differentiation follows:

Let f (x) be total_persistence(dgm) with a domain of [0,+∞), because death can’t come
before birth. To prove that f (x) is differentiable we will use the following theorem: if
f is continuous in an open set U and has continuous partial derivatives in U, then f is
continuously differentiable at all points in U. Taking [0,+∞) as the open set we have to
see if the partial derivatives are continuous.

∂ f
∂bi

= 1 and
∂ f
∂di

= −1

In both cases, we can see that the partial derivatives are continuous in (0,+∞). There-
fore, the function f (x) is differentiable.

The reason for using this descriptor is because it is a standard in topological data analysis.

Group Persistence The Group Persistence is an own descriptor used to get a relation
between the distance between points and total persistence. The function is the following:

group_persistence (dgm) = f (dgm)
1

‖(d− b)−mean(dgm)‖2 + 1
, where d, b ∈dgm

The novelty that incorporates the global descriptor is the calculation of the norm with
respect to the mean. The mean(dgm) is a function that tries to obtain the mean value
between all the points of a persistence diagram, mean(dgm) = 1

n ∑n
i=1(

bi+di
2 ). The sub-

traction between the vector values and the mean is performed with a previous product of
the mean with [1, ..., 1], where the dimension is N, the number of points in the diagram.
For example, if (b− d) = [1, 1, 1] and mean= 0.5 the result will be [0.5, 0.5, 0.5]. As we will
see in the results section, the total persistence in most of the cases increases the distance
between a point and the rest of them. The objective is to prioritize that if the points of the
diagram are closer together, the result should be closer to total persistence value as the
other part should approximate 1.

For the training, the group persistence will be used to maximize the result, as in total
persistence. The reasons of using it are to appreciate in which conditions will the network
stop to optimize and how far the points will be optimized based on the distance between
them.

The explanation of the differentiability follows:

Knowing that f is differentiable, we only have to worry about the other part, due to
the fact that the product of differentiable function is also differentiable. When having a
division, we will have to see if the function makes a change in the growth, having a value
less than 1 in the denominator. The norm between (d− b)−mean(dgm) in the domain
of (0, ∞] cannot be less than 0. Let d, b = [0, .., 0], which is the minimum value possible



2.4 Deep Learning 15

in the domain, because births in homology 0 can only be given at 0. Then we will have a
mean value of 0. Thus, the distance between vectors of [0, .., 0] will be 0. The minimum
of the function will be 1

0+1 = 1. Another possible case for reaching the minimum is when
all the points in the diagram are in the same death position, in homology 0. In that case,
we take as example b = [0, 0] and d = [1, 1] and the mean will be 1. When performing
([1, 1]− [0, 0])− 1 = [1, 1]− 1 = [0, 0]. Therefore, the norm of [0, 0] will be 0, leading to
the same result as before, 1

0+1 = 1. The addition of the +1 is with the purpose of avoiding
the division by 0.

Defining g(x) as the group_persistence(dgm) function, with domain in [0,+∞). Taking
the open set U = [0,+∞), it is necessary to check if the norm in the denominator is differ-
entiable with a finite number of points n in the persistence diagram. We can express ‖(d−
b)−mean(dgm)‖2 = |(d1− b1−mean(dgm))2|1/2 + ...+ |(dn − bn −mean(dgm))2|1/2, in-
tuitively speaking it is differentiable everywhere except at the origin and all points are
death at the same time as the mean. Taking the above expression, one can see that all
of them are a composition of two functions, the exponent and absolute value. A proven
result is that the absolute value is differentiable everywhere except at the origin. As we
are having 1

f of a differentiable function, we can use this result [27] to assure that we have
differentiability in all the domain except at the origin and all points in the same death as
the mean value.

For this particular problem, it would be strange if not impossible to say that all the points
lie on the origin axis of the diagram. This would imply that all points in the point cloud
to be optimized would be in the same position. Also, in terms of experimentation it will
be interesting to see in which circumstances the death points will match the mean value.

2.4 Deep Learning

So many times Deep Learning has been heard that it is a revolution in Artificial Intel-
ligence. But what exactly is Deep Learning? To understand it better, lets take a look at the
history.

In 1943, artificial neural networks (ANNs) were an attempt to mimic biological neurons
in the human brain by neurophysiologist Warren McCulloch and mathematician Walter
Pitts. This work was set forth in "A Logical Calculus of Ideas Immanent in Nervous
Activity," McCulloch and Pitts presented a simplified computational model of how bi-
ological neurons could work together in animal brains perform complex computations
using propositional logic. It was the first artificial neural network architecture [12].

Now to begin building what is called Artificial Neural Network, let’s start by defining
it. Following that, going to define Multi Layer Perceptron’s the Deep Neural Network
used in this project and how to optimize it.



16 Theory

2.4.1 Artificial Neural Network

This explanation is mainly extracted from [16].
An Artificial Neural Network consists of a network of simple information processing

units, called neurons. The power of neural networks to model complex relationships is
not the result of complex mathematical models, but rather emerges from the interactions
between a large set of simple neurons.

A neuron2.6 receives n inputs [x1, .., xn] on n different inputs connections, and each con-
nection has an associated weight [w1, .., wn]. The weighted sum calculation involves the
multiplication of inputs by weights and the summation of the resulting values.

z = (x1 · w1 + (x2 · w2) + .. + (xn · wn)) = x · w

Example 2.24. Assuming a neuron received the inputs [x1 = 3, x2 = 9] and had the
following weights [w1 = −3, w2 = 1], then z = (3 · −3) + (9 · 1) = 0

Figure 2.6: The structure of an artificial neural network, [16]

After getting the output of a neuron, an activation function has to be associated with
it. The reason for using the function in the output of the neuron value z is to switch from
a linear to a nonlinear mapping. A linear model can always be represented by a neuron,
so large networks do not help if nonlinear activations are not available. Also, the need
to obtain a nonlinear mapping is because many relationships in the world that may be
modelled are nonlinear.

The fact that the introduction of a nonlinearity into the processing of the neurons en-
ables the network to learn. A nonlinear mapping between inputs and output is another
illustration of the fact, that the overall behaviour of the network emerges from the inter-
actions of the processing carried out, by individual neurons within the network. Neural
networks solve problems using a divide-and-conquer strategy: each of the neurons in a
network solves one component of the larger problem, and the overall problem is solved
by combining these component solutions.



2.4 Deep Learning 17

Figure 2.7: Plots of some neural network activation functions, [24]

In this project, the ReLU function, which has the following notation, will be used:

f (x) = max(0, x)

The reason for choosing ReLU function was because of its computational efficiency,
and it converges faster to optimal solutions than the rest due to its sparsity.[1]

In order to adjust the weights of the neuron, its error must be calculated and depending
on this the weights can be adjusted so that they are more similar to the z that we want to
associate the x inputs. To do this a loss function must be defined, which has the following
definition.

Definition 2.25 (Loss function). The loss function is a function that calculates the error of the
actual value with respect a prediction. Importantly, this function must be differentiable in order to
optimize the error.

The optimization of a neuron can be done with the last two sections of this section, as
well as the Multi Layer Perceptron.

2.4.2 Multi Layer Perceptron

This section is mostly extracted from [13].
Deep feedforward networks, also called feedforward neural networks, or multi layer

perceptrons (MLPs), are the quintessential deep learning models.The goal of a feedfor-
ward network, and all neural networks, is to approximate some function f ∗.

Example 2.26. For a class y, y = f ∗(x) maps an input x to a category y. A Feedforward
network defines a mapping y = f (x; θ) and learns the value of the parameters θ, weights,
that result in the best function approximation. According to the values that minimizes the
loss function.

Those models are called feedforward because information flows through the function
being evaluated from x, through the intermediate computations used to define f , and fi-
nally to the output y. No feedback connections exist where the outputs of the model feed



18 Theory

back to themselves.

Feedforward neural networks are typically represented by composing together many dif-
ferent functions. The model is associated with a directed acyclic graph describing how the
functions are composed together.

The following example shows how to realize a simple MLP architecture. First, the mean-
ing of a layer will be defined.

Definition 2.27 (Layer). An artificial neural network (1) takes some input data, and (2) trans-
forms this input data by calculating a weighted sum over the inputs and (3) applies a non-linear
function to this transformation to calculate an intermediate state. The three steps above constitute
what is known as a layer, and the transformative function is often referred to as a unit. A layer
in a deep learning model is a structure or network topology in the architecture of the model, which
is a container that usually receives weighted input, transforms it with a set of mostly non-linear
functions and then passes these values as output to the next layer.[9]

There are three types in a neural network:

• Input layer: Contains the data to process: images, text or any kind of data repre-
sented in number.

• Hidden Layer: All the layers that can be found between the input and output layer,
are considered hidden. They try understand the problem and fit themselves to ap-
proximate to f ∗.

• Output Layer: The different number of classes in the classification assigns a score
to the input image, text, or the data introduced to the belonged class. In case of a
regression problem a single output neuron will give us the scalar computed by the
network.

Figure 2.8: An example of a deep learning neural network with 3 hidden layers., [2]

Now let’s take an example of what a Feedforward neural network would look like:

Example 2.28. There are three functions f 1, f 2, and f 3 connected in a chain, to form
f (x) = f 3( f 2( f 1(x))). In this case f 1 is the first layer, f 2 is the second and so on.



2.4 Deep Learning 19

The overall length of the chain gives the depth of the model. The name "deep learning"
arose from this terminology.

2.4.3 Backpropagation

This section is mostly extracted from [24].

The backpropagation algorithm can be used to compute the gradient of a loss function
applied to the output of the network with respect to the parameters in each layer. This
gradient can then be passed to a gradient-based optimization algorithm.

Let assume initially that the neural network is a simple linear chain of stacked layers,
as in an MLP. In this case, backpropagation is equivalent to repeated applications of the
chain rule of the calculus. However, the method can be generalized to arbitrary directed
acyclic graphs. Such a general procedure is often referred to as automatic differentiation
or autodiff.

To better understand the concepts of the backpropagation algorithm, let’s give as an ex-
ample that the network has 4 layers, 2.9.

Consider a mapping of the form o = f (x), where x ∈ Rn and o ∈ Rm. Assume that
f is defined as a composition of functions: f = f4 ◦ f3 ◦ f2 ◦ f1, where f1 : Rn → Rm1 ,
f2 : Rm1 → Rm2 , f3 : Rm2 → Rm3 and f4 : Rm3 → Rm4 .

Figure 2.9: A simple linear-chain feedforward model with 4 layers. Here x is the input
and o is the output., [24]

The Jacobian can be calculated J f (x) = ∂o
∂xT ∈ Rmxn using the chain of rule:

∂o
∂x

=
∂o
∂x4

∂x4

∂x3

∂x3

∂x2

∂x2

∂x
=

∂ f4(x4)

∂x4

∂ f3(x3)

∂x3

∂ f2(x4)

∂x2

∂ f1(x)
∂x

= J f4(x4)J f3(x3)J f2(x2)J f1(x)

Recall that

J f (x) =
∂ f (x)

∂x
=


∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

 =

∇ f1(x)T

...
∇ fm(x)T


where ∇ fi(x)T ∈ R1xn is the i-th row and ∂ f

∂xj
∈ Rm is the j-th column.



20 Theory

Using a vector Jacobian product, VJP of the form eT
i J f (x), where eRm

i is the unit basis
vector, can be used to extract the i-row of J f (x). Similarly, one can extract the j-th column
of Ff (x) using a Jacobian vector product, JVP, of the form J f (x)ej, in which ej ∈ Rn. This
shows that the computation of J f (x) reduces to either n JVPs or m VJPs.

If n < m, it is more efficient to compute J f (x) for each column j = 1 : n by using JVPs in
a right-to-left manner. The right multiplication with a column vector v is:

J f (x)v = J f4(x4) · J f3(x3) · J f2(x2) · J f1(x1) · v

This can be done using forward mode differentiation 7. Assuming m = 1 and n =

m1 = m2 = m3 the cost of computing J f (x) is O(n3)

Algorithm 1 Reverse mode differentiation
x1 := x
vj := ej ∈ Rn f orj = 1 : n
for k = 1 : K do

xk+1 = fk(xk)

vj = J fk
(xk)vj f orj = 1 : n

end for
Return o = xK+1, [J f (x)]:,j = uT

i for j = 1 : n

If n > m, e.g. if the output is a scalar, it is more efficient to compute J f (x) for each row
i = 1 : m using VJPs in a left-to-right manner. The left multiplication with a row vector uT

is:
uT J f (x) = uT · J f4(x4) · J f3(x3) · J f2(x2) · J f1(x1)

This can be done using reverse mode differentiation 9. Assuming m = 1 and n = m1 =

m2 = m3 the cost of computing J f (x) is O(n2)

Algorithm 2 Reverse mode differentiation
x1 := x
for k = 1 : K do

xk+1 = fk(xk)

end for
ui := ei ∈ Rm for i = 1 : m
for k = K : 1 do

uT
i := uT

i J fk
(xk) for i = 1 : m

end for
Return o = xK+1, [J f (x)]i,: = uT

i for i = 1 : m

Now each layer can have parameters θ1, ..., θ4 in an MLP. Our focus is on the case a
mapping has the form L : Rn → R, so the output is a scalar.

The notation fk(xk, θk) denotes the function at layer k, where xk is the previous output



2.4 Deep Learning 21

and θk are the optional parameters for this layer.

The algorithm 3 computes the gradient of the loss with respect to the parameters in each
layer. Also calculates the gradient of the loss with respect to the input, ∇xL ∈ Rn, in
which n is the dimensionality of the input.

Algorithm 3 Backpropagation for an MLP with K layers

// Forward pass
x1 := x
for k = 1 : K do

xk+1 = fk(xk, θk)

end for
// Backward pass
uK+1 := 1
for k = K : 1 do

gk := uT
k+1

∂ fk(xk ,θk)
∂θk

uT
k := uT

k+1
∂ fk(xk ,θk)

∂xk
end for
Return L = xk+1,∇xL = u1,∇θk L = gk : k = 1 : K

To know how to compute the vector Jacobian product (VJP) of all supported layers can
be found in [24] in section 13.3.3.

2.4.4 Optimization

[24]The core problem of machine learning is parameter estimation. This requires solv-
ing an optimization problem, where to find the values for a set of variables θ ∈ Θ, mini-
mizing a scalar-valued loss function L : Θ→ R:

θ∗ ∈ arg min
θ∈Θ

L(θ)

The parameter space will be assumed to be given by Θ ⊆ RD, where D is the number of
variables being optimized over. Therefore, the focus is on continuous optimization, rather
than discrete optimization.

To achieve the optimization of a network’s parameter, the gradient descent algorithm is
the solution. In order to compute it first, it is necessary to start with some random weight
values, the first ones to be assigned to the network. Once obtained, at each iteration t, we
perform the following update for each of them:

θt+1 = θt + ntdt

where nt is known as the step size or learning rate, and dt is a descendent direction,
such as the negative of the gradient. These update steps are continued until the method
reaches a stationary point, where the gradient is zero.



22 Theory

A direction d is said to be a decreasing direction if there is a sufficiently small amount
d with which to move in the direction d and the value of the function is guaranteed to
decrease. How to obtain this direction from a neural network is explained in the section
on backpropagation.

In machine learning, the sequence of step sizes{nt} is called the learning rate schedule.
There are several widely used methods for picking this. The two main ones are explained:

• Constant step size: The simplest method is tu use a constant step size. However,
if it is too large, the method may fail to converge, and if it is too small, the method
will converge very slowly.

• Line search: Te optimal step size can be found by finding the value that maximally
decreases the objective along the chosen direction by solving the 1d minimization
problem:

nt = arg min
n>0

L(θt + ndt)

However, it is not usually necessary to be so precise.

Gradient descent can move very slow along flat regions of the loss landscape. One simple
heuristic, known as the momentum, is to move faster along directions that were previ-
ously good, and to slow down along directions where the gradient has suddenly changed.

Adaptive Moment Estimation (ADAM), which incorporates this momentum feature, will
be the optimizer used for this project. It is currently used as a standard in network train-
ing.



Chapter 3

Experiments

At this point, all the theory required to develop the project has been covered. First, a
mention must be made of an earlier attempt by Mathieu Carrière, [5] where he initiated
the optimization of simple point clouds on a Jupyter Notebook. The experiments to test
the functionality of this software and how it was done will be explained.

3.1 Framework Pipeline

Now the data flow has to be designed to achieve the optimization, based on Topolog-
ical Descriptors. As mentioned above, it is important to emphasize the use of the ReLU
function because of its computational efficiency in respect to the other nonlinear functions.

After having the activation vectors, the Persistence Diagram with the Euclidean distance
between the vectors needs to be extracted, this will be explained in more detail in 3.6.
Once the diagram is obtained, it is necessary to define the topological descriptor to opti-
mize and calculate the derivative with the TensorFlow auto-differentiation Tape.

Figure 3.1: Pipeline constructed for the framework

23



24 Experiments

3.2 Implementation Details

In this section, the components used to work with this project and the main Python
libraries used will be shown. In addition, there is a requirement text file in the code to
run the code by yourselves.

Hardware Components:

• CPU: Intel(R) Core(TM) i5-10210U CPU

• GPU: NVIDIA GeForce MX250

• RAM: 8.00 GB

• Operative System: Windows 10

• Kind of System: Operative system of 64 bits.

I have to mention that given the limitation with these resources, I did not test the
process with all the datasets. I created a function called reduce_dataset, which take for
arguments the images, labels, and the percentage of reduction. On my case, only 0.01 of
the randomly selected training data was taken.

Python libraries:

• TensorFlow: TensorFlow is an interface for expressing machine learning algorithms
and an implementation for executing those algorithms [23]. TensorFlow can be used
to define Deep Neural Networks of any type, CNNs, MLPs, RNNs, etc. One of the
major advantages is the self-differentiation, which along with the Tape object records
the operation performed in a process and optimizes with the recorded operations.

• GUDHI:The Gudhi library is an open source library for Computational Topology
and Topological Data Analysis (TDA). It offers state-of-the-art algorithms to con-
struct various types of simplicial complexes, data structures to represent them, and
algorithms to compute geometric approximations of shapes and persistent homol-
ogy [22]. This library is used in the project to calculate the persistence diagrams
given the activation vectors.

• NumPy: NumPy’s main object is the homogeneous multidimensional array. It is a
table of elements (usually numbers), all the same type, indexed by a tuple of non-
negative integers [14]. The purpose of the project is to cast from TensorFlow tensors
into arrays to make the storage easier and the reading of the data.

Some other Python libraries such as pickle, os, matplotlib, pandas have also been
used. Since these libraries were used during the undergraduate course and the use of the
framework was not deterministic, these do not need to be explained in detail.



3.3 Datasets 25

3.3 Datasets

To analyze the optimization of topological descriptors, it was decided to use 3 datasets
of different complexity in a MLP. Regarding the training data used, it was only needed
for the training step, because the only part to test was that the optimization worked given
the inputs in the network.

The datasets used were:

• CIFAR10 [18]: The problem which tries to solve is a classification problem of com-
puter vision. In this problem, we have 10 different classes, which can be found
in the TensorFlow documentation. It contains 60000 RGB images with dimension
(32, 32, 3), for the training has 5000 giving a tensor of (6000, 32, 32, 3).

• CIFAR100 [18]: This dataset is very similar with respect to CIFAR10, but the com-
plexity of the problem is bigger as a result of it. It has 100 different classes instead of
10, containing 600 images per the 100 classes, and 500 of them are used for training.
Also, it has the same shape image as CIFAR10, (32, 32, 3).

• MNIST[19]: The MNIST dataset is a collection of handwritten digits. It has a train-
ing of 60000 non-RGB images with a dimension per image of (28, 28). This is also a
problem of classification in computer vision, which tries the handwritten digit tries
to be recognized by the computer.

3.4 Deep Learning architectures

As the experiment wants to be able to make a general framework, 4 different architec-
tures were used to see if the experiment works freely on the chosen architecture.

The number of layers for each model was: 2, 3, 5, 10. Which were decided to study if
a network with more layers was easier to optimize its topological structure. All layers
were 100 neurons, the number of neurons was to place a standard and with the hardware
resources it was possible to train the network. Finally, the activation function is the ReLU
as mentioned in the theory.

3.5 From Graph to a Space Representation

During this section, for the construction of the activation vector, this algorithm will be
explained and how it works.

In this project, the ReLU function of neurons defined on artificial neural networks is used.
This transformation is based on the fact that a network behaves dynamically only in the
context of the input data, forming a matrix of neuron activations.

To compute the activation vectors, a D dataset and a m model are needed. Then the



26 Experiments

first layer has to be skipped, since it has no impact on the outcome of the network. Then,
the construction of the activation_bd starts by obtaining the values of the neurons in each
layer. Once the activations are obtained, it starts concatenating the columns of the neuron
activations in the matrix.

Before returning the activation_bd, it is necessary to execute the transpose operation at
the matrix. This is in order to get each neuron as a row and each sample of data as a
column.

Algorithm 4 From Neural Network to Activation_vector

// The arguments for the code are model MLP and input train
first_layer = True
for layer in model.layers do

if layer is f latten_layer then
Skip

else
activation_vector = layer(input)
if first_layer then

activations_bd = activation_vector
first_layer = False

else
activation_bd = concat([activations_bd, activation_vector], axis = 1)

end if
end if

end for
Return activations_bd transposed

At the end, a matrix will be obtained, it can be understood in the following way: each
row indicates the position of that neuron in the activation with respect to the data entered
in the network. The topological optimization will be based on this structure. An important
clarification is that labels are not needed when it comes to the performance of this matrix.

3.6 Persistence Diagram Computation

The computation of the persistence diagrams will now be detailed. Indeed, most of
the information in this part is taken from Mathieu Carrière, whose original repository
can be found in the bibliography. First of all, to connect this part with all that has been
previously explained, the activation vectors have already been calculated. This has been
explained in the theory section 2.5.

To begin with, the matrix of distances between the different vectors must be calculated.
This matrix will be of size NxN, where N is the number of neurons, the length of this
being the number of data samples used to calculate the activation vector. The Euclidean
distance has been used to achieve the results presented, but the code is supported to use



3.7 Optimization of activation vectors 27

either with TensorFlow operations. As other distances are not detailed in the theory, we
will only focus on the Euclidean distance in this project.

Once the distance matrix is obtained, the Rips function is executed. It is made with
the Gudhi library and NumPy, being required the dimension in which the homology is to
be performed, also it is needed the maximum distance for the filtration and the number
of points of the diagram to collect. The latter is due to the fact that on the diagonal there
are infinite points, and it is to be able to compute in a limited way.

As it is executed, the RipsTF function, once executed, will return the indices in which
the homology persistence dies in regard to the distance matrix. At the end, some trans-
formations of the births and deaths are performed in order to obtain the 2-dimensional
persistence diagram, with the previously specified number of points.

This is how the persistence diagram is obtained. Now, the optimization itself has been
implemented in a more technical way.

3.7 Optimization of activation vectors

All that has been explained and shown previously, it can be put together in order to
achieve the objective of the project.

The most important thing is to execute inside tf.GradientTape() the operations of cal-
culating the activation vectors, the persistence diagram and the topological descriptor.
Once the topological descriptor is obtained, it is needed to be taken as the loss value to
be optimized. Then compute the gradients with the tape, remember that the tape saves
the operations previously performed. Once the gradient is obtained, we optimize with
ADAM the Multi Layer Perceptron and this is how the network is optimized in an epoch
with its topological complexity.

In order to optimize the model with this pipeline, it is important to keep the batch static
in the epochs. This is because otherwise the activation vectors will change and optimize
according to different values.



28 Experiments



Chapter 4

Results

In order to determine how successful the framework was, two different types of tests
were run. The first test was developed for checking if a two-dimensioned point cloud
optimizes its structure using homology in dimension 0. The second test consisted of
running the aforementioned pipeline through Neural Network basic procedures. The
generated results and their analysis will now be explained in more detail.

4.1 Point Cloud Optimization

Once the topological optimizer, which takes the point cloud’s persistence diagram as
a reference, was completed, it was decided to run the following test for checking its good
performance. This validation test consists of visualizing a 2-dimensional point cloud gen-
erated randomly using NumPy. For the purpose of verifying its performance, 300 epochs
have been run, seeking the optimization of the total persistence. This aims to reduce it.

By using homology’s dimension 0, as discussed in the theory section, the mentioned
test has to evaluate the connected components within the cloud. Then, if our goal is to
optimize this dimension 0, newly generated cloud components should appear as a result
of this test.

As can be seen in 4.1, the optimization of the Point Cloud can be clearly observed. For
instance, at epoch 0, a point cloud has been randomly generated, where no clear struc-
ture is visible. From the 100-th epoch onwards, the first components to be connected can
be seen, in which points are joined together for building them. Moving forward to the
200-th epoch, the sought optimization can be appreciated in a clearer way, since the iso-
lated points start to get coupled with the already constructed components. Finally, by the
300-th iteration, not much change can be seen. This is caused by the fact that, from the 200-
th epoch, the total persistence function has already generated components with the points.

From this result, it was possible to ensure the good performance of the Framework in
the task of optimizing the point clouds using the homology in dimension 0. After this

29



30 Results

point on, it was possible to continue the work for performing this optimization with the
activation vectors of the neural networks.

Table 4.1: Optimization of 300 iterations on a point cloud, achieved with homology di-
mension 0 and total persistence as a loss function

4.2 Multi Layer Perceptron Topology Optimization

This section will aim to show the performance of topological optimization in neural
networks. The results for two different descriptors will be analyzed for evaluating whether
they meet the desired requirements or not. Both experiments were studied within 30
iterations. It should be noted that the same default hyper-parameters have been used so
that the final result is not affected by them. Since dimension 0 is applied for the persistent
homology of Vietoris-Rips, the results are presented using density functions. The reason
for this is that, in the persistence diagrams, (x, y) ∈ R2, the X-axis will always be 0. In
other words, the birth will always occur at 0 and its death will be optimized.

4.2.1 Total Persistence Results

In 1,3,5, one may observe density functions, generated in the activation vectors of
the first epoch, the non-optimized network and the last optimized network. As with



4.2 Multi Layer Perceptron Topology Optimization 31

both CIFAR10 and CIFAR100, regardless of the architecture, one feature always stands
out, dramatically increasing its overall persistence compared to the rest. However, when
comparing with MNIST, the features seem to be more clustered than with the other two
datasets. Especially the 5 hidden layer architecture seems to fulfill what is intended by the
grouped persistence.

Taking a look at the values of the loss function 4.1, total persistence reduces the loss
in a linear way. This is because, when trying to maximize the total persistence, the death
of these features should last longer in time. From the persistence diagrams and the den-
sity functions, in all the epochs, it can be appreciated that these characteristics last longer
in death.

Although the objective of the optimization is met, it would be interesting to find a way
to achieve a more generic optimization among all the points. Instead of just optimizing
one point, we should try to optimize all of them. That is why now it is time to look at the
optimization of the group persistence descriptor and see the results it gives us.

0 5 10 15 20 25 30

2000

1500

1000

500

Topological Loss 5_hidden, total_persistence, CIFAR10

(a) Loss in CIFAR10 with 5 hidden layers

0 5 10 15 20 25 30
700

600

500

400

300

200

Topological Loss 5_hidden, total_persistence, MNIST

(b) Loss in MNIST with 5 hidden layers

Figure 4.1: Optimization with total persistence during 30 epochs

4.2.2 Group Persistence Results

In 2, 4, 6, the results generated with group persistence can be seen. First of all, it can
be appreciated that in all the training cases there is no point that is very far away from the
rest, as was the case with total persistence. Therefore, the optimization goal with group
persistence has been achieved. Furthermore, we can see that the final results offer us in-
formation to new hypotheses.

The difficulty within the three datasets differs among them. The order from the easi-
est to the most difficult classification problems for a network to learn the dataset of is
MNIST, CIFAR10 and CIFAR100. In MNIST, the optimization ends up with all the points
closely grouped, the mean and the points of death are similar values and the norm tends
to 0, therefore the descriptor is no longer differentiable. Being a result quite different from
those presented by CIFAR10 and CIFAR100, one might think that it is due to the dataset



32 Results

itself. However, if one looks in detail at the result of the 10 hidden layers architecture in
CIFAR10, the points have a very similar behaviour to MNIST. The hypothesis that arises
from these facts is the following: "The network has topological characteristics that will have
very similar persistence if the problem to be solved for that network is simple". To see if this hy-
pothesis is possible, CIFAR100, the most difficult problem, does not have this behaviour
in any of its architectures. Therefore, although the hypothesis cannot be proved due to
lack of evidence, it cannot be discarded either.

Finally, the loss function of group persistence is not as stable as the one from total persis-
tence. Unlike CIFAR10 and CIFAR100, the loss function of MNIST, in all its architectures,
is constant. In any case, although it is not as stable, we can observe that it ends up opti-
mizing correctly. This is due to the fact that it first prioritizes the total persistence, which
causes some points to move away from the rest. But then one can see that it tries to correct
the loss value by making the rest of the group go towards the mean. Then it can be seen
that during the process it does meet the descriptor objective more firmly, since it increases
the total persistence without making one topological feature stand out much more than
the others.

0 5 10 15 20 25 30
10.65

10.60

10.55

10.50

10.45

10.40

10.35

10.30

10.25
Topological Loss 2_hidden, group_persistence, MNIST

(a) Loss in MNIST with 2 hidden layers

0 5 10 15 20 25 30
10.6

10.4

10.2

10.0

9.8

9.6

9.4

9.2

9.0
Topological Loss 2_hidden, group_persistence, CIFAR10

(b) Loss in CIFAR10 with 2 hidden layers

Figure 4.2: Optimization with group persistence during 30 epochs

10 15 20 25 30 35 40

0.00

0.05

0.10

0.15

0.20

Density Function
Gaussian Kernel 

(a) Density function in epoch number 15

10 15 20 25 30

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Density Function
Gaussian Kernel 

(b) Density function in epoch number 16

Figure 4.3: Density functions in 2 hidden layers of CIFAR10. From epoch 15 to 16, the
distance between points are minimized.



Chapter 5

Conclusions

As the explanation of the framework and the results obtained are now over, a summary
of the project will follow.

A function that transforms a neural network to a vector space? has been successfully
achieved, being able to obtain topological information of the network from persistence
diagrams and differentiate them to mold the structure to the descriptor of interest. For
the moment we can only optimize with the homology in dimension 0, and it would be
interesting to see the behaviour on other dimensions. However, we have ensured a good
performance by seeing how it modifies the structure of a point cloud.

The differentiability of persistence diagrams has been tested with two topological descrip-
tors and three different datasets, CIFAR10, CIFAR100 and MNIST, where the difficulty
of these classification problems has been different. All this in order to guarantee that
the framework optimizes independently from these three datasets. An important point
to make, when optimizing with regard to the topological complexity of the network, is
that we do not use ground truth. Unsupervised machine learning techniques are gaining
popularity due to the contribution of finding new patterns in the data. In this case, seeing
new patterns in networks could be a subject of discussion.

The topological optimization on activation vectors for future regularization has been the
innovative part of the project. Although there have already been attempts to apply topo-
logical regularizers [8, 15, 4] and topological optimization to point clouds [11, 21], there
has been no previous attempt to combine these two fields with the work of Ballester et al.
[3]. Also the idea of this framework is to explore and test new ways of representing the
network and compare the results obtained for the scientific community.

Although the optimization results with total persistence and group persistence work, we
see that both have different behaviours. In group persistence, the optimization is affected
by the difficulty of the problem and the architecture of the network, minimizing the dis-
tance between the points of the persistence diagram. This may be an indication that it may
come to function as a regularizer in the optimization so that the network can generalize.

33



34 Conclusions

On the other hand, we see that when optimizing with full persistence, a very similar be-
haviour is obtained regardless of the architecture or the dataset. This may make it more
interesting in order to investigate other types of descriptors such as the group descriptor.

In conclusion, we have been able to meet the objectives of optimizing a neural network
based on its topological complexity. This has been possible thanks to the understanding
of the persistent homology tool and the previously cited works.

5.1 Future Work

There are still many things to do for this project. One possible enhancement would be
the framework allowing you to choose new types of simplicial complexes for optimization,
as well as working in different homology dimensions. Also, the exploration of new ways
to represent the network as a point cloud, and check which one of these representations
are the best for these optimizations.

It would also remain to be seen how they optimize other topological descriptors, whether
landscapes or entropy in persistence diagrams.

Another type of tests that could be performed for the performance is that of new types of
networks such as recursive neural networks or convolutional neural networks. Also test
with new types of problems such as sentiment analysis in text or graph problems with
graph neural networks.

The final objective and continuation of the project is to try to integrate this topological
optimization to the standard training of neural networks, performing a topological regu-
larizer as has been attempted to date to counteract the problem of overfitting. The idea
of this integration can also open new lines towards the interpretability of the networks.
As already done in the work of Ballester et al. [3] the generalization of networks can be
explained from these topological tools. So coupling this way of explaining networks to
their training may be interesting as a line of research.

As can be seen, there is still a lot of research and testing to be done in the topological
optimization of neural networks. Not only that, but also to try to solve the problem that
has been tried to be solved for a long time in machine learning research, overfitting. The
combination of the study of topological data analysis tools and deep learning is starting a
revolution and this work has tried to make its contribution the field.



Bibliography

[1] RockTheStar (https://stats.stackexchange.com/users/41749/rockthestar). What are
the advantages of ReLU over sigmoid function in deep neural networks? Cross Validated.
URL:https://stats.stackexchange.com/q/126238 (version: 2019-10-24). eprint: https:
//stats.stackexchange.com/q/126238. url: https://stats.stackexchange.
com/q/126238.

[2] Jeremy Adcock et al. “Advances in quantum machine learning”. In: (Dec. 2015).

[3] Rubén Ballester et al. Towards explaining the generalization gap in neural networks using
topological data analysis. 2022. doi: 10.48550/ARXIV.2203.12330. url: https://
arxiv.org/abs/2203.12330.

[4] Rickard Brüel-Gabrielsson et al. “A Topology Layer for Machine Learning”. In: Paper
(2020).

[5] Mathieu Carriére. difftda. url: https://github.com/MathieuCarriere/difftda.

[6] Wikipedia contributors. Group (mathematics). url: https://en.wikipedia.org/
wiki/Group_(mathematics).

[7] Wikipedia contributors. Quotient space (linear algebra). url: https://en.wikipedia.
org/wiki/Quotient_space_(linear_algebra).

[8] Chao Chen et al. “A Topological Regularizer for Classifiers via Persistent Homol-
ogy”. In: Paper (2018).

[9] Tim Dettmers. Deep Learning in a Nutshell: Core Concepts. url: https://developer.
nvidia.com/blog/deep-learning-nutshell-core-concepts/.

[10] Herbert Edelsbrunner and John Harer. Computational Topology An Introduction. Duke
University, 2010.

[11] Marcio Gameiro, Yasuaki Hiraoka, and Ippei Obayashi. “Continuation of point clouds
via persistence diagrams”. In: Physica D: Nonlinear Phenomena 334 (2016), pp. 118–
132. doi: 10.1016/j.physd.2015.11.011. url: https://doi.org/10.1016%2Fj.
physd.2015.11.011.

[12] A. Géron. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Con-
cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. url: http://www.deeplearningbook.org.

35

https://stats.stackexchange.com/q/126238
https://stats.stackexchange.com/q/126238
https://stats.stackexchange.com/q/126238
https://stats.stackexchange.com/q/126238
https://doi.org/10.48550/ARXIV.2203.12330
https://arxiv.org/abs/2203.12330
https://arxiv.org/abs/2203.12330
https://github.com/MathieuCarriere/difftda
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Group_(mathematics)
https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)
https://en.wikipedia.org/wiki/Quotient_space_(linear_algebra)
https://developer.nvidia.com/blog/deep-learning-nutshell-core-concepts/
https://developer.nvidia.com/blog/deep-learning-nutshell-core-concepts/
https://doi.org/10.1016/j.physd.2015.11.011
https://doi.org/10.1016%2Fj.physd.2015.11.011
https://doi.org/10.1016%2Fj.physd.2015.11.011
http://www.deeplearningbook.org


36 BIBLIOGRAPHY

[14] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/10.
1038/s41586-020-2649-2.

[15] Xiaoling Hu et al. “Topology-Preserving Deep Image Segmentation”. In: Paper (2019).

[16] John D. Keller. Deep Learning. The MIT Press Essential Knowledge Series.

[17] Gary Koplik. Persistent Homology: A Non-Mathy Introduction with Examples. url: https:
//towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0.

[18] Alex Krizhevsky. Learning multiple layers of features from tiny images. Tech. rep. 2009.

[19] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten digit database”.
In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist 2 (2010).

[20] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. A Framework for Differential Cal-
culus on Persistence Barcodes. 2019. doi: 10.48550/ARXIV.1910.00960. url: https:
//arxiv.org/abs/1910.00960.

[21] Jacob Leygonie, Steve Oudot, and Ulrike Tillmann. A Framework for Differential Cal-
culus on Persistence Barcodes. 2019. doi: 10.48550/ARXIV.1910.00960. url: https:
//arxiv.org/abs/1910.00960.

[22] Clément Maria et al. “Rips complex”. In: GUDHI User and Reference Manual. GUDHI
Editorial Board, 2016. url: http://gudhi.gforge.inria.fr/doc/latest/group_
_rips__complex.html.

[23] Martín Abadi et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
Software available from tensorflow.org. 2015. url: https://www.tensorflow.org/.

[24] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.
url: probml.ai.

[25] Universidad de Oslo. Metric.pdf. url: https : / / www . uio . no / studier / emner /
matnat/math/MAT2400/v11/Metric.pdf.

[26] Chad M. Topaz, Lori Ziegelmeier, and Tom Halverson. “Topological Data Analysis
of Biological Aggregation Models”. In: PLOS ONE 10.5 (2015). Ed. by Bard Ermen-
trout, e0126383. doi: 10.1371/journal.pone.0126383. url: https://doi.org/10.
1371%5C%2Fjournal.pone.0126383.

[27] user342583. If f is differentiable in (a, b) then 1
f is differentiable at (a, b), provided f (a, b) 6=

0. Mathematics Stack Exchange. URL:https://math.stackexchange.com/q/1801177
(version: 2016-05-26). eprint: https://math.stackexchange.com/q/1801177. url:
https://math.stackexchange.com/q/1801177.

[28] Yuan Yao. “Mathematics of Data III: An Introduction to Topological Data Analysis”.
2011.

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0
https://towardsdatascience.com/persistent-homology-with-examples-1974d4b9c3d0
https://doi.org/10.48550/ARXIV.1910.00960
https://arxiv.org/abs/1910.00960
https://arxiv.org/abs/1910.00960
https://doi.org/10.48550/ARXIV.1910.00960
https://arxiv.org/abs/1910.00960
https://arxiv.org/abs/1910.00960
http://gudhi.gforge.inria.fr/doc/latest/group__rips__complex.html
http://gudhi.gforge.inria.fr/doc/latest/group__rips__complex.html
https://www.tensorflow.org/
probml.ai
https://www.uio.no/studier/emner/matnat/math/MAT2400/v11/Metric.pdf
https://www.uio.no/studier/emner/matnat/math/MAT2400/v11/Metric.pdf
https://doi.org/10.1371/journal.pone.0126383
https://doi.org/10.1371%5C%2Fjournal.pone.0126383
https://doi.org/10.1371%5C%2Fjournal.pone.0126383
https://math.stackexchange.com/q/1801177
https://math.stackexchange.com/q/1801177


Result Figures

37



38 Result Figures

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

0 100 200 300 400 500 600

0.01

0.00

0.01

0.02

0.03

0.04
Density Function

Gaussian Kernel 

(b) Epoch 30 in two hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(c) Epoch 1 in three hidden layers

0 100 200 300 400 500 600 700

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Density Function
Gaussian Kernel 

(d) Epoch 30 in three hidden layers

4 6 8 10

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

0 200 400 600 800 1000

0.01

0.00

0.01

0.02

Density Function
Gaussian Kernel 

(f) Epoch 30 in five hidden layers

2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

0 200 400 600 800 1000

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Density Function
Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 1: Density functions on persistence diagrams for CIFAR10 with total persistence
over MLPs. A topological feature can be seen that is far in the distance with respect to the
rest. The interesting thing is that it is visible in the four different architectures. The X-axis
of the graphs are of different ranges.



39

4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

15 20 25 30 35

0.00

0.05

0.10

0.15

0.20

Density Function
Gaussian Kernel 

(b) Epoch 30 in two hidden layers

4 6 8 10

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(c) Epoch 1 in three hidden layers

12 14 16 18 20 22 24

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Density Function

Gaussian Kernel 

(d) Epoch 30 in three hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

14 16 18 20 22 24 26 28

0.00

0.05

0.10

0.15

0.20

0.25
Density Function

Gaussian Kernel 

(f) Epoch 30 in five hidden layers

2 4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

10 12 14 16 18 20

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Density Function
Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 2: Density functions on persistence diagrams for CIFAR10 with group persistence
over MLPs. Note that the more neurons the network has, the better it clusters the topo-
logical features of the network. It is interesting to note that in architecture 10 there is a
unique clustering between the points. This is discussed in more detail in the section on
cluster persistence results. The X-axis of the graphs are of different ranges.



40 Result Figures

4 6 8 10 12 14 16 18

0.0

0.1

0.2

0.3

0.4

0.5

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

0 100 200 300 400 500 600

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Density Function
Gaussian Kernel 

(b) Epoch 30 in two hidden layers

2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(c) Epoch 1 in three hidden layers

0 100 200 300 400 500 600 700

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Density Function

Gaussian Kernel 

(d) Epoch 30 in three hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

0 200 400 600 800

0.01

0.00

0.01

0.02

0.03

0.04

0.05

Density Function
Gaussian Kernel 

(f) Epoch 30 in five hidden layers

4 6 8 10 12 14

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Density Function
Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

0 200 400 600 800 1000

0.01

0.00

0.01

0.02

Density Function
Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 3: Density functions on persistence diagrams for CIFAR100 with total persistence
over MLPs. The points of the persistence diagram have a similar behaviour as in CIFAR10.
The X-axis of the graphs are of different ranges.



41

4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

0.5

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

14 16 18 20 22 24 26 28

0.00

0.05

0.10

0.15

0.20

Density Function
Gaussian Kernel 

(b) Epoch 30 in two hidden layers

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Density Function

Gaussian Kernel 

(c) Epoch 1 in three hidden layers

12 14 16 18 20 22 24 26

0.00

0.05

0.10

0.15

0.20
Density Function

Gaussian Kernel 

(d) Epoch 30 in three hidden layers

2 4 6 8 10 12 14 16 18

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

10 12 14 16 18 20 22

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Density Function
Gaussian Kernel 

(f) Epoch 30 in five hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5
Density Function

Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

14 16 18 20 22 24 26 28 30

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Density Function
Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 4: Density functions on persistence diagrams for CIFAR100 with group persistence
over MLPs. In contrast to CIFAR10 and MNIST, a single cluster is not generated between
the points of the diagram. The X-axis of the graphs are of different ranges.



42 Result Figures

4 6 8 10 12 14

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

20 30 40 50 60

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Density Function

Gaussian Kernel 

(b) Epoch 30 in two hidden layers

2 4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(c) Epoch 1 in three hidden layers

20 30 40 50 60 70 80 90

0.00

0.05

0.10

0.15

0.20

0.25

0.30
Density Function

Gaussian Kernel 

(d) Epoch 30 in three hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

15 20 25 30 35 40

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Density Function

Gaussian Kernel 

(f) Epoch 30 in five hidden layers

2 4 6 8 10 12

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Density Function

Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

15 20 25 30 35 40 45 50

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Density Function

Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 5: Density functions on persistence diagrams for MNIST with total persistence over
MLPs. Although the points are farther away from the rest, it can be seen that the distance
is not as long as in CIFAR10 or CIFAR100. The X-axis of the graphs are of different ranges.



43

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

Density Function
Gaussian Kernel 

(a) Epoch 1 in two hidden layers

9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density Function

Gaussian Kernel 

(b) Epoch 30 in two hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5
Density Function

Gaussian Kernel 

(c) Epoch 1 in three hidden layers

9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density Function

Gaussian Kernel 

(d) Epoch 30 in three hidden layers

4 6 8 10 12 14 16

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Density Function
Gaussian Kernel 

(e) Epoch 1 in five hidden layers

8 9 10 11 12 13 14

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density Function

Gaussian Kernel 

(f) Epoch 30 in five hidden layers

4 6 8 10 12

0.0

0.1

0.2

0.3

0.4

0.5

Density Function
Gaussian Kernel 

(g) Epoch 1 in ten hidden layers

9 10 11 12 13 14 15

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Density Function

Gaussian Kernel 

(h) Epoch 30 in ten hidden layers

Figure 6: Density functions on persistence diagrams for MNIST with group persistence
over MLPs. Interesting behaviour that regardless of the architecture all the points of the
diagram end up in a single cluster. The X-axis of the graphs are of different ranges.


	Abstract
	Introduction
	Theory
	Topological Data Analysis
	Complexes
	Abstract Simplicial Complex
	Vietoris-Rips Complex
	Homology
	Persistent Homology

	Differentiability of Persistence Diagrams
	Topological Descriptors
	Deep Learning
	Artificial Neural Network
	Multi Layer Perceptron
	Backpropagation
	Optimization


	Experiments
	Framework Pipeline
	Implementation Details
	Datasets
	Deep Learning architectures
	From Graph to a Space Representation
	Persistence Diagram Computation
	Optimization of activation vectors

	Results
	Point Cloud Optimization
	Multi Layer Perceptron Topology Optimization
	Total Persistence Results
	Group Persistence Results


	Conclusions
	Future Work

	Bibliography
	Result Figures

