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Abstract

These notes are a survey of the results known of zero sets of functions in Bergman space.

Characterization of zero sets for functions in Bergman space remains being an open problem,
which is closed in the case of Hp(D) spaces, for 0 ≤ p ≤ ∞ where H0 corresponds to the
Nevanlinna class N , where we have an indistinguishable geometric characterization of zero sets
of functions in terms of Blaschke products, as we will see it in Chapter 1.

In Chapter 2 we will introduce the weighted Bergman space Bpα, which is a parametrization of
the usual weighted Bergman space Apα. Such parametrization let us estimate a function f ∈ Bpα
as

|f(z)| ≤ C

(1− |z|2)α
, z ∈ D, (1)

for some C > 0 constant. Notice that the estimation (1) does not depends on p.

Chapter 3 is devoted to study the basic properties of zero sets of functions in Bpα and a
probabilistic model of random zero sets, by Gregory Bomash and apparently initiated by Emile
Leblanc.

Furthermore, Chapter 3 will show us that characterization of zero sets of function in Bergman
space is a hard problem. It is because by using Blaschke-type products, which involves only the
modulus of the zeros, we can obtain necessary conditions that are far from being a sufficient
condition or sufficient conditions that are far from being a necessary condition, which is the case
of the sharp sufficient condition obtained by Bomash. Moreover, zero sets of the Bergman space
Bpα are not necessary to be a zero set of a different Bergman space Bqγ , and union of zeros sets
of Bpα are not necessary a zero set of Bpα, which contrasts with the case of the spaces Hp.

Since working only with the modulus of the zeros is insufficient in order to obtain a charac-
terization of zeros sets of functions in Bpα (i.e., a necessary and sufficient condition), in Chapter
4 we will introduce some notions of density, which join with the growth spaces A−α are the
framework considered by Korenblum, who obtained the latest results about characterization of
zero sets of funtions in Bergman space, whose necessary condition and whose sufficient condition
are very close to be a characterization, as we will see it in Chapter 5.
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Chapter 1

Zeros of functions in Hp class

1.1 Introduction

We are going to start this chapter introducing some notation; if f is any continuous function
with domain D := {z ∈ C : |z| < 1}, the open unit disk in the complex plane, we will define fr
on T := {z : |z| = 1}, the unit circle in the complex plane, by

fr(e
iθ) = f(reiθ), 0 ≤ r < 1,

and we let σ denote the Lebesgue measure on T, so normalized that σ(T) = 1. Accordingly,
Lp-norms will refer to Lp(σ). In particular,

‖fr‖p =

(∫
T
|fr|pdσ

)1/p

, (0 < p <∞),

‖fr‖∞ = sup
θ
|f(reiθ)|,

and we also introduce

‖fr‖0 = exp

∫
T

log+ |fr|dσ,

where log+ t = log t if t ≥ 1 and log+ t = 0 if t < 1.

Definition 1.1 If f ∈ H(D) and 0 ≤ p ≤ ∞, we put

‖f‖p = sup {‖fr‖p : 0 ≤ r < 1} .

If 0 < p ≤ ∞, Hp is defined to be the class of all f ∈ H(D) for which ‖f‖p <∞.

The class N = N (D) (for Nevanlinna) consists of all f ∈ H(D) for which ‖f‖0 <∞.

If it is required, we will also denote ‖f‖Hp = ‖f‖p, for 0 < p ≤ ∞, and by ‖f‖N = ‖f‖0.

Proposition 1.2 Let 0 < s < p <∞, then H∞ ⊂ Hp ⊂ Hs ⊂ N .
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Davidson Cañaveral Zeros of functions in Hp class

PROOF. On the one hand, if f ∈ Hp we have that

‖f‖s = sup
0≤r<1

(∫
T
|fr|sdσ

)1/s

≤(a) sup
0≤r<1

{(∫
T

(|fr|s)p/s dσ
)s/p(∫

T
dσ

)1/q
}1/s

=(b) sup
0≤r<1

(∫
T
|fr|pdσ

)1/p

<∞.

Where in (a) we have used the Hölder inequality with q−1 = 1 − s/p, and in (b) we have used
that σ(T) = 1.

On the other hand, see that the inclusion Hs ⊂ N is a consequence of Jensen’s inequality,

sup
0≤r<1

exp

∫
T

log+ |fr|dσ ≤ sup
0≤r<1

∫
T

exp
(s
s

log+ |fr|
)
dσ

≤ sup
0≤r<1

e1/s

∫
T
|fr|sdσ <∞.

�

1.2 Characterization of the zero sets of function in Hp class

In this section we will see that the zero set of a function in either class H∞, Hp, for 0 <
p <∞, and N have exactly the same geometric characterization. To be precise, we will see that
{αn} ⊂ D is the zero set of a function f , which belongs to anyone of the above classes, if and
only if {αn} satisfies (1).

Definition 1.3 Let {αn} be a sequence of points in the unit disk D. We will say that {αn}
satisfies the Blaschke condition if ∑

n

1− |αn| <∞. (1)

We observe that each term in the sum on (1) is the distance between αn and T, so that,∑
n

1− |αn| =
∑
n

d(αn,T),

it justify why we say that the zeros of functions in any of these classes have a geometric charac-
terization.

Notice that by the Proposition 1.2, it is enough to see that the zero set {αn} of functions
f ∈ N satisfies (1), in order to conclude that the zero set of a functions in either class H∞, Hp

for 0 < p <∞, satisfies the Blaschke condition.
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So, we will start seeing that the zeros of a function f ∈ N satisfies the Blaschke condition.
To do that, we will need the following lemma.

Lemma 1.4 Suppose 0 ≤ un < 1, then

∞∏
n=1

(1− un) converge and
∞∏
n=1

(1− un) > 0

if and only if
∞∑
n=1

un <∞.

PROOF. (⇐) Let

pN =

N∏
k=1

(1− uk).

It is clear that {pN} is an decreasing sequence of positive numbers; then the following limit
exists,

p = lim
N→∞

pN .

Moreover, since
∑∞

n=1 un < ∞, we have that un → 0 as n → ∞. Because un < 1 for all n, we
have that supn un = m < 1. Notice that there is c = c (m) > 0 such that log (1− x) ≥ −cx for
all x ∈ [0,m], it holds that

∞∑
n=1

log (1− un) ≥ −c
∞∑
n=1

un > −∞.

We deduce that p =
∏

(1− un) > 0.

(⇒) On the other hand

0 < p ≤ pN =

N∏
k=1

(1− uk) ≤ exp

{
N∑
n=1

(−un)

}
,

and

lim
N→∞

exp

{
N∑
n=1

(−un)

}
= 0 if and only if

∞∑
n=1

un =∞,

so that
∞∑
n=1

un <∞.

�
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Now that we have proved the Lemma 1.4, we are ready to see the Theorem 1.5.

Theorem 1.5 Suppose f ∈ N , f is not identically 0 in D, and α1, α2, α3, · · · are the zeros of
f , listed according to their multiplicities. Then, the zeros of f satisfies the Blaschke condition,∑

n≥1

(1− |αn|) <∞. (2)

PROOF. To start, notice that we tacitly assume that f has infinitely many zeros in D.
If there are only finitely many, the above sum would be finite and there is nothing to prove.
Moreover, we assume that |αn| ≤ |αn+1|. Furthermore, if f has a zero of degree m at the origin
and g (z) = z−mf (z), then g ∈ N and g has the same zeros as f , except at the origin. Hence
we may assume, without loss of generality, that f (0) 6= 0. Let n (r) be the number of zeros of
f in cl(D(0; r)), fix k, and fix r < 1 so that n(r) > k. Then Jensen’s formula

|f(0)|
n(r)∏
n=1

r

|αn|
= exp

{
1

2π

∫ π

−π
log |f(reiθ)|dθ

}
(3)

implies that

|f(0)|
k∏

n=1

r

|αn|
≤ exp

{
1

2π

∫ π

−π
log+ |f(reiθ)|dθ

}
. (4)

Our assumption that f ∈ N is equivalent to the existence of a constant C < ∞ which exceeds
the right side of (4) for all r, 0 < r < 1, that is,

|f(0)|
k∏

n=1

r

|αn|
≤ C.

It follows that,

rk|f (0) |C−1 ≤
k∏

n=1

|αn|. (5)

We can see that in (5) the inequality persists, for every k, as r → 1. Hence

∞∏
n=1

|αn| ≥ C−1|f (0) | > 0. (6)

Finally, by the Lemma 1.4, (6) implies (2). �

Since H∞ ⊂ Hp ⊂ Hs ⊂ N (0 < s < p <∞) and by the Theorem 1.5, we have seen that the
Blaschke condition is a necessary condition for {αn} to be the zero set of a function in either
of the classes H∞, Hp, N . Now, we will see in the Theorem 1.7 that, in fact, the Blaschke
condition is also a sufficient condition; in the sense that if {αn} ⊂ D is any sequence satisfying
(1), then there is a function f ∈ H∞ whose zero set is {αn}. To prove it, we will need the
Theorem 1.6, which we will state it without proof.
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Theorem 1.6 Suppose fn ∈ H(D) for n = 1, 2, 3, · · · , no fn is identically 0, and

∞∑
n=1

|1− fn(z)| (7)

converge uniformly on compact subsets of D. Then

(i) The infinite product

f(z) =

∞∏
n=1

fn(z) (8)

converge uniformly in compact subsets of D. Hence f ∈ H(D).

(ii) We have that

m(f ; z) =
∞∑
n=1

m(fn; z), z ∈ D, (9)

where m(f ; z) is defined to be the multiplicity of the zeros of f at z (if f(z) 6= 0, then
m(f ; z) = 0).

Theorem 1.7 If {αn} is a sequence of points in D such that αn 6= 0 and∑
n≥1

(1− |αn|) <∞, (10)

if k is a nonnegative integer, and if

B (z) = zk
∞∏
n=1

αn − z
1− αnz

|αn|
αn

(z ∈ U) , (11)

then B ∈ H∞, and B has no zeros except at the points αn (and at the origin, if k > 0).

PROOF. If |z| ≤ r, the nth term in the series

∞∑
n=1

∣∣∣1− αn − z
1− αnz

|αn|
αn

∣∣∣
is ∣∣∣ αn + |αn|z

(1− αnz)αn

∣∣∣ (1− |αn|) ≤ 1 + r

1− r
(1− |αn|) .

Hence Theorem 1.6 shows that B ∈ H (D) and that B has only the prescribed zeros. Since each
factor in (10) has absolute value less than 1 in D, it follows that |B (z) | < 1 for all z ∈ D, then
B ∈ H∞ and the proof is done. �
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To finish this chapter, let’s state the following corollary.

Corollary 1.8 Let 0 < p <∞.

(i) The zero set of functions in either class H∞, Hp, N have an indistinguishable geometric
characterization.

(ii) Let f and g be functions of the same class (either H∞, Hp or N ), {αn} and {βn} be the
zero set of f and g, respectively, then there is a function h of the same class as f and g
such that {αn} ∪ {βn} is the zero set of h.

(iii) If {βn} ⊂ {αn}, where {αn} is the zero set of a function f in either class H∞, Hp, N ,
then there is a function g of the same class as f such that {βn} is the zero set of g.

6



Chapter 2

The Bergman space

2.1 Introduction

In this chapter we introduce the Bergman space and concentrate on the general aspects of
these spaces.

Throughout these notes we will denote the normalized area measure on D by dA. In terms
of real (rectangular and polar) coordinates, we have

dA(z) =
1

π
dxdy =

1

π
rdrdθ, z = x+ iy = reiθ.

The word positive will appear frequently throughout these notes. That a function f is
positive means that f(x) ≥ 0 for all values of x, and that a measure µ is positive means that
µ(E) ≥ 0 for all measurable sets E. When we need to express the property that f(x) > 0 for
all x, we say that f is strictly positive. These conventions apply to the word negative as well.
Analogously, we prefer to speak of increasing and decreasing functions in the less strict sense,
so that constant functions are both increasing and decreasing.

We use the symbol ∼ to indicate that two quantities have the same behavior asymptotically.
Thus, A ∼ B means that A/B is bounded from above and below by two positive constants in
the limit process in question.

For 0 < p < +∞ and −1 < α < +∞, the (weighted) Bergman space Apα = Apα(D) of the
disk is the space of analytic functions in Lp(D, dAα), where

dAα(z) = (α+ 1)
(
1− |z|2

)α
dA(z).

If f is in Lp(D, dAα), we write

‖f‖Apα =

[∫
D
|f(z)|pdAα(z)

]1/p

.

Furthermore, for simplicity, from now when α = 0, we will denote by Ap = Ap0, dA = dA0

and ‖ · ‖Ap the norm related to the space Lp(D, dA), so that, if f ∈ Lp(D, dA) we write

‖f‖pAp =

∫
D
|f(z)|pdA(z).

7
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Notice that when 1 ≤ p < +∞, the space LP (D, dAα) is a Banach space with the above
norm; when 0 < p < 1, the space Lp(D, dAα) is a complete metric space with the metric defined
by

d(f, g) = ‖f − g‖p
Apα
.

Since d(f, g) = d(f − g, 0), the metric is invariant. The metric is also p-homogeneous, that is,
d(λf, 0) = |λ|pd(f, 0) for scalars λ ∈ C. Spaces of this type are called quasi-Banach spaces,
because they share many properties of the Banach spaces.

We let L∞(D) denote the space of (essentially) bounded functions on D. For f ∈ L∞ we
define

‖f‖∞ = ess sup {|f(z)| : z ∈ D} .

The space L∞(D) is a Banach space with the above norm. As usual, we let H∞ denote the
space of bounded analytic functions in D. It is clear that H∞ is closed in L∞(D) and hence is
a Banach space itself. For convenience we will define A∞ = H∞.

Proposition 2.1 Let 0 < p <∞. If f ∈ Hp, then f ∈ Apα.

PROOF. It is clear, since

‖f‖Apα =

∫
D
|f(z)|p(α+ 1)(1− |z|2)αdA(z)

≤ (α+ 1)

∫
D
|f(z)|pdA(z)

≤ sup
0≤r<1

(α+ 1)

∫
T
|f |pdσ.

�

Proposition 2.2 Suppose 0 < p < +∞, −1 < α < +∞, and that K is a compact subset of D.
Then there exists a positive constant C = C(K,α, n) such that

sup
{
|f (n)(z)| : z ∈ K

}
≤ C‖f‖Apα

for all f ∈ Apα and all n = 0, 1, 2, · · · . In particular, every point-evaluation in D is a bounded
linear functional on Apα.

PROOF. Let z ∈ K. Without loss of generality assume z 6= 0 and consider σ = (1− |z|)/2 (for
the case z = 0 we consider σ = (1 − r)/2 with 0 < r < 1). By the subarmonicity of |f |p, we
have that

|f(z)|p ≤ 4

(1− |z|)2

∫
B(z,σ)

|f(w)|pdA(w) ≤ 16

(1− |z|2)2

∫
B(z,σ)

|f(w)|pdA(w)

for all z ∈ K. Now, notice that

1

2
≤ 1− |w|2

1− |z|2
≤ 2, for all w ∈ B(z, σ).

8
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It follows that

|f(z)|p ≤ 16

(1− |z|2)2

∫
B(z,σ)

|f(w)|p
(

2
1− |w|2

1− |z|2

)α
dA(w)

=
2α16

(α+ 1)(1− |z|2)α+2

∫
B(z,σ)

|f(w)|p(1 + α)
(
1− |w|2

)α
dA(w)

=
2α16

(α+ 1)(1− |z|2)α+2

∫
B(z,σ)

|f(w)|pdAα(w)

≤ 2α16

(α+ 1)(1− |z|2)α+2
‖f‖p

Apα
.

Finally, since K is a compact subset of the unit disk D, we can write

C = sup
z∈K

2α16

(α+ 1)(1− |z|2)(α+2)/p

and we obtain that
sup
z∈K
|f(z)| ≤ C‖f‖Apα .

By the special case we just proved, there exists a constant M > 0 such that |f(ξ)| ≤M‖f‖Apα
for all |ξ| = R, where R = (1 + r)/2 and 0 < r < 1. Now if z ∈ K, then by Cauchy’s integral
formula,

f (n)(z) =
n!

2πi

∫
|ξ|=R

f(ξ)dξ

(ξ − z)n+1
.

It follows that

|f (n)(z)| ≤ n!MR

σn+1
‖f‖Apα

for all z ∈ K and f ∈ Apα. �

The above proposition show us that the growth of a function f ∈ Apα is controlled by

|f(z)| ≤ C

(1− |z|2)(α+2)/p
‖f‖Apα , (1)

where C = C(α) is some constant that depends on α.

For α > 1/p, we will define dBp
α := dAαp−2, it is,

dBp
α(z) = (αp− 1)

(
1− |z|2

)αp−2
dA(z),

and the space Bpα = Apαp−2, hence if f ∈ Bpα, we have

|f(z)| ≤ C

(1− |z|2)α
‖f‖Bpα . (2)

Notice that, with this notation, Bp2/p = Ap0 corresponds to the classic Bergman space. Fur-
thermore, for convenience, we will define B∞ = H∞.

9
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Even more, the Proposition 2.2 give us another important consequence; if f ∈ Bpα and if {βn}
is a subset of the zero set of f contained in some disk D internally tangent to the unit circle,
then {βn} satisfies the Blaschke condition (1). If fact, we will see in the following corollary that
f restricted on D belongs to the Nevanlinna class N (D).

Corollary 2.3 Let f ∈ Bpα and let D ⊂ D be a disk centered at z0 ∈ D and internally tangent
to the unit circle. Then, f restricted on D lies in the Nevanlinna class N (D), it is,

sup
0≤r<d

exp

∫ 2π

0
log+ |fr|dσ <∞, (3)

where, here, fr(e
iθ) = f(z0 + reiθ) and d is the radius of D.

PROOF. We can assume, without loss of generality, that D is centered at 0 < z0 < 1, it is,

D := {z ∈ D : |z0 − z| < R} ,

where
R = d(z0,T) = 1− z0.

Assume f ∈ Bpα, then by the Proposition 2.2 we know that there is a constant C = C(α) > 0
such that

|f(z)| ≤ C

(1− |z|2)α
‖f‖Bpα , for all z ∈ D.

To make easier the notation, let us put zr(θ) = z0 + reiθ, where 0 ≤ r < R. It follows that there
is C1 > 0 such that ∫

∂D
log+ |fr|dσ ≤ C1

∫ 2π

0
log+

∣∣∣ 1

(1− |zr(θ)|2)α

∣∣∣dθ
= αC1

∫ 2π

0
log+

∣∣∣ 1

1− |zr(θ)|2
∣∣∣dθ. (4)

Since z ∈ D and

1− |z|2 = R2 − r2 + 2Rz0 − 2z0r cos(θ)

≥ 2z0(R− r cos(θ))

≥ 2z0R(1− cos(θ))

≥ C2θ
2,

(5)

for some C2 > 0. It follows from (4) and (5) that∫
∂D

log+ |fr|dσ ≤ C3

∫ 2π

0
log+

∣∣∣1
θ

∣∣∣dθ
= C3

∫ 1

0
log
∣∣∣1
θ

∣∣∣dθ <∞, (6)

which give us (3) and we are done. �
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2.2 Relations between Bpα spaces

In this section we will see conditions over the parameters p, α, q and γ in order to determine
when we can have the set inclusion Bpα ⊂ Bqγ .

To start, we will study the case p ≤ q, which will required the following lemma that we will
state without a proof, but it ca be found in [7].

Lemma 2.4 Suppose a ∈ D, c real, t > −1 and define

Jc,t(a) =

∫
D

(1− |z|2)t

|1− za|2+t+c
dA(z).

When c < 0, then Jc,t is bounded in D.

When c > 0, then

Jc,t(a) ≈ 1

(1− |z|2)c
.

Finally,

J0,t(a) ≈ log
1

1− |z|2
.

Theorem 2.5 Let p ≤ q. Then, Bpα ⊆ Bqγ if and only if α ≤ γ.

PROOF. [⇒] Assume α ≤ γ and f ∈ Bpα. we have that

‖f‖Bqγ =

∫
D
|f(z)|p|f(z)|q−p(1− |z|2)γq−2dA(z) =

≤ C
∫
D
|f(z)|p(1− |z|2)−α(q−p)+γq−2dA(z).

(7)

where C > 0 is some constant. Notice that in order to converge the last integral in (7), it is
required the condition

−α(q − p) + γq − 2 ≥ αp− 2,

which is satisfied by hypothesis.

[⇐] By the counterreciprocal. Assume γ < α. Chose β > α and define fβ,a(z) = (1− za)−β

and

hβ,a(z) =
fβ,a(z)

‖fβ,a‖Bpα
.

Notice that ‖hβ,a‖Bpα = 1 for all a ∈ D, moreover, if we take, for example, the sequence
{an := n/(n+ 1)}∞n=1, we see that hβ,an is a Cauchy sequence on Bpα, so that, there is hβ ∈ Bpα
such that hβ,an → hβ as n→∞.

11
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On the other hand, by Lemma 2.4, we have that

‖hβ,an‖Bqγ ≈ (1− |an|2)−q(β−γ)+p(β−α),

Now, since γ < α < β and p < q, we conclude that hβ /∈ Bqγ . �

Theorem 2.6 Let p ≥ q. If γ − 1

q
> α− 1

p
, then Bpα ⊂ Bqγ.

PROOF. Assume f ∈ Bpα. By Hölder inequality with exponent p/q ≥ 1 we have that

‖f‖Bqγ =

∫
D

(
|f(z)|q(1− |z|2)αq−2q/p

)(
(1− |z|2)q(γ−α)−2(1−q/p)

)
dA(z)

≤
(∫

D
|f(z)|p(1− |z|2)αp−2dA(z)

)q/p
×
(∫

D
(1− |z|2)(γ−α)qp/(p−q)−2dA(z)

)(p−q)/p
.

(8)

Because f ∈ Bpα, the first integral in the right hand side of the inequality in (8) converges. To
see the convergence of the second one, notice that it is required the condition

(γ − α)qp/(p− q)− 2 > −1,

but it is satisfied by hypothesis.

Notice than when α − 1/p = 0 the hypothesis becomes f ∈ Hp. Using ‖f‖qHq ≤ ‖f‖pHp and
integrating in polar coordinates, we see that

‖f‖Bqγ ≤ ‖f‖Hp

∫ 1

0
(1− r2)γq−2dr <∞,

since γp− 2 ≥ −1. �

In chapter 3 we will prove a theorem (Theorem 3.8) which implies that

if q ≤ p and α− 1

p
> β − 1

q
then Bpα * Bqγ .

12



Chapter 3

Basic properties of zero sets of
functions in the Bergman space

The guide line of this chapter will be the paper [3], by Charles Horowitz. It will help us
to understand why the characterization of zero sets of functions in Bergman spaces is a hard
problem. In particular, we will see that the statements (i) and (ii) of the Corollary 1.8 for Hardy
spaces in general do not hold in Bergman spaces, but the statement (iii) of the same corollary
still holds in Bergman spaces.

Furthermore, in the last section of this chapter we will see a probabilistic model of random
zero sets, which will give us a sharp sufficient condition for a sequence of points in D in order
to be a zero set of a function in the usual Bergman space A2 = Bp2/p.

3.1 Conditions on Taylor coefficients

Throughout this section, let

f(z) =
∞∑
k=0

akz
k

be analytic in the unit disk. We will present some conditions on the Taylor coefficients ak that
are sufficient for f to belong to certain Bpα spaces. There is no difficulty for B2

2/p, since a direct
application of Parseval’s formula give us

‖f‖B2
2/p

=

∞∑
k=0

|ak|2

k + 1
. (1)

13
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On the other hand, when α > 1/p and α 6= 2/p, for f ∈ B2
α we have that

‖f‖B2α =

∫
D

∣∣∣ ∞∑
k=0

akz
k
∣∣∣2dBα(z) =

∫
D

( ∞∑
k=0

akz
k

)( ∞∑
k=0

akzk

)
dBα(z)

=
∞∑
k=0

|ak|2
∫
D
|z|2kdBα(z) +

∞∑
k,m=0
k 6=m

akam

∫
D
zkzmdBα(z)

= (2α− 1)
∞∑
k=0

|ak|2
∫ 1

0
r2k(1− r2)2α−22rdr.

(2)

Now, if in the last integral in (2) we consider s = r2 we obtain that∫ 1

0
r2k(1− r2)2α−22rdr =

∫ 1

0
sk(1− s)2α−2ds =: B(k + 1, 2α− 1), (3)

which is the well known beta function. It follows from (2) and (3) that

‖f‖B2α = (2α− 1)

∞∑
k=0

|ak|2B(k + 1, 2α− 1). (4)

It will be useful to keep in mind the following Stirling’s approximation of the beta function,

B(n+ 1, αp− 1) ∼ (n+ 1)−(αp−1), as n→∞, (5)

which, in fact, give us that

f ∈ B2
α if and only if

∞∑
k=0

|ak|2(n+ 1)−(2α−1) <∞.

Our theorems will be state in terms of the sums

S
(q)
N =

N∑
k=0

|ak|q, 0 < q <∞.

Theorem 3.1 Let f(z) be analytic in the unit disk and 0 < p ≤ 2. Suppose that S
(2)
N = O (Nη)

for some η. Then f ∈ Bpα, for all α > η/2 + 1/p.

PROOF. Since all p’s considered are less than or equal to 2, for 0 < r < 1,

(∫ 2π

0
|f(reiθ)|pdθ

π

)1/p

≤
(∫ 2π

0
|f(reiθ)|2dθ

π

)1/2

=

( ∞∑
k=0

|ak|2r2k

)1/2

=

( ∞∑
n=0

S(2)
n (r2n − r2n+2)

)1/2

,

(6)

14
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by summation by parts. But our hypothesis is that S
(2)
n ≤ c(n + 1)η for all n ≥ 0, and so the

last expression is majorized by(
c(1− r2)

∞∑
n=0

(n+ 1)ηr2n

)1/2

≤ c1(1− r2)−η/2,

where c1 is a constant independent of r. It follows that

‖f‖Bpα = (αp− 1)

∫ 1

0

(∫ 2π

0
|f(reiθ)|pdθ

π

)
(1− r2)αp−2rdr

≤ (αp− 1)c1

∫ 1

0
(1− r2)−pη/2+αp−2rdr <∞,

(7)

it is, f ∈ Bpα for all α > η/2 + 1/p. �

Theorem 3.2 Let p ≥ 2, and let p′ be the conjugate exponent, with 1/p + 1/p′ = 1. If S
(p′)
N =

O((N + 1)(αp−1)(p′−1)−ε) for some ε > 0, then f ∈ Bpα.

PROOF. Let du be the measure which assigns to the nonnegative integer n the mass B(n +
1, αp− 1) defined in (3). Using (4), we see that the mapping T : Lp

′
(du)→ Lp(dA), defined by

T : {anB(n+ 1, αp− 1)} 7→
∞∑
n=0

anz
n,

is a bounded linear mapping when p′ = 1 or p′ = 2. In fact, ‖T‖ ≤ 1 in both cases. By Riesz
interpolation theorem (see [2]) the corresponding mapping of Lp

′
(du) into Lp(dA), for 1 ≤ p′ ≤ 2,

also has a norm less than or equal to 1. Equivalently, for 1 ≤ p′ ≤ 2,

‖f‖p
′

Bpα
= ‖T {anB(n+ 1, αp− 1)} ‖p

′

Bpα

≤ ‖{anB(n+ 1, αp− 1)} ‖p
′

Lp′
=
∞∑
n=0

|an|p
′B(n+ 1, αp− 1)p

′

≤ C
∞∑
n=0

|an|p
′B(n+ 1, αp− 1)p

′−1,

where C > 0. If we apply summation by parts to the above formula and if we use Stirling’s
formula, we obtain that if

∞∑
n=0

S(p′)
n (n+ 1)(1−αp)p′ <∞ while S(p′)

n (n+ 1)(1−αp)(p′−1) = O(1) as n→∞,

then f ∈ Bpα. The result follows immediately. �
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3.2 Zero sets of functions in Bpα
Let f(z) be analytic in the unit disk, and let {z}∞k=1 be its zeros, repeated according to

multiplicity. The sequence {zk} is called the zero set of f . If |z1| ≤ |z2| ≤ · · · < 1, then we call
{zk} the ordered zeros of f . If f ∈ Bpα, then {zk} is said to be an Bpα zero set. In this section we
obtain a necessary condition for Bpα zero sets.

Lemma 3.3 Let f be analytic for |z| < 1, and let {zk} be its ordered zeros. Assume moreover
that f(0) 6= 0. Then for 0 < p <∞, for 0 ≤ r < 1, and for all positive integer N ,

|f(0)|p
N∏
k=1

rp

|zk|p
≤ 1

2π

∫ 2π

0
|f(reiθ)|pdθ. (8)

PROOF. Fix a value of p and r. Let |zN0 | < r ≤ |zN0+1|. By Jensen’s formula,

log |f(0)|+
N0∑
k=1

log

(
r

|zk|

)
=

1

2π

∫ 2r

0
log |f(reiθ)|dθ.

We multiply this equation by p and exponentiate to obtain

|f(0)|p
N0∏
k=1

rp

|zk|p
= exp

(
1

2π

∫ 2r

0
log |f(reiθ)|pdθ

)
≤ 1

2π

∫ 2π

0
|f(reiθ)|pdθ. (9)

Since r and p are arbitrary in (9), the Lemma is proved if we can show that the integer N0 in
the inequality (9) may be replaced by an arbitrary integer N . So we can choose N ans seek to
establish (8). There are two cases to be considered.

Case 1. N < N0. Then |zk| ≤ r for N < k ≤ N0. Hence

N0∏
k=1

rp

|zk|p
=

N∏
k=1

rp

|zk|p
N0∏

k=N+1

rp

|zk|p
≥

N∏
k=1

rp

|zk|p
,

and (8) follows from (9).

Case 2. N > N0. Then |zk| ≥ r for N0 < k ≤ N . Hence

N∏
k=1

rp

|zk|p
=

N0∏
k=1

rp

|zk|p
N∏

k=N0+1

rp

|zk|p
≤

N0∏
k=1

rp

|zk|p
,

and once again (8) follows from (9). The proof is complete. �

Theorem 3.4 If f ∈ Bpα, if {zk} are the ordered zeros of f , and if f(0) 6= 0, then

N∏
k=1

1

|zk|
= O(Nα−1/p). (10)
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PROOF. For 0 < p <∞, we integrate the inequality (8) with respect to 2(αp−1)(1−r2)αp−2rdr,
on the interval [0, 1]. Thus, for any N ≥ 1,(

|f(0)|p
N∏
k=1

1

|zk|p

)∫ 1

0
rNp(αp− 1)(1− r2)αp−22rdr ≤ ‖f‖pBpα ,

or (
|f(0)|p

N∏
k=1

1

|zk|p

)
B(Np/2 + 1, αp− 1) ≤ ‖f‖pBpα .

Thus we obtain that
N∏
k=1

1

|zk|
≤ B(Np/2 + 1, αp− 1)−1/p ‖f‖p

|f(0)|
.

Finally, Stirling’s formula give us (10). �

Notice that the Hypothesis f(0) 6= 0 in Theorem 3.4 and Lemma 3.3 is clearly inessential,
and was added only to simplify the statements of the results.

It should be note that (10) cannot possibly provide a sufficient condition for Bpα zeros sets
(0 < p < ∞). In fact, we know from Corollary 2.3 that if the zero set of a function in Bpα
are contained in an internally tangent disk of D, then such zero set must satisfy the Blaschke
condition, although (10) does not require this.

Corollary 3.5 Let f ∈ Bpα, and let {zk} be the zero set of f . Let bk = 1 − |zk|. Then for all
ε > 0, ∑

k≥1

bk

(
log

1

bk

)−1−ε
<∞. (11)

PROOF. without loss of generality, assume f(0) 6= 0 and let {zk} be the ordered zeros of f . By
(10) we have

N∏
k=1

1

|zk|
≤ cNα−1/p, for some c ≥ 1.

So
N∑
k=1

− log |zk| ≤ log c+ (α− 1

p
) logN ≤ c1 log (N + 1) ,

for some constant c1 independent of N . From the inequality

1− x ≤ − log x (0 < x ≤ 1)

we see that
N∑
k=1

1− |zk| ≤ c1 log (N + 1) .

Letting bk = 1− |zk|, we have
bk ↓ 0 (12)
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N∑
k=1

bk ≤ c1 log (N + 1) . (13)

We now show that these two properties actually imply (11). Using (12) and (13) we have

NbN ≤
N∑
k=1

bk ≤ c1 log (N + 1) .

Thus

log1+ε

(
1

bN

)
≥ log1+ε

(
N

c1 log (N + 1)

)
≥ c2 log1+ε(N + 1)

for N large, and it suffices to show that

∞∑
k=1

bk log−1−ε(k + 1) <∞.

We sum by parts, using (13) and the fact that

log−1−ε(k + 1)− log−1−ε(k + 2) ≤ c3(k + 1)−1 log−2−ε(k + 1),

which follows from the mean value theorem. Hence

∞∑
k=1

bk log−1−ε(k + 1) = lim
N→∞

{[
N∑
k=1

bk

]
log−1−ε(N + 1)

+
N−1∑
k=1

[
k∑

m=1

bm

] (
log−1−ε(N + 1)− log−1−ε(N + 2)

)}
≤ lim

N→∞
c1 log(N + 1) log−1−ε(N + 1)

+ c1c3

∞∑
k=1

[log(k + 1)] (k + 1)−1 log−2−ε(k + 1) <∞.

�

The interest of Corollary 3.5 is that it shows how “close” Bpα zeros sets are to the Blaschke
sequences, which satisfy

∑
k≥1 bk <∞.

3.3 Distinguishing zero sets of functions in Bpα
In this section we show that for p 6= q or α 6= γ, Bpα zero sets are distinct from Bqγ zero sets.

the result contrasts with the case of Hp zero sets, which are the same for all p. Our proof is
constructive. We consider functions of the form

f(z) =

∞∏
k=0

(
1 + µzβ

k
)
, (14)

where µ is an arbitrary positive number, and β ≥ 2 is an integer. We begin by developing
properties of the product in (14) which allow us to apply Theorems 3.1, 3.2 and 3.4 to our
function f(z).
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Since
∑

k≥0 µz
βk converge absolutely and uniformly on compact subsets of the disk, f is

well defined, analytic for |z| < 1, and has zeros only at the zeros of the factors in the defining
product.

Let

Ns =

s−1∑
k=0

βk; ps(z) =

s−1∏
k=0

(
1 + µzβ

k
)
. (15)

Thus ps is a polynomial of degree Ns, which is less than βs, since β ≥ 2. We have

ps+1(z) = ps

(
1 + µzβ

s
)

= ps(z) + terms of higher degree.

Thus every partial product for f is a partial sum of its Taylor series.

Proposition 3.6 Let µ > 1, so that f(z) has zeros in the disk. Let {zk} be the ordered zeros
of such an f . Then there exists positive constants c1 and c2 independent of N ≥ 1 such that

c1N
η ≤

N∏
k=1

1

|zk|
≤ c2N

η, where η =
logµ

log β
(16)

PROOF. With Ns as in (15), it is easily to see that z1, · · · , zNs are precisely the zeros of ps(z).
But ps is a polynomial with constant term 1 and leading coefficient µs. Thus

Ns∏
k=1

1

|zk|
= µs.

Since Ns < βs < Ns+1, we have

µs ≤
βs∏
k=1

1

|zk|
≤ µs+1,

for all integers s ≥ 0. Now, if βs ≤ N < βs+1, and if η = logµ/ log β, then

1

µ
Nη < µs ≤

βs∏
k=1

1

|zk|
≤

N∏
k=1

1

|zk|
≤

βs+1∏
k=1

1

|zk|
≤ µs+2 ≤ η2Nη.

which proves (16) with c1 = 1/µ and c2 = µ2. �

Proposition 3.7 Let f be as in (14), we let f(z) =
∑

k≥0 akz
k, and we define

S
(q)
N =

N∑
k=0

|ak|q (0 < q <∞),

as in section 3.1. Then we have that

S
(q)
Nr

= (1 + µq)r (0 < q <∞, r > 0 an integer), (17)

where Nr is as in (15).
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PROOF. This is trivial for r = 1. Assume it has been proved for some r ≥ 1; i.e., assume that

Nr∑
k=0

|ak|q = (1 + µq)r .

Now

pr+1(z) =

(
Nr∑
k=0

akz
k

)
(1 + µzβ

r
)

=

Nr∑
k=0

akz
k +

Nr∑
k=0

akµz
(k+βr).

Thus

S
(q)
Nr+1

=

Nr∑
k=0

|ak|q +

Nr∑
k=0

|akµ|q

=

Nr∑
k=0

|ak|q(1 + µq) = (1 + µq)r+1,

which proves (17) by induction. �

Since Nr is approximately βr, (17) says that S
(q)
N is approximately N s, where βs = (1 +µq).

This can be made precise with arguments just like those used in proving (16). Thus, we see that
there are positive constants c3 and c4, independent of N , such that

c3N
s ≤ S(q)

N ≤ c4N
s, (18)

where βs = 1 + µq, or s = (log(1 + µq))/ log β.

We have now laid the groundwork to obtain conditions over α, p, γ and q to distinguish the
zero sets of these spaces Bpα and Bqγ .

Theorem 3.8 Let q ≤ p and α− 1/p > γ − 1/q. Then there exists an Bpα zero set which is not
an Bqγ zero set.

PROOF. Consider functions of the form

f(z) =

∞∏
k=1

(1 + µzβk),

as defined in (14).

[Case 1: p < 2] Choose µ and β such that

γ − 1

q
<

logµ

log β
<

log(1 + µ2)

2 log β
< α− 1

p
,

Then (16) and Theorem 3.4 shows that the zero set of f is not an Bqγ zero set. On the other
hand, (18) and Theorem 3.1 shows that f ∈ Bpα.
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[Case 1: p ≥ 2] Choose µ and β such that

γ − 1

q
<

logµ

log β
<

log(1 + µp
′
)

p′ log β
< α− 1

p
,

where 1/p+ 1/p′ = 1. As in the above case, the zero set of f is not an Bqγ zero set. On the other
hand,

log(1 + µp
′
)

log β
< (α− 1/p)p′ = (αp− 1)(p′ − 1),

and so, (16) together with Theorem 3.2 shows that f ∈ Bpα. �

Theorem 3.9 Let q ≤ p, p ≥ 2 and α− 1/p = γ − 1/q. Then there exists an Bpα zero set which
is not an Bqγ zero set.

PROOF. Consider functions f(z) as defined in (14).

Choose µ and β such that

γ − 1

q
<

logµ

log β
<

log(1 + µp
′
)

p′ log β
< α.

Then (16) and Theorem 3.4 shows that the zero set of f is not an Bqγ zero set. On the other
hand, since

log(1 + µp
′
)

log β
< αp′ = (αp+ 1)(p′ − 1)− (p′ − 1),

where 1/p+ 1/p′ = 1. (16) together with Theorem 3.2 shows that f ∈ Bpα. �

In case p < 2 and α− 1/p = β − 1/q, Theorem 3.4 does not distinguish between Bpα and Bqγ
zero sets.

3.4 Union of zero sets of functions in Bpα
Theorem 3.10 For all 0 < p < ∞ and for all 1/p < α < ∞, there exists two Bpα zero sets
whose union is not a Bpα zero set.

PROOF. Choose f ∈ Bpα, f 6= 0, whose ordered zeros satisfied

N∏
k=1

1

|zk|
≥ CN s, where α− 1

p
> s > (α− 1

p
)
1

2
.

To see that it is possible to choose such a function f , we can proceed with the same arguments
as in the proof of Theorem 3.8.

Now, Choose an angle θ such that the Bpα zero set
{
eiθzk

}
is disjoint from {zk}. Let{

eiθzk

}
∪ {zk} = {wk} , 0 < |wk| ≤ |wk+1| ≤ · · ·

It follows that
2N∏
k=1

1

|wk|
=

(
N∏
k=1

1

|zk|

)2

≥ (CN s)2 = C2N2s.

But 2s > α− 1/p and so, by Theorem 3.4 {wk} is not a Bpα zero set. �
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3.5 Subsets of zero sets of functions in Bpα
Our main object of interest in this section is the question: is every subset of a Bpα zero set a

Bpα zero set? We will give an affirmative answer in a particularly strong form.

For |a| < 1 let

Ca(z) =
a− z
1− az

, (19)

ν0(z) = z, and for a 6= 0, νa(z) =
|a|
a
Ca(z) =

|a|
a

a− z
1− az

. (20)

Let f ∈ Bpα and let zk be an arbitrary subset of its zeros. Let

h(z) =

∞∏
k=1

νzk(z) (2− νzk(z)) . (21)

We will see that h is analytic in the unit disk with zeros {zk} and that the function

g(z) =
f(z)

h(z)
(22)

lies in Bpα.

Lemma 3.11 Let {zk} be an arbitrary subset of an Bpα zero set (0 < p < ∞, 1/p < α < ∞).
Then (21) defines a function h(z) analytic in the unit disk with zero set {zk}. Moreover, the
value of the product defining h(z) in independent of the order of the factors.

PROOF. To start, notice that all the assertions of the lemma follows from the absolute conver-
gence, uniform in compact subsets of the disk, of the product

∞∏
k=1

νzk(z)(2− νzk(z)).

To proceed, we will apply the usual test for absolute convergence of a product, it is Theorem
1.6. We will assume without loss of generality that 0 /∈ {zk}. Then, we have that

∞∑
k=1

|1− νzk(z)(2− νzk(z))| =
∞∑
k=1

|1− νzk(z)|2

=

∞∑
k=1

∣∣∣(1− |zk|)(zk + z|zk|)
zk(1− zkz)

∣∣∣2. (23)

Since it follows immediately from Corollary 3.5 that

∞∑
k=1

(1− |zk|)2 <∞,

we have that in the disk |z| ≤ r, the last expression in (23) is majorized by

∞∑
k=1

(1− |zk|)2

(
2

1− r

)2

<∞,

and we are done. �
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The following useful will let us to state Jensen’s formula in a different way.

Lemma 3.12 Let f be an analytic function on D with |f(0)| = 1 and ak, k = 1, 2, · · · , be its
zeros. Then,

N(r) =

∫ r

0

n(s)

s
ds =

1

2π

∫ 2π

0
log |f(reiθ)|dθ,

where 0 < r < 1 and n(r) is the cardinal of the set {ak : |ak| ≤ r, k = 1, 2, · · · }.

PROOF. To start, by Jensen’s formula we have

1

2π

∫ 2π

0
log |f(reiθ)|dθ =

n(r)∑
k=1

log
r

|ak|
,

so, it is equivalent to see that

N(r) =

n(r)∑
k=1

log
r

|ak|
.

Define the measure

µ =
∞∑
k=1

δak

where

δak(z) =

{
1 if z = ak,

0 otherwise.

Then, n(s) = µ(D(0, s)) and we conclude

N(r) =

∫ r

0

∫
|z|≤s

1

s
dµ(z)ds =

∫
|z|≤r

∫ r

|z|

1

s
dsdµ(z)

=

∫
|z|≤r

log
r

|z|
dµ(z) =

n(r)∑
k=1

log
r

|ak|
.

�

From Lemma 3.11 we know that the function g defined in (22) is at least analytic in the unit
disk. The following lemma will enable us to estimate g(0).

Lemma 3.13 Let f ∈ Bpα and {zk} be its zeros. Assume f(0) 6= 0. Then there exists a constant
M(p, α) such that

|f(0)|

( ∞∏
k=1

|zk|(2− |zk|)

)−1

≤M(p, α)‖f‖Bp
α+2/p

. (24)

Notice that since f ∈ Bpα, we will have that ‖f‖Bp
α+2/p

<∞.
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PROOF. Without loss of generality assume f(0) = 1. Let n(r) be the cardinality of the set
{zk : |zk| < r}. It follows directly from Theorem 3.4 that

n(r) = O

(
1

1− r
log

(
1

1− r

))
as r → 1−.

Then, taking the logarithm of right-hand side in (24), we can integrate by parts as follows

∞∑
k=1

− log [|zk|(2− |zk|)] =

∫ 1

0
− log [|zk|(2− |zk|)] dn(r)

=

∫ 1

0

2− 2r

2r − r2
n(r)dr

=

∫ 1

0

2

(2− r)2
N(r)dr,

where, by Jensen’s formula,

N(r) =

∫ r

0

n(s)

s
ds =

1

2π

∫ 2π

0
log |f(reiθ)|dθ. (25)

Thus, we have

∞∑
k=1

− log [|zk|(2− |zk|)] =
1

2π

∫ 1

0

2

(2− r)2

∫ 2π

0
log |f(reiθ)|dθdr. (26)

Let

M1(p, α) = exp

{
−
∫ 1

0

2

(2− r)2

(
log(1− r2)α

)
dr

}
,

by (26) we have that

∞∑
k=1

− log [|zk|(2− |zk|)]

= logM1(p, α) +
1

2π

∫ 2π

0

∫ 1

0

2

(2− r2)
log
(
|f(reiθ)|(1− r2)α

)
drdθ.

We multiply this equation by p, exponentiate, and apply the arithmetic-geometric mean inequa-
lity with respect to unit measure

1

2π

2

(2− r)2
drdθ.

Thus,

∞∏
k=1

[|zk| (2− |zk|)]−p

≤Mp
1 (p, α)

1

2π

∫ 2π

0

∫ 1

0

2

(2− r)2
|f(reiθ)|p(1− r2)αpdrdθ

≤ 4Mp
1 (p, α)‖f‖pα+2/p,

where the last inequality follows from the fact that 1 ≤ (2− r)2 ≤ 4, for all 0 ≤ r ≤ 1. �
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Lemma 3.14 Let |v| < 1, then there exists a constant k(α) independent of v such that∫
D

(
1−

∣∣∣ v − w
1− vw

∣∣∣2)αp ∣∣∣ 1− |v|2

(1− vw)2

∣∣∣2(1− |w|2

1− |v|2

)αp
dA(w) ≤ k(α).

PROOF. Let z(w) = (v − w)/(1− vw). Then∣∣∣ 1− |v|2

(1− vw)2

∣∣∣2dA(w) = dA(z),

and our integral becomes∫
D

(1− |z|2)αp
(

1−
∣∣∣ v − z
1− vz

∣∣∣2) 1

(1− |v|2)αp
dA(z). (27)

We want to see that (27) is bounded for |v| < 1. But it follows from the fact that the integrand
is uniformly bounded for all |z| < 1, |v| < 1. Indeed,

1−
∣∣∣ v − z
1− vz

∣∣∣2 = 1− |v|
2 + |z|2 − 2Revz

1 + |v|2|z|2 − 2Revz

=
1 + |v|2|z|2 − |v|2 − |z|2

|1− vz|2

=
(1− |z|2)(1− |v|2)

|1− vz|2
.

Thus

1− |z|2

1− |v|2

(
1−

∣∣∣ v − z
1− vz

∣∣∣2) =
(1− |z|2)2

|1− vz|2
≤ (1− |z|2)2

(1− |z|)2
< 4,

for all |z| < 1 and |v| < 1. It follows that the integral in (27) is smaller than k(α) = 4αp+1 for
all |v| < 1. �

We are now prepared to prove the main result of this section.

Theorem 3.15 Let f ∈ Bp
α (0 < p <∞, 1/p < α <∞). Let {zk} be an arbitrary subset of the

zero set of f . Define g(z) by (19)-(22). Then there is a constant C(p, α) such that

‖g‖Bpα ≤ C(p, α)‖f‖Bpα .

In particular, every subset of an Bpα zero set is a Bpα zero set.

PROOF. Let

Cw(z) =
w − z
1− wz

, |w| < 1.

Let {ak} be the complete zero set of f . Then fw(z) = 0 if and only if cw(z) = ak for some k,
i.e., if and only if z = cw(ak), since cw = c−1

w . Also, fw(0) = f(w). Assuming f(w) 6= 0, Lemma
3.13 yields that

|f(w)|

{ ∞∏
k=1

|cw(ak)|(2− |cw(ak)|)

}−1

≤M(p, α)‖fw‖Bp
α+2/p

. (28)
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But

|cw(ak)| =
∣∣∣ w − ak
1− wak

∣∣∣ =
∣∣∣ ak − w
1− akw

∣∣∣ = |cak(w)|,

and since for all k ≥ 1, |w| < 1, we have

|cak(w)|(2− |cak(w)|) < 1,

it follows that

|g(w)| = |f(w)|

{ ∞∏
k=1

|νzk(w)||2− νzk(w)|

}−1

≤ |f(w)|

{ ∞∏
k=1

|νzk(w)|(2− |νzk(w)|)

}−1

= |f(w)|

{ ∞∏
k=1

|Czk(w)|(2− |Czk(w)|)

}−1

≤ |f(w)|

{ ∞∏
k=1

|cak(w)|(2− |cak(w)|)

}−1

.

Applying (28) we conclude that

|g(w)| ≤M(p, α)‖fw‖Bp
α+2/p

.

by continuity, this inequality holds even at points where f(w) = 0. Then, to estimate ‖g‖Bpα , we
need only compute ∫

D
‖fw‖Bp

α+2/p
(1− |w|2)αp−2dA(w). (29)

Before doing so, we apply change of variables to the integral

‖fw‖Bp
α+2/p

=

∫
D
|f(Cw(z))|p(1− |z|2)αpdA(z).

Let

v(z) = Cw(z) =
w − z
1− wz

,

then

z =
w − v
1− wv

and

dA(z) =
∣∣∣ 1− |w|2

(1− wv)2

∣∣∣2dA(v),

and we obtain that

‖fw‖Bp
α+2/p

=

∫
D
|f(v)|p

(
1−

∣∣∣ w − v
1− wv

∣∣∣2)αp ∣∣∣ 1− |w|2

(1− wv)2

∣∣∣2dA(v).
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Now, since f ∈ Bp
α and using Lemma 3.14, we obtain that∫

D
‖fw‖pBp

α+2/p

(1− |w|2)αp−2dA(w)

=

∫
D
|f(v)|p(1− |v|2)αp−2

∫
D

(
1−

∣∣∣ w − v
1− wv

∣∣∣2)αp ∣∣∣ 1− |w|2

(1− wv)2

∣∣∣2(1− |w|2

1− |v|2

)αp−2

dA(w)dA(v)

<∞,

and we are done. �

3.6 Random zero sets for Bergman Spaces

In this section we will see the result 3.17 which concerns a probabilistic characterization of
zero sets of functions in the usual Bergman space Ap = Bp

2/p, due to Gregory Bomash.

For the definition of a random set, we will use the probability space Ω =
∏∞
n=1 Ωn, where

Ωn is the interval [0, 2π) for each n. An is the σ-field of Lebesgue measurable sets and Pn is
the (normalized) Lebesgue measure. An element of Ω is denoted by w = (θ1, θ2, · · · ) where
0 ≤ θn < 2π for all n. {θ1, θ2, · · · } is a sequence of random independent variables defined on Ω.

For every countable set Λ = {λn}∞n=1 ⊂ D define a random set Λw as a map Ω→ 2D, where
for every w ∈ Ω the set Λw is obtained by a random rotation of each point λn ∈ Λ through the
angle θn:

Λw =
{
λne

iθn
}∞
n=1

. (30)

This probabilistic approach was apparently initiated by Emilie Leblanc, who obtained the
following result.

Theorem 3.16 Let {rn}∞n=1 be a sequence in (0, 1) that satisfies the condition,

lim sup
ε→0

∑
n(1− rn)1+ε

log 1/ε
<

1

2p
.

Then for almost all independent choices of {θn}∞n=1 the set
{
rne

iθn
}∞
n=1

is an Ap-zero set.

Following this idea of random zero sets of functions in Ap, Gregory Bomash obtained the
following result, which is sharper than Leblanc’s one.

Theorem 3.17 Let 1 ≤ p ≤ 2 and {rn} be a sequence in (0, 1) satisfying the condition

lim sup
ε→0

∑
rn<1−ε(1− rn)

log 1/ε
<

1

p
.

Then for almost all independent choices of {θn}∞n=1 the set
{
rne

iθ
}∞
n=1

is an Ap-zero set. More-
over, the constant p is sharp.
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In order to obtain the result 3.17, we denote by Λr := {λ ∈ Λ : |λ| ≤ r} the intersection of
Λ with the disk of radius 0 < r < 1 centered at the origin and define the following functions,

ϕ(r) =
∑
λ∈Λr

(1− |λ|),

ϕ1(r) =
∑
λ∈Λr

log
r

|λ|
,

ϕ2(r) =
∑
λ∈Λr

(1− |λ|2),

n(r) = cardΛr.

(31)

From now on, we will restrict our considerations to the sets Λ which satisfy the condition
3.5, that is, ∑

λk∈Λ

(1− |λk|)
(

log
1

1− |λk|

)−1−ε
<∞, for all ε > 0. (32)

The following technical result will be useful.

Lemma 3.18 Let Λ ⊂ D be a discrete set satisfying the condition (32). Then

2ϕ(r)− ϕ2(r) = O(1) as r → 1, (33)

ϕ1(r) + (1− r)n(r)− ϕ(r) = O(1) as r → 1 (34)

n(r) =

∫ r

0

dϕ(t)

1− t
, r ∈ (0, 1) and n(r) ≤ ϕ(r)

1− r
. (35)

PROOF. (33) and (35) are direct consequences of the definition (31). The expression in (34) is
equal to ∑

λ∈Λr

(log(1/|λ|)− 1 + |λ|) + n(r)(log r − 1 + r). (36)

The first term is bounded by the finite sum
∑

(1 − |λ|)2. The second term is O((1 − r)2n(r))
and hence O((1− r)ϕ(r)). The function ϕ(r) admits the following estimate

ϕ(r) ≤ log1+ε 1

1− r
∑
λ∈Λr

(1− |λ|) log−1−ε
(

1

1− |λ|

)
.

We conclude that (1− r)ϕ(r) = O(1) as r → 1, and (34) is thus proved. �

We need to construct a Blaschke-type product. For every λ ∈ D and s ≥ 1 define

b
(s)
λ (z) = 1− (1− |λ|2)s

(1− λz)s
. (37)

when s = 1, this is equal to

b
(1)
λ (z) = Bλ(0)Bλ(z),

where Bλ is the classical Blaschke factor.
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For every set Λ ⊂ D and every function s = s(λ) we can define an infinite product

b
(s)
Λ =

∏
λ∈Λ

b
(s(λ))
λ . (38)

Suppose that the function s satisfies ∑
λ∈Λ

(1− |λ|)s(λ) <∞. (39)

Then the product (38) represents a function holomorphic in D whose zeros are precisely on Λ.
We will use these Blaschke-type products to prove the Teorem 3.22, which is somewhat more
general than Theorem 3.17.

Lemma 3.19 Let 0 < p ≤ 2, λ ∈ D and s ≥ 1. Then

1

2π

∫ 2π

0
|b(s)λ (reiθ)|pdθ ≤

(
1 +

Γ(2s− 1)

Γ2(s)

(1− |λ|)2s

(1− |λ|2r2)2s−1

)p/2
, (40)

where Γ is the well-known gamma function.

PROOF. The function b
(s)
λ defined by (37) has the following Taylor expansion:

b
(s)
λ (z) = 1− (1− |λ|)s

∞∑
n=0

Γ(n+ s)

n!Γ(s)
(λz)n. (41)

Using this expansion we can easily compute the integral (40) when p = 2:

1

2π

∫ 2π

0
|b(s)λ (reiθ)|2dθ = (1− (1− |λ|)s)2 +

∞∑
n=1

(1− |λ|)2s

(
Γ(n+ s)

n!Γ(s)

)2

|λr|2n.

Since Γ2(n+ s) ≤ Γ(n+ 1)Γ(n+ 2s− 1), we have

1

2π

∫ 2π

0
|b(s)λ (reiθ)|2dθ ≤ 1 +

Γ(2s− 1)

(Γ(s))2

(1− |λ|)2s

(1− |λ|2r2)2s−1
,

which completes the proof in the case p = 2. For any 0 < p < 2 one has to use the inequality
‖f‖Hp ≤ ‖f‖H2 . �

Proposition 3.20 The function

h(s) = Γ(2s− 1)Γ2(s)

has the following properties :

(a) h(1) = 1; (b) h′(0) = 0; (c) h′′(1) =
π2

3
; (d) h(s) ≤ 1 + 2(s− 1)2 for 1 ≤ s ≤ 2.
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Proposition 3.21 Let 0 < r < 1, ε > 0 and r1 such that

1− r1 = (1− r) log−1−ε 1

1− r
. (42)

Then for every |λ| ≥ r1 and s ≥ 1

(1− |λ|)2s(1− |λ|2r2)1−2s ≤ cdλ log−1−ε(1/dλ) (43)

with some constant c independent of λ and r.

PROOF. Condition (42) and |λ| ≥ r1 imply that

(1− |λ|) ≤ 2(1− r1) = 2(1− r) log−1−ε 1

1− r
.

The last inequality is equivalent to

1− |λ|
1− r

≤ c1 log−1−ε 1

1− |λ|
(44)

with some c1 > 0.

We can also deduce from (42) that for |λ| > r1

(1− |λ|2r2)−1 ≤ c2(1− r)−1. (45)

Combining (44) with (45) we obtain

1− |λ|
1− |λ|2r2

≤ c log−1−ε 1

1− |λ|
.

Now (43) follows from this and the condition 2s− 1 ≥ 1. �

Now we are ready to state and prove the main result of this section.

Theorem 3.22 Let 1 ≤ p ≤ 2 and Λ = {λn}∞n=1 be a discrete subset of the unit disk D that
satisfies the condition ∫ 1

0
epϕ(r) logσ

1

1− r
dr <∞ (46)

for some σ > 1. Then for almost all independent choices of {θn}∞n=1 the set Λw =
{
λne

iθn
}

is
a zero set of a function in Ap.

PROOF. Consider the Banach space Lp(Ω, Ap) of all Ap-valued measurable functions on Ω with
the norm

‖f‖Ω,p =

(∫
Ω
‖f(w)‖pApdw

)1/p

. (47)

Let Λ be a subset of D that satisfies the condition (46), and Λw be the random set defined by
(30). Our aim is to construct a sequence s = {sn} so that the product

B
(s)
Λw

(z) =
∏
n≥1

(
1−

(
1− |λn|

1− λneiθnz

)sn)
(48)

converges to a holomorphic function in D, which belongs to the space Lp(Ω, Ap). When this is
done, the conclusion of the theorem will follow because the finitiness of the norm (47) for the

product (48) implies that for almost all w ∈ Ω the function B
(s)
Λw

belongs to Ap. Hence for these
w′s the set Λw is a zero set of a function in Ap.
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Define a function g on D by

g(z) =

∫
Ω
|B(s)

Λw
(z)|pdw. (49)

We can apply Fubini’s theorem to obtain

‖B(s)
Λw
‖pΩ,p =

∫
D
g(z)dA(z). (50)

Our goal is to established that g ∈ L1(D). To do that, fix a positive ε < σ−1. For every λn ∈ Λ
we choose sn as the root of the equation

(1− |λ|)sn = (1− |λn|) log−1−ε 1

1− |λ|
, (51)

that is,

sn = 1 + (1 + ε)

log log
1

1− |λn|

log
1

1− |λn|

. (52)

First, note that condition (46) implies the convergence of the series∑
λ∈Λ

(1− |λ|) log−1−ε 1

1− |λ|
<∞, (53)

for every positive ε. Indeed, this sum is equal to∫ 1

0
log−1−ε 1

1− r
dϕ(r).

Integration by parts and an application of Hölder’s inequality then lead to (53).

Combining (53) and (51) we see that the product (48) converges for every w ∈ Ω.

The independence of {θn}∞n=1 implies∫
Ω
|B(s)

Λw
(z)|pdw =

∞∏
n=1

1

2π

∫ 2π

0
|b(sn)

λneiθn
(z)|pdθn.

Lemma 3.19 and the inequality 1 + x ≤ exp(x) result in the following estimate for the function
g in (49):

g(z) ≤ exp

{
p

2

∞∑
n=1

h(sn)(1− |λn|)2sn(1− |λn|2r2)1−2sn

}
. (54)

For a fixed r = |z| we split the sum in (54) in two parts: the sum over |λ| ≥ r1 and the sum
over |λ| < r1. Let r1 be defined as in Proposition 3.21. The sum over |λ| ≥ r1 is bounded by
the finite sum

c
∑
|λ|≥r1

(1− |λ|) log−1−ε 1

1− |λ|
≤ const. (55)
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(Here we used (43) and (53)). For the sum over |λ| < r1 (i.e. λ ∈ Λr1) we have∑
λ∈Λr1

h(sn)(1− |λn|) =
∑
λ∈Λr1

(1− |λn|) +
∑
λ∈Λr1

(h(sn)− 1)(1− |λn|)

≤ ϕ2(r1) + 2
∑
λ∈Λr1

(sn − 1)2(1− |λn|)

≤ 2ϕ(r1) + c,

(56)

where the first inequality follows from Proposition 3.20 and the last one follows from (33), (52)
and (53). Combining (55) and (56) we obtain

g(z) ≤ c exp(pϕ(r1)),

where r1 depends on r = |z| as in (42). Using (46) and the change of variable r1 = r1(r) we
obtain ∫

D
g(z)dA(z) ≤ c

∫ 1

0
exp(pϕ(r1))dr ≤ c

∫ 1

0
exp(pϕ(r)) logσ

1

1− r
dr <∞.

Hence B
(s)
Λw

belongs to the space Lp(Ω, Ap) and the proof of Theorem (3.22) is complete. �

Corollary 3.23 (see Theorem 3.17.) If 1 ≤ p ≤ 2 and

lim sup
ε→0

∑
rk<1−ε(1− rk)

log 1/ε
< 1/p,

then for almost all w ∈ Ω the set
{
rne

iθ
}∞
n=1

is a zero set of a function if Ap.

The condition in Theorem 3.22 is far from being necessary. To see it, let Λ be an Ap-zero
set, i.e. there exists a nonzero function f ∈ Ap with f(a) = 0 for all a ∈ A. without loss of
generality we can assume f(0) 6= 0. Recall from Lemma 9 that

|f(0)|p exp(pϕ1(r)) = exp

(
1

2π

∫ 2r

0
log |f(reiθ)|pdθ

)
≤ 1

2π

∫ 2π

0
|f(reiθ)|pdθ =: Mp

p (f, r). (57)

(for the definition of ϕ1 see (31)). For all functions f ∈ Ap we have

2

∫ 1

0
Mp
p (f, r)rdr = ‖f‖pAp <∞,

Mp
p (f, r) ≤

‖f‖pAp
1− r

,

Mp
p (f, r) = o((1− r)−1).

Thus, inequality (57) implies the two (generally speaking, not equivalent) necessary conditions
for Ap-zero sets:

(1) The Lp-type condition ∫ 1

0
exp(pϕ1(r))dr <∞. (58)
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Davidson Cañaveral Basic properties of zero sets of functions in the Bergman space

(2) The L∞-type condition

exp(pϕ1(r)) = o((1− r)−1). (59)

Lemma (3.18) shows that if the set Λ satisfies the following growth condition for the function
n(r) = card(Λr),

n(r) = O

(
1

1− r

)
,

then the function ϕ1 in (58) and (59) can be replaced by the function ϕ. In this case the
necessary condition (58) differs from the probabilistic condition (46) in Theorem 3.22 by a
logarithmic factor. In particular we see that the constant 1/p in Theorem 3.17 is sharp, i.e., it
cannot be replaced by any larger one.
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Chapter 4

Notions of density

In this chapter we will introduce several notions of density in order to understand the struc-
ture of the zero set of functions in Bpα. The reason is that, as we have seen in the above chapter,
the zero sets of function in the space Bpα can not be captured by a simple Blaschke-type condition
in terms of the moduli: indeed, a spread-out zero set need not fulfill the Blaschke condition,
whereas a concentrated one must do so − if, say, all the zeros contained in a finite union of Stolz
angles, which is a consequence of Lemma 2.3.

4.1 Notions of density for sequences in the unit disk

For a point z ∈ T, we let sz be the convex hull of the set

{z} ∪
{
w ∈ C : |w| ≤ 1/

√
2
}
,

with the vertex point z removed. sz is known as the standard relative closed Stolz angle in D
with vertex at z and aperture π/2.

Figure 4.1: Representation of the Sotlz angle with vertex at z = 1 and aperture π/2.

For an arc I ⊂ T, let |I| be its arc length, and |I|s = |I|/(2π) its normalized arc length. The
subscript s refers to the measure ds(z) = |dz|/(2π). For a closed and proper subset F of T with
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complementary arcs {In}n, we define

κ̂(F ) =
∑
n

|In|s log
e

|Is|s
,

where e = 2.71828 · · · is the base for the natural logarithm. The quantity κ̂(F ) will be called
the entropy of F . We define κ̂(∅) = 0 for the empty set.

A closed subset F of T is called a Beurling-Carleson set if F is nonempty, has Lebesgue
length measure zero, and has κ̂(F ) < +∞ finite entropy. It is clear that 1 ≤ κ̂(F ) for such sets,
with equality only for one-point sets F .

Let dT be the standard metric on the unit circle T:

dT(z, w) =
∣∣ arg

( z
w

) ∣∣,
where the argument function is assume to take values in the interval (−π, π]. The distance to a
closed subset F on T is then

dT(z, F ) = inf {dT(z, w) : w ∈ F} ,

and F is a Beurling-Carleson set if and only if

κ̂(F ) =

∫
T

log
π

dT(z, F )
ds(z) < +∞.

Notice that if dC stand for the Euclidean metric in D (i.e., dC(z, w) = |z−w|), then, for any
closed subset F of T,

2

π
dT(z, F ) ≤ dC(z, F ) ≤ dT(z, F ), z ∈ T,

where the distance to sets is defined in terms of an infimum as for dT, so that by the above,

κ̂(F )− log π ≤
∫
T

log
1

dC(z, F )
ds(z) ≤ κ̂(F )− log 2, (1)

provided F has zero length.

For most of our discussion, we assume that F is a finite set. In association with F , we define
the Stolz star domain sF as

sF =
⋃
z∈F

sz. (2)

Let A = {an}∞n=1 be a sequence of (not necessary distinct) points from D. For an arbitrary
subset E of D, we form the partial Blaschke sum

Σ(A,E) =
1

2

∞∑
n=1
an∈E

1− |an|2. (3)

We note that for points a ∈ D close to T, the quantities (1− |a|2)/2 and 1− |a| are very close.
Later on, we also need the related “logarithmic” sum

Λ(A,E) =

∞∑
n=1
an∈E

log
1

|an|
. (4)

Again, for a ∈ D close to T, the quantity log(1/|a|) is very close to 1− |a|.
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We will sum over the Stolz stars sF , where F ⊂ T is finite.

Definition 4.1 Let A be a sequence of points in D and F be a finite subset of T. Then the
quantity

D+(A) = lim sup
κ̂(F )→+∞

Σ(A, sF )

κ̂(F )

is called the upper asymptotic κ-density of A.

4.2 Equivalent definitions of the upper asymptotic κ-density

We will start this section seeing another notion of density based on Carleson squares. For
an open arc I ⊂ T, with |I| = 2π|I|s < 1, the associate Carleson square is the set

Q(I) = {w ∈ D \ {0} : 1− |I| < |w|, w/|w| ∈ I} ;

for open arcs of bigger length, we let Q(I) be the entire sector

Q(I) = {w ∈ D \ {0} : w/|w| ∈ I} .

If {In}n are the complementary arcs of a finite set F in T, we define

qF = D \ ∪nQ(In).

We arrive to the following way of obtaining D+(A).

Proposition 4.2 Let A = {an}n be any sequence of points in D and F be finite subsets of T.
Then

D+(A) = lim sup
κ̂(F )→+∞

Σ(A, qF )

κ̂(F )
.

PROOF. Enlarge every finite set F by inserting on each complementary arc I of F additional
points accumulating at the endpoints of I so that their distances from the nearest endpoint of
I form a geometric progression with some fixed ratio q, 0 < q < 1. So that, if we call F1 the
resulting enlarged set and if we let 0 < q < 1/2, only to make easier the computations, we obtain
that

κ̂(F1) =

#F∑
n=1

{
(1− 2q)|In|s log

e

|In|s(1− 2q)
+ 2|In|s

∞∑
k=1

(qk − qk+1) log
e

|In|s(qk − qk+1)

}

=

#F∑
n=1

{
(1− 2q)|In|s log

e

|In|s
+ (1− 2q)|In|s log

e

1− 2q

+2q(1− q)|In|s log
e

|In|s

∞∑
k=0

qk + 2(1− q)|In|s
∞∑
k=1

qk log
e

(qk − qk+1)

}

= κ̂(F ) +

{
(1− 2q) log

e

1− 2q
+ 2(1− q)

∞∑
k=1

qk log
e

qk(1− q)

}
#F∑
n=1

|In|s

= κ̂(F ) +

{
(1− 2q) log

e

1− 2q
+ 2(1− q)

∞∑
k=1

qk log
e

qk(1− q)

}
,

(5)
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where #F is the cardinal of F and In, for n = 1, · · · ,#F , are the complementary arcs of F . It
follows from (5) that there is a constant C depending only on the ratio q such that

κ̂(F ) < κ̂(F1) < κ̂(F ) + C.

We can also choose q such that
qF ⊂ sF ⊂ qF1 ,

so that
Σ(A, qF ) ≤ Σ(A, sF ) ≤ Σ(A, qF1).

We are done. �

Notice that replacing the Stolz angle sz by a general Stolz angle sz,α with fixed aperture
0 < α < π and making the corresponding changes in the definitions of sF and Σ(A, sF ) will not
alter the quantities D+(A). What is somewhat surprising is that the angle α can be reduced to
0 with no effect on D+(A). More specifically, for a finite set F and a sequence A of points in D,
we set

rF = {rz ∈ D : 0 ≤ r < 1, z ∈ F} .

The set rF is the union of radii from 0 to the points of F . Then we have the following result.

Proposition 4.3 Let A = {an}n be any sequence of points in D and F be finite subsets of T.
Then

D+(A) = lim sup
κ̂(F )→+∞

Σ(A, rF )

κ̂(F )
.

At first glance this looks highly improbable, since the sum defining Σ(A, sF ) involves all
points from sF , while the sum defining Σ(A, rF ) involves only those points lying on one of the
radii from 0 to points of F. However, a careful argument will prove the above proposition.

PROOF. Observe that rF ⊂ sF , and thus Σ(A, rF ) ≤ Σ(A, sF ), which implies

lim sup
κ̂(F )→+∞

Σ(A, rF )

κ̂(F )
≤ lim sup

κ̂(F )→+∞

Σ(A, sF )

κ̂(F )
.

By Proposition 4.2, the reverse inequality is equivalent to

lim sup
κ̂(F )→+∞

Σ(A, qF )

κ̂(F )
≤ lim sup

κ̂(F )→+∞

Σ(A, rF )

κ̂(F )
. (6)

Let’s see that (6) hold. Without loss of generality, we may assume that the lim sup on the
left-hand side of the inequality (6) is positive. Let L be a positive number less than this lim sup.
This implies that there are finite subsets F of T of arbitrarily large κ̂(F ) such that

Σ(A, qF ) =
1

2

∑
ak∈qF

(1− |ak|2) > Lκ̂(F ).

Until the end of the proof, we will assume that F satisfies this inequality.
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Let F1 equal the set F plus the radial projections z/|z| of points from the set A∩ (qF \ rF ),
so that

Σ(A, qF ) ≤ Σ(A, rF1).

Let kn be the number of such radial projections (counting multiplicities) that lie on In, where
In is a complementary arc to the finite set F ⊂ T. Observe now that the contribution to κ̂(F1)
from the complementary arcs of F1 contained in In does not exceed the quantity

|In|s
[
log

e

|In|s
+ log(kn + 1)

]
,

which corresponds to the case of kn equidistant points of (F1 \ F ) ∩ In. Therefore,

κ̂(F ) ≤ κ̂(F1) ≤ κ̂(F ) + r(F ),

where r(F ) is the“remainder” term

r(F ) =
∑
n

|Is|s log(kn + 1).

Suppose the point aj ∈ A ∩ (qF \ rF ) is such that its radial projection lies on In. Then |In| =
2π|In|s < 1 by the construction of the Carleson squares forming the complement of qF in D, and
moreover, we have |aj | ≤ 1− |In|. It follows that

|In|s < π|In|s =
1

2
|In| ≤

1

2
(1 + |aj |)(1− |aj |) =

1

2
(1− |aj |2).

This leads to the conclusion∑
n

kn|In|s ≤ Σ(A, qF \ rF ) ≤ Σ(A, qF ).

We now show that the remainder term is small:

r(F ) = o(Σ(A, qF )) as κ̂(F )→ +∞.

To this end, we pick a positive integer N and split the sum defining r(F ) into two parts, keeping
the above estimate in mind:

r(F ) =

 ∑
kn≤N

+
∑
kn>N

 |In|s log(kn + 1)

≤ log(N + 1) +
log(N + 1)

N

∑
kn>N

kn|In|s

≤ log(N + 1) +
log(N + 1)

N
Σ(A, qF ).

Letting κ̂(F ) → +∞, with Σ(A, qF ) → +∞, first holding N constant and then making N →
+∞, we obtain r(F ) = o(Σ(A, qF )), as desired. Consequently,

κ̂(F1) = κ̂(F ) + o(Σ(A, qF )) as κ̂(F )→∞.
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Since by the above, Σ(A, qF ) ≤ Σ(A, rF1), we get

Σ(A, rF1)

κ̂(F1)
≥ Σ(A, qF )

κ̂(F ) + o(Σ(A, qF ))

as κ̂(F )→ +∞. This implies that

lim sup
κ̂(F )→+∞

Σ(A, rF1)

κ̂(F1)
≥ L.

Since F1 above can be substituted for F , and L can be chosen arbitrarily close to

lim sup
κ̂(F )→+∞

Σ(A, qF )

κ̂(F )
,

the proposition has been proved. �

Let A = {an}n be a sequence in D, and fix a real parameter % ∈ (0,+∞). If, for every finite
subset F of T,

Σ(A, sF ) ≤ %κ̂(F ) + C,

for some constant C independent of F , then by the inclusion rF ⊂ sF , we also have

Σ(A, rF ) ≤ %κ̂(F ) + C.

Conversely, if for every finite subset F of T,

Σ(A, rF ) ≤ %κ̂(F ) + C,

then by Proposition 4.3, D+(A) ≤ %, so that

Σ(A, sF ) ≤ (%+ ε)κ̂(F ) + C ′(ε)

for ε > 0, where C ′(ε) is a constant that is independent of the finite set F ⊂ T, but may vary
with ε.

We shall need a similar but more precise comparison between Σ(A, sF ) and Σ(A, rF ) for
some slightly different asymptotic restrictions on the latter.

Proposition 4.4 Fix 0 < %, η <∞. Suppose that the sequence A in D is such that

Σ(A, rF ) ≤ %κ̂(F ) + η log κ̂(F ) + C,

for every finite nonempty subset F of T, where C is a constant. Then

Σ(A, sF ) ≤ %κ̂(F ) + (η + %) log κ̂(F ) + C ′,

for every finite nonempty subset F of T, for some other constant C ′.

PROOF. As in the proofs of Propositions 4.2 and 4.3, we can show that the second inequality here
is equivalent to a similar estimate with summation over Stolz stars sF replaced by summation
over the regions qF with omitted Carleson squares:

Σ(A, qF ) ≤ %κ̂(F ) + (η + %) log κ̂(F ) +O(1),

where O(1) stands for a quantity that is bounded independently of the finite set F .
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Let F ⊂ T be finite, and {In}n the collection of complementary arcs; {Q(In)}n are the
associate Carleson squares. Project all points from A ∩ qF (other than 0) radially to T, and let

F ′ =

{
z

|z|
∈ T : z ∈ A ∩ qF , z 6= 0

}
be the resulting set, so that Σ(A, qF ) ≤ Σ(A, rF ′). We put kn = card(In ∩ F ′), and note that

κ̂(F ) ≤ κ̂(F ′) ≤ κ̂(F ) +
∑
n

|In|s log(kn + 1), (7)

with equality only occurring in the right hand side inequality if the kn points from F ′∩In divide
In into kn + 1 equals subarcs. On the other hand, as we saw in the proof of Proposition 4.3,∑

n

kn|In|s ≤ Σ(A, qF ) ≤ Σ(A, rF ′).

Since
∑

n |In|s = 1, the concavity of the function log t (that is, the geometric-arithmetic mean
value inequality) gives

∑
n

|In|s log(kn + 1) ≤ log

(
1 +

∑
n

kn|In|s

)
≤ log(1 + Σ(A, qF )). (8)

Now, replace F with F ′ in the assumptions of the proposition and use the inequalities (7) and
(8) to get

Σ(A, qF ) ≤ Σ(A, rF ′) ≤ %κ̂(F ′) + η log κ̂(F ′) +O(1)

≤ %κ̂(F ) + % log Σ(A, qF ) + η log(κ̂(F ) + log Σ(A, qF )) +O(1).

From the proof of Propositions 4.2 and 4.3 we know that

log Σ(A, qF ) ≤ log κ̂(F ) +O(1),

and thus
Σ(A, qF ) ≤ %κ̂(F ) + (η + %) log κ̂(F ) +O(1),

which is equivalent to the inequality stated at the beginning of the proof. �
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Chapter 5

The Growth Spaces A−α and A−∞

5.1 Introduction

In this chapter we will introduce a class of Bergman-type spaces, denoted by A−α and A−∞,
which are closely to the spaces Bpα and are sometimes called growth spaces, and being the study
of their zero sets.

Definition 5.1 For any α > 0, the space A−α consists of analytic functions f in D such that

‖f‖A−α = sup
{

(1− |z|2)α|f(z)| : z ∈ D
}
< +∞.

It is easy to verify that A−α is a (nonseparable) Banach space with the norm defined above.
Each space A−α clearly contains all the bounded analytic functions. The closure in A−α of the
set of polynomials will be defined by A−α0 , which is a separable Banach space and consists of
exactly those functions f in A−α with

lim
|z|→1−

(1− |z|2)α|f(z)| = 0.

We will also consider the space

A−∞ =
⋃

0<α<+∞
A−α.

It is clear that an analytic function f in D belongs to A−∞ if and only if there exist positive
constant C and N such that

|f(z)| ≤ C

(1− |z|2)N
, for all z ∈ D.

It is also clear that
A−∞ =

⋃
1/p<α<∞

Bpα

for any p ∈ (0,∞). The space A−∞ is a topological algebra when endowed with the inductive-
limit topology.
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For an analytic function f in D that is not identically zero, we define its hyperbolic expo-
nential type

t(f) = lim sup
|z|→1−

log |f(z)|

log
1

1− |z|

.

The function f is said to be of finite hyperbolic exponential type if t(F ) < +∞. It is clear that

t(f) = inf
{
α : f ∈ A−α

}
.

When f ∈ A−α for α = t(f), we say that f is of exact type. If t(f) = 0, we say that f is of
minimal type. Clearly, t(f) = 0 if and only if f ∈ A−α for all α > 0.

The space A−∞ then consists of 0 and functions of finite hyperbolic exponential type.

To better formulate the main results about zero sets for Bergman-type space, we introduce
two additional type spaces. Thus, we set

A−α+ =
⋂

β:β>α

A−β = {0} ∪ {f ∈ H(D) : t(f) ≤ α}

and
A−α− =

⋃
β:β<α

A−β = {0} ∪ {f ∈ H(D) : t(f) < α} .

It is clear that
A−α− ⊂ A−α0 ⊂ A−α ⊂ A−α+ .

We can now state the main results of this chapter; the next two sections are devoted to their
proofs.

Theorem 5.2 Let A = {an}n be a sequence in D. Then A is a zero set for A−α+ if and only if
D+(A) ≤ α.

In concrete terms, we prove that the condition D+(A) ≤ α is necessary and the condition
D+(A) <∞ is sufficient for A to be an A−α zero set. This clearly implies the following.

Corollary 5.3 A sequence A = {an}n in D is an A−α− zero set if and only if D+(A) < α.

Corollary 5.4 A sequence A = {an}n in D is an A−∞ zero set if and only if D+(A) <∞.

5.2 Zero sets of functions in A−α, necessary conditions

We begin the proof of the necessity of the condition D+(A) ≤ α for zero sets of functions
in A−α with the following balayage-type estimate, which enables us to“sweep” zeros of an
analytic function f radially to the circumference T and convert them into singular masses without
increasing |f | in a certain critical region.
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Lemma 5.5 Let s1 be the standard Stolz angle at z = 1. Then∣∣∣ a− z
1− az

∣∣∣ ≥ exp

[
(log a)

1− |z|2

|1− z|2

]
for all 0 < a < 1 and z ∈ D \ s1.

PROOF. Using the transform

w = φ(z) =
1 + z

1− z
from D onto the right half-plane C+ = {w ∈ C : Rew > 0}, we can rewrite the desired inequality
as ∣∣∣b− w

b+ w

∣∣∣ ≥ exp

[(
log

b− 1

b+ 1

)
u

]
,

where w = u+ iv ∈ C+ \ φ(s1) and

b =
1 + a

1− a
> 1.

We are going to take the logarithm on both sides of this second inequality and show that it
actually holds for w in the larger set C+ \ Ω, where

Ω = {w = u+ iv : u > 1, |v| < u} .

To see that Ω is smaller than φ(s1), observe that ∂(φ−1(Ω)) consists of parts of two orthogonal
circles through 1 and −1 and an arc of the circle through 0 and 1 tangent to T at 1. Then it is
geometrically obvious that φ−1(Ω) ⊂ s1.

Figure 5.1: Representation of ∂(φ−1(Ω)) and ∂s1.

We show that
1

u
log

b2 + u2 + v2 + 2bu

b2 + u2 + v2 − 2bu
≤ 2 log

b+ 1

b− 1
,
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where b > 1 and w = u+ iv ∈ C+ \Ω. It is easy to check that the left-hand side above decreases,
for any fixed u, as |v| increases; and for v = 0, it is an increasing function of u. Thus, the
inequality above holds in the strip 0 ≤ u ≤ 1 with equality attained at u = 1 and v = 0. It
remains to verify the case |v| = u:

1

u
log

b2 + 2u2 + 2bu

b2 + 2u2 − 2bu
≤ 2 log

b+ 1

b− 1

for u ≥ 1.

Let u = bt. It then suffices to show that

1

t
log

1 + 2t2 + 2t

1 + 2t2 − 2t
≤ 2b log

b+ 1

b− 1

for b > 1 and t > 0. The right-hand side here is decreasing in b and tends to 4 as b→ +∞. So
it is enough to show that

1

t
log

1 + 2t2 + 2t

1 + 2t2 − 2t
≤ 4

for all t > 0. Since it is an elementary exercise, we leave the details to the reader. �

Given a finite subset E of the punctured disk D \ {0}, we define the push-out measure dΛE :

dΛE =
∑
z∈E

log
1

|z|
dδz∗ ,

where z∗ = z/|z| ∈ T is the pushed-out point and dδζ stands for the unit point mass at ζ ∈ T.
This measure is related with the logarithmic sum defined in (4) of Chapter 4. For a finite Borel
measure µ on T, the Poisson extension is defined as

P [µ](z) =

∫
T
P (z, w)dµ(w), z ∈ D,

where

P (z, w) =
1− |z|2

|1− zw|2

is the Poisson kernel. Lemma 5.5 states that the following assertion holds for one-point set A:
the general case follows by iteration.

Corollary 5.6 Suppose f ∈ A−α and A = {a1, · · · , an} ⊂ D \ {0} are some of the zeros of f .
Let BA be the Blaschke product associated with A, and let A∗ = {a1/|a1|, · · · , an/|an|} be the
pushed-out sequence on T. Then∣∣∣ f(z)

BA(z)

∣∣∣ ≤ ‖f‖A−α
(1− |z|2)α

exp (P [ΛA](z)) , z ∈ D \ sA∗ .
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We will need some estimates for several auxiliary harmonic functions. Recall that for a
closed set F in T,

dC(z, F ) = inf {|z − ζ| : ζ ∈ F} , z ∈ D,

is the Euclidean distance from z to F . Also, recall that ds is the normalized arc-length measure
on T, it is, ds(z) = |dz|/(2π).

Lemma 5.7 Suppose F is a finite set in T and its complementary arcs I1, · · · , In satisfy |Ik| =
2π|Ik|s < 1, for all k = 1, · · · , n. Then the harmonic function

UF (z) =

∫
T

1− |z|2

|ζ − z|2
log

1

dC(ζ, F )
ds(ζ), z ∈ D,

is positive and satisfies

log
1

dC(z, F )
≤ UF (z), z ∈ D.

PROOF. We have

log
1

dC(z, F )
= max

ζ∈F
log

1

|z − ζ|
, z ∈ D,

so that the left hand side expresses a positive subharmonic function on D whose boundary values
equal those of UF (z). Hence the desired inequality follows from the maximum principle. �

For 0 < p < 1, consider the harmonic function

Vp(z, ζ) =
(

sec
pπ

2

)
Re(1− ζz)−p, z ∈ D,

where ζ is a point on T. The choice of the constant factor involving the secant function ensures
that

|1− zζ|−p ≤ Vp(z, ζ), (z, ζ) ∈ D× T. (1)

Also, for ζ ∈ T, and 0 < c <
1

4
, let γ(ζ, p, c) be the curve

γ(ζ, p, c) =
{
z ∈ D : 1− |z|2 = c|ζ − z|2−p

}
,

which makes one loop around the origin and touches the unit circle exactly at ζ. More generally,
for a finite subset F of T, we define the curve

γ(F, p, c) =
{
z ∈ D : 1− |z|2 = cdC(z, F )2−p} ,

which encloses a star-shape domain touching the unit circle exactly at the points of F (see Figure
5.2).

Lemma 5.8 Fix 0 < p < 1 and 0 < c < 1/4. Then, for fixed ζ ∈ T,

1− |z|2

|ζ − z|2
= P (z, ζ) < cVp(z, ζ)

for all z in the region between T and γ(ζ, p, c).
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Figure 5.2: Representation of the region enclosed by the curve γ(F, p, c) with F = {±1, ±i}.

PROOF. In the region between γ(ζ, p, c) and T, we have

1− |z|2 < c|ζ − z|2−p,

and there
1− |z|2

|ζ − z|2
< c|1− ζz|−p ≤ cVp(z, ζ),

by the inequality (1). �

for a finite Borel measure µ on T, let

Vp[µ](z) =

∫
T
Vp(z, ζ)dµ(ζ), z ∈ D,

be corresponding potential, which represents a harmonic function on D.

Remark: We restrict the parameters p and c to 0 < p < 1 and 0 < c < 1/4, and assume
that the finite set F has complementary arcs {Ik}k satisfying |Ik| = 2π|Ik|s < 1 for all k.

Lemma 5.9 Let µ be a finite positive Borel measure on T, supported on a finite set F . Then
the inequality

P [µ](z) ≤ cVp[µ](z)

holds for all z between T and the curve γ(F, p, c).

PROOF. The function P [µ] is a finite sum of Poisson kernels; apply Lemma 5.8 to each term.
As the set of points between T and γ(F, p, c) is the intersection of the domains described in
Lemma 5.8 over ζ ∈ F , the assertion is immediate. �

The key to our necessary condition for A−α zero sets if the following Jessen-type inequality.
Recall the definition (4) in Chapter 4 of the logarithmic sum

Λ(A,E) =
∞∑
j=1
aj∈E

log
1

|aj |
,

where A = {aj}j , counting multiplicities.
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Theorem 5.10 Let f be a nonzero function in A−α having zeros (counting multiplicities) at
A = {an}n with 0 /∈ A. Then, for any finite set F in T,

Λ(A, rF )− α log Λ(A, rF )

≤ α [κ̂(F ) + log κ̂(F )]− α(logα− 2) + log ‖f‖A−α − log |f(0)|

whenever 4α < Λ(A, rF )κ̂(F ).

PROOF. We can assume A to be a finite sequence. By Corollary 5.6,

log
∣∣∣ f(z)

BA∩rF (z)

∣∣∣ ≤ log ‖f‖A−α + α log
1

1− |z|2
+ P [ΛA∩rF ](z), z ∈ γ(F, p, c),

where BA∩rF (z) is the Blaschke product for the zeros A∩ rF and the push-out measure dΛA∩rF
is as before. We now use the geometric properties of γ(F, p, c) and apply Lemmas 5.7, 5.9 to
obtain

log
∣∣∣ f(z)

BA∩rF (z)

∣∣∣ ≤ α(2− p)UF (z) + α log
1

c
+ cVp[ΛA∩rF ](z) + log ‖f‖A−α

for z ∈ γ(F, p, c); the function UF is as in Lemma 5.7. The left-hand side here is a subharmonic
function in the region enclosed by the curve γ(F, p, c). Note that

log |BA∩rF (0)| = −Λ(A, rF ) and Vp[ΛA∩rF ](0) =
(

sec
pπ

2

)
Λ(A, rF ).

Hence, by the maximum principle, we then have

log
∣∣∣ f(0)

BA∩rF (0)

∣∣∣ = log |f(0)|+ Λ(A, rF )

≤ α(2− p)UF (0) + α log
1

c
+ cVp[ΛA∩rF ](0) + log ‖f‖A−α

= α(2− p)
∫
T

log
1

dC(ζ, F )
ds(ζ) + α log

1

c

+
(
c sec

pπ

2

)
Λ(A, rF ) + log ‖f‖A−α .

By the inequality (1) of Chapter 4, the integral expression above is less than or equal to κ̂(F ),
and it is elementary that

sec
pπ

2
<

1

1− p
.

Thus,

log |f(0)| ≤ α(2− p)κ̂(F ) +

(
c

1− p
− 1

)
Λ(A, rF ) + α log

1

c
+ log ‖f‖A−α .

To minimize the right-hand side, we put

1− p =
1

κ̂(F )
, c =

α

Λ(A, rF )κ̂(F )
.

The desired result then follows. �

Note that the result above implies that Λ(A, rF ) < +∞ for every finite subset F of T.
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We now prove two necessary conditions for zero sets of function in A−α.

Theorem 5.11 If A = {an}n is the zero sequence of a function in A−α, then

Σ(A, rF ) ≤ α [κ̂(F ) + 2 log κ̂(F )] +O(1),

where O(1) stands for a quantity which is uniformly bounded independently of the finite nonempty
subset F of T.

PROOF. Since
1

2
(1− t2) < log

1

t
, 0 < t < 1,

a comparison of the summation functions Σ and Λ shows that by Theorem 5.10,

Σ(A, rF )− α log+ Σ(A, rF ) ≤ α [κ̂(F ) + 2κ̂(F )] +O(1),

which give us the result of the theorem. �

Theorem 5.12 If A = {an}n is the zero sequence of a function in A−α, then

Σ(A, sF ) ≤ α [κ̂(F ) + 2 log κ̂(F )] +O(1),

where O(1) stands for a quantity which is uniformly bounded independently of the finite nonempty
subset F of T.

PROOF. This is a direct consequence of the preceding theorem and Proposition 4.4. �

We derive two useful corollaries from the above necessary conditions. The first one is a
formulation of Corollary 3.5 in terms of zero sets of functions in A−∞.

Corollary 5.13 Let A = {an}n be an A−∞ zero sequence. Then

S(r) =
∑
|an|<r

(1− |an|) = O

(
log

1

1− r

)
as r → 1−,

and for each ε > 0, we have ∑
n

1− |an|[
log

e

1− |an|

]1+ε < +∞.

PROOF. Taking
F = {exp(2kπi/N) : 1 ≤ k ≤ N}

in Theorem 5.12 and letting N → +∞ yields the first estimate, because the Stolz star sF will
then cover a disk of radius 1 − π/N , and a simple computation reveals that κ̂(F ) = 1 + logN .
Since ∑

n

1− |an|[
log

e

1− |an|

]1+ε =

∫ 1

0

dS(r)[
log

e

1− r

]1+ε

= S(0) + (1 + ε)

∫ 1

0

S(r)dr

(1− r)
[
log

e

1− r

]2+ε ,

The second estimate then follows from the first one. �

Corollary 5.14 If A is the zero set of a function in A−α, then D+(A) ≤ α.
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5.3 Zero sets of functions in A−α, a sufficient condition

In this section we will present a sufficient condition for a sequence A in D to be a zero set
of a function in A−α. The proof of the main theorem consists of two key ideas: an “oblique”
projection technique, and a technique from Linear Programming.

Throughout this section, we let sζ denote the Stolz angle with the vertex at ζ ∈ T and an
arbitrary but fixed aperture ϕ with π/2 ≤ ϕ < π. Thus, sζ is the convex hull of

{ζ} ∪ {z ∈ C : |z| ≤ sin(ϕ/2)} ,

with the vertex ζ removed. As before, for a finite subset F of T,

sF =
⋃
ζ∈F

sζ

is the corresponding Stolz star domain.

Given λ ∈ D, contained in the annulus sin(ϕ/2) < |λ| < 1, there are exactly two Stolz angles
sξ (with ξ ∈ T) such that λ ∈ ∂sξ. Let ξ1 and ξ2 be the corresponding points of T, which of
course depend on λ. Given another point ζ ∈ T, we pick the one (out of ξ1, ξ2) which is the
fartest away from ζ, and call it the oblique projection $ζ(λ) of λ. This can be done unless λ is
on the straight line connecting ζ and −ζ; however, we shall mainly be interested in λ ∈ D\sζ,−ζ .
We also need the concept of a tend: for an open arc I ⊂ T with endpoint w1 and w2, we define
the tent hI as the component of D \ sw1,w2 abutting on I. The geometric situation is illustrated
in the following Figure.

ζ

−ζ

$ζ(λ)

λ

hI

Figure 5.3: Representation of the oblique projection $ζ(λ) and the tend hI .
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The following lemma will show us that on the radius {z = tζ : 0 < t < 1}, the Blaschke factor
(λ−z)/(1−λz) is dominated in modulus by the singular inner function exp [−σ($ + z)/($ − z)],
where σ = (1− |λ|2)/2.

Lemma 5.15 Fix the aperture of the Stolz angles ϕ ∈ [3π/5, π). Then for all z = tζ, 0 < t < 1,
and λ ∈ D \ s{ζ,−ζ}, we have

log
∣∣∣ λ− z
1− λz

∣∣∣+
(1− |z|2)(1− |λ|2)

2|1−$z|2
≤ 0,

where $ = $ζ(λ).

PROOF. Using the identity

1−
∣∣∣ λ− z
1− λz

∣∣∣2 =
(1− |λ|2)(1− |z|2)

|1− λz|2

we can rewrite the desired inequality as

log(1− 2σa2) + 2σa1 ≤ 0,

where

2σ = 1− |λ|2, a1 =
1− |z|2

|1− z$|2
, a2 =

1− |z|2

|1− zλ|2
.

Since

log(1− 2σa2) + 2σa1 = −
+∞∑
n=1

(2σa2)n

n
+ 2σa1

≤ 2σ(a1 − a2)− (2σa2)2

2(1− σa2)

=
2σ(a1 − a2 − σa1a2)

1− σa2
,

it suffices for us to prove
a1 − a2 − σa1a2 ≤ 0,

which is equivalent to
1

a2
− 1

a1
≤ σ,

that is, ∣∣∣1
z
− λ
∣∣∣2 − ∣∣∣1

z
−$

∣∣∣2 ≤ 1

2
(1− |λ|2)

(
1

|z|2
− 1

)
. (2)

Let
β = | arg(ζ/$)|, γ = | arg(ζ/λ)|,

where as usual the argument takes values in the interval (−π, π]. The definition of oblique
projection implies that 0 < β/2 ≤ γ ≤ β < π, and a geometric consideration reveals that

1− |λ| ≤ (β − γ) cos
ϕ

2
<

1

2
(π − ϕ)(β − γ).
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Using the expansions ∣∣∣1
z
− λ
∣∣∣2 =

1

|z|2
+ |λ|2 − 2

|λ|
|z|

cos γ

and ∣∣∣1
z
−$

∣∣∣2 =
1

|z|2
+ 1− 2

|z|
cosβ

we can reformulate (2) as

cosβ − |λ| cos γ ≤ 1

4

(
|z|+ 1

|z|

)
(1− |λ|2).

Since

|z|+ 1

|z|
> 2, z ∈ D \ {0} ,

it is enough to prove

cosβ − |λ| cos γ ≤ 1

2
(1− |λ|2), λ ∈ D \ sζ .

We can further assume β < π/3; otherwise, the above inequality holds for all λ ∈ D. Solving
the quadratic inequality, we are lead to check that

0 ≤ 1− |λ| ≤ (1− cos γ) +

[
(1− cos γ)2 + 4 sin

β − γ
2

sin
β + γ

2

]1/2

.

The right-hand side is actually greater than (2/π)(β − γ). For 3π/5 ≤ ϕ ≤ π, we have

1− |λ| < 1

2
(π − ϕ)(β − γ) ≤ π

5
(β − γ) <

2

π
(β − γ),

which completes the proof of the lemma. �

In the remainder of this section, we assume that the aperture ϕ of the Stolz angles in chosen
in the interval [3π/5, π), so that the conclusion of Lemma 5.15 holds true.

Given an arc I of the circle T, let κ(I) be the quantity

κ(I) = |I|s log
e

|I|s
.

Definition 5.16 Suppose A = {an}n is a finite sequence in D, w0 is a point in T, and α is a
positive number. A positive Borel measure µ on T is (A,α,w0)-admissible if

(i) µ({w0}) = 0;

(ii) for each open arc I ⊂ T, with w0 /∈ I, the following inequality holds:

0 ≤ µ(I) ≤ ακ(I) + Σ(A, hI), (3)

where hI is the tent associated with I.

The set of all (A,α,w0)-admissible measures will be denoted by M(A,α,w0), or just M. The
second condition above, (ii), clearly implies that µ({ζ}) = 0 for any ζ ∈ T, not just for ζ = w0.

Lemma 5.17 Let A ⊂ D be a finite set, w0 a point in T, α a positive number and µ ∈
M(A,α,w0). Define F as the set consisting of w0 and the “oblique projections” of the points
a ∈ A ∩ {sin(ϕ/2) < |z| < 1}, where ϕ ∈ [3π/5, 1) is fixed.
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If µ̃ is the measure with constant density on each complementary interval Ik of F and µ̃ is
such that µ̃(Ik) = µ(Ik), then µ̃ ∈M(A,α,w0).

PROOF. By definition of F , for all a ∈ A ∩ {sin(ϕ/2) < |z| < 1} there exists ζ ∈ F such that
a ∈ ∂sζ . It follows that if Ik is a complementary arc of F , then

µ(Ik) ≤ ακ(Ik) + Σ(A, hIk) = ακ(Ik). (4)

Now consider I an open arc of T with w0 /∈ I.

[case 1.] Assume I is contained in some Ik. Since µ̃ is a measure with constant density and
µ̃(Ik) = µ(Ik), if we define 0 < δ = |I|s/|Ik|s ≤ 1, we have that

µ̃(I) = δµ(Ik) ≤ δακ(Ik)

≤ α
(
δ|Ik|s log

e

δ|Ik|s

)
≤ ακ(I) + Σ(A, hI).

[case 2.] Assume I * Ik for all k, then, there are Ik1 6= Ikn two complementary arcs of F such
that one endpoint of I is contained in Ik1 and the other one is contained in Ik2 . Hence, there
exists n− 1 different points ζi ∈ T, ζi 6= w0 for i = 1, · · · , n− 1, such that

I = (Ik1 ∪ {ζ1} ∪ Ik2 ∪ · · · ∪ {ζn−1} ∪ Ikn) ∩ I.

It follows from the above case that

µ̃(I ∩ Iki) ≤ ακ(I ∩ Iki) + Σ(A, hI∩Ii), i = 1, · · · , n,

hence,

µ̃(I) ≤
n∑
i=1

(ακ(I ∩ Iki) + Σ(A, hI∩Ii)) . (5)

On the one hand, by the definition of the operator Σ and the tend hI , it is clear that

Σ(A, hI∩I1) + · · ·+ Σ(A, hI∩In) ≤ Σ(A, hI). (6)

On the other hand, since
|I ∩ Iki | = δi|I|, i = 1, · · · , n,

where 0 < δi and δ1 + · · ·+ δn = 1, by the concavity of κ we have that

n∑
i=1

κ(I ∩ Iki) ≤ κ(I). (7)

It follows from (5), (6) and (7) that

µ̃(I) ≤ ακ(I) + Σ(A, hI).

�
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Proposition 5.18 Suppose 0 < α < +∞, w0 ∈ T, and A = {an}n is a finite sequence in D.
Then

sup {µ(T) : µ ∈M} = inf {ακ̂(F ) + Σ(A,D \ sF ) : F ∈ T is finite and w0 ∈ F} , (8)

where M =M(A,α,w0) is the set of all (A,α,w0)-admissible measures. Furthermore, there is
at least one maximal admissible measure µ0 for which

µ0(T) = inf {ακ̂(F ) + Σ(A,D \ sF ) : F ∈ T is finite and w0 ∈ F} (9)

PROOF. The set D \ sF is a disjoint union of tends of the kind hI , with w0 /∈ I, so by the
definition of (A,α,w0)-admissible measure, the “sup” on the left hand side is less than or equal
to the “inf” on the right hand side.

To see the other direction of the inequality, define a finite set F0 consisting of w0 and all those
points on T which are “oblique projections” of points of A in the annulus sin(ϕ/2) < |z| < 1.
Moreover, let µ̃ denote the measure with constant density on each Ik and such that µ̃(Ik) = µ(Ik)
for all k, where {Ik}Nk=1 are the complementary arcs of F0 and N is the cardinality of F0. Then,
Lemma 5.17 give us that µ̃ is a (A,α,w0)-admissible measure.

Each measure µ̃ is described by a vector x = (x1, · · · , xN ), where xk = µ(Ik). We are thus
led to a standard optimization problem from Linear Programming: maximize the functional

L(x) = x1 + · · ·+ xN ,

where the positive vector x = (x1, · · · , xN ) satisfies N(N + 1)/2 restrictions of the type

xk + xk+1 + · · ·+ xl ≤ bk,l, 1 ≤ k ≤ l ≤ N, (10)

where each quantity bk,l is given by

bk,l = ακ(Ik,l) + Σ(A, hIk,l),

where Ik,l is the arc obtained by filling in finitely many points in the union Ik ∪ Ik+1 ∪ · · · ∪ Il.
Notice that the inequality (10) corresponds to the inequality of Definition 5.16 with arcs I whose
endpoints are in F0. We will refer to this as the optimization problem.

Let C denote the closed convex polyhedron in RN defined by the above restrictions

xk + xk+1 + · · ·+ xl ≤ bk,l, 1 ≤ k ≤ l ≤ N,

and denote by C+ its intersection with RN+ =
∏N R+, where R+ is the half-axis R+ = [0,+∞).

See that the “inf” over all finite subsets F ⊂ T appearing in the formulation of the proposition
can only get bigger if we restrict F to be subsets of the “oblique projected” set F0, so it is clearly
enough to prove the equality under the additional restriction F ⊂ F0.

Thus, in terms of the optimization problem stated above, the assertion of the lemma can
now be reformulated as follows:

max {L(x) : x ∈ C+} = min
∑
ν

bkν ,Iν , (11)

where the minimum is taken over all simple covering {[kν , Iν ]}ν of NN = {1, 2, · · · , N}. We will
refer to (11) as the min-max equation. Note that we here deviate from standard notation and
let [k, l] stand for an interval consisting of integers and not of reals.
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It is at least clear that on C+, L(x) assumes its maximum somewhere. We claim that
the maximum is in fact assumed at some point x = (x1, · · · , xN ) ∈ C+ with xj > 0 for all
j = 1, · · · , N . To this end, take a point x ∈ C+, with xj = 0 for some j. There may be a few
zero slots clustering together, so say that xj = 0 on the “interval” k < j < l, but that at the
endpoints we have xk > 0 and xl > 0. For a small parameter ε > 0, consider the point

x′ = (x1, · · · , xk−1, xk − ε(l − k − 1), ε, · · · , ε, xl, · · · , xN ).

We now use the property of the given quantities bk,l, namely that they are positive and strictly
monotonically increasing in the interval [k, l]: bk,l < bk′,l′ , whenever [k, l] is strictly contained
in [k′, l′]. It follows that the competing point x′ is in C+ for sufficiently small ε, and moreover,
L(x′) = L(x). If x is the point whenever L(x) assume its maximum, we treat all clusters of zeros
the same way, and find a (perhaps different) point x′ ∈ C+ with L(x′) maximal, and x′j > 0 for
all j = 1, · · · , N .

We next claim that L(x) ≤ L(x′) for all x ∈ C, in fact, for all x ∈ C+. Suppose for the
moment that at some point x0 ∈ C, the inequality L(x0) > L(x′) holds. Then we consider points
x close to x′ along the line segment connecting x′ with x0. Such x will be in C by convexity,
and they are in RN+ , and hence in C+. the value of L(x) must be slightly bigger than L(x′), a
contradiction.

We can now apply the standard duality theorem of linear programming due to Gale, Kuhn,
and Tucker [8]. To formulate the result, we write the N(N + 1)/2 inequalities defining C as

〈x, ej〉 ≤ bj , j = 1, 2, · · · , N(N + 1)/2,

where bj equals bk,l for the pair (k, l) numbered by j, and similarly, ej stands for the vector
(0, · · · , 0, 1, · · · , 1, 0, · · · , 0) in RN , with 1’s precisely on the interval [k, l] associated with the
index j. Here 〈·, ·〉 is the usual inner product of RN .

We also write L(x) = 〈x, L〉, where L = (1, 1, · · · , 1). With this notations, the duality
theorem assure us that

max {〈x, L〉 : x ∈ C+} = max {〈x, L〉 : x ∈ C}

= min

∑
j

θjbj : θj ∈ R+ for all j,
∑
j

θje
j = L

 .
(12)

The min-max equation (12) claims that the above minimum is achieved with coefficients θj ∈
{0, 1}. The points θ = (θ1, · · · , θN(N+1)/2) ∈ RN(N+1)/2 with∑

j

θje
j = L

constitute −by inspection of the vectors involved (the ej ’s and L)− a closed convex lower-
dimensional polyhedron S contained in the cube [0, 1]N(N+1)/2. We show that the polyhedron
S is the closed convex hull of “edge points” θ ∈ S of the type that θj ∈ {0, 1} for every j. The
min-max equation then follows easily. Points θ with positive rational coordinates are dense in
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S, and it suffices to obtain that there are in the convex hull of the “edge points”. Multiplying
by the least common denominator n of the positive rationals θ1, · · · , θN(N+1)/2, we have∑

j

ϑje
j = nL, (13)

where ϑj = nθj ∈ Z+. Here, Z+ = {1, 2, 3, · · · } stands for the set of all positive integer. We
interpret the above situation in terms of covering. Let J stand for the set of all closed intervals
J = [k, l] in the integers Z whose end points are integers satisfying 1 ≤ k ≤ l ≤ N . A system
P = {Jν}ν = {[kν , lν ]}ν of such intervals (repetitions are allowed) is called an n-fold covering
(or n-covering, to shorter the notation) of NN = {1, 2, · · · , N} if every n ∈ NN belongs to
exactly n intervals from P (if n = 1, we speak of a simple covering). In (13), we have an n-fold
covering of NN supplied by the various support intervals of the coordinates of the vectors ej ,
with multiplicities as expressed by θj . we now claim:

Every n-covering P of NN is the union of n simple coverings. In fact, every interval J =
[k, l] ∈ P with l < N has the property that l+ 1 is covered n times by P \{J} while l is covered
only n − 1 times. This is possible only if there is an interval in P \ {J} whose left endpoint is
l + 1. The rest is done by induction.

This means that the integer-valued vector ϑ = (ϑ1, · · · , ϑN(N+1)2) can be written as a sum
of n vectors of the type ε = (ε1, · · · , εN(N+1)/2), where εj ∈ {0, 1} for all j and∑

j

εje
j = L;

each ε is then an “edge point” of S. that is, θ is a convex combination of “edge points”, as
claimed. The proof is complete. �

Lemma 5.19 Let λ be a measure on T such that

λ(I) ≤ ακ(I) + α(log 2)|I|s, (14)

where α > 0 and I ⊂ T is an open arc. Then∫
T

1− |z|2

|ζ − z|
dλ(ζ) ≤ α log

1

1− |z|
+ C,

where C is a constant that only depends on α and z ∈ D.

PROOF. Let Pz(ζ) = P (z, ζ) be the Poisson kernel at z ∈ D. By Fubini’s theorem we have that∫
T
Pz(ζ)dλ(ζ) =

∫
ζ∈T

(∫ Pz(ζ)

0
dt

)
dλ(ζ) =

∫ ∞
0

(∫
{Pz(ζ)>t}

dλ(ζ)

)
dt

=

∫ ∞
0

λ({Pz > t})dt.
(15)
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Now, by simplicity, let’s assume that z = r with 0 < r < 1. It follows from (14) and (15) that∫
T
Pz(ζ)dλ(ζ) = (1− r2)

∫ 1/(1−r)2

0
λ
({
ζ ∈ T : |ζ − r| <

√
1/t
})

≤ α(1− r2)

∫ 1/(1−r)2

0

(√
1/t

2π
log

2πe√
1/t

+ (log 2)

√
1/t

2π

)
dt

≤ α(1− r2)
2 log

1

1− r
+ 2 log(2π)

2π(1− r)
+ C1

≤ α log
1

1− r
+ C2.

where C1, C2 are some constant values that only depends on α and r. �

We can now prove the main theorem of this section

Theorem 5.20 Suppose A = {an}n is a sequence in D. Suppose

Σ(A, sF ) ≤ ακ̂(F ) +O(1)

holds for all finite subsets F of T, where O(1) is bounded independently of F . Then there exist
a function f ∈ A−α such that A is its zero set.

PROOF. Without loss of generality, we can assume that 0 /∈ A. Let A0 be a finite subsequence of
A. Now we choose an arbitrary w0 ∈ T, construct as in Proposition 5.18 a maximal (A0, α, w0)-
admissible measure µ0, and for the function

f0(z) = BA0(z)Φ(z),

where BA0 is the Blaschke product for A0 and Φ is the outer function

Φ(z) = exp

(∫
T

ξ + z

ξ − z
dµ0(ξ)

)
.

We are going to obtain an upper estimate for ‖f0‖A−α and a lower estimate for |f0(0)|, both
independent of A0 ⊂ A. To this end, we fix a point ζ ∈ T and consider two subsequences of A0:
A′0 = A0 ∩ s{ζ,−ζ} and A′′ = A0 \ A′0. Let BA′0 and BA′′0 be the Blaschke products for A′0 and
A′′0, respectively. For each an ∈ A′′0, let $n = $ζ(an) be its oblique projection. Form an atomic
measure σ on T by placing at each $n a point mass of magnitude σn = (1 − |an|2)/2, and let
Ψ = ΦSσ, where Sσ is the singular inner function

Sσ(z) = exp

(
−
∫
T

ξ + z

ξ − z
dσ(ξ)

)
.

From its definition, we see that the measure σ has

σ(I) = Σ(A′′0, hI) = Σ(A0, hI),

for each open arc I in the punctured circle T\{ζ,−ζ}. The (A0, α, w0)-admissibility of µ0 means
that

µ0(I) ≤ ακ(I) + Σ(A0, hI),
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for any open arc I in T \ {w0}. We need this inequality for arcs that contain the point w0, too.
This is achieved by the following argument, if we pay a small price. If we partition an arc I ⊂ T
into two arcs I1 and I2, then

|I|s log
e

|I|s
≤ |I1|s log

e

|I1|s
+ |I2| log

e

|I2|s
≤ |I|s log

e

|I|s
+ (log 2)|I|s.

This implies that
µ0(I) ≤ ακ(I) + α(log 2)|I|s + Σ(A0, hI)

holds for all arcs I, also those containing the point w0.

The boundary measure for the zero-free function Ψ is µ0 − σ, and putting the above obser-
vations together, we have

(µ0 − σ)(I) ≤ ακ(I) + α(log 2)|I|s
for every arc I in T \ {ζ,−ζ}. We apply this to arcs having ζ as one endpoint. It follows from
Lemma 5.19 that

|Ψ(z)| = exp

(
Re

∫
T

ξ + z

ξ − z
(dµ0 − dσ) (ξ)

)
= exp

(∫
T
P (z, ζ) (dµ0 − dσ) (ξ)

)
≤ exp

(
α log

1

1− |z|
+ C1

)
=

C2

(1− |z|2)α

where C1 and C2 are some constants that only depends on α and z = tζ, for 0 ≤ t < 1. At this
point, we apply Lemma 5.15, to get

|BA′′0 (z)| ≤ |Sσ(z)|, z = tζ,

for 0 ≤ t < 1. The point ζ ∈ T is arbitrary, and hence ‖f0‖A−α ≤ C2.

We note that
log |BA0 | = −Λ(A0,D) and log |Φ(0)| = µ0(T),

where the logarithmic sum function Λ is as in (4), so that for the function f0 = BA0Φ, we have

log |f0(0)| = −Λ(A0,D) + µ0(T).

By Proposition 5.18 and the maximality of µ0,

µ0(T) = inf {ακ̂(F ) + Σ(A,D \ sF ) : F ⊂ T is finite and w0 ∈ F} .

We obtain

log
1

|f0(0)|
= Λ(A0,D)− µ0(T)

= − inf {ακ̂(F ) + Σ(A,D \ sF ) : F ⊂ T is finite and w0 ∈ F}
+ Σ(A0,D) + [Λ(A0,D)− Σ(A0,D)]

= sup {Σ(A, sF )− ακ̂(F ) : F ⊂ T is finite and w0 ∈ F}
+ [Λ(A0,D)− Σ(A0,D)] .
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Since

0 ≤ log
1

t
− 1

2
(1− t2) = O

[
(1− t)2

]
as t→ 1,

and the assumption on the sequence A = {an}n easily implies (see the proof of Corollary 5.13)∑
n

(1− |an|)2 < +∞,

we have that

Λ(A0,D)− Σ(A0,D) ∼
∑
an∈A0

(1− |an|)−
1

2

∑
an∈A0

(1− |an|2) = O(1),

with a bound that is independent of which particular finite subsequence A0 we have picked.
From the assumption of the theorem, we thus have

log
1

|f0(0)|
= O(1),

with a bound independent of A0 ⊂ A.

Now, take a nested sequence of a finite subsequence of A, A1 ⊂ A2 ⊂ A3 ⊂ · · · , with
A = ∪nAn, and construct as above functions fn for each An. The functions {fn} form a normal
family. Hence there is a subsequence {fnk}k converging to an analytic function f uniformly on
compact subsets of D; the function f is in A−α and its zero sequence is A. �

Corollary 5.21 Suppose A is a sequence in D with D+(A) < α. Then A is the zero set of a
function in A−α.

5.4 Zero sets of functions in Bpα
In this section we consider zero sets for the spaces Bpα. The main work was done in the

previous sections and in Chapter 3; we only have to define what is an inner function for Bpα
spaces and a proposition which involves such functions.

Definition 5.22 A function ϕ in Bpα is called a Bpα-inner function if∫
D

(|ϕ(z)|p − 1)zndBp
α(z) = 0

for all nonngative integers n.

It follows easily from the above definition that a function ϕ in Bpα is an Bpα-inner function if
and only if ∫

D
|ϕ(z)|pq(z)dBp

α(z) = q(0)

for every polynomial q, and this condition is clearly equivalent to∫
D
|ϕ(z)|ph(z)dBp

α(z) = h(0),

where h is any bounded harmonic function in D. In particular, every Bpα-inner function is a unit
vector in Bpα.
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An obvious example of an Bpα-inner function is a constant times a monomial.

The following lemma will show us that every Bpα-inner function is a contractive multiplier
from the classical Hardy space Hp into Bpα and we will obtain an estimate for such Bpα-inner
functions.

Lemma 5.23 If ϕ is a Bpα-inner function, then ϕ is a contractive multiplier from Hp into Bpα,
and consequently,

|ϕ(z)| ≤ 1

(1− |z|2)α−1/p
, z ∈ D.

PROOF. Suppose f ∈ Hp and let h be the least harmonic majorant of |f(z)|p. More explicitly,

h(z) =
1

2π

∫
D
P (eit, z)|f(eit)|pdt, z ∈ D,

where P (eit, z) is the Poisson kernel at z ∈ D. By Fatou’s lemma and the definition of Bpα-inner
functions, ∫

D
|ϕ(z)|Ph(z)dBp

α(z) ≤ lim inf
r→1−

∫
D
|ϕ(z)|phr(z)dBp

α(z) = h(0),

where hr(z) = h(rz) for z ∈ D. It follows that∫
D
|ϕ(z)f(z)|pdBp

α(z) ≤
∫
D
|ϕ(z)|ph(z)dBp

α(z) ≤ h(0) = ‖f‖pHp ,

so that ϕ is a contractive multiplier from Hp into Bpα.

for any z ∈ D, consider the function

fz(w) =

(
1− |z|2

(1− zw)2

)1/p

, w ∈ D.

Then fz is a unit vector in Hp, and so ϕfz has norm less than or equal to 1 in Bpα. Moreover,
by the estimation (2) of Chapter 2, we know that

|ϕ(z)fz(z)| ≤
1

(1− |z|2)α
. (16)

It follows that

|ϕ(z)| ≤ 1

(1− |z|2)α−1/p
, z ∈ D,

as claimed. �

The following proposition will exhibit a close relation between Bpα-inner functions and in-
variant subspaces of Bpα. In particular, such proposition will give us more examples of Bpα-inner
functions.

We will say that a closed subspace I of Bpα is invariant if zf ∈ I whenever f ∈ I. It is easy
to see that a closed subspace I is invariant if and only if it is closed under multiplication by
bounded analytic functions.
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A convenient example of invariant subspace is the following one. Consider A = {an}n a
Bpα-zero set, if IA consists of all functions in Bpα whose zero set contain A (counting multiplic-
ities), then IA is an invariant subspace of Bpα. These subspaces are called zero-based invariant
subspaces.

Proposition 5.24 Let IA ⊂ Bpα be the zero-based invariant subspaces as above. Suppose that G
is any function that solves the extremal problem

sup
{

Ref (n)(0) : f ∈ IA, ‖f‖Bpα ≤ 1
}
,

where n is the smallest nonnegative integer such that there exists a function f ∈ IA with f (n)(0) 6=
0. Then G is a Bpα-inner function.

PROOF. It is obvious that G is a unit vector. We will prove the proposition by a variational
argument.

Fix a positive integer k, and set

reiθ =

∫
D
|G(z)|pzkdBp

α(z),

where 0 < r < 1 and −π < θ ≤ π. For any complex number λ, we consider the function

fλ(z) =
(1 + λzk)G(z)

‖(1 + λzk)G‖Bpα
.

Since fλ is a unit vector in IA, the extremal property of G gives

Re f (n)(0) ≤ Re G(n)(0).

This implies that

1 ≤
∫
D
|G(z)|p|1 + λzk|pdBp

α(z)

for all λ ∈ C, so that

1 ≤ 1 + pRe

[
λ

∫
D
|G(z)|pzkdBp

α(z)

]
+O(|λ|2).

Put λ = −εeiθ, where ε > 0 is small and θ is as above. We obtain that

0 ≤ −r +O(ε).

Letting ε→ 0, we see that r = 0, and so G is Bpα-inner. �

We are almost prepared to our main theorems, we only need to do some remarks that will
be useful. First, by definition we have that for 0 < p < +∞ and 1/p < α < +∞,

f ∈ Bpα ⇔
∫
D

(
|f(z)|(1− |z|2)α

)p dA(z)

(1− |z|2)2
< +∞, (17)

and for any 0 < β we have that

f ∈ A−β ⇔ (1− |z|2)β|f(z)| ≤ C, z ∈ D, (18)

where C > 0 is a constant that depends on f . Hence it follows from (17) and (18) that,
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(i) If f ∈ A−α ⇒ f ∈ Bpα+1/p+ε, for all ε > 0.

(ii) If f ∈ Bpα+1/p ⇒ there exists g ∈ A−α such that the zero set of g contains the zero set of
f , counting multiplicities.

We are prepared to derive some very sharp conditions that are necessary or sufficient for a
sequence A to be a zero set of a function in Bpα. For 0 < p < +∞ and 1/p < α < +∞, let

Bpα− =
⋃

β: β<α

Bpβ,

and
Bpα+ =

⋂
β: α<β

Bpβ.

Notice that Bpα− ⊆ B
p
α ⊆ Bp+α (see Theorem 2.5).

Theorem 5.25 Suppose 0 < p < +∞, 1/p < α < +∞, and that A is a sequence in D. Then A
is a zero for Bpα+ if and only if D+(A) ≤ α− 1/p.

PROOF. If D+(A) ≤ α − 1/p, then by Theorem 5.2, A is a zero set of a function in A−β+1/p
+ .

Since A−β+1/p
+ ⊆ Bpα+, we conclude that A is a zero set of some function in Bpα+.

Conversely, if A is a zero set for Bpα+, then A is a zero set for some function in Bpβ, for all

β > α. Let Gβ be an extremal function for the zero-based invariant subspace IA of Bpβ. Hence,

by Proposition 5.24 we know that Gβ is a Bpβ-inner function and by Lemma 5.23 we have that

Gβ ∈ A−β+1/p. Let Aβ be the zero set of Gβ. Then A ⊂ Aβ, and hence by Theorem 5.2,

D+(A) ≤ D+(Aβ) ≤ β − 1/p.

Letting β → α−, we arrive at D+(A) ≤ α− 1/p. �

Theorem 5.26 Suppose 0 < p < +∞, 1/p < α < +∞, and A is a sequence in D. Then A is a
zero set for Bpα− if and only if D+(A) < α− 1/p.

PROOF. If D+(A) < α−1/p, then by Corollary 5.21 A is a zero set for a function in A−α+1/p+ε,
for all 0 < ε small enough. Since A−α+1/p+ε ⊂ Bpα−, we conclude that A is a zero set of a function
in Bpα−.

Now, assume that A is a zero set of a function in Bpα−, then there exists 1/p < β < α
such that A is a zero set for a function in Bpβ ⊂ B

p
α−. Let Gβ be the extremal function for the

zero-based invariant subspace IA of Bpβ, then by Proposition 5.24 we know that Gβ is a Bpβ-inner

function and by Lemma 5.23 we have that Gβ ∈ A−β+1/p. Let Aβ be the zero set of Gβ, hence,
A ⊂ Aβ and by Theorem 5.2,

D+(A) ≤ D+(Aβ) ≤ β − 1/p < α− 1/p.

�

Note that the result above simply state that the condition D+(A) ≤ α− 1/p is a necessary
condition and the condition D+(A) < α− 1/p is a sufficient condition for A to be a zero set of
a function in Bpα.
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