
Treball final de grau

GRAU D’ENGINYERIA INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

A conversational agent that
evaluates user experience in a

Virtual Reality game

Autor: Changhao Wang

Directora: Dra. Inmaculada Rodŕıguez Santiago

Realitzat a: Departament de Matemàtiques i Informàtica

Barcelona, June 13, 2022

Abstract

Background. In the last few years, both chatbots and Virtual Reality games have become a hot topic of
discussion. On the one hand, chatbots have been used in recent years, especially for customer service,
and on the other hand, VR is being promoted thanks to the commitment of large companies such as
Facebook and also thanks to lower equipment costs. However, there has been little discussion on the
use of the conversational agent in Virtual Reality games to gather user opinions. The main objective
of this project focuses on the creation of a conversational agent, capable of interacting with the user
through voice and text, and then integrate it into a Virtual Reality game to evaluate user experience
in that immersive environment. Specifically, to pave the way of using conversational interaction in a
Virtual Reality environment to improve the efficacy of the evaluation process. We design and create a
survey agent using Rasa open source platform. In order to evaluate UX, we use the Game Experience
Questionnaire. Finally, we integrate the Rasa agent into a game scene in Unity that works in Virtual
Reality environment.

2

Resumen

En los últimos años, tanto los chatbots como los juegos de Realidad Virtual se han convertido en un
tema candente de discusión. Por un lado los, los chatbots se están utilizando en los ultimos años sobre
todo para atencion al cliente, y por otro se está impulsando la VR gracias a la apuesta de grandes
empresas como facebook y gracias también al abaratamiento de costes de los equipos. Sin embargo,
poco se ha hablado del uso del agente conversacional en juegos de Realidad Virtual para recolectar
opiniones del usuario. El objetivo principal se focaliza en la creación de un agente conversacional, capaz
de interactuar con el usuario mediante voz y texto, e integrarlo en un juego en Realidad Virtual para
evaluar la experiencia de usuario en un entorno inmersivo. Concretamente, allanar el camino para utilizar
la interacción conversacional en un entorno de Realidad Virtual para mejorar la eficacia del proceso de
evaluación. Diseñamos y creamos un agente conversacional utilizando la plataforma de código abierto
Rasa. Para evaluar la UX, utilizamos el Game Experience Questionnaire. Finalmente, integramos el
agente Rasa en una escena de juego en Unity que funciona en un entorno de Realidad Virtual.

3

Resum

Context. En els últims anys, tant els chatbots com els jocs de Realitat Virtual s’han convertit en un tema
candent de discussió. D’una banda, els chatbots s’estan utilitzant en els últims anys sobretot per a atenció
al client, i per un altre s’està impulsant la VR gràcies a l’aposta de grans empreses com facebook i gràcies
també a l’abaratiment de costos dels equips. Tot i això, poc s’ha parlat de l’ús de l’agent conversacional
en jocs de Realitat Virtual per a recol·lectar opinions de l’usuari. L’objectiu principal es enfocalitza en
la creació d’un agent conversacional, capaç d’interactuar amb l’usuari mitjançant veu i text, i integrar-lo
en un joc a Realitat Virtual per avaluar l’experiència d’usuari en un entorn immersiu. Concretament,
aplanar el camı́ per a utilitzar la interacció conversacional en un entorn de Realitat Virtual per a millorar
l’eficàcia del procés d’avaluació. Dissenyem i creem un agent d’enquesta utilitzant la plataforma de codi
obert Rasa. Per avaluar l’UX, fem servir el Game Experience Questionnaire. Finalment, integrem l’agent
Rasa a una escena de joc a Unity que funciona en un entorn de Realitat Virtual.

Contents

Index of figures i

1 Introduction 2

2 Goals 3

2.1 General goal . 3

2.2 Specific goals . 3

2.3 Scheduling . 4

3 Background 5

3.1 Virtual Reality games . 5

3.2 In-game UX questionnaires . 6

3.2.1 Game Experience Questionnaire . 6

3.2.2 Game User Experience Satisfaction Scale Questionnaire (GUESS) 9

3.2.3 Conclusion . 11

4 Related concepts 12

5 Conversational platforms 16

5.1 Dialogflow . 16

5.2 Microsoft Azure . 16

5.3 Rasa Open Source . 17

6 Analysis 18

6.1 Functional and non functional requirements . 18

6.2 Use cases . 18

7 Design 26

7.1 Architecture diagram . 26

7.2 Survey chatbot designed in Rasa . 27

7.2.1 NLU training data: Intents . 29

7.2.2 NLU training data: Custom actions . 33

ii

7.2.3 NLU training data: Domain . 33

7.2.4 NLU training data: Stories and rules . 37

7.3 Agent designed in Unity . 40

7.3.1 Sequence diagrams . 41

7.3.2 Agent behavior . 44

7.3.3 Pause and resume behaviours of the Rasa agent . 46

7.3.4 Dialogue overview . 47

7.3.5 Class diagram . 50

8 Implementation 52

8.1 Technologies used . 52

8.1.1 Unity . 52

8.1.2 C# . 52

8.1.3 Oculus Quest . 52

8.1.4 Python . 53

8.1.5 YAML . 53

8.1.6 Okteto: a deployment platform . 54

8.1.7 MongoDB . 55

8.2 Dismissed technologies . 55

8.2.1 Text-to-speech . 55

8.2.2 Speech-to-txt . 56

8.2.3 Dismissed database platforms . 56

8.3 Unity 3D scene and Rasa Agent . 56

8.3.1 Architecture diagram of the game scene . 56

8.3.2 Databases . 57

8.3.3 Deployment . 59

8.3.4 Integration in Unity . 59

9 Conclusions and future work 65

10 References 67

11 Appendix I - GEQ In-game version 70

iii

12 Appendix II - Domain.yml 71

13 Appendix III - Technical guide 72

13.1 Rasa . 72

13.2 Database . 72

13.3 Deployment . 75

13.4 Unity . 77

14 Appendix IV - User guide 84

iv

Index of figures

1 Gantt chart of this project. Source: Own . 4

2 The final project of Iván Gómez. Source: [12] . 5

3 The final project of Alex Fuentes. Source: [11] . 6

4 GEQ in-game version module. Source: [17] . 8

5 GUESS short version. Source: [19] . 10

6 Example of a POST request. Source: Own . 14

7 Example of a bot responses (two consecutive actions) to an intent. Source: Own 14

8 IBM Watson Assistant. Source: http://tossa.com.mx/que-es-ibm-watson-assistant/ 16

9 Dialogflow. Source: https://dialogflow.cloud.google.com/ 16

10 Microsoft Azure Bot Service. Source: https://www.inforges.es/post/microsoft-azure-bot-
service . 17

11 Rasa Open Source. Source: https://github.com/RasaHQ/rasa 17

12 Use cases diagram. Source: Own . 19

13 The architecture diagram. Source: Own . 27

14 The Arch. diagram and functioning. Source: Own . 28

15 FallbackClassifier defined in config.yml. Source: Own . 29

16 Low confidence response defined in domain.yml. Source: Own 29

17 Illustration of intent in nlu.yml: greet. Source: Own . 30

18 Illustration of internal intent in nlu.yml: Q2 ANS. Source: Own 30

19 Illustration that helps understanding the internal intents. Source: Own 31

20 Illustration that shows all the defined intents. Source: Own 32

21 Illustration of an extract (part) of the custom action. Source: Own 33

22 Illustration of declared intents in domain.yml. Source: Own 34

23 Illustration of declared responses templates in domain.yml. Source: Own 35

24 Illustration of the defined custom actions. Source: Own 37

25 Illustration of a simple story. Source: Own . 38

26 Conversation diagram of the happy path story. Source: Own 38

27 Conversation diagram of the say goodbye rule example. Source: Own 38

28 Illustration of the say goodbye rule. Source: Own. Source: Own 38

29 Illustration of the fallback rule. Source: Own . 39

v

30 Illustration of the data folder. Source: Own . 39

31 The architecture diagram of the Unity game. Source: Own 40

32 Sequence diagram of UC-1: Start the initial conversation. Source: Own 42

33 Sequence diagram of UC-3 and UC-4: Answer UX question in text mode and voice mode.
Source: Own . 43

34 Illustration that shows the agent’s behaviours. Source: Own 45

35 The Rasa rule that handles interruption intent. Source: Own 46

36 Illustration that helps understanding the internal intent RESTORE . Source: Own 47

37 Agent-User dialogue: question-answer. Source: Own . 48

38 User-Agent dialogue: last question. Source: Own . 49

39 Class diagram. Source: Own . 51

40 Oculus Quest logo. (Source: https://www.instavr.co/solutions/vr-outputs/oculus-quest) . 53

41 Example of a YAML file. Source: Own . 54

42 Example of a MongoDB document. Source: Own . 55

43 The architecture diagram of the game scene. Source: Own 57

44 Collection of the user database. Source: Own . 58

45 IP access list of the database. Source: Own . 59

46 Illustration of the game scene. Source: Own . 60

47 Illustration of the GameManager. Source: Own . 61

48 Illustration of the GameStageController. Source: Own 62

49 Illustration of the SpeechManager. Source: Own . 62

50 Illustration of the Canvas. Source: Own . 63

51 Illustration of a game scene in VR. Source: Own . 64

52 The measurement scale in GEQ. Source: [17] . 70

53 Illustration of the complete domain.yml. Source: Own . 71

54 Illustration of how to connect to the MongoDB database. Source: Own 73

55 Illustration of how to generate the connection URL. Source: Own 74

56 Illustration of how to change the connection URL in actions.py. Source: Own 74

57 Docker file of the two Rasa servers. Source: Own . 75

58 Docker-compose file of the servers. Source: Own . 76

59 okteto.yml file that configure the external connection. Source: Own 77

vi

60 Illustration of Rasa servers running on the Okteto Cloud. Source: Own 77

61 Installation of Android Build Support Module. Source: Own 78

62 Installation of Android SDK Platforms. Source: Own . 78

63 Installation of Android SDK Tools. Source: Own . 79

64 XR Plug-in Management Windows, Mac, Linux settings. Source: Own 80

65 XR Plug-in Management Android settings. Source: Own 80

66 Package Manager. Source: Own . 81

67 Build Settings. Source: Own . 82

68 Player Settings. Source: Own . 83

1

1 Introduction

Nowadays, it feels like every week another ground-breaking invention or idea is revealed. The world
is growing fast and so is technology. For a few years, the video game sector has been experiencing its
golden age. It is not only a hobby, but it has become an industry in continuous growth that adds more
followers every day and demands qualified professionals in different areas. Due to the highly competitive
nature of the sector, game companies have been continuously improving and adopting new technologies
and enhancements in their business. For the game companies, the goal is, on the one hand, to seek
methods to improve their game performance and quality and, on the other, aspire to gather opinions
about players’ experience to improve the design of the games. In the past, most companies would incline
to gather opinions in offline festival events, such as San Diego comic-con or similar game con. Despite
that, nowadays there are a lot of companies that have extended the channel to online too, through forum,
email, live-streaming, twitter votes, etc.

Although, most of the games in the market are mainly from platforms like PCs, video game consoles
or mobiles, while virtual reality games only take a small portion of the big game market. Since now is
just the beginning for virtual reality games, it’s really necessary to study how to do UX evaluation in
this kind of games. The advantage of VR games is that they are played using VR headset which makes
the immersion so different compared to the traditional game platform like PC, PlayStation, mobile, etc.
During the game session, users can actually feel like playing in a real world, that’s the potential and
capability of virtual reality games.

There are already works that discuss this subject, particularly the one that pushes this project forward
[16]. The article proposes the use of questionnaires when users are playing the game in order to gather
users’ fresh opinions and to avoid the possibility of forgetting some significant contents and the feelings
on that particular moment. All this gave birth to this project that aims to study how to evaluate user
experience using conversational agents in virtual reality games. In order to achieve the goal, there must
be a VR game and there must be a conversational agent.

Regarding the VR game, this project extends from two previous projects carried out by UB students
[12][11] that created and enhanced a virtual reality game that aim to teach children logic thinking with
programming. This was thought as the final piece of the puzzle, since we need to implement the bot and
integrate it in the game. For the conversational agent, after some studies and trials, the RASA open
source platform is chosen because it’s totally free and covers all the necessity of this project, and not to
mention the big friendly community that helps each other out.

So, the motivation is all about designing and implementing a chatbot, then integrating it into a virtual
reality game to evaluate the user experience through in-world questionnaires.

2

2 Goals

2.1 General goal

The main goal of this project is to study in-world evaluation of user experience using conversational
agents in virtual reality games. The main goal can be subdivided into two separate goals: the first one
is to design a survey chatbot and the second one is to integrate it into a VR game.

To reach these goals, it will be necessary to acquire the skills and knowledge to work with a self designed
conversational agent, in addition to acquiring the basic knowledge to work with new frameworks and
game engines such as those used in this project.

2.2 Specific goals

The main goal is broken down in subgoals that are defined in the following:

• Study conversational agents in this day and age.

• Investigate different UX surveys and select the right one for this project.

• Analyze different conversational platforms and choose one that is suitable and compatible for the
implementation of the conversational agent.

• Study the chosen conversational platform and implement the chatbot.

• Learn how to work with MongoDB (database).

• Learn how to create game scenes and to program behaviors in the Unity game engine.

• Investigate how to integrate a conversational agent in a Unity scene and make it work on VR.

• Study how to integrate text-to-speech and speech-to-text features in Unity.

• Get familiar with Oculus platform.

• Investigate how to export a Unity project to Oculus Quest.

• Investigate how to deploy the conversational agent to the live environment so that we can access
to it in the VR game or anywhere we want.

• Study the previous final projects that developed a VR game and integrate a conversational agent
that engages in a conversation with the user during the game.

• Learn how to integrate the agent into the Restaurant Code VR game using Unity.

3

2.3 Scheduling

This section shows a Gantt chart that represents the way in which the tasks were distributed along the
semester.

Figure 1: Gantt chart of this project. Source: Own

4

3 Background

3.1 Virtual Reality games

The initial game project was created in a bachelor final project by Iván Gómez. The aim of the project
was to teach young children aged 12 to 16 to learn and understand the logic behind programming. So
for that, the Cooking Code game was created to achieve this goal. The game is set in a future world,
where robots and humans live together and even the language they speak is mixed. The player will have
to cook for everyone as the chef of a restaurant, and the clients will be the robots. The game consists
in players needing to understand all the orders for hamburgers that are written in pseudocode and then
assemble the hamburger correctly before the time ends.

Figure 2: The final project of Iván Gómez. Source: [12]

Based on the initial game, the second one was elaborated also in a bachelor final project by Alex Fuentes.
The aim of the project was to extend the original game and add functions that allow users to write
pseudocode too and take one more step to understand better the logic of programming. During the
game, players will have to act as waiters and go around the restaurant to pick up orders and then
translate the natural language of received orders to pseudocode.

5

Figure 3: The final project of Alex Fuentes. Source: [11]

3.2 In-game UX questionnaires

This section shows two UX questionnaires that are used to evaluate user’s game experience and explains
which one is used in this project.

3.2.1 Game Experience Questionnaire

The Gaming Experience Questionnaire (GEQ) [17] captures the gaming experience based on a number
of elements. It aims to examine the gaming experience with others (i.e the social experience), as well as
the post-game and in-game experience. It has a modular structure composed of: a core questionnaire,
a social presence module, an in-game model and a post-game module. These modules are intended to
be tested immediately after a game session has ended, except for in-game version, in the order listed
above. In order to make the measure to be more robust, each module uses certain items per component
to compute the scores.

The core questionnaire evaluates gaming experiences as scores bases on seven components: sensory and
imaginative immersion, tension or annoyance, competence, positive affect, negative affect, challenge and
flow. It uses five items per component, so that the component scores are computed as the average of its
items.

The social presence module evaluates psychological involvement with others co-players 1. It is based on
three components: psychological involvement- empathy, psychological involvement - negative feelings and
Behavioural involvement. It uses between five or six items per component depending on its type, so that
the scores are computed as the average of its items.

1Co-players can be in-game characters or others online player

6

The post-game module evaluates how players feels after the game finished bases on four components:
positive experience, negative experience, tiredness and returning to reality. It uses between two and six
items per component depends on the type, so that the component scores are computed as the average of
its items.

The in-game version evaluates how players feels when playing the game at multiple intervals2. It is based
on seven components: sensory and imaginative immersion, tension or annoyance, competence, positive
and negative affect, challenge and flow. It uses two items per component, so that the component scores
are computed as the average of its items (see Figure 4).

2Intervals can be in specific stages, levels, times, etc.

7

Figure 4: GEQ in-game version module. Source: [17]

To summarize, the first and second parts of GEQ are probes of the player’s feelings and thoughts while

8

playing the game; the last part, the post-game module, evaluates how the players feel after they have
finished playing; and for the in-game version, it’s a succinct version of the core questionnaire that is
evaluates how the players feel during a game session. Considering the type of the game and the timing
of the survey, the in-game version is chosen for this project because the final goal is to evaluate the UX
during the game session.

3.2.2 Game User Experience Satisfaction Scale Questionnaire (GUESS)

The game user experience satisfaction scale (GUESS) captures video game user experience by responding
to 55 items that accesses nine construct subscales: usability, narratives, play engrossment, enjoyment,
creative freedom, audio aesthetics, personal gratification, social connectivity, and visual aesthetics. [28].

The GUESS is recommended to be used to compare different games of the same genre, and the one with
the highest score should be considered as the most satisfying game. It also provides the possibility of
removing the narratives and social components when evaluate, if the game doesn’t have them, but the
validity of the scale in these circumstances needs to be done in further research [28, pg.1238-1239].

Additionally, there is a second version of the game user experience satisfaction scale [19] where aim
to develop a shorter version of questionnaire for use in iterative video games, testing and research by
truncating the original 55-items to 18-items that access nine constructs as defined in the initial version.
Compared to the initial one, the GUESS-18 is recommended when games are iterative and require quick
responses [19, pg.9][29].

9

Figure 5: GUESS short version. Source: [19]

10

3.2.3 Conclusion

Both of the two versions of GUESS are rated using a seven-point likert-scale [22] (1 = Strongly disagree,
7 = Strongly agree). An overall score is calculated by summing the scores that are obtained by averaging
the ratings within the subscales. The full GUESS normally takes around 5 to 10 minutes to complete and
the shorter version, takes around 3-5 minutes approximately instead. As for the GEQ in-game version,
the components scores are calculated as the average value of its items.

After comparing these two different type of questionnaires that validate player’s game experience, the
game experience questionnaire has been chosen because of its simplicity, its short duration and, the most
important factor, its in-game version questionnaire, since after all our goal is to evaluate player’s feeling
during a virtual process, in where users are immersed in the experience, which is exactly what the GEQ
offers [4].

11

4 Related concepts

This section explains the definition of the related concepts that will be referred along this document,
although some of them are explained in more detail on section 7.

UX

User Experience, also known as UX, is to create a meaningful and intuitive experience for users. It
adopts user’s perspective and aims to provide a memorable, complete, and satisfactory experience. In
this project, the UX in virtual reality is evaluated using a chatbot.

Chatbot

A chatbot, also known as conversational agent, is an artificial intelligence program that simulates human-
like conversation in real time via text message or voice. Chatbots always work the same routine, they
interpret what users want, process their requests, and give responses. In this project, a chatbot is used
for evaluating UX through the GEQ.

Intent

In the context of conversational interactions, an intent is the goal or purpose of the user’s input. Normally,
developers need to add examples, also known as synonyms, for each intent that chabots need to address.
These examples are then used by the chatbot to figure out different ways in which people might express
the same intent. With that being said, we can think of intents as labels for a group of examples that
express a common goal or purpose. To take an example, the following expressions might be defined as
examples of the “greeting” intent: “Hi”, “Hello”, “Hey”, etc. In this project, intents represent user’s
answers to the questions of the survey.

Entity

Entities are the pieces of information that chatbots can extract from user inputs and later on use those
details in a specific context when responding back to the user or running specific actions. An entity can
be any kind of piece of information that is relevant and important to the agent. To take an example for a
simple calculator agent, if the user asks ”What is the result of 5{operand} add{operator} 5{operand}”,
where operand and operator are the entities and their values are 5 and add, the agent could use the
extracted information to perform an addition operation, then answers ”The result of 5 add 5 is 10”.
In this project, entities haven’t been considered necessary at the design phases because we use fixed
responses (intents) from the GEQ in which we don’t need any other value to be extracted, so eventually
it’s not used at the implementation phase.

12

Action

An action is what the bot is expected to perform to answer to the user’s message. One of the most
common actions are responses, which are simple messages that our bot can send back to the users. To
take an example, if the user sends to our bot an intent “Hey” then the bot will reply with “Hello, how
are you?” (this is a response). In this project, all of the chatbot’s responses are actions such as greetings
action, questions action, say goodbye action, etc.

Slots

In simple words, slots are the chatbot’s memory that enables our conversational agents to collect and
store important pieces of information and use them in a specific context. To take an example, if the
agent asks the user what his name is and the user answers Alicia, then if at some point way later in
the conversation the user asks ”Do you remember my name?”, the agent would be able to remember
what she said and answers Alicia. In this project, slots are not used as part of implementation since it
was considered as unnecessary at the design phase because we want to store all the answers in a remote
database and we don’t need slots to store anything else.

NLP

NLP, stands for Natural Language Processing which includes NLU and NLG, enables computers to
understand human language in both written and verbal forms using deep learning techniques to complete
tasks. Typical examples for that are things like conducting a conversation in a chat bot, language
translation, etc. It works through the identification of entities and identification of word patterns using
methods like stemming, lemmatization and tokenization.

NLU

NLU, stands for Natural Language Understanding, uses semantic and syntactic analysis of speech and
text to determine the meaning of a sentence. In other words, NLU is all about a subset of NLP processes
that deal specifically with converting data from input into something the computers can understand. In
Rasa conversational platform, for example intents and their examples are used as training data for the
agent’s Natural Language Understanding model [33].

NLG

NLG, stands for Natural Language generation, it’s the process of producing a human language text
response based on some data input, basically it focuses on enabling computers to write or speak in human
language. Rasa provides the possibility of using an external HTTP NLG server to generate responses and
sends it back to the user. In this project, we don’t use NLG, for simplicity, we have predefined responses.

13

Rasa server

The Rasa server is where the developers communicate with the chatbot using REST API. A REST
API, stands for Representational State Transfer, is the interface that allows the exchange of information
between two independent software components [13]. The URL to which send the message is, by default,
”http://localhost:5005/” where localhost is the host and 5005 is the port. In order to send a message to
the Rasa server, we use POST requests where we specify the URL and the body that contains the sender
name and the message to deliver (see Figure 6).

Figure 6: Example of a POST request. Source: Own

If successful, we receive a response as showed in Figure 7.

Figure 7: Example of a bot responses (two consecutive actions) to an intent. Source: Own

14

Rasa action server

The Rasa action server runs along with the Rasa server, and it is used to run the custom actions (see
more details in section 7) for Rasa conversational agents [32]. In the case that the custom actions are
implemented and triggered by an intent, the Rasa server sends a POST request to the action server, and
it will return a JSON payload of responses. Afterwards, the Rasa server returns the responses to the
user. In this project, several custom actions are implemented for performing database queries. These
queries are in charge of storing data related to user information and conversations with the agent.

Game engagement

A good game design isn’t about if players are having fun because fun is fleeting, instead a good design
is about engaging players psychologically which allows for fun to emerge from the experience and keep
the players wanting more [14]. The game engagement can be interpreted as players’ commitment to the
gaming activities. For the game developers, it’s never an easy task to decide the right moment for players
to answer their in-game survey because depending on the high-, medium- and low-engagement-stages,
gamers respond differently to motivations which might influence the accuracy of the questionnaire [15].
In this project, we plan to create conversations between the agent and the player in several game-stages
and preferably during the medium- or low-engagement-stage to obtain the relevant information avoiding
interruption during high-engagement-stage to ensure the reliability and validity of the questionnaire [30].

Conversational turn

In the world of conversational agents, there are two types of conversational turn: the single/one-turn
interaction and multi-turn interaction (also know as follow-up). The single-turn interaction is just one
back-and-forth conversation, meaning the user talks and bot responses, or vice-versa. Although in reality,
some questions cannot be answered in a single turn. When designing a conversational agent, the user
can ask a question that needs to be filtered or refined to determine the correct answer. In this project,
one-turn interaction is mainly used in order to make the bot pausable and resumable. We don’t need to
prepare various multi-turn conversation to handle different situations, instead just break it into several
smaller single-turn interactions.

15

5 Conversational platforms

In this section, we analyze and compare technologies and solutions that can be used to solve our problem.
There are many frameworks in the sector, and new platforms continuously appearing more and more often
as the big companies see business opportunities in the world of conversational assistant.

In this section, we compare the features and possibilities of various frameworks whose functionality is to
create conversational agents, in other words chatbots. So, the discussion will focus on three platforms
that have made their name in this market and compare them to the one we chose, Rasa open source:
IBM Watson Assistant, DialogFlow and Microsoft Azure.

Figure 8: IBM Watson Assistant.
Source: http://tossa.com.mx/que-es-ibm-
watson-assistant/

Watson Assistant is a conversational agent creating service
hosted on IBM Cloud and developed in 2018 [18][3]. The
main advantage that IBM Watson assistant offers is that the
owner of the data, unlike other platforms, is not IBM but
the company that created the agent. In other words, if the
University of Barcelona uses this assistant, the data collected
by the assistant will not belong to the IBM database, but to
UB’s, something that wouldn’t happen if we used Google As-
sistant or others. Users can interact with assistants through
text or voice channels. Also offers the possibility of customiz-
ing the interface making users unaware of the existence of the
Watson Assistant. As well as the compatibility it provides
with Unity, where the Cooking Code and Restaurant Code
were built. The reason why it was excluded in this project is because the expensive paid plan that cost
132,61€/ month and it didn’t allow users to use the free plan as described. After several trials with
different accounts, identities and credit cards, this option was finally discarded.

5.1 Dialogflow

Figure 9: Dialogflow. Source:
https://dialogflow.cloud.google.com/

In 2016, Google announced the acquisition of api.ai, the plat-
form from which the project known as Dialogflow was born
[21]. Later on, it became one of the most popular frameworks
in the market because of the easy use of it and the company
behind it. DialogFlow stands out among other technologies
as it offers a wide range of conversational interfaces, from
Google Home to phones or wearables. In addition, it sup-
ports more than 14 languages and offers a usable free plan
unlike IBM Watson Assistant. The reason why it was dis-
carded from this project is because the DialogFlow version 2 is no longer compatible with Unity, which
causes the impossibility to integrate the agent into a Unity game project [2].

5.2 Microsoft Azure

16

Figure 10: Microsoft Azure
Bot Service. Source:
https://www.inforges.es/post/microsoft-
azure-bot-service

In recent times, the big technology companies are working
very hard and investing a lot of resources in a new revolution
based on Artificial Intelligence, Machine Learning, Big Data
or Virtual Reality. Microsoft, always at the forefront when
it comes to innovation, has been one of the companies that
has made the strongest commitment to these technologies,
offering numerous services supported by Azure, such as the
chatbot technology. With Microsoft Azure Bot Service users
can create, connect and manage bots with the help of the
Microsoft Bot Framework and the BotBuilder SDKs, provid-
ing artificial intelligence to any website, Office 365 tool, or use it in other applications such as Slack or
Facebook Messenger in order to improve the user experience for the customers. The reason why it was
not used in this project is because Microsoft Azure doesn’t help users manage their cloud data center,
which means users need to know how to do server monitoring and patching that might require a lot of
time to learn them.

5.3 Rasa Open Source

Figure 11: Rasa Open Source. Source:
https://github.com/RasaHQ/rasa

RASA is an open-source conversational AI framework based
on Python and NLU (Natural Language Understanding)
which provides the possibility to create custom chatbots. Be-
ing open-source provides many advantages since the users
data used by the agent does not go through a third party
framework and even the software is no longer maintained,
the chatbots can work without any problems. In addition
to that, it also offers the user the possibility to train models
and add custom actions to achieve the specific requirements.
Rasa has two main components:

• RASA NLU (Natural Language Understanding): Its
mission is to classify intents to understand what the
user’s sentence means, and extract entities that should
take note of.

• RASA Core: This part is in charge of managing the
dialog, it takes structured input from the NLU and
predicts what action to take at each moment using a
machine learning model.

In other words, Rasa NLU’s job is to interpret the input provided by the user and Rasa Core’s job is
to decide the next set of actions (responses) performed by the chatbot. Rasa NLU and Rasa Core are
independent of each other and can be used separately.

17

6 Analysis

This section details the functional and non functional requirements and use cases of the project, describing
all the possible interactions between the user and the game in order to achieve the objectives. This use
case specification makes it easy to understand the system and expresses the intent with which the user
will interact with the application, and lays a firm base for beginning the design phase.

6.1 Functional and non functional requirements

In this section, the purpose is to clearly and concisely detail each of the goals presented in this project,
as well as all its features. This information has been specified in different meetings established with the
project tutor, who in this case takes the user role. As we will see below, some initial requirements have
been modified or directly eliminated, since throughout all the meetings with the user it was determined
that some functionalities could not be carried out, or had to be carried out in another way, in mostly for
the purpose of facing obstacles as well as improving the final result. Therefore, the development of the
Rasa conversational agent will cover and have the following main functions:

• The chatbot shall be able to interact with the user in some specific stages of the game.

• The user shall be able to interact with the chatbot by texting in the specific input field.

• The user shall be able to speak with microphone and dictate their answers.

• The user shall be able to skip questions that result hard to answer, and consequently the agent will
not show them again.

• The user shall be able to pause the conversation anytime he/she want and the unanswered question
will still remain in the questions pool. A question pool is a set of questions that it is used to store
all the questions used in the GEQ in-game version.

• The user shall be able to receive a reward related to the game after answering the entire question-
naire.

For the non functional requirements, the interaction of the chatbot and the user has to be interactive
and in real time, that is, the connection between our game and the Rasa server has to be fast. The
network issues could caused problems as well, since the features of speech to text and vice-versa
require a stable connection. The chatbot design as well as its ability to communicate with the user
must be realistic to convey trust to the user.

6.2 Use cases

Once we are cleared about the requirements and needs that the system must be able to cover, we design
the use cases. A use case is a description of the steps or activities that must be performed to carry out
a process. The characters or entities that participate in a use case are called actors. In the context of
software engineering, a use case is a sequence of interactions that will develop between a system and its
actors in response to an event initiated by a main actor on the system itself.
Use case diagrams serve to specify the communication and behavior of a system through its interaction

18

with users and/or other systems. Or what is the same, a diagram that shows the relationship between
the actors and the use cases in a system. A relation is a connection between the elements of the model,
for example specialization and generalization are relations. Use case diagrams are used to illustrate
the requirements of the system by showing how it reacts to events that occur in its scope or itself (see
Figure 12).

Figure 12: Use cases diagram. Source: Own

In addition, each use case showed in the diagram will be complemented with a textual description of it,
thus achieving a more detailed and formal explanation of each one. The template used for the textual
description of the use cases and the nomenclature is the following:

• Name: The name of the use case.
• Actor: The actor that interacts with the current use case. In our this case, we have two actors:
user and bot.

• Description: A brief description of the objective.
• Preconditions: Conditions that must be fulfilled beforehand to carry out the operation.
• Normal flow: Description by phases for the fulfillment of the use case.
• Alternative flow: Describes exceptions or deviations from the normal flow.
• Postconditions: State of the system after the execution of the operation.

19

Name UC-1 Start the initial conversation

Actor Bot

Description
The chatbot is triggered and starts the conversation by introducing itself and
asking the first question.

Preconditions None

Normal flow
1. The user moves to the next game-stage where Unity sends a message to

the Rasa agent indicating the start of the survey.

2. The Rasa server receives the message from Unity.

3. The Rasa server analyzes the message and makes predictions about which
action should be taken as response.

4. The Rasa server predicts that the message is an internal intent and cor-
relates with the introduction action.

5. The Rasa server sends an introduction and the first question as responses
to the user.

6. The Rasa server moves to the wait state.

7. The system plays the response using text-to-speech technique.

Alternative Flow
1a. If the user loses internet connection, the message won’t reach out to the

Rasa chatbot, and an error will pop up saying ”Network error! Please
check your internet connection”.

Postconditions The chatbot has successfully established the initial conversation with the user.

20

Name UC-2 Answer UX question in text mode

Actor User

Description User wants to interact with the chatbot in text mode (one-turn interaction).

Preconditions UC-1 Start the initial conversation

Normal flow
1. The user receives a question from the chatbot.

2. The user writes his answer in the input field.

3. The user sends the answer to the chatbot by clicking on the send button.

4. The Rasa server (chatbot) receives the answer.

5. The Rasa server sends the answer to the action server.

6. The Rasa action server stores the answer into the database.

7. The Rasa server sends the next question as response message to the user.

8. The Rasa server moves to the wait state.

9. The system plays the response using text-to-speech technique.

Alternative Flow
2a. If the user is inactivated for a period of time, the agent will interprets

the inactivity as a sign to pause the conversation.

3a. If the user loses internet connection, the message won’t reach out to the
Rasa chatbot, and an error will pop up saying ”Network error! Please
check your internet connection”.

Postconditions The user has successfully interacted with the chatbot by texting.

21

Name UC-3 Answer UX question in voice mode

Actor User

Description User wants to interact with the chatbot in voice mode (One-turn interaction).

Preconditions UC-1 Start the initial conversation

Normal flow
1. The user receives a question from the chatbot.

2. The user dictates his answer by clicking on the record button.

3. The speech-to-text system converts user’s speech to text.

4. The user sends his message to the chatbot by clicking on the send button.

5. The Rasa server (chatbot) receives the answer.

6. The Rasa server sends the answer to the action server.

7. The Rasa action server stores the answer into the database.

8. The Rasa server sends the next question as response message to the user.

9. The Rasa server moves to the wait state.

10. The message is spoken by the text-to-speech system.

Alternative Flow
2a. If the user is inactivated for a period of time, the agent will interprets

the inactivity as a sign to pause the conversation.

2b. If the user loses internet connection, the system will show a message to
indicate that the speech-to-text module is not working properly.

4a. If the user loses internet connection, the message won’t reach out to the
Rasa chatbot, and an error will pop up saying ”Network error! Please
check your internet connection”.

Postconditions The user has successfully interacted with the chatbot using microphone.

22

Name UC-4 Skip the current question

Actor User

Description User finds hard to answer the question and decide to skip this one.

Preconditions UC-1 Start the initial conversation

Normal flow
1. The user receives a question from the chatbot.

2. The user intends to skip this question because he has no idea what to
answer.

3. The user writes ”skip”, or similar message, in the input field.

4. The user sends the message to the chatbot by clicking on the send button.

5. The Rasa server receives the message.

6. The Rasa server interprets the user intention and marks the question as
skipped so it won’t be asked again.

7. The Rasa server sends the next question as response message to the user.

8. The Rasa server moves to the wait state.

9. The system plays the response using text-to-speech technique.

Alternative Flow
3a. If the user is inactivated for a period of time, the agent will interprets

the inactivity as a sign to pause the conversation.

4a. If the user loses internet connection, the message won’t reach out to the
Rasa chatbot, and an error will pop up saying ”Network error! Please
check your internet connection”.

Postconditions The user has successfully skip the current question.

23

Name UC-5 Pause the conversation

Actor User

Description User wants to take a break, so he wants to pause the agent

Preconditions UC-1 Start the initial conversation

Normal flow
1. The user receives a question from the chatbot.

2. The user feels tired, so he decide to take a break.

3. The user writes ”pause”, or similar message, in the input field.

4. The user sends the message to the chatbot by clicking on the send button

5. The Rasa server receives the message.

6. The Rasa server interprets the user intention.

7. The Rasa server sends the farewell message as response to the user.

8. The Rasa server moves to the wait state.

9. The system plays the response using text-to-speech technique.

Alternative Flow
3a. If the user is inactivated for a period of time, the agent will interprets

the inactivity as a sign to pause the conversation.

4a. If the user loses internet connection, the message won’t reach out to the
Rasa chatbot, and an error will pop up saying ”Network error! Please
check your internet connection”.

Postconditions The user has successfully paused the interaction with the chatbot.

24

Name UC-6 End the survey

Actor Bot

Description
The user answered all the questions so that the bot wants to end the
conversation

Preconditions

Normal flow
1. The Rasa server receives the user’s answer to the last question of the

survey.

2. The Rasa server interprets that all the questions are answered.

3. The chatbot send the appreciation and say goodbye messages to the user.

4. The messages are spoken by the text-to-speech. system.

Alternative Flow
3a. If the user loses internet connection, the message won’t reach out to the

user, and an error will pop up saying ”Network error! Please check your
internet connection”.

Postconditions The user has successfully paused the interaction with the chatbot.

25

7 Design

This section describes both the survey agent design and the software design. On the one hand, it details
the essential components of the agent designed using Rasa Open Source and their functionalities. On
the other hand, it details the scripts used in Unity in order to control the logic of the system, perform
features like speech to text and text to speech, and change the game-stages.

7.1 Architecture diagram

The conversational system of the project showed in Figure 13 consists of three modules:

• Chatbot: This module is responsible for generating responses to messages sent by users and com-
municating with the database.

• Unity game: It acts as the interface between the user and the agent. It’s also the brain of the
conversational system, since it controls the whole dialogue flow using its agent behaviour. It’s also
responsible for generating REST requests to send to the Rasa server and extracting the received
JSON payload responses to show them to the user.

• Database: This module is responsible for storing the received answers from the chatbot.

Next, we explain the first two models, the chatbot and the unity game, and in section 8.3.2 we detail the
database.

26

Figure 13: The Architecture Diagram. Source: Own

7.2 Survey chatbot designed in Rasa

Regarding to the agent design, Figure 14 presents an detailed architecture diagram that shows a physical
view of the Rasa open source chatbot. We can see the different modules of our agent and within each
module the components that make it up and their relationships. This diagram describes a complete
single-turn interaction with an agent, from the chatbot receiving the message to the agent sending the
response.

27

Figure 14: The Arch. diagram and functioning. Source: Own

Now, let’s see the working principle of Rasa conversational agent:

1. First, the user’s message (intent) is sent to the Rasa server (see top part of Figure 14).

2. Then, the Rasa server redirects the message to the NLU pipeline.

3. The NLU pipeline analyzes the user’s input, classifies the intent and extracts the important features
of the message, that is, the associated entities.
When the NLU pipeline try to identify the intent, it could failed if the percentage of understanding
is too low. The % of understanding, also called confidence degree of the prediction or fallbacks that
if it’s less than 30%, a message will be displayed that the agent has not understood the user [31].
The percentage of understanding is defined in config.yml file and can be modified (see Figure 15).
The message, which the chatbot should send when an input is classified with low confidence, is
defined in the utter default template of the domain.yml file (see Figure 16).

28

Figure 15: FallbackClassifier defined in config.yml. Source: Own

Figure 16: Low confidence response defined in domain.yml. Source: Own

4. On the other hand, the Rasa Core component takes the user’s intent and analyzes what it should do
after receiving it, based on the stories or rules that have been defined in its training. To be specific,
the Rasa Core makes predictions from the training data that the chatbot designer provides, and
it will generate percentage for each possible actions, then select the one with the highest match
percentage. In this component is where the action is selected and executed. Note that usually
the Rasa chatbot’s action is an utterance but it can also be, for example, the storing of data in a
database.

5. Finally, the assistant returns the response to the user through the same channel as the input’s.

Now, the following sections detail relevant aspects of the described process, items, actions, domain, stories
and rules.

7.2.1 NLU training data: Intents

Through the NLU component, the agent must understand what user is saying, so from each message that
the bot receives, the associated intent is extracted. An intent is nothing but the intention (goal) that the
user has when interacting with our agent, and for each intention, a user could express it in other words,
called synonyms, which should be assigned to that intent. To take an example, if the chatbot asks the
user if he is minor or not, the synonyms to express the affirmation intent can be performed in many ways,
like “Yes, I am”, “Sure”, “Indeed”, ”Of course, I am”, among others.

In Rasa, intents are defined inside a yml (YAML) format file, called nlu.yml, in the data directory.
YAML is a data serialization language and it’s designed to be both human readable and computationally

29

powerful (more information in section 8.1.5).This is where we defined all the intents and their synonyms.
Below, we present two defined intents, and the items under the example section are the synonyms of the
intent. In Figure 17, we can see the greet intent and the set of examples that represent how the user
would greet the bot. These examples are provided for the bot training by the bot designer. In Figure 18,
we can see an internal intent Q2 ANS. Note that each example of an internal intent is composed by the
identifier of the question (q2) and the degree of agreement of the user to the UX question asked by the
bot.

Figure 17: Illustration of intent in nlu.yml: greet .
Source: Own

Figure 18: Illustration of internal intent in nlu.yml:
Q2 ANS. Source: Own

In this project, the Rasa agent expects those responses (user’s intents) defined by the GEQ such as not
at all, fairly, moderately, etc. The intents that we defined for the agent (see Figure 20) can be grouped
into two blocks, those related to the internal commands to control the dialogue flow and those related to
the bot-user interactions:

• Internal intents: Normally, the chatbot is built on back-and-forth conversations and the user takes
control of the dialogue flow. In the survey agent case, we want the agent to take the initiative
because it is the one who is asking the questions and, depending on the situation, we might want
the chatbot to perform some specific actions. With that purpose, we defined several internal
intents so that the conversational agent could control the conversation flow using Unity scripts. It
is important to note that all the internal intents are created and named with upper-case letters.
All of them remain invisible to the user. Next, we can see some of them below:

1. Qx ANS (x corresponds to the question number): It’s a combination of internal command and
user’s answer: ”qx ”+ ”user’s input” (see Figure 19). The first part of the combination, ”qx”, is
used for multiple purposes such as to identify in which column of the database (column’s names
are same as the internal commands) should the answer be stored. The second part, ”user’s

30

answer”, is the pure input of the user, so this value is stored in the column of the database
that is identified by the first part of the message, ”qx”. The result of this combination is used
to identify which intent it belongs to and to perform the corresponding rule.
Figure 19 shows an example that helps understanding these intents. First, the user writes his
answer, ”fairly”, to the question 2 asked by the agent. Then, the controller takes the user’s
input and concatenates it with a internal command, ”q2”. Afterwards, Unity puts the result of
the combination in a JSON request and sends it to the Rasa server. The Rasa server analyzes
the received intent and classified it with the intent ”Q2 ANS”. Therefore, the Rasa server
execute the rule that matches with the intent ”Q2 ANS”.

2. RESTORE : As designed, the agent appears at certain points in the game to ask the user
some UX questions. The agent chooses certain moments (game-stages) so as not to disturb
the player, for example, at the end of a challenge, end of a level, etc. This internal intent is
sent by the controller in Unity when the agent needs to appear again in a specific game-stage.

3. PAUSE : As deigned, the agent can appear at a certain moment to ask a question that the user
could not to answer to the agent, that is, ignore the agent. In that case, the agent disappears,
thus pausing the conversation. This internal intent is sent by the controller in Unity to pause
the conversation when the user is inactive within a predefined period of time.

Figure 19: Illustration that helps understanding the internal intents. Source: Own

• Social interaction intents: These intents are the basic knowledge that the agent has to per-

31

form an interaction with the user. Some of them are predefined (e.g. affirm, deny, mood great,
mood unhappy) in Rasa and they are only used during the implementation phase to test out pro-
grams. Next, we show those intents we used in the final model.

1. greet: This intent is only used to activate the survey chatbot at the first game-stage by the
controller in Unity. After the first game-stage, we use RESTORE intent to wake up the Rasa
conversational agent.

2. interrupt: This intent is used when the user intends to take a break and unwilling to continue
the conversation.

Figure 20: Illustration that shows all the defined intents. Source: Own

32

7.2.2 NLU training data: Custom actions

Custom actions are functions written in Python in the actions.py that are used to make the agent
capable of having custom behavior. This is a very useful file as it contains the action definitions that the
bot will perform on specific intents, either to perform some calculations as for example time and date
(see Figure 18), call APIs, among others.

In this project, several custom actions are created for storing valuable conversations into the database.
The aim of the custom actions is to collect all the user’s answers to the questions that are asked by the
survey agent. To better understand the custom actions and show an example, in Figure 21 we can see
an extract (part) of the custom action to store data in the database.

Figure 21: Illustration of an extract (part) of the custom action. Source: Own

7.2.3 NLU training data: Domain

Domain is the most important file in Rasa (see an extract of the full domain file in appendix 12). It’s
the universe in which our agent operates. As we mentioned in section 7.2, the NLU module processes
what the user asked to the bot, and the Core processes what the bot will respond to. So, when the bot
is trained for both NLU and Core side, the training takes reference from this file and creates models.
Since, the domain.yml file specifies the intents, actions, slots, entities that the chatbot contains and also
response templates for the answers of the bot.

At the beginning of the domain file, we defined the intents that must be matched to those from nlu.yml

file, as showed in Figure 22.

33

Figure 22: Illustration of declared intents in domain.yml. Source: Own

In domain.yml, we also declared the responses (see Figure 23) correspond to the user intents shown in
the figure above.

34

Figure 23: Illustration of declared responses in domain.yml. Source: Own

To better understand the defined responses, we show them in the table below with a brief description:

Responses
Description and text of the response, literally (except for the questions
of the GEQ)

From utter q1 to ut-
ter q16

From utter q1 to utter q14 are the questions from the Game Experience Ques-
tionnaire. The utter q15 and utter q16 are open questions.

utter goodbye
When the user intends to say goodbye, our agent replies with this response.
Text: ”Thank you for listening, see you next time”.

utter greet

This one is used to introduce our agent to the user.
Text: ”Hey! I am Mayer, a chatbot. Can you answer few questions to help us
improve our game? ”.

35

utter greet1

Our agent sends this one along with utter greet. They were together once, but
after encountering some memory leak problem they were splitted up into two
responses.
Text: ”Feel free to take a break if you are tired by saying ’pause’. Of course,
if you help us, later you will get some rewards.”.

utter start

Our agent send this one right after utter greet1. Normally, the user can only
see it when the agent appears the first time.
Text: ”Let’s start with the first one:”.

utter introduction

Our agent sends this response before asking questions. This one tells to the
user the evaluate scale.
Text: ”Tell me how you feel about the following expression using: ’not at all’,
’slightly’, ’moderately’, ’fairly’ , ’extremely’ (from 0 to 4) or ’skip’ if don’t know
what to say.”.

utter positive reply

When the user answers positively, our agent replies with this response to express
happiness. We want to add some random feature, so we defined three different
responses so that the agent can reply using one of them randomly (this is how
Rasa works by default).
The three texts are: ”I are so happy to hear that!”, ”That’s wonderful!” and
”Glad you feel that way.”.

utter negative reply

When the user answers negatively, our agent replies with this response to ex-
press consolation.
Same as the utter positive reply, we defined two texts: ”I’m sorry that you feel
that way...” and ”Seems like I still have much to improve.”.

utter greet again

When our agent is triggered again, it sends this response instead of utter greet.
Text: ”Hey again! May I continue with the game experience questionnaire, it
means a lot to us.”.

utter lastquestion

The agent sends this response to appreciate the user when all the question from
GEQ are answered.
Text: ”I appreciate you answer all of them. I have last two open questions,
and this time please answer with your own word!”.

utter sorrytohear

Our agent sends this response when the user intends to pause the conversation.
Same as the utter positive reply, we defined three texts: ”Oh..I are so sorry
to hear that. Thanks anyways, I’ll see you later! Enjoy the game!”, ”It’s okay,
I wish you the best luck! See you later!” and ”Thanks a lot for helping us to
keep improving the game! See you later!”.

36

utter pause

Our agent sends this response if the user is inactive for a period of time.
Text: ”There was no activity for a while so I guess you might want to take a
break, I’ll catch up with you later, bye. ”.

utter end
Our agent sends this one when all questions are answered.
Text: ”Thank you so much for answering all the questions!”.

utter rephrase
Our agent sends this one when there is a fallback situation.
Text: ”I’m sorry, I couldn’t understand that. Could you rephrase?”.

Finally, all the custom actions are also declared in this file as we can see in Figure 24.

Figure 24: Illustration of the defined custom actions. Source: Own

7.2.4 NLU training data: Stories and rules

Rasa stories are part of the training data that are used to train Rasa’s dialogue management models
(Rasa Core). A story is a representation of a conversation between a user and the agent, converted to a
specific format where user input is expressed as the corresponding intents while responses are expressed
as corresponding action. In Rasa, it’s recommended to use stories for multiple-turn interactions. Both
intents and actions are defined with a “-“ in front of the name and below the “steps” section as we can
see in Figure 25. It is always the user who initiates the flow (see Figure 26).

37

Figure 25: Illustration of a simple story. Source:
Own

Figure 26: Conversation diagram of the happy path
story example. Source: Own

On the other hand, rules are a way to describe short pieces of conversations that always go the same way.
It’s used to handle small chunks of conversation where it’s always going to happen the same way, as we
can see in Figure 27. Both intents and actions are defined with a “-“ in front of the name and below the
“steps” section, as we can see in Figure 28.

Figure 27: Conversation diagram of the say goodbye
rule example. Source: Own

Figure 28: Illustration of the say goodbye rule.
Source: Own

38

The NLU fallback response mentioned in section 7.2 is also used in rules (see Figure 29).

Figure 29: Illustration of the fallback rule. Source: Own

Obviously, rules and stories are quite similar concepts and in most occasions work the same way. The main
difference between rules and stories is that rules are recommended for one-turn interaction and stories
are recommended to use for multiple-turn interaction. In this project, rules are mainly used since the
project consists in a pausable and resumable questionnaire agent. Pausable means users have the right to
stop the conversation anytime they want, but it doesn’t imply that the session will finish once for all, it’s
only a pause and will be continued at a later time at that same point in its duration. Resumable means
the next time our chatbot appears, the conversation flow will start from the last unanswered question
in order to guarantee that all the questions from the game experience questionnaire are completed. In
RASA, stories and rules are defined inside the data folder (see Figure 30), where we find files in yml
format called stories.yml and rules.yml, also the nlu.yml file described in section 7.2.1.

Figure 30: Illustration of the data folder. Source: Own

39

7.3 Agent designed in Unity

This section explains the software designed to give to our Rasa chatbot appearance and behaviour in
Unity, starting with the main components of the Unity game. Then, we present two sequence diagrams
associated with the three use cases defined in section 6.2. Afterwards, we show the different behaviours of
the conversational agent in Unity. Finally, we show two dialogues between the user and the conversational
agent.

Figure 31: The Architecture Diagram of the Unity game. Source: Own

The diagram in Figure 31 shows a complete single-turn interaction with the agent, from the user sending
the message by texting or dictating, to the user receiving the response. All components are explained
below.

• Logic:
This component represents a Unity script called Controller.cs that controls the logic of the whole
project, and the REST API that communicates with the Rasa server. This script is designed to
bring the logic of the agent into the game and is responsible for sending the user request to the Rasa
server and showing the response that returns from the server to the user. On the one hand, the

40

agent observes events that happen on every frame using the Update() function that is provided by
the MonoBehaviour class and triggers the bot if the player arrives to the correspondent game-stages
by sending a message to the Rasa server. On the other hand, the script handles the flow of HTTP
communication with the Rasa server, such as building POST requests in JSON format and using
UnityWebRequest class (provided by UnityEngine.Networking) to retrieve the responses from the
server.

• Text to Speech:
This component represents a Unity script called TxtToSpeech.cs that uses the Microsoft Cognitive
Services Speech SDK to make calls to the Microsoft Azure Speech service to get it to perform
text-to-speech function without having to tediously code them manually. This script is responsible
for converting the agent’s responses into humanlike synthesized speech. Every time we receive a
message from the Rasa server, this service will read it for the user. Since the goal is to communicate
with the chatbot in a VR game, so having the text to speech feature accommodate a wide array of
users while creating a more immersive and realistic experience.

• Speech to Text:
This component represents a Unity script called SpeechToTxt.cs, which also uses the Microsoft
Cognitive Services Speech SDK to make calls to the Microsoft Azure Speech service to get it to
perform speech-to-text function without having to tediously code them manually. This script is
responsible for transcribing user’s audio into text. Since it’s not accommodating the usage of
virtual keyboards in the VR game, so having the speech to text component users can dictate their
answers using microphone and have them converted into text.

• Other components (not showed in the diagram):
Since the chatbot needs to be triggered in some specific moments, we need a game component to
simulate game stages. In order to perform that, we have created a text that represents the game
score and a button to increase this score. Then, each time we click on the button, the score increases
by 1. This increased value indicates that the simulated game has reached a new stage (a challenge
has finished, a level has finished), and the it is time for the bot to appear. This part is controlled
by a Unity script called SimulateGameStep.cs.

7.3.1 Sequence diagrams

This section shows several diagrams that represent the communication path between a user and the con-
versational agent. The sequence diagram shows the sequence of messages between Unity and Rasa during
a given use case.
Figure 32 shows the path that the agent follows when initial a conversation that correspond with use case
1 (UC-1 Start the initial conversation). In the context of the game score is equal to 2, then our agent
appears in the scene.
Figure 33 shows the path that the agent follows when a user answers the questions via text and voice
(correspond to UC-2, Answer UX question in text mode, and UC-3, Answer UX question in voice mode).
In the context of the user wants to write or dictate her answer and send it to the agent.

41

Figure 32: Sequence diagram of UC-1: Start the initial conversation. Source: Own

42

Figure 33: Sequence diagram of UC-3 and UC-4: Answer UX question in text mode and voice mode.
Source: Own

43

7.3.2 Agent behavior

This section we present the different behaviours of the conversational agent in Unity. The diagram in
Figure 34 depicts the steps through which the user-agent interaction passes. In blue, we find the stages
that correspond to the conversational agent and in yellow, those of the user. First of all, the agent greets
and asks the question, and moves to the waiting stage. Then, the user sends an intent to the agent. Our
chatbot analyzes the intent and depending on several conditions the agent will move to the next stage
that could be either the pause behaviour, where the conversation will be paused until the next time our
agent shows up, or the database management behaviour, where a query will be executed to store the
data (i.e answer of the user to the UX questionnaire) into the database. Figure 34 shows the logic of the
survey bot, as we can see there are several behaviours:

1. The agent greetings behaviour. In this behaviour, the agent starts to talk with the user either at
the beginning of the conversation or when it appears again.

2. Waiting behaviour. In this behaviour, the agent waits for any intent that is sent to it, in this case
the intent could be the user’s answer to a specific question or pause the conversation, among others.

3. User’s intents behaviour. In this behaviour, the user could send any intent (e.g. pause, answer,
skip) to the agent.

4. The pause behaviour. In this behaviour, the agent ”hides” for a while (until the next stage) that
any intent related to take a break or timeout condition could caused it.

5. The action execution behaviour. In this behaviour, the agent could execute any action depending
on the intent. To be specific, it could execute an action that give a new question to the user or just
an simple introduction to the questionnaire.

6. The database management behaviour. In this behaviour, the agent connects to the database and
stores the valid answer into it.

.

44

Figure 34: Illustration that shows the agent’s behaviours. Source: Own

45

7.3.3 Pause and resume behaviours of the Rasa agent

The goal is to make our chatbot pausable and resumable (more details in section 28). To make the Rasa
agent pausable, we create a rule that makes the bot stop asking questions whenever the user has intention
to take a break, as we can see in Figure 35. When the user is inactive for a period of time, the agent
interprets there is a timeout situation, then it forces to pause the conversation and disappear.

Figure 35: The rule that handles interruption intent. Source: Own

On the other hand, we want to make the chatbot resumable so that when the player moves to the next
game-stage, the survey agent could appear again and asks to the user the question that was left unan-
swered in the previous game-stage. In order to achieve this, we add a new feature to the Controller.cs,
the file that controls the logic of the system, to make it stores the last sent user’s intent in a variable.
Therefore, the next time the Rasa agent needs to appear, we will not only send it the RESTORE intent
as mentioned in section 7.2.1, but also the last sent intent. Figure 36 shows an example that helps under-
standing how all this work. The example simulates a scenario where the user made a pause after answered
the question 2 but left the question 3 unanswered. Now, the player moves to the next game-stage, where
the Rasa agent needs to appears again. First, the controller sends the RESTORE intent to the Rasa
server and receives the response utter greet again. Then, the controller packages the last sent intent,
which was ”q2 fairly”, to JSON format and sends the POST request to the Rasa server. The Rasa server
analyzes the received request’s body and classified it with the intent ”Q2 ANS”. Therefore, the Rasa
server execute the rule that matches with the intent ”Q2 ANS”.

46

Figure 36: Illustration that helps understanding the internal intent RESTORE . Source: Own

7.3.4 Dialogue overview

This section shows two dialogues between the user and the agent. The green circle represents the user
and the blue one represents the agent. In Figure 37, we can see several situations that could happen
during the survey such as when it’s a normal conversation flow, when the user is inactive for a while,
when the user says something that the agent cannot comprehend and when the user asks to the agent to
take a break (in the dialogue, the user says ”pause”). Figure 37 shows a conversation between the agent
and the user when answering the last question of the survey and the agent’s appreciation to him.

47

Figure 37: User-Agent dialogue: question-answer. Source: Own

48

Figure 38: User-Agent dialogue: last question. Source: Own

49

7.3.5 Class diagram

This section presents a class diagram (see Figure 39) that shows the main classes that are used in this
project. In blue, we can see the classes involved in text-to-speech and speech-to-text features. In green,
the controller of the game. In yellow, the class that allows interaction with the Canvas’s components
in virtual reality environment. Finally, in orange, the class that controls the game-stage, in which the
survey agent appears to ask the user a UX question.

50

Figure 39: Class diagram. Source: Own

51

8 Implementation

This section describes the implementation of the survey agent. First, it shows the most important
aspects of the development phase, presenting the technologies used for the implementation of the project.
Then, discuss some dismissed technologies that are no longer in use in this project. Finally, explains the
integration of the agent into the Unity project.

8.1 Technologies used

This section list the different technologies, tools and programming languages that have been used in order
to develop the chatbot and integrate it in the game.

8.1.1 Unity

Unity is a professional-level video game engine where allows users to build game on using its built-in
functionalities and features. It can be used to build VR Games, mobile games, PC games and also
console games [1]. The first thing a Unity game developer must do is decide which version of Unity
should be used to create the project. The way that Unity does its versioning can be quite confusing.
Normally, forwards compatibility is not supported in Unity, so that older versions of Unity can not open
projects opened or created by newer versions. If, by accident, an old project is opened in the new version
of Unity, its files could possibly been overwritten and impossible to go back unless having a backup.

The Restaurant Code mentioned in the previous section was also created using Unity. And that is why,
Unity is still the main game engine and IDE for this project in order to integrate our chatbot.

8.1.2 C#

C-sharp (C#) is a simple, object-oriented, general-purpose language. According to Unity’s official docu-
mentation [9], it’s the only language that Unity supports locally for scripting. Scripting in Unity defines
game objects behaviors and how they interact with each other. Each script creates its connection to the
internal Unity processes by implementing a class that derives from the built-in class, called MonoBe-
haviour. The MonoBehaviour is the base class from which all Unity script derives [8]. And Mono is
nothing more than a cross-platform implementation of .NET framework3. So this is one of the reason
why C# is the primary language of Unity, and all the Unity libraries are built in C#.

8.1.3 Oculus Quest

Oculus Quest is the VR hardware that has been used to develop the Restaurant Code game and still our
main tool to test the chatbot integration. The Oculus Quest are one of the Oculus virtual reality glasses
models, being well known for their versatility and the good user experience they present. They have been
classified using the term “ALL-IN-ONE-VR”, since it has its own built-in screen processor, ram, storage
and battery, among others. In addition, both the Oculus Quest 1 and the Oculus Quest 2 have another
great advantage, they also do not need to use external sensors since they come equipped with all the

3.NET framework is used for building and running applications on Windows [23]

52

necessary sensors in the glasses themselves. This is extremely useful as it makes its use much easier, as
it does not require the prior installation of the sensors in the room, and allows the glasses to be used
anywhere. In our case, the Oculus Quest 1 is used because it was the one available.

Figure 40: Oculus Quest logo. (Source: https://www.instavr.co/solutions/vr-outputs/oculus-quest)

8.1.4 Python

Python is a multi-purpose, high level programming language with a simple, clean and friendly syntax
and dynamic semantic. Among the advantages of using Python compared to other languages are:

• The large number of libraries, which favors productivity when programming.

• The ease of use of data structures, Python also offers the option of high-level dynamic data typing
that reduces code length.

• Python is open source that developed under an OSI4-approved open source license, which makes it
free to use and distribute, even for commercial purposes.

• Python is extensible, Python can be extended to other languages.

• Python is easy to understand and code, because it’s not such a verbose language, reading Python
is a lot like reading English, which also means less coding is required than other languages.

In this project, Python is mostly used to write custom actions of Rasa conversational platform that allows
API calls, database queries, etc.

8.1.5 YAML

YAML, stands for YAML Ain’t Markup Language, it’s a lightweight data serialization language5 inspired
by XML. Its purpose is to format serialized data, and in Rasa it is used as a unified and extendable way

4The Open Source Initiative, or OSI, is an organization that tries to promote open source development without any
profit.

5A serialization language allows applications written with different technologies, languages, which have different data
structures can transfer data to each other using a common and standard format.

53

to manage NLU data, stories and rules [34]. It’s frequently used in multiple applications because it is a
very readable language for humans, more than JSON6 and XML7 format.

Figure 41: An example of a YAML file. Source: Own

As we can see from Figure 41, YAML’s syntax is very simple, intuitive and straightforward. In this
example, we created an object called ”Person”. Under the object, we declared two key-value attributes:
Job and name. And finally, we created a list called ”Skills” with several values using dashes (””). A dash
is used to place each item in the list at the same level.

8.1.6 Okteto: a deployment platform

Before get into Okteto, it’s necessary to bring up Docker to help understanding the tool we used in this
project. Docker is a software development platform that allows users to develop and deploy applications
inside virtual containerized environments, containers [5]. In other words, with Docker apps run consis-
tently regardless of the machine or operating system that it’s running.

Okteto is a tool that allows the developer to launch development environments in Kubernetes, as well as
being able to debug the application in it, and to deploy their applications directly on the cloud, among
other things [27]. Kubernetes is an open-source system for managing containers across multiple hosts [10].
Basically, Okteto allow users to work inside any docker image container, which inherits the same volumes
or any other configuration value of the original Kubernetes deployment. In this project, Okteto is used
to build and deploy the Rasa server along with the Rasa action server on the Okteto cloud because
of it’s free and its ease of use (more information in section 8.3.3). We use Docker Compose (which is
why we mentioned Docker) to define a Docker container image to avoid dealing with the complexities of
Kubernetes manifests. We also use the Okteto cloud to access to Kubernetes namespace (Okteto provides
them) where we can deploy the Docker containers for free. Namespaces are Kubernetes objects which
partition a single Kubernetes cluster into multiple virtual clusters. A cluster is a collection of linked node
machines on which the applications run.

6JSON is a file format that stores structured information and is primarily used to transfer data between servers and
clients.

7XML, or Extensible Markup Language, is a markup language used to store and exchange structured data, whether it
is documents, configurations, transactions or just data.

54

8.1.7 MongoDB

This project uses a NoSQL database because it’s more flexible, and it allows adapting to the needs of
this work in a much easier way than relational databases. NoSQL refers to non-relational or non-SQL
database. NoSQL databases are document-oriented and allow users to store and retrieve data in formats
other than tables [26].
MongoDB is an open source document-oriented NoSQL database [25]. Documents in MongoDB are
similar to JSON (JavaScript Object Notation) objects, but it is based on another type called BSON or
binary JSON that accommodates more data types. These documents are the replacement of what was
previously known as rows in SQL systems. The structure of these documents is a key-value data model,
that is:

Figure 42: Example of a MongoDB document. Source: Own

Along with all of this, MongoDB assigns to each document a unique identification number (id) within its
collection. A collection is what we know as a set of documents. Compared to SQL systems, a collection
would be the equivalent of tables. The great advantages that collections offer, among others, are, for
example, their automatic creation if they do not exist, and their great flexibility, since the documents
they contain do not have to have the same format. Another feature of these collections is that they can
be grouped into sub-collections. In this project, MongoDB is chosen because of its flexibility and ease of
deployment of the database along with the Rasa servers.

8.2 Dismissed technologies

During the implementation phase, we used various technologies to accomplish our goals, although some
of them were discarded later because either we found better solutions or not compatible with some
environment. This section details some technologies used during the implementation phase, but discarded
in the end.

8.2.1 Text-to-speech

At the beginning of the implementation phase, we made an implementation of Rust text to speech to
use in Unity. Rust is a system programming language designed for safety and performance [20]. Even
though, learning how to program with Rust programming language was not part of the objective, but
still we used the tts library [6] of Rust to implement a Rust program that contains the text to speech

55

feature. In order to export the Rust program to Unity, we needed to compile the code to a DLL file to
make use of it in the C# script. Since DLL, stands for Dynamic Link Library, is the file that consist
of executable code that can be used by another module such as application or DLL [24]. The problem
that we encountered was that the script didn’t work in VR environment, as it only works in Windows
operating system.

8.2.2 Speech-to-txt

At the beginning of the implementation phase, we used the Windows native tool and wrote a script in
Unity called DictationRecognizer.cs to achieve the speech to text feature. To be able to use it, we
must enable the dictation feature in the user’s Speech privacy policy, otherwise the Dictation Recognizer
will fail to initialize. The script worked incredibly well, even though some modification needed to be
made to adapt to our logic. The problem occurred when we tried to interact with the conversational
agent in the VR game because the script is currently functional only on Windows 10. The goal was to
make this feature work in a virtual reality environment, so we needed to find another solution to solve
the problem.

8.2.3 Dismissed database platforms

SQL stands for Structured Query Language, and it is the most common standardized language for
accessing databases. And MySQL is one of the most popular open source SQL database management
systems. It supports cross-platform compatibility with the most used main operating systems, among
them the most outstanding in the market: Linux, Mac and Windows. It’s a very flexible and easy-to-use
system, while providing us with a very high level of security.

In this project, MySQL was used as the database management system for the Rasa chatbot at the begin-
ning of the implementation phase. The problem occurred when deploying the database that continuously
failed and after several trials we decided to use another database platform, MongoDB.

8.3 Unity 3D scene and Rasa Agent

The prototype developed in this project, previously to integrate the conversational agent in the Restaurant
Code game, takes place in a Unity 3D scene where we simulate that we have reached the end of the game-
stage, by pressing a button that indicates the stage pass, and the agent appears. In this case, a game-stage
is the stage of the game in which the survey agent appears in the game to ask the user a UX question.
This section details the implementation and the steps we took to make the agent working in virtual reality
environment.

8.3.1 Architecture diagram of the game scene

This section presents an architecture diagram of the game scene, that shows different game objects that
we created for the Rasa agents to work in Unity and for the project to run correctly in a virtual reality
(VR) environment. In Figure 43, there are three types of gameObjects: the green type represents the
gameObjects we created for the Rasa conversational agent to work properly in Unity, the orange type

56

represents the gameObjects we used for the project to work in VR environment, as well as to interact
with the elements in it. Finally, the pink type represents other necessary gameObject such as the lights
and the cameras.

Figure 43: The architecture diagram of the game scene. Source: Own

8.3.2 Databases

Having the Rasa conversational agent work without a database is meaningless because, after all, we aim
to evaluate user’s opinions and use them either for statistical analysis or the development of new features.
For that purpose, we need to store all the user’s answers into a remote database and we use MongoDB
to achieve this goal. In order to establish the connection between the Rasa server and the MongoDB we
need to go through the Rasa action server. We have created several custom (see section 7.2.3) actions
to establish the connection between the Rasa server and the Rasa action server, to perform MongoDB
queries and to reply positively and negatively depending on whether the user’s feedback is positive or
negative (e.g. If the user’s feedback is positive, the agent may replies with ”That’s wonderful!”). For this
project, we create a database called Rasa and a collection called User.

57

Figure 44: Collection of the user database. Source: Own

In Figure 44, we can see the collection of the database where we store the information of each user that
is asked by the agent, and all their answers. Now, we explain the collection fields:

• id: The primary key that generated automatically when adding a new user (creating a new docu-
ment) in the collection.

• sender: This sender ID, also known as conversation ID, is used to identify the user who is having
the conversation. This ID is set by the user when creating the POST request to send to the agent.
In this project, we assign this ID to the user. The initial idea was to use the player’s id of the
Restaurant code game.

• q1-q16: From q1 field to q16 field we store all the answers given by the user in the survey session.
These fields are designed in such a way to export the data easily to any kind of platforms or files
such as Excel, CSV file, etc.

In MongoDB, users can only connect to the database from a trusted IP address. Therefore, we need to
create a list of trusted IP addresses that can be used to connect to the database and access the data.
At the beginning of the implementation phase, we add our IP address to the trusted list so that we are
allowed to connect (send REST requests) to the database (more detailed in appendix) and test the Rasa
agent. Nevertheless, we have to add another IP address ”0.0.0.0/0” to the whitelist (see Figure 45) to
bind to all IPv4 and IPv6 addresses in order to avoid further connection issues when other people want
to explore and run the project.

58

Figure 45: IP access list of the database. Source: Own

8.3.3 Deployment

Having the conversational agent working locally is not enough because if we integrate it in the VR en-
vironment, there’s no way to reach out the endpoints of the Rasa server and Rasa action server and
therefore the communication between the agent and the user will not be initialized. To solve this prob-
lem, we need to deploy the Rasa server and the Rasa action server to the live environment so that we
can communicate with the agent anywhere and anytime we want. This process is accomplished using a
Kubernetes development platform called Okteto (more details in appendix 13.3).

8.3.4 Integration in Unity

Now we want to integrate our survey conversational agent in a Unity 3D project and make it works in
VR environment. For that purpose, we created a simple game scene with several UI components inside
a Canvas object in order to interact with the Rasa conversational agent and see the responses (see Fig-
ure 46). The Canvas is the area that all UI components should be inside[7]. In the top left corner of the
screen, there are the score component that is used to indicate the current game-stage and a button to
increase the score value by 1 to change the game-stage. In the middle of the screen, there is a chatbot
character and a bubble text to show the responses from the conversational agent. At the bottom of the
screen, there is a record button to transcribe audio into text. Next to the record button, there is an input
component for users to write their message by texting. On the right side of the input component, there
is a blue button to send the message in the input field.

59

Figure 46: Illustration of the game scene. Source: Own

Behind the game scene, we have to attach all the scripts to the gameObjects showed in section 8.3.1.
Therefore, we need to associate the GameManager, SpeechManager, and GameStageController to each
required parameters to the correspondent UI components created in the Canvas. For the logic defined in
Controller.cs in the GameManager (see Figure 47), we associate the incoming message to the bubble text
in the center of the screen to show the responses from the agent, the input field to the input component
at the bottom of the screen and the score value to the text component in the top-left corner of the screen
to control the game-stage logic.

60

Figure 47: Illustration of the GameManager. Source: Own

For the SimulateGameStep.cs defined in the GameStageController (see Figure 48), we associate the
score value to the text component in the top-left corner of the screen to increase its value by clicking on
the increase button.

61

Figure 48: Illustration of the GameStageController. Source: Own

For the text to speech script defined in the SpeechManager (see Figure 50), we specify the audio source
object we created in the scene to read the message automatically each time we receive a message from
the chatbot. For the speech to text script, we associate the input field to input box at the bottom of the
screen to transcribe user’s audio into text by clicking on the record button.

Figure 49: Illustration of the SpeechManager. Source: Own

62

Finally, to be able to interact with all these UI components of the Canvas in virtual reality environment, we
need to attach the TrackedDeviceGraphicRayCaster.cs script to the Canvas. The TrackedDeviceGraphicRayCaster.cs
script will allow the raycast from the left hand and the right hand controllers to interact directly with
UI elements of the Canvas in VR. In Figure 51 we can see the Rasa agent in VR environment 8.

Figure 50: Illustration of the Canvas. Source: Own

8We upload a video sample of the game scene in VR, where we show some the main features of this project, on this link:
https://youtu.be/287qdp9DwRs.

63

https://youtu.be/287qdp9DwRs

Figure 51: Illustration of a game scene in VR. Source: Own

64

9 Conclusions and future work

The aim of this project was to analyze, design and implement a conversational survey agent which would
be used to evaluate UX in a virtual reality game. In addition, the aim was to be able to integrate the
agent in the Restaurant Code project created by another student. Now, we review the established goals
and their level of achievement:

• It has been investigated and analyzed different chatbots platforms and chose the Rasa open source
as the main framework to implement the conversational agent.

• It has been successfully implemented a survey agent using Rasa open source platform.

• It has been designed a database using MongoDB and implemented several custom actions in Rasa
to connect with it and perform queries.

• It has been created a simple game scene in Unity and made it works in virtual reality environment.

• It has been integrated the conversational agent in a virtual reality game scene.

• It has been written and modified several Unity scripts in C# from zero to add more features to the
project.

• It has been studied how to program text to speech and speech to text features using C# and
successfully made them work in the virtual reality game.

• It has become familiar with the Oculus Quest platform and learned how to export the Unity project
to it.

• It has been deployed all the servers and the database to the live environment.

• It hasn’t been accomplished how to integrate the agent into the Restaurant Code game, because of
technical issues and time restrictions.

In summary, the analysis, design and implementation of the final project, with which it is considered
that most of the objectives have been achieved. At the end of this project, we have created a chatbot
using Rasa open source and successfully integrated it in a virtual reality game. However, we have not
yet achieved the last goal, that is to integrate the agent into the Restaurant Code game.

Although we has been accomplished most of the goals established at the beginning of the project, still
there is a final goal that hasn’t been achieved yet and there are some possible extension and future work
to be done:

• Integrate the agent into the Restaurant Code.

• Redesign the question pool to make the agent ask certain questions at certain moments in the
game. Assign each GEQ’s component to a specific game-stage to explore the maximum advantage
of it. Also, after each game-stage we plan to ask various open questions related to the difficulty or
playability of the challenge (game-stage).

65

• Train the agent so that those expressions similar to the responses defined by the GEQ could also
be understood by the agent.

• Make the agent able to recognize emotions through dialogue, and to react differently depending on
the emotion.

• Test with users to see how would them evaluate the UX in a virtual reality game with our agent
integrated. Then, based on the feedback make a statistical analysis to study the accuracy of the
Game Experience Questionnaire.

66

10 References

[1] Axon, S. Unity at 10: For better or worse game develop-
ment has never been easier. https://arstechnica.com/gaming/2016/09/

unity-at-10-for-better-or-worse-game-development-has-never-been-easier/, 09 2016.
Accessed: 2022-05-03.

[2] Carroll, M. Dialogflow-unity-sdk. https://github.com/dialogflow/

dialogflow-unity-client, 2019.

[3] Cloud, I. Ibm cloud docs. https://cloud.ibm.com/docs/watson-assistant. Online; accessed
09 May 2022.

[4] de Oliveira, R. P., de Oliveira, D. C. P., and Tavares, T. F. Measurement methods for
phenomena associated with immersion , engagement , flow , and presence in digital games. pp. 127–
135.

[5] Docker. Docker documentation. https://docs.docker.com/get-started/. Accessed: 2022-05-
17.

[6] Docs.rs. tts - rust. https://docs.rs/tts/0.13.1/tts/. Accessed: 2022-05-01.

[7] Documentation, U. Canvas. https://docs.unity3d.com/Packages/com.unity.ugui@1.0/

manual/UICanvas.html. Accessed: 2022-06-01.

[8] Documentation, U. Monobehaviour. https://docs.unity3d.com/ScriptReference/

MonoBehaviour.html. Accessed: 2022-05-03.

[9] Documentation, U. Unity- manual: Creating and using scripts. https://docs.unity3d.com/

Manual/CreatingAndUsingScripts.html. Accessed: 2022-05-03.

[10] Foundation, C. N. C. Kubernetes documentation. https://kubernetes.io/docs/home/. Ac-
cessed: 2022-05-27.

[11] Fuentes, A. Restaurant code: juego en realidad virtual para aprender a programar. http://hdl.
handle.net/2445/182271. Accessed: 2021-06-20.

[12] Gómez, I. Cooking code: juego para aprender a programar con realidad virtual. http://hdl.

handle.net/2445/172160. Accessed: 2022-04-14.

[13] Hat, R. What is a rest api. https://www.redhat.com/en/topics/api/what-is-a-rest-api.
Accessed: 2022-05-11.

[14] Henrik, S.-F. The player engagement process - an exploration of continuation desire in digital
games. In DiGRA ཇ - Proceedings of the 2011 DiGRA International Conference: Think
Design Play (January 2011), DiGRA/Utrecht School of the Arts.

[15] Huang, Y., Jasin, S., and Manchanda, P. “level up”: Leveraging skill and engagement to
maximize player game-play in online video games. Information Systems Research 30, 3 (2019),
927–947.

67

https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://arstechnica.com/gaming/2016/09/unity-at-10-for-better-or-worse-game-development-has-never-been-easier/
https://github.com/dialogflow/dialogflow-unity-client
https://github.com/dialogflow/dialogflow-unity-client
https://cloud.ibm.com/docs/watson-assistant
https://docs.docker.com/get-started/
https://docs.rs/tts/0.13.1/tts/
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.html
https://docs.unity3d.com/Packages/com.unity.ugui@1.0/manual/UICanvas.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/ScriptReference/MonoBehaviour.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://docs.unity3d.com/Manual/CreatingAndUsingScripts.html
https://kubernetes.io/docs/home/
http://hdl.handle.net/2445/182271
http://hdl.handle.net/2445/182271
http://hdl.handle.net/2445/172160
http://hdl.handle.net/2445/172160
https://www.redhat.com/en/topics/api/what-is-a-rest-api

[16] I. Rodŕıguez, A. P. Open the microphone, please! conversational ux evaluation in virtual reality.
1–4.

[17] IJsselsteijn, W., de Kort, Y., and Poels, K. The Game Experience Questionnaire. Technische
Universiteit Eindhoven, 2013.

[18] Kareem Yusuf, P. How watson assistant helps you treat customers like vips. https://www.ibm.
com/blogs/think/2018/03/watson-assistant/, 2018. Online; accessed 09 May 2022.

[19] Keebler, J. R., Shelstad, W. J., Smith, D. C., Chaparro, B. S., and Phan, M. H.
Validation of the guess-18: A short version of the game user experience satisfaction scale (guess). J.
Usability Studies 16, 1 (nov 2020), 49–62.

[20] Klabnik, S., and Carol Nichols, w. c. f. t. R. C. Introduction. https://doc.rust-lang.

org/book/ch00-00-introduction.html. Accessed: 2022-05-21.

[21] Lee, H. Voice User Interface Projects: Build voice-enabled applications using Dialogflow for Google
Home and Alexa Skills Kit for Amazon Echo. Packt Publishing Ltd, 2018.

[22] Likert, R. A technique for the measurement of attitudes. Archives of psychology. New York: The
Science Press, 1931.

[23] Microsoft. .net and .net framework. https://dotnet.microsoft.com/en-us/learn/dotnet/

what-is-dotnet-framework. Accessed: 2022-05-03.

[24] Microsoft. What is a dll. https://docs.microsoft.com/en-us/troubleshoot/

windows-client/deployment/dynamic-link-library. Accessed: 2022-05-01.

[25] MongoDB. Mongodb documentation. https://www.mongodb.com/docs/. Accessed: 2022-05-26.

[26] MongoDB. What is nosql? https://www.mongodb.com/en/nosql-explained. Accessed: 2022-
05-26.

[27] Okteto. Okteto documentation. https://www.okteto.com/docs/welcome/overview/. Accessed:
2022-05-26.

[28] Phan, M., Keebler, J., and Chaparro, B. The development and validation of the game
user experience satisfaction scale (guess). Human Factors: The Journal of the Human Factors and
Ergonomics Society 58 (09 2016), 1217–1247.

[29] Shelstad, W., Chaparro, B., and Keebler, J. Assessing the user experience of video games:
Relationships between three scales. Proceedings of the Human Factors and Ergonomics Society
Annual Meeting 63 (11 2019), 1488–1492.

[30] Taherdoost, H. Validity and reliability of the research instrument; how to test the validation of
a questionnaire/survey in a research. International Journal of Academic Research in Management
5 (01 2016), 28–36.

[31] Technologies, R. Fallback and human handoff. https://rasa.com/docs/rasa/

fallback-handoff/. Accessed: 2022-05-15.

[32] Technologies, R. Introduction to rasa action servers. https://rasa.com/docs/action-server/.
Accessed: 2022-05-11.

68

https://www.ibm.com/blogs/think/2018/03/watson-assistant/
https://www.ibm.com/blogs/think/2018/03/watson-assistant/
https://doc.rust-lang.org/book/ch00-00-introduction.html
https://doc.rust-lang.org/book/ch00-00-introduction.html
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://dotnet.microsoft.com/en-us/learn/dotnet/what-is-dotnet-framework
https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library
https://docs.microsoft.com/en-us/troubleshoot/windows-client/deployment/dynamic-link-library
https://www.mongodb.com/docs/
https://www.mongodb.com/en/nosql-explained
https://www.okteto.com/docs/welcome/overview/
https://rasa.com/docs/rasa/fallback-handoff/
https://rasa.com/docs/rasa/fallback-handoff/
https://rasa.com/docs/action-server/

[33] Technologies, R. Rasa playground doc. https://www.rasa.com/docs/rasa/playground. Ac-
cessed: 2022-04-11.

[34] Technologies, R. Training data format. https://rasa.com/docs/rasa/

training-data-format. Accessed: 2022-04-17.

69

https://www.rasa.com/docs/rasa/playground
https://rasa.com/docs/rasa/training-data-format
https://rasa.com/docs/rasa/training-data-format

11 Appendix I - GEQ In-game version

• The scale used in GEQ (see Figure 52).

Figure 52: The measurement scale in GEQ. Source: [17]

• The items used in the in-game version.

1. I was interested in the game’s story.

2. I felt successful.

3. I felt bored.

4. I found it impressive-

5. I forgot everything around me.

6. I felt frustrated.

7. I found it tiresome.

8. I felt irritable.

9. I felt skillful.

10. I felt completely absorbed.

11. I felt content.

12. I felt challenged.

13. I had to put a lot of effort into it.

14. I felt good.

70

12 Appendix II - Domain.yml

In this appendix, we show an extract of the complete domain.yml file (see Figure 53) that contains all
the declared intents, responses and action.

Figure 53: Illustration of the complete domain.yml. Source: Own

71

13 Appendix III - Technical guide

This appendix cover everything needed to be know for a developer who want to explore this project or
extend it.

13.1 Rasa

To be able to run the Rasa agent, it’s necessary to have the Python 3.7 or 3.8 installed. Then, follow this
guide to install Rasa Open Source step-by-step: https://rasa.com/docs/rasa/installation/. Once
everything is installed, train the model using command rasa train. When finished the training part, there
are two ways to interact with the agent:

1. Use rasa shell command to load the trained model and talk to the agent on the command line.

2. Use rasa run command to start a server with the trained model. In order to interact with the agent
it is needed to send a POST request to the endpoint specified in endpoints.yml file (see Figure 5
in section 4). If there are any custom actions, it’s also needed to run the Rasa action server using
this command rasa run actions.

13.2 Database

This project uses MongoDB as the main database to store the information. To be able to use MongoDB,
there is no need to install MongoDB, instead just use the web version following this guide: https:

//www.MongoDB.com/docs/atlas/getting-started/. Once the database is created, we click on the
connect button (see Figure 54), then it will generate an URL (see Figure 55).

72

https://rasa.com/docs/rasa/installation/
https://www.MongoDB.com/docs/atlas/getting-started/
https://www.MongoDB.com/docs/atlas/getting-started/

Figure 54: Illustration of how to connect to the MongoDB database. Source: Own

73

Figure 55: Illustration of how to generate the connection URL. Source: Own

Now, we have to copy the generated URL and go to the Rasa project and find project/actions/actions.py
file, then change the remote database’s url cluster=MongoClient("mongoDB+srv://root:root@clustertfg.
9afluby.MongoDB.net/?retryWrites=true&w=majority") to the new one (see Figure 56).

Figure 56: Illustration of how to change the connection URL in actions.py. Source: Own

74

cluster = MongoClient("mongoDB+srv://root:root@clustertfg.9afluby.MongoDB.net/?retryWrites=true&w=majority")
cluster = MongoClient("mongoDB+srv://root:root@clustertfg.9afluby.MongoDB.net/?retryWrites=true&w=majority")

13.3 Deployment

This project uses Okteto to deploy the project, in order to deploy it with other platforms just change
the URL specified in Controller.cs script to the new one. If we want to use Okteto, then follow the
following guide to create Dockerfile, docker-compose.yml file and the okteto.yml file. Everything can
be found in the Okteto Documentation: https://www.okteto.com/docs/welcome/overview/. First,
we need to create a Docker file which contains the build instructions for the Rasa server and the Rasa
action server image.

Figure 57: Docker file of the two Rasa servers. Source: Own

As we can see in Figure 57, first we indicate the version of Python as a base image, next we add a working
directory where action (folder), data (folder), and other files which are needed for abort, will be stored.
Then, we install the dependencies which are compulsory needed for our agent to work properly. Finally,
we use ADD command to copy files from the local storage into the Docker image.

Now, we need to write the docker-compose manifest to build each service listed in it during the deployment
process. In the docker-compose file (see Figure 58), we define two services to be built and deployed. The
first one, rasa-server, corresponds to the Rasa server, and rasa-actions-server corresponds to the Rasa
Action Server. Both services have the same working directory as specified in the Docker file, and with
the same restart option set to always, indicating that in case the container fails, it will restart until its
removal. For the rasa-server, we add all the data that is present in actions directory and data directory.
For the rasa-actions-server, we only add the data that is present in actions directory. Next, we specify
the command which will be run for the rasa-server service:

• bash -c ”rm -rf models/* : This command removes any modules that is present inside the models
folder.

• rasa train: With this command, we train the model.

• rasa run –enable-api –cors \”*\” –debug : With this command, we run the Rasa server

Finally, we specify the command which will be run for the rasa-actions-server service:

75

https://www.okteto.com/docs/welcome/overview/

• rasa run actions: With this command, we run the Rasa action server.

Figure 58: Docker-compose file of the servers. Source: Own

Since we have two services running as specified in the docker-compose file, we need to write an okteto.yml

file to indicate of which service we want to keep an external connection. For this project, we keep an
external connection for the Rasa server (see Figure 59).

76

Figure 59: okteto.yml file that configure the external connection. Source: Own

Finally, we use the Okteto Cloud to deploy the Rasa server along with the Rasa action server (see
Figure 60).

Figure 60: Illustration of Rasa servers running on the Okteto Cloud. Source: Own

13.4 Unity

• Download and follow the instruction to install the Unity Hub.

– Open the Unity Hub and install the Unity Editor of 2021.3.1f1 version. Make sure that the

77

Android Build Support option is also installed (see Figure 61).

Figure 61: Installation of Android Build Support Module. Source: Own

• Download and follow the instruction to install Android Studio.

– Open Android Studio and go to File - Settings - Appearance & Behavior - System Settings -
Android SDK - SDK Platforms (see Figure 62).

– Download and install:

∗ Android 10.0(Q).

∗ Android 7.1.1 (Nougat)

∗ Android 4.4 (KitKat)

Figure 62: Installation of Android SDK Platform. Source: Own

78

– Switch from SDK Platforms to SDK Tools and install (see Figure 63):

∗ Android SDK Build-Tools 33-rc4.

∗ Android SDK Platform-Tools.

Figure 63: Installation of Android SDK Tools. Source: Own

• Download and follow the instructions to install Oculus. Then, follow this guide to setup the
device and enable the developer mode: https://developer.oculus.com/documentation/native/
android/mobile-device-setup/

• In Unity, download all the packages that is needed.

– Go to Edit -> Project Setting.

∗ Find XR Plug-in Management at the bottom, then install it.

∗ Inside the XR Plug-in Management, select the OpenXR option for Windows, Mac, Linux
settings.

79

https://developer.oculus.com/documentation/native/android/mobile-device-setup/
https://developer.oculus.com/documentation/native/android/mobile-device-setup/

Figure 64: XR Plug-in Management Windows, Mac, Linux settings. Source: Own

∗ Then, select the Oculus option for Android settings.

Figure 65: XR Plug-in Management Android settings. Source: Own

– Go to Window -> Package Manager, then download and install:

∗ TextMeshPro.

∗ XR Interaction Toolkit.

80

∗ OpenXR Plugin.

Figure 66: Package Manager. Source: Own

• In Unity, configure the build settings ().

– Go to Edit -> Build Setting.

– Switch the platform from Windows to Android.

– Change the texture compression to ASTC.

81

Figure 67: Build Settings. Source: Own

– Go to Player Settings.

– Change the company name and the product name.

– In Player settings, go to Android settings -> Other Settings.

– Unchecked Auto Graphics API, and delete Vulcan.

82

Figure 68: Player Settings. Source: Own

• Now, the project is ready to build and run in VR environment.

– Turn the Oculus Quest on.

– Connect the Oculus Quest to the PC via USB.

– In the Oculus app, select Devices and add the headset (Skip if already done).

– Follow the instruction to setup everything (Skip if already done).

– In Unity, go to File -> Build Setting.

– Click on Build and Run.

– Store the APK file in a local directory.

– Now, the game should be run in Oculus Quest.

83

14 Appendix IV - User guide

In general, the game scene is quite easy to understand. We have three buttons: the increase button to
change the game-stage, the record button to perform speech to text feature and the send button to send
the message to the Rasa server. The only thing that we have to keep in mind is that the Rasa agent will
show up at the following game-stages:

Game-stage Agent behaviour

Score == 2
The Rasa agent shows up and introduce himself.

Score == 6
The Rasa agent shows up to restore the conversation and ask the question that we
didn’t answer before.

Score == 10
The Rasa agent shows up to restore the conversation and ask the question that we
didn’t answer before.

84

	Index of figures
	Introduction
	Goals
	General goal
	Specific goals
	Scheduling

	Background
	Virtual Reality games
	In-game UX questionnaires
	Game Experience Questionnaire
	Game User Experience Satisfaction Scale Questionnaire (GUESS)
	Conclusion

	Related concepts
	Conversational platforms
	Dialogflow
	Microsoft Azure
	Rasa Open Source

	Analysis
	Functional and non functional requirements
	Use cases

	Design
	Architecture diagram
	Survey chatbot designed in Rasa
	NLU training data: Intents
	NLU training data: Custom actions
	NLU training data: Domain
	NLU training data: Stories and rules

	Agent designed in Unity
	Sequence diagrams
	Agent behavior
	Pause and resume behaviours of the Rasa agent
	Dialogue overview
	Class diagram

	Implementation
	Technologies used
	Unity
	C#
	Oculus Quest
	Python
	YAML
	Okteto: a deployment platform
	MongoDB

	 Dismissed technologies
	Text-to-speech
	Speech-to-txt
	Dismissed database platforms

	Unity 3D scene and Rasa Agent
	Architecture diagram of the game scene
	Databases
	Deployment
	Integration in Unity

	Conclusions and future work
	References
	Appendix I - GEQ In-game version
	Appendix II - Domain.yml
	Appendix III - Technical guide
	Rasa
	Database
	Deployment
	Unity

	Appendix IV - User guide

