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Abstract

The goal of this thesis is to survey some results on quasiconformal analysis and quasiconformal
surgery, today an essential tool for any researcher in the field of Complex Dynamics.

The first part of the project will be on quasiconformal geometry, to understand the necessary
tools in analysis that lead to the Measurable Riemann Mapping Theorem, the main tool to
perform surgery. These include several definitions of quasiconformal mappings, both analytic
and geometric. The second part will consist on several applications to holomorphic dynamics,
with emphasis on those in transcendental dynamics, showing the power of this technique.

A third part of the project will be dedicated to some original work on a particular family
of meromorphic transcendental maps. More precisely, we study the family of transcendental
meromorphic maps

fλ(z) = λ

(
ez

z + 1
− 1

)
,

and we prove, using quasiconformal surgery, that for certain parameter values the Julia set
contains what is known as a Cantor Bouquet.

Resum

L’objectiu d’aquesta tesi es recollir alguns resultats d’anàlisi quasiconforme i cirurgia quasi-
conforme, que esdevenen avui eines fonamentals per a qualsevol investigador o investigadora en
el camp de la Dinàmica Complexa.

La primera part del treball tracta sobre la geometria quasiconforme, per tal d’entendre les
eines analítiques necessàries que ens porten al Teorema de Riemann mesurable, l’eina principal
per fer cirurgia. Aquestes inclouen diverses definicions de les aplicacions quasiconformes, tant
analítiques com geomètriques. La segona part tracta sobre diverses aplicacions d’aquests resultats
a la dinàmica holomorfa, fent èmfasi en aquelles per a dinàmica transcendent, mostrant així el
potencial d’aquesta tècnica.

La tercera part del treball va dedicada a obtenir resultats originals sobre una família de fun-
cions meromorfes transcendents. Més precisament, estudiem la familia de funcions transcendents
meromorfes

fλ(z) = λ

(
ez

z + 1
− 1

)
,

i demostrem, mitjançant cirurgia quasiconforme, que per a uns determinats paràmetres, el con-
junt de Julia conté el que s’anomena un Cantor Bouquet.

2020 Mathematics Subject Classification. 37F10, 30D45, 30D30
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Introduction

Iteration theory appears in daily problems, often from a mathematical model regarded as a
dynamical system. In many cases, methods from numerical analysis require iteration, for example
the Newton method aims at approximating the solutions, real or complex, of the equation f(z) =
0, by considering the iterative function

Nf (z) = z − f(z)

f ′(z)
.

Given an initial condition z ∈ C we consider the sequence

z 7−→ Nf (z) 7−→ Nf (Nf (z)) 7−→ · · ·

and we wish to determine under which conditions this sequence converges, and if it does so,
whether it converges to a zero of f or not.

Figure 1: Newton method applied to the cubic polynomial P (z) = z3 − 1. Points of the same
color converge to the same root of P under iteration. The boundaries of these basins form the
Julia set of this rational map.

The mathematical area that aims to study the iteration of general meromorphic functions
of one-complex variable is known as Holomorphic Dynamics. The key ingredient for the study
of iteration came in the beginning of the twentieth century with the notion of normal family
introduced by Montel, which leads to the definition of the central objects in the field: the Fatou
set, where the iterates have Montel’s normality (equicontinuity in the spherical metric), and
its complement, the Julia set. Julia [Jul] and Fatou [Fat], who set the basis of Holomorphic

v
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Dynamics, based his approach on Montel’s theory for the case of rational maps. Fatou, in fact,
extended in 1926 some results to the case of transcendental entire functions (entire functions
with infinitely many terms in their series expansions). However, he did not consider the more
general case of transcendental meromorphic functions, i.e., functions with an essential singularity
at ∞, which are allowed to have poles. The interest for these functions is double. The essential
singularity, on the one hand, adds a lot of chaos to the dynamical system, mainly because of
Picard’s Theorem, which states that in each punctured neighborhood of ∞, these functions
assume each value of the Riemann Sphere C∞, with at most two exceptions, infinitely often.
Hence, given a point z ∈ C, if its orbit

O+
f (z) = {fn(z) : n ∈ N}

is near ∞ at some moment, after one iteration it can land at almost any place of the plane. On
the other hand, the presence of poles allows for more generality, since ∞ is not required to be
an omitted value.

The work of Julia and Fatou left many open questions, like Fatou’s No-Wandering Domains
Conjecture for rational maps, which was proved by Sullivan in 1985 in his famous paper Quasi-
conformal Homeomorphisms and Dynamics I. Solution of the Fatou-Julia Problem on Wandering
Domains (see [Sul]). This paper introduced quasiconformal analysis techniques into holomorphic
dynamics, which meant remarkable advances in the field. The notion of quasiconformality is
weaker than conformality (see [Ahl, BF, LV]). While the second one preserve angles, the first
one distorts them in a bounded way. However, the theory of quasiconformal functions was first
introduced with the work of Grötzsch, which was taken into two different directions. On the
one hand, Teichmüller showed a connection between quasiconformality and the function theory
of Riemann surfaces, and on the other hand, Morrey explored its relation with the solution of
PDEs. In this thesis we develop the theory of quasiconformal mappings in Chapter 1.

Quasiconformal surgery is a mechanism to construct holomorphic maps with prescribed dy-
namics, which is the ultimate goal of Chapter 2. The word surgery emerges because the con-
struction often needs to paste different maps together to obtain a model map (not holomorphic
in general), which, together with the Measurable Riemann Mapping Theorem as the essential
tool (here we refer to it as the Integrability Theorem), allows to obtain a holomorphic "copy"
of the model, i.e. a holomorphic map with the same dynamics. The use of this tool has been
effective to prove several important results, like the No-Wandering Domains theorem; or the
Straightening Theorem, that explains why we find copies of polynomial Julia sets in the phase
plane of rational or transcendental functions. Many surgery applications can be found in [BF].

In this thesis we survey some results on quasiconformal analysis. Which, together with some
knowledge of the general theory of Complex Dynamics, lead to some applications, that we present
at the end of Chapter 2.

In the last part of the project, Chapter 3, we apply this work to study the family of maps,

fλ(z) = λ

(
ez

z + 1
− 1

)
.

This family is interesting since it is the simplest meromorphic map with two singularities of the
inverse map: z = 0, which is a fixed critical point (f ′λ(0) = 0), and −λ, which is an asymptotic
value (limz→−∞ fλ(z) = −λ), whose orbit depends on the parameter λ. It has also one single
pole, z = −1, which is not omitted except for λ = 1. One can view fλ as the meromorphic
analogue to the well-known Milnor family of cubic polynomials Pa(z) = z2(z − a) [Mil1] or its
entire version λz2ez [FG2].

Opposed to these two cases, the basins of attraction of fλ are not simply connected and the
relation between this topological property and the dynamics of fλ promises to be a source of
interesting problems. In fact, based on previous work in [Rod], we prove here Theorem 3.13 (see
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Section 3.3.1), which describes the connectivity properties of the basin of attraction of z = 0 in
terms of the location of the asymptotic value −λ.

Nevertheless, our main result in this thesis concerns the Julia sets of the maps fλ. As
mentioned above, an important Theorem in holomorphic dynamics (see [DH]) states that, under
certain conditions, one finds copies of polynomial Julia sets (entire) in the dynamical plane of
rational or transcendental maps. Inspired by this fact, we shall prove that, for certain parameter
values, the Julia set of fλ contains an invariant copy of the Julia set of the exponential map
ga(z) = a(ez − 1), a well studied object known as a Cantor Bouquet. More precisely, we apply
quasiconformal surgery to prove the following:

Theorem A. Let fλ(z) = λ(ez/(z+ 1)− 1) and ga(z) = a(ez− 1), for λ, a ∈ C \ {0}. Denote by
J(fλ) and J(ga) their Julia sets. Then, there exists C ⊂ J(f−1/e)) such that f−1/e(C) = C and
f−1/e on C is quasiconformally conjugate to g1/e on J(g1/e). In particular, C is homeomorphic
to J(g1/e) and both are homeomorphic to a Cantor Bouquet.

Figure 2: In the left side there is the dynamical plane of g1/e = (ez − 1)/e and in the right side
the dynamical plane of f−1/e. The Julia set in both cases is colored in blue and it illustrates the
statement of Theorem A.

A Cantor Bouquet is, loosely speaking, a topological structure homeomorphic to a Cantor set
cross a one-sided infinite segment (see Definition 3.3 in Section 3.1). Cantor Bouquets appear
as Julia sets of a wide variety of transcendental entire functions like ga(z), the well-known
exponential family.

To prove Theorem A we use surgery to convert our meromorphic map fλ into an entire map,
in the same spirit as in the Straightening Theorem (see [DH]). Nevertheless, we must overcome
the additional difficulty of dealing with unbounded sets and infinite degree, something that does
not occur for polynomials. Because of these challenges, we prove our result for just one value of λ,
hoping, however, that this technique can be generalized in the future to a larger set of parameter
values and, even more ambitiously, to classes of functions satisfying similar conditions.
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Chapter 1

Quasiconformal analysis and geometry

Quasiconformal mappings have recently come to play a very active part in the theory of
analytic functions of one complex variable for several reasons. To list some of them, they are a
natural generalization of conformal mappings and many theorems relating conformal mappings
use only the quasiconformality (hence we are interested in determine in which cases conformality
is essential or not). In this thesis we shall see how they can be applied to Holomorphic Dynamics.

1.1 Differentiable quasiconformal mappings

Before we address the general definition of quasiconformal mappings it will be useful for
our purpose to work with differentiable maps. After that we will use this part and the a.e.
differentiability to obtain properties of more general quasiconformal maps.

1.1.1 Grötzsch’s definition

The notion of quasiconformal mapping was introduced by H. Grötzsch back in 1928. If Q is
a square and R is a rectangle (which is not a square) then there is no conformal mapping of Q
on R which maps vertices on vertices, Grötzsch asked for the most nearly conformal mapping of
this kind.

We show now the definition that he gave:
Let f(z) = w = u+ iv be a C1 homeomorphism from one region to another. At a point z0 it

induces a linear mapping of the differentials

du = uxdx+ iuydy

dv = vxdx+ ivydy
(1.1)

which yields
dw = fzdz + fz̄dz̄, (1.2)

where
fz =

1

2
(fx − ify) , fz̄ =

1

2
(fx + ify).

Note that (1.1) represents an affine transformation from the (dx, dy) plane to the (du, dv) plane.
This transformation maps circles about the origin into similar ellipses.

The first goal is to determine the ratio between the axes of this ellipse as well as their
direction.

We can write du2 +dv2 = Edx2 +2Fdxdy+Gdy2 (first fundamental form written in terms of
a metric tensor), where E = u2

x +u2
y, F = uxuy + vxvy and G = u2

y + v2
y . Moreover, as something

1



2 Quasiconformal analysis and geometry

Df

Figure 1.1: Representation of the action of the differential when applied to a circle.

which is intended to be considered as a metric, it can be written as(
E F
F G

)
,

which has eigenvalues

λ± =
1

2

(
E +G±

√
(E −G)2 + 4F 2

)
.

Hence, the ratio of the axes is√
λ+

λ−
=
E +G+

√
(E −G)2 + 4F 2

2
√
EG− F 2

. (1.3)

However, here the complex condition is way more convenient. We have,

fz =
1

2
(ux + vy) +

i

2
(vx − uy) , fz̄ =

1

2
(ux − vy) +

i

2
(vx + uy).

Hence, J = |fz|2 − |fz̄|2 = uxvy − uyvx is the Jacobian, which is positive for orientation pre-
serving maps and negative for orientation reserving maps. To simplify, it will just be considered
the orientation preserving case (positive Jacobian).

Note that from (1.2), (|fz| − |fz̄|)|dz| ≤ |dw| ≤ (|fz| + |fz̄|)|dz|, therefore the ratio of the
major axis to the minor axis is

Df =
|fz|+ |fz̄|
|fz| − |fz̄|

≥ 1 (1.4)

and we refer to it as the dilatation at the point z. However, it is often more convenient to
consider

df =
|fz̄|
|fz|

< 1 (1.5)

which is related to Df by the identities

Df =
1 + df
1− df

, df =
Df − 1

Df + 1
.

We define the complex dilatation (or Beltrami coefficient)

µf =
fz̄
fz
. (1.6)

and the second complex dilatation

νf =
fz̄
f̄z̄

=

(
fz
|fz|

)2

µf .

Definition 1.1. The mapping f is said to be quasiconformal if Df is bounded. We say that
f is K-quasiconformal (from now on K-gc) of Df ≤ K.

The restriction to C1 is unnatural and, as we already said, we want to get rid of it.
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1.1.2 Composed mappings

Before we introduce the general definition of quasiconformal mappings, we still need to de-
velop some properties of differentiable quasiconformal mappings, since as we already said, we
will see that quasiconformal maps aree differentiable a.e. and the relations proved here will also
hold.

We aim to determine the complex derivatives and complex dilatations of a composed mapping
g ◦ f . To tackle a problem related with the notation we introduce an intermediate variable
ξ = f(z).

Note that without supposing that we deal with holomorphic functions, to avoid mistakes our
functions need to be regarded as of the form f(z, z̄), g(ξ, ξ̄). Hence,

∂

∂z
(g(f(z), f̄(z))) =

∂g

∂ξ
(f(z), f̄(z))

∂f

∂z
(z) +

∂g

∂ξ̄
(f(z), f̄(z))

∂f̄

∂z
(z) =

= (gξ ◦ f)fz + (gξ̄ ◦ f)f̄z,

∂

∂z̄
(g(f(z), f̄(z))) =

∂g

∂ξ
(f(z), f̄(z))

∂f

∂z̄
(z) +

∂g

∂ξ̄
(f(z), f̄(z))

∂f̄

∂z̄
(z) =

= (gξ ◦ f)fz̄ + (gξ̄ ◦ f)f̄z̄.

Thus, if we call Jf the Jacobian of f ,

gξ ◦ f =
1

Jf

(
(g ◦ f)z f̄z̄ − (g ◦ f)z̄ f̄z

)
gξ̄ ◦ f =

1

Jf
((g ◦ f)z̄fz − (g ◦ f)zfz̄)

(1.7)

If we apply (1.7) to g = f−1, we obtain

(f−1)ξ ◦ f = f̄z̄/Jf , (f−1)ξ̄ ◦ f = −fz̄/Jf .

So,

(f−1)ξ =
1

Jf
f̄z̄ ◦ f−1 , (f−1)ξ̄ = − 1

Jf
fz̄ ◦ f−1.

Hence the Beltrami coefficient of f−1 is

µf−1 = −
(
fz̄
f̄z̄

)
◦ f−1,

and since (fz) = f̄z̄ and fz̄ = f̄z, we have

df−1 = df ◦ f−1 (1.8)

which means that, if the points are properly chosen, a map and its inverse have the same
dilatation. Furthermore, from (1.7) we obtain

µg ◦ f =
(g ◦ f)z̄fz − (g ◦ f)zfz̄
(g ◦ f)z f̄z̄ − (g ◦ f)z̄ f̄z

=
fz
f̄z̄

(g ◦ f)z̄ − (g ◦ f)zµf

(g ◦ f)z − (g ◦ f)z̄(fz̄/fz)
=

=
fz
f̄z̄

µg◦f − µf
1− µfµg◦f

.

Observe that:
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• If g is conformal, then µg = 0, which implies that

0 =
fz
f̄z̄

(µg◦f − µf ),

therefore, µg◦f = µf .

• If f is conformal, then µf = 0 and

µg ◦ f = µg◦f
fzfz

fzfz
= µg◦f

(
f ′

|f ′|

)2

. (1.9)

Moreover,

νg ◦ f =
gξ ◦ f
ḡξ̄

gξ ◦ f
gξ ◦ f

= (µg ◦ f)
gξ ◦ f
ḡξ̄

= µg◦f

(
f ′

|f ′|

)2 gξ ◦ f
gξ ◦ f

gξ ◦ f
gξ ◦ f

=

= µg◦f

(
gξ ◦ f
|gξ ◦ f |

)2( f ′

|f ′|

)2

.

Hence, νg ◦ f = νg◦f .

So in both cases, the modulus of the dilatation is invariant with respect to all conformal trans-
formations (in one case the complex dilatation is invariant, and in the other case the second
complex dilatation).

1.2 General definition of quasiconformal mappings

As we have already pointed out, the restriction to differentiable mappings is unnecessary.
The goal of this section is to present two equivalent definitions of what we will understand
as quasiconformal mappings, a notion that generalizes the one in Definition 1.1. They will
give different approaches to deal with this maps. The references for this section have been
[Ahl, BF, LV].

1.2.1 Geometric approach

Here all mappings φ will be topological, i.e. orientation preserving homeomorphisms, from
a region Ω to a region Ω′.

Definition 1.2. A quadrilateral is a Jordan region Q, Q̄ ⊂ Ω, together with a pair of disjoint
closed arcs on the boundary (the b-arcs).

Its module M(Q) = a/b is determined by conformal mapping on a rectangle (by Riemann’s
mapping theorem).

ϕ

a

bb-arcb-arc

a-arc

a-arc

Figure 1.2: Representation of the moduli, here we distinguish between the a-arcs and the b-arcs,
which are mapped to the sides
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ϕ

a

b

ϕ(z4) ϕ(z3)

ϕ(z2)ϕ(z1)

z4 z3

z2
z1

Figure 1.3: Representation of the moduli, computed with the image of the distinguished points
of the quadrilateral under the Riemann map ϕ.

We can also put the emphasis on the vertices by defining a quadrilateral Q = Q(z1, z2, z3, z4)
as a Jordan domain in C with an ordered sequence of boundary points which agree with the
positive orientation of Q. Then by Riemann’s mapping theorem, we can map Q to rectangle as
in Figure 1.3.

Therefore
mod(Q) = M(Q) :=

|ϕ(z1)− ϕ(z2)|
|ϕ(z2)− ϕ(z3)|

.

Definition 1.3. Given a quadrilateral Q, we define its conjugate Q∗, as Q but identifying in the
previous definition the a-arcs.

Note that by definition, M(Q∗) = 1/M(Q) and that if Q = Q(z1, z2, z3, z4), then Q∗ =
Q(z2, z3, z4, z1).

Definition 1.4 (Geometric definition of quasiconformal mapping). We say that φ is K-qc if
the modules of quadrilaterals are K-quasi-invariant, which means that given a quadrilateral Q,
Q̄ ⊂ Ω, then

M(φ(Q)) ≤ KM(Q).

i.e.
Kφ := sup

Q̄⊂Ω

M(φ(Q))

M(Q)
≤ K.

There is also another geometric approach which consists on the invariance of the moduli of
annuli under φ, for more details see [BF].

Note that if φ is K-qc and Q is a quadrilateral, since Q∗ is another quadrilateral then

1/M(φ(Q)) = M(φ(Q∗)) ≤ KM(Q∗) = K/M(Q),

hence, we have the double inequality K−1M(Q) ≤M(φ(Q)) ≤ KM(Q).

Proposition 1.5 (Properties of qc maps). Let φ be a K-qc mapping.

(a) If φ is C1, then the definitions agree.

(b) φ and φ−1 are both K-qc.

(c) The class of K-qc mappings is invariant under composition with conformal mappings.

(d) If φ̃ is K̃-qc, then the composition (whenever it has sense) is KK̃-qc.

Proof. The first one will be proved in more detail when we prove the equivalence between the
geometric definition (that we have just presented) and the analytic definition, which will be
presented next. The basic idea is that "lengths" and "areas" are just the integrals of somewhat
with respect to φz, φz̄, which we have under control.

To prove (b), note that we have seen K−1M(Q) ≤ M(φ(Q)), hence M(Q) ≤ KM(φ(Q)),
hence φ−1 is K-qc.

Note that we define the modulus according to conformal mappings, so it is preserved under
composition with conformal maps and hence (c).

Finally, the proof of (d) is straightforward.
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1.2.2 Analytic approach

Here we introduce a couple of equivalent definitions that will be regarded as the analytic
definition.

We first present some results regarding the absolute continuity of a function and some of its
properties. For more information and details see [LV, Roy].

We use the notations φz = ∂zφ and φz̄ = ∂z̄φ, whenever they make sense.

Definition 1.6 (Absolutely continuous function). A function f : [a, b] → C is said to be abso-
lutely continuous on [a, b] if for every ε > 0, there exists δ > 0 such that

n∑
i=1

|f(yi)− f(xi)| < ε

whenever {[xi, yi] : i = 1, . . . , n} ⊂ [a, b] is a finite collection of mutually disjoint subintervals of
[a, b] with

∑n
i=1 |yi − xi| < δ.

Remark 1.7. The following hold:

• If f is absolutely continuous on [a, b], then f is uniformly continuous on [a, b].

• If f is Lipschitz on [a, b], then f is absolutely continuous on [a, b].

• If f is integrable on [a, b], then

F (x) :=

∫ x

a
f(t)dt , a ≤ x ≤ b

is absolutely continuous on [a, b].

Proposition 1.8 (Properties of absolutely continuous functions). Let f be an absolutely contin-
uous function on [a, b]. Then the following hold:

(a) f has bounded variation on [a, b].

(b) f maps sets of measure zero to sets of measure zero.

(c) f has a derivative almost everywhere.

(d) If f ′(x) = 0 a.e., then f is constant.

(e) f is the indefinite integral of its derivative.

Definition 1.9. We say that a function u(x, y) = u(z) is ACL (absolutely continuous in lines)
in the region Ω, if for every closed rectangle R ⊂ Ω with sides parallel to the x and the y-axes,
u(x, y) is absolutely continuous on a.e. horizontal and a.e. vertical line in R.

Note that by the properties stated before, an ACL function has partial derivatives ux, uy a.e.
in Ω.

Definition 1.10 (Analytic definition K-quasiconformal mapping). A topological mapping φ of
Ω is said to be K-quasiconformal (from now on, K-qc), for K ≥ 1 a real number, if

(i) φ is ACL (absolutely continuous on lines) on Ω.

(ii) |φz̄| ≤ k|φz| a.e. where k := (K − 1)/(K + 1).
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We say that a topological mapping φ is quasiconformal (from now on, qc) if there exists K ≥ 1
such that φ is K-qc.

Definition 1.11. We say that φ is differentiable in the sense of Darboux if

φ(z)− φ(z0) = φz(z0)(z − z0) + φz̄(z0)(z̄ − z̄0) + o(|z − z0|).

Lemma 1.12. If φ is topological and has partial derivatives a.e., then it is differentiable a.e. (in
the sense of Darboux).

The proof is technical and it does not imply any idea that we will need later, For details see
[Ahl].

If E is a Borel set in Ω, we define A(E) as the area of the image of E under φ, which defines
a locally finite additive measure, due to the following theorem:

Theorem 1.13 (Lebesgue,[LV] p.120). A non-negative, completely additive set function τ , bounded
in E, has almost everywhere a finite derivative τ ′(z), which is measurable as a function of z. For
every Borel set B ⊂ E we have

τ(B) ≥
∫
B
τ ′dµ

where equality holds for every B, if and only if, τ is locally absolutely continuous in E.

Such a measure has a symmetric derivative a.e., that is

J(z) = lim
”Q→0”

A(Q)

m(Q)
,

where Q is a square of center z whose sides tend to zero (see [LV], p. 130). Moreover,∫
E
J(z)dm(z) ≤ A(E).

When φ is differentiable at z, then J(z) is the Jacobian, which by the inequality before is locally
integrable. Moreover, we know that J = |φz|2 − |φz̄|2, and if |φz̄| ≤ k|φz| (k < 1), then

J ≥ |φz|2 − k2|φz|2 = |φz|2(1− k2),

therefore
J

1− k2
≥ |φz|2 ≥ |φz̄|2,

which implies that the partial derivatives are locally square integrable.
If we consider h a test function (C1 with compact support) and we integrate over horizontal

or vertical lines, using Fubini’s theorem we can see that∫
φxhdxdy = −

∫
φhxdxdy∫

φyhdxdy = −
∫
φhydxdy

therefore φx and φy are what we understand as distributional derivatives of φ. Note that
whenever a function is differentiable, the distributional derivatives agree with the derivatives in
the usual sense. For more information regarding distributional derivatives see [Roy].

We are interested in the converse statement.

Lemma 1.14. If φ has locally integrable distributional derivatives, then φ is ACL.
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Proof. First of all assume the existence of locally integrable functions φ1, φ2 such that∫
φ1hdm = −

∫
φhxdm ,

∫
φ2hdm = −

∫
φhydm

for every h test function, i.e. h ∈ C∞c (Ω).
Consider a rectangle Rν = {0 ≤ x ≤ a, 0 ≤ y ≤ ν} and consider h = h(x)k(y) such that its

support is contained in ⊆ Rν . We have,∫
Rν

φ1h(x)dm = −
∫
Rν

φh′(x)dm,

then, ∫ a

0
φ1(x, ν)h(x)dx = −

∫ a

0
φ(x, ν)h′(x)dx

for almost all ν.
Consider now a sequence of test functions {hn}n such that 0 ≤ hn ≤ 1 and hn ≡ 1 on (1/n, a−

1/n), then,∫ 1/n

0
φ1(x, ν)h′n(x)dx+

∫ a−1/n

1/n
φ1(x, ν)dx+

∫ a

a−1/n
φ1(x, ν)hn(x)dx =

=−
∫ 1/n

0
φ(x, ν)h′n(x)dx−

∫ a−1/n

1/n
φ(x, ν)h′n(x)︸ ︷︷ ︸

0

dx−
∫ a

a−1/n
φ(x, ν)h′n(x)dx

We want to show that when we let n tend to ∞ we have:∫ a

0
φ1(x, ν)dx = φ(a, ν)− φ(0, ν). (1.10)

To prove it, we will compute separately

lim
n→∞

∫ 1/n

0
φ(x, ν)h′n(x)dx and lim

n→∞

∫ a

a−1/n
φ(x, ν)h′n(x)dx

Note that our test functions resemble (without loss of generality) the ones in Figure 1.4.

0

1

a0

1

a1
n

a− 1
n

Figure 1.4: Sketch of the test functions in the proof of Lemma 1.14.

So if we consider h′n(x), then h′n ≡ 0 on (1/n, a− 1/n) and h′n(0) = h′n(a) = 0 (because there
exists εn > 0 so that hn ≡ 0 on [0, εn) ∪ (a− εn, a]). Then,

• h′n(x) > 0 on (0, 1/n), so

lim
n→∞

∫ 1/n

0
φ(x, ν)h′n(x)dx ≥

(
inf

x∈[0,1/n]
φ(x, ν)

)∫ 1/n

0
h′n(x)dx =

=

(
inf

x∈[0,1/n]
φ(x, ν)

)
(hn(1/n)− hn(0)) =

(
inf

x∈[0,1/n]
φ(x, ν)

)
(1− 0) −→

n
φ(0, ν),
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and in the other direction,

lim
n→∞

∫ 1/n

0
φ(x, ν)h′n(x)dx ≤

(
sup

x∈[0,1/n]
φ(x, ν)

)∫ 1/n

0
h′n(x)dx =

=

(
sup

x∈[0,1/n]
φ(x, ν)

)
(hn(1/n)− hn(0)) −→

n
φ(0, ν).

Therefore,

lim
n→∞

∫ 1/n

0
φ(x, ν)h′n(x)dx = φ(0, ν).

• h′n(x) < 0 on (a− 1/n, a), so using the same argument as before

lim
n→∞

∫ a

a−1/n
φ(x, ν)h′n(x)dx ≤

(
inf

x∈[a−1/n,a]
φ(x, ν)

)∫ 1/n

0
h′n(x)dx =

=

(
inf

x∈[a−1/n,a]
φ(x, ν)

)
(hn(a)− hn(a− 1/n))

=

(
inf

x∈[0,1/n]
φ(x, ν)

)
(0− 1) −→

n
−φ(a, ν),

and in the other direction,

lim
n→∞

∫ a

a−1/n
φ(x, ν)h′n(x)dx ≥

(
sup

x∈[a−1/n,a]
φ(x, ν)

)∫ 1/n

0
h′n(x)dx =

=

(
sup

x∈[a−1/n,a]
φ(x, ν)

)
(hn(a)− hn(a− 1/n)) −→

n
−φ(a, ν).

Therefore,

lim
n→∞

∫ a

a−1/n
φ(x, ν)h′n(x)dx = −φ(a, ν).

So we have (1.10) for a.e. ν, hence φ(x, ν) is absolutely continuous for a.e. ν.
Furthermore, φx = φ1 and φy = φ1 a.e. (because they agree with the distributional deriva-

tives).

Hence we have proved that:

Theorem 1.15 (Second analytic definition of K-qc mapping). A topological mapping φ of Ω is
K-qc, if and only if, φ has locally integrable distributional derivatives such that

|φz̄| ≤ k|φz| where k :=
K − 1

K + 1
.

The goal is to prove that these definitions are invariant under composition with a conformal
mapping. In fact, we will see that the analytic definition and the geometric definition are
equivalent, hence we will obtain this property ’for free’.
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1.2.3 The length-area method

In some cases to deal with quasiconformal mappings we will need to use a geometric approach
and in some cases an analytic approach. The final goal of this section is proving the equivalence
between these two definitions, which will also give us several properties.

The proof will consist on using the length-area method, together with two technical lemmas
that will be proved later.

We want to write our conditions in the module of a quadrilateral in terms of an extremal
problem so that we can take advantage of the ACL hypothesis.

In order to characterize the module in this setting, consider the canonical mapping of the
quadrilateral Q(z1, z2, z3, z4) onto the rectangle R = {u + iv : 0 < u < a, 0 < v < b}, like in
Figure 1.5.

f(z3)

f(z4)f(z1)

f(z2)

f

z4

z3
z2

z1

a-side

b-side b-side

a-side

Figure 1.5: The module is defined via the Riemann map. In the right side we have the quadri-
lateral Q(z1, z2, z3, z4) and in the left side the rectangle R.

Then ∫
Q
|f ′(z)|2dxdy = ab.

Let Γ be the family of all locally rectifiable Jordan arcs in Q which join the sides (z1, z2) and
(z3, z4). Then, ∫

γ
|f ′(z)||dz| ≥ b ∀γ ∈ Γ

and we have equality when γ is the inverse of a vertical line segment of R joining its horizontal
sides. Thus,

M(Q(z1, z2, z3, z4)) =

∫
Q |f

′(z)|2dxdy(
infγ∈Γ

∫
γ |f ′(z)||dz|

)2 . (1.11)

The first step is getting rid of the canonical mapping f . We accomplish this goal by introducing
the family P of non-negative Borel-measurable functions in Q normalized such that for all ρ ∈ P,∫

γ
ρ(z)|d(z)| ≥ 1 ∀γ ∈ Γ.

If we denote
mρ(Q) :=

∫
Q
ρ2dxdy

then, we can prove the following characterization of the modulus.

Lemma 1.16. In the conditions above, M(Q(z1, z2, z3, z4)) = infρ∈P mρ(Q).

Proof. For every ρ ∈ P define ρ1 in the canonical rectangle R, as in Figure 1.5, by (ρ1◦f)|f ′| = ρ,
i.e. ρ1 is defined by the change of variables. Then, by the change of variables theorem we see
that ∫

γ
(ρ1 ◦ f)|f ′|ds =

∫
f(γ)

ρ1ds ,

∫
Q

(ρ1 ◦ f)2|f ′|2dm(z) =

∫
R︸︷︷︸
f(Q)

ρ2
1dxdy.
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Then,

mρ(Q) =

∫
R
ρ2

1dxdy,

and using Fubini’s theorem,

mρ(Q) =

∫ a

0

∫ b

0
ρ1(x+ iy)2dydx.

Note that the correspondence before with ρ and ρ1 defines a family P1 of non-negative Borel-
measurable functions in f(Q) = R such that for every ρ1 ∈ P1,∫

f(γ)
ρ1ds ≥ 1 ∀γ ∈ Γ.

So,

12 ≤
(∫ b

0
(1 · ρ1(x, y))dy

)2

≤︸︷︷︸
Cauchy-Schwarz

∫ b

0
12dy ·

∫ b

0
ρ1(x, y)2dy = b

∫ b

0
ρ1(x, y)2dy.

Hence,

a =

∫ a

0
1dx ≤ b

∫ a

0

∫ b

0
ρ1(x, y)2dxdy = bmρ(Q),

which implies that
a

b
= M(Q(z1, z2, z3, z4)) ≤ mρ(Q) ∀ρ ∈ P.

Finally, if we take ρ = |f ′|/b ∈ P, then mρ(Q) = M(Q(z1, z2, z3, z4)).

One of the advantages of the characterization in Lemma 1.16 is the well-known Rengel’s
inequality.

Lemma 1.17 (Rengel’s inequality). Let ρ be the euclidean metric, s1 the euclidean distance of
the sides (z1, z2) and (z3, z4) in Q and m the Euclidean area. Then,

M(Q(z1, z2, z3, z4)) ≤ m(Q)/s2
1.

Proof. If we choose

s1 = inf
γ∈Γ

∫
γ
|dz|,

then ρ = 1/s1 ∈ P and using Lemma 1.16 we see that

mρ(Q) =

∫
Q

1

s2
1

dxdy =
m(Q)

s2
1

≥M(Q(z1, z2, z3, z4))

which yields the result.

Remark 1.18 (Rengel’s double inequality). The following holds: In the conditions in the lemma
above, if now

s2 := inf
γ̃∈Γ̃

l(γ)

where Γ̃ is the family of all locally rectifiable arcs in Q which join the sides (z2, z3) and (z4, z1),
then

s2
2

m(Q)
≤M(Q) ≤ m(Q)

s2
1

.

Moreover, we have equality, if and only if, Q is a rectangle.

The double inequality in Remark 1.18 is clear using the conjugate quadrilateral. For more
details in the last part see [LV].
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1.2.4 Proof of the equivalence between the two definitions

In order to prove the equivalence between the geometric definition and the analytic definition,
we need to prove first two technical lemmas, the first of them tells us that the differentiation
rules that we had when dealing with differentiable maps also hold in the distributional sense.

Lemma 1.19. If ω is a C2 topological mapping and if φ has locally integrable distributional
derivatives, so does φ ◦ ω and, if we call ω = (ξ, η), they are given by

(φ ◦ ω)x = (φξ ◦ ω)
∂ξ

∂x
+ (φη ◦ ω)

∂η

∂x

(φ ◦ ω)y = (φξ ◦ ω)
∂ξ

∂y
+ (φη ◦ ω)

∂η

∂y
.

Proof. We just have to show that these are the distributional derivatives. So we have to consider
a test function h ◦ ω and prove:∫

[(φξ ◦ ω)ξx + (φη ◦ ω)ηx](h ◦ ω)dxdy = −
∫

(φ ◦ ω)(h ◦ ω)xdxdy∫
[(φξ ◦ ω)ξy + (φη ◦ ω)ηy](h ◦ ω)dxdy = −

∫
(φ ◦ ω)(h ◦ ω)ydxdy.

To do it, we will apply a couple of change of variable. Note that we have already computed this
expression when everything was differentiable (and we will use it here with the test functions).
We have ω = (ξ, η), which is a change of variable from the (x, y)−plane to the (ξ, η)−plane. So
we have: (

xξ xη
yξ yη

)
=

1

J

(
ηy −ξx
−ηx ξx

)
i.e., the following matrices are reciprocal:(

ξx ξy
ηx ηy

)
and

(
xξ xη
yξ yη

)
.

and now, for any test function h ◦ ω, we have:∫
[(φξ ◦ ω)ξx + (φη ◦ ω)ηx](h ◦ ω)dxdy =

=

∫ [
(φξ ◦ ω)

ξx
J

+ (φη ◦ ω)
ηx
J

]
(h ◦ ω)Jdxdy =

=

∫
(φξyη − φηyξ)hdξdη = −

∫
φ((yηh)ξ − (yξh)η)dξdη =

=

∫
φ(−hξyη + hηyξ +

0 by Schwarz’s theorem︷ ︸︸ ︷
yηξh− yξηh )dξdη =

=

∫
(φ ◦ ω)

[
−(hξ ◦ ω)

ξx
J
− (hη ◦ ω)

ηx
J

]
Jdxdy =

=

∫
(φ ◦ ω)(−(hξ ◦ ω)ξx − (hη ◦ ω)ηx)dxdy =

= −
∫

(φ ◦ ω)(h ◦ ω)xdxdy.

The other one goes exactly the same way.

The next lemma tells us that quasiconformal maps, in the geometric sense, are ACL.
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Lemma 1.20. If φ is quasiconformal in the geometric sense, then φ is ACL.

Proof. Let A(η) be the image area under the mapping φ of the rectangle {a ≤ x ≤ β, y0 ≤ y ≤ η}.
Since A(η) is increasing, then A′(η) exists a.e., so we can assume that A′(0) exists. Consider the
following figure:

Q′i

b′i

Qi

bi

Figure 1.6: Representation of the quadrilaterals in the proof of Lemma 1.20.

where Qi is the rectangle with heigh η and base bi (it has to be taken into account that we
want to prove that it is ACL, hence we need to take a collection of mutually disjoint squares to
apply the quasiconformality). Consider b′i as the length of the image of bi. We want to show
that if η is small enough, then the length of any curve in Q′i joining the vertical sides is nearly
b′i.

To do so, consider a polygon such that for ε > 0 (in each Qi)

n∑
j=1

|ξj − ξj−1| ≥ b′i − ε/2.

ξ0 ξ1 ξ2 · · · ξn

η

Figure 1.7: Representation of Qi.

Take η small enough so that the variation of φ on vertical segments is less than ε/4n (which
can be achieved thanks to continuity). Now consider the lines through ξk that correspond to
verticals (as showed in Figure 1.7). Any transversal (to these lines) must intersect all of these
lines, hence its length has to be greater or equal than

n∑
j=1

|ξj − ξj−1| − ε/2 ≥ b′i − ε.

If ε < min{b′i/2}, then by Rengel’s inequality (Lemma 1.17)

m(Q′i) ≥
(
b′i
2

)2 1

Ai
,

where Ai is the area of Q′i. By the K-quasiconformality we also have m(Q′i) ≤ Kbi/η, therefore,

b′2i
bi
≤ 4K

Ai
η
. (1.12)

Using Cauchy-Schwarz’s inequality we see that(∑
b′i

)2
≤
(∑

b′2i

)(∑
1
)

=

(∑
b′2i
bi
bi

)(∑ bi
bi

)
≤
(∑ b′2i

bi

)(∑
bi

) max bi
min bi

.
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By (1.12) and the previous inequality we obtain(∑
b′i

)2
≤ 4K

η

(∑
Ai

)(∑
bi

) max bi
min bi

= 4K
max bi
min bi

A(η)

η

(∑
bi

)
.

But,
A(η)

η
−−−→
η→0

A′(0) <∞,

which shows that if
∑
bi → 0, then

∑
b′i → 0, i.e. φ is ACL.

We can now address the main goal of this section, which is proving the equivalence between
the Analytic and Geometric definition, which will give us some useful properties of quasiconformal
mappings.

The next theorem proves that the Analytic definition implies the Geometric one. Remember
that we defined

Df (w) =
|fz(w)|+ |fz̄(w)|
|fz(w)| − |fz̄(w)|

.

Theorem 1.21. Let f be a sense preserving diffeomorphism in a domain Ω such that Df (z) ≤ K
for every z ∈ Ω, then f is K-qc. in the geometric sense.

Proof. Take a quadrilateral Q compactly contained in Ω, then can take the Riemann maps so
that the rectangles are normalized as in Figure 1.8.

M ′M 00

ii

R

Q

g(R)

f(Q)

g

f

Figure 1.8: If we take a quadrilateral Q, we can consider the induced map g given by the
corresponding (normalized) Riemann maps.

Since the dilatation quotient is invariant under conformal maps (by Lemma ??), then we
have Df (z) ≤ K, if and only if, Dg(w) ≤ K.

The inequality K ≥ Dg(z) implies that K(|gw| − |gw̄|) ≥ (|gw| + |gw̄|) and then KJg =
K(|gw| − |gw̄|)(|gw|+ |gw̄|) ≥ (|gw|+ |gw̄|)2 ≥ |fw|2.

Note that, by the inequality |gw|2 ≤ KJg we obtain

M ′ = m(g(R)) =

∫
Jg(w)dm(w) ≥ 1

K

∫
R
|gw(w)|2dm(w). (1.13)

and we also have

M ′ ≤
∫ M

0
|gw(w)|dx,

since it is the length of a curve joining the sides (0, 1) and (M ′,M ′ + i). Then,

M ′2 ≤
(∫ M

0
1 · |gw(w)|

)2

≤
∫ M

0
1dx ·

∫ M

0
|gw(w)|2dx,
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which yields that

M ′2

M
≤
∫ M

0
|gw(w)|2dx =

∫ 1

0

∫ M

0
|gw(w)|2dxdy =

∫
R
|gw|2.

Together with (1.13), we see that
1

K

M ′2

M
≤M ′,

i.e. M ′ ≤ KM .

Note that this result is for the differentiable case. However, Lemma 1.19 allows us to extend
it to the general case since there we have differentiability almost everywhere.

Note also that by Lemma 1.20 we have differentiability almost everywhere in quasiconformal
mappings in the geometric sense. This allows us to use Lemma 1.19 for the next result, which
deals with the converse in Theorem 1.21.

Theorem 1.22. If φ is K-qc in the geometric sense and differentiable at z0, then Dφ(z0) ≤ K.

Proof. Suppose without loss of generality that z0 = 0, φ(0) = 0, φz(0) = |φz(0)|, φz̄(0) = |φz̄(0)|
(which can be assumed after composing with a proper linear transformation in R2).

Then, in a neighborhood of z0 = 0,

φ(z) = u(z) + iv(z) = |φz(0)|z + |φz̄(0)|z̄ + o(z). (1.14)

We can take δ > 0 small enough so that the rectangle

Rδ = R((−1− i)δ, (1− i)δ, (1 + i)δ, (−1 + i)δ)

lies in the domain of φ and where (1.14) holds. Then, by (1.14), the image of Rδ under φ is close
to R′δ as showed in Figure 1.9.

(1− i)δ(−1− i)δ

(1 + i)δ(−1 + i)δ

δ(−|φz(0)| − |φz̄(0)| − (|φz(0)| − |φz̄(0)|)i)

Rδ R′δ

δ(|φz(0)|+ |φz̄(0)|+ (|φz(0)| − |φz̄(0)|)i)

φ

Figure 1.9: The image of Rδ under φ as in the proof of Theorem 1.22 is close to R′δ, the rectangle
obtained from taking the image under linear part in equation (1.14).

So the b-sides of R′δ ' φ(Rδ) are at distance sb = 2δ(|φz(0)| + |φz̄(0)|) + o(δ) and R′δ has
area, m(R′δ) = 4δ2

(
|φz(0)|2 − |φz̄(0)|2

)
+ o(δ2). By Rengel’s inequality (Lemma 1.17),

M(R′δ) ≥
4δ2 (|φz(0)|+ |φz̄(0)|)2 + o(δ2)

4δ2 (|φz(0)|2 − |φz̄(0)|2) + o(δ2)
, (1.15)

but M(Rδ) = 1, so

M(R′δ) =
M(R′δ)

M(Rδ)
≤ K,

which together with equation (1.15), implies that(
4δ2
(
|φz(0)|2 − |φz̄(0)|2

)
+ o(δ2)

)
K ≥ 4δ2 (|φz(0)|+ |φz̄(0)|)2 + o(δ2).
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Hence,

(|φz(0)|+ |φz̄(0)|)2 +
o(δ)

δ
≤ K

(
(|φz(0)|2 − |φz̄(0)|2) +

o(δ)

δ

)
.

If we make δ → 0, then

(|φz(0)|+ |φz̄(0)|)2 +
o(δ)

δ
≤ K (|φz(0)|+ |φz̄(0)|) (|φz(0)| − |φz̄(0)|) ,

i.e.
|φz(0)|+ |φz̄(0)|
|φz(0)| − |φz̄(0)|

= Dφ(0) ≤ K.

Finally, we show some properties that follow from the equivalence between the two definitions.

Proposition 1.23 (Properties of Q.C. mappings). Let φ be a qc map, then the following hold:

(1) If φ is K-qc, then φ−1 is K-qc.

(2) If φ is K-qc, then any composition (either to the left or the right with a conformal mapping)
is K-qc.

(3) If φ is K-qc and φ̃ is K̃-qc, then φ ◦ φ̃ is KK̃-qc.

(4) φ is K-qc, if and only if, φ is locally K-qc.

(5) If φ is K-qc, then φ satisfies the following uniform Hölder condition:

|φ(z1)− φ(z2)| ≤M |z1 − z2|1/K

on every compact subset of the domain of definition.

The proof of the last one can be found in [Ahl].

1.3 Quasiconformal geometry

In complex dynamics, one is often interested in constructing maps with prescribed dynamics.
However, the rigidity of holomorphic maps does not allow to build models by cutting and pasting.
As we shall see, quasiconformal maps are the fundamentals to build models.

Before we explain what we understand as surgery, we need to introduce several results con-
cerning the generic interpretation of the Beltrami coefficient introduced before.

We have already seen how in the case of the differentiable quasiconformal maps case we have
the dilatation of the ellipses controlled by the q.c. condition:

Dφ

(Dφ)−1

Figure 1.10: Representation of the action of the differential when applied to a circle.

In the general case, since we have differentiability a.e. and a positive, well-defined Jacobian
a.e., the same happens. Therefore we can determine the class of K-qc mappings by the maximal
dilatation allowed to be applied to an ellipse.
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We need to transform the last statement concerning the maximal dilatation intro a precise
definition so that we are able to interpret well the Beltrami coefficients, a notion which will end
up leading to an important result known as the Integrability theorem (also known as Riemann
measurable mapping theorem), which together with Weyl’s lemma are the fundamental tools to
perform surgery.

Let U ⊂ C and TU = ∪u∈UTuU be the tangent bundle over U . We understand an
infinitesimal ellipse as Eu ⊂ TuU defined up to scaling for a.e. u ∈ U . Note that, in the
notations of Figure 1.11, the map

µ : U → D

u 7→ µ(u) =
M −m
M +m

ei2θ,

completely determines the ellipse Eu (up to scaling). Moreover, µ(u) is theBeltrami coefficient
of Eu.

m

M

θ

Figure 1.11: Representation of the major axis M , the minor axis m and the angle θ in an ellipse.

Definition 1.24 (Almost complex structure). An almost complex structure (from now on,
a.c.s.) σ on U is a measurable field of infinitesimal ellipses E ⊂ TU . By this we mean an ellipse
Eu ⊂ TuU , defined up to scaling, for a.e. u ∈ U , such that the map u ∈ U 7→ µ(u) ∈ D, defined
as before, is measurable with respect to the Lebesgue measure.

Note that an almost complex structure on U is completely determined by a measurable
function µ : U → D.

It has already been pointed out that our goal is to stress out the rigidity of conformal maps,
the idea behind this notion is that by defining a Beltrami coefficient, which contains all the
information about the ellipses (up to scaling), we are setting how much a map is able to distort
a circle and therefore we can consider the class of quasiconformal in U that alter the circles in
such a way. We are now heading towards determining this class of quasiconformal maps and the
result that gives it to us is the Integrability theorem (Theorem 1.27), which is proved in B.

Recall that the dilatation of an ellipse Eu is given by

K(u) :=
1 + |µ(u)|
1− |µ(u)|

,

where µ(u) is its Beltrami coefficient. We define

K(σ) := ess sup
u∈U

K(u),

observe that K(σ) ∈ [1,∞].
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We want to deal now with how to obtain a.c.s. from maps. To accomplish this goal, we need
to restrict the types of maps that we consider for technical reasons.

Given U, V ⊂ C, we understand by D+(U, V ) the class of continuous orientation preserving
functions f from U to V , which are R-differentiable a.e. and with a differential

Duf : TuU → Tf(u)V

defined a.e. (note that quasiconformal maps satisfy these conditions). So, for this maps we have

Duf = ∂zf(u)dz + ∂z̄f(u)dz̄ a.e.

and we have already seen howDuf defines an infinitesimal ellipse in TuU with Beltrami coefficient

µf (u) =
∂z̄f(u)

∂zf(u)

i.e. with dilatation

Kf (u) := K(Duf) =
1 + |µf (u)|
1− |µf (u)|

which defines an almost complex structure on the tangent space.
It is clear that if we do this for all points u ∈ U for which f is differentiable (which happens

a.e.), we obtain a measurable field of ellipses and hence, an almost complex structure σf on U ,
with Beltrami coefficient µf .

Definition 1.25 (Pullback of µ0). We say that σf is the pullback of σ0 (the field of infinitesimal
circles/standard complex structure, i.e. with dilatation 1 a.e.) by f , i.e. µf is the pullback of
µ0 ≡ 0 by f .

We write µf (u) = f∗µ0(u), or σf (u) = f∗σ0(u).

f

Duf

(V, µ0)
(U, µf )

Figure 1.12: Representation of the pullback in Definition 1.25.

Note that we have already defined the dilatation of this almost complex structure, which is

Kf := ess sup
u∈U

Kf (u).

This concept of pullback can be generalized by defining the pullback of any a.c.s. σ under a
map f . However, our map f needs to satisfy an extra condition: f has to be absolutely continuous
with respect to the Lebesgue measure. Lucky for us, quasiconformal maps satisfy such condition,
hence unless we state the opposite, we will suppose that f : U → V is quasiconformal and that µ
is the Beltrami coefficient in TV corresponding to an a.c.s. σ in V . Let Ev be the infinitesimal
ellipse defined in TvV for a.e. v ∈ V .

We consider the measurable set of infinitesimal ellipses given by

E′u = (Duf)−1(Ef(u))
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which is well-defined a.e., in fact, E′u is defined for all u such that Ef(u) is defined and Duf exists
and is non singular.

We write the pullback as f∗µ and by

(U, µ1)
f−−−−→ (V, µ2)

we mean that f : U → V and f∗µ2 = µ1.
If now we have that g : V →W is another quasiconformal map and µ = µg, then

f∗(µg) = f∗(g∗µ0) = (g ◦ f)∗µ0 = µg◦f .

By the computations that we have already done for the differentiable case, we can find explicit
formulas for the Beltrami coefficients:

f∗µu =
∂z̄ + µ(f(u))∂zf(u)

∂zf(u) + µ(f(u))∂z̄f(u)
.

We end up this discussion about pullbacks introducing a key concept that will be of relevance
later.

Definition 1.26 (f -invariant a.c.s.). Let U ⊂ C be an open set and f be quasiconformal. Let σ
be an a.c.s. on U with Beltrami coefficient µ. We say that µ (or σ) is f -invariant if f∗(σ) = σ
a.e. We say that f is holomorphic with respect to µ.

1.3.1 The Integrability theorem

Remember that we define the Beltrami coefficient of a K-qc map φ (or the complex
dilatation) as the measurable function

µφ(z) =
φz̄(z)

φz(z)
.

Note that since φz 6= 0 a.e. (otherwise we would have φz = φz̄ = 0 a.e., which would imply
by the ACL condition that φ is constant, contradicting that it is a topological mapping), the
Beltrami coefficient is well-defined. Moreover,

|µφ(z)| = |φz̄(z)|
|φz(z)|

=
Dφ − 1

Dφ + 1
< 1.

We can state now the Integrability theorem, which yields that the conditions that we have
obtained from the Beltrami coefficient of a K-qc mapping are sufficient conditions so that there
exists a quasiconformal mapping with such a Beltrami coefficient. Furthermore, it also states
that after imposing some conditions, such quasiconformal mapping is unique.

Theorem 1.27 (Integrability theorem). Let U ⊂ C be an open set such that U ∼= D (resp.
U ∼= C). Let µ be a Beltrami coefficient on U such that the essential supremum ||µ||∞ = k < 1.
Then µ is integrable, i.e. there exists a quasiconformal homeomorphism φ : U → D (resp. onto
C) which solves the Beltrami equation, i.e. such that

∂zφ(z)µ(z) = ∂z̄φ(z)

for almost every z ∈ U . Moreover, φ is unique up to post-composition with automorphisms of D
(resp. C).
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The proof can be found in Appendix B and its relevance to Complex Dynamics will be
appreciated through the next chapters.

In order to perform surgery, which is the ultimate goal of this thesis, we will also need
Weyl’s Lemma, a classical result in Complex Analysis that can be proved using Cauchy-Pompeiu
formula.

Theorem 1.28 (Weyl’s lemma). If f ∈ C(Ω), Ω ⊂ C a domain, is such that∫
C
f(z)

∂φ

∂z̄
(z)dm(z) = 0 ∀φ ∈ C∞c (Ω),

then f ∈ H(Ω).

The following is an equivalent statement of Weyl’s Lemma, when applied with quasiconformal
mappings.

Theorem 1.29 (Weyl’s lemma). If φ is 1-quasiconformal, then φ is conformal. In other words,
if φ is quasiconformal and ∂z̄φ = 0 almost everywhere, then φ is conformal.

1.4 Quasiregular mappings

In general, the models we shall deal with will not be injective. In this section we deal with
quasiregular mappings, those that are locally quasiconformal at every point except for a discrete
number of points.

Definition 1.30 (K-quasiregular map). Let U ⊂ C be an open set and K < ∞. A mapping
g : U → C is said to be K-quasiregular (from now on, K-qr), if and only if, g can be expressed
as

g = f ◦ φ

where φ : U → φ(U) is K-qc and f : φ(U)→ g(U) is holomorphic.

Note that g is locally K-qc and it fails to be a homeomorphism at the discrete set of points
φ−1(Crit(f)) (Crit(f) is the set of critical points of f), where the map is not injective.

To deal with this new type of functions in the best possible way, we aim to give some
equivalent definitions and some properties.

Theorem 1.31 (2nd definition of K-qr). Let U ⊂ C be an open set and K <∞. A continuous
mapping g : U → C is K−qr, if and only, g is locally K-qr for except a discrete set of points in
U .

Proof. As we have already pointed out, the first definition implies this one. Let’s see the converse.
Consider Ω the discrete set of points for which g is not K-qc in any neighborhood of such

a point. Cover U \ Ω by a countable collection of open sets on which g is K-qc (which can be
assumed to be countable by Lindelöf’s theorem). Then ∂zg and ∂z̄g are well-defined a.e. in U (a
countable union of measure zero sets has measure zero). Moreover, the Beltrami coefficient can
also be defined

µ(z) = ∂z̄g(z)/∂zg(z)

and ||µ||∞ ≤ k < 1 in U .
If U is simply connected, we can apply the Integrability theorem, if not, we extend µ to µ̃ in

C defining µ̃(z) = µ(z)1U and then we integrate.
In any case we end up with a K-qc map

φ : U → φ(U).
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Then, f := g ◦ φ−1 is locally quasiconformal (for except the discrete set φ−1(Ω)) and

f∗µ0 = (φ−1)g∗(µ0) = (φ−1)∗µ = µ0.

By Weyl’s lemma, f is locally conformal for except at a discrete set of points where f is contin-
uous, hence f is holomorhic.

Theorem 1.32 (3rd and 4th definition of K-qr). Let U ⊂ C be an open set and K <∞. Then
given a continuous mapping g : U → C, the following are equivalent.

(a) g is K-qr.

(b) For every z ∈ U , there exist neighborhoods Nz and Ng(z) of z and g(z) respectively, a K-qc
mapping ψ : Nz → D and a conformal mapping ϕ : Nf(z) → D such that (ϕ◦g◦ψ−1)(z) = zd,
for some d ≥ 1.

(c) The partial derivatives ∂g, ∂̄g exist in the distributional sense, belong to L2
loc and satisfy

|∂̄g| ≤ k|∂g|,where k := (K − 1)/(K + 1).

The proof can be found in [BF].

Proposition 1.33 (Properties of quasiregular maps). Let U, V be open subsets of C.

(i) If g1 : U → V and g2 : V → C are K1 and K2 quasiregular respectively, then g2 ◦ g1 is
K1K2−qr.

(ii) g : U → C is holomorphic, if and only if, g is 1-qr.

(iii) If f : U → V is holomorphic and φ : V → C is K-qc, then g := φ ◦ f is K-qr.

(iv) If in Theorem 1.32 (b) the mapping ϕ to be K ′-qc, then g is KK ′-qr.

(v) If g : U → C is quasiconformally conjugate to f : U → C and f is holomorphic, then g is
quasiregular.

(vi) If g : U → C is quasiregular and g∗µ0 = µ0 a.e., then g is holomorphic.

Proof.

(i) We have gj = fj ◦ φj , j = 1, 2, hence

g2 ◦ g1 = f1 ◦ φ2 ◦ f1 ◦ φ1︸ ︷︷ ︸
K1K2-qr

so g2 ◦ g1 is K-qr.

(ii) If g is holomorphic, then g is 1-qr. Conversely, if g = f ◦φ is 1-qr, then φ is 1-qc, hence by
Weyl’s lemma φ is conformal. Therefore g is holomorphic.

(iii) By (ii) f is 1-qr and φ is K-qr, hence the claim follows from (i).

(iv) This follows again from (i).

(v) Suppose that there exists φ a K-qc map such that g ◦ φ = φ ◦ f , then g = φ ◦ f ◦ φ−1,
therefore g is K2-qr.

(vi) This is again Weyl’s lemma. We have, in fact g = f ◦φ, then µ0 = g∗µ0 = φ∗f∗µ0 = φ∗µ0,
which implies that φ is conformal, so the claim follows.
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As it has already been pointed out, we want to take pullbacks of quasiregular maps instead
of quasiconformal maps, because they offer us more flexibility. The following result deals with
this issue, which is essential in surgery.

Lemma 1.34. Quasiregular maps and their inverse branches send sets of measure zero to sets
of measure zero. Therefore, the pullback of a Beltrami form defined a.e. by a quasiregular map
is well-defined a.e..

Proof. We have g = f ◦φ, hence g is absolutely continuous and the same properties apply to the
inverse branches of g (note that we have an inverse branch of g if and only if we have an inverse
branch of f). Therefore pullbacks of Beltrami coefficients are defined a.e., we write:

(S1, µ1)
f−−−−→ (S2, µ2).

1.5 The Boundary Value Problem

While we perform surgery, we usually need to interpolate (quasiconformally) between two
different maps defined on distinct regions of the plane. It is a well-known fact that we cannot
embrace this task with holomorphic maps, since the Analytic Continuation Principle does not
allow us to do it. In this section we give some conditions under which we can interpolate in
certain domains, i.e. solving the boundary value problem via a quasiconformal map, which is
the degree of regularity needed to apply the Integrability Theorem. The proofs of the results in
this section can be found in [BF, Pom, LV].

The first step is to define the sets that we will work with.

Definition 1.35 (Curve, closed curve, Jordan arc, Jordan curve). A curve γ in C is a continuous
function γ : [a, b]→ C parametrizing the curve. We will also denote its image γ([a, b]) ⊂ C by γ.

The curve is said to be closed if γ(a) = γ(b). It is a Jordan arc if it has an injective
parametrization and a Jordan curve if in addition it is closed.

Theorem 1.36 (Jordan curve theorem). Let Γ be a Jordan curve in C. Then C\Γ is disconnected
and consists of exactly two connected components, a bounded one, which is known as the interior
of the curve and an unbounded one, which is known as the exterior of the curve.

The proof can be found in [NP].

Definition 1.37 (Jordan domain). A bounded domain whose boundary is a Jordan curve is
called a Jordan domain.

As one can imagine, we need to impose some conditions to our boundary maps in order to be
able to find a quasiconformal extension of such map. This yields the definition of quasisymmetric
maps, the ones that allows us to accomplish our goal.

Definition 1.38 (1st definition of quasisymmetry). A map h : S1 → C is quasisymmetric if
h is injective and, for z1, z2, z3 ∈ S1, with 0 6= |z1 − z2| = |z2 − z3|, then we have the following
double inequality

1

M
≤ |h(z1)− h(z2)|
|h(z2)− h(z3)|

≤M

for some M ≥ 1 (sometimes h is called M -quasisymmetric).
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If we write H(t) := h(e2πit), the previous inequality reads

1

M
≤ |H(x+ t)−H(x)|
|H(x)−H(x− t)|

≤M ∀x ∈ R, t > 0.

The following definition of quasisymmetry is equivalent to the previous one, although it is
formally stronger (the proof can be found in [Pom, LV]).

Definition 1.39 (2nd definition of quasisymmetry). A map h : S1 → C is quasisymmetric if
h is injective and if there exists a strictly increasing continuous function

λ : [0,∞)→ [0,∞)

such that,
1

λ
(
|z2−z3|
|z1−z2|

) ≤ |h(z1)− h(z2)|
|h(z2)− h(z3)|

≤ λ
(
|z1 − z2|
|z2 − z3|

)
∀z1, z2, z3 ∈ S1

Note that in both definitions, if one of the inequalities is satisfied, then the other follows by
interchanging the roles of z1 and z3.

It is also worth taking into account that from Definition 1.39, since the function λ is strictly
increasing and continuous, if h(S1) = S1, then by taking the inverse λ−1 of λ, which is a well-
defined continuous strictly increasing function, we obtain that h−1 is quasisymmetric as well.

In the two equivalent definitions of quasisymmetry introduced before, we are not requiring
any further regularity conditions on the function h : S1 → C. However, in this document we will
deal with maps which are C1, hence it is worth studying whether we have The next Lemma gives
us an affirmative answer.

Lemma 1.40. If h : S1 → h(S1) is a C1-diffeomorphism, then it is quasisymmetric.

Proof. Define H(t) = h
(
e2πit

)
, we aim to prove that H satisfies a bilipschitz condition, 1/K|x−

y| ≤ |H(x)−H(y)| ≤ K|x− y|, since this will imply that H is K2-quasisymmetric.
Independently of the x, t ∈ S1 that we take, since H ′ is uniformly continuous on S1, it is

bounded, we have

|H(x+ t)−H(x)− tH ′(x)| =
∣∣∣∣∫ t

0
(H ′(x+ τ)−H ′(x))dτ

∣∣∣∣ ≤ |t|,
for some k > 0.

Therefore, the map G : S1 × S1 → R defined by

G(x, y) :=


|H(x)−H(y)|
|x− y|

if x 6= y

|H ′(x)| if x = y

is continuous. Moreover, since S1 × S1 is compact, G attains its maximum and minimum value.
From H being injective and the fact that H ′ does not vanish on S1 we obtain that this minimum
value is non-zero. Hence H satisfies a bilipschitz condition.

Following the lead of what do we intend to prove in this document, we also need to see that
the quasisymmetry is preserved with respect to compositions (after imposing some technical
conditions).

Proposition 1.41 (Compositions of quasisymmetric maps). Let hj : S1 → C, for j = 1, 2 be
quasisymmetric.

(a) If h1(S1) = S1, then h2 ◦ h1 : S1 → C is quasisymmetric.

(b) If γ = h1(S1) = h2(S1), then h2 ◦ h1 : S1 → S1 is quasisymmetric.

The proof follows from Definition 1.39 and can be found in [BF], Proposition 2.4.
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1.5.1 Extension of quasiconformal maps and boundary maps

We now address the task of stating the interpolation results, which as it has already been
pointed out, are the ultimate goal of this section.

The following well-known result, gives necessary and sufficient conditions so that a conformal
map from the unit disk D can be extended continuously to D.

Theorem 1.42 (Carathéodory). Let f : D → G be a conformal isomorphism and G a bounded
domain in C. Then f has a continuous extension f̃ : D → G, if and only if, ∂G is locally
connected. Moreover, f has a continuous and injective extension to D, if and only if, ∂G is a
Jordan curve.

Recall that we say that a set X ⊂ C is locally connected if for every point x ∈ X and any
arbitrarily small ε > 0, the intersection D(0, ε) ∩X is connected.

We want to prove that Theorem 1.42 remains true for quasiconformal mappings, but first we
need to see how a quasiconformal map from φ : D→ D can be extended to the whole plane as a
quasiconformal map.

Proposition 1.43. Let φ : D→ D be a quasiconformal map, then there exists a quasiconformal
map g : C → C such that g|D = φ. In particular, φ has a continuous and injective extension to
the boundary.

Proof. Define the Beltrami coefficient in C given by

µ(z) :=


µφ(z) if |z| < 1

0 if |z| = 1
µφ(1/z̄) if |z| > 1

then ||µ||∞ = ||µφ||∞ and by the Integrability theorem there exists a unique ψ : C → C quasi-
conformal such that µ = ψ∗(µ0), ψ(0) = 0, ψ(1) = 1 and ψ(∞) =∞.

We need to prove now that ψ preserves S1 due to the symmetry in the definition of µ.
Note that τ(z) = 1/z̄ is orientation reserving, we define the pull-back under this map of a

Beltrami coefficient by τ?µ = τ̄∗µ̄. In our case, due to this symmetry, τ?µ = µ. Then, if we
define ψ̃ = τ ◦ ψ ◦ τ , we have µψ̃ = τ?µ = µ, ψ̃(0) = 0, ψ̃(1) = 1 and ψ̃(∞) = ∞, therefore by
the uniqueness in the Integrability theorem, ψ̃ = ψ, hence ψ(S1) = ψ̃(S1).

Moreover, τ ◦ ψ̃ = ψ ◦ τ , then

ψ̃(S1) = ψ(S1) = (ψ ◦ τ)(S1) = (τ ◦ ψ̃)(S1),

which yields that ψ̃(S1) = (τ ◦ ψ̃)(S1). Hence, ψ̃(S1) = S1, so ψ(S1) = S1.
If we consider ψD, since it preserves S1 and ψ(0) = 0, we have ψ|D : D → D and µψD = µφ,

therefore there exists a Möbius transformationM such that φ = M ◦ψ. Note that since ψ(0) = 0
and φ(0) = 0, then M(0) = 0, hence M is a rotation. Thus g := M ◦ ψ is the extension of φ to
C as a quasiconformal map.

Now we can address the proof of the continuous and injective extension to the boundary.

Theorem 1.44. Let B ⊂ C be a bounded domain. A quasiconformal map ϕ : D → B has a
continuous and injective extension to D, if and only if, ∂B is a Jordan curve.

Proof. Consider a Riemann maps RB : D→ B, by Theorem 1.42 it has continuous and injective
extensions to D, if and only if, ∂B is a Jordan curve. Moreover, we can consider the quasicon-
formal map φ : D → D given by φ := R−1

B ◦ ϕ. By Proposition 1.43, φ has a continuous and
injective extension to S1. Note that the extension to the boundary is continuous and injective,
therefore ϕ has a continuous and injective extension to A which is given by RB ◦ φ (maps that
can be extended to the respective boundaries).
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Therefore a quasiconformal map from a Jordan domain A onto another Jordan domain B
can always be extended to a homeomorphism between the closures of A and B (we just have to
use Theorem 1.44 twice).

Now, let h : ∂A → ∂B be a given homeomorphism under which positive orientations of
the boundaries with respect to the Jordan domains A and B correspond to each other. The
boundary value problem is to find necessary and sufficient conditions for h to be the boundary
function of a quasiconformal mapping f : A→ B.

In the case that concerns us, we only need to work with boundary maps

h : S1 → h(S1) ⊂ C.

Theorem 1.45. Let h : S1 → S1 is an orientation preserving quasisymmetric homeomorphism,
then h can be extended to a homeomorphism h̄ : D̄ → D̄ that is real analytic in D and has the
following properties:

(i) If σ, τ ∈ Möb(D), then the extension of σ ◦ h ◦ τ is given by σ ◦ h̄ ◦ τ .

(ii) h̃ is quasiconformal in D.

This result was proven independently by Douady-Earle and by Ahlfors-Beuring. The first
proof came from Ahlfors and Beuring. However the extension that they constructed does not
satisfy (i). The one from Douady and Earle does satisfy (i), and hence it has better properties.
The proof can be found in [Pom], Theorem 5.15.

In order to prove the main result of this thesis, we need to interpolate between boundary
values in an annulus. Before stating the result we need to introduce the concept of quasidisk.

Definition 1.46 (Quasicircle, quasidisk, quasiannuli). We say that a curve γ ⊂ C is a quasi-
circle if, for some C > 0, diamγ(z1, z2) ≤ C|z1 − z2|, for z1, z2 ∈ γ.

We say that a domain D ⊂ C is a quasidisk if ∂D is a quasicircle. Similarly, an annulus A
is said to be a quasiannulus if its two boundary components are quasicircles.

The following result relates the notion of quasicircle and quasisymmetric maps, and show
why they are relevant to us and how its geometry is closely related with an analytic condition
as in Definition 1.38.

Theorem 1.47 (Quasicircle theorem,[Pom], page 94.). Let J be a Jordan curve in C and f map
D conformally onto the inner domain of J . Then the following are equivalent:

(a) J is a quasicircle.

(b) f is quasisymmetric on S1.

(c) f has a quasiconformal extension to C.

(d) There exists a quasiconformal exctension of C to C that maps S1 onto J .

We can finally state the main result of this section, which is the one that allows us to
interpolate between quasidisks and quasiannuli.

Theorem 1.48 (QC interpolation on quasidisk and quasiannuli,[BF], Propositon 2.30.).

(a) Suppose G1 and G2 are quasidiscs bounded by γ1 and γ2, and let f : γ1 → γ2 be quasisym-
metric. Then f extends to a quasiconformal map f : G1 → G2.

(b) For j = 1, 2, suppose Aj are open quasiannulus bounded by the quasicircles γij, γ
o
j (where

the i holds for the inner boundary of the annulus and the o holds for the outer boundary of
the annulus). Let f i : γi1 → γi2 and fo : γo1 → γo2 be quasisymmetric maps between the inner
and outer boundaries respectively. Then there exists a quasiconformal map f : A1 → A2

extending the boundary maps f i and fo.
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Chapter 2

Quasiconformal surgery

In this work we focus on some dynamical aspects of transcendental meromorphic functions,
i.e., we study the dynamical system given by the iterates of meromorphic functions f : C→ C∞
with an essential singularity at ∞. Here the n-th iterate of a point z ∈ C is denoted by fn(z) =

(f ◦
(n)
· · · ◦ f)(z), and the sequence of iterates {fn(z)}n∈N is well-defined for all z ∈ C except for

the countable set of poles and prepols of f of any order.
It is a well-known fact that for transcendental maps, ∞, which is an essential singularity, is

in the Julia set, and that we can write the Julia set as the boundary of the escaping set, which
are the points that converge to ∞ under iteration.

For a periodic point z0 of period p (i.e. such that fp(z0) = z0), we define its multiplier as
λ = (fp)′(z0). Using the chain rule, it can be verified that

λ =

p−1∏
n=0

f ′(fn(z0)) =

p−1∏
n=0

f ′(zn)

and therefore, the multiplier is the same for every periodic point of the orbit. Hence, we regard
it as the multiplier of the orbit. Depending on the modulus of the multiplier we say that the
orbit is; attracting when |λ| < 1, repelling when |λ| > 1 and indifferent when |λ| = 1.

In dynamical systems we are concerned with classifying the maps according to their dynamics,
which leads to the notion of conjugacy.

Definition 2.1 (Conjugacy). We say that a function f : U → U is conjugate to a function
F : V → V if and only if there is a homeomorphism ϕ : U → V such that

ϕ(f(z)) = F (ϕ(z))

i.e., the following diagram commutes:

U U

V V

f

ϕ ϕ

F

Two conjugate functions have the same dynamics. Indeed, the iterates of f are also conjugate
by the same map ϕ since Fn = ϕ ◦ fn ◦ϕ−1. The inverses, f−1 and F−1, whenever well-defined,
are also related by ϕ.

Depending on the regularity of ϕ we distinguish different types of conjugacies. The first
approach, since we are dealing with meromorphic maps would be using a conformal conjugacy.
However, holomorphic maps are too rigid, for example, they preserve the multiplier. Our goal
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in this work is to stress out this rigidity in order to cover a broad variety of maps by using
quasiconformal conjugacies.

The main goal of this thesis is to perform a well-known technique in complex dynamics
known as quasiconformal surgery, commonly used to construct holomorphic maps with prescribed
dynamics. The main idea behind it is that we take advantage of the flexibility of quasiregular
maps to build maps with given dynamics by pasting different maps together to obtain what we
refer as amodel map. What we want to determine using the theory of quasiconformal mappings
is to verify under which conditions we can find a holomorphic copy, i.e. under which conditions
our model map, say f , is quasiconformally conjugate to a holomorphic map F .

It turns out that in order to obtain a holomorphic quasiconformally conjugate map is enough
to have a f -invariant Beltrami coefficient.

Lemma 2.2 (Key lemma for surgery). Suppose f : C → C is quasiregular and µ is a Beltrami
coefficient (||µ||∞ < 1) which is invariant under f . Then there exists a quasiconformal map
ϕ : C → C such that F = ϕ ◦ f ◦ ϕ−1 is holomorphic, i.e., f and F are quasiconformally
conjugate.

Proof. If we use the Integrability theorem we find a quasiconformal map ϕ such that µ = ϕ∗µ0,
then

F ∗µ0 = (ϕ ◦ f ◦ ϕ−1)∗µ0 = (ϕ−1)∗f∗ϕ∗µ0 = (ϕ−1)∗f∗µ = (ϕ−1)∗µ = µ0.

Therefore, by Weyl’s lemma f is holomorphic.

Therefore, in view of Lemma 2.2, we wish to determine, given a model map f , whether we
can find a f -invariant Beltrami coefficient or not. Through this chapter we will see a general
principle that allows us to find one (Proposition 2.4), and then examples of the two different
types of surgery that we distinguish; soft surgery where the model map is holomorphic, and
cut and paste surgery, where the model map is quasiregular.

The references for this chapter are [Ahl, BF].

2.1 General principles of Surgery

The next result, known as Shishikura first principle, tells us a way to make sure that we
have an invariant Beltrami coefficient, which is one of the main points in a surgery procedure.
This result can be applied in many cut and paste surgery constructions, where we paste together
holomorphic and quasiregular maps.

Definition 2.3 (Quasirational, quasientire and quasimeromorphic maps). A quasiregular map
f : C∞ → C∞ is called quasirational if it is quasiconformally conjugate to a rational map.

We use quasientire and quasimeromorphic in the same way.

Proposition 2.4 (First Shishikura principle). Let f : C∞ → C∞ be a quasiregular map, p ≥ 1
and suppose there exist:

• U = U1 ∪ · · ·Up, p disjoint open subsets of C∞ such that for 1 ≤ j < p,

f(Uj) ⊂ Uj+1 and f(Up) ⊂ U1.

• ψ : U → Ũ , Ũ ⊂ C∞ and ψ is quasiconformal (the gluing map).

• H : Ũ → Ũ is quasiregular with Hp holomorphic,

satisfying:
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(i) f|U = ψ−1 ◦H ◦ ψ.

(ii) ∂z̄f = 0 a.e. in C∞ \ f−N (U) for some N ≥ 0.

Then f is quasirational.

Proof. By hypothesis, ψ is K1-qc, H is K2-qr and f is K3-qr, for some K1,K2,K3 ≥ 1.
The first step is defining a H-invariant Beltrami coefficient µ̃ a.e. on Ũ .
To do so, set Ũj := ψ(Uj), for 1 ≤ j ≤ p, which are disjoint and

H(Ũj) ⊂ Ũj+1 and H(Ũp) ⊂ Ũ1.

Define a.e. on Ũ :

µ̃ :=


µ0 on Ũp

H∗(µ0) on Ũp−1

...
...

(Hp−1)∗(µ0) on Ũ1

.

Since Hp is holomorphic, then µ̃ is H-invariant and its dilatation K(µ̃) ≤ Kp−1
2 a.e. Consider

now µ = ψ∗(µ̃), then µ is f -invariant a.e. on U (because f∗(µ) = (ψ ◦ f)∗(µ̃) = (H ◦ ψ)∗(µ̃) =
ψ∗(H∗(µ̃)) = µ) and its dilatation K(µ) ≤ K1K

p−1
2 is bounded.

Ũ1

Ũ2

Ũ3

U1

U2U3

f

f

f

ψ

H

H

H

Figure 2.1: Representation of the Beltrami forms defined in the proof of Proposition 2.4.

Now we spread µ recursively by the dynamics of f , i.e. we set:

µ :=



f∗(µ) on f−1(U)
...

...
(fn)∗(µ) on f−n(U)

...
...

µ0 on C∞ \ ∪Uj≥0f
−j(U)

.

Since f(U) ⊂ U , then

U ⊂ f−1(U) ⊂ f−2(U) ⊂ · · · ⊂ f−n(U) ⊂ ∪n≥0f
−n(U),

hence µ is well-defined a.e. on C∞ and f -invariant by construction (∪nf−n(U) is completely
invariant). Moreover,

||µ||∞ ≤ k =
K − 1

K + 1
,
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where K = K1K
p−1
2 KN

3 by (ii) (condition (ii) says that the dilatation is left unchanged after N
preimages).

By the Integrability Theorem, we obtain a quasiconformal mapping φ : C∞ → C∞ such that
µ = φ∗(µ0), and thus

F := φ ◦ f ◦ φ−1 : C∞ → C∞
is holomorphic (by Lemma 2.2) and quasiconformally conjugate to f .

2.2 Examples

Depending on the regularity of the model map and its domain we can classify the different
types of surgery that we perform.

We distinguish between soft surgery and cut and paste surgery. Both of them will be
explained through examples in the next sections.

2.2.1 Soft surgery: changing the multiplier

In this type of surgery the model map f is holomorphic. What we produce here is a change
of the complex structure. However, we also need to verify that the holomorphic map F that we
obtain from Lemma 2.2 and the model map f are different.

The goal now is to show an example about how this surgery can be performed by changing
the multiplier of an attracting cycle. As we have already said, the multiplier is a conformal
invariant. However, two maps near an attracting fixed point (not super-attracting) behave in
the same way. Here we prove that, in fact, they are quasiconformally conjugate.

More precisely, the goal is to prove the following:

Theorem 2.5 (Changing the multiplier of an attracting orbit). Let fλ0 : C∞ → C∞ be a rational
map of degree d ≥ 2 with an attracting cycle of period p and multiplier λ0 ∈ D∗. Then there
exists a rational map fλ which is quasiconformally conjugate to fλ0 such that the corresponding
p-periodic cycle has multiplier λ.

But first we need to prove a technical lemma.

Lemma 2.6. Let

Mλ : D→ D
z 7→ λz.

Then, whenever λ0, λ ∈ D∗ = D \ {0}, the maps Mλ0 and Mλ are quasiconformally conjugate.
Observe that Mλ and Mλ0 are not conformally conjugate.

Proof. We want to find a qc map ϕ : D→ D so that the following diagram commutes.

D
Mλ0−−−−→ D

ϕ

y yϕ
D −−−−→

Mλ

D

We proceed as follows, define Aλ = {z ∈ D : |λ| ≤ |z| < 1}.

• Take a quasiconformal map ϕ1, so that Aλ0

ϕ1−−−−−→ Aλ and ϕ1(λ0) = λ (see [BF] or [LV]
for more details) then, Mn

λ0
(Aλ0) = {|λ0|n+1 ≤ |z| < |λ0|n} = An.
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• Define ϕn+1 = Mn
λ ◦ ϕ1 ◦M−nλ0

in An+1, then

Mλ ◦ ϕn = Mn
λ ◦ ϕ1 ◦M−n+1

λ0
◦M−1

λ0
◦Mλ0 = ϕn+1 ◦Mλ0 .

• Define ϕ by:

ϕ(z) :=

{
0 if z = 0

ϕn(z) if z ∈ An
then, Mλ ◦ ϕ = ϕ ◦M0.

So Mλ and M0 are quasiconformally conjugate.

We can address now the proof of Theorem 2.5.

Proof of Theorem 2.5. The proof goes by considering the previous construction and the fact that
fpλ is locally conformally conjugate toMλ0 via the linearizing map obtained in Koenig’s theorem.

We need to introduce some notation:

• α = O(α0) = {α0, . . . , αp−1} denotes the attracting cycle of fλ, where as usual, αj+1 =
fλ0(αj).

• A(α) denotes the basin of attraction of the orbit α.

• A∗(α) denotes the connected component of A(α) containing α, i.e.

A∗(α) =

p−1⋃
j=0

A∗j (αj)

where A∗j (αj) is the immediate basin of attraction of αj for f
p
λ0
.

• Let ∆0 ⊂ A∗0 be a neighborhood of α0, which is the preimage of D under a linearizing map
ψ0 : ∆0 → D, which conjugates fpλ0

toMλ0 (the map from Koenig’s theorem, see [BF, Mil2]),
which is conformal. Furthermore, after composing with a Möbius transformation we can
suppose that A(α) does not contain ∞.

• If we consider the map ϕ as in Lemma 2.6, the one that conjugates Mλ0 and Mλ, in order
to emphasize that it depends on λ, we write ϕλ.

Note that ψ0 can be extended to the entire basin of attraction Afp(α0) of α0 as a fixed point
of fp (see [BF, CG, Mil2]). Then ψ0(Afp(α0)) = C and by construction, ψ0 is a semi-conjugacy
(no longer injective) between fpλ0

to Mλ0 .
Moreover, we can extend ϕλ to C by pulling backwards instead of forward in the previous

computations. Which yields a quasiconformal map ϕλ defined on C and we can consider µλ =
ϕ∗λµ0. Since ψ0 is holomorphic, we can pullback µλ under ψ0 to obtain a fpλ0

-invariant Beltrami
coefficient µ̃λ on Afp(α0) (with the same dilatation as µλ).

Everything is summarized in the following commutative diagram.

(Afp(α0), µ̃λ)
fpλ0−−−−→ (Afp(α0), µ̃λ)

ψ0

y yψ0

(C, µλ)
Mλ0−−−−→ (C, µλ)

ϕλ

y yϕλ
(C, µ0)

Mλ−−−−→ (C, µ0)
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The final step so that we can obtain our holomorphic copy is to extend the Beltrami coefficient
µ̃λ to the whole basin A(α) by pulling back µ̃λ under fλ0 (as in Proposition 2.4), we will refer
to the Beltrami coefficient obtained by µ̃λ.

Note that, since µ̃λ on Afp(α0) is fpλ0
-invariant, then the pullback under fλ0 of µ̃λ on Afp(α1)

agrees with µ̃ on Afp(α0), and we can keep doing it in order to obtain a Beltrami coefficient
defined on A(α), the whole basin of attraction of the periodic orbit.

We can finally extend µ̃λ to the whole Riemann sphere C∞ by setting µ̃λ ≡ 0 in C∞ \ A(α).
By the Integrability theorem, there exists a quasiconformal map φλ : C∞ → C∞, normalized to
fix 0, 1 and ∞ such that µ̃λ = φ∗(µ0), hence

fλ := φλ ◦ fλ0 ◦ φ
−1
λ : C∞ → C∞

is holomorphic, i.e. it is rational, of degree d (the same as fλ), and quasiconformally conjugate
to fλ0 .

(C∞, µ0)
fpλ−−−−→ (C∞, µ0)

φλ

x xφλ
(C∞)

fpλ0−−−−→ (C∞, µ̃λ)

It stills remains to check that fλ fulfills our purpose, i.e. it has an attracting cycle of period
p and multiplier λ. The first part is clear since fλ and fλ0 are topologically conjugate via
the integrating map φλ. To see the second part, note that we have the following commutative
diagram:

(φλ(∆0), µ0)
fpλ−−−−→ (φλ(∆0), µ0)

φλ

x xφλ
(∆0, µ̃λ)

fpλ0−−−−→ (∆0, µ̃λ)

ψ0

y yψ0

(D, µλ)
Mλ0−−−−→ (D, µλ)

ϕλ

y yϕλ
(D, µ0)

Mλ−−−−→ (D, µ0)

Therefore, by considering ψλ = ϕλ ◦ψ0 ◦φ−1
λ : φλ(∆0)→ D, we obtain that ψ∗λµ0 = µ0, hence by

Weyl’s lemma ψλ is a conformal map which conjugates locally fpλ and Mλ.

2.2.2 Cut and paste surgery: the Straightening theorem

We end this chapter presenting the Straightening theorem, which was one of the earliest
applications of quasiconformal mappings in complex dynamics. This result justifies why when
we look at the dynamical plane of many non-polynomial families we see polynomial Julia sets.

However, before we can state it we need to introduce some definitions which tell us which are
the conditions that need to be imposed in a map so that we can find polynomial Julia sets in the
dynamical plane of non-polynomial families. These type of maps are known as polynomial like
mappings, and they came from the idea that rational maps may behave locally as a polynomial.

Definition 2.7 (Polynomial-like mapping). Let U, V ⊂ C be bounded, simply connected and
bounded by analytic curves such that U ⊂ V . The triple (f ;U, V ) is called a polynomial-like
mapping of degree d if f : U → V is holomorphic and of proper degree d
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Figure 2.2: Illustration of Theorem 2.8. In the left side we can see the dynamical plane of
Qc(z) = z2 + c for c = −0.12256 + 0.74486i. In the right side we can see the dynamical plane
of Ra(z) = z2 + a/z2, for a = 0.00848556 + 0.0547416i, and how some similar patterns can be
appreciated.

Remember that the degree is the number of inverse images of a point z ∈ V , counted with
multiplicity. This number is independent of z. The map is said to be proper if the inverse of a
compact set is also a compact set.

Note that any polynomial P can be restricted to a domain U so that (P|U , U, P (U)) is a
polynomial-like mapping of the degree of the polynomial.

Given a polynomial-like mapping (f ;U, V ), we define its filled Julia set Kf as

Kf := ∩n>0f
−n(V ),

i.e. the points z ∈ U such that fn(z) ∈ U for all n ≥ 0.
We can finally state and proof the Straightening theorem.

Theorem 2.8 (Straightening theorem). Every polynomial-like mapping (f ;U, V ) of degree d is
conformally equivalent to a polynomial of degree d. The quasiconformal conjugacy φ can be taken
so that ∂z̄φ = 0 on Kf .

Proof. Choose any ρ > 1 and let R : C∞ \ V → C∞ \D(0, ρd) be the Riemann map fixing ∞.
Then R extends continuously to the boundary (by Theorem 1.42) as an analytic map, which

we call ψ1 : ∂V → S1
ρd
. Take a lift of this map ψ2 : ∂U → S1

ρ (i.e. such that ψ1(f(z)) = ψ2(z)d

for z ∈ ∂U).
Let A0 = V \ U (an annulus), and define Aρ,ρd = {z ∈ C : ρ < |z| < ρd}. Since ψ1, ψ2

are analytic, we can apply the interpolation result (Theorem 1.48) in order to obtain a map
ψ : A0 → Aρ,ρd which is quasiconformal in A0.

Define F : C→ C by

F (z) :=


f(z) if z ∈ U

R−1(ψ(z)d) if z ∈ V \ U
R−1(R(z)d) if C \ V

.

which is quasiregular.
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C \D(0, ρd)C \ V

D(0, ρd)V

R

Figure 2.3: Representation the Riemann map R : C∞\V → C∞\D(0, ρd) in the proof of Theorem
2.8.

C

U

V

ψ

Figure 2.4: Definition of the Beltrami coefficient in the proof of Theorem 2.8

The next step is defining a Beltrami coefficient µ on C, we proceed as follows. Define An =
{z ∈ U : fn(z) ∈ A0}, then

µ :=


ψ∗(µ0) on A0

(fn)∗(µ) on An
µ0 elsewhere

.

which is F -invariant. That is because points in A0 are mapped to C \ V and then tend to ∞
under iteration by F and the An are disjoint. Since f is holomorphic, the dilatation of µ is the
dilatation of ψ∗(µ0). By the Integrability theorem, there exists φ such that µ = φ∗(µ0).

(C, µ)
F−−−−→ (C, µ)

φ

y yφ
(C, µ0)

P−−−−→ (C, µ0)

Moreover, µ = µ0 on Kf (points that do not tend to∞), i.e. ∂z̄φ = 0 on Kf . Thus P := φ◦F ◦φ−1

is holomorphic (by Lemma 2.2) and near ∞ is z 7→ zd, i.e. can be extended to a holomorphic
map in C∞ without poles, therefore it is a polynomial (of degree d).



Chapter 3

Surgery on a family of meromorphic
maps

In this chapter we study the family of transcendental meromorphic maps

fλ(z) = λ

(
ez

z + 1
− 1

)
,

where λ ∈ C \ {0} is a complex parameter.
Maps in this family are the simplest meromorphic maps with two singularities of f−1: z = 0

which is a fixed critical point, and −λ, which is a free asymptotic value. It has also one single
pole z = −1, which is not omitted except for λ = 1. Since z = 0 is a superattracting fixed point,
its basin of attraction Aλ(0) is non-empty for all values of λ.

This family is the meromorphic analogue to the well-known Milnor family of cubic polynomi-
als Pa(z) = z2(z− a) [Mil1] or its entire version λz2ez [FG2], both having also a superattracting
fixed point and a free second singular value, which may or may not be captured by the attracting
basin of 0. In both cases all components of the Fatou set are simply connected.

Another well-known result is that functions with only finitely many singular values do not
have Wandering nor Baker domains, hence F (fλ) does not have any of these components. More-
over, since any attractive basin or a rotation domain needs a singular value, we can have at
most two periodic cycles of Fatou components for every parameter value, one of which is al-
ways the basin of z = 0. Hence it is to our interest to study the main capture component
C0 = {λ ∈ C∗ : − λ ∈ A∗λ(0)}, where A∗λ(0) is the immediate basin of attraction of z = 0. In
this case we only have one Fatou component and we can draw an accurate picture of F (f) by
considering the points that at a certain iterate land near z = 0.

After addressing the study of the dynamical properties of fλ for λ ∈ C0, it has already been
proved in [Rod] that Aλ(0) is infinitely connected and totally invariant, which is also proved in
this document in 3.3.1 (Theorem 3.13), a result that extends the one in [Rod] for more general
families of maps.

However, we are more interested in studying the Julia set of fλ, more precisely we show that
the Julia set of f−1/e contains a well-known structure known as a Cantor Bouquet. We prove it
in Section 3.1 (Theorem 3.4), as an application of quasiconformal surgery.

3.1 Cantor Bouquet’s in the Julia set of transcendental maps

Along the last decades, the study of the dynamics of transcendental entire functions has been
of interest. Even the simplest transcendental entire map that one can study, the exponential
family ga(z) = a(ez − 1), it is a source of interesting problems due to how rich it is the geometry
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and topology of its Julia set. Moreover, in [BJR] they proved that the Julia set of a subclass of
functions in the class S, consisting of all transcendental entire functions with a finite number of
singular values, is homeomorphic to the same universal object, a Cantor Bouquet.

In the rational case, the Straightening theorem (Theorem 2.8) tells us why we can see Julia
sets of polynomial maps in the Julia set of many rational maps. What we intend to here is a step
forward in this direction but in the more general setting of transcendental maps, i.e. we aim to
see that we can relate Julia sets of transcendental entire maps in the Julia sets of transcendental
meromorphic maps, in the same way that it has been done with polynomial and rational maps.

Due to the similarities of our family of maps with the exponential family ga, we intend to
prove that we can find this structure by performing surgery through a model map obtained by
pasting ga and fλ. However, the parameters that we use must be properly chosen. Note that
when |a| < 1, the Fatou set F (ga) has a unique component, which consists of all the points that
converge under iteration to z = 0, an attracting fixed point. The Julia set J(ga) consists of a
union of pairwise disjoint arcs tending to∞, which are called hairs (or dynamical rays), more
precisely:

Definition 3.1 (Hairs, dynamical rays). Let f be a transcendental meromorphic function. A
ray tail of f is an injective curve β : [t0,∞) → I(f), with t0 > 0 and I(f) the escaping set of
f , such that:

• For each n ≥ 1, t 7→ fn(β(t)) is injective with limt→∞ f
n(β(t)) =∞.

• fn(β(t))→∞ uniformly in t as n→∞.

A hair (or a dynamic ray) of f is a maximal injective curve β : (0,∞) → I(f) such that the
restriction β|[t,∞) is a ray tail for all t > 0. We say that β lands at z if limt→0+ β(t) = z and we
call z the endpoint of β.

The union of these hairs and their accumulation has a rich topological structure and it
produces what it is known as a Cantor Bouquet, which is the object that we are seeking to
find in our family of transcendental meromorphic maps fλ. Therefore, it is to our interest to give
a precise definition of this object.

In [AO], there is provided a complete topological description of the Julia sets J(ga), for
a ∈ (0, 1/e), as well as the Julia sets J(c sin(z)) for c ∈ (0, 1), and it is proved that these sets
are homeomorphic to the same topological object. They proved that by constructing an explicit
homeomorphism between those Julia sets and a subset of R2 called a straight brush.

Definition 3.2 (Straight brush). A subset B of [0,∞) × (R \ Q) is called a straight brush if
the following properties are satisfied:

• B is a closed subset of R2.

• For every (x, y) ∈ B there exists ty ≥ 0 such that {x : (x, y) ∈ B} = [ty,∞). The set
[ty,∞)× {y} is called the hair attached at y and the point (ty, y) is called its endpoint.

• The set {y : (x, y) ∈ B for some x} is dense in R \Q. Moreover, for every (x, y) ∈ B there
exist two sequences of hairs attached respectively at βn, αn ∈ R \Q such that βn < y < αn,
βn, αn → y and tβn , tαn → ty as n→∞.

We say that two sets A,B ⊂ Rn are ambiently homeomorphic if there is a homeomorphism
of Rn to itself that sends A onto B.

In [AO] it is also proved that any two straight brushes are ambiently homeomorphic. This
fact, together with the results in [AO] concerning the topological structure of the Julia set
mentioned before, motivate the following definition of a Cantor Bouquet:
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Definition 3.3 (Cantor Bouquet). A Cantor Bouquet is any subset of the plane that is am-
biently homeomorphic to a straight brush.

The main goal of this chapter is proving Theorem A, which tells us that J(f−1/e) contains
an invariant Cantor Bouquet.

Theorem 3.4. Let fλ(z) and ga(z) = a(ez − 1), for λ, a ∈ C \ {0}. Denote by J(fλ) and J(ga)
their Julia sets. Then, there exists C ⊂ J(f−1/e) such that f−1/e(C) = C and f−1/e on C is
quasiconformally conjugate to g1/e on J(g1/e). In particular, C is homeomorphic to J(g1/e) and
both are homeomorphic to a Cantor Bouquet.

The idea is to perform surgery in the dynamical plane of f−1/e by pasting together f−1/e and
g1/e to remove the pole and convert the map into a holomorphic transcendental map. From the
construction we will obtain that this map contains a Cantor Bouquet by the results in [BJR].

3.2 The Surgery Procedure

We have already seen how the interpolation results play a fundamental role in many surgery
procedures. However, in each of the cases in the previous chapter the interpolation was performed
between bounded curves. In our case, we aim to remove the pole so that we can find an ’entire
copy’, i.e. an entire map which is quasiconformally conjugate to our map in a region containing
a Cantor Bouquet.

Therefore, we need to interpolate in a domain that contains the pole, in which we will paste
the dynamics of ga, i.e. we will redefine the orbit of points in a neighborhood of the pole. Hence
we need to determine this domain, which will be determined by the dynamics of fλ. It has
already been proved in [Rod] that one way to reach the pole is by considering a Jordan domain
containing z = 0, and then by taking preimages of this domain under fλ (which we call Dn),
at some point N we reach the only asymptotic value. Then, the pole is contained in one of
the bounded connected components of the complementary of the preimage of DN . Therefore,
the boundary of this domain is unbounded (because it contains the asymptotic value), but our
interpolation results only apply for bounded curves. The idea is to go to a bounded setting by
composing with Möbius transformations, interpolate and then go back, but this requires to prove
by some means that the parametrization of the curves that appear in the bounded setting are
quasisymmetric, hence it is clear that the choice of the domain D0 plays an important role.

Note that in both fλ and ga it is easier to take preimages of a disk centered at the asymptotic
value, rather than the origin (which in the case that concerns us is attracting for both maps),
i.e. the domains that appear when taking preimages of a disk centered at the asymptotic value
are simpler. What we intend to do now is to determine this (unbounded) domains that will
appear, its boundary and show that when passing to the bounded setting as explained before,
the boundary curves, properly parametrized, are quasisymmetric and hence we can obtain an
interpolating map ψ, which is necessary to paste fλ and ga using quasiconformal surgery.

When we paste maps together we need to make sure that in the boundary the resulting
function is continuous, therefore the way we relate the boundaries matters (see Figure 3.1). The
only way to do that in our setting is by using the dynamics of both maps. To make this statement
more precise, define by Γ the unbounded component of f−1

λ (∂D1), where D1 is a disk centered
at −λ, the asymptotic value of fλ. Define L = g−1

a (∂D2), where D2 is a disk centered at −a, the
asymptotic value of ga.

We can consider the Riemann map R = bz + c, b ∈ R+, c ∈ C which maps conformally D1

onto D2 and does not rotate the disk, then we can relate L and Γ in the following way:

L = (g−1
a ◦ R ◦ fλ)(Γ).
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ϕ

ψ

R

Γ L

fλ ga

D1 D2

Figure 3.1: Sketch of the parametrizations of the boundary values.

If we parametrize the boundary of D1 as w1 +r1e
it, then Γ inherits a parametrization. Therefore,

our map ϕ must be the one that agrees with this parametrization.
Through sections 3.2.1 and 3.2.2 we compute all of these curves and domains, and we prove

that we can go to a bounded setting (as explained before) so that the resulting maps are qua-
sisymmetric. Finally, in section 3.2.3, we prove Theorem A.

3.2.1 Study of the family of maps ga(z)

Maps in this family have always z = 0 as a fixed point with multiplier a ∈ C and they have
no critical points (g′a(z) = aez 6= 0). Moreover, z = −a is the only asymptotic value, therefore if
|a| < 1 then

gna (−a) −−−→
n→∞

0.

We intend to use ga to find a Cantor Bouquet in the dynamical plane of f−1/e. Before we
address the surgery procedure, we need to find a parameter a (which will be a = 1/e) such that
−a tends to z = 0 under iteration, a disk around the asymptotic value containing z = 0 so that
its image under ga is compactly contained inside of itself, and such that the iterates of points in
the disk converge uniformly to z = 0.

The next lemma gives us the disk mentioned before.

Lemma 3.5. g1/e(D(−1/e, 1)) ⊂ D(−1/e, 1) ⊂ F (g1/e).

Proof. If we take z ∈ D(−a, r), then z = −a+ seiθ ∈ D(−a, r) for s < r and

ga(z) = ae−Re(a)+s cos(θ)ei(−Im(a)+s sin(θ)) − a,

i.e., in order to have ga(D(−a, r)) b D(−a, r), we need:

|a|e−Re(a)+r cos(θ) < r ∀θ ∈ [0, 2π).

The function h(θ) = e−Re(a)+s cos(θ) attains its maximum at θ = 0, thus we need

|a|e−Re(a)+r < r,



3.2 The Surgery Procedure 39

Figure 3.2: J(g1/e) is a Cantor Bouquet, which is the set colored in blue. Range [−9, 8]× [−9, 9].

which is equivalent to r − log r < Re(a)− log |a|.
For a = 1/e, this inequality reads r − log r < 1 + 1/e, thus we can take r = 1 (note that

|g′1/e| < 1 in D ∪ {Re(z) ≤ 0}, which compactly contains D(−1/e, 1)).
Hence, 0 ∈ g1/e(D(−1/e, 1)) b D(−1/e, 1).

Moreover, the preimage of ∂D(−1/e, 1) under g1/e is the line {1 + iy : y ∈ R} and the
parametrization α defined as

y ∈ R 7→ 1 + iy = α(y)

is the one that comes inherited by parametrizing the circle ∂D(−1/e, 1) with t 7→ −1/e+ eit and
then taking the preimage under g1/e. Note that g1/e(α(t)) = −1/e+ eit.

If we take the Möbius transformations

T (z) = −2i

z
and M(z) = −iz + 1

z − 1
,

where M(z) maps the unit disk D conformally onto H

M

∞
−1
•

0
•

i
•

HD

1•0•

i•

−1•
−1 7→ 0
i 7→ −1
1 7→ ∞
0 7→ i

Figure 3.3: The Möbius transformation M , maps D conformally onto H, the upper half plane.

Then we have,

T ′(z) =
2i

z2
and M ′(z) =

2i

(z − 1)2
.

So, the curve given by α̃(s) = (T ◦ α ◦M)(eis) is bounded and we expect it to be differentiable
(because the image of a line under a Möbius transformation is a circle).



40 Surgery on a family of meromorphic maps

Lemma 3.6. The curve α̃ is bounded, C1 and quasisymmetric.

Proof. We only need to check that the limits at s = 0 and s = 2π (points that are mapped to
∞ under M(eis)) coincide. Moreover,

α̃′(s) = T ′(α(M(eis)))︸ ︷︷ ︸
2i(

1−i sin(s)
1−cos(s)

)2

α′(M(eis))︸ ︷︷ ︸
i

M ′(eis)︸ ︷︷ ︸
2i

(eis−1)2

eisi =
4eis((

1− i sin(s)
1−cos(s)

)
(eis − 1)

)2 .

Therefore, we need to compute the limit when s→ 0 and s→ 2π of(
1− i sin(s)

1− cos(s)

)(
eis − 1

)
. (3.1)

• As s→ 0:
eis − 1 ' s

(
−1

2
s+ i

)
and

− sin(s)

1− cos(s)
' −2

s
.

Therefore,

lim
s→0

(3.1) = s

(
−1

2
s+ i

)(
1− i2

s

)
= 2.

• As s→ 2π:
eis − 1 ' (2π − s)

(
1

2
(2π − s) + i

)
and

− sin(s)

1− cos(s)
' 2

2π − s
.

Therefore,

lim
s→2π

(3.1) = (2π − s)
(

1

2
(2π − s) + i

)(
1 + i

2

2π − s

)
= −2.

Hence,
lim
s→0

α̃′(s) = lim
s→2π

α̃′(s) = 1,

so, α̃ is differentiable and we can apply Lemma 1.40 to obtain that it is quasisymmetric.

3.2.2 Study of the family of maps fλ(z)

The properties of this family of maps have already been explained in this document. We
aim to to do the same as in 3.2.1 with fλ, i.e. we want to take a preimage of a disk centered
at the asymptotic value −λ and again the only thing that we need to impose is that this disk is
compactly mapped inside itself under fλ and that the iterates converge uniformly to z = 0.

The next lemma gives us this disk.

Lemma 3.7. f−1/e(D(1/e, 1/2)) ⊂ D(1/e, 1/2) ⊂ F (f1/e).

Proof. Given z = −λ + reiθ, we need to compute its image. In order to simplify, we can take
λ = −x, for some x ∈ R+ = {x ∈ R : x > 0}. Then,

fλ(z) = λ
e−λ+r cos(θ)eir sin(θ)

−λ+ r cos(θ) + ir sin(θ) + 1
− λ,



3.2 The Surgery Procedure 41

• − 1

Figure 3.4: Dynamical plane of fλ for λ = −1/e, F (f−1/e) is colored in green and J(f−1/e) is
colored in blue. The range of the left side picture is [−8.5, 8.5]× [−8.5, 8.5] and the range of the
right side picture is [−1.05,−0.95]× [−0.05, 0.05].

which has modulus

xex+r cos(θ)√
(1 + x+ r cos(θ))2 + r2 sin2(θ)

=
xex+r cos(θ)√

(1 + x)2 + r2 + 2(1 + x) cos(θ)
= gx(r, θ). (3.2)

We need gx(r, θ) < r. Note that, this is equivalent to

hx,r(θ) =
r

x

√
(1 + x)2 + r2 + 2(1 + x)r cos(θ)− e2(x+r cos(θ)) > 0, ∀θ ∈ [0, 2π).

Notice that hx,r has a (global) minimum at θ = π and a (global) maximum at θ = 0, therefore
we need hx,r(π) > 0, which is equivalent to

r

x
(1 + x− r)− ex−r > 0.

This equation holds, for example, for x = 1/e and r = 1/2.
Now, we need to make sure thatD(x, r) b A∗−x(0) (which is the immediate basin of attraction

of z = 0 with respect to f−x). To prove it, we can see that f−x is contractive in this disk (with
respect to z = 0, the super-attracting fixed point), because then we will have normality (all the
iterates will tend to z = 0).

We have,

|f ′−x(z)| =
∣∣∣∣−x zez

(z + 1)2

∣∣∣∣ =

∣∣∣∣ z

z + 1

∣∣∣∣ ∣∣∣∣ xezz + 1

∣∣∣∣ < r

∣∣∣∣ z

z + 1

∣∣∣∣ ,
where the inequality follows from imposing gx(r, θ) < r. Moreover, note that D(x, r) ⊂ {z ∈
C : |z| < |z + 1|} = {a+ ib ∈ C : a > −1/2}, therefore we have |z| < |z + 1| and

|f ′−x(z)| < r < 1.

Thus, for every z ∈ D(x, r),

|f−x(z)| = |f−x(z)− f−x(0)| ≤ r|z − 0| = r|z|,

so the map is contractive, i.e. D(x, r) ⊂ A∗−x(0) and 0 ∈ f−x(D(x, r)) b D(x, r).
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The next step is parametrizing the outer boundary of f−1
−1/e(∂D(1/e, 1/2)) by the parametriza-

tion inherited from t 7→ 1/e+ eit/2. Points, z ∈ C, in this unbounded curve are such that

eit

2
= f−1/e(z)−

1

e
= −1

e

ez

z + 1
, z = z(t)

which yields that we need to solve the equation

h(z, t) = −1

e
ez − 1

2
eit(z + 1) = 0. (3.3)

Note that these points satisfy |ez| = e|z + 1|/2. We have:

Lemma 3.8. The points in (3.3) can by parametrized by an analytic curve γ : R→ C such that
f−1/e(γ(t)) = 1/e+ eit/2. Moreover, γ′(t) tends to i as t tends to ∞.

Proof. We will apply the Implicit Function Theorem to (3.3) in order to accomplish this goal.
We have:

∂h

∂z
= −1

e
ez − 1

2
eit,

and it is equal to zero, if and only if, ez = −eeit/2, if we write this equality in 3.3, we obtain the
condition ezz = 0, hence ∂h/∂z 6= 0 for every point in the curve (because h(0, t) 6= 0 for every t).
Therefore, by the Implicit Function Theorem, there exists a function γ(t) such that h(z, t) = 0,
if and only if, z = γ(t). Note that γ(∞) =∞.

Moreover, by the Implicit Function Theorem, since

∂h

∂t
= −1

2
eit(z + 1)i,

we have

γ′(t) = − i
2

eit(γ(t) + 1)
1
ee
γ(t) + 1

2e
it
.

This expression can be improved by using (3.3):
1
ee
z + 1

2e
it

z + 1
=

1

e

ez

z + 1
+

1

2

eit

z + 1
=︸︷︷︸

(3.3)

−1

e

e

2
eit +

1

2

eit

z + 1
=
eit

2

(
1

z + 1
− 1

)
= −e

it

2

z

z + 1
.

Hence,

γ′(t) = − ie
it

2

(
− 2

eit
γ(t) + 1

γ(t)

)
= i

γ(t) + 1

γ(t)
−−−−→
t→±∞

i. (3.4)

If we use, again, M(z) (as in Figure 3.3) and T (z) (both as in Lemma 3.8), then

M−1(w) =
w − i
w + i

maps conformally the upper half plane H to the unit disk D and

(M−1)′(w) =
2i

(w + i)2
.

As before, since the interpolation results that we have apply for bounded curves, we aim to
obtain from γ, M and T a bounded differentiable curve. We consider

γ̃(s) = T (γ(M(eis))) γ̃ : S1 → Γ̃ ⊂ C,

then it is bounded and smooth at all points for except (at most) s = 0, 2π, which are the ones
that are mapped to ∞ under M(eis).
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Lemma 3.9. The curve γ̃ is bounded, C1 and quasisymmetric.

Proof. We need to compute the limit of γ̃′(s) as s→ 0 and s→ 2π. We have,

γ̃′(s) = T ′(γ(M(eis)))γ′(M(eis)) M ′(eis)︸ ︷︷ ︸
1

(M−1)′(M(eis))

eisi =

= i2eis
γ(M(eis)) + 1

γ(M(eis))

2i

γ(M(eis))2

(
M(eis) + i

)2
2i

,

i.e.

γ̃′(s) = −eisγ(M(eis)) + 1

γ(M(eis))

(
M(eis) + i

γ(M(eis))

)2

. (3.5)

It remains to study the last part of equation (3.5), to compute it call M(eis) = t, then

t+ i

γ(t)
=

1 + i/t

γ(t)/t
.

Note that we have
γ(t)

t
=
Re(γ(t))

t
+ i

Im(γ(t))

t
=
u(t)

t
+ i

v(t)

t
.

Since γ′(t) −−−−→
t→±∞

i, then u′(t) −−−−→
t→±∞

0 and v′(t) −−−−→
t→±∞

1, and by l’Hôpital’s (real) rule,

lim
t→±∞

γ(t)

t
= lim

t→±∞

u(t)

t
+ i lim

t→±∞

v(t)

t
= lim

t→±∞

u′(t)

1
+ i lim

t→±∞

v′(t)

1
= i.

Therefore,

lim
t→±∞

t+ i

γ(t)
=

1

i
= −i,

and from (3.5),
lim
s→0

γ̃′(s) = lim
s→2π

γ̃′(s) = −1 · 1 · (−i)2 = 1.

Thus the function γ̃ : S1 → Γ̃ is C1, and by Lemma 1.40, γ̃ is quasisymmetric.

3.2.3 Proof of Theorem A

The goal now is to address the proof of Theorem 3.4 (or Theorem A). To do so, take D1 =
D(1/e, 1/2) andD2 = D(−1/e, 1). In one side of the surgery, U1 (which we recall is the connected
component of f−1

−1/e(D1) that contains D1) is 1-connected and unbounded. In the other side of
the surgery, since D(−1/e, 1) contains the asymptotic value of g1/e, then U2 (which we recall is
the connected component of g−1

1/e(D2) that contains D2) is unbounded. We have seen in Section
3.2.1 and Section 3.2.2 how Γ = γ(R), the outer boundary of U1, and {1 + iy : y ∈ R} = L,
the boundary of U2, can be parametrized (Γ by γ and L by α(t) = 1 + it) such that their
projections, with respect to certain Möbius transformations, are quasisymmetric in the sense of
Definition 1.38. Each one of this curves and domains is represented in Figure 3.5. The first step
to prove Theorem 3.4 is showing that the boundary values after composing with the Möbius
transformation T = −2i/z are quasisymmetric.

We need introduce some terminology first. To simplify the notation we keep using the same
name for the map obtained by extending a given map to the boundary of its domain of definition.

• Af is the annulus that has boundary Γ = γ(R), where γ is the function obtained in Section
3.2.2 and ∂D(1/e, 1/2). Then Ãf = T (Af ) is a bounded annulus, with outer boundary
T (∂D(1/e, 1/2)) (a circle) and inner boundary T (Γ), which parametrized as in Section
3.2.2 is a quasisymmetric function by Lemma 3.9.
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• Ag is the annulus that has boundary α(R) = L = {1+iy ∈ C : y ∈ R} = g−1
1/e(∂D(−1/e, 1))

and ∂D(−1/e, 1). Then Ãg = T (Ag) is a bounded annulus, with T (∂D(−1/e, 1)) (a circle)
as its outer boundary and inner boundary T (L) (also a circle), which parametrized as in
Section 3.2.1 is a quasisymmetric function by Lemma 3.6

• ϕ = γ ◦ α−1 : L → Γ. Then after composing with T in both sides we obtain the function
ϕ̃ = T ◦ γ ◦ α−1 ◦ T−1 = (T ◦ γ ◦M) ◦ (M−1 ◦ α−1 ◦ T−1), here T ◦ γ ◦M by Lemma 3.9
is a quasisymmetric map and the map M−1 ◦ α−1 ◦ T−1 is the restriction of the conformal
map M−1 ◦ (z 7→ 1 + iz) ◦ T−1 to a disk, hence ϕ̃ is quasisymmetric (although it is not
a map from S1, the definition of quasisymmetric map does not depend on the circle from
which we take the points).

• R(z) = 2z− 3/e is the Riemann map between D(1/e, 1/2) and D(−1/e, 1), which extends
as a quasisymmetric map between the boundaries and does not rotate the disk. Then, after
composing with T in both sides we obtain the map R̃ : T (∂D(1/e, 1/2))→ T (∂D(−1/e, 1)),
which is quasisymmetric as well (restriction of a conformal map to a smooth boundary).

T (z) = −2i
z

T (z) = −2i
z

AgAf Γ

ψ

R

ϕ = γ ◦ α−1

ψ̃

R̃

ϕ̃

L = {1 + iy ∈ C : y ∈ R}

D(−1/e, 1)
D(1/e, 1/2)

Γ̃ = T (Γ)
T (L)

T (∂D(1/e, 1/2))

T (∂D(−1/e, 1))

Ãg

Ãf

Figure 3.5: Representation of the curves defined before and how they are after composing with
the Möbius transformation T . Here Af is the annulus that has boundary Γ and ∂D(1/e, 1/2)
and, similarly, Ag is the annulus that has boundary {1 + iy ∈ C : y ∈ R} and ∂D(−1/e, 1), they
are mapped under T to the (bounded) annulus Ãf and Ãg. In the definition of ϕ, α(y) = 1 + iy
and γ is the curve from Lemma 3.8.
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Therefore, by Proposition 1.48, we can interpolate between ϕ̃−1 and R̃|T (∂D(1/e,1/2)) in order
to obtain a quasiconformal map

ψ̃ : Ãf → Ãg
such that ψ̃|Γ̃ = ϕ̃−1 and ψ̃|T (∂D(1/e,1/2)) = R̃|T (∂(D(1/e,1/2))). Thus, by considering the map
ψ = T−1 ◦ ψ̃ ◦ T , which is quasiconformal, we have:

• ψ|Γ = T−1 ◦ ψ̃ ◦ T|Γ = T−1 ◦ T ◦ ϕ−1 ◦ T−1 ◦ T|Γ = ϕ−1.

• ψ|∂D(1/e,1/2) = T−1 ◦ ψ̃ ◦ T|∂D(1/e,1/2) = T−1 ◦ T ◦ R∂D(1/e,1/2) ◦ T−1 ◦ T|∂D(1/e,1/2) =
R|∂D(1/e,1/2).

i.e. it is an interpolating map between the boundary values ϕ−1 and R|∂D(1/e,1/2).
Moreover, we can extend ψ to D(1/e, 1/2) by setting ψ|D(1/e,1/2) = R(z), which yields a

quasiconformal map ψ : Af ∪D(1/e, 1/2) = U → Ag ∪D(−1/e, 1) = V .
We have all the tools now to proceed with the surgery, and hence, proving Theorem 3.4. Note

that under f−1/e orbits only go through Af once.
Define the map

F (z) :=

{
(ψ−1 ◦ g1/e ◦ ψ)(z) if z ∈ U

f−1/e(z) if z 6∈ U .

We claim that this map is quasiregular. To prove it, we only need to see that it is continuous,
i.e. that in L the functions f−1/e ◦ ψ−1 and ψ−1 ◦ g1/e concide. Take z = 1 + it ∈ L, then

• ψ−1(1 + it) = γ(t), so f−1/e(ψ
−1(z)) = 1/e+ eit/2.

• g1/e(1+it) = −1/e+eit and ψ−1 restricted to ∂D(−1/e, 1) is R−1, then R−1(−1/e+eit) =
1/e+ eit/2.

So it is continuous and hence quasiregular.
The next step is defining a F -invariant Beltrami form µ, then by Lemma 2.2, we will be able

to find a holomorphic copy G(z).
Define µ = ψ∗(µ0), which is represented in Figure 3.6, then

F ∗µ = (ψ ◦ F )∗(µ0) = (ψ ◦ ψ−1 ◦ g1/e ◦ ψ)∗(µ0) = ψ∗g∗1/e(µ0) = ψ∗(µ0) = µ,

where we have g∗1/e(µ0) = µ0 because g1/e is holomorphic. Therefore µ is F -invariant.
The next step is spreading µ by the dynamics, together with setting µ = 0 on the Julia set,

that is

µ :=


ψ∗(µ0) on U

(fn−1/e)
∗(µ) on f−n−1/e(U) for all n ≥ 0

µ0 on J(f−1/e) = C \ ∪n≥0f
−n(U)

.

Then µ is a F -invariant Beltrami form on C. By the Integrability Theorem (Theorem 1.27),
there exists a quasiconformal map φ : C→ C such that µ = φ∗(µ0), φ(0) = 0 and φ(1/e) = −1/e
(i.e. we map the asymptotic value of f−1/e to the asymptotic value of g1/e).

(C, µ)
F−−−−→ (C, µ)

φ

y yφ
(C, µ0)

G−−−−→ (C, µ0)

By Weyl’s lemma, the map G := φ ◦ F ◦ φ−1 : C → C is holomorphic and quasiconformally
conjugate to F .
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ψ

µ = ψ∗(µ0) µ0

U V

Figure 3.6: Representation of the field of ellipses in the proof of Theorem 3.4. In the right side
we put circles and on the left side we take the field of ellipses given by ψ∗(µ0), the pullback of
µ0 under ψ.

Moreover, G is an entire function with z = 0 as an attracting fixed point and the multiplier
of this fixed point is 1/e (because ∂z̄φ ≡ 0 in D(1/e, 1/2) and hence the multiplier is preserved),
i.e. G′(0) = 1/e). Furthermore, it has exactly one asymptotic value (which is −1/e and tends
to z = 0 under iteration) and has no critical points. So it is one of the maps in [BJR], i.e. J(G)
is a Cantor Bouquet, which is contained in C \ U .

In fact, by Nevanlinna’s theorem (see [CJK], Theorem 2.1), after solving a differential equa-
tion we obtain

G(z) =
1

ek

(
ekz − 1

)
.

If we take h(z) = kz, then (h ◦ G ◦ h−1)(z) = g1/e(z), therefore g1/e and G are conformally
conjugate.

Finally, note that in C\V , G and f−1/e are quasiconformally conjugate, i.e. g1/e and f−1/e are
quasiconformally conjugate. In particular, they are quasiconformally conjugate on J(f1/e), which
is an invariant Cantor Bouquet. Therefore, there exists C ⊂ J(f−1/e) such that f−1/e(C) = C.

This completes the proof of Theorem A.

Note that attached to each finite preimage of∞, i.e. the pole z = −1, there is a ’copy’ of this
Cantor Bouquet C, which also appears attached to every point in the backward orbit of z = −1.

3.3 Further study: extending Theorem A

We have proved that for a parameter value we can find a Cantor Bouquet, the next question
is if we can do the same for other parameter values in the main capture component, i.e. for λ
such that −λ ∈ A∗λ(0).

Our approach is to perform surgery (in the dynamical plane of fλ) to remove the pole by
redefining the orbits of points in a neighborhood of such point, and hence convert the map into an
entire transcendental map. As before, we need to find a multiply connected domain A contained
in A∗λ(0) such that fλ(A) b A and with the pole, z = −1, contained in one of the bounded
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components of the complementary of A.
In [Rod] it is proved that we can find such A, but still we need more information about this

domain.
We proceed as follows; Consider U0 a Jordan domain with 0 ∈ U0 and define Un as the

connected component of f−nλ (U0) that contains U0. Then {Un}n≥0 forms a nested sequence of
Jordan domains (i.e. with Un ⊂ Un+1), such that, up to a certain index N , fλ : Un+1 → Un has
degree 2 (by the Böttcher coordinates). At some point, these domains must become unbounded,
multiply connected, or both.

• Unbounded: if −λ ∈ Un, then Un+1 is unbounded and f : Un+1 → Un has infinite degree.

• Multiply connected: it has been proved in [Rod] that for such parameter values the
basin is infinitely connected, so not all Un’s can be simply connected, since an infinite
union of nested simply connected sets is simply connected.

Since we need to erase the pole, we need to perform surgery exactly when the sequence is
both unbounded and multiply connected, Lemma 3.12 tells us that this happens at the same
time, but we need the following lemmas before we prove it.

Lemma 3.10. Let U ⊂ C∞ be an open set.

(a) If f : U → D is a holomorphic covering, then U is simply connected and f is univalent.

(b) If f : U → D∗ = D \ {0} is a holomorphic covering, then either:

(i) U is conformally equivalent to D∗ and there exists a biholomorphic mapping ψ : U →
D∗, such that f = (ψ)d for some d ∈ N, or

(ii) U is simply connected and there exists a biholomorphic mapping ψ : U → Hl = {z ∈
C : Re(z) < 0} such that f = exp ◦ψ.

The proof can be found in [Zhe].
Now we can prove that:

Lemma 3.11 (Not multiply connected before unbounded). The sequence {Un}n cannot become
multiply connected before it becomes unbounded.

Proof. Suppose that Uk+1 is multiply connected and bounded, and that Uk is simply connected
(and bounded). Then v 6∈ Uk+1 and f : Uk+1 → Uk is a proper map. Moreover, f : Uk+1 \
f−1
λ ({0}) → Uk \ {0} ' D∗ is a holomorphic covering. By Lemma 3.10, Uk+1 \ f−1

λ ({0}) ' D∗,
but by hypothesis, Uk+1 is already multiply connected, so Uk+1\f−1

λ ({0}) cannot be conformally
equivalent to D∗.

Lemma 3.12 (Multiply connected and unbounded). The sequence {Un}n becomes multiply con-
nected and unbounded at the same time.

Proof. Suppose that k = min{k ≥ 0: − λ ∈ Uk}, then Uk+1 is unbounded and we want to see
that it is also multiply connected. Note that ∂Uk+1 contains a curve unbounded on both ends
such that fλ : ∂Uk+1 → Uk is an infinite degree covering.

Take a disk D = D(−λ, ε) compactly contained in Uk and a smooth curve σ joining ∂D and
∂Uk, then f−1

λ (σ) contains curves σj , j ∈ Z, which join f−1
λ (∂D) and f−1

λ (∂Uk+1) (see Figure
3.7). We have that:

• ∂Uk+1 can be broken in curves γ0,j such that γ0,j joins σj ∩ ∂Uk+1 and σj−1 ∩ ∂Uk+1.
Moreover, each γ0,j is mapped in a one-to-one fashion to ∂Uk under fλ.
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• For small ε, f−1
λ (∂D) = f−1

λ (∂D(−λ, ε)) is a simple curve which can be broken in curves
γ1,j such that γ1,j joins σj ∩ f−1

λ (∂D) and σj−1 ∩ f−1
λ (∂D). Moreover, each γ1,j is mapped

in a one-to-one fashion to ∂D under fλ.

• The curves αj = γ0,j ∪ σj ∪ γ1,j ∪ σj−1 (oriented counter-clockwise) contain in its interior
domains Fj such that

– Each Fj , j 6= 0, is mapped in a one-to-one fashion under fλ to Uk \D.
– Each Fj contains exactly one preimage of z = 0.

−λ

Uk

Uk+1

0−1

∂U1
k+1

∂U2
k+1

σ

σ2

σ1

σ0

σ−1

σ−2

σ−3

F2

F1

F0

F−1

F−2

γ0,2

γ0,1

γ0,0

γ0,−1

γ0,−2

γ1,2

γ1,1

γ1,0

γ1,−1

γ1,−2

fλ

Figure 3.7: Representation of the curves in the proof of Lemma 3.12.

Then, if we take the curve, for j ∈ N,

βj :=
(
∪l=jl=−jγ0,j

)
∪ σj ∪

(
∪l=jl=−jγ1,j

)
∪ σ−j−1,

oriented counter-clockwise, by the Argument Principle,

ind(fλ(βj), 0) =
∑

z∈Z(fλ)∩int(βj)

m(fλ, z)ind(βj , z)︸ ︷︷ ︸
A

−
∑

z∈P (fλ)∩int(βj)

m(fλ, z)ind(βj , z)︸ ︷︷ ︸
B

. (3.6)

Where ind(ι, z) denotes the winding number of the closed curve ι with respect to z 6∈ ι, m(fλ, z)
represents the multiplicity of a zero or a pole of fλ, and Z(fλ), P (fλ) represent respectively the
set of zeros and poles of fλ. Note that,

• Since βj is a Jordan curve oriented counter-clockwise, ind(βj , z) ∈ {0, 1}.
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• z = 0 has multiplicity 2 as a zero of fλ, while all the other zeros have multiplicity 1.

• Take J such that Uk ⊂ int(βJ) (which exists because Uk is bounded), then ind(fλ(βJ), 0) =
2J + 1.

• In the interior of βJ there are at least 2J simple zeros and z = 0.

Therefore, equation (3.6) reads 2J + 1 = A−B, where A ≥ 2J + 2. Thus B ≥ 1 and hence Uk+1

contains the unique pole of fλ, thus is multiply connected.

However, as we have already pointed out, the interpolation results that we have at our disposal
apply for bounded curves, this makes the problem of performing surgery in general quite difficult,
because the choice of the sets in the previous construction matter and the number of preimages
needed to reach the asymptotic value may also be a problem.

3.3.1 Connectivity of Aλ(0)

We end this chapter by studying the connectivity of Aλ(0) in general, which may be used in
the future to prove the existence of Cantor Bouquets for more general families of functions.

The conditions under which we can assure some facts about the connectivity of Aλ(0) are
summarized in the following result, the proof of whom is the main topic of this section:

Theorem 3.13 (Connectivity of superattracting basins). Let f be a transcendental meromorphic
map with a super-attracting fixed point z = 0. Let Af (0) denote its basin of attraction and assume
that:

(i) f has at least one pole.

(ii) z = 0 is the only critical point in Af (0).

(iii) f has at most one asymptotic value in Af (0), say v, and if there is one, it is a Picard value
with only one asymptotic tract.

Then,

(a) If v ∈ A∗f (0), then Af (0) = A∗f (0) and it is infinitely connected, where A∗f (0) denotes the
immediate basin of attraction of z = 0.

(b) If v 6∈ A∗f (0), then Af (0) is a union of simply connected sets.

Proof.

(a) Suppose v ∈ A∗f (0), proving that A∗f (0) is multiply connected containing the pole follows
from the same construction as in Lemma 3.12, where we do not use any different property
from our map rather than the ones that we are supposing in this theorem.

We want to show first that we have Af (0) = A∗f (0).

Consider U0 = D ⊂ A∗f (0), a disk centered at z = 0 contained in A∗f (0) (i.e. as in Lemma
3.12). Now we pull-back U0 in order to obtain the whole immediate basin A∗f (0), that is,
for N > 0, we define UN as the connected component of f−1(UN−1) that contains UN−1.
This recurrence defines a sequence of subsets {UN}N≥0 such that:

• UN ⊂ Af (0) for all N ≥ 0.
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• UN ⊂ UN+1 and f(UN+1) = UN for all 0 ≤ N < M , where M is the smallest natural
number such that v ∈ UM . Then, for N ≥M , UN ⊂ UN+1 and f(UN+1) = UN \ {v}
(because the asymptotic value is omitted).
• A∗f (0) =

⋃
N≥0 UN .

Since v ∈ A∗f (0), then we can take the smallest natural number M such that v ∈ UM
and consider a simple curve γ ⊂ UM that joins v and 0. Therefore UM+1 is unbounded
(because v is an asymptotic value), hence the preimage of γ must contain a path that joins
0 and ∞, which is contained in UM+1 ⊂ A∗f (0) and thus the only asymptotic tract of v is
contained in A∗f (0).

Now suppose that Af (0) is not connected, then we must have at least two connected
components, A∗f (0) and U such that

f(U) = A∗f (0) \ {v}.

So U must contain a tail of an asymptotic path, which contradicts that the only asymp-
totic tract of v is contained in A∗f (0). Therefore Af (0) = A∗f (0) is connected and totally
invariant.

Finally, since Af (0) = A∗f (0), if we call ∂UpM+1 a connected component of ∂UM+1 such
that it contains a pole in its interior, then the successive preimages of int(∂UpM+1) contain
points w ∈ O−f (∞) ⊂ J(f), which lie in the interior of a closed curve contained in Af (0)
(because it is totally invariant). Hence, since the backward orbit of ∞ is an infinite set,
Af (0) is infinitely connected.

(b) Take the same sequence {UN}N≥0 that we have constructed before and define the new
sequence by V0 = U0 \ {0} and for N > 0, VN = f−N (V0) ∩ UN . Then,

f : VN+1 → VN

is a holomorphic covering. Moreover, we also know that none of the VN is simply connected
(we have taken out from each UN at least z = 0). We claim now that, in fact, each VN is
conformally equivalent to a punctured disk and we prove it by induction; it is clear that V0

is conformally equivalent to a punctured disk, that is because U0 is conformally equivalent
to a disk by the Böttcher coordinates map.

Suppose that VN is conformally equivalent to a punctured disk for N > 0, then since

f : VN+1 → VN 'c D∗

is a holomorphic covering and, as it has already been pointed out, VN+1 is not simply
connected, by Lemma 3.10 VN+1 is conformally equivalent to a punctured disk.

Therefore, VN = UN \ {0}, which implies that,

• UN = VN ∪ {0} is simply connected, so {UN}N forms a nested sequence of simply
connected sets. Hence, A∗f (0) is simply connected.
• In A∗f (0) there is no other preimage of z = 0 rather than z = 0 itself.

To finish the proof of the theorem we need to distinguish two different cases,

(i) Case v 6∈ Af (0):
To fill the whole basin Af (0) we need to take successive preimages of the immediate
basin A∗f (0), which we know that is conformally equivalent to a disk. Suppose that
U is a component of f−1(A∗f (0)), then

f : U \ f−1({0})→ A∗f (0) \ {0}
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is a holomorphic covering. By Lemma 3.10, U \ f−1({0}), can either be simply con-
nected or a punctured disk. In the first case we have no preimages of z = 0 in U
and in the second, we have that f−1({0}) ∩ U is a single point and U is conformally
equivalent to a punctured disk, thus U is again simply connected.
If we keep taking preimages, now we already have simply connected sets and no critical
values, therefore by Lemma 3.10 any component of any preimage is simply connected.
So, Af (0) is a union of simply connected sets.

(ii) Case v ∈ Af (0):
The same argument as before applies until we reach the asymptotic value. So sup-
pose that in a component AN of Af (0) we have the asymptotic value (AN is simply
connected). If we take any component U of the preimage of AN under f , then

f : U \ f−1({v})→ AN \ {v} ' D∗

is a holomorphic covering and we have no finite preimages of v (because v is a Picard
value). By applying again Lemma 3.10, we see that U is simply connected, because
otherwise we must have a finite preimage.
As before, since we have already simply connected sets and no more asymptotic values
nor critical values, any preimage is simply connected. So, Af (0) is a union of simply
connected sets.
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Appendix A

Preliminaries in Complex Dynamics

The goal here is to list the main results in the Complex Dynamics theory needed for this
thesis, so that any reader can have at its disposal a quick access to them. For a more detailed
introduction, we refer to [Rod].

A.1 Periodic points and local theory

In this work we focus on some dynamical aspects of transcendental meromorphic functions,
i.e., we study the dynamical system given by the iterates of meromorphic functions f : C→ C∞
with an essential singularity at∞, where C∞ denotes C∪{∞} or the Riemann sphere. Here the

n-th iterate of a point z ∈ C is denoted by fn(z) = (f ◦
(n)
· · · ◦ f)(z), and the sequence of iterates

{fn(z)}n∈N is well-defined for all z ∈ C except for the countable set of poles and prepols of f of
any order.

The interest for these functions is double; The essential singularity, on the one hand, adds a
lot of chaos to the dynamical system, mainly because of Picard’s Theorem, which states that in
each punctured neighborhood of ∞, these functions assume each value of the Riemann Sphere
C∞, with at most two exceptions, infinitely often. Hence, given a point z ∈ C, if its orbit
O+
f (z) = {fn(z) : n ∈ N} is near ∞ at some moment, after one iteration it can land at almost

any place of the plane. On the other hand, the presence of poles allows for more generality, since
∞ is not required to be an omitted value.

From now on, unless we do not state the opposite, f denotes a non-constant meromorphic
function, f ∈M(C), as defined in the introduction.

Definition A.1 (Forward and Backward Orbit, Periodic and Preperiodic Point). Let z0 ∈ C,
then

• The forward orbit of z0 is the set O+(z0) = {zn = fn(z0) : n ∈ N}.

• The backward orbit of z0 is the set O−(z0) = {z : fn(z) = z0 , n ∈ N}.

• z0 is called periodic if exists n ∈ N such that zn = z0, p = min{n ∈ N : zn = z0} is called
its period. If p = 1 we say that z0 is a fixed point.

• z0 is called preperiodic if fk(z0) is periodic for some k ∈ N and strictly preperiodic if
it is preperiodic but not periodic.

For a periodic point z0 of period p, we define its multiplier as λ = (fp)′(z0). Using the
chain rule, it can be verified that

λ =

p−1∏
n=0

f ′(fn(z0)) =

p−1∏
n=0

f ′(zn)

53
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and therefore, the multiplier is the same for every periodic point of the orbit. Hence, we regard
it as the multiplier of the orbit.

Periodic points can be classified according to their multiplier.

Definition A.2 (Classification of Fixed Points). Given a periodic point z0 of period p, the cycle
O+
f (z0) is called:

• Attracting iff 0 < |λ| < 1 and super-attracting iff λ = 0.

• Repelling iff |λ| > 1.

• Indifferent iff |λ| = 1. We have two possibilities:

– Rationally indifferent iff λm = 1 for some m ∈ N, i.e., λ = e2πij/m for some j ∈ Z
(also called a parabolic cycle).

– Irrationally indifferent iff λ = e2πiθ, for θ ∈ R \Q.

A.1.1 Normal forms

We are concerned now with the study of the dynamical behavior of a function near a periodic
point. Observe first that since periodic points of f are fixed points of fn for a given n, without
loss of generality we may assume that they are fixed points.

To accomplish this goal, we want to represent our function in the simplest possible way, the
normal form. To do so, we introduce the concept of conjugacy.

Definition A.3 (Conformal Conjugacy). We say that a function f : U → U is (conformally)
conjugate to a function g : V → V if and only if there is a conformal one-to-one map ϕ : U → V
such that

ϕ(f(z)) = g(ϕ(z))

i.e., the following diagram commutes:

U U

V V

f

ϕ ϕ

g

Two conjugate functions have the same dynamics. Indeed, the iterates of f are also conjugate
by the same map ϕ since gn = ϕ ◦ fn ◦ ϕ−1. The inverses, f−1 and g−1, whenever well-defined
are also related by ϕ, i.e., g−1 = ϕ ◦ f−1 ◦ ϕ−1.

It can also be verified that conjugacies send orbits to orbits, fixed points to fixed points,
periodic orbits of period p to periodic orbits of period p, attracting points to attracting points,
etc.

The following results address the problem of finding the normal form:

Theorem A.4 (Koenigs Linearization Theorem). Let f be holomorphic in some neighborhood
of z = 0, a fixed point of f with multiplier λ. If |λ| 6= 0, 1, then there exists a local conformal
change of coordinate w = ϕ(z) with ϕ(0) = 0 such that

ϕ ◦ f ◦ ϕ−1 : w 7→ λw

for all w in some neighborhood of the origin. Furthermore, ϕ is unique up to multiplication by a
nonzero constant.



A.1 Periodic points and local theory 55

Theorem A.5 (Böttcher). Suppose f has a super-attracting fixed point at z = 0, so that in a
neighborhood of z = 0, the function can be written as

f(z) = apz
p + ap+1z

p+1 + · · · for some p ≥ 2.

Then there is a conformal map w = ϕ(z) defined in a neighborhood of z = 0 onto a neighborhood
of w = 0 that conjugates f(z) to w 7→ wp. Furthermore, ϕ is unique up to multiplication by a
(p− 1)-th root of unity.

The local change of variables given by Theorem A.5 is known as the Böttcher coordinates
around the super-attracting fixed point.

We analyze here the case where z = 0 is a rationally indifferent fixed point of f , i.e., λ = f ′(0)
is a root of unity. Our goal is to characterize the dynamics of f in a neighborhood of the origin.
First, we need to introduce some preliminary concepts.

Since λ 6= 0, then f ′(0) 6= 0 and f−1 is locally well-defined. Hence, we can choose a neighbor-
hood N of z = 0 that is small enough so that f maps N conformally onto some neighborhood
N0 of the origin.

Definition A.6 (Attracting and Repelling Petals). A connected open set U , with compact closure
Ū ⊂ N ∩N0 is called

• An attracting petal for f at the origin if

f(Ū) ⊂ U ∪ {0}
⋂
k≥0

fk(Ū) = {0}.

• A repelling petal for f at the origin if U is an attracting petal for f−1.

Definition A.7 (Repulsion and Attraction Vectors). A vector v ∈ C is called a repulsion
vector for f at the origin if navn = +1, and an attraction vector if navn = −1.

Definition A.8 (Nontrivial Convergence). We say that an orbit O+
f (z0) converges to zero non-

trivially if zk −−−→
k→∞

0 but zk 6= 0.

Definition A.9 (Directional Convergence). If an orbit O+
f (z0) under f converges to zero, with

zk ∼ vj/
n
√
k (where j is necessarily odd), then we say that this orbit {zk}k tends to zero from

the direction vj.

Lemma A.10 (Convergence Directions). If an orbit O+
f (z0) converges to zero nontrivially, then

zk is asymptotic to vj/
n
√
k as k →∞ for one of the n attraction vectors vj. In other words, the

limit limk zk
n
√
k = vj. Similarly, if an orbit O−f (z′0) under f converges to zero nontrivially, then

z′k is asymptotic to vj/
n
√
k, where vj is one of the n repulsion vectors, with j even.

A consequence of Lemma A.10 is the following well-known result.

Theorem A.11 (Leau-Fatou Flower Theorem). Let

f(z) = z + azn+1 + (H.O.T.) with a 6= 0 , n ≥ 1

be holomorphic in some neighborhood of the origin, then there exist 2n petals Pj, where Pj is
either repelling or attracting depending to whether j is even or odd. Furthermore, we can choose
those petals so that

{0} ∪ P0 ∪ · · · P2n−1

is an open neighborhood of z = 0. When n > 1, each Pj intersects each of its two immediate
neighborhoods in a simply connected region Pj ∩ Pj±1 but is disjoint from the remaining Pk (we
consider j modulo 2n).
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Theorem A.12 (Parabolic Linearization). Let

f(z) = λz + azn+1 + (H.O.T.) with a 6= 0 , n ≥ 1

be holomorphic in some neighborhood of the origin, where λ is a primitive q-th root of unity. Then
for any attracting or repelling petal P, there is one and, up to composition with a translation
of C, only one conformal one-to-one map ϕ : P → C such that ϕ(f(z)) = 1 + ϕ(z) for all
z ∈ P ∩ f−1(P).

Finally, we study the remaining case. Consider a map of the form

f(z) = λz +
∑
k≥2

akz
k

which is defined in some neighborhood of z = 0, with multiplier:

λ = e2πiθ , θ ∈ R \Q.

Definition A.13 (Cremer and Siegel Points). We say that an irrationally indifferent fixed point
is a

• Cremer point if a local linearization is not possible.

• Siegel point if a local linearization is possible.

Theorem A.14 (Siegel). We say that θ ∈ R is Diophantine if it is badly approximable by
rational numbers, in the sense that there exists k <∞ and ε > 0 so that∣∣∣∣θ − p

q

∣∣∣∣ ≥ ε

qk
for all p/q ∈ Q.

If θ is Diophantine, and if f has a fixed point at z = 0 with multiplier e2πiθ, then there exists a
solution of the Schröder equation.

A.2 The Julia and Fatou sets

Definition A.15 (Normal Convergence). We say that a sequence {fk(z)}k of meromorphic
functions on a domain D converges normally to f(z) on D, if the sequence converges uniformly
on compact subsets of D to f(z) in the spherical metric.

Definition A.16 (Normal Family). A family F of meromorphic functions on a domain D is a
normal family if every sequence in F has a subsequence that converges normally on D.

Our applications to transcendental dynamics are based on the following theorem.

Theorem A.17 (Montel).

(a) Suppose that F is a family of holomorphic functions on a domain D such that F is uniformly
bounded on each compact subset of D. Then F is a normal family.

(b) A family F of meromorphic functions on a domain D that omits three values is normal.

From now on f denotes a transcendental function unless we state the opposite.
The dynamical of f plane splits into two sets, the Fatou set and the Julia set.

Definition A.18 (Fatou and Julia Sets). We define the Fatou set as:

F (f) = {z ∈ C∞ : {fn(z) : n ∈ N} is well-defined and normal in some neighborhood of z}

and the Julia set J(f) = C∞ \ F (f), where C∞ is the Riemann Sphere, i.e., the Alexandroff
compactification of the complex plane C.

Notice that the condition of being "well-defined" is necessary, since orbits are truncated if
they land on a pole of f .
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A.2.1 Basic properties

The aim of this section is to show some classical results concerning properties of the Julia
and Fatou sets.

Definition A.19 (Forward, Backward and Completely Invariant).

• We say that a set S is forward invariant under f if z ∈ S implies f(z) ∈ S or f(z) is
undefined.

• We say that S is backward invariant under f if z ∈ S implies that w ∈ S for all w such
that f(w) = z.

• We say that S is completely invariant if it is both forward and backward invariant under
f .

Theorem A.20 (Basic Properties of the Julia and Fatou sets). Let f be a transcendental mero-
morphic function.

(a) (Invariance) The Julia set and the Fatou set of a transcendental meromorphic function
f are completely invariant.

(b) (Iteration) For any q ∈ N, J(f q) = J(f).

(c) (Blow up property) If z ∈ J(f) and U is a neighborhood of z, then
⋃
n∈N f

n(U) covers
C∞ with at most two exceptions.

(d) If z0 ∈ J(f) is s.t. O−f (z0) is not finite, then O−f (z0) = J(f).

(e) If J(f) has an interior point, then J(f) = C∞.

(f) J(f) 6= ∅ is closed and does not contain isolated points.

(g) J(f) is the closure of the set of repelling periodic points of f .

Definition A.21 (Basin of Attraction). If Of is an attracting periodic orbit of period m, we
define the basin of attraction to be the open set A ⊂ C∞ consisting of all points z ∈ C∞ for
which the successive iterates converge to some point of Of .

Proposition A.22. Every attracting periodic orbit is contained in F (f). In fact, the entire basin
of attraction A for an attracting periodic orbit is contained in F (f). However, every repelling
periodic orbit is contained in the J(f).

Proposition A.23. F (f) contains all Siegel points of f and their linearizing neighborhoods.
Instead, J(f) contains all rationally indifferent fixed points and Cremer fixed points.

A.3 The Classification theorem and the singular values

The aim in this section is to understand the possible limit functions that we can obtain under
iteration in the set of normality of the iterates of f . To do so we introduce the components of
the Fatou set.

Definition A.24 (Fatou component). A component U of F (f) is a maximal connected domain
of normality of the iterates of f .

Lemma A.25. Every component of F (f) contains at most one periodic point of f .
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We want to understand now the behavior of f in the different components of the Fatou set.
To do so we distinguish two different cases.

Definition A.26 (Preperiodic and Wandering components). Given a component U of F (f),
then by the Invariance Lemma fn(U) is contained in a component of F (f) that we denote Un.

• U is called preperiodic if there exists n > m ≥ 0 such that Un = Um. If m = 0 we say
that U is periodic with period n and {U,U1, . . . , Un−1} is called a cycle of components.
The smallest n with this property is called the minimal period of U .

• If U is not preperiodic, U is called a wandering domain.

The behavior of the successive iterates of f on periodic components is well understood. The
following celebrated result, originally stated by Fatou, summarizes the different possibilities that
we can have.

Theorem A.27 (Classification Theorem for periodic components). Let U be a periodic compo-
nent of period p. Then we have one of the following possibilities:

(a) U contains an attracting periodic point z0 of period p. Then

fnp(z) −−−→
n→∞

z0 ∀z ∈ U

and U is called the immediate attractive basin of z0.

(b) ∂U contains a periodic point z0 of period p and

fnp(z) −−−→
n→∞

z0 ∀z ∈ U

Then (fp)′(z0) = 1 if z0 ∈ C. U is called a Leau domain.

(c) Exists φ : U → D conformal such that φ(fp(φ−1(z))) = e2πiαz for some α ∈ R \ Q. U is
called a Siegel disk.

(d) Exists φ : U → A conformal where A = {z : 1 < |z| < r}, r > 1 is an annulus such that
φ(fp(φ−1(z))) = e2πiαz for some α ∈ R \Q. U is called a Herman ring.

(e) Exists z0 ∈ ∂U such that
fnp(z) −−−→

n→∞
z0 ∀z ∈ U

but fp(z0) is not defined. In this case U is called a Baker domain.

Note that in the case of a Wandering domain any limit function is constant.
The topological properties of the different Fatou components play a fundamental role in the

dynamics of our functions and the results from the classical theory of Complex Analysis are
crucial.

Definition A.28 (Winding number). We denote by ind(γ, a) the index of a closed curve γ ⊂ C
with respect to a point a (also known as the winding number of γ about a).

The key lemma, which together with Theorem A.27 leads us to our goal is:

Lemma A.29. Let f ∈ E and U be a multiply connected component of F (f). Suppose that γ is
a Jordan curve that is not contractible in U . Then:

(a) fn →∞ normally on U .
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(b) ind(fn(γ), 0) > 0 for n large enough.

The points where the inverse function is not well-defined play a fundamental role in the
dynamical behavior of our function. In fact, they are closely related with the different Fatou
components that we can have.

We consider f ∈M(C) unless we state the opposite.

Definition A.30 (Singular value). We say that a ∈ C is a singular value if some branch of
f−1 is not well-defined (holomorphic and injective) in a neighborhood of a ∈ C.

The goal is to analyze the different singular values that we can have.
Let a ∈ C∞ and denote by D(a, r) the disk of radius r > 0, in the spherical metric, centered

at a. For every r > 0, choose a connected component U(r) of f−1(D(a, r)) such that r1 < r2

implies U(r1) ⊂ U(r2). Obtaining a function:

U : r 7→ U(r).

We have two possibilities:

(i) ∩r>0U(r) = {z}, z ∈ C. Then a = f(z). If a ∈ C and f ′(z) 6= 0 or if a = ∞ and z is a
simple pole, then we say that z is an ordinary or regular point.

If a ∈ C and f ′(z) = 0 or if a =∞ and z is a multiple pole of f , then z is called a critical
point and a is called a critical value.

(ii) ∩r>0U(r) = ∅. Then we say that our choice r 7→ U(r) defines a (transcendental) singu-
larity (for simplicity we just call such U a singularity). For every r > 0, the open set
U(r) ⊂ C is called a neighborhood of the singularity U . So if zk ∈ C, we say that
zk → U if for every ε > 0, ∃k0 such that zk ∈ U(ε) for all k ≥ k0.

Meanwhile the first type is elementary to determine with this characterization, the second is
not, so we are urged to obtain a criterion to decide when we have a singularity.

Definition A.31 (Asymptotic Value). We say that a ∈ C is an asymptotic value if there
exists a curve γ such that

γ(t) −−−→
t→∞

∞ and f(γ(t)) −−−→
t→∞

a.

We call γ an asymptotic path or curve of a.

Proposition A.32. A point a ∈ C is an asymptotic value of f , if and only if, there is a
singularity U (as in (ii)).

Now we want to show why the singularities of the inverse play a fundamental role in the
dynamics of a given function. Again, we focus on the case of periodic components with constant
limit functions.

Definition A.33 (Singular Set). We define the set of singular values

S(f) = {critical and asymptotic values}.

A postsingular point is a point on the orbit of a singular value.

Theorem A.34 (Role of the Singular Values). Let f be a meromorphic function.

(a) Suppose that f has an attracting fixed point or cycle. Then there is at least one singular
value in the immediate basin of attraction of this point.
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(b) Suppose that f has a parabolic fixed point. Then there is at least one singular value in the
immediate basin of attraction of this point.

Theorem A.35. Let f be a meromorphic function, and let C = {U0, U1, . . . , Up−1} be a periodic
cycle of components of F (f). If C is a cycle of Siegel disks or Herman rings, then

∂Uj ⊂ O+
f (S(f)) for all j ∈ {0, 1, . . . , p− 1}

Theorem A.36. Let f be a meromorphic function, and let {U0, . . . , Up−1} be a periodic cycle
of Baker domains of f . Denote by zj the limit corresponding to Uj and define zp = z0. Then

zj ∈
p−1⋃
n=0

f−n(∞) ∀j ∈ {0, . . . , p− 1}

and zj =∞ for at least one j ∈ {0, . . . , p−1}. If zj =∞, then zj+1 is an asymptotic value of f .

Corollary A.37. Let f be a meromorphic function and let

{U0, . . . , Up−1}

be a periodic cycle of Baker domains of f . Then exists j ∈ {0, . . . , p− 1} such that

∂Uj ∩ S(f) 6= ∅

A.3.1 Wandering domains

This Fatou components have been unnoticed during many years due to their absence in
rational maps. The no-Wandering Domains Theorem was first proven by Sullivan in 1985 in
his famous paper Quasiconformal Homeomorphisms and Dynamics I. Solution of the Fatou-Julia
Problem on Wandering Domains (see [Sul]). This paper introduced quasiconformal analysis
techniques into holomorphic dynamics, which meant remarkable advances in the field.

However, transcendental functions do have Wandering Domains. For example the function

g(z) = z + sin(z) + 2π

has a Wandering Domain.
They are the least understood Fatou components and still subject of current research. Their

analysis is out of the scope of this project. However, some special classes of transcendental maps
do not have Wandering Domains.

Definition A.38 (Classes of Meromorphic Functions). We define the following classes of mero-
morphic functions:

• S = {f : f has only finitely many critical and asymptotic values}.

• F = {f : f(z) = z + r(z)ep(z), where r(z) is rational and p(z) a polynomial}.

• R = {f : f ′(z) = r(z)(f(z)− z)2 or f ′(z) = r(z)(f(z)− z)(f(z)− τ)
where r(z) is rational and τ ∈ C}.

Theorem A.39. Functions in S, F and R do not have Wandering Domains.

Theorem A.40. Functions in S do not have Baker domains.



Appendix B

The Integrability theorem

Remember that we define the Beltrami coefficient of a K-qc map φ (or the complex
dilatation) as the measurable function

µφ(z) =
φz̄(z)

φz(z)
.

Note that since φz 6= 0 a.e. (otherwise we would have φz = φz̄ = 0 a.e., which would imply
by the ACL condition that φ is constant, contradicting that it is a topological mapping), the
Beltrami coefficient is well-defined. Moreover,

|µφ(z)| = |φz̄(z)|
|φz(z)|

=
Dφ − 1

Dφ + 1
< 1.

We state now the Integrability theorem, which yields that the conditions that we have ob-
tained on the Beltrami coefficient of a K-qc mapping are sufficient conditions so that there exists
a quasiconformal mapping with such a Beltrami coefficient.

Theorem B.1 (Integrability theorem). Let U ⊂ C be an open set such that U ∼= D (resp.
U ∼= C). Let µ be a Beltrami coefficient on U such that the essential supremum ||µ||∞ = k < 1.
Then µ is integrable, i.e. there exists a quasiconformal homeomorphism φ : U → D (resp. onto
C) which solves the Beltrami equation, i.e. such that

∂zφ(z)µ(z) = ∂z̄φ(z)

for almost every z ∈ U . Moreover, φ is unique up to post-composition with automorphisms of D
(resp. C).

B.1 Tools for the proof

Here we present the results that we need before we address the cornerstone of this project;
proving the Integrability theorem.

The first tools are three classical results and a lemma, the proof of them can be found in
[Ahl, LV].

Theorem B.2. A uniform limit of K-qc mappings fn is also K-q.c

Theorem B.3 (Weyl’s lemma). If f ∈ C(Ω), Ω ⊂ C a domain, is such that∫
C
f(z)

∂φ

∂z̄
(z)dm(z) = 0 ∀φ ∈ C∞c (Ω),

then f ∈ H(Ω).

61
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The next generalization of Weyl’s lemma will also be needed:

Lemma B.4. If p and q are continuous and have locally integrable distributional derivatives that
satisfy pz̄ = qz, then there exists a function f ∈ C1 with fz = p, fz̄ = q.

aquest resultat es podria demostrar (el de dalt dic, el de sota no).

Theorem B.5 (Calderón-Zygmund inequality). The operator

Th(ξ) = lim
ε→0
− 1

π

∫
|z−ξ|>ε

h(z)

(z − ξ)2
dm(z),

which is defined for h ∈ C2
0 , can be extended to Lp, p ≥ 2, so that

||Th||p ≤ Cp||h||p

for some constant Cp such that Cp −−−→
p→2

1.

B.1.1 Two integral operators

The solution of the Beltrami equation will be obtained as the fixed point of an operator
which is strictly contracting. Hence we are going to introduce the two operators that we need
and prove some properties about them. The results here have been obtained from [Ahl].

The first one is P , which acts on functions h ∈ Lp, for p > 2 (Lp = Lp(C)) and it is defined
by

Ph(ξ) = − 1

π

∫
C
h(z)

(
1

z − ξ
− 1

z

)
dm(z). (B.1)

(we integrate on the whole C.)

Lemma B.6. Ph is continuous and satisfies a uniform Hölder condition with exponent 1− 2/p.

Proof. Note that

(1) = − 1

π

∫
C
h(z)

ξ

z(z − ξ)
dm(z)

and h ∈ Lp (by hypothesis) and ξ/(z(z − ξ)) ∈ Lq (where q is the conjugate exponent of p,
1 < q < 2). So by Hölder’s inequality we have that (B.1) is convergent. Moreover, by the very
same Hölder’s inequality on the case ξ 6= 0 we obtain

|Ph(ξ)| ≤ |ξ|
π
||h||p

∣∣∣∣∣∣∣∣ 1

z(z − ξ)

∣∣∣∣∣∣∣∣
q

= Kp||h||p|ξ|1−2/p, (B.2)

where the last equality is obtained using the change of variable z 7→ z/ξ, the constant Kp only
depends on p (note that this inequality is satisfied also when ξ = 0).

If we take h1(z) = h(z + ξ1) we see that

Ph1(ξ2 − ξ1) = − 1

π

∫
C
h(z + ξ1)

(
1

z + ξ1 − ξ2
− 1

z

)
= − 1

π

∫
C
h(z)

(
1

z − ξ2
− 1

z − ξ1

)
= Ph(ξ2)− Ph(ξ1)

(on the second equality we have just applied the change of variable z 7→ z + ξ1). So if we apply
(B.2) to Ph1(ξ2 − ξ1) we obtain

|Ph(ξ2)− Ph(ξ1)| ≤ Kp||h||p|ξ1 − ξ2|1−2/p.
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The second operator, which has already been introduced in the Calderón-Zygmund inequality,
it is initially defined just for functions in C2

0 (which is the Cauchy principal value).

Th(ξ) = lim
ε→0
− 1

π

∫
|z−ξ|>ε

h(z)

(z − ξ)2
dm(z). (B.3)

Lemma B.7. For h ∈ C2
0 , Th is well-defined and of class C2. Moreover,

(Ph)z̄ = h , (Ph)z = Th (B.4)

and ∫
C
|Th|2dm(z) =

∫
C
|h|2dm(z) (B.5)

Proof. In order to verify (B.4) we only need to use that h ∈ C1
0 . Since this is enough condition

so that we can use the differentiation under the integral sign theorem.

(Ph)ξ̄ = − 1

π

∫
C

hz̄
z − ξ

dm(z) , (Ph)ξ = − 1

π

∫
C

hz
z − ξ

dm(z). (B.6)

By Cauchy-Pompeiu formula, since h is compactly supported we see that

(Ph)ξ̄ = h(ξ).

If we consider γε as the circle of center ξ and radius ε andwe use Stokes’ formula, we obtain

(Ph)z =
1

2πi

∫
C

dhdz̄

z − ξ
=

= lim
ε→0

[
− 1

2πi

∫
γ

hdz̄

z − ξ
+

1

2πi

∫
|z−ξ|>ε

hdzdz̄

(z − ξ)2

]
=

= Th(ξ)

where the last equality follows from the fact that

lim
ε→0

∫
γ

hdz̄

z − ξ
= 0,

and the equality
1

2πi

∫
|z−ξ|>ε

hdzdz̄

(z − ξ)2
= − 1

π

∫
|z−ξ|>ε

h

(z − ξ)2
dm(z).

So (B.4) is proved.
Note that (B.6) yields that

P (hz̄) = h− h(0) , P (hz) = Th− Th(0). (B.7)

If we use now that by hypothesis h ∈ C2
0 and we apply (B.4) to hz and we use the second equality

from (B.7), we find out that

(Th)z̄ = P (hz)z̄ = hz (B.8)
(Th)z = P (hz)z = T (hz) = P (hzz) + Thz(0), (B.9)

and this equalities imply that Th ∈ C1 and Ph ∈ C2.
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In order to prove the last part of the theorem (the isometry), note that since h has compact
support, as z →∞ we have Ph = O(1) and Th = O(|z|−2). We just have now to calculate:∫

C
|Th|2dm(z) = − 1

2i

∫
C

(Ph)z(Ph)z̄dzdz̄ =

=
1

2i

∫
C
Ph(Ph)z̄zdzdz̄ =

1

2i

∫
C

(Ph)h̄z̄dzdz̄ =

= − 1

2i

∫
C
h̄(Ph)z̄dzdz̄ =

∫
C
|h|2dm(z).

where we have only used the Stokes’ formula (which has been also used before) and the definition
of distributional derivatives (several times).

Since the functions of class C2
0 are dense in L2, thanks to the isometry (B.4) we are enabled

to extend by continuity the operator T to all of L2. However, P cannot be extended to functions
h ∈ L2. In order to deal with this issue, we use Calderón-Zygmund’s inequality, which yields
that

||Th||p ≤ Cp||h||p
for any p > 2, where Cp can be taken so that Cp −−−→

p→2
1.

Lemma B.8. Let h ∈ Lp, p > 2, then the relations in (B.4) hold in the distributional sense.

Proof. We need to prove that∫
C

(Ph)φz̄ = −
∫
C
φh ,

∫
C

(Ph)φz = −
∫
C
φ(Th) (B.10)

for all test functions φ ∈ C1
0 . Note that by the previous theorem we already know that such

equalities hold when h ∈ C2
0 .

Since functions in C2
0 are dense in Lp, we can consider a sequence {hn}n ⊂ C2

0 such that it
converges to h in Lp.

On the right side of both members of (B.10) we just have to use that ||Th − Thn||p ≤
Cp||h − hn||p. On the left side of both members of (B.10) we just have to apply Lemma B.6,
which tells us that

|Ph(ξ2)− Ph(ξ1)| ≤ Kp||h||p|ξ1 − ξ2|1−2/p.

Now the result follows from φ having compact support.

B.2 Proof of the Integrability theorem

The results here have been obtained following mainly [Ahl]. However, [BF] has also been
useful.

Lemma B.9 (Uniqueness). The solution of the Beltrami equation in the conditions of Theorem
1.9 is unique up to post-composition with automorphisms of D (resp. C).

Proof. If we have two solutions φ1 and φ2, then ϕ := φ1 ◦ φ−1
2 is 1-qc, hence by Weyl’s lemma ϕ

is conformal, i.e. φ1 = ϕ ◦ φ2.

First we need to address the case where µ has compact support (hence f will be holomorphic
at ∞).

We will need to use a fixed exponent p > 2 so that kCp < 1, which can be achieved since
k = ||µ||∞ < 1 and Cp → 1. Note that we are also interested in giving enough conditions so
that the automorphism of Lemma B.9 is the identity (and hence the uniqueness part of the next
result).
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Theorem B.10. If µ has compact support, then there exists a unique solution f of the Beltrami
equation such that f(0) = 0 and fz − 1 ∈ Lp.

Proof. We start with the uniqueness part. Let f be a solution, then since µ has compact support
fz̄ = µfz is of class Lp, hence P (fz̄) is well-defined.

Consider the function F = f − P (fz̄), which satisfies Fz̄ = 0 (in the distributional sense),
hence by Weyl’s lemma F is holomorphic. Moreover, since fz − 1 ∈ Lp, then F ′ − 1 ∈ Lp, which
is only possible if F ′ = 1, which yields that F = z + a, by the normalization we see that a = 0,
therefore

f = P (fz̄) + z (B.11)

hence,
fz = T (µfz) + 1 (B.12)

So if g is another solution we see that fz − gz = T [µ(fz − gz)]. By Calderón-Zygmund inequality
we obtain ||fz − gz||p ≤ kCp||fz − gz||p (remember that k = ||µ||∞), hence since kCp < 1 we
obtain that fz = gz, but then by the Beltrami equation we would also have fz̄ = gz̄. Hence f − g
and f̄ − ḡ are both holomorphic, hence the f − g must be constant and by the normalization
condition we see that f = g.

The study of the uniqueness also gives us an idea about how to prove the existence. We want
to study the equation

h = T (µh) + Tµ (B.13)

Since the linear operator h 7→ T (µh) on Lp has norm ≤ kCp < 1 (by the Calderón-Zygmund
inequality), the series

h = Tµ+ TµTµ+ · · · (B.14)

converges in Lp (as it has already been proved in the first part of the course) and it is trivially
a solution of (13). Furthermore, with h as above the final goal is to prove that

f = P [µ(h+ 1)] + z (B.15)

is the solution of the Beltrami equation. We prove it in three steps:

• Since µ has compact support µ(h+1) ∈ Lp, hence P [µ(h+1)] is well-defined and continuous.

• By Lemma B.8 we obtain that

fz̄ = µ(h+ 1) , fz = T [µ(h+ 1)] + 1 = h+ 1 (B.16)

where the last equality follows from (B.13).

• fz − 1 = h ∈ Lp.

The function f obtained in the previous theorem will be called the normal solution of the
Beltrami equation.

The previous result also yields some estimates that we will need later on.

• By (B.13) we see that ||h||p ≤ kCp||h||p + Cp||µ||p. Hence,

||h||p ≤
Cp

1− kCp
||µ||p. (B.17)
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• By (B.16):

||fz̄||p ≤
1

1− kCp
||µ||p. (B.18)

• The Hölder condition given by Lemma B.6 together with (B.11):

|f(ξ1)− f(ξ2)| ≤ Kp

1− kCp
||µ||p|ξ1 − ξ2|1−2/p + |ξ1 − ξ2|. (B.19)

Consider now another Beltrami coefficient ν which is still bounded by k. Let g be the
corresponding normal solution provided by the previous theorem. Then, fz− gz = T (µfz−νgz),
hence

||fz − gz||p ≤ ||T [ν(fz − gz)]||p + ||T [(µ− ν)fz]||p ≤
≤ kCp||fz − gz||p + Cp||(µ− ν)fz||p

If we suppose that ν → µ a.e. and that the supports are uniformly bounded, then:

Lemma B.11. In the conditions above we have that ||gz − fz||p → 0 and g → f , uniformly on
compact sets. Moreover, since f − g is holomorphic at ∞, the convergence is uniform in C.

Proof. The inequality above together with kCp < 1 shows us that

||fz − gz||p ≤
Cp

1− kCp
||fz||p||(µ− ν)||∞

hence ||fz − gz||p → 0. Since they solve the Beltrami equation we also have ||fz̄ − gz̄||p → 0, and
finally since they are normalized g → f uniformly on compact sets.

We want to show now that f has derivatives if µ does:

Lemma B.12. If µ has a distributional derivative µz ∈ Lp, p > 2, then f ∈ C1 is a topological
mapping.

Proof. We want to apply Lemma B.4 to try to determine λ so that the system

fz = λ , fz̄ = µλ (B.20)

has solution. In fact, by Lemma B.4 this will be the case if

λz̄ = (µλ)z = λzµ+ λµz (B.21)

which is equivalent to solving (log λ)z̄ = µ(log λ)z + µz.

Note that the equation q = T (µq) + Tµz can be solved for q in Lp (because the operator
q 7→ T (µq) + Tµz is contracting by the Calderón-Zygmund inequality together with kCp < 1,
hence it has a unique fixed point), name q the solution and set

σ = P (µq + µz) + ctt,

where the constant is such that σ → 0 for z → ∞. Hence σ is continuous and it is a simple
computation to show that

σz = µq + µz , σz = T (µq + µz) = q. (B.22)

Hence λ = eσ satisfies (B.21), so by B.6, (B.20) can be solved with f ∈ C1. If we normalize f by
f(0) = 0, then it is the normal solution since σ → 0, λ→ 1 and fz → 1 as z →∞.

Moreover, the Jacobian |fz|2 − |fz̄|2 = (1− |µ|2)e2σ > 0 (strictly positive), hence f is locally
one-to-one. Finally, since f(z)→∞ as z →∞ it is a homeomorphism.
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Note that by Lemma B.12 the inverse f−1 is also K-qc and has Beltrami coefficient µf−1 ,
which satisfies |µf−1 ◦ f | = |µ|.

By using f as a change of variables, the fact that solves the Beltrami equation and Hölder,
we can see that ∫

C
|µf−1 |pdm(w) =

∫
C
|µ|p(|fz|2 − |fz̄|2)dm(z) ≤

≤
∫
C
|µ|p|fz|2dm(z) =

∫
C
|µ|p−2|fz̄|2dm(z) ≤

≤
(∫

C
|µ|pdm(z)

) p−2
p
(∫

C
|fz̄|pdm(z)

)2/p

Hence ||µf−1 ||p ≤ (1− kCp)−2||µ||p. If we apply (B.19) to f−1 we see that

|z1 − z1| ≤ Kp(1− kCp)−1−2/p||µ||p|f(z1)− f(z2)|1−2/p + |f(z1)− f(z2)|. (B.23)

We are ready to prove:

Theorem B.13. For any µ with compact support and ||µ||∞ ≤ k < 1, the normal solution of
the Beltrami equation is a qc map with µf = µ.

Proof. We can approximate µ by functions µn ∈ C1 (µn → µ a.e.) and |µn| ≤ k < 1 and
µn = 0 outside a fixed circle. We can apply (B.23) to the normal solutions fn. Since fn → f
and ||µfn ||p → ||µ||p, then f also satisfies (B.23), hence f is injective. By Theorem B.8, since f
is a uniform limit of K-qc maps, it is also a K-qc map. Hence it has locally integrable partial
derivatives (which are also distributional derivatives). Moreover, as it has been already said,
fz 6= 0 a.e., hence µf is defined a.e. and it agrees with µ.

The goal now is to prove it for general Beltrami coefficients µ.

Theorem B.14. For any measurable µ with ||µ||∞ < 1 there exists a unique normalized qc map
f with Beltrami coefficient µ that leaves 0, 1 and ∞ fixed.

Proof. The case where µ has compact support has already been proved (we only need to normalize
f to obtain the uniqueness part).

Suppose µ = 0 in a neighborhood of 0, then by setting

µ̃(z) = µ

(
1

z

)
z2

z̄2

we obtain that µ̃ has compact support. If f̃ is the solution (normalized), then by the uniqueness
we have

f(z) = 1/f̃(1/z).

Finally, in the general case we set µ = µ1 + µ2, where µ1 = µ1D (hence it has compact support)
and µ2 = µ1C\D.

Find f2 which solves the Beltrami equation (normalized) for µ2 and define µ̃ := (f−1
2 )∗µ (the

pull-back of the Beltrami coefficient, see [BF]), which is well defined since f2 is injective and
has compact support. Note that on C \ D we have µ̃ = 0 (because µ̃ is the pull-back under
f−1

2 of µ, and f2 solves the Beltrami equation for µ2), hence we can solve the Beltrami equation
(normalized) and find f̃ . Then the map f := f̃ ◦ f2 solves the original Beltrami equation. To see
this, call µ0 ≡ 0, then

f∗µ0 = f∗2 f̃
∗µ0 = f∗2 µ̃ = f∗2 (f−1

2 )∗µ = (f−1
2 ◦ f2)∗µ = µ.

Therefore the Theorem is proved.

This last result completes the proof of the Integrability theorem.
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