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Abstract

The objective of this thesis is to survey some of the many models studied on modern portfolio
theory, one of the main branches of quantitative finance. The first part of this work is dedicated to
covering some of the main results on convex optimization with special emphasis on the Lagrangian
and the Karush-Kuhn-Tucker optimality conditions. The second and third chapter are dedicated
to two of the first and most important optimization models: the Markowitz model and the Capital
Asset Pricing Model (CAPM). These two models are of paramount importance as they are the
building blocks upon which later developments stand. However these models are quite static in
the sense that they only allow for one period of time so, in the fourth chapter we introduce two
multi-period models. For simplicity we will only contemplate the case with one risk-free asset and
one risky asset, although the ideas there exposed allow the incorporation of many risky assets.
So far, all models assumed that there was only one price at which assets are sold and bought. In
the final chapter we will extend the notion of optimal portfolio to the context of financial market
with two prices (the bid and ask price).
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Chapter 1

Introduction

The problem of asset allocation can be stated as follows: given a fixed amount of money and a
number of investment opportunities, what is the best way to distribute the money among these
investments? This problem has been around, on one form or another, since the beginning of com-
merce. Zeno of Citium experimented first hand the dangers of not diversifying his assets when the
ship carrying all of his cargo sank in a storm and he was left bankrupt. It was this life-changing
event that pushed him away from commerce and onto the study of philosophy, so, in a sense,
Stoicism has its origin in one bad investment.

Diversification of investments has always been common practice among investors (and the gen-
eral population for that matter; we’ve all heard the popular saying ”don’t put all your eggs on
one basket”) since way before modern portfolio theory began. What lacked prior to Markowitz’s
seminal 1952 paper Portfolio selection ([9]) was an adequate theoretical framework that gave
mathematical meaning to concepts, such as risk or asset correlation, which investors were already
very familiar with and which allowed to analyze the effects of diversification and risk-return trade-
offs on portfolios as a whole. Markowitz was the first to give a quantifiable measure of risk in
the form of covariance among the assets that form a portfolio, thus taking the intuitive idea that
diversification is desirable and giving it mathematical meaning. He devised the notion of optimal
portfolio, efficient portfolio and efficient frontier, which are still used nowadays and which are
all natural consequences his formulation of the asset allocation problem. Furthermore, he proved
that any efficient portfolio can be obtained as a linear combination of the optimal portfolio and
a risk-free asset (or any efficient portfolio when there is no risk-free asset). But, as revolutionary
as this formulation was, it remained largely an academic curiosity known only to a few, due to a
fundamental flaw that lies at its core: the model is very data exhaustive and very sensible to the
expected returns. Although these parameters are mathematically well defined, they are famously
difficult to estimate in rel life.

It wasn‘t until Sharpe et al. ([14]) introduced their capital asset pricing model (CAPM) and
the notion of market equilibrium that researchers regained interest in portfolio theory. Sharpe
argued that, assuming that the market has reached an equilibrium, there is no need to solve any
optimization problem as the market portfolio should be observable from the capitalization of the
companies that participate in the stock market. Sharpe also introduced a fundamental concept,
still much used nowadays, referred to as an asset’s (or portfolio’s) beta, which represent the degree
of correlation with the market as a whole. From here, he deduced the existence of systemic risk,
a type of risk which can’t be diversified away, and thus improved upon Markowitz’s formulation.

Both of these models are what we call single-period models, as you start setting up the problem
and only take into account what happens after a fixed time horizon with no information on what
happens in between or afterwards. In the fourth chapter of this thesis we will explore one of
the natural extensions of these models: multi-period models. In particular we will work with the
binomial model and the trinomial model. The former was devised by Cox, Ross and Rubinstein
and even though its formulation is quite simple, the results obtained from it are far from trivial.

1
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(a) (b)

Figure 1.1: Harry Markowitz (left), William Sharpe (right) and Merton Miller were awarded the
1990 Nobel prize in economics ”for their pioneering work in the theory of financial economics”.

This models has the property of being complete while the trinomial, although sharing a very
similar formulation, is not. We will explore how this difference affects the optimization problem
and implement a solution method known as the martingale method.

In the final chapter of this thesis we will serve as an introduction to conic finance theory.
This theory, also known as two-price theory, tries to better reflect the behaviour of markets by
renouncing the law of one price. This law is nothing more than the abstraction that investors buy
and sell stock at the same price, but in any real market one always observes two prices, that is,
the price at which the market is willing to buy (bid) and the price at which the market is willing
to sell (ask)1. Once we have seen the basicis of conic finance theory we will analyze portfolio
optimization from this optics for two cases: the long-only portfolio and the long-short portfolio.
However, portfolio optimization in the context of conic finance is still in great measure an open
problem.

1How is the law of one price reasonable then? Because the bid and the ask price are usually not far apart from
one another.



Chapter 2

Convex optimization

The objective of this work is to study portfolio optimization in different frameworks, so we will
start by covering the main tools and results in convex optimization in order to later apply them
in different scenarios. This chapter is mainly based on [2].

2.1 Definitions and terminology

As in any subject, before we can start stating theorems and their proofs we must first define the
mathematical objects that these are about.

Definition 2.1.1. We say that a set C ⊆ Rn is affine if ∀x, y ∈ C and λ ∈ R we have that

λx+ (1− λ)y ∈ C

Definition 2.1.2. We say that a set C ⊆ Rn is convex if ∀x, y ∈ C and λ ∈ [0, 1] we have that

λx+ (1− λ)y ∈ C

In other words, the set C is convex if for any 2 points in C the straight line connecting both
points is also fully contained in C. Notice that affinity implies convexity but not the other way
round.

Definition 2.1.3. A set C ⊆ Rn is called a cone if ∀x ∈ C and θ ≥ 0 we have that

θx ∈ C

Combining the two previous definitions we now define convex cones.

Definition 2.1.4. A convex cone is a set C ⊆ Rn such that ∀x1, x2 ∈ C and θ1, θ2 ≥ 0 we have
that

θ1x1 + θ2x2 ∈ C

Example.

• The empty set ∅, a single point {x0} and Rn are all affine (and thus also convex) subsets of
Rn.

• Line segments and rays are convex but not affine.

Definition 2.1.5. Given k points x1, ..., xk we define an affine combination as any point of the
form

y =

k∑
i=1

θixi

Where θi ∈ R for i = 1, ..., k and
∑k

i=1 θi = 1.

3
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Any affine set contains all affine combinations of its points. If we substitute the condition that
θi ∈ R for i = 1, ..., k for θi ∈ R+ for i = 1, ..., k in the previous definition, we have a convex
combination instead.

Definition 2.1.6. Given C ⊆ Rn, we call affine hull of C to the set

aff C = {
k∑

i=1

θixi|x1, ..., xk ∈ C,

k∑
i=1

θi = 1}

The affine hull of a set is the set of all affine combinations of points belonging to that set. It’s
the smallest affine set that contains that set. We can similarly define the convex hull as the set
of all convex combinations of points in a given set (or equivalently as the smallest convex set that
contains a given set).

Definition 2.1.7. Given C ⊆ Rn, we call convex hull of C to the set

conv C = {
k∑

i=1

θixi|xi ∈ C, θi ≥ 0, i = 1, ..., k,

k∑
i=1

θi = 1}

We can now use the affine hull to define the relative interior of a set; a refinement of the
concept of interior of a set which will be useful later on.

Definition 2.1.8. Given C ⊆ Rn, we call relative interior of C to the set

relint C = {x ∈ C|B(x, r) ∩ aff C for some r > 0}

where B(x, r) denotes the ball of center x and radius r.

Definition 2.1.9. A function f : Ω ⊆ Rn −→ R is said to be convex if:

1. Ω is convex.

2. ∀x, y ∈ Ω and λ ∈ [0, 1] we have

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Intuitively, if for any 2 points x, y ∈ Ω the line connecting them is always above f , then f is
convex. In addition, a function f is said to be concave if −f is convex.

Definition 2.1.10. We call subgradient of f at x0 (∂f(x0)) to every vector γ ∈ Rn such that

f(x) ≥ f(x0) + γT (x− x0)

Definition 2.1.11. we call subdifferential of f at x0 to the set of all subgradients of f at x0.

This notion of subdifferential allows us to generalize the concept of derivative to convex func-
tions which are not necessarily differentiable. Note that if f is differentiable at x0 then we have
that ∂f(x0) = ∇f(x0). We can employ the subdifferential to characterize the minimum of a
convex function with the following theorem:

Theorem 2.1.1. .
Let f be a proper1 convex function and x0 ∈ Rn. We have that x0 minimizes f ⇐⇒ 0∈ ∂f(x0).

Proof.
In fact, 0 ∈ ∂f(x0) ⇐⇒ f(x) ≥ f(x0) + 0(x− x0) ∀x ∈ Rn. This, in turn, only holds true if x0

does indeed minimize f .

1By proper we mean that the function never takes on the value −∞ and is not identically equal to +∞.
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Definition 2.1.12. We use the notation

minimize: f0(x) (2.1)

subject to: fi(x) ≤ 0 ∀i = 1, . . . ,m (2.2)

hj(x) = 0 ∀j = 1, . . . , p (2.3)

to describe the optimization problem in which we wish to minimize an objective function f0(x),
subject to some inequality constraints given by fi(x) and some equality constraints given by hi(x).

If the objective function and all the constraint functions are convex then we call this a convex

optimization problem. The domain of the problem is D =
m⋂
i=1

dom fi ∩
p⋂

j=1

dom hj and a point

x ∈ D is said to be feasible. Finally, the optimal value p∗ of the problem is

p∗ = inf
x∈D

{f0(x)|fi(x) ≤ 0, i = 1, . . . ,m, hj(x) = 0, j = 1, . . . p}

.

2.2 The Dual and the Lagrangian

In this section we will cover one of the most important concepts we will encounter in this chapter:
the dual. Consider an optimization problem as the one in definition 2.1.12, with no assumptions
made on the nature of the objective function or the constraints. The basic idea is to transform
our original optimization problem (the primal) into another one (its dual) which is easier to solve.
The first step in this direction is defining the Lagrangian.

Definition 2.2.1. The Lagrangian associated to an optimization problem like the one in definition
2.1.12 is a function L : Rn × Rm × Rp −→ R defined by

L(x, λ, ν) = f0(x) +

m∑
i=1

λifi(x) +

p∑
j=1

νihi(x) (2.4)

Notice that L is a weighted sum of the objective function and the constraint functions. The
parameters λi and νi are the well known Lagrange multipliers and the vectors λ, ν are the dual
variables associated to the problem. Now, the Lagrange dual function, or simply the dual, is the
smallest value of the Lagrangian over x, that is,

g(λ, ν) = inf
x∈D

L(x, λ, ν) (2.5)

If λ ≥ 0, since fi(x) ≤ 0 for i = 1, . . . ,m and hi(x) = 0 for i = 1, ..., p, we have that g(λ, ν) is a
lower bound on p∗ which depends on (λ, ν). This begs the question ”what is the best lower bound
we can obtain from the dual?” which leads to the associated dual optimization problem:

maximize: g(λ, ν) (2.6)

subject to: λi ≥ 0 ∀i = 1, . . . ,m (2.7)

Notice that the dual optimization problem is convex regardless of the convexity, or lack thereof,
of the primal. This is due to the fact that g(λ, ν) is defined as the pointwise infimum of a family
of affine functions of (λ, ν) and therefore is concave even when the primal is not.

Another matter that comes naturally to mind is under what conditions, if any, do we have
equality between the optimal solutions to the dual (d∗) and the primal (p∗). When this equality
holds we have strong duality. We will introduce Slater’s condition as a sufficient condition for
strong duality. To this end we must now introduce and prove the hyperplane separation theorem
which will be instrumental in proving Slater’s condition.
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2.3 Hyperplane separation theorem

We will now enunciate and prove the hyperplane separation theorem, which in turn we will use to
prove Slater’s condition. In order to prove it we will need the following propositions.

Proposition 2.3.1. Let S ⊆ Rn be a closed, non-empty convex set and let y /∈ S. Then ∃! x̄ ∈ S
which is closest to y i.e. ||y − x̄|| ≤ ||y − x||, ∀x ∈ S. Furthermore, x̄ is a minimizing point
⇐⇒ (y − x̄)T (x− x̄) ≤ 0.

Proof.
Existence.

As S ̸= ∅, we know that there exists x̄ ∈ S such that the minimum distance from y to S is less
than or equal to ||y − x̄||. If we now define the set Ŝ as

Ŝ := S ∩ {x : ||y − x|| ≤ ||y − x̄||}

we have that Ŝ is closed and bounded and, since norm is a continuous function, we conclude
by the Weierstrass theorem that there exists a minimum point x̄ ∈ S such that ||y − x̄|| =
Inf{||y − x||, x ∈ S}.
Uniqueness.

Let x̂ ∈ S such that ||y − x̂|| = ||y − x̄|| = α. As S is convex, we have that x̂+x̄
2 ∈ S. But,∥∥∥∥y − x̂− x̄

2

∥∥∥∥ ≤ 1

2
||y − x̂||+ 1

2
||y − x̄|| = α

Therefore, ||y − x̂|| = µ||y − x̄||, for some µ. Now ||µ|| = 1. If µ = −1, then (y − x̂) = −(y − x̄)
which implies that y = x̂+x̄

2 ∈ S but y /∈ S by assumption so we have a contradiction. Thus, µ = 1
and x̂ = x̄ and the minimizing point is unique.

Finally for the last part of the proof, assume that (y − x̄)T (x− x̄) ≤ 0 for all x ∈ S. Thus,

||y − x||2 = ||y − x̄+ x̄− x||2

= ||y − x̄||2 + ||x̄− x||2 + 2(y − x̄)T (x̄− x)

Therefore, as ||x̄− x||2 ≥ 0 and (y− x̄)T (x̄− x) ≥ 0 we conclude that ||y− x||2 ≥ ||y− x̄||2 for
all x ∈ S and x̄ is indeed a minimizing point

Conversely, assume x̂ is a minimizing point. Therefore ||y − x||2 ≥ ||y − x̄||2 for all x ∈ S.
Since S is a convex set we have that λx + (1 − λ)x̄ = x̄ + λ(x − x̄) ∈ S for all x ∈ S, λ ∈ [0, 1].
Thus,

||y − x̄− λ(x− x̄)||2 ≥ ||y − x̄||2

and

||y − x̄− λ(x− x̄)||2 = ||y − x̄||2 + λ2||x− x̄||2 − 2λ(y − x̄)T (x− x̄)

from which
||y − x̄||2 + λ2||x− x̄||2 − 2λ(y − x̄)T (x− x̄) ≥ ||y − x̄||2

2λ(y − x̄)T (x− x̄) ≤ λ2||x− x̄||

(y − x̄)T (x− x̄) ≤ λ

2
||x− x̄||

As this expression holds for all λ ∈ [0, 1], taking λ = 0 we obtain:

(y − x̄)T (x− x̄) ≤ 0

Proposition 2.3.2. Let S ⊆ Rn be a closed, non-empty convex set and let y /∈ S. Then there
exists a hyperplane which separates y and S, that is, ∀x ∈ S ∃a ∈ Rn, a ̸= 0 and α ∈ R such that:

aT y > α, and aTx ≤ α



2.3. HYPERPLANE SEPARATION THEOREM 7

Proof.
Since S is a closed, non empty convex set and y /∈ S we know by the previous proposition that
there exists x̄ ∈ S such that ∀x ∈ S the following inequality holds true:

(x− x̄)T (y − x̄) ≤ 0

Therefore if we take

||y − x̄||2 = (y − x̄)T (y − x̄) = yT (y − x̄)− x̄T (y − x̄)

and combine it with the previous expression we obtain

||y − x̄||2 ≤ (y − x)T (y − x̄)

Thus, if we choose a = y − x̄ we obtain aT y ≥ aTx+ ||y − x̄||2. Finally, we take
α = supx∈S aTx and we are done.

Proposition 2.3.3. Let S ⊆ Rn be a convex set and let x̄ be a point at the boundary of S. The S
has a supporting hyperplane at x̄, that is, ∃a ∈ Rn, a ̸= 0 such that ∀x ∈ cl(S) we have that

aT (x− x̄) ≤ 0

Proof.
Since x̄ ∈ ∂S we know that there exists a sequence {yk} such that ∀k : yk /∈ cl(S) and yk −→ x̄.
Now, applying the previous theorem we know that to each yk we can associate a certain ak ̸= 0
such that ∀x ∈ cl(S) we have that

aTk (x− yk) < 0

Now, given that ak ̸= 0,∀k we can take without loss of generality that ||ak|| = 1,∀k. Thus, the
whole sequence is contained in a compact set and we can take a sub-sequence which converges to a
such that ||a|| = 1. Finally, considering this sub-sequence and passing to the limit in the previous
expression we obtain that ∀x ∈ cl(S) we have that

aT (x− x̄) ≤ 0

and we are done.

Corollary 2.3.4. Let S ⊆ Rn be a non-empty convex set and /∈ S.Then ∃a ∈ Rn, a ̸= 0 such that
∀x ∈ cl(S) we have that

aT (x− x̄) ≤ 0

Proof.
If x̄ /∈ cl(S) the result follows from Proposition 2.3.2 and if x̄ ∈ ∂S it follows from Proposition
2.3.3.

Taking into account these propositions we can now finally state and prove the hyperplane
separation theorem; a very useful result which we will use later on.

Theorem 2.3.5. Hyperplane separation theorem
Let S1 and S2 be 2 non-empty convex sets with S1∩S2 = ∅. Then there exists a hyperplane which
separates these sets, that is, ∃a ∈ Rn and b ∈ R such that ∀x1 ∈ S1 and ∀x2 ∈ S2 we have that

aTx1 ≤ b

aTx2 ≥ b

. The hyperplane {x|aTx = b} is the aforementioned separating hyperplane.

Proof.
Let S = {x|x = x1 − x2, x1 ∈ S1, x2 ∈ S2}. Notice that S is convex and that 0 /∈ S. By applying
Corollary 2.3.4 we know that ∃a ∈ Rn, a ̸= 0 such that ∀x ∈ S we have that

aTx ≤ 0

Therefore we have that ∀x1 ∈ S1 and ∀x2 ∈ x2

aT (x1 − x2) ≤ 0

and we are done.



8 CHAPTER 2. CONVEX OPTIMIZATION

2.4 Strong duality

As mentioned in section 2.2, we have strong duality when the equality

d∗ = p∗

holds true. This is generally not the case, but there exists a sufficient condition which, if the
primal satisfies, guarantees strong duality.

Theorem 2.4.1. Slater’s condition.
Let the the following be a convex optimization problem:

minimize: f0(x) (2.8)

subject to: fi(x) ≤ 0 ∀i = 1, . . . ,m (2.9)

hj(x) = 0 ∀j = 1, . . . , p (2.10)

If ∃ x∗ ∈ relint D such that

fi(x
∗) < 0 ∀i = 1, . . . ,m (2.11)

hj(x) = 0 ∀j = 1, . . . , p (2.12)

then we have strong duality.

Proof.
We consider an optimization problem:

minimize: f0(x) (2.13)

subject to: fi(x) ≤ 0 ∀i = 1, . . . ,m (2.14)

Ax = b (2.15)

and assume that fi are convex ∀i = 0, . . . ,m and that Slater’s condition is satisfied. Notice that
we have expressed the equality constraints in matrix form. We make two more assumptions to
further simplify things:

1. D has non empty interior (hence, relint D=int D)

2. Rank(A)=p

We also assume without loss of generality that p∗ is finite. Now we define two convex sets A and
B as follows:

A = {(u, v, t)|∃x ∈ D, fi(x) ≤ ui,∀i = 1, . . . ,m, hj(x) = vi∀j = 1, . . . , p, f0(x) ≤ t}
B = {(0, 0, s) ∈ Rm × Rp × R|s < p∗}

(2.16)

Where set A is convex as long as the underlying problem is convex and set B is a ray and therefore
convex. Now suppose we take (u, v, t) ∈ A ∩ B. Since (u, v, t) ∈ B we know that u = v = 0 and
that t < p∗. On the other hand, as (u, v, t) ∈ A we know that exists x which satisfies all the
constraints as well as f0(x) ≤ t < p∗ which is a contradiction because p∗ is the optimal value for
the primal problem. Hence A ∩B = ∅.

We can now apply the hyperplane separation theorem (2.3.5) and conclude that ∃(λ̃, ν̃, µ) and
α such that:

(u, v, t) ∈ A ⇒ λ̃Tu+ ν̃T v + µt ≥ α (2.17)

and

(u, v, t) ∈ B ⇒ λ̃Tu+ ν̃T v + µt ≤ α (2.18)
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From (2.17) we conclude that λ̃ ≥ 0 and µ ≥ 0, since otherwise λ̃Tu + µt would be unbounded
below over A and that would contradict (2.17). Condition (2.18) means that µt ≤ α for all t < p
and hence µp∗ ≤ α. From both conditions we conclude that ∀x ∈ D

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) + µf0(x) ≥ α ≥ µp∗ (2.19)

Notice that assuming that µ > 0 we can divide the previous expression by µ and we are left with
a Lagrangian function on the left hand side:

L

(
x,

λ̃

µ
,
ν̃

µ

)
≥ p∗ (2.20)

Thus, if we minimize over x we obtain that

g(λ, ν) ≥ p∗ (2.21)

where we have taken λ = λ̃/µ and ν = ν̃/µ. As we know that g(λ, ν) is a lower bound of p∗ we
conclude that in the previous expression we actually have equality. Hence, strong duality holds
and the dual optimum is attained.

Finally, lets examine the case µ = 0. In this case equation (2.19) takes the form

m∑
i=1

λ̃ifi(x) + ν̃T (Ax− b) ≥ 0 (2.22)

Thus, applying the previous expression to a certain x̃ ∈ relintD which satisfies Slater‘s condition
we obtain

m∑
i=1

λ̃ifi(x̃) ≥ 0 (2.23)

Since fi(x̃) < 0 and λ̃i ≥ 0 we conclude that λ̃ = 0. From (λ̃, ν̃, µ) ̸= 0 and λ̃ = µ = 0 we conclude
that ν̃ ̸= 0. In turn, equation (2.19) implies that ∀x ∈ D

ν̃T (Ax− b) ≥ 0

But, as x̃ satisfies ν̃T (Ax̃− b) = 0, and since x̃ ∈ int D, there are points in D with
ν̃T (Ax− b) < 0 unless AT ν̃ = 0. This contradicts our initial assumption that rank(A)=p.

Now lets suppose we have strong duality for a given optimization problem and let x∗ and
(λ∗, ν∗) be a primal optimal solution and a dual optimal solution respectively. Therefore we have
that

f0(x
∗) = g(λ∗, ν∗)

= inf
x∈D

(
f0(x) +

m∑
i=1

λ∗
i fi(x) +

p∑
i=1

ν∗i hi(x)

)

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

ν∗i hi(x
∗)

≤ f0(x
∗)

(2.24)

The first equality reflects the strong duality we have assumed; the second equality is just the
definition of the dual. The first inequality follows from the fact that the infimum of the Lagrangian
over x is less or equal to x∗. The second inequality is due to λ∗ ≥ 0, fi(x

∗) ≤ 0 for i = 1, ...,m
and the equality constraints being satisfied. Thus both inequalities in the previous expression are
actually equalities. Several conclusions can be extracted from this relation. First notice that x∗ is
a minimizer of the Lagrangian (though not the only one). We also have the very useful identity:
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m∑
i=1

λ∗
i fi(x

∗) = 0 (2.25)

and since λi,≥ 0 and fi ≤ 0 ∀i = 1, . . . ,m it actually holds that

λ∗
i fi(x

∗) = 0, ∀i = 1, . . . ,m (2.26)

Condition (2.26) is known as complementary slackness and holds when we have strong duality.
We can equivalently express it as {

λ∗
i > 0 ⇒ fi(x

∗) = 0

fi(x
∗) < 0 ⇒ λ∗

i = 0

Which intuitively means that Lagrange multipliers are zero unless the associated constraint is
active at the optimum.

2.5 Karush-Kuhn-Tucker conditions

Let us at this point make two assumptions:

1. Let the objective function as well as all the constraint functions be differentiable.

2. Let there be strong duality.

With these assumptions and collecting everything covered thus far, we’re ready to enumerate the
KKT conditions. Letting x∗ and (λ∗, ν∗) be the primal and dual solutions respectively we have:

1. Stationarity. As x∗, λ∗, ν∗ minimize the Lagrangian we conclude that

0 ∈

f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
j=1

ν∗i hi(x
∗)


and, as we’ve assumed that all functions are differentiable, we can express the condition as

∇f0(x
∗) +

m∑
i=1

λ∗
i∇fi(x

∗) +

p∑
j=1

ν∗i ∇hi(x
∗) = 0 (2.27)

2. Complementary slackness. This condition relates each active constrain to its Lagrange
multiplier and can be expressed as

λ∗
i fi(x

∗) = 0, ∀i = 1, . . . ,m (2.28)

3. Primal viability. Which simply reflects the fact that any viable solution must satisfy the
primal’s restrictions {

fi(x
∗) ≤ 0 for i = 1, ...,m

hi(x
∗) = 0 for i = 1, ..., p

(2.29)

4. Dual viability. Which guarantees that the Lagrange multipliers associated with the in-
equality constraints must be non-negative

λi ≥ 0 for i = 1, ...,m (2.30)

We will see that with the next theorem that any feasible convex optimization problem with
differentiable objective and constraint functions and strong duality must satisfy these conditions.
KKT conditions play an instrumental role in many optimization algorithms.
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Theorem 2.5.1. Given a convex optimization problem in the form of definition 2.1.12, if there
is strong duality the KKT conditions are necessary and sufficient for there to exist an optimal
solution.

Proof.
Necessity.

Let x∗, (λ∗, ν∗) be the optimal solutions to the primal and dual respectively. As we have strong
duality we know that

f0(x
∗) = g(λ∗, ν∗) (2.31)

= f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

ν∗i hi(x
∗) (2.32)

≤ f0(x
∗) +

m∑
i=1

λ∗
i fi(x

∗) +

p∑
i=1

ν∗i hi(x
∗) (2.33)

≤ f0(x
∗) (2.34)

Where, as we saw in section 2.4, the inequalities are actually equalities. From here we see that
all the KKT conditions are fullfiled: x∗ minimizes the Lagrangian over x so we know that the the
stationarity condition is satisfied; complementary slackness, dual and primal feasibility must also
hold true for there to be equality between the third and fourth line.

Sufficiency.
Let x∗λ∗ν∗ be such that the KKT conditions are fulfilled. In such case we have that, since

λ ≥ 0, the Lagrangian is convex. This fact coupled with the stationarity condition allows us to
conclude that x∗ minimizes the Lagrangian over x. It follows that

g(λ∗, ν∗) = L(x∗, λ∗, ν∗)

= f0(x
∗) +

m∑
i=1

λifi(x
∗) +

p∑
j=1

νihi(x
∗)

= f0(x
∗)

(2.35)

The first equality holds by definition and and the second one due to the complementary slackness
condition by which we know that

∑m
i=1 λifi(x

∗) = 0 and due to the primal viability condition by
which we know that hi(x

∗) = 0 for all i = 1, ..., p.
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Chapter 3

The Markowitz Model

We begin our study of modern portfolio theory with the model that started it all: the Markowitz
model. In his seminal 1952 paper titled Portfolio Selection [9] economist Harry Markowitz ar-
gued that expected returns should not be the only factor involved when deciding in what assets
should one invest in and gave sound mathematical grounds to what diversifying means and why
it is desirable. We will cover the main results in this framework as well as its advantages and
shortcomings. This section is mainly based in [9] and [15].

3.1 Preliminary concepts, definitions and notation

In simple terms, the idea is that we have a given deterministic amount of money at time zero
(X0) which we wish to invest in n different assets hoping to obtain the best performance. These
n different assets will form our portfolio. For simplicity we will consider that we can only invest
in risky stocks and will leave out other assets as options, bonds, swaps, etc. We denote with X0i

the amount of the total initial amount of money X0 invested in the asset i. Thus we have:

X0 =

n∑
i=1

X0i (3.1)

After one period of time the value of each asset is given by the random variable X1i and the value
of the portfolio will be:

X1 =

n∑
i=1

X1i (3.2)

Notice that each X0i can be positive or negative as long as X0 > 0. It should be clear that X0i > 0
means buying a certain amount of stocks which corresponds to the value of X0i, but what about
X0i < 0? This case corresponds to what is known as shorting and for all intent and purpose
should be regarded as the polar opposite of buying stocks (hence its name; buying stocks is also
known as longing). One buys a stock hoping to make a profit out of the success of that company
and one shorts a stock hoping to make a profit out of the downfall of a company1.

We now define several important concepts that we will use through out this chapter.

Definition 3.1.1. The total rate of return of an asset i is given by

Ri =
X1i

X0i
(3.3)

1An important thing to notice about shorting is that potential losses are unbounded from below. When we buy
a share of a company the most we can potentially loose is what we originally invested, but theoretically there is no
bound to what our profit can be if the company does well. In the other hand, when we short a share of a company
the most we can hope to obtain as a profit is what we originally invested but potential losses, as mentioned, are
unbounded from below. Thus, shorting is a inherently risky investing strategy but this risk is not reflected on the
variance of the portfolio.

13
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Definition 3.1.2. The rate of return of an asset i is given by

ri := Ri − 1 =
X1i −X0i

X0i
(3.4)

Definition 3.1.3. The expected rate of return, or simply expected return of an asset i is given by

r̄i = E(ri) (3.5)

Definition 3.1.4. The weights of a portfolio are given by

αi =
X0i

X0
(3.6)

and it follows that
∑n

i=1 αi = 1. Weights are very useful because they allow us to comfortably
and compactly describe our portfolio.

Equipped with these notions we can now define the central concepts in the Markowitz model:
the expected rate of return the variance of our portfolio. The rate of return of our portfolio can
be expresses in terms of the wights and the rate of return of each asset as:

r =

n∑
i=1

αiri (3.7)

It follows from here that the expected rate of return of our portfolio is:

r̄ =

n∑
i=1

αir̄i (3.8)

Any r̄ that satisfies 3.8 is said to be feasible. The variance of the rate of return of each asset is
given by

σ2
i = E(r2i )− r̄i

2 (3.9)

And the covariance of each pair of assets by

σij = E{(ri − r̄i)(rj − r̄j)} = E(rirj)− r̄ir̄j (3.10)

Thus, taking into account that σii = σ2
i , the variance of the rate of return of the portfolio can be

expressed as:

σ2 =
1

2

n∑
i,j=1

αiαjσij (3.11)

The variance of the portfolio is the simplest measure of risk (there are other measures of risk based
on utility functions which we will address in later sections, but for now we will limit ourselves
with variance). It’s easy to see why; the lower the σ2, the thinner our distribution will be and the
actual rate or return of our portfolio will have a higher probability of being closer to the expected
rate of return. Notice that as the rate of return and variance of a portfolio is well defined, we can
treat a whole portfolio as an asset for another portfolio.
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3.2 Assumptions and formulation of the problem

In order to derive his model, Markowitz makes a series of assumptions about the nature of investors
and markets. Firstly, we assume that:

• Investors are rational.

• Investors are risk averse.

Although everyone has, more or less, an idea of what being rational means, sometimes people
struggle to agree on what the rational choice is when faced with a difficult decision. Thus, to
avoid all and any possible ambiguities, in this context we will take it to mean that, when faced
with having to choose between to assets of equal variance, investors will always choose the one
with higher expected return. On the other hand, investors being risk averse means that they will
always choose the asset with a lower variance when having to choose from assets of equal expected
return. Hence, we conclude that investors should diversify their funds among all those securities
which give maximum expected returns.

Markowitz rejects the hypothesis that investors should want to maximize expected returns
regardless of risk because this leads, without exception, to investing everything in the asset with
the highest expected return (as is clear from equation (3.8)). Thus, this hypothesis never leads to
the creation of a diverse portfolio. With regards to the behaviour of the market we assume that:

• There is perfect competition2

• There is no privileged information.

• Stocks are arbitrarily divisible.

• There are no transaction costs.

• We only consider one period of time.

• Shorting is allowed in some assets as long as
∑n

i=1 X0i = X0 > 0

It follows from these assumptions that investors are searching for an optimal portfolio (i.e. the
weights) which minimizes the variance for a certain desired expected return r̄. Thus, we arrive to
an optimization problem of the form:

Minimize σ2 =
1

2

n∑
i,j=1

αiαjσij (3.12)

subject to: r̄ =

n∑
i=1

αir̄i = c, c ∈ R+ (3.13)

n∑
i=1

αi = 1 (3.14)

We can transform this optimization problem into a linear program using the Lagrange multipliers
and the KKT conditions. Firstly we must make each equality constraint equal zero and then,
incorporate each of these constraints with their corresponding Lagrange multipliers (λ1, λ2) into
the Lagrangian associated to the problem. In this case the Lagrangian is of the form

L =
1

2

n∑
i,j=1

αiαjσij + λ1

(
n∑

i=1

αir̄i − c

)
+ λ2

(
n∑

i=1

αi − 1

)
(3.15)

2Which means that companies have no power to manipulate the price of stocks; it is determined purely by the
interaction of supply and demand. It also implies that all stocks are perfectly liquid (i.e. at any point the bid and
ask prices are always equal and there is always the possibility to buy or sell any desired amount of stocks at said
price).
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If we now take the derivative of L with respect to each weight and equate them to zero we obtain
a n equations of the form

n∑
j=1

αjσij + λ1r̄i + λ2 = 0 (3.16)

for i ∈ {1, ..., n}. Each of these equations is linear α, λ1 and λ2. These equations, coupled with
constraints (3.13) and (3.14) yield the following system of n+ 2 equations:

n∑
j=1

αjσij+λ1r̄i + λ2 = 0 (3.17)

n∑
i=1

αir̄i = c (3.18)

n∑
i=1

αi = 1 (3.19)

This is a linear program which we can easily solve. Any portfolio with (σ, r̄) which satisfy 3.11
and 3.8 is said to be feasible. The set of all such portfolios is adeptly named the feasible set. For
each fixed r̄ the Markowitz problem produces the feasible portfolio with that expected return and
minimum variance which lies in the frontier of the feasible set. If we now wish to find the portfolio
with the smallest variance of all the minimum variance set we only need to eliminate condition
3.18 from our optimization problem. As we’ve eliminated one of the constraints, we now only need
one Lagrange multiplier and the Lagrangian of the problem is given by

L =
1

2

n∑
i,j=1

αiαjσij + λ

(
n∑

i=1

αi − 1

)
(3.20)

and proceeding as before, we arrive at a system of n+ 1 equations

n∑
j=1

αjσij + λ = 0 (3.21)

n∑
i=1

αi = 1 (3.22)

We denote the minimum variance point with the coordinates (σ∗, r̄∗). The set made up of minimum
variance portfolios with r̄ > r̄∗ is known as the efficient frontier.

3.3 Efficient frontier

Portfolios that lie in the efficient frontier are known as efficient and the ones that don’t are known
as inefficient. The name stems from the fact that no rational investor would choose an inefficient
portfolio over an efficient one. If shorting is allowed, the efficient frontier is unbounded from
above and we can thus theoretically obtain a portfolio with an arbitrarily high expected return.
Consider a portfolio formed by two risky assets with expected returns r̄1, r̄2 with r̄1 > r̄2. Thus,
the portfolio will have and expected return

r̄ = αr̄1 + (1− α)r̄2

= α(r̄1 − r̄2) + r̄2
(3.23)

Therefore, we can obtain any arbitrarily high r̄ by investing increasing amounts in the asset with
higher expected return and proportionally shorting the other asset (to ensure that α1 + α2 = 0).
The variance of this portfolio is

σ2 = α2σ2
1 + (1− α)2σ2

2 + 2α(1− α)σ12 (3.24)

= α2(σ2
1 + σ2

2 − 2σ12) + 2α(σ12 − σ2
2) + σ2

2 (3.25)
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Now expressing the covariance as σ12 = 2ρσ1σ2 we obtain

σ2 = α2(σ2
1 + σ2

2 − 2ρσ1σ2) + 2α(ρσ1σ2 − σ2
2) + σ2

2 (3.26)

Therefore, assuming that ρ ̸= 1, it follows that

lim
r̄−→∞

σ2 = lim
α−→∞

σ2 (3.27)

= lim
α−→∞

α2(σ2
1 + σ2

2 − 2ρσ1σ2) + 2α(ρσ1σ2 − σ2
2) + σ2

2 (3.28)

= ∞ (3.29)

As noted in the previous section, investors can increase expected returns by taking on variance;
shorting allows to do this ad infinitum.

We now present one of the main results of our model.

Theorem 3.3.1 (Mutual fund separation theorem). Any efficient portfolio can be generated as a
combination of two different efficient portfolios.

Proof.
Let w1, w2 be two different portfolios which are a solution to the Markowitz problem with r̄1 ̸= r̄2
such that

w1 = (α1, ..., αn, λ1, µ1) (3.30)

w2 = (β1, ..., βn, λ2, µ2) (3.31)

from the linearity of the solution, we have that ∀α ∈ R, the combination

w3 = αw1 + (1− α)w2 (3.32)

is itself a solution to the Markowitz problem for the expected return r̄ = αr̄1 + (1− α)r̄2.
We have that

αw1 = (αα1, ..., ααn, αλ1, αµ1) (3.33)

(1− α)w2 = ((1− α)β1, ..., (1− α)βn, (1− α)λ2, (1− α)µ2) (3.34)

Therefore, w3 is of the form
w3 = (γ1, ..., γn, λ3, µ3) (3.35)

Where

γi = ααi + (1− α)βi (3.36)

λ3 = αλ1 + (1− α)λ2 (3.37)

µ3 = αµ1 + (1− α)µ2 (3.38)

It follows that, w3 is a solution to the linear system of equations 3.17-3.19.

Remark. The efficient frontier can be generated from 2 distinct solutions to the Markowitz problem.
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Figure 3.1: Sketch of the feasible region and its efficient frontier.

3.4 Incorporating a risk-free asset

In our previous analysis we assumed all n assets to be risky (σ2
i > 0, i ∈ {1, ..., n}), we will now

incorporate one more asset, a risk-free asset, and see how it alters the results. This type of asset
usually means to place a certain amount of money in a bank account or use that money to buy
bonds3. In any case, we will assume that the simple interest rate for this risk-free asset is rf . Thus,
if you invest an amount x0 in this asset, after one period of time the payoff will be x1 = x0(1+rf ).
Notice that this asset, by definition, has σ2 = 0 and r̄ = rf . Therefore, the minimum variance
portfolio would consist in investing all your funds in this one asset. Then why don’t we do this?
Because rf is usually quite small and not a great source of profit and perhaps we wish to obtain
a higher return, greater than rf . Instead, we will use this asset to lower the risk of our portfolio.

Consider now two portfolios, one made of only risky assets with weights (β1, ..., βn), which
we refer to as the fund, and another one which also includes the risk-free asset with weights
(α0, ..., αn). Here α0 corresponds to the risk-free asset. As before, we require that

n∑
i=0

αi =

n∑
i=1

βi = 1 (3.39)

If we now take 1− α0 =
∑n

i=1 αi we can rewrite the portfolio as

(α0, ..., αn) = (α0, (1− α0)(β1, ..., βn)) (3.40)

where
βi =

αi

1− α0
(3.41)

3Naturally, no asset is truly risk-free as banks and bond issuers can go bankrupt, but this is a very unusual
thing. Compared to stocks, the approximation that bank accounts and bonds are risk-free is good enough.
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Notice that with this choice of βi’s condition (3.39) holds. Thus we now have a portfolio formed
by two assets, the risk- free one with weight α0 and the (risky) fund with weight 1−α0. The fund
has its own expected return and variance (m and γ2 respectively) which will be given by

m =

n∑
i=1

βir̄i (3.42)

γ2 =

n∑
i,j=1

βiβjσij (3.43)

Now, taking into account that the risk-free asset doesn’t increase the variance, portfolio (α0, ..., αn)
has expected return and variance:

r̄ = α0rf + (1− α0)m (3.44)

σ2 = (1− α0)
2γ2 (3.45)

So, it is situated in the σ − r̄ plane in the point:

(σ, r̄) = (|1− α0|γ, α0rf + (1− α0)m) (3.46)

For α0 ≤ 1 we have that |1− α0| = 1− α0 and thus the point can be rewritten as:

(1− α0)(γ,m) + α0(0, rf ) (3.47)

Therefore, depending on how much of the portfolio wants to be allocated on the risk free asset,
α0 varies from 1 to 0 and the point traces out a line in the (σ, r) plane that connects the risky
portfolio (γ,m) and the risk-free asset (0, rf ). Thus, this line

4 is given by the equation

r̄ =
m− rf

γ
σ + rf (3.48)

The slope must be positive, otherwise rf > m and there would be no point in investing any amount
of money in the risky portfolio. Notice that the greater the slope, the more efficient our line is,
as we get a higher expected return for the same variance, but we can’t just choose any portfolio
with high expected return, we need to choose an attainable portfolio from the feasible region. As
before, rational investors should only consider portfolios that lie on the old efficient frontier and
thus, we conclude that the optimal portfolio M = (γ,m)5 which maximizes the slope is the one
that yields a line tangent to the old efficient frontier.

Theorem 3.4.1 (One-fund theorem). When the possibility of incorporating a risk-free asset to
a risky portfolio is allowed, the new efficient frontier is a line connecting the point (0, rf ) to the
unique portfolio M , which lies at the tangent point between the old efficient frontier and the new
one. The fund M = (β1, ..., βn) is given by

βi =
vi∑n
j=1 vj

, i ∈ {1, ..., n} (3.49)

where (v1, ..., vn) is the solution to the set of linear equations

n∑
j=1

vjσij = r̄i − rf , i ∈ {1, ..., n} (3.50)

Proof.
As stated before, the portfolio M is that which maximizes the slope of equation (3.48), that is,
we have to find (β1, ..., βn) such that it maximizes

f(β1, ..., βn) =
m− rf

γ
(3.51)

4Which we will later refer to as the capital market line in the context of CAPM.
5Known as the market portfolio in the context of CAPM.
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Remember that m and γ are both functions of (β1, ..., βn) as shown in expressions (3.42) and
(3.43). Thus we wish to solve the following maximization problem

Maximize f(β1, ..., βn) =

∑n
i=1 βir̄i − rf√∑n
i,j=1 βiβjσij

(3.52)

subject to:

n∑
i=1

βi = 1 (3.53)

As
∑n

i=1 βi = 1, we can factor it out from the numerator and rewrite the previous expression as

f(β1, ..., βn) =

∑n
i=1 βi(r̄i − rf )√∑n

i,j=1 βiβjσij

(3.54)

Notice that if doesn’t make any difference changing βi for cβi, with c > 0, as this constant would
cancel out in the numerator and the denominator. Thus, we can ignore the constraint and deal
with it later by normalizing and there is no need to to use Lagrange multipliers. Taking derivatives
with respect to each βi and equating them to zero yields a system of n linear equations

n∑
i=1

vjσji = r̄i − rf , i ∈ {1, ..., n} (3.55)

The new variable is defined by vi = cβi where, in turn, c is an unknown constant given by

c =

∑n
i=1 βi(r̄i − rf )∑n
i,j=1 βiβjσij

(3.56)

and the βi are from the optimal solution. Finally, we normalize each vi dividing by
∑n

i=1 vi.

Figure 3.2: Sketch of the new efficient frontier after a risk-free asset is incorporated.
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3.5 Limitations of the Markowitz model

For many years, this model was little more than an academic curiosity, scarcely used by in-
vestors and hedge funds, because of one fatal flaw that lies at its heart: the model is very sensible
to small changes in expected returns. Throughout this chapter we’ve explained the origin, tools
and main results in the Markowitz model but we’ve carefully left out all the limitations that this
model has, which we will now discuss in this section.

Firstly, in this framework it is assumed that investors have some beliefs about the future per-
formance of certain assets (i.e. expected returns) which in turn play a key role in the choice of
the portfolio. Nevertheless, there is absolutely no discussion about how these beliefs are formed.
In addition, regardless of how these beliefs are formed, the model requires that the investor has
beliefs for all assets which make up the portfolio. If the portfolio is made up of a big number of
assets then this requirement ceases to be reasonable; if the portfolio is made up of a small number
of assets, even though the requirement is full filled, this defeats the purpose because diversification
will be very limited.

Covariances among assets are fairly straightforward to estimate, but there is no straight for-
ward way to estimate expected returns (at least in this framework). So, we have a model which
is very sensible to changes in the expected returns, coupled with the fact that these are very
difficult to estimate. In practice, this result in portfolios which are not very diverse, concentrating
most of the funds in just a few assets. When shorting is allowed, portfolios obtained usually
have massive shorting positions in certain assets which no rational investor would condone. This
is a consequence of the unboundedness from above of the efficient frontier mentioned in section 3.3.

Many of the limitations of this model stem form its very simple nature; it is a single period,
two factor model with one of the factors being very difficult to estimate and the other one being
the simplest measure of risk. In subsequent sections we explore how some of these limitations
have been dealt with over the years in order to construct new models based on the mean-variance
analysis explained in this chapter.
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Chapter 4

Capital asset pricing model
(CAPM)

This model builds on the the ideas developed by Markowitz and introduces important new concepts
such as equilibrium, systemic risk and an asset’s beta. It was independently developed by Sharpe,
Treynor, Lintner and Mossin. This model tries to estimate the appropriate expected returns for
each asset. We will work assuming the existence of a risk-free asset for the sake of simplicity, but
let it be noted that Black developed in 1972 a version of the CAPM which doesn’t require this
assumption and which has proven to be perform better when tested. This chapter is based on
[14], [15], [6] and [7].

4.1 Utility functions

In the previous chapter, we explained what risk- aversion is using an example. In this section we
will (briefly) formalize the mathematics behind this concept. Firstly, let Ψ be some non-empty
set which contains all possible choices an economic agent can make. Naturally, when presented
with two choices, x, y ∈ Ψ, agents might have some preferences, which we formalize as

Definition 4.1.1. A preference order on Ψ is a binary relation, represented by the symbol ≻,
which satisfies the following properties:

1. Asymmetry: If x ≻ y1, then y ⊁ x.

2. Negative transitivity: if x ≻ y and z ∈ Ψ, then either x ≻ z or z ≻ y or both must be true.

In other words, negative transitivity means that if there is a clear preference between two
choices and a third choice becomes available, there will still be a choice that is most preferable
and one which is least preferable. Once we have a preference order on Ψ, a corresponding weak
preference order (≽) and an indifference order (∼) respectively defined as:

1. x ≽ y ⇐⇒ y ⊁ x

2. x ∼ y ⇐⇒ x ≽ y and y ≽ x

Weak preference is characterized by the following two properties:

1. Completeness: ∀x, y ∈ Ψ either y ≽ x or x ≽ y or both hold. This means that it is always
possible to determine whether one choice is preferred over another.

2. Transitivity : if x ≽ y and y ≽ z then x ≽ z. Transitivity implies that choices can be ordered
in a hierarchy from best to worst, allowing for ties.

We now wish to quantify these preferences in some way. To this end we employ numerical
representations, known as utility functions, and defined as:

1This should be read as ”x is strictly preferred to y”.

23
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Definition 4.1.2. Given a preference order ≻, a utility function is a function U : Ψ −→ R such
that

x ≻ y ⇐⇒ U(x) > U(y) (4.1)

This definition implies that
x ≽ y ⇐⇒ U(x) ≥ U(y) (4.2)

Utility functions are not unique. This can be easily seen as follows: let U be a utility function
and take a function f which is strictly increasing; if we define a a new function Ũ(x) := f(U(x)),
then Ũ will also be a utility function, as it satisfies the property stated above.

Utility functions are normally categorized in two families: ordinal utility functions and cardinal
utility functions. In the former, the only relevant information is that, for example U(x) > U(y)
while in the latter, the difference between U(x) and U(y) is quantifiable and allows to reflect the
intensity of a given preference. When dealing with cardinal utility functions relations as

U(x)− U(z) = 2(U(y)− U(z))

make sense and are meaningful. In this case, the previous equation states that an agent prefers x
over z twice as much as he prefers y to z.

Definition 4.1.3. Let ≻ be a preference relation and let Φ ⊆ Ψ. We say Φ is order dense if
∀x, y ∈ Ψ such that x ≻ y there exists some z ∈ Φ such that x ≽ z ≽ y.

Equipped with these notions, we now enunciate a theorem which characterizes those preference
relations for which existence of a utility function is guaranteed.

Theorem 4.1.1. Given a preference relation ≻ on a set Ψ, a necessary and sufficient condition
for the existence of a utility function is the existence of a subset Φ ⊆ Ψ which is countable and
order dense.

Proof.
The proof for this theorem can be found in page 46 of [7].

Utility functions are used in many different areas of knowledge, and their characteristics may
vary, but in the framework of quantitative finance they are generally taken to be:

• Strictly increasing

• Strictly concave

• Differentiable

and with derivative that vanishes at infinity and which explodes at 0. They can be functions of
the form u = u(σ, r) or u = u(V ) where V is the value of a given portfolio. Some examples of
readily used utility functions in finance include:

• Exponential utility: u(V ) = 1−a−aV

a for a > 0

• Logarithmic utility: u(V ) = log V

Exponential utility belongs to the family of constant absolute risk aversion utility functions while
logarithmic utility belongs to the family of hyperbolic absolute risk aversion utility functions.

4.2 Geometric approach to the CAPM

In the in this section we will derive the main result of the CAPM, known as the beta formula.
Firstly we will derive it using a more geometric (and perhaps intuitive) approach and afterwards
in section 4.6, we will derive it, in a more technical fashion, as a necessary condition for there to
be an equilibrium.
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If we make the same assumptions listed in section 3.2 and in addition assume that every
investor can lend/borrow unlimited quantities from a risk-free asset, we conclude that everyone is
solving different Markowitz problems which in turn will produce portfolios on the efficient frontier.
Given the one fund theorem, we know that the efficient frontier is a line that connects the risk free
asset to the market portfolio which is tangent to the old efficient frontier. The efficient frontier,
which we now rename as the capital market line, is given by

r̄ = rf +
r̄M − rf

σM
σ (4.3)

The thing is that if everyone is essentially solving the same optimization problem, with the
same information and in the same market, there should be some other way, different from the
method explained in section 3.4, to arrive at this market portfolio. If we assume that the market
ha reached an equilibrium, then the market portfolio will be given by the distribution of the
market’s capitalization. That is, the weights of each asset i will be given by

wi =
Vi∑n

j=1 Vk
(4.4)

where Vi is the capitalization of asset i (i.e. the total value of asset i, that is, the number of
total available shares of that asset times the value of each share) and the denominator is the total
capitalization of the market.

Lets take a portfolio formed by an inefficient fund i and the market portfolio M with weights
(α, 1−α), α ∈ [0, 1]. Fund i is assumed inefficient so our portfolio lies ina point somewhere in the
feasible region but not in the efficient frontier. Its coordinates in the (σ, r̄) plane are

r̄(α) = αr̄i + (1− α)r̄M (4.5)

= α(r̄i − r̄M ) + r̄M (4.6)

and

σ(α) =
√

α2σ2
i + (1− α)2σ2

M + 2α(1− α)σMi (4.7)

=
√
α2(σ2

i + σ2
M − 2σMi) + 2α(σMi − σ2

M ) + σ2
M (4.8)

Notice that as α varies, the point moves in the plane tracing out a smooth curve parameterized
by α which starts in the market portfolio for α = 0 and finishes in the inefficient fund in α = 1.
The curve is contained in the feasible region and only touches the capital market line at α = 0.
Thus we conclude that at that point the curve is tangent to the capital market line and therefore
must satisfy that

dr̄(α)

dσ(α)

∣∣∣
α=0

=
r̄M − rf

σM
(4.9)

Where the right hand side of the previous equation is the slope of the capital market line, as
expressed in equation (4.3). If we apply the chain rule we can express the left hand side as

dr̄(α)

dσ(α)
=

dr̄(α)/dα

dσ(α)/dα
(4.10)

Where
dr̄(α)

dα
= r̄i − r̄M (4.11)

and
dσ(α)

dα
=

α(σ2
i + σ2

M − 2σMi) + σMi − σ2
M√

α2(σ2
i + σ2

M − 2σMi) + 2α(σMi − σ2
M ) + σ2

M

(4.12)

Evaluating the previous derivatives at α = 0 and combining them yields

dr̄(α)

dσ(α)
=

σM (r̄i − r̄M )

σMi − σ2
M

(4.13)
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Now, equating the previous result with equation (4.9) we obtain

σM (r̄i − r̄M )

σMi − σ2
M

=
r̄M − rf

σM
(4.14)

Finally, we only have to solve for the risk premium2, that is r̄i − rf , which yields

r̄i − rf =
σMi

σ2
M︸︷︷︸
βi

(r̄M − rf ) (4.15)

This equation is the ubiquitous beta equation which relates the expected return of any given fund
(efficient or inefficient) with that of the market as a whole. Notice a few things:

• If the market portfolio has a positive price, and our portfolio is positively (negatively)
correlated with it, the risk premium will be positive (negative).

• If our portfolio is uncorrelated with the market, the beta formula states that your portfolio’s
expected return should be equal to the risk-free asset’s return.

Notice also that a negative risk premium means that we would get a lower expected return for
that asset than for the risk-free asset. So, why would anyone invest in such an asset? Because of
the negative correlation with the rest of the market! One can use such an investment to hedge
the market and therefore it can be thought of as an insurance; in normal conditions this asset will
have a very low expected return but if there is some sudden, unexpected crisis that causes the
market to fall, the expected return of this asset will rise. A typical example of such an investment
is gold.

So far we have discussed the beta of portfolios, but we can also talk about the beta of an
individual asset as in the following example.

Example. Suppose a given stock has β = 2, a stock specific volatility (i.e variance) of 2%, that
yesterdays closing price was of 100€and that today the market goes up by 1%. We can use the
beta, for example, to estimate the probability of our asset’s closing price being, say, at least 103€.

For simplicity we will start by considering that there is no risk free asset so equation (4.81)
adopts the simpler version

E(rstock) = βE(rM )

= 2 · 0.01
= 0.02

If we now assume that stock returns are normally distributed 3, we can calculate the probability of
the stock’s closing price being at least 103€ as

P (rstock ≥ 0.03) = 1− P (rstock ≤ 0.03)

= 1−Ψ

(
0.03− 0.02

0.02

)
= 1−Ψ(0.5)

= 0.31

2Also known as expected excess rate of return.
3Which we do, again, for the sake of simplicity as it has been observed that stock returns are generally not

normally distributed.
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4.3 Pricing formula

Equipped with the beta formula that allows us to calculate the expected returns, the next natural
step is to see if we can find a formula for the price of a given asset expressed in terms of the β, the
market portfolio and the risk free asset. We start by considering an asset with with price P = X0

at t = 0 and payoff Q = X1 at t = 1. By virtue of definitions 3.1.2 and 3.1.3, the expected rate of
return is

r̄ =
E(X1)−X0

X0
=

Q̄− P

P
(4.16)

If we now solve for P we can express the price as the discounted payoff (i.e. the present value)
with discount rate r̄

P =
Q̄

1 + r̄
(4.17)

We can now use the beta formula to substitute r̄ = rf + β(rM − rf ) into the previous expression

P =
Q̄

1 + rf + β(r̄M − rf )
(4.18)

We now look for an explicit expression for the beta. Thus we first simplify the covariance

Cov(r, rM ) = Cov

(
Q− P

P
, rM

)
= Cov

(
Q

P
− 1, rM

)
(4.19)

= Cov

(
Q

P
, rM

)
(4.20)

=
1

P
Cov(Q, rM ) (4.21)

We can therefore express the β as

β =
Cov(Q, rM )

Pσ2
M

(4.22)

Substituting this into equation (4.18) we obtain

P =
Q̄

1 + rf + Cov(Q,rM )
Pσ2

M

(4.23)

Finally, we only have to solve for the price P and we obtain

P =
Q̄

1 + rf
− Cov(Q, rM )(rM − rf )

σ2
M (1 + rf )

(4.24)

Notice that we have arrived to an expression for the price where the first term in the right hand
side is simply the discounted payoff (with discount rate rf ) and the second term is a sort of
correction to this discounted payoff due to the correlation of the asset with the market. This
correction yields a lower price (higher) for assets that are positively (negatively) correlated with
the market. For uncorrelated assets, the correction term vanishes and therefore the price should
simply be the discounted payoff.
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4.4 Estimating the market portfolios and the betas

A common misconception, due to how the media talks about the financial markets, is that certain
indexes (as the IBEX 35 or the S&P 500) are the stock markets, when in reality they only rep-
resent a given number of companies available in the stock markets. Take for example the IBEX
35; this index is composed of the 35 most liquid4 companies from the Spanish stock market and
it’s calculated weighing each company’s capital value5 against the total capital value of said 35
companies.

Constructing the actual market portfolio is unfeasible because of the large number of companies
that participate in the market and indexes, such as the ones previously mentioned, function as
estimates of market portfolios. One of the most common ways of estimating the beta consists in
using the method of historical returns. For this we choose N points in time such as, for example,
the end of the last 10 years and calculate the average for an asset A and for the S&P index

ˆ̄rA =
1

N

N∑
k=1

rAk (4.25)

ˆ̄rS&P =
1

N

N∑
k=1

rS&Pk (4.26)

We now use these historical returns to estimate the variance and covariance needed for the beta

V ar(S&P ) =
1

N − 1

N∑
k=1

(rS&Pk − ˆ̄rS&P )
2 (4.27)

Cov(S&P,A) =
1

N − 1

N∑
k=1

(rS&Pk − ˆ̄rS&P )(rS&Pk − ˆ̄rA) (4.28)

And finally we have our estimate of the beta:

β̂A =

∑N
k=1(rS&Pk − ˆ̄rS&P )(rS&Pk − ˆ̄rA)∑N

k=1(rS&Pk − ˆ̄rS&P )2
(4.29)

4.5 Systemic risk

Finally, we now introduce another important concept that arises in the CAPM: systemic risk. Now,
disregarding the expected values, we express the expected return of an asset i using equation (4.15)
as

ri = rf + βi(rM − rf ) + ϵi (4.30)

Where we have introduced a random variable error term, ϵi, defined as

ϵi = ri − rf − βi(rM − rf ) (4.31)

We will now study the relevant properties of our error term. We first compute its expected value

E(ϵi) = E(ri − rf − βi(rM − rf )) (4.32)

= E(ri)− E(rf + βi(rM − rf ))︸ ︷︷ ︸
E(ri)

(4.33)

= 0 (4.34)

4Liquidity refers to the capacity a company has of instantly transforming its assets into actual money without
a significant loss of their value.

5The number of stocks each company has times the value of the stock.
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and now the covariance of the error term and the market portfolio

Cov(ϵi, rM ) = Cov(ri − rf − βi(rM − rf ), rM ) (4.35)

= Cov(ri, rM )− Cov(rf , rM )− βiCov(rM , rM ) + βiCov(rf , rM ) (4.36)

= Cov(ri, rM )− Cov(ri, rM )

V ar(rM )
V ar(rM ) (4.37)

= 0 (4.38)

Taking both of these results into account, if we now take the variance on both sides of (4.30) we
obtain

V ar(ri) = β2
i V ar(rM ) + V ar(ϵi) (4.39)

This important result shows that the risk of any asset can be decomposed into two orthogonal
components known as the systematic risk (β2

i V ar(rM )) and the non-systematic risk (V ar(ϵi)).
Only the latter of these two can be diversified away. Systematic risk represents the risk associated
to events that affect to the market as a whole and which can’t be avoided as, for example, does
the Ukraine war nowadays. Thus, in the CAPM we have an improvement with respect to the
Markowitz model, as we’ve managed to refine the concept of risk to make it more realistic.

Finally, lets analyze the risk of an efficient portfolio with coordinates (σp, r̄p). From equation
(4.3), we can solve for σp and obtain

σp =
r̄p − rf
r̄M − rf

σM (4.40)

Notice that the numerator is precisely the risk premium, so we can use the beta formula from
equation (4.81) which yields

σp = βpσM (4.41)

Therefore, any efficient portfolio only has systemic risk. This brings us again to the one-fund
theorem; any efficient portfolio can be decomposed as a weighted sum of the risk-free asset and
the market portfolio. The former is deterministic so it adds no risk while the later is pure systemic
risk as βM = 1.

4.6 The CAPM as an equilibrium model

We will now deduce the beta formula as a necessary condition for there to be an equilibrium in an
exchange economy with two dates. In this case we will consider that there are m rational investors
who can invest in a stock market comprised of n different assets whose payoff are random variables
denoted by Xj

1 . We can assume these to be linearly independent without loss of generality. We
will also consider that there is one single consumption good, external to the financial market,
which we take as a numeraire6. At t = 0 we assume for simplicity that each investor i starts with
nothing and is allowed to construct a portfolio θi = (θ1i , ..., θ

n
i )

7 as long as he doesn’t run into
debt. Thus, at t = 1 each agent has wealth:

ci = ei +

n∑
j=1

θjiX
j
1 (4.42)

Where ei is a random variable representing the value at t = 1 of the consumption good and which
we can interpret as the payoff of an initial portfolio. Okay now let C be a finite dimensional vector
space spanned by the random variables (X1

1 , .., X
n
1 ) we endow it with the inner product defined

by:
⟨c, c′⟩ = E(cc′) ∀c, c′ ∈ C (4.43)

6A numeraire is a standard by which value is computed; a tradable good in terms of whose price the relative
price of other tradable goods are expressed.

7Notice that in this case θji denotes the number of assets of type j in the portfolio i and should not be confused
with the weights.
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This naturally induces a norm ||c||2 = E(c2). We now make the following assumptions:

1. ei ∈ C ∀i ∈ C.

2. e =
∑m

i=1 ei ̸= constant almost surely.8

3. There exists a risk-free asset such that X1
1 = 1.

As in the Markowitz model, we assume that investors have preferences when choosing elements
of C which are reflected on the utility functions. Naturally, this preference can be no other than
risk aversion.

Definition 4.6.1. A utility function Ui is defined as Ui : C −→ R such that for any pair (c, c′) ∈ C2

which satisfies E(c) = E(c′), the inequality V ar(c) < V ar(c′) implies that Ui(c) > Ui(c
′).

Thus, if the prices of the assets are denoted with S ∈ Rn, each investor i will choose a portfolio
θi = (θ1i , ..., θ

n
i ) which is a solution to the optimization problem:

Maximize Ui

ei +

n∑
j=1

θjiX
j
i

 (4.44)

subject to: S · θi ≤ 0 (4.45)

Where the inequality represents the condition that investors can’t run into debt when forming the
portfolio at t = 0. This is because of the assumption that we start with nothing at t = 0 and
therefore, if we want to avoid running into debt, the only available portfolios for us will be those
with negative value. At this point we introduce one of the central concepts of the CAPM: the
equilibrium.

Definition 4.6.2. We say that a set of prices S̄ ∈ Rn and a set of portfolios θ̄i, i = 1, ...,m are
in equilibrium if the following are satisfied:

• Each Portfolio θ̄i is a solution to the previous optimization problem.

• The security market clears, i.e.
∑m

i=1 θ̄i = 0

Lemma 4.6.1. With these assumptions there exists an equilibrium.

Proof.
The proof can be found in [5].

This proof of existence relies on the assumption that there exists a risk-free asset; if we elimi-
nate this assumption we will be find that existence of equilibrium is not always guaranteed.

Notice that by assumption, maximizing the utility function is the same as minimizing the
variance when expected returns are fixed, so, at an equilibrium (S̄, θ̄i; i = 1, ...,m), each investor
i will choose a portfolio θi which is a solution to the optimization problem

Minimize V ar

ei +

n∑
j=1

θjiX
j
i

 (4.46)

subject to: S̄ · θi ≤ 0 (4.47)

E
(
ei +

n∑
j=1

θjiX
j
i︸ ︷︷ ︸

ci

)
= E

(
ei +

n∑
j=1

θ̄i
j
Xj

i︸ ︷︷ ︸
c̄i

)
(4.48)

8The quantity e is known as the aggregate wealth.
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Where ci is the wealth at t = 1 as defined in (4.42). We now consider a linear functional φ̄ defined
on C as

φ̄(zi) = S̄ · θi (4.49)

Where

zi =

n∑
j=1

θjiX
j
1 (4.50)

Notice that if zi is the value of the portfolio at t = 1 then φ̄(zi) is its price at t = 0. Invoking
Riesz’s representation theorem we conclude that there exists φ ∈ C such that

φ̄(zi) = ⟨φ, zi⟩ (4.51)

We can now employ this functional to express our optimization problem in a more compact way.
Firstly, taking into account that ci = ei + zi, we can rewrite the no debt condition as

⟨φ, zi⟩ = ⟨φ, ci − ei⟩ = S̄ · θi ≤ 0

⟨φ, ci⟩ − ⟨φ, ei⟩︸ ︷︷ ︸
a0

≤ 0

⟨φ, ci⟩ − a0 ≤ 0

Similarly, we can express the equality constraint as

⟨1, ci⟩ = ⟨1, c̄i⟩︸ ︷︷ ︸
a1

(4.52)

⟨1, ci⟩ − a1 = 0 (4.53)

Thus, expressing the optimization problem in terms of the scalar product yields

Minimize ||ci||2 (4.54)

subject to: ⟨φ, ci⟩ − a0 ≤ 0 (4.55)

⟨1, ci⟩ − a1 = 0 (4.56)

We now construct our Lagrangian as usual, taking two Lagrange multipliers for every i; µi for the
inequality constraint (with µi ≥ 0 because of the KKT condition known as dual feasibility) and
λi ∈ R for the equality constraint. Thus the Lagrangian now adopts the form

L =

n∑
i=1

E
(
c2i
)
−

n∑
i=1

λiE (2(ci − c̄i)) +

n∑
i=1

µiE(2φi(ci − ei)) (4.57)

= E

(
n∑

i=1

c2i −
n∑

i=1

λi2(ci − c̄i) +

n∑
i=1

µi2φi(ci − ei)

)
(4.58)

If we now take derivatives with respect to ci and equate to zero we obtain

ci = λi − µiφ (4.59)

and as this is the solution and we’re assuming the existence of equilibrium we conclude that ci = c̄i.
Thus

c̄i = λi − µiφ a.s. (4.60)

and as c̄i = ei +
∑n

j=1 θ̄i
j
Xj

i is in equilibrium, we conclude that there exist µ ≥ 0 and λ ∈ R such
that

m∑
i=1

c̄i = e = λ− µφ a.s. (4.61)

Recall that, by assumption, e is non constant almost surely, and µ ≥ 0. Thus, for all i there exists
ai ≥ 0 and bi ∈ R such that

c̄i = aie+ bi (4.62)
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This is another way of expressing the one fund theorem from section 3.4 which tells us that any
portfolio can be created as a combination of the market portfolio and the risk-free asset. We can
rewrite (4.61) as

φ = − 1

µ︸︷︷︸
a

e+
λ

µ︸︷︷︸
b

(4.63)

Hence, our functional φ̄(zi) now takes the form

φ̄(zi) = ⟨φ, zi⟩ (4.64)

φ̄(zi) = ⟨−ae+ b, zi⟩ = −a⟨e, zi⟩+ b⟨1, zi⟩ (4.65)

φ̄(zi) = −aCov(e, zi) + bE(zi) (4.66)

We can now derive from this expression the equilibrium price for each asset as

φ̄(zi) = −aCov(e, zi) + bE(zi) = S̄ · θi

−aCov

e,

n∑
j=1

θjiX
j
1

+ bE

 n∑
j=1

θjiX
j
1

 =

n∑
j=1

S̄jθji

n∑
j=1

(
−aCov(e,Xj

1) + bE(Xj
1)
)
θji =

n∑
j=1

S̄jθji

Which implies
S̄j = −aCov(e,Xj

1) + bE(Xj
1) (4.67)

If we now take, for example, b = 1
1+r the previous formula becomes

S̄j = −aCov(e,Xj
1) +

E(Xj
1)

1 + r
(4.68)

from whence we deduce that the price of an asset that has positive correlation with the aggregate
wealth is lower than its discounted expected return. We now give an alternative definition for the
market portfolio.

Definition 4.6.3. We call market portfolio to M ∈ Rn such that

n∑
j=1

M jXj
1 = e (4.69)

i.e. the portfolio whose value at t = 1 equals that of the aggregate wealth.

If we now express a portfolios return as

rθi =

n∑
j=1

θjiX
j
1

S̄ · θi
S̄ · θi ̸= 0 (4.70)

Then for the market portfolio we simply have

rM =
e

S̄ ·M
(4.71)

At this point, collecting all the results we can finally deduce the famous beta formula which relates
the expected return for assets with systematic risk of the market as a whole. We will relax the
notation a bit and drop the sub indices i. We begin with formulas (4.49) and (4.66) with b = 1

1+r :

S̄θ = −aCov(e, z) +
E(z)

1 + r
(4.72)

1 = −aCov
(
e,

z

S̄θ

)
+

E
(

z
S̄θ

)
1 + r

(4.73)

1 = −aCov (e, rθ) +
E (rθ)

1 + r
(4.74)
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Now, solving for E(rθ) we obtain

E(rθ) = (1 + r)(1 + aCov(e, rθ)) (4.75)

Applying this result to the market portfolio we obtain

E(rM ) = (1 + r)(1 + aCov(e, rM )) (4.76)

and equating these two formulas we obtain

E(rθ)− (1 + r)

aCov(e, rθ)
=

E(rM )− (1 + r)

aCov(e, rM )
(4.77)

E(rθ)− (1 + r) = (E(rM )− (1 + r))
Cov(e, rθ)

Cov(e, rM )
(4.78)

= (E(rM )− (1 + r))
Cov(rM , rθ)

Var(rM )
(4.79)

We define the beta of a portfolio with respect to the market as:

βθ =
Cov(rM , rθ)

Var(rM )
(4.80)

And finally obtain the beta formula:

E(rθ)− (1 + r) = βθ

(
E(rM )− (1 + r)

)
(4.81)

The left hand side of this equation is known as the risk premium of the portfolio.

4.7 Limitations of the CAPM

Although the CAPM presents some improvements with respect to the Markowitz model, it still
has severe limitations both in the theoretical and in the practical plane. For example Richard
Roll’s critique centers around two problems he perceives in the CAPM. The first part of his cri-
tique is more philosophical in nature and is known as the mean-variance tautology9. This refers
to the fact that mean-variance efficiency of the market is equivalent to the beta formula holding
and thus, given an approximation for the market portfolio, testing the beta formula is equivalent
to testing the mean-variance efficiency of said portfolio10.

Secondly, Roll claims that the market portfolio is unobservable; not only should it include
every possible asset available in the stock market, but also assets which are not equity, as real
estate, precious metals, and basically anything worth anything that is available to be bought.
This is, for obvious reasons, not feasible. Although in our case, as we are limiting ourselves to the
study of financial markets, indexes such as the S&P500 serve as fairly decent approximations.

Combining both points of the critique, he claims that the CAPM can’t be empirically tested as
its validity is equivalent to the market being mean-variance efficient with respect to all investment
opportunities, but it’s not possible to check if any portfolio is efficient without checking every
investment opportunity available. In essence, for Roll the problem is that the model is, as the
Markowitz model, too data intensive.

9A tautology is a statement that is true by virtue of its logical form alone. Examples of this include the phrase
”either it will rain tomorrow or it won’t rain” or the mathematical statement 1 = 1.

10A proof of this equivalence can be found on [11]
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Chapter 5

Multi-period models

Thus far, the market models we’ve considered (Markowitz model and CAPM) only allowed for
one given period of time. In this chapter we will consider market models characterized by an
arbitrary number of periods of time. We will introduce two similar models, the binomial and the
trionamial market model, and explain the fundamental difference between them: completeness.
We will explain the notion of market completeness and later see how this affects our optimization
problem. Finally we will review one possible solution method known as ”the martingale method”
and work out an explicit example in both cases for a logarithmic utility function. This chapter is
based mainly on the works by W. J. Rungaldier in [12] and Rutkowski in [13].

5.1 Problem definition and market completeness

The two key point around what everything else orbits in this chapter are arguably martingales
and market completeness. Firstly, given a finite probability space (Ω,F , P ) with F = P(Ω),
P ({ω}) > 0 for all ω ∈ Ω and given a filtration (Fn)0≤n≤N such that F0 = {∅,Ω} we have the
following definitions:

Definition 5.1.1. A sequence of random variables X = (Xn)0≤n≤N is said to be adapted if Xn

is Fn-measurable, 0 ≤ n ≤ N .

Definition 5.1.2. A sequence of random variables X = (Xn)0≤n≤N is said to be predictable if
Xn is Fn−1-measurable, 0 ≤ n ≤ N .

Definition 5.1.3. An adapted sequence (Mn)0≤n≤N is said to be a martingale if

E(Mn+1|Fn) = Mn

Definition 5.1.4. A risk-free asset is one whose price evolves according to

Bt+1 = (1 + r)Bt (5.1)

where r ∈ R+ is known as the short rate of interest1.

Recall at this point that a probability measure Q is equivalent to P (Q ∼ P ) if they have the
same null-sets. Thus we arrive at the following definition.

Definition 5.1.5. A market model is said to be complete if there exits a unique equivalent
martingale measure (normally called the risk-neutral measure2) under which the expected values
of the discounted price of assets are martingales, that is, ∃!Q ∼ P such that

EQ

(
Si
t+1

Bt+1
|Ft

)
=

Si
t

Bt
, ∀t ∈ [0, T ] ∩ N (5.2)

1Generally the short rate of interest depends on time, but for our purpose we will take it without loss of generality
as constant to simplify the computations that will follow.

2In some cases it also called the equilibrium measure.

35
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where Bt and St are the price of the risk-free asset and the risky asset respectively. This can be
equivalently expressed as

EQ(S
i
t+1|Ft) =

Bt+1

Bt
Si
t = (1 + r)Si

t (5.3)

If there are more than one equivalent martingale measures we say that market model is in-
complete. The notion of completeness comes from a classic and well known problem in finance of
hedging a contingent claim (a buy/sell option for example). In a complete market any derivative
is replicable i.e. there exists and admissible strategy such that its final value is equal to the claim’s
payoff. In the context of no-arbitrage theory, the notion of market completeness is directly re-
lated to the existence (or lack thereof) of arbitrage opportunities through the second fundamental
theorem of asset pricing. For more information in this subject we refer to [3] and [7].

We will consider an hyperbolic absolute risk aversion utility function of our portfolio’s wealth
given by

u(V ) = log V (5.4)

and for the investment criteria we will consider the maximization of expected utility from terminal
wealth: 

Maximize
α

E[u(V α
T )]

Subject to:

{
V0 = v

α : self-financing and predictable

Where α denotes the optimal portfolio that will maximize the terminal wealth’s expected utility.
Self-financing refers here to the fact that any changes done in the portfolio must be carried out
by selling other assets in the portfolio and not by injecting more money into it. We now formalize
this idea in the following definition.

Definition 5.1.6. Given a portfolio αt = (α0
t , α

1
t ) formed of one risk-free asset (whose price

evolves according to Bt+1 = (1 + r)Bt) and one risky asset (whose price evolves according to
St+1 = Stξt+1) we say that it is self-financing if

Vt+1 − Vt = α0
t+1∆Bt + α1

t+1∆St (5.5)

or equivalently
α0
tBt + α1

tSt = α0
t+1Bt + α1

t+1St (5.6)

Other investment criteria are also possible as the maximization of the expected utility from
a consumption process or the maximization of expected utility from consumption and terminal
wealth, but we do not consider these here.

5.2 The binomial market model

We shall consider a market model with T periods of time, that is, t ∈ [0, T ] ∩ N and composed of
one risk-free asset and one risky asset. After each period, there is a probability p that the price
of the risky asset will increase at a fixed rate u and a probability (1 − p) that it will decrease at
rate d. Therefore the price evolve as

St+1 = Stξt+1 (5.7)

where ξt are independent and identically distributed and such that

ξt =

{
u with probability p

d with probability 1− p
(5.8)

Recall now that given a finite probability space (Ω,F , P ), a Bernoulli process X = {Xt}0≤t≤T

with parameter p is a discrete random process, where Xt are independent and identically dis-
tributed and there are only two possible outcomes such that

P (Xt = 1) = 1− P (Xt = 0) = p (5.9)
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Figure 5.1: Binomial price tree for the risky asset.

Given such a Bernoulli process, we can also define a Bernoulli counting process N = {Nt}0≤t≤T

as

Nt :=

t∑
i=1

Xi (5.10)

We can now naturally express our ξt in terms of the Bernoulli process Xt as

ξt = uXt + d(1−Xt) (5.11)

And express the price of the risky asset in terms of the counting process Nt

St = S0u
Ntdt−Nt (5.12)

Notice that for every t ∈ [0, T ] ∩ N, the random variable Nt follows a binomial distribution with
parameters p and t. Therefore, the probability distribution of our risky asset’s price St is given
by

P (St = S0u
ndt−n) =

(
t

n

)
pn(1− p)t−n (5.13)

Now the only thing we have left is to compute the equivalent martingale measure q. We define

q := Q(Xt+1|Ft) (5.14)

Now, from the martingale condition from equation (5.3) in definition 5.1.5 we have

EQ(St+1|Ft) = (1 + r)St (5.15)

EQ(Stξt+1|Ft) = (1 + r)St (5.16)

StEQ(uXt+1 + d(1−Xt+1)|Ft) = (1 + r)St (5.17)

qu+ d(1− q) = 1 + r (5.18)

And thus, solving for q yields

q =
1 + r − d

u− d
(5.19)

Notice that q ∈ [0, 1] and is unique as long a we have d < 1 + r < u3 Finally, we wish to find an
expression for the Radon-Nikodym derivative which will be useful later. To this end, recall the
sample space Ω of the binomial model and taking ω ∈ Ω with

∑T
i=1 ωi = n we can write

3This is perfectly reasonable; if 1+ r > u there would be no point in investing in the risky asset and if 1+ r < d
there would be arbitrage which is not allowed.
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{
P (ω) = pn(1− p)T−n

Q(ω) = qn(1− q)T−n
(5.20)

From where we can compute the Radon-Nikodym derivative on Ω

L(ω) =
Q(ω)

P (ω)
=

(
q

p

)n(
1− q

1− p

)T−n

(5.21)

5.3 The trinomial market model

In this market model we again consider that it has T periods of time and is composed of one risk-
free asset and one risky asset whose price evolves obeying equation (5.7) but with the fundamental
difference that ξt is now given by

ξt =


u with probability p1

m with probability p2

d with probability p3

(5.22)

Figure 5.2: Trinomial price tree for the risky asset. For the sake of clearness this sketch represents
the case where u, d are such that ud = m2.

We wish to have a representation for ξt analogous to that expressed in equation (5.11), so we
consider a discrete random process X = {Xt}0≤t≤T , with the random variables Xt independent
and identically distributed, characterized by

P (Xt = 1) = p1

P (Xt = 2) = p2

P (Xt = 3) = p3

(5.23)

for all t ∈ [0, T ] ∩ N and with p1 + p2 + p3 = 1. In this case the sample space is Ω = {ω} with ω
of the form

ω = (1, 2, 3, 1, 1, 2, 1, 3, ...)︸ ︷︷ ︸
T times

We can express the probabilities in the measure P as

P (ω) = pn1
1 pn2

2 pn3
3 (5.24)
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where

ni =

T∑
t=1

1{ωt=i}, i = 1, 2, 3 (5.25)

We now define three counting processes analogous to that expressed in equation (5.10)

N i
t :=

t∑
s=1

1{Xs=i},

{
i = 1, 2, 3

t ∈ [0, T ] ∩ N
(5.26)

and taking t = n1 + n2 + n3 we have

P (N1
t = n1, N

2
t = n2, N

3
t = n3) =

t!

n1!n2!n3!
pn1
1 pn2

2 pn3
3 (5.27)

Therefore, we now have the representation

ξt = u1{Xt=1} +m1{Xt=2} + d1{Xt=3} (5.28)

We can also express the price of the risky asset in terms of the counting processes from equation
(5.26) as

St = S0u
N1

t mN2
t dN

3
t (5.29)

The probability distribution of our risky asset’s price is now given by

P (St = S0u
n1mn2dn3) =

t!

n1!n2!n3!
pn1
1 pn2

2 pn3
3 (5.30)

where again we must have that t = n1 + n2 + n3.
We now wish to compute the equivalent martingale measures for this model which, unlike the

previous one, is not complete. Recall that, given Q ∼ P on Ω such that condition (5.3) holds, the
fact that Xt are independent and identically distributed under P does not imply that they are
independent under Q. Therefore we define

qi(t+ 1) := Q(Xt+1 = i|Ft); i = 1, 2, 3 (5.31)

Employing this notation, condition (5.3) adopts the form

(q1(t+ 1)u+ q2(t+ 1)m+ q3(t+ 1)d)St = (1 + r)St (5.32)

Which, when paired with the fact that q1(t+1)+q2(t+1)+q3(t+1) = 1, yields an under-determined
system of equations with 3 unknowns and only 2 equations. Hence we conclude that the trinomial
market model is incomplete. Notice that as the coefficients u,m, d are independent of t and Ft,
we have that the solution will also be independent of these and therefore (q1(t), q2(t), q3(t)) ≡
(q1, q2, q3). These infinite solutions lie on a segment whose vertices depend on the value of m. To
compute these extremal points we first check whether

m

{
≥ 1 + r

< 1 + r

Then the first vertex is then given by

(q01 , q
0
2 , q

0
3) =


(
0, 1+r−d

m−d , m−(1+r)
m−d

)
for m ≥ 1 + r(

1+r−m
u−m , u−(1+r)

u−m , 0
)

for m < 1 + r
(5.33)

where in each case, now that one of the probabilities is zero, we have a binomial model and the
remaining probabilities are (q, 1−q) where q is as in equation (5.19) when the appropriate changes
are made. The other vertex is then given by the analogous

(q11 , q
1
2 , q

1
3) =

(
1 + r − d

u− d
, 0,

u− (1 + r)

u− d

)
(5.34)
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These probability measures are not equivalent to (p1, p2, p3) as the latter are all strictly positive.
The equivalent measures are instead the convex combinations of these extremal measures i.e. the
points that lie in the segment:

(qγ1 , q
γ
2 , q

γ
3 ) = γ(q01 , q

0
2 , q

0
3) + (1− γ)(q11 , q

1
2 , q

1
3), γ ∈ (0, 1) (5.35)

Now, the set of equivalent martingale measures is also a bounded convex set on Ω but finding
its vertices is more complicated so we will limit ourselves to the case of T = 2 to illustrate the
procedure. In such a case we have Ω = {ω} with ω = (ω1, ω2) and ω1, ω2 ∈ {u,m, d}. Let’s adopt
the notation: 

ω1
t = u

ω2
t = m

ω3
t = d

For a generic martingale measure Q on Ω we have the expression

Q(ωi
1, ω

j
2) = Q1(ωi

1)Q
2(ωj

2|ωi
1) = Q1(ωi

1)Q
2(ωj

2), i, j ∈ {1, 2, 3} (5.36)

Where the conditional probability in the second period Q2 is reduced to marginal probability
due to the aforementioned independence of (q1, q2, q3) from t and Ft. We will now work with
the specific case m < 1 + r. Letting Q1,0 be the extremal probability measure, among all of the
measures Q1, that correspond to

(q01 , q
0
2 , q

0
3) =

(
1 + r −m

u−m
,
u− (1 + r)

u−m
, 0

)
(5.37)

Q1,1 be the other extremal probability measure corresponding to

(q11 , q
1
2 , q

1
3) =

(
1 + r − d

u− d
, 0,

u− (1 + r)

u− d

)
(5.38)

And proceeding in an analogous fashion for Q2,0 and Q2,1, we have that Q1 and Q2 are respectively
convex combinations of these extremal measures. The factor γ in these convex combinations may in
theory depend on time and on ω itself (in a predictive way at least i.e. γ = γt = γ(t;ω1, ..., ωt−1)),
but in this case we can safely let gamma depend only on time because of the fact that (q1, q2, q3)
are independent from t and Ft. Therefore we have{

Q1(ωi
1) = γ1Q

1,0(ωi
1) + (1− γ1)Q

1,1(ωi
1)

Q2(ωj
2) = γ2Q

2,0(ωj
2) + (1− γ2)Q

2,1(ωj
2)

(5.39)

Hence, we now arrive at

Q(ω) = Q(ωi
1, ω

j
2)

= Q1(ωi
1)Q

2(ωj
2)

= γ1γ2Q
1,0(ωi

1)Q
2,0(ωj

2)+

+ (1− γ1)γ2Q
1,1(ωi

1)Q
2,0(ωj

2) + γ1(1− γ2)Q
1,0(ωi

1)Q
2,1(ωj

2)+

+ (1− γ1)(1− γ2)Q
1,1(ωi

1)Q
2,1(ωj

2)

(5.40)

and we end up with four extremal measures:
Q̄1 = Q1,0Q2,0

Q̄2 = Q1,1Q2,0

Q̄3 = Q1,0Q2,1

Q̄4 = Q1,1Q2,1

Finally, we arrive at the following expression for the Radon-Nikodym derivatives

Lj(ω) =
Q̄j(ω)

P (ω)
(5.41)

Where j = 1, ..., 4 and P (ω) = P (ωi
1, ω

j
2) = pipj .
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5.4 The martingale method

Although this method has its origin in the hedging of a contingent claim problem, it is essentially
a martingale representation problem. The aim is to determine the optimal reachable portfolio
value V ∗

T and then find a portfolio such that the value of the portfolio is always a martingale.It
consists on the following 3 steps:

1. Determine the set of reachable values for the wealth VT in the period T .

2. Determine the optimal reachable wealth V ∗
T in this set.

3. Determine the self financing strategy α∗ whose terminal wealth is the same as the optimal
value from the previous step, i.e. V α

T = V ∗
T .

5.4.1 Complete market case

Step 1

The set of reachable portfolios is formed by those for which their discounted wealth’s expected
value equals to v, i.e.

Vv = {V : EQ(B
−1
T V ) = v} (5.42)

Step 2

We have to solve the problem of finding V ∗ such that

E(u(V ∗)) ≥ E(u(V )), ∀V ∈ Vv (5.43)

The condition V0 = v is equivalent to EQ(B
−1
T V ) = v and thus the the problem can be reformulated

as the following optimization problem

Maximize E(u(V )) (5.44)

subject to: EQ(B
−1
T V ) = v (5.45)

To solve this problem we employ Lagrange multipliers once again. Letting L := dQ
dP be the Radon-

Nikodym derivative and λ be the Lagrange multiplier, the Lagrangian now adopts the form

L = E(u(V ))− λ(EQ(B
−1
T V )− v) (5.46)

= E[u(V )− λLB−1
T V ]− λv (5.47)

Now, we simply take the derivative of the Lagrangian with respect to the wealth V and equate it
to zero to obtain

u′(V ) = λB−1
T L (5.48)

Recalling the properties of utility functions from section 4.1, we know that the inverse of u′(·)
exists and we denote it by I(·) = (u′(·))−1. Employing this function we solve for V in the previous
expression to obtain

V = I(λB−1
T L) (5.49)

We can now rewrite constraint (5.47) in terms of I

EQ[B
−1
T I(λB−1

T L)] = v (5.50)

which is the same as

v = E[LB−1
T I(λB−1

T L)] := V (λ) (5.51)

This implies that, if V (·) is invertible, λ = V −1(v) and thus we obtain

V ∗ = I(V −1(v)B−1
T L) (5.52)
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As in our case we’re working with the log-utility function (U(V ) = log V ), we have that I(x) = 1
x

and therefore constraint (5.47) becomes

v = E[LB−1
T I(λB−1

T L)] = E[LB−1
T I(λBTL

−1)] =
1

λ
= V (λ) (5.53)

This implies that λ = 1
v and thus we have that the optimal wealth is

V ∗ = I(λB−1
T L) (5.54)

=
vBT

L
(5.55)

= v

(
q

p

)−NT
(
1− q

1− p

)NT−T

(5.56)

Where in the last step we have substituted the value already computed for L from equation (5.21),
NT ∼ b(T, p) is the Bernoulli counting process that records the total number of ”up-movements”
and we have taken BT = 1 in order to simplify the last step of the method. We can also now
compute an explicit value for the expected utility from terminal wealth:

E[u(V ∗)] = E[log(V ∗)] (5.57)

= E

[
log

(
v

(
q

p

)−NT
(
1− q

1− p

)NT−T
)]

(5.58)

= log v − log

(
q

p

)
E(NT )− log

(
1− q

1− p

)
(T − E(NT )) (5.59)

= log v − pT log

(
q

p

)
− (1− p)T log

(
1− q

1− p

)
(5.60)

Finally, we check that this value for V ∗ is indeed optimal with the help of the convex dual.
This only works if we’re working with a complete market model. To this end we employ the
Legendre-Fenchel transform for which we give the definition below.

Definition 5.4.1. Given a function U(x), its convex dual Ũ(y) is given by its Legendre-Fenchel
transform:

Ũ(y) := max
x

{U(x)− xy} (5.61)

In our case, employing function I defined in the previous page, we have

Ũ(y) := max
x

{U(x)− xy} = U(I(y))− yI(y) (5.62)

From here it follows that
U(I(y))− yI(y) ≥ U(x)− xy, ∀x (5.63)

Recall now that {
V ∗ = I(λB−1

T L) with λ such that

E(LB−1
T V ∗) = E(LB−1

T I(λB−1
T L)) = v

If we now put x = V, y = λB−1
T L with λ ≥ 0. Thus, we obtain

U(V ∗)− λB−1
T LV ∗ ≥ U(V )− λB−1

T LV (5.64)

Now, taking expectations on both sides yields

E[U(V ∗)]− λv ≥ E[U(V )]− λv (5.65)

from which we conclude that
E[U(V ∗)] ≥ E[U(V )] (5.66)

Which of course holds ∀V that satisfies constraint (5.47).
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Step 3

Finally, once obtained the optimal reachable wealth V ∗ we will compute the optimal portfolio α∗
t

that leads to this optimal wealth. As we’re considering a binomial market model with one risk-free
asset and one risky asset, our portfolio αt will be a two-dimensional vector of the form

αt = (α0
t , α

1
t ) (5.67)

where the first and second components stands for the number of units of the risk-free asset and the
risky asset respectively. We will use backwards recursion to exploit the fact that the portfolio αt

is predictable (i.e. FT−1-measurable) and compute its components at each period from t = T − 1
to t = 0.

We thus start at period t = T − 1 and we have to determine the values for α0
T , α

1
T . We want

the final value of our portfolio to be the optimal reachable value computed in the previous step
regardless on weather the price increases or decreases, that is

α1
TST + α0

T = V ∗ (5.68)

Letting NT−1 = n < T and recalling expressions (5.7) and (5.8) we arrive at the following system
of equations which α0

T , α
1
T must verify

α1
TST−1u+ α0

T = v

(
p

q

)n+1(
1− p

1− q

)T−n−1

(5.69)

α1
TST−1d+ α0

T = v

(
p

q

)n(
1− p

1− q

)T−n

(5.70)

Where these equations represents the case where the price goes up and down respectively. From
here we obtain

α1
TST−1(u− d) = v

(
p

q

)n(
1− p

1− q

)T−n−1(
p

q
− 1− p

1− q

)
(5.71)

and finally α1
T =

( p
q )

n
( 1−p

1−q )
T−n−1

(p−q)

ST−1(u−d)q(1−q)

α0
T =

( p
q )

n
( 1−p

1−q )
T−n−1

(
u(1−p)q−d(1−q)p

)
(u−d)q(1−q)

(5.72)

Now, for the previous period t = T − 1 and recalling the self financing condition we have that
the optimal reachable wealth will be

V ∗
T−1 = α1

T−1ST−1 + α0
T−1 (5.73)

= α1
TST−1 + α0

T (5.74)

=

(
p

q

)n(
1− p

1− q

)T−n−1 (u(1− p)q − d(1− q)p+ (p− q)
)

(u− d)q(1− q)︸ ︷︷ ︸
=1

(5.75)

=

(
p

q

)n(
1− p

1− q

)T−n−1

(5.76)

Where we we have simplified the factor using the fact that q = 1−d
u−d . As V ∗

T−1 has the same
structure as V ∗

T , the calculations needed for the period t = T − 2 are exactly the same as the ones
here presented, and the same applies for each period until we reach t = 0. Therefore, we conclude
that for a generic period t ≤ T with Nt = n ≤ t equation (5.68) becomes

α1
tST + α0

t = V ∗
t (5.77)

with

V ∗
t = v

(
p

q

)n(
1− p

1− q

)t−n

(5.78)
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from where we obtain our portfolio’s componentsα1
t =

( p
q )

n
( 1−p

1−q )
t−n−1

(p−q)

S0undt−n−1(u−d)q(1−q)

α0
t =

( p
q )

n
( 1−p

1−q )
t−n−1

(
u(1−p)q−d(1−q)p

)
(u−d)q(1−q)

(5.79)

Finally we express our portfolio in terms of its weights:π0
t =

α0
t

V ∗
t
= u(1−p)q−d(1−q)p

(u−d)q(1−q)

π1
t =

α1
tSt

V ∗
t

= p−q
(u−d)q(1−q)

(5.80)

Notice that they are independent of t and of St. This however does not mean that the portfolio
remains constant in time; as the price of the risky asset is changing every period, the amount
invested in each asset must also change in each period so that the weights remain constant.

5.4.2 Incomplete market case

Step 1

In this case, as the market is incomplete, we have that the set of all martingale measures forms a
bounded convex set with a finite number of vertices J . Therefore we have a J extremal measures
Qj , j = 1, ..., J and the set of reachable portfolio values is

Vv = {V : EQj (B−1
T V ) = v for j = 1, ..., J} (5.81)

Step 2

Again we have to solve the problem of finding V ∗ such that

E(u(V ∗)) ≥ E(u(V )), ∀V ∈ Vv (5.82)

This time, as we have J extremal measures Qj our problem’s constraint adopts the form

EQ(B
−1
T V ) = v, ∀Q (5.83)

Where Q is any martingale measure. As we already established that these martingale measures
are convex combinations of the extremal measures Qj , this constraint is equivalent to the following
system of J constraints

EQj (B−1
T V ) = v, for j = 1, ..., J (5.84)

Therefore, our optimization problem now adopts the form

Maximize E(u(V )) (5.85)

subject to: EQj (B−1
T V ) = v, for j = 1, ..., J (5.86)

Letting Lj := dQj

dP , for j = 1, ..., J be the Radon-Nikodym derivatives and λj be the Lagrange
multiplier corresponding to the j-th constraibt, the Lagrangian now adopts the form

L = E(u(V ))−
J∑

j=1

λj(EQj (B−1
T V )− v) (5.87)

= E[u(V )−
J∑

j=1

λjL
jB−1

T V ]−
J∑

j=1

λjv (5.88)

Now, we simply take the derivative of the Lagrangian with respect to the wealth V and equate it
to zero to obtain

u′(V ) =

J∑
j=1

λjB
−1
T Lj (5.89)
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Which implies

V = I

 J∑
j=1

λjB
−1
T Lj

 (5.90)

Where recall that I(·) = (u′(·))−1. We can now express the J constraints from (5.88) as

E

[
LjB−1

T I

 J∑
j=1

λjB
−1
T Lj

] = v, for j = 1, ..., J (5.91)

Finally, we compute the optimal wealth for the case T = 2 (which we already explored in section
(5.3) and we assume again that Bt = 1. In this case we had four extremal measures Q̄j , j = 1, ..., 4.
and the optimal reachable wealth is

V ∗ =
1

λ1L1 + λ2L2 + λ3L3 + λ4L4
(5.92)

Here the Lagrange multipliers λ1, ..., λ4 are computed solving the following system of equations

v = E

(
Lj

λ1L1 + λ2L2 + λ3L3 + λ4L4

)
= E

(
Q̄j

λ1Q̄1 + λ2Q̄2 + λ3Q̄3 + λ4Q̄4

)
, for j = 1, ..., 4

(5.93)

Step 3

We finally only have left to compute the optimal portfolio α∗
t . As the market is incomplete, not

all values for the terminal wealth can be obtained via a self-financing portfolio. Nevertheless,
the set of constraints (5.86) imply that EQ(

−1
T V ∗) = v for any equivalent martingale measure

Q. Therefore V ∗ is actually replicable with a self-financing portfolio which starts from the initial
wealth V0 = v. To determine the composition of this portfolio (in the case T = 2) we impose that

α1
2S2 + α0

2 = V ∗ (5.94)

holds true for two of the three possible outcomes and the third one will automatically satisfy it
too. We finally arrive to a point where we are in the same situation as in the binomial model and
the calculations needed to compute the optimal portfolio are the same.

Other solution methods exist as, for example, dynamic programming. This method, when
used in continuous time, leads to the Hamilton-Jacobi-Bellman equation. For more details on this
subject check [16] and [4].
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Chapter 6

Optimization in the framework of
conic finance

So far, we’ve always assumed (though not explicitly) the law of one price i.e. that there is only
one price at which we are able to buy and sell assets at will. Although this is a useful abstraction
which allows us to derive many important results, real markets actually have two prices, that is,
the price at which the market is willing to buy (bid) and the price at which the market is willing
to sell (ask). In this chapter we will give an introduction to the main concepts of this two-price
theory (referred to as conic finance theory for reasons that will become clear shortly) and then
apply them to study portfolio theory from this optics. This final chapter is based on Madam and
Schoutens’ work on [8].

6.1 Introduction to conic finance

In complete markets, such as the binomial model from the previous chapter, the risk associated to
any derivative can be completely eliminated, as we know that given any derivative we can always
construct a self-financing portfolio that will hedge it. One of the foundations of conic finance
theory is that risk elimination is typically unattainable and that we must tolerate some level of
risk exposure. To that end we will start by defining coherent risk measures.

Definition 6.1.1. Let X be a random amount of money that you1 have to pay. A risk measure is
any functional ρ that assigns a real number to X. We say a risk measure is coherent if it satisfies
the following properties. Let X,Y be random variables and c ∈ R. Then,

1. Translativity: ρ(X + c) = ρ(X) + c

2. Sub-additivity: ρ(X + Y ) ≤ ρ(X) + ρ(Y )

3. Positive homogeneity: ρ(cX) = cρ(X)

4. Monotonicity: if P (X ≤ Y ) = 1, then ρ(X) ≤ ρ(Y )

Remark. In this context, constants such as c in the previous definition should be regarded as
monetary units.

Remark. Under monotonicity subadditivity is equivalent to convexity.

An example of such a coherent risk measure is ρ(X) of the form

ρ(X) = sup
Q∈M

EQ(X) (6.1)

Where M is non empty set of probability measures. Actually, Artzner et al. showed in [1] that
any coherent risk measure on a finite set of states of nature is of this form.

1Hereafter you means the market.
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As the name suggest, large values of ρ(X) tell us that X is a very risky investment. Suppose
now X represents a derivative‘s payoff, then potential large payouts need to be accounted for and
you should regard the quantity ρ(X) as the amount of cash that should be added as a ”buffer” so
that the risk of paying out these potential payoffs becomes acceptable.

Now, according to the translation invariance property of ρ(X), if you receive c to pay X the
new risk will be

ρ(X − c) = ρ(X)− c. (6.2)

So, if you wish to eliminate the risk you should take c = ρ(X). This could be though as the price
to buy the payoff X to the market. Thus, we conclude that the ask price of X should be

ask(X) = ρ(X) (6.3)

Suppose now the converse, that is thatyou receive X. Receiving X is equivalent to paying −X.
In such case, the risk of receiving X, which we denote by ρ̄2, will be

ρ̄(X) = ρ(−X). (6.4)

Now, it is easy to see that ρ̄(X) satisfies the same properties as ρ(X), namely :

(i) If X ≤ Y then ρ̄(X) ≥ ρ̄(Y ).

(ii) If c is a deterministic amount of money then ρ̄(X + c) = ρ̄(X)− c.

(iii) ρ̄(X + Y ) ≤ ρ̄(X) + ρ̄(Y ).

(iv) If c ≥ 0, is a constant, ρ̄(cX) = cρ̄(X).

Proceeding as before, if you wish now to eliminate risk then ρ̄(X − c) = ρ̄(X) + c = 0, so
c = −ρ̄(X) = −ρ(−X). In other words, you have to pay −ρ(−X). This is the price to sell the
payoff X to the market. Thus, we conclude that the bid price of X is given by

bid(X) = −ρ(−X) = −ask(−X). (6.5)

Definition 6.1.2. A zero-cost cash flow is a payoff X that is acceptable by markets a zero cost.
That is

ρ̄(X) ≤ 0.

Notice that if ρ̄(X) ≤ 0 the market will pay something for X. In this case zero would be an
acceptable price for X, though not the best bid price for X. If X ≥ 0 it satisfies ρ̄(X) ≤ 0 since,
by (iv), ρ̄(0) = 0, then by (i) we obtain that ρ̄(X) ≤ 0. Therefore the set of zero-cost cash flow is
a cone containing the non-negative random payoffs and hence the name Conic Finance.

2To clarify, ρ(X) refers to the ”risk of giving” and ρ̄(X) to the ”risk of receiving”. Both formulations are correct
bu the distinction between them is not always made clear in the literature.
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6.2 Portfolio managament in Conic Finance

According to Madam and Schoutens we consider two situations: the optimal conic portfolio when
only buying stocks (longing) is allowed and when shorting is also allowed.

6.2.1 The optimal Conic Long-only Portfolios

We start by considering a single-period model. Let Ri, i = 1, ..., n be the returns, over a given
time horizon, of the corresponding assets A(i), i = 1, ..., n. Assume that their mean return (under
the risk-neutral measure chosen by the market to price the assets A(i)) is zero. Then, if we use

ρ(Ri) = sup
Q∈M

EQ (Ri) (6.6)

where M contains the risk-neutral measure, we have that

bid (Ri) = −ρ(−Ri) = inf
Q∈M

EQ (Ri) ≤ 0. (6.7)

Then we can look for a portfolio (ai)1≤i≤n where ai is the fraction of wealth invested in A(i). It
is assumed that ai ≥ 0 (as we’re considering long-only portfolios). The portfolio’s return will be
then given by

Rp =

n∑
i=1

aiRi, (6.8)

Madam and Schoutens propose to maximize the diversity measure given by

bid (Rp)−
n∑

i=1

aibid (Ri) (6.9)

subject to the constraints {
ai ≥ 0, for i = 1, ..., n∑n

i=1 ai = 1.
(6.10)

To solve this problem, first notice that

bid (Rp)−
n∑

i=1

aibid (Ri) =

n∑
i=1

aiask (−Ri)− ask (−Rp)

= µp − c̃ (a) (6.11)

where we’ve taken

µp; =

n∑
i=1

aiask (−Ri) (6.12)

and

c̃ (a) := ask

(
−

n∑
i=1

aiRi

)
. (6.13)

We can now define the efficient frontier as the minimum of c̃ (a) for a fixed µp, and with the
weights satisfying conditions (6.10). If we then graph(c̃ (a) , µp) we will be able to visualize the
efficient frontier (see Figure 6.1). The optimal long-only portfolio is represented by the point in
the efficient frontier where the tangent line has slope equal to one. In fact, by taking the derivative
with respect to c̃ in (6.11)

µ′
p(c̃)− 1 = 0. (6.14)

Let (µp(c̃
∗), c̃∗) be this point, then the tangent line is

µp(c̃
∗)− µp(0) = c̃∗

and consequently µp(0) gives the maximum value of (6.11). The intersect of this line with the
y-axis is the diversity gap bid (Rp)−

∑n
i=1 aibid (Ri).
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Figure 6.1: Example from [8] which portrays the efficient frontier for a long-only portfolio com-
posed of stocks of General Electric, Intel, IBM, Johnson Johnson and Apple.

6.2.2 The optimal long-short portfolio with volatility constraint

In this case we allow for some shorting so not all the weight need to be positive. Thus, we
eliminate the constraint ai ≥ 0, i = 1, ..., n. As the ask price optimization problem is well defined
for a portfolio with a given mean, we can construct the efficient frontier as in the previous section
but, without this constraint, the efficient frontier could have a slope greater than unit for all µp

which would cause the unconstrained problem to not have a solution. In such a case Madam and
Schoutens’ propose bounding the volatility of the portfolio:

√
aTΣa ≤ σ∗ (6.15)

Where Σ is the covariance matrix, a the weight vector and σ∗ the target volatility. If the problem
is well posed it is enough to maximize the bid price subject to

∑n
i=1 ai = 1. An example of this

situation can be seen in page 131 of [8]. Nevertheless the portfolio optimization in the context of
Conic Finance is in my opinion still an open problem.
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