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Abstract

Many sets in the field of planar topology are considered "exotic" and not fre-
quently encountered in everyday life. However, these sets possess unique and
intriguing topological properties, and quite often also a visually appealing aest-
hetic. In recent years, thanks to the resurgence of complex dynamics, many of
these exotic sets have been found to be Julia sets for complex analytic functions.
In this work, we delve into the world of planar topology, provide an overview
of the basics of complex dynamics, and present four examples of such sets: den-
drites, Cantor sets, Sierpiński curves, and Cantor bouquets. To conclude, we also
explain how these sets arise through specific families of complex maps, such as the
quadratic family, the complex exponential family, and a certain type of singularly
perturbed rational maps.
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Introduction

As society becomes more specialized, individuals within each field tend to
believe that they only need to be knowledgeable in their own area. This kind
of narrow-mindedness hinders our ability to see the connections and understand
the bigger picture of our world. As Neri Oxman once said, the relation between
science, engineering, design, and art is similar to a clock, where one is constantly
moving back and forth between different domains, and what is input in one area
becomes output in another. We could also apply this concept for different areas
of mathematics. The momentum appears at "12 o clock", when science meets art,
just as when complex dynamics meets topology.

Let’s begin by delving into the following image:

Figure 1: Fatou domains.

We may wonder what secrets are hidden beneath these artistic outcomes and
how this beautiful result could ever be linked to scientific fields. However, it is
no secret that mathematics can explain just about every line, colour, and motif of
these artworks.

Despite being totally distinct areas, mathematics and fine arts have had a long-
standing and intertwining relationship. Many artists throughout history, such as
Hilma as Klint, Emma Kunz, and Agnes Martin, have used mathematical concepts
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and principles in their work, such as the use of geometric shapes and patterns
(fractals), the exploration of symmetry and balance, and the manipulation of per-
spective and proportion. Others, like M.C. Escher, even explored the concept of
infinity through his drawings.

On the other hand, mathematicians have also been inspired by art, using it not
only as a source of inspiration for their concepts and theories, but also as a tool to
represent them. In summary, these two fields have a long interlaced history, with
each one of them influencing and inspiring the other in many ways.

Similarly, topology and complex dynamics are two branches of mathematics
that are closely related. Topology is concerned with the properties of objects that
remain unchanged when they are stretched or bent, but not torn or glued, while
complex dynamics examines the behavior of complex functions when they are
iterated, such as polynomials and rational functions.

Figure 2: Fatou domains.

One of their key connections is the study of Julia sets (as well as its comple-
mentaries, the Fatou sets), and Mandelbrot sets. The Julia set of a polynomial is
the boundary of the set of points that do not escape to infinity under iteration of
the function. Not only do these sets have a fractal structure, but they also possess
a wide range of fascinating topological properties (see [7], [19]).

In fact, for nearly a century, topologists have been captivated by the excep-
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tional characteristics of intriguing objects like indecomposable continua, Sierpiński
curves, and Cantor bouquets. However, it is only recently that complex dynami-
cists have begun to appreciate the complexity and elegance of these objects known
as Julia sets. Recent advancements have shown that many of these spaces from
planar topology can also be found in Julia sets, bringing the two fields closer to-
gether ([9], [12], [10], [11]). In this work we will discuss a few examples of this
overlap between topology and complex dynamics.

To summarize, complex dynamics has a strong connection with both topology
and art. On one hand, topology offers geometric and topological methods for
studying the behavior of intricate sets. On the other hand, the study of complex
dynamics leads to striking visuals related to dynamical sets, linked to fundamental
mathematical concepts such as complex analysis or set theory, as well as leading
to new topological questions and results.

Finding these beautiful exotic topological structures in unexpected environ-
ments by surprise is like finding a needle in a haystack without even looking for
it. And, through this kind of discoveries, we acknowledge the legacy of math-
ematicians like Cantor, who devoted his life to the study of set theory. Despite
making groundbreaking contributions, he faced rejection and criticism from his
peers, and struggled with mental health issues. Even figures like Leopold Kro-
necker said that "Cantor’s set theory is a disease from which one has to recover".

So here we are, not only to "recover" from these discoveries, but to show how
relevant they have become, since even without "inventing" them, they just magi-
cally appear while iterating functions on the complex plane. As a matter of fact,
despite facing harsh criticism, Cantor’s work was later widely recognized and
celebrated. In 1904, the Royal Society presented him with its highest award for
mathematical achievement, the Sylvester Medal, and figures as David Hilbert de-
fended Cantor’s ideas from its detractors by saying, "No one shall expel us from
the paradise that Cantor has created".

This work is divided into three chapters. The initial chapter covers the basic
principles of planar topology, and provides the definition and certain characteris-
tics of fractals, which will give us the foundation we need to comprehend various
concepts of dimension. Lastly, we will explore examples of the exotic topological
models mentioned before, such as dendrites, Cantor sets, Sierpiński carpets, and
Cantor bouquets, and examine their characteristics.

In chapter 2, we will establish the foundations of complex dynamics. We will
begin by providing a brief overview of iteration on the Riemann sphere to ease
understanding of the concepts of normality and the Montel’s theorem, which are
essential in the Fatou-Julia sets theory. We also provide a formal definition of
the Fatou and Julia sets, and demonstrate some key properties that will be neces-
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sary, presented along a comprehensive examination of dynamics, covering various
types of fixed points and orbits. After giving the basics of local, semilocal, and
global theory, we will delve into the five types of periodic Fatou components using
the Classification Theorem. In addition, we will also include a section on singu-
lar values and polynomial dynamics, which will be highly beneficial for the next
chapter.

To conclude, Chapter 3 will demonstrate how the sets presented in Chapter 1
appear as the Julia set of particular families of complex maps, such as the quadratic
family, the complex exponential family, and a specific class of singularly perturbed
rational maps, by using the tools discussed in the previous chapters.

2020 Mathematics Subject Classification. 37B02, 37B45, 37F10, 37F12
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Chapter 1

Planar Topology

The main goal of this chapter is to provide an introduction to the basics of
planar topology, including key concepts and definitions such as connectedness,
compactness, etc. Additionally, we will explore some of the most relevant prop-
erties of the well known geometrical objects called fractals, such as the fractal
dimension. To solidify the concepts covered in the chapter, we will also present
examples of topological models and their most pertinent characteristics.

1.1 General Concepts

In this section we review some of the basic topological ideas associated with
the topological models we will see further in this chapter. The main references for
this section are [20] and [21].

Broadly speaking, a topological space is a mathematical structure that allows
the formal definition of concepts such as connectivity, continuity, and compact-
ness. The most widely used definition is that in terms of open sets:

Definition 1.1. (Topological space) A topological space (X ,T ) is a set X together
with a collection of open subsets of X, T , that satisfies the four following condi-
tions:

1. The empty set ∅ is in T .

2. X is in T .

3. The intersection of a finite number of sets in T is also in T .

4. The union of an arbitrary number of sets in T is also in T .

1



2 Planar Topology

Definition 1.2. (Subspace topology) Given a topological space (X ,T ) and a subset
X′ ⊂ X, the subspace (or relative) topology on X′ is defined by

Tx = {T ∩ X′ | T ∈ T }.

With this topology, (X ,Tx) is a topological space in its own right.

In this work, we will focus on planar sets, which are sets X such that X ⊂ R2

where, for our purposes, R2 will be identified with the complex plane C.
The usual topology for the complex plane C is the topology induced by the

metric
d(x, y) := |x − y|

for x, y ∈ X where | · | is the complex modulus. It is clear that the above topology
coincides with topology induced by the Euclidean metric on R2 .

When taking into account subsets X ⊂ C, we will always consider them
equipped with the subset topology. Hence, X′ ⊂ X is open (respectively closed)
if X′ = A ∩ X, where A ⊂ C is open (respectively closed). We will now introduce
some basic topological concepts for C.

Definition 1.3. (Neighborhood and open ball) A neighborhood of a point z0 ∈ C is
an open set that contains z0 in its interior. An open ball or open disk of a complex
number z0, consists of all points z lying inside but not on a circle centred at z0 and
with radius r > 0 and it is expressed by

Br(z0) = {z ∈ C : |z − z0| < r}

Definition 1.4. (Limit point) A point x is a limit point or accumulation point of a
subset X of C if every neighborhood of x contains at least one point of X different
from x itself. A limit point of a set X does not itself have to be an element of X.

Definition 1.5. (Closed set) A closed set is a set which contains all its limit points.

Closed sets also provide a useful characterization of compactness:

Definition 1.6. (Compact spaces) For any subset X of C, X is compact if and only
if it is closed and bounded.

Definition 1.7. (Connected space) A connected space is a space X ⊆ C that cannot
be expressed as the union of two or more disjoint nonempty open subsets. In other
words, it cannot be expressed as the disjoint union of A ∩ X and B ∩ X where A
and B are open sets of C.
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Connectedness is a major topological property used to distinguish topological
spaces. Another associated concept is local connectivity, which does not imply or
derive from connectivity:

Definition 1.8. (Locally connected space) We say that a space X is locally connected
at x if every neighborhood of x contains a connected open neighborhood of x, i.e.
the point x admits a neighborhood basis consisting entirely of open, connected
sets. A locally connected is a space which is locally connected at every point.

In the case of the arc-connectivity what is asked is to be able to join any two
points with a path within X. By a path, we mean the image of [0, 1] under a
continuous injective map.

Definition 1.9. (Arc-connected space) A space X is said to be arc-connected or
arcwise connected if for every pair of points p and q of X there is a path in X joining
p and q.

Disconnected sets can always be expressed as the disjoint union of smaller sets
which are connected. This is the concept of connected component.

Definition 1.10. (Connected component) Consider a set of points X. Every point
x ∈ X is contained in a unique maximal connected subset C of X, called connected
component of x.

Note that every point of a set X lies in a unique connected component of X,
which is the union of all the connected sets containing the point.

We can easily see that C is closed since if C is a connected component of a space
X, C is a connected subset of the space meeting C, and is therefore contained in
C. It follows that the components of any set X are closed in X.

Definition 1.11. (Totally disconnected space) A a space X ⊆ C is totally discon-
nected if the connected components in X are single points.

Numerous natural objects in topology and complex dynamics are best studied
in the context of continuum theory, which is the study of compact, connected,
metric spaces.

Definition 1.12. (Continuum) A continuum (plural:"continua") is a nonempty, com-
pact and connected metric space. A continuum that contains more than one point
is called nondegenerate.

Definition 1.13. (Cut Point) A point x of a continuum X is a cut point of X if
X − {x} is not connected.
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Definition 1.14. (Negligible) A negligible set is a set that is small enough that it
can be ignored for some purpose.

Definition 1.15. (Cardinality) The cardinality of a set is defined as the number
of elements of the set. The cardinality of a set X is usually denoted |X| and, if
X ⊂ C, is the number of points of the set.

Definition 1.16. (Perfect Set) A perfect set is a closed set such that every single
point in the set is a limit point of the set.

1.2 Fractals and fractal dimension

During the late 19th century, mathematicians such as Weierstrass, Koch, Levy,
and Cantor began exploring abstract objects that defied traditional geometric prin-
ciples. These objects, today known as fractals, challenge our intuition and provide
a middle ground between the orderly geometry of Euclid and the chaotic rough-
ness of fragmentation. At first, it may seem that creating complex forms would
require complex rules, but fractal geometry shows us that even seemingly chaotic
shapes can be perfectly ordered.

Before we can define the concept of fractal, it is essential to have a clear under-
standing of both the topological dimension and the fractal dimension of a space.
There are several versions of topological dimension, each with its own properties.
While they all agree for metric spaces, they can be vastly different for other topo-
logical spaces. For the purpose of this explanation, we will focus on the version
known as small inductive dimension.

By definition, the topological dimension is always an integer value.

Reminder: a metrizable space is a topological space that is homeomorphic to a
metric space.

Definition 1.17. (Topological dimension) The topological dimension of X, denoted
dimT (X), is defined inductively as follows:

1. dimT (X) = −1 ⇔ X = ∅

2. dimT (X) ≤ n if for every point x ∈ X, x has arbitrarily small neighborhoods
U with dimT (∂U) ≤ n − 1, where ∂U is the boundary of U.

3. dimT (X) = n if (2) is true for n, but false for n − 1.

4. dimT (X) = ∞ if, for every n, dimT (X) ≤ n − 1 is false.
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Fractal dimension only has meaning when applied to a metric space and is
related to how many sets of a given size are needed to cover the set being studied.
In fractal geometry, fractal dimension is a ratio that provides a statistical index of
complexity by comparing the level of detail in a pattern as the scale at which it is
measured changes. Importantly, a fractal dimension does not have to be a integer
number.

There are various methods of defining fractal dimension, and not all are equiv-
alent. Two commonly used definitions are the Hausdorff dimension and the Minkowski
dimension. The Hausdorff dimension is defined for any set, but can be challenging
to calculate. On the other hand, determining the Minkowski dimension is more
practical and easier to calculate, but it does not always exist for a given set. For
the purpose of this work, we will only consider the Minkowski dimension for its
ease of calculation.

Definition 1.18. (Totally bounded) A subset K of a metric space is called totally
bounded if for any ϵ > 0, it can be covered by a finite number of balls of diameter
ϵ. In the Euclidean space, this is the same as being a bounded set.

For a totally bounded set K, let N(K,ϵ) denote the minimal number of sets of
diameter at most ϵ needed to cover K.

Definition 1.19. (Minkowski dimension) We define the upper Minkowski dimension
as

dimM(K) = lim sup
ϵ→0

log N(K, ϵ)

log 1/ϵ

and the lower Minkowski dimension as

dimM(K) = lim inf
ϵ→0

log N(K, ϵ)

log 1/ϵ

If the two values exist and agree, the common value is simply called the
Minkowski dimension (or box-counting dimension) of K and denoted by dimM(K).

Definition 1.20. (Fractal) A fractal is a subset of Rn whose fractal dimension
strictly exceeds its topological dimension.

1.3 Topological Models

In planar topology, we come across objects that may seem peculiar to those
who are not familiar with the field. These objects not only possess intriguing
topological characteristics but also have a certain allure, since they are powerfully
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and mysteriously attractive and fascinating. This section will provide an overview
of some examples of these exotic topological models. For more information, read-
ers can refer to references [1], [20], and [23].

1.3.1 Dendrites

Dendrites are typically recognized as the sensitive endings of neurons that act
as receptors in the field of neuroscience. However, in mathematics, dendrites are
a subject of continuum theory and have numerous applications in the realm of
complex dynamics.

Definition 1.21. (Dendrite) A dendrite is a locally connected continuum that con-
tains no simple closed curves.

In addition to the topological concepts inherent in their definition, dendrites
may also exhibit characteristics related to other branches of mathematics. Here-
under we will mention a few results without providing proofs, but these can be
found in reference [20].

Corollary 1.22 ([20, Corollary 10.6]). Every subcontinuum of a dendrite is a dendrite.

We now introduce the definition of an arc hedgehog space that will enable us to
present some examples of dendrites.

Example 1.23. The arc hedgehog space ah(ω) is a one point union of a shrinking
sequence of arcs of length 1/2n. It is easy to see that ah(ω) is uniquely arc-wise
connected and is therefore a dendrite.

Figure 1.1: The arc hedgehog dendrite.

Example 1.24. Let’s start with ah(ω), the arc hedgehog dendrite. If at the midpoint
m of a segment of length 1/2n we attach a copy of ah(ω) scaled to have diameter
1/2n+1, and we continue the process inductively in a dense pattern, we obtain the
following dendrite called Wazewski’s universal dendrite.
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Figure 1.2: The Wazewski’s universal dendrite.

Notice there are no open sets at the Wazewski’s universal dendrite homeomor-
phic to an open interval. In fact, this dendrite contains a homeomorphic copy of
every dendrite as a retract. Hence, as far as dendrites go, this is as complicated as
they get.

1.3.2 Cantor Set

The set known today as the ternary Cantor set is a set of points in the line first
presented by the German mathematician Georg Cantor in 1883. It has various
definitions and constructions, but despite being just a subset of the real numbers,
it possesses several unique properties.

The study of this set by Cantor and others played a significant role in the
development of modern point-set topology.

Definition 1.25. (Cantor set) A Cantor set is a closed, totally disconnected, and
perfect subset of R2.

The most common and accessible construction is the ternary Cantor set. Let
us first describe its construction and its formula, and then show some interesting
properties of it.

Figure 1.3: The first six steps of the process of the ternary Cantor Set.
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Example 1.26. (Middle third Cantor set) The middle third (or ternary) Cantor Set is
created by iteratively deleting the open middle third from a set of line segments.

Consider the interval I0 = [0,1]. Divide I0 into three equal length intervals
with end points {0, 1

3 , 2
3 , 1}. We start removing the open middle third ( 1

3 , 2
3 ) from

the interval I0, leaving two line segments: [0, 1
3 ] ∪ [ 2

3 , 1] = I1. Then, remove the
middle third of each of these remaining segments, leaving four line segments
[0, 1

9 ] ∪ [ 2
9 , 1

3 ] ∪ [ 2
3 , 7

9 ] ∪ [ 8
9 , 1] = I2, and continue that process to infinity. Inductively,

we construct a sequence of sets In which is a union of 2n disjoint closed intervals
each of them with diameter 1

3n .

The set C =
⋂∞

n=1 In is called the middle third Cantor set. This is therefore
the set of points in the interval [0,1] which are not removed at any stage of this
endless process shown above in Figure 1.3.

Now, we will see that, indeed, C is a Cantor set. That is to say that it is a closed,
totally disconnected, and perfect subset of [0,1].

Theorem 1.27. C is a Cantor set.

Proof. (i) C is a closed subset in [0, 1]: Through out the construction of the
middle third Cantor set, we note that In is a finite union of closed intervals,
so it is closed in I = [0, 1]. Now, C =

⋂∞
n=1 In is the intersection of nested

closed sets, so it is closed in [0, 1] and nonempty.

(ii) C is totally disconnected: Let x, y ∈ C be distinct. Then, x, y ∈ Ik for all k ∈
N. Now, since x and y are distinct, we can find N ∈ N such that 1

3N < |x− y|.
Hence, x and y belong to different intervals of IN . By the construction of the
middle third Cantor set, there must be at least one interval between x and y
which does not belong to IN , and so does not belong to C. Select one such
interval. Choosing any point z in this interval satisfies that z lies between x
and y and z /∈ C. Therefore, C is totally disconnected.

(iii) C is a perfect space: Let ϵ > 0 be given and consider B(x, ϵ) for any x ∈ C. Let
Jk denote the interval to which x belongs in Ik. We can find N ∈ N such that
JN ⊂ B(x, ϵ). Now, this interval must have two endpoints aN and bN (one of
which could possibly be equal to x). By the construction of the middle third
Cantor set, we know that the endpoints of any interval are never removed,
and so aN , bN ∈ C. Furthermore, we have that aN , bN ∈ JN ⊂ B(x, ϵ)).
Therefore, x is not isolated.

From a topological perspective, C it is a very interesting set due to its unique
properties that defy intuition and distinguish it.
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Proposition 1.28. (a) C is negligible. In other words, its Lebesgue measure is 0.

(b) C has no interior points, that is, it is nowhere dense.

(c) The cardinality of C is the continiuum. That is, C has the same cardinality as the
interval [0,1].

(d) C is an uncountable set.

(e) C is bounded.

(f) C is self-similar since is exactly or approximately similar to a part of itself.

Proof. Let’s prove some of the more interesting properties:

(a) C is obtained by successively removing intervals. We will measure these
intervals removed. At each step the number of intervals doubles and their
length decreases by 3. Total length/measure of intervals removed:

1
3
+ 2 · 1

32 + 22 · 1
33 + ... =

∞

∑
n=0

2n · 1
3n+1 = ... = 1

"Length"/measure of C = 1 - 1 = 0.

(b) Since its length is 0, it contains no intervals.

(c) We can represent real numbers in any base. We will use "(n)" as notation
to specify the number’s base, n. In this particular case, we will use ternary
representation, since the Cantor set has a special representation in base 3: a
number is in Cantor’s set if and only if its ternary representation contains
only the digits 0 and 2.

C = {x ∈ [0, 1] : x = 0.c1c2c3 . . . cn . . .(3) where cn = 0 or 2}

The function f : C → [0,1] defined by:

f (0.c1c2c3 . . . cn . . .(3)) := 0.
c1

2
c2

2
c3

2
. . .

cn

2
. . .(2)

is surjective, so card(C) ≤ card([0, 1]). But, clearly, card(C) ≥ card([0, 1]).
Hence, card(C) = card([0, 1]), as we wanted to prove.

(d) Direct consequence of (c).
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We can observe the Cantor set as a key example to understanding fractal di-
mensions. The Cantor set has topological dimension of zero, but yet it has the
same cardinality as the real line, in that sense we would expect its dimension to be
one. On the other hand, the Cantor set has no interval in it, and in that sense we’d
expect its dimension to be zero. The answer then, lies somewhere in the middle.
The Cantor set should have a dimension greater than zero, but smaller than one.

To compute the Minkowski dimension of the Cantor set, we cover it with
smaller and smaller boxes, taking the box scaling based on the natural size struc-
ture of the fractal. That is, we use boxes of side length 1/3, 1/32, 1/33, etc.
Then, we have that N(1/3) = 2, N(1/9) = N((1/3)2) = 4 = 22, N(1/27) =

N((1/3)3) = 8 = 23, ad infinitum. From the relation N((1/3)n) = 2n we see:

dimM(C) = lim
n→∞

log N((1/3)n)

log (1/((1/3)n))
= lim

n→∞

log(2n)

log (3n)
=

= lim
n→∞

n log(2)
n log (3)

=
log(2)
log (3)

≈ 0.63

1.3.3 Sierpiński Carpet

The Sierpiński carpet is one of the best known planar, compact and connected
sets, first described by Wacław Sierpiński in 1916. Sierpiński’s work in set theory
and topology was extensive. He spent much effort on giving a topological charac-
terization of the continuum (the set of real numbers) and in this way discovered
many examples of topological spaces with unexpected properties, of which the
Sierpiński carpet is the one of the most famous.

Definition 1.29. (Sierpińsky carpet) The Sierpiński carpet is a plane fractal, a gen-
eralization of the Cantor set to two dimensions, formed by repeated subdivision
of a square.

Figure 1.4: The first five steps of the process of the Sierpiński Carpet.

The construction of the Sierpiński carpet starts with the unit square. This
square is divided into 9 congruent sub-squares in a grid of 3 by 3, and the central
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sub-square is removed. The same procedure is then recursively applied to the
remaining 8 sub-squares, ad infinitum.

Note that all of the open squares removed during the construction of the Sier-
pinński carpet have boundaries that are pairwise disjoint simple closed curves.
Indeed, the lines x = 1/2 and y = 1/2 meet the Sierpiński carpet in a middle
third Cantor set, with the endpoints of this Cantor set providing the intersections
of the boundaries of removed squares.

In 1958, Gordon Whyburn [23] uniquely characterized the Sierpińsky carpet as
follows:

Theorem 1.30 ([23, Theorem 3]). (Whyburn’s Theorem) Any nonempty planar set
that is compact, connected, locally connected, nowhere dense, and has the property that any
two complementary domains are bounded by disjoint simple closed curves is homeomorphic
to the Sierpiński carpet.

While this set may at first look rather tame, its topology is actually quite rich:
the Sierpiński carpet contains a homeomorphic copy of any compact, connected
one (topological) dimensional planar set, no matter how complicated that set is.
Basically, any compact planar curve can be homeomorphically manipulated so
that it fits inside the carpet. As an example, the eccentric curve in Figure 1.5 fits
neatly within the carpet.

Figure 1.5: Curve that fits inside the Sierpiński carpet [10].

In this sense, the Sierpiński curve is a universal planar continuum. Sets with this
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property are known as Sierpiński curves.
By curve we are referring to a one dimension topological object.

Definition 1.31. (Sierpińsky curve) A Sierpiński curve is a planar set that is home-
omorphic to the renowned Sierpiński carpet fractal.

It is easy to check that the carpet is compact, connected, locally connected,
and nowhere dense in the plane. Other noteworthy characteristics include the
following.

Proposition 1.32. (a) The area of the carpet is zero (in standard Lebesgue measure).

(b) The interior of the carpet is empty.

Proof. (a) Denote as ai the area of iteration i. Then ai+1 = 8
9 ai. So ai = ( 8

9 )i,
which tends to 0 as i goes to infinity.

(b) Suppose by contradiction that there is a point p in the interior of the carpet.
Then there is a square centered at p which is entirely contained in the carpet.
This square contains a smaller square whose coordinates are multiples of 1

3k

for some k. But, if this square has not been previously removed, it must
have been holed in iteration k + 1, so it cannot be contained in the carpet - a
contradiction.

We will now determine the Minkowski dimension of the Sierpiński carpet, S,
using the same method as we did for the Cantor set. Note that, in this case, at the
nth step of the process, the side of the tiling squares is 3−n but there are 8n tiles in
Sn, which means that N((1/3)n) = 8n. Therefore,

dimM(S) = lim
n→∞

log N((1/3)n)

log (1/((1/3)n))
= lim

n→∞

log(8n)

log (3n)
=

= lim
n→∞

n log(8)
n log (3)

=
log(8)
log (3)

≈ 1.892789

1.3.4 Cantor Bouquet and Straight Brush

In this last section, we introduce a structure consisting of uncountably many
pairwise disjoint curves, known as the Cantor bouquet. To describe the structure
of a Cantor bouquet, we need to introduce the notion of a straight brush since,
following Aarts and Oversteegen [1], a Cantor bouquet is any planar set that is
homeomorphic to a straight brush.
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Definition 1.33. (Straight brush) Let B be a subset of [0, ∞)×I where I is a dense
subset of the irrational numbers. The set B is a straight brush if it has the following
three properties:

1. Hairiness. For each point (x, α) ∈ B, there is a tα ∈ [0, ∞) such that {t |
(t, α) ∈ B} = [tα, ∞). The point (tα, α) is the endpoint of the hair given by
[tα, ∞)× {α}.

2. Endpoint density. For each (x, α) ∈ B, there exists a pair of sequences {βn}
and {γn} in I converging to α from both above and below and such that the
corresponding sequences of endpoints tβn and tγn converge to x.

3. Closed. The set B is a closed subset of R2.

Aarts and Oversteegen [1] have also shown that any two straight brushes are
ambiently homeomorphic, i.e., there is a homeomorphism of R2 taking one brush
onto the other. This leads to a formal definition of a Cantor bouquet.

Definition 1.34. (Cantor bouquet) A Cantor bouquet is any subset of the plane
homeomorphic to a straight brush.

Figure 1.6: Cantor bouquets (in black).

Broadly speaking, a Cantor bouquet is an uncountable collection of disjointed
continuous curves tending to ∞ in a certain direction in the plane, each of which
has a distinct endpoint.
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Definition 1.35. (Crown) We call the set of endpoints of a Cantor bouquet the
crown.

Since a Cantor bouquet is homeomorphic to a straight brush with the points at
∞ coinciding, it follows that any Cantor bouquet has the amazing connectedness
property that the crown together with ∞ is connected, but the crown alone is
totally disconnected [11].



Chapter 2

Complex dynamics: the dynamical
partition

The fundamental purpose of the theory of dynamical systems is to understand
the eventual or asymptotic behaviour of a process that evolves with time, which
may be continuous or discrete.

If this process is a differential equation whose independent variable is time,
the theory tries to predict the final behavior of the solutions of the equation in the
distant future (t → ∞) or in the distant past (t → −∞).

If the process is a discrete process, like iterating a function, then the theory
hopes to understand the eventual behavior of the points x, f (x), f 2(x), . . . , f n(x) =
f ◦ n). . . ◦ f (x) as n gets big. In other words, dynamical systems make us wonder
where points are going and what they’re doing when they get there.

In this chapter, we will try to answer this question at least for dynamical sys-
tems of one complex variable. The functions that determine dynamical systems
are also called mappings, or maps, for the sake of brevity. These terms connote the
geometrical process of taking one point to another. We will use all these terms
synonymously.

2.1 Preliminaries

This section contains a series of preliminary results and concepts from complex
analysis in one dimension, necessary for the development of the core themes of
this project. Most of the content in this chapter can be found in [7] and [19], where
the reader can go for further details. Some of the proofs will not be included
because they fall outside the scope of the work.

In complex analysis, a holomorphic function is, broadly speaking, a complex

15
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differentiable function. The complex differentiability condition is very strong, and
leads to a particularly elegant computing theory for these functions.

Definition 2.1. (Holomorphic function) Let f : Ω → C where Ω ⊆ C is an open
set. The function f is said to be (complex) differentiable at z0 ∈ Ω if the following
limit exists

lim
z→z0

f (z)− f (z0)

z − z0

In that case, the limit is called the derivative of f at z0 and is denoted by f ′(z0).
We also say that f is holomorphic in Ω if it is differentiable at every point of Ω.

Definition 2.2. (Conformal mapping) A function g : Rn → Rn is called conformal
at z0 if it preserves angles at this point.

Holomorphic maps are conformal at all points z0 such that f ′(z0) ̸= 0. Con-
versely, one can show that conformal maps are holomorphic. From a global point
of view, given U, V ⊆ C two open sets, we say that f : U → V is conformal if f is
holomorphic and bijective (hence, f ′(z) ̸= 0 for all z ∈ U).

We will now present Riemann’s Theorem, which gives us, under certain condi-
tions, the existence (although it cannot always be found explicitly) of a bijective
function between a certain subset of the complex plane and the open ball of ra-
dius 1. This result of existence does not mean that an explicit function can be
found for each subset. In fact, few sets exist in which Riemann’s function can be
expressed in terms of elementary functions. Nevertheless, existence is assured for
all open simply connected sets, which is quite remarkable since they can be very
complicated.

Theorem 2.3. (Riemann’s Mapping Theorem) Let Ω ⊂ C be a simply connected
region Ω ̸= C. Then there exists a bijective conformal map f : Ω → D, where D is the
open unit disk. Furthermore, for any fixed z0 ∈ Ω, we can find f such that f (z0) = 0 and
f ′(z0) > 0. With such specification, f is unique.

Before stating a definition of the Fatou set and the Julia set of a rational map,
we must present some basic ideas in order to broaden the concept of continuity of
function families. We will now introduce normal families, a notion formulated by
P. Montel in 1911, and later used in complex iteration theory works of Fatou and
Julia during the same decade. To conclude, we will present Montel’s Theorem.

Definition 2.4. (Equicontinuous family) We say that a family F of functions on
Ω ⊂ C is equicontinuous at z0 ∈ Ω if for any ϵ > 0, there is δ > 0 such that if z ∈ Ω
satisfies |z − z0| < δ, then | f (z)− f (z0)| < ϵ for all f ∈ F .
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A special property of holomorphic dynamical systems is the splitting of the
phase space induced by the concept of normal families:

Definition 2.5. (Normal family) Let Ω ⊂ C be a domain and let F be a family
of holomorphic maps from Ω to C. F is a normal family in Ω if for any infinite
sequence of elements, fn ∈ F , fn has a subsequence converging uniformly on
compact sets of Ω to some limit map.

Note that local uniform convergence on Ω (with respect the spherical metric)
means uniform convergence on compact subsets of Ω, so it is sufficient to check
normality on open discs on Ω. Moreover, by the well-know Weierstrass Theorem,
the limit function of the convergent subsequence is a holomorphic map.

In fact, the condition of normality can be phrased in terms of equicontinuity
by the Arzeltà-Ascoli theorem:

Theorem 2.6. (Arzeltà-Ascoli Theorem) Let Ω ⊂ C be compact set and F be a family
of continuous functions on Ω that is uniformly bounded. Then the following statements
are equivalent:

(i) F is equicontinuous at each point of Ω.

(ii) Each sequence of functions in F has a subsequence that converges uniformly on Ω.

An easy way to check normality is to apply Montel’s Theorem.

Theorem 2.7. (Montel’s Theorem) Let Ω ⊂ C be a domain, and let F be a family of
holomorphic functions from Ω to C. If there are three points a, b, c ∈ C that are omitted
by every f ∈ F , then F is a normal family in Ω.

In particular, if the family F of holomorphic functions from Ω to C is uni-
formly bounded, then F is a normal family.

Normally we will consider maps defined on domains, but this can be general-
ized to Riemann surfaces, concept that we will introduce in the upcoming section.

2.2 Iteration. The Riemann Sphere

The goal of this section is to introduce iteration of holomorphic maps in one
complex variable. Often, when working with rational maps, ∞ can be considered
as any other point of the plane. To this end, we intend to extend the complex
plane C to the Riemann sphere by adding the point at infinity, i.e.

C = C ∪ {∞}.
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That being said, we can treat infinity as an extra point of the plane and operate
with it. Considering the whole as a sphere we may find ourselves with functions
which are perfectly tamed and well behaved everywhere, for example, dividing
by infinity, or expressions such as 1

0 = ∞ are properly defined within the sphere.

Figure 2.1: Riemann’s Sphere.

This insight may be clarified: let’s think of the Euclidean sphere

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}

and the complex plane, C, holding its equator. For any point z on this equatorial
plane, we can trace a straight line that connects it with the north pole of the sphere,
i.e. the point N = (0, 0, 1), and this line will eventually cross the sphere. If z is
external to the sphere (points outside the unit disc D ∈ C), it will cross its northern
hemisphere. If z lies within the sphere (points inside D), the line will cross its
southern hemisphere. And if z lies on the sphere, then he is particularly on the
equator, and he himself will be the point of intersection. This method of relating
exactly one point on the sphere to each point of the plane is called stereographic
projection, π, and at the points π(z) can be defined in Cartesian coordinates as

π(z) =
(

2x
|z|2 + 1

,
2y

|z|2 + 1
,
|z|2 − 1
|z|2 + 1

)
where x = Re(z), and y = Im(z), are the real and imaginary part of z ∈ C,
respectively. With this Riemann’s model, ∞ is close to the numbers with a very
large module, whereas the 0 point is close to the numbers of very small module.

The Riemann sphere, as a differentiable variety, is a compactification of the
complex plane by the addition of the point of infinity. Being a compact surface,
sometimes makes it better or simply easier to work on than C.

When working in the Riemann sphere we shall use the spherical metric defined
as the following:
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Definition 2.8. (Spherical length) Suppose γ : [0, 1] → C is a path in C. The
spherical length of γ is defined as

l(γ) := 2
∫

γ

|dz|
1 + |z|2 = 2

∫ 1

0

|γ′(t)|
1 + |γ′(t)|2 dt.

Definition 2.9. (Distance) Let z1, z2 ∈ C, and let Γ be the set of all paths in C from
z1 to z2. Then, the distance from z1 to z2 in the spherical metric is defined as

σ(z1, z2) := inf
γ∈Γ

l(γ).

More intuitively, this is the shortest distance to travel from z1 to z2 if we think
of these points as being on the Riemann sphere, and we can only travel on the
Riemann sphere itself. We cannot "drill" a straight line from z1 to z2, since this
process would correspond to the cordal metric (which is another possible metric).

All in all, if we have a rational map f : C → C, with f (z) = P(z)/Q(z) where
P and Q are complex polynomials with no common factors, and the degree of f is

d = max(deg(P), deg(Q)) ≥ 2,

we can extend f to C by defining f (pi) = ∞ (where pi are the zeros of Q), and

f (∞) = lim
z→∞

P(z)
Q(z)

.

By Morera’s theorem, the extension f : C → C is holomorphic. Conversely,
one can show that every holomorphic map of C must be a rational function [5].

Observe that maps with an essential singularity like ez cannot be extended
continously to ∞.

In general, in this work we will only consider rational maps f : C → C (where
polynomials are the special case for which f−1(∞) = {∞}), or entire transcenden-
tal functions f : C → C (i.e. functions with an essencial singularity at ∞). To unify
this notation, from now on we will consider dynamical systems generated by the
iteration of holomorphic mappings f : S → S, where S ∈ {C, C}.

Definition 2.10. (Orbit) Given a map f : S → S, the (forward) orbit of a point z0

under f is the sequence of iterates

O+(z0) = {zn = f n(z0)}n∈N.

The backward orbit of z0 is the set

O−(z0) = {z : f n(z) = z0}n∈N.
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Definition 2.11. (Grand orbit) Given a set f : S → S and a point z ∈ S, its grand
orbit consists of all points in S which are related forwards or backwards with z
under iteration of f . More precisely,

GO(z) = {w ∈ C | f p(z) = f q(w) for some p, q ∈ N}.

Understanding the dynamical system generated by the iterates of f means
understanding the fate of all orbits in terms of their initial condition, i.e. their
asymptotic behaviour when the time n tends to ∞.

2.3 The dynamical parition: Julia and Fatou sets

The purpose of this section is to show a few classic results regarding the prop-
erties of Julia and Fatou sets, as well as to give a clear definition of these two new
concepts. Although we will prove almost all the lemmas listed in this section, their
proofs may also be found in [3] or [19], among other interesting results related to
the subject.

Let f : S → S be a holomorphic mapping where S ∈ {C, C}, and let { f n}n∈N

denote the nth-iterate. By classifying the points of S, our surface is naturally par-
titioned into two disjointed invariant subsets, one that behaves tamely (the set of
normality), and the other that behaves in a chaotic manner (its complement).

Definition 2.12. (The Fatou and Julia Sets) We define the Fatou set F ( f ) of a
given map f : S → S, as the set of points z0 ∈ S such that { f n} is a normal family
in some neighborhood of z0. The complement of the Fatou set is the Julia set,
J ( f ).

Since the map is clear from the context, we will use throughout this chapter
the notation J = J ( f ) for Julia's set, and F = F ( f ) for Fatou's set.

Example 2.13. An outstanding family of Julia sets is obtained from simple quadratic
functions: fc = z2 + c, where c is a complex number. Julia sets obtained from this
function are denoted by Jc.

Let zn = Qn
c (z0), where z0 is an initial condition in C. It can be shown that if

|zn|> 2, then the orbit diverges to ∞ and the point z does not belong to the Julia
set (see Chapter 3). Therefore, it is enough to find a single term of the sequence
that verifies |zn|> 2 to be certain that z0 is not in the Julia set.

In the images below, colors give an indication of the speed with which the
sequence diverges (its module tends to infinity): in orange, after few calculations
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it is known that the point is not in the Julia set; and in green, it has taken much
longer to prove it.

Figure 2.2: Julia sets of Q(z) = z2 + (−0.09 + 0.68i) and Q(z) = z2 + (0.34 + 0.04i)

Here we have defined the Fatou set as the normality set of the family of iterates
of a rational map, but we could also have done as the equicontinuity set of this
family. As we already saw, the two concepts are perfectly interchangeable.

A property shared by Fatou and Julia sets is the complete invariance.

Lemma 2.14. (Invariance Lemma) The Julia set J and the Fatou set F of a holomorphic
map f : S → S are completely invariant under f. That is, z ∈ J if and only if f (z) ∈ J ,
and the same holds for F .

Proof. Once we see that Fatou’s set is invariant by f , the case of Julia’s set is
automatically proven since J ( f ) = C\F ( f ).

(⇒) Suppose that z0 ∈ F ( f ). By definition, there is an open set U ⊆ S such
that z0 ∈ U and { f n} is a normal family in U. Then f (z0) ∈ f (U), being f (U) an
open neighborhood if f (z0) since f is open.

Let { f nk} be a sequence in U. There exists a subsequence f nkj
−1

⇒ g in k,
which implies that f nk j ⇒ f ◦ g in f (U). Subsequently, { f n} is normal in f (U).

(⇐) The process would be done backwards in an analogous way.

Lemma 2.15. The Julia set J is closed, and the Fatou set F is open.

Proof. Trivial by the definition of J and F : the Fatou set is the biggest open
set of normality, and therefore the Julia set is closed and compact (since C is
compact).
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Lemma 2.16. (Iteration Lemma) For any k ∈ N, J ( f k) = J ( f ).

Proof. As in the preceding case, we can also work on the lemma with the Fatou
set. We want to see that z ∈ F ( f k) ⇔ z ∈ F ( f ). Or, equivalently, that: every
partial of { f kn} has a convergent partial ⇔ every partial of { f n} has a convergent
partial.

(⇐) For any nj → ∞, we know that { f nj} has a convergent partial, and we
want to see that { f kni} has a convergent partial too. In fact, this is obvious since
we can define kni = nj, which implies that { f kni} = { f nj} is partial of { f n}, and
by hypothesis we know every partial of { f n} has a convergent partial.

(⇒) We know that { f kni} has a convergent partial, and we want to see that
every { f nj} has it as well. Given { f nj}, we can divide it into k groups, for k ∈ N,
so that ∃ i = 0, 1, . . . , k − 1 such that nj = kmj + i for infinite indices j. Since there
are infinite elements, there must be one of these groups that has infinite elements.

If we know that for every infinite { f kni}, there is a convergent partial, it is also
true that any { f kni+l} there is a convergent partial, since:

{ f kni} ⇒ g ⇔ { f kni+l} ⇒ f l ◦ g

Therefore, let { f kmj+i} be the group with infinite elements. By hypothesis, we
have a convergent partial. But it is also a partial sequence of { f nj}, therefore { f nj}
has a convergent subsequence.

Lemma 2.17. (Transitivity / Blow-up Property) Let z0 be any point in the Julia set
J ( f ) ⊆ C, and let N be an arbitrary neighborhood of z0. Then, the union U formed by
all iterates f n(N), ∀n ≥ 0, contains the entire Julia set and contains all but at most two
points of C.

Proof. We will argue through contradiction. Assume that three values have been
omitted. Since the family of maps is not normal (due to the fact that z belongs to
the Julia set), we use Montel’s theorem, and we reach the contradiction.

In order to be able to continue stating and proving more properties, we need
to characterize certain types of points that have a special behaviour and features.

Definition 2.18. (Periodic point, periodic orbit, fixed point and multiplier)
An element t z0 ∈ C is said to be a periodic point of f of period p ≥ 1 if

f p(z0) = z0,
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and, for every j < p, f j(z0) ̸= z0. In this case, the orbit of z0, called periodic orbit or
cycle, is given by the finite set

<z0> := {z0, z1, . . . , zp−1}.

If p = 1, z0 meets the property f (z0) = z0, and it is called a fixed point for f.

The number λ = f ′(z0) is called the multiplier of f at z0.

Definition 2.19. (Multiplier of a periodic orbit) We define the multiplier of the orbit
as the number

λ = ( f p)′(z0) = f ′(z0) f ′(z1) . . . f ′(zp−1) =
p−1

∏
i=o

f ′(zi)

Definition 2.20. (Preperiodic point) An element z0 ∈ C is called a preperiodic point
of f if f p(z0) is periodic for some p ∈ N and strictly preperiodic if it is preperiodic
but not periodic.

Though we only took into account two types of special orbits, in certain cases
we can determine how the neighboring points of the periodic point will behave
when they are iterated by the same function f .

Definition 2.21. (Classification of fixed points) We classify the fixed points ac-
cording to f ′(z0) = λ, their multiplier, as follows:

• Attracting if |λ|< 1. In particular, if λ = 0, we refer to a superattracting
fixed point.

• Repelling if |λ|> 1.

• Rationally neutral or parabolic if |λ|= 1 and for some integer n, λn= 1.

• Irrationally neutral if |λ|= 1 and λn is never equal to 1.

Definition 2.22. (Basin of attraction) We define the basin of attraction of an attract-
ing p-periodic orbit <z0> = {z0, z1, . . . , zp−1} as the set of points that tend to the
orbit under iteration of f , i.e.

A(<z0>) = {z ∈ C | f np → zi as n → ∞, for some 0 ≤ i ≤ p − 1}.

The union of the connected components of A(<z0>) which contain the cycle is
denoted by A∗(<z0>) and it’s called the immediate basin of attraction of <z0>.

Observation 2.23. A(<z0>) is open, because it is the union of the backwards iterates
f−n(D(z0, ϵ)), for a given small ϵ < 0.
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Figure 2.3: Julia set with an attracting cycle.

We present the following theorem as a compendium of basic properties of Julia
and Fatou sets.

Theorem 2.24. (Julia and Fatou Sets Properties) Let f : S → S be a holomorphic
map, and F ( f ) and J ( f ) its Fatou and the Julia sets, respectively. Then:

(i) If z0 belongs to J ( f ), the set of all preimages of z0 is dense on J ( f ).

(ii) If A ⊂ C is the basin of attraction of some attracting periodic orbit, then the topolog-
ical boundary ∂A = A\A is equal to the entire Julia set. Moreover, every connected
component of the Fatou set C\J ( f ) either coincides with some connected compo-
nent of this basin A or else is disjoint from A.

(iii) If the Julia set contains an interior point, then it must be equal to the entire Riemann
Sphere C.

(iv) If D is a union of components of F that is completely invariant, then J = ∂D.

Proof. (i) This fact is a consequence of the Blow-up Property. Let be w ∈ J ( f )
and U a neighborhood of w. We shall prove that U contains any preimage
of z0. Given that the images of U should cover all C (except, at most, two
points), it must exist N > 0 such that z0 ∈ f N(U). This yields that U has
some point that, under N iterates, is sent to z0; which is the definition of
preimage of z0.

(ii) If U is any neighborhood of a point of the Julia set, then, by Transitivity
Lemma, implies that some f n(U) intersects A, hence U itself intersects A.
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This proves that J ( f ) ⊂ A. But J ( f ) is disjoint from A, so it follows that
J ( f ) ⊂ ∂A.

On the other hand, if U is a neighborhood of a point of ∂A, then any limit
of iterates f n

|U must have a jump discontinuity between A and ∂A, therefore
∂A ⊂ J ( f ).

Finally, one can see that any connected Fatou component which intersects
A must coincide with some component of A, since it cannot intersect the
boundary of A.

(iii) If J ( f ) has an interior point z1, then choosing a neighborhood N ⊂ J ( f )
of z1, the union U ⊂ J ( f ) of forward images of N is everywhere dense,
U ⊂ C. Since J ( f ) is a closed set, it follows that J ( f ) = C.

(iv) This fact is directly a consequence of being ∂D a subset of J ( f ) (by Iteration
Lemma).

Lemma 2.25. The attracting periodic points and their basins of attraction belong to the
Fatou set.

Proof. As we mentioned in the last observation, the basin of attraction of any
attracting periodic point of period p ≥ 1 is an open set. Therefore, if z belongs
to the basin of attraction of a fixed point z0, for any neighborhood U sufficiently
small (inside the basin of attraction), the iterates of f converge on U towards the
constant function g(z) ≡ z0. Hence, z is normal and belongs to F ( f ).

On the other hand, if z belongs to the basin of attraction of a periodic point z0

with period p > 1, we can use the same argument over the function h = f p.

Lemma 2.26 ([19, Lemma 4.6]). The repelling points belong to Julia set. Furthermore,
they form a dense set on J ( f ). In other words,

J ( f ) = {z ∈ C : z is a repelling periodic point}.

Recall that a periodic point z0 = f p(z0) is said to be parabolic if its multiplier λ

is a root of 1, but no iterate of f is the identity map. Parabolic periodic points also
come equipped with a basin of attraction.

Definition 2.27. (Parabolic Component - Parabolic cycle) A p-periodic component
U of the Fatou set F is called parabolic if there is a neutral fixed point ζ for f p on
its boundary such that all points in U converge to ζ under iteration by f p. The
domains U, f (U), ..., f p−1(U) form a parabolic cycle of Fatou components.
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Lemma 2.28. Every parabolic periodic point belongs to the Julia set.

Proof. By a suitable change of coordinates, we may assume that the periodic point
is z = 0. Therefore, some iterate f n will be written as z + apzp + H.O.T, where
p ≥ 2, and ap ̸= 0 with p-th derivative (p!)ap. It follows that f nk will likewise
be written as z + kapzp + H.O.T. Thus, the p-th derivative of f nk for an arbi-
trary k ∈ N at the origin is (p!)apk, which diverges to infinity as k → ∞. It
follows by Weierstrass Uniform Convergence Theorem [19, Theorem 1.4], that no
subsequence { f nk j} can converge locally uniformly as k j → ∞, so we obtain the
non-normality.

Figure 2.4: Julia set with a parabolic cycle.

Lemma 2.29. (Not empty) If deg f ≥ 2, J is not empty.

Proof. For the sake of simplicity, we shall only prove this for the rational case.
Let f be a rational map of degree d ≥ 2. Arguing by contradiction, suppose

that the Julia set is empty, J = ∅. Then, { f n} is a normal family on all C, so
there is a uniformly convergent subsequence {nk}, k ∈ N, such that f nk → g for
g : C → C. Since f n are holomorphic, the limit map g is holomorphic too, so it’s
either the constant map ∞ or else a rational map.

If g is constant, the image of f nk is eventually contained in a small neighbor-
hood of the constant value ∞, which is impossible since f nk covers the whole C.
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If g is not constant, eventually f nk has the same number of zeros as g (this
follows from the Argument Principle), which is also impossible, since d ≥ 2 and

deg( f nk) = dnk → ∞,

which implies that we have a rational function with not finite degree (contra-
diction).

As in certain cases holomorphic functions may have exceptional points, it is
necessary to define the concept of exceptional set of a rational map f in order to
prove that the Julia set is perfect.

We always consider functions of degree ≥ 2. Consequently, the set of preim-
ages of a point is always infinite, with a few exceptions.

Definition 2.30. (Exceptional points - Exceptional set) Given a set f : S → S, a
point z ∈ C is exceptional under f if its grand orbit, GO(z) ⊆ C, is a finite set.

We define the exceptional set E( f ) as the set of points with a finite grand orbit,
i.e., the set of exceptional points.

One can prove that if f is a rational map of degree two or more, then the set
E( f ) of exceptional points can have, at most, two elements. These exceptional
points, if they exist, must be critical points of f , and they must belong to the Fatou
set of f (see [19]). For example, in polynomials, infinity is exceptional since it has
no preimage, and it is a superattracting fixed point .

Lemma 2.31. (Perfect) The Julia set J is perfect, that is it is closed with no isolated
points.

Proof. Once again, this will only be proven for the rational case.
Let z0 ∈ J be an arbitrary point and let V be an arbitrary neighborhood for

such z0. We must prove that there is another point in V which belongs to J .
We will first study the situation in which z0 is not a periodic point.
As z0 is not periodic, we know that f (z0) cannot contain z0, and thus we

can choose some z1 ∈ f−1(z0) that satisfies z1 ̸= z0. For all n, f n(z0) ̸= z0, so
f n(z0) ̸= z1. It follows that V contains a point z2 ∈ f−k(z1) for some natural
number k, since backwards iterates of z1 are dense in J . Thus, z2 ∈ J ∩ V,
z2 ̸= z0.

We now suppose z0 is periodic (of period n) and it is the only solution to
the equation f n(z0) = z0. Then z0 would be a superattracting fixed point for f n,
contradicting z0 ∈ J ( f ) = J ( f n).

Lastly, suppose there is an alternative solution z1 ̸= z0 with f n(z1) = z0. Fur-
thermore f j(z0) ̸= z1 for all j, since otherwise it would hold for some 0 ≤ j < n
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(by periodicity) and therefore z0 ̸= z1 = f j(z0) = f n+j(z0) = f n(z1) = z0, contra-
dicting the minimality of n. Therefore, we would be back to the first case: z1 must
have a preimage in J ∩ V which cannot be z0.

2.4 Local and semilocal theory

The contents of this chapter can be found in Chapter II and III of [7], where
the reader can go for further details.

A good starting point for understanding the dynamics of holomorphic func-
tions is to consider periodic points and the behaviour that takes place in their
surroundings. Given a function f , to determine the basin of attraction of an at-
tracting periodic point can sometimes be complex, and we could find ourselves
barely understanding the dynamics of its neighbouring points. To fix this, we
can make use of simpler functions, whose behavior is already known, in order to
extract certain information regarding the original function. We do that through
conjugations.

Definition 2.32. (Conformal conjugacy) We say that a function f : U → U is
(conformally) conjugate to a function g : V → V if and only if there is a conformal
one-to-one map φ : U → V such that g = φ ◦ f ◦ φ−1, i.e.

φ( f (z)) = g(φ(z))

This last equality is called Schröder’s equation. In other words, the following
diagram commutes:

U
φ

��

f // U
φ

��
V

g // V

This definition also implies that the iterates f n and gn are also conjugated
by the same map φ, i.e., gn = φ ◦ f n ◦ φ−1. Indeed, whenever well-defined, the
inverses f−1 and g−1 are also related by φ, since g−1 = φ ◦ f−1 ◦ φ−1.

We can also verify that conjugacies send orbits to orbits, periodic orbits of
period p to periodic orbits of period p, fixed points to fixed points, attracting
points to attracting points, etc. Hence, we consider the dynamics of conjugate
maps to be "the same".

Now, our aim is, according to the multiplier of a fixed point, to get the normal
form of a function close to the fixed point. In order to do this, suppose z = 0 is a
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fixed point of f (z) with the multiplier λ. We may ask ourselves if the dynamics
in a neighborhood of z0 is conformally conjugate to z 7→ λz in a neighborhood of
0, i.e. under which conditions there exists a conformal map φ such that φ(z0) = 0
and φ( f (z)) = λ(φ(z)). This is known as the linearization problem, which has
different solutions according to the kind of fixed point we are considering.

The easiest fixed points to deal with are the attracting fixed points that are not
superattracting, i.e., those whose multiplier lies between 0 < |λ| < 1. In this case,
the answer is affirmative.

Theorem 2.33 ([7, Theorem 2.1]). (Koenigs Linearization Theorem) Suppose f has
an attracting fixed point at z0, with its multiplier λ satisfying 0 < |λ| < 1. Then, there
is a conformal map ζ = φ(z) of a neighborhood of z0 onto a neighborhood of 0, which
conjugates f (z) to the linear function g(ζ) = λζ. Furthermore, the conjugating function
is unique, up to multiplication by a nonzero scalar factor.

The existence of a conjugating map when z0 is a repelling fixed point follows
immediately from the attracting case. Suppose that f (z) = z0 + λ(z − z0) + . . .
such that |λ| > 1. Then, by the Inverse Function Theorem, the local branch of
f−1(z) = z0 + (z − z0)/λ + . . . has an attracting fixed point at z0. Any map
conjugating f−1(z) to ζ/λ also conjugates f (z) to λζ.

In short, for the attracting and repelling cases, f is locally conformally conju-
gate to its linear part z → λz. This result is from 1884, and on account of Koenigs.

In the case of superattracting fixed points, λ = 0, one can also demonstrate the
existence of a conjugacy, proved for the first time by L.E. Böttcher in 1904.

Theorem 2.34 ([7, Theorem 4.1]). (Böttcher’s Theorem) Suppose f has a superat-
tracting fixed point at z0

f (z) = z0 + ap(z − z0)
p + . . . , ap ̸= 0, p ≥ 2.

Then there is a conformal map ζ = φ(z) of a neighborhood of z0 onto a neighborhood of 0
which conjugates f (z) to ζ p. Furthermore, the conjugation is unique, up to a multiplica-
tion by a (p − 1)-th root of the unity.

This theorem is relevant for polynomials and their dynamics, since every poly-
nomial of degree ≥ 2 can be extended to the Riemann sphere as a rational function
such that it has a superattracting point at infinity.

Throughout this chapter we have seen the existence of conjugations for attract-
ing, repelling and superattracting fixed points. Therefore everything that remains
to be considered is the case where |λ| = 1, that is λ = e2πiθ , where can either have
θ being rational (parabolic case) or θ being irrational (irrational case).
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To describe the dynamics around the parabolic point (rational case), the fol-
lowing definition of petals is required.

Definition 2.35. (Attracting and repelling petals) Let f be defined and univalent
in a neighborhood U of the origin. An open set P ⊆ U is called an attracting petal
for f at the origin if:

f (P) ⊆ P ∪ {0} and
⋂
k≥1

f k(P) = {0}.

An open set P ⊆ U is called a repelling petal for f at the origin if it is an
attracting petal for f−1, where f−1 is well defined in a neighborhood of 0, mapping
0 to 0.

Figure 2.5: Pattern of atracting petals for z + z4 and −z + z4.

Theorem 2.36 ([19, Theorem 10.7]). (Leau-Fatou Flower Theorem) Let

f (z) = z + azm+1 + (H.O.T.) with a ̸= 0, n ≥ 1,

be holomorphic in some neighborhood of the origin, then there exist 2n petals Pj, where Pj

is either repelling or attracting depending on whether j is even or odd. Furthermore, these
petals can be chosen so that the union

{0} ∪ P0 ∪ . . . ∪ P2n−1

is an open neighborhood of z = 0. When n > 1, each Pj intersects each of its two immediate
neighborhoods in a simply connected region Pj ∪ Pj±1, but is disjoint from the remaining
Pk (we consider j module 2n).

From this local description, it is clear that f is not conjugate to its linear part
(the identity) in any neighborhood of the fixed point.
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For the case λ = e2πiθ , where θ ∈ R \Q, a fixed point is considered to be a Siegel
point if the local linearization φ( f (z)) = λ(φ(z)) is possible. The remaining cases
are referred to as Cremer points and the dynamics are much more sophisticated.
Further details can be found in [7] and [19].

Definition 2.37. (Siegel Disk) The maximal neighborhood of the fixed point (Siegel
point) where the linearization is preserved is called a Siegel disk.

Figure 2.6: Julia set with Siegel disks.

One can see that p is a Siegel point if and only if p ∈ F (Montel’s Theorem).

Cremer, in 1927, showed that for a generic selection of rotation numbers, lin-
earization is impossible . Only in 1942 did Siegel prove that this was not always
the case. In fact, he demonstrated that if θ is Diophantine, then there is a Siegel
disk around the fixed point.

Definition 2.38. (Diophantine number) A real number θ is Diophantine if it is
badly approximable by rational numbers, in the sense that there exists c > 0 and
µ < ∞ so that, for all p/q ∈ Q,

|θ − p
q
| ≥ c

qµ
.

If we write λ = e2πiθ , this condition is equivalent to

|λn − 1| ≥ c · n1−µ, n ≥ 1.
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The following is the original theorem of Siegel.

Theorem 2.39 ([7, Theorem 6.4]). (Siegel) If θ is Diophantine, and if f has a fixed
point at z = 0 with multiplier e2πiθ , then there is a solution to the Schröder equation.

Since then, the conditions used by Siegel have been improved by other mathe-
maticians such as Herman or Bryuno. For further information see [6] and [14].

2.5 Global theory

Once again, let us consider f : S → S, a holomorphic mapping in which S ∈
{C, C}. Our aim is to describe the global structure of the Fatou set. In order to
do that, we suppose that J ̸= S, so we have an open, nonempty Fatou set F .

Definition 2.40. (Fatou component) A Fatou component for a nonlinear rational
map f is a connected component of F , the Fatou set.

By the Maximum Principle and the total invariance of the Julia set, if U is a
Fatou component, f (U) is also a Fatou component. Therefore, we may consider
dynamics on the set of Fatou components.

Definition 2.41. (Types of Fatou components) Consider a Fatou component U.
Then:

1. If f p(U) = U for some minimal p > 0, then U is a p-periodic component of
F . In particular, if p = 1, then f (U) = U, and we call U a fixed (or invariant)
component.

2. If f k(U) is periodic for some k > 0 but U is not, we call U a (strictly) preperi-
odic component.

3. Otherwise, if all f k(U) are distinct for every k, we call U a wandering domain.

One of the most significant theorems which has advanced complex dynamics
over the past few years is Sullivan’s Theorem, proven in 1985.

Theorem 2.42 ([7, Theorem 1.3]). (Sullivan Theorem - No wandering domains)
Let f be a rational map of degree at least 2. Then, there does not exist any wandering
domain.

Once we have discarded the possibility of wandering domains, we can ensure
that every component of the Fatou set is periodic or preperiodic.

Now, let’s define a new type of sets that are highly linked to Siegel disks:
Herman Rings. Broadly speaking, we can see Herman rings as Siegel disks with a
hole.
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Definition 2.43. (Herman Ring) A component U of the Fatou set of f is called a
Herman ring if U is conformally isomorphic to some annulus Ar = { z; 1 < |z| <
r}, on which the dynamics of f p, for some p ≥ 1, is conformally conjugate to an
irrational rotation of this annulus.

Thus, a Herman ring is a subset of the Fatou set. Michel Herman showed their
existence in 1979 [14].

Figure 2.7: Julia set with a Herman ring.

Siegel disks are simply connected components, while Herman rings are doubly
connected. Furthermore, Siegel disks and Herman rings are often collectively
called rotation domains.

The behaviour of repeated iterations of f on periodic components is well un-
derstood, and the following widely-known result, originally stated by Fatou, sums
up the various possibilities that one can have.

Theorem 2.44 ([7, Theorem 2.1]). (Classification of periodic Fatou components)
Let f : S → S be a holomorphic mapping in which S ∈ {C, C}, of degree at least 2. Let
U be a p-periodic Fatou component. Let <U> = {U, f (U), ..., f p−1(U)}. Then, exactly
one of the following holds:

1. The cycle <U> is called the immediate basin of attraction of the attracting cycle
<z0>, i.e.

∃ z0 ∈ U s.t. f np(z) → z0, n → ∞, z ∈ U.

2. The cycle <U> is called the immediate parabolic basin of attraction of the
parabolic cycle <z0>, i.e.

∃ z0 ∈ ∂U s.t. f np(z) → z0, n → ∞, z ∈ U, and ( f p)′(z0) = 1.
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3. The cycle <U> is called a p-cycle of Siegel Disks, i.e.

∃ conformal map ϕ : U → D s.t. (ϕ ◦ f p ◦ ϕ−1)(z) = e2πiθz, θ ∈ R \ Q, z ∈ U.

4. The cycle <U> is called a p-cycle of Herman Rings, i.e.

∃r > 1 and a conf. map ϕ : U → {1 < |z| < r} s.t. (ϕ ◦ f p ◦ ϕ−1)(z) = e2πiθz,

θ ∈ R \ Q, z ∈ U.

5. The cycle <U> is called the p-cycle of Baker Domains and z0 is an essential
singularity , i.e.

∃ z0 ∈ ∂U s.t. f np(z) → z0, n → ∞, z ∈ U, but ( f p)(z0) is not defined.

Observation 2.45. Baker domains, as well as wondering domains, do not exist for
rational maps, since any cycle of Baker domains contains an essential singularity
on their boundary.

In the case of Herman rings, they do not exist for polynomials due to the
Maximum Modulus Principle, nor do they exist for entire transcendental maps,
since they require the existence of poles.

2.6 Singular values

We shall now examine the relation between singular values and periodic points.
For further details on this section, see [7], [5], and [19].

Although a global inverse is never well defined for rational maps of degree
d ≥ 2 or for entire transcendental functions, local inverse branches often are.

Definition 2.46. (Singular value - Singular orbit) A point w ∈ S is called regular
if all possible inverse branches of f are well defined in some neighborhood of w.
Alternatively w is known as a singular value of f . Its orbit is referred to as a singular
orbit.

The set of singular values, denoted by S( f ), known as the singular set of f , may
contain three types of points:

• Critical values. Defined as the images of the critical points

• Asymptotic values. A point a w ∈ S is an asymptotic value of f if w is an
essential singularity, and there is an unbounded curve

γ(t) −−→
t→∞

∞ such that f (γ(t)) −−→
t→∞

w.
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Morally, asymptotic values have some of their preimages at infinity. For
instance, an example is w = 0 for the exponential map, with γ(t) being any
path whose real part tends to −∞.

• Limits of the above.

It is cleat from the definition that rational maps do not have asymptotic values.

In holomorphic dynamics, singularities of the inverse map and their orbits play
a significant role. This is due to the fact that every cycle of Fatou components and
every non-repelling cycle is associated to the orbit of some singular value.

Now we are going to present one of the most outstanding theorems of complex
dynamics, which will be of great use on the third chapter of this work:

Theorem 2.47 ([7, Theorem 2.2 and 2.3]). If z0 is an attracting or parabolic periodic
point, then the immediate basin of attraction A(z0)∗ contains at least one critical point or
an asymptotic value. Moreover, the orbit of the critical point is infinite.

Proof. We will prove it for the attracting case, and, for the sake of simplicity, only
for rational maps.

If z0 is an attracting fixed point, we may assume that, its multiplier, λ, satisfies
0 < |λ| < 1. Let U0 = ∆(0, ϵ)) be a small disk, invariant under f , on which
the analytic branch, g, of f−1 satisfying g(z0) = z0 is defined. The branch g
maps U0 into A(z0)∗, and is one-to-one. Thus, U1 = g(U0) is simply connected,
and U0 ⊂ U1, if U0 is appropriately chosen. In case we don’t find any critical
point, we continue doing this process, constructing Un+1 = g(Un), Un ⊂ g(Un),
and extending g analytically to Un+1. If this process does not end, we obtain a
sequence gn : U0 → Un of analytic functions on U0 which omits J, and is therefore
normal on U0. But this is impossible, since z0 ∈ U0 is a repelling fixed point for
g. Then, eventually, we reach a Un to which we can not extend g. Then there is a
critical point p ∈ A(z0)∗ such that f (p) ∈ Un.

If z0 is periodic with period n > 1 and |( f n)′(z0)| < 1, this argument shows
that each component of A(z0)∗ contains a critical point of f n. Since ( f n)′(z) =

∏ f ′( f j(z)), A(z0)∗ must also contain a critical point of f .

The same result is true for a parabolic basin, and can be proved using a similar
argument.

Definition 2.48. (Postsingular and postcritical set) The postsingular set P( f ) (also
called the postcritical set if f is rational), is the closure of the union of forward
iterates of the singular set. i.e.

P( f ) =
⋃

w∈S( f )

⋃
n≥0

f n(w).
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Following the steps of the previous sections, rotation domains are related to
the presence of critical points. Is clear to see that Siegel disks and Herman rings
do not contain any critical points. However, in a sense, they can be linked to them:

Theorem 2.49 ([7, Theorem 1.1]). If U is a Siegel disk or a Herman ring, then the
boundary of U is contained in the postcritical set of f , i.e.

∂U ⊂ P( f ).

In particular, the postcritical set must be infinite.

In other words, orbits of critical points must accumulate on ∂U. Moreover, if
z0 is a Cremer point, then z0 ∈ P( f ), i.e. it is also accumulated by orbits of critical
points.

The following is one of the very remarkable connections between complex
dynamics and topology. In this occasion, we see how the dynamics of the singular
values determine a pure topological property as in local connectivity.

Theorem 2.50 ([19, Theorem 19.6, Theorem 19.7]). Let f be rational map. If J ( f )
is connected, and every critical orbit is either finite or converges to an attracting periodic
orbit, then J ( f ) is locally connected.

2.7 Polynomial dynamics

The general, theory explained in the above sections takes on a very particular
form when discussing polynomial dynamics. The contents of this section can be
found in [19], where the reader can go for more details.

As mentioned above, we will now focus on the specific case of polynomials.
Let f : C → C be a polynomial of degree d ≥ 2, that is

f (z) = ad · zd + . . . + a1 · z + a0

with ad ̸= 0. Note that f (∞) = f−1(∞) = {∞}. Therefore, f has a fixed point
at infinity. Using the change of variables 1/z, one can see that ∞ is in fact a
superattracting fixed point. We will refer to its basin of attraction (the set of points
whose orbit converges to ∞) as the basin of infinity, and denote it by

A f (∞) = {z ∈ C | f n(z) → ∞, when n → ∞}.

It is always connected since ∞ has no preimages (see [19, Lemma 9.4]).
In particular, we can always find a constant k f so that every point z in the

neighborhood |z| > k f belongs to A f (∞).
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Definition 2.51. (Filled Julia Set) The complement of A f (∞)

K f = C\A f (∞) = {z ∈ C | f n(z) is bounded}

is called the filled Julia set of f .

Observation 2.52. The filled Julia set is completely invariant and compact. It is
also full, which means that its complement, C\K f = A f (∞), is connected, or
equivalently, that all bounded Fatou components are simply connected [5]. This is
a consequence of the Maximum Modulus Principle.

In fact, all three sets, J ( f ), int(K f ), and A f (∞), follow the property of being
totally invariant, that is, if a point belongs to one of them, so does its entire orbit,
both positive and negative.

Lemma 2.53 ([19, Lemma 9.4]). For any polynomial f of degree at least 2, the filled Julia
set K f ⊂ C is compact.

The basin of infinity, as any basin of attraction, belongs to the Fatou set. But
so do all points in the interior of the filled Julia set (if it is nonempty), just by
Montel’s theorem. Instead, points in the common boundary of A f (∞) and K f

must belong to the Julia set since any neighborhood contains points whose orbit
converges to ∞, but also points with bounded orbit. In other words, A f (∞) and
K f have a common topological boundary, which is equal to the Julia set

J ( f ) = ∂A f (∞) = ∂K f .

The union of the connected component A f (∞) and all connected components
of the interior of K f , if there is any, form the Fatou set

F ( f ) = A f (∞) ∪ int(K f ).

Since f is polynomial, the Fatou components will be either Siegel disks, attracting
basins or parabolic basins.

Theorem 2.54 ([19, Theorem 9.5]). ( K f connected ⇔ Bounded Critical Orbits) Let
f be a polynomial of degree d ≥ 2. If the filled Julia set K f contains all of the finite critical
points of f , then both K f and J ( f ) = ∂K f are connected.

Although we can find the full proof in [19], a glimpse of the demonstration
is that, if the basin of infinity of f has no critical points, then we can expand
the Böttcher’s coordinates to the whole basin, and we will always obtain Jordan
curves, i.e. we can always describe K f as the intersection of closed connected
nested subsets.
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Chapter 3

Topological structures and Julia
sets

In the field of planar topology, there are sets that are considered "exotic" and
not commonly found in everyday life. These sets have unique and interesting
topological properties, and often have a visually pleasing appearance. Recently,
with the resurgence of complex dynamics, many of these exotic sets have been
discovered to be Julia sets for complex analytic functions. This chapter will explain
how four specific examples of these sets, dendrites, Cantor sets, Sierpiński curves,
and Cantor bouquets, arise from particular families of complex maps, including
the quadratic family, the complex exponential family, and a type of singularly
perturbed rational maps. The content in this chapter can mostly be found in
references [4], [13], [9], [10], [11], and [12], for those who want more detailed
information.

3.1 Dendrites

As discussed in previous chapters, a fundamental example in the theory of
complex variable iteration is the quadratic family defined as

Qc(z) = z2 + c

where c ∈ C is a parameter. This family of functions hides, under an evident
simplicity, an extraordinary dynamic richness, and has been the subject of intense
mathematical research during the last decades of the 20th century, continuing
nowadays.

More particularly, z = 0 is the only critical point for all polynomials in the
quadratic family. Thus, the only critical value of the polynomial Qc is z = c.

39
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In the following sections, we will focus exclusively on the quadratic family,
unless otherwise specified. To refer to its respective basin of infinity and filled
Julia set, we will use the following notation: Ac(∞) and Kc.

Before presenting the key theorem of this section, we will first introduce a
proposition that will be used in its proof. Given that Qc(z) is polynomial, Obser-
vation 2.52 states that Kc is full.

Proposition 3.1. If Kc = Jc, then Jc contains no simple closed curves.

Proof. Suppose that it does contain a simple closed curve, γ. If int(γ) ̸⊂ Kc, then
γ disconnects Ac(∞), which is a contradiction. If int(γ) ⊂ Kc, then int(γ) ⊂ Fc,
but Fc = Ac(∞) (given that Kc = Jc), which is also contradiction. Therefore, Jc

contains no simple closed curves.

Figure 3.1: Julia set of Q(z) = z2 + i –– a dendrite.

The main theorem in this section reads as follows:

Theorem 3.2. Consider Qc(z) = z2 + c. Let’s assume that z = 0 is not a periodic point
but Qk

c(0) for some k > 0 is. Then, Kc = Jc (i.e. int(Kc) = ∅), and Jc is a dendrite.

Proof. To prove that Jc is a dendrite, we must see that it is a locally connected
continuum that contains no simple closed curves.

By Theorem 2.54, we know that Kc is connected if and only if the orbit Qk
c(0)

does not tend to ∞. Hence, we have that Kc is connected. We can also affirm that
Kc is closed, since it is always compact (Lemma 2.53).



3.2 Cantor Set 41

In order to see that its interior is empty, we have to study the orbit of its only
critical point z = 0, which is not periodic, but strictly preperiodic. By Theorem
2.47, we know that it’s not possible to have either a parabolic or attracting basin
of attraction because the orbit of 0 falls on a cycle, which is finite. This orbit
being finite, as stated by Theorem 2.49, means that we cannot have a Siegel disk.
Additionally, the map being entire precludes the possibility of a Herman ring, and
the absence of any essential singularities means that a Baker domain cannot exist
either (Observation 2.45). All things considered, there is no Fatou component
other than Ac(∞). Therefore, the interior of Kc must be empty, and Kc = Jc.

We know, by Lemma 2.29, that Jc is nonempty and, since Kc = Jc, Jc is
compact and connected (as we already saw). As a result, it can be seen that on
one hand, Jc is a continuum (by definition), and on the other hand, according to
Theorem 2.50, it is also locally connected.

Since Kc = Jc, by Proposition 3.1, Jc contains no simple closed curves.
Based on the fact that Jc is a locally connected continuum that contains no

simple closed curves, it can be deduced that it is a dendrite.

3.2 Cantor Set

The Julia sets of certain complex polynomials, particularly those in the quadratic
family with a sufficiently large value of |c|, can take the shape of Cantor sets. These
fractal sets possess distinctive and unique geometric characteristics.

Figure 3.2: The Julia set for Qc, c = 0, 1 + i is a Cantor set (although |c| < 2).
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In order to understand these Julia sets, we must first present the following
result:

Proposition 3.3. Let Qc(z) = z2 + c be the quadratic family, and let R = max{2, |c|}.
If |z| > R, then

lim
n→∞

Qk
c(z) = ∞.

Proof. See that if |z| > R then |z| > 2 and |z| > |c|. Therefore,

|z2 − 2|
|z| ≥ |z| − |c|

|z| ≥ |z| − 1 ≥ 1,

so |Qc(z)| > |z| and |Qk
c(z)| → ∞.

Now, we can see that following the previous proposition, we are able to locate
Kc in the complex plane.

Corollary 3.4. The filled Julia set Kc of the polynomial Qc is contained in the disk with
center 0 and radius R, where R = max{2, |c|}.

We will now provide a lemma that will assist in proving the primary outcome
of this section.

Lemma 3.5. Let f : U → C be a holomophic function, U ⊂ C convex, such that
| f ′(z)| ≤ λ < 1, for any z ∈ U. Let K ⊂ U, then diam( f (K)) ≤ λ · diam(K). In
particular, if f : U → U, then diam( f n(K)) ≤ λn · diam(K), so diam( f n(K)) → 0.

Finally, we can present the main result of this section:

Proposition 3.6. If |c| > 2, the orbit of z = 0 tends to infinity (i.e. z = 0 belongs to the
basin of attraction of infinity). Consequently, the Julia set Jc of Qc is a Cantor set.

Proof. Although we will give an idea of the prove for |c| sufficiently large, the
statement is true for all |c| > 2.

First, we show that
Qk

c(0) −−→k→∞
∞.

Observe that Q3
c(0) = c2 + c, and |c2 + c| > |c|. Recall that using the previ-

ous corollary, all points with modulus greater than R = max{2, |c|} have an un-
bounded orbit, and we observe that if |c| > 2, this is exactly the complement of
the disk of radius |c|. Since |c2 + c| > |c|, then the orbit of z = 0 tends to infinity.

Let us denote the closure of the disk of radius |c| by D . Although we want to
characterize the points whose orbit never leaves D, we will study its complement.
That is, we will see which are the points of D that fall outside of D after an iteration
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of Qc. In order to do this, we calculate the preimage of the border of D, which is a
figure in the shape of an eight that passes through point 0, as shown in Figure 3.3.

Indeed, all points of the circle have two preimages of opposite sign except c,
which has only one, z = 0. If we denote the two parts of the eight figure by D0

and D1 respectively, we observe that Qc sends each of them bijectively to the disk
D. However, all points in D that are not in D0 or D1 are sent out of D. Hence, the
Julia set lies in the interior of D0 ∪ D1.

Figure 3.3: Preimage of D through Qc, which is an eight [13].

Next, we are going to study which points inside D0 ∪ D1 remain there after one
or more iterations. Since D0 and D1 are sent bijectively to D by Qc, the preimage
of the eight figure will consist of two smaller eight figures, one inside each of the
lobes:

Figure 3.4: Second preimage of disk D, which consists of two eight figures, one
inside each of the two lobes D0 and D1 of the first eight figure [13].
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Each one of these eights is bijectively sent to D0 ∪ D1. Thus, the Julia set is
contained within the lobes of the four constructed eight figures.

This process can be repeated ad infinitum, so that, after k steps, the Julia set is
contained in a 2k eight figures, each of them being a bijective preimage of D0 ∪ D1

under Qk
c . Therefore, points that never escape to ∞, must lie within one of these

eight figures, for all k.

The key to finally see that is a Cantor set is to show that each of the intersec-
tions of these closed nested eight figures, as k tends to infinity, consists of a unique
point. In other words, that the diameter of these figures tends to zero.

Let B denote the disk of radius 1/2 centered at the origin. Then, Qc(B) is the
disk of radius 1/4 centered at c. Let us assume that Qc(B) ∩ (D0 ∪ D1) = ∅. Note
that if |Q′

c(z)| ≤ 1, then z ∈ B. Thus, our assumption implies that any point with
derivative less than one is mapped out of D0 ∪ D1. For c big enough, if |z| > 3/4
(or just |z| > 1/2 + ϵ), then |Q′

c(z)| > 3/2 > 1. Hence, for any branch g of
Q−1

c ((D0 ∪ D1)), we will have |g′(z)| < 2/3 < 1. Therefore, any inverse iteration
of Q−1

c that we take in a smaller eight figure will have a diameter at least 2/3 times
smaller than the previous eight figure. If we do this ad infinitum, by Lema 3.5, we
have that the diameter goes to zero, which implies that we have a point out of any
sequence of inverse branches. Thus, the Julia set is totally disconnected.

We know by Lemma 2.15 that the Julia set is always closed. Since the orbit of 0
goes to infinity, we cannot have any Fatou component besides Ac(∞). Therefore,
once again, we have that Kc = Jc. Also, by Lemma 2.31, the Julia set is perfect,
because Jc never has isolated points.

Given that we have a closed, totally disconnected, and perfect subset of R2, the
Julia set is a Cantor set.

3.3 Sierpiński Carpet

In this section we consider the family of rational maps of the complex plane
given by

Fλ(z) = z2 +
λ

z2

with λ ̸= 0. This represents a more approachable collection of the functions
found in 1993 by Milnor and Tan Lei, where Sierpiński curves emerge as their Julia
sets.

As we already know, the Julia set of Fλ(z) is the complement of the set of points
z ∈ C such that {Fn

λ } is a normal family in some neighborhood of z.
The case λ = 0 is analog to considering the quadratic family Q0 = z2 = F0,

whose dynamics is quite simple: the Julia set is the unit circle, and all orbits in
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|z| < 1 tend to the attracting fixed point at the origin, while all orbits in |z| > 1
tend to ∞. On the other hand, when λ ̸= 0, the map is a degree-four rational map,
and we will say that Fλ has undergone a singular perturbation.

To be more precise, we will narrow down our attention to the particular case
of λ = −1/16. We will use the notation F = F−1/16. Therefore, the main theorem
of our section is the following.

Theorem 3.7. For λ = −1/16, the Julia set of Fλ is a Sierpiński curve.

Although this is the case we will be proving, it is important for the reader
to know the fact that in any neighborhood of the origin in the complex λ-plane,
there are infinitely many open sets of parameters for which the Julia sets of the
corresponding maps Fλ are Sierpiński curves (see [4]).

Moreover, any two such Julia sets are homeomorphic since, as we already
saw in Chapter 1, any planar set that is compact, connected, locally connected,
nowhere dense, and that has the property that any two complementary domains
are bounded by simple closed curves that are disjoint, by Wyburn’s theorem
(Theorem 1.30), is homeomorphic to the Sierpiński carpet, and is therefore a Sier-
piński curve. That is to say that, topologically speaking, they are all the same.
By contrast, in terms of dynamical systems, most of them are not topologically
conjugate, meaning that the dynamics on these Julia sets are rather different.

Figure 3.5: Julia sets for λ = −1/16, λ = −0.01, λ = −1/4, λ = −0.001, respec-
tively.



46 Topological structures and Julia sets

Our objective for the remainder of this section is to establish Theorem 3.7
as true. In order to accomplish that, we first need to get a general idea about
how these Julia sets are constructed. We see that |λ/z2| can be quite small for a
reasonably large |z|. Therefore, it is fair to say that, close to infinity, Fλ is mainly
given by z → z2. As a result, any orbit sufficiently far from the origin simply tends
to ∞.

Considering the smallness of |λ|, the boundary of the basin of infinity is a
simple closed curve surrounding the origin, just as in the case of z2. However, the
dynamical behavior within this curve is quite complicated.

It is clear that F has a pole of order two at 0, together with four pre-poles at
the points ±1/2 and ±i/2. Also, its four critical points lie at w/2 where w is a
fourth root of −1. Thus, the two critical values are F(w/2) = ±i/2 and, since
F2(w/2) = F(±i/2) = 0, the second iterate of each of the critical points lands on
the pole at the origin, making this case very special.

Figure 3.6: The Julia set for Fλ(z), λ = −1/16 is a Sierpiński curve [10].

The preimage of R under Fλ consists of the real and imaginary axes while
the preimage of the imaginary axis consists of two sets: the four rays θ = ±π/4,
±3π/4 and the circle of radius 1/2 centered at the origin. Note that all four critical
points as well as the four pre-poles lie on this circle. For this reason, we call the
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circle r = 1/2 the critical circle.
Now, let B denote the basin of attraction of ∞, which, as we already mention,

is bounded by a simple closed curve, γ, on which F is conjugate to z → z2. Note
that F is two-to-one on the immediate basin of ∞, B. Given that F is conjugate to
z2 on γ, there is a unique fixed point on γ. This must be the fixed point p ∈ R,
since we know that this point lies on the boundary of B.

Let T denote the component of the preimage of B that contains the origin. We
call T the trap door, since any orbit that enters it falls through the trapdoor and
then tends to ∞. The function F maps T in two-to-one fashion (except at the pole
at the origin) onto B.

Therefore, since the pole has order two, F−1(B) is exclusively T. The boundary
of T, τ is mapped in two-to-one fashion onto γ. Note that τ and γ are disjoint.
This follows from the fact that the circle of radius 3/4 about the origin is mapped
strictly inside itself. Continuing in this manner yields the set of points whose
orbits eventually enter B, and each of these preimages is bounded by a simple
closed curve which is disjoint from those previously constructed, as well as from
the boundaries of T and B. These are the analogues of the removed open squares
in the Sierpiński carpet. It is known that the union of these sets forms the Fatou
set of F.

In order to see that the Julia set of F is homeomorphic to the Sierpiński carpet,
we will use Wyburn’s theorem (Theorem 1.30). By Lemma 2.29, Jc is always
nonempty. Given that the orbits of all critical points are finite, there cannot be any
Fatou component besides Ac(∞).

Although F is a rational function and we defined the filled Julia set Kc only
for polynomials, given that ∞ is attracting, it makes sense to talk about Kc, which
is the set of points with bounded orbit. The difference is that now Ac(∞) is not
formed by a unique component, but by many components, since it contains the
immediate basin of attraction, the trapdoor, and all its preimages. Since the only
Fatou component is Ac(∞), we could say that Kc = Jc. Therefore, Jc is compact
since Jc = Kc and, by Lemma 2.53, Kc is compact.

Given that there is a basin if infinity, the Julia set it can’t be the entire C. By
Lemma 2.24 (iii), if the Julia set contains an interior point, then it must be equal
to the entire Riemann Sphere. Therefore, Jc has empty interior, i.e. is nowhere
dense. It can also be inferred that Jc is connected as we have seen by the previous
construction of the Fatou set that the preimages of the basin of infinity are simply
connected. Since the Julia set is connected and every critical orbit is finite, Jc is
also locally connected (Theorem 2.50).

Last, we have seen that each of the preimages of T is bounded by a simple
closed curve which is disjoint from those previously constructed, as well as from
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the boundaries of T and B.
In conclusion, since the Julia set is nonempty, compact, connected, locally con-

nected, nowhere dense, and has the property that any two complementary do-
mains are bounded by disjoint simple closed curves, then, by Wyburn’s Theorem
(Theorem 1.30), Jc is homeomorphic to the Sierpiński carpet.

3.4 Cantor Bouquet - Straight Brush

To see how Cantor bouquets arise from Julia sets, we should henceforth con-
sider the complex exponential family

Eλ = λez.

Proving the homemorphism of this Julia set to a straight brush requires more
advanced mathematics. Alternatively, instead of providing a well-crafted and de-
tailed construction, we will briefly describe what it entails and share some inter-
esting information about these unique structures.

In this work, only real and positive values of λ will be considered, primarily
because all the relevant phenomena present for other complex λ-values are present
in this situation as well.

As we already saw in previous sections, the orbit of 0 (the critical point) plays
an essential role in the dynamics of Qc(z). With the exponential family, it is no
different. But, in this case, 0 is an asymptotic value of all members of the complex
exponential family Eλ, rather than a critical point, of which there are none.

Once again, we will denote the Julia set of Eλ by J (Eλ), and it is the set of
points at which the family of iterates {En

λ} is not normal.
In order for Cantor bouquets to take place, we will consider λ such that 0 <

λ ≤ 1/e.

Here is an overview of how a Cantor bouquet is constructed. For 0 < λ < 1/e,
the graph of Eλ intersects the diagonal y = x twice, at an attracting fixed point
aλ, and at a repelling one rλ, as we can see in Figure 3.8. Note that Eλ(vλ) =

Eλ(− log(λ)) = 1, so that aλ < − log(λ) < rλ.
If we consider in C the vertical line Re(z) = − log(λ), we can see that if x0 ∈ R

and x0 < − log(λ), then En(x0) tends to the fixed point at aλ. Thus, the vertical
line Re(z) = − log(λ) is mapped around a circle centered at the origin and lying
to the left of x = − log(λ), since Eλ(− log(λ)) = 1 < − log(λ).

All points to the left of this line are therefore contracted inside this circle.
Consequently, by the Contraction Mapping Principle, all orbits originating in the
half plane H = {z | Re(z) < − log(λ)} must tend to the attracting fixed point aλ.
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Figure 3.7: The graphs of Eλ for λ = 1/e and λ < 1/e [11].

Hence this half plane lies in the stable set, i.e., in the Fatou set. We will try to
paint the picture of the Julia set of Eλ by painting rather his complement. Since
the basin of attraction of qλ is completely invariant under Eλ, we can obtain the
entire stable set by considering all preimages of this half plane H under Eλ.

Any point lying on a horizontal line of the form Im(z) = (2k + 1)π, for each
integer k, is mapped by Eλ to the negative real axis, so these points lie in the basin.
Hence, there are open neighborhoods of each of these lines that lie in the stable
set too. Then, there is an open set about these lines to the right of H that is shaped
like a finger pointing to ∞. See Figure 3.8.

Figure 3.8: The preimage of H for λ = 1/e consists of H and the shaded region
[11].
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The complement of these open sets consists of infinitely many closed "C"-
shaped regions extending to ∞ in the right half plane. Each of these regions is
contained within the strip of two horizontal lines given by −π

2 + 2jπ ≤ Im(z) ≤
π
2 + 2jπ, and each is mapped in one-to-one fashion onto the half plane forming
the complement of H in C.

Continuing in this fashion inductively, we remove infinitely many subfingers
at each iteration of Eλ. In the limit, the set of points which do not fall into H
after some iterate of Eλ is the Julia set of Eλ, J (Eλ), and it is known that this
set consists of infinitely many curves, each with a distinguished endpoint and a
"stem", i.e., the portion of the curve that extends from the endpoint to ∞ in the
right half plane. This is the Cantor bouquet.

Figure 3.9: The tip of the Cantor bouquet for Eλ with λ = 1/e.

Despite being outside the scope of this work, we still want to conclude by
presenting some surprising findings related to Cantor bouquets.

On one hand, the endpoints of these curves have a very special characteristic.
If we take the set of endpoints together with infinity, then we have a connected set.
However, if we take it without infinity, we have a set that is totally disconnected
[11, Theorem 3.2].

Another interesting result is the Karpińska paradox. This mathematical con-
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cept was proposed by Polish mathematician Bożena Karpińska [15], and states
that the set of curves without endpoints has Hausdorff dimension 1; but the set of
endpoints has Hausdorff dimension 2.



Conclusions

In summary, this work has provided, in first place, a comprehensive look into
the fundamentals of planar topology and complex dynamics.

Just as we aimed, we have covered the basic principles of planar topology as
well as defined fractal and fractal dimension. We have also examined examples of
exotic topological models such as dendrites, Cantor sets, Sierpiński carpets, and
Cantor bouquets, and explored their characteristics from a topological perspective.

Thereafter, we have established the foundations of complex dynamics by pro-
viding an overview of iteration on the Riemann sphere, and concepts of normality
and Montel’s theorem. We have also given formal definitions of the Fatou and
Julia sets, and discussed their key properties.

After introducing the basics of local, semilocal, and global theory, we have
delved into the five types of periodic Fatou components using the Classification
Theorem. Furthermore, we have talked about singular values and polynomial
dynamics, which was highly beneficial for the final chapter.

Lastly, we have demonstrated how the sets presented in Chapter 1 appear as
the Julia sets of specific families of complex maps such as the quadratic family, the
complex exponential family, and a particular class of singularly perturbed rational
maps using the tools discussed in previous chapters.

Overall, this essay has aimed to highlight the beauty and complexity of planar
topology and how complex dynamics adds a new dimension to its exploration.
We have explored the ways in which different topological structures naturally
arise as the Julia sets of some complex maps, which was our main goal. These
sets are truly mesmerizing, and the fact that they can exhibit such rich topological
properties despite their simple geometric structure is quite remarkable.

An additional avenue for further research in this field, besides delving deeper
into case where Cantor Bouquets arise as Julia sets of Eλ, could be to examine the
emergence of the Knaster continuum. These new exotic topological structures, in
a similar way, naturally appear as Julia sets of Eλ too.

It is evident that there is a lot of unexplored territory in this field, and I hope
that this work will inspire others to continue exploring this captivating area of
study.
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[15] B. Karpińska, Hausdorff dimension of the hairs without endpoints for λexp(z), C.
R. Acad. Sei. Paris Sér. I Math, 328, 1999. 1039-1044.

[16] B. Knaster, Un continu dont tout sous-continu est indécomposable, Fund. Math.
3, 1922, 247-286.

[17] J. Lee. Introduction to smooth manifolds, Springer-Verlag, 2012.

[18] B. Mandelbrot, The fractal geometry of nature, W.H. Freeman and Company,
New York, 1977.

[19] J. Milnor, Dynamics in One Complex Variable, Third Edition, Princeton Uni-
versity Press, 2006.

[20] S. Nadler, Continuum theory: an introduction, CRC Press, 1992.

[21] M. H. A. Newman, Elements of the topology of plane sets of points, Praeger, 1939.

[22] D. Sullivan, Quasiconformal homeomorphisms and dynamics. I. Solution of the
Fatou - Julia problem on wandering domains, Annals of Mathematics, Second
Series, Vol. 122, No. 2, 1985, 401-418.

[23] G. T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math.
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