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Abstract 
When assessing health inequalities, should one compare health outcomes across predetermined groups (e.g., 
race, ethnicity, socioeconomic status), or across individuals? Group-based approaches comparing group- 
specific means do not account for intra-group heterogeneity. Yet, traditional approaches based on additive 
decompositions splitting total inequality in its within- and between-group components fail to elucidate the 
groups’ relative performance. Here, we develop a third approach based on pairwise comparisons to 
evaluatenot only the variability that might exist across individuals within and between groups, but also the 
relative performance of the different groups vis-a-vis each other—thus integrating both perspectives into a 
coherent framework.
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Introduction
The study of health inequalities has become a prominent issue in global research and policy agen
das since the early 2000s. Average health attainments invariably mask the heterogeneity in the 
underlying distribution of health, and there is a widespread agreement on the need to go beyond 
the ‘study of means’ when studying countries’ overall performance. When assessing health in
equalities, the choice of the basic unit of analysis is essential: Should one compare health outcomes 
across predetermined groups (classified, for instance, by race, ethnicity, religion, or socioeconomic 
status), or across individuals? Around the early 2000s, there was a brief but intense debate on 
whether health differences should be based on comparisons among groups or individuals. The pro
ponents of the group-based approach claimed that individual-based approaches to inequality ‘re
move equity and human rights from the public health monitoring agenda’ because of their 
exclusive focus on individuals—rather than on the groups to which they belong (Braveman 
et al., 2001:678). Ignoring such characteristics, they argued, one would be unable to identify 
whether some groups were disadvantaged vis-a-vis the others (Braveman et al., 2000, 2001). 
On the contrary, supporters of the individual-based approach argued that focusing exclusively 
on between-group differences and ignoring the variability existing within groups would miss an 
important part of the story. Instead, they suggested investigating the inter-individual variations 
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in health outcomes first and then trying to determine how much of such variability would be ex
plained by social class, race, or any other grouping one might be interested in (Gakidou et al., 
2000; Murray, 2001).

Almost two decades later, no consensus seems to have been reached and current approaches fail 
to provide answers that are satisfactory to both sides simultaneously. On the one hand, there are 
countless studies comparing mean health outcomes (say, life expectancy) across groups that do not 
incorporate the heterogeneity that might exist within those groups into the analysis. On the other 
hand, the individual-based approach has gained considerable traction during the last years 
(Edwards & Tuljapurkar, 2005; Gakidou et al., 2000; Gakidou & King, 2002; Murray, 2001; 
van Raalte et al., 2018), but still fails to integrate the demands/requirements of the group-based 
approach (namely: to account for the performance of the different groups vis-a-vis each other). 
State-of-the-art methods relying on additively decomposable measures (like the variance or the 
Theil index) inform users on whether within-group inequality is larger or smaller than 
between-group inequality (Gakidou & King, 2002; Permanyer et al., 2018; Permanyer & 
Scholl, 2019; Seaman et al., 2019; van Raalte et al., 2012), but tell us nothing about groups’ rela
tive performance (e.g., ‘Are the rich performing much better than the poor?’).

In this paper, we develop a new approach to decompose a well-known class of individual-based 
health inequality measures that, at the same time, inform users about the groups’ relative perform
ances—thus integrating the requirements of both sides of the debate into a coherent framework. 
We focus on a very specific health outcome: length of life. Being alive is a precondition for any so
cial phenomenon we might be interested in, so inequality in length of life is ‘the most fundamental 
of all inequalities’ (van Raalte et al., 2018:1002). Longevity is a crude but extremely useful, non- 
intrusive, and easy-to-measure health outcome that is collected worldwide on a regular basis. 
While the study of average longevity (i.e., life expectancy) has attracted considerable attention 
in demography and other social sciences for a long time, in recent years we have witnessed an up
surge of interest to look beyond the means and study the levels, trends and determinants of lifespan 
inequality (see, among others, Aburto et al., 2020; Colchero et al., 2016; Edwards, 2011; Edwards 
& Tuljapurkar, 2005; Engelman et al., 2010; Gillespie et al., 2014, Nau & Firebaugh, 2012; 
Sasson, 2016; Seligman et al., 2016; Smits & Monden, 2009; van Raalte et al., 2014; van 
Raalte et al., 2018; van Raalte & Caswell, 2013; Vaupel et al., 2011; Wilmoth & Horiuchi, 1999).

To illustrate the usefulness of our approach, we apply it to racial and ethnic inequalities in 
length-of-life distributions in the United States. The elimination of racial health disparities is a 
prominent and pressing issue in the United States (Wrigley-Field, 2020), and it has been one of 
the main goals in its public health policies. Black–White disparities in mortality are well docu
mented in the literature, and so are their underlying causes of death (Firebaugh et al., 2014a; 
Harper et al., 2012; Hummer & Chinn, 2011). However, with few exceptions (e.g., Firebaugh 
et al., 2014b; Gillespie et al., 2014), past studies have focused primarily on differences in life ex
pectancy between these two populations. With our new methodological approach, we capture dis
tributional differences in lifespans among various population groups and quantify precisely by 
how much an average person from one group (White) outlives a person from another group 
(Black) and vice versa. We apply this method to Black and White lifespan distributions from 
1970 to 2018. Information about Hispanics is also incorporated in the analysis from 2006 on
wards. Even though the illustrations and empirical results presented in this paper are all based 
on the length of life, this new framework can be adapted to the study of other health outcome var
iables that are measured on a ratio scale, like length of healthy life, frailty, height, weight, blood 
pressure, or grip strength.

Background and motivation
There are several approaches to assess the extent of inequality in distributions of individual-based 
health-related outcomes in populations that are partitioned across G social groups. A very popular 
one is to generate group-specific averages μ1, μ2, …, μG to compare the relative performance of the 
different groups vis-a-vis each other. In this way, we can easily assess whether (and to what extent) 
group A is performing, on average, better or worse than group B. Unfortunately, such approach 
ignores the variability that might exist within the different groups—which, depending on the 
health outcome we are working with, can be potentially large.
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An alternative to the group-based perspective is to assess the influence that the population par
tition has on the overall levels of inter-individual inequality. In this regard, the literature on income 
inequality provides useful examples of indicators that weigh the variation occurring within groups 
vis-a-vis the variation across groups (Silber, 1999). The so-called ‘additively decomposable in
equality measures’ can be decomposed as

I = Ib + Iw (1) 

where I measures overall inter-individual inequality, Ib is the inequality that would be observed if 
all individuals in each group (g) attained the same value (μg), and Iw is the average level of 
within-group inequality. Thus, additively decomposable inequality indices can be nicely broken 
down into two clearly interpretable components: (a) the between-group component (which is ob
tained after suppressing within-group variation by assuming all members in each group take a 
common value: the group mean) and (b) the within-group component (which is a weighted average 
of the inequality within each group). As shown by Shorrocks (1980), the class of inequality meas
ures that are additively decomposable is quite restricted, though. For the case of relative inequality, 
it only comprises the one-parameter family of generalized entropy measures, such as the Theil in
dex and the mean log deviation.1 For absolute inequality measures, the variance is the only one 
that is additively decomposable. Most of these indicators have been used to study lifespan inequal
ity (see, for instance, Edwards, 2011; Permanyer et al., 2018; Smits & Monden, 2009; van Raalte 
et al., 2012). In Appendix A, we explicitly show the additive decomposition formulae of these in
dicators when a population is partitioned in several groups.

While the additive decomposition approach can tell us whether differences between groups are 
more or less prominent than differences within groups, it does not provide any information about 
the relative performance of the different groups vis-a-vis each other—which is typically among the 
most pressing issues one is interested in when inspecting inequalities. Indeed, the notion of ‘in
equality’ is inextricably linked to the idea that some groups are advantaged while others are dis
advantaged. Usually, this kind of ‘relative performance’ information is inferred from the values 
and relative position of the group-specific means (i.e., the corresponding life expectancies)—which 
has been traditionally linked to the group-based approach. Yet, inferring groups’ relative perform
ance based solely on their corresponding life expectancies disregards the heterogeneity that might 
exist within those groups, thus missing potentially relevant information. This is illustrated in the 
two hypothetical scenarios comparing the age-at-death distributions for populations A and B 
shown in Figure 1. In the first scenario, there is almost no variability in the corresponding lifespan 
distributions, so ranking the two populations based on their corresponding life expectancies at 
birth (denoted by eA

0 and eB
0 , respectively) is not particularly misleading. In the second scenario, 

both eA
0 and eB

0 are kept unchanged, but there is much greater variability in population A. Now, 
while individuals in population B, on average, tend to live longer lives than those in A, a non- 
negligible set of individuals in population A outlive by several years all individuals from popula
tion B. And yet, the between-group component of standard additively decomposable inequality 
measures like the Theil index or the variance would give the same result in both scenarios. In 
such circumstances, assessing the relative performance of the two populations vis-a-vis each other 
solely based on the values of eA

0 and eB
0 misses an important part of the story.

In this paper, we suggest a new approach to decompose overall inequality when the population 
we are studying is partitioned across socially relevant groups. The basic ideas our new method 
builds upon are simple, and differences to existing inequality measures pertain mainly to the com
putation of the between-group component. Specifically, rather than assuming that individuals’ at
tainments can be meaningfully represented by the average attainment of their group, the approach 
we adopt requires that the level of inequality in a given society be based on making all possible 
pairwise comparisons among individuals. In this way, a natural decomposition ensues in which 
overall inequality can be broken down into two clearly interpretable parts: the standard 
within-group component (consisting of a weighted average of inequalities within groups) and a 
new between-group component containing the average distances among all pairs of groups. In 

1 While the Atkinson index of inequality (Atkinson 1970) is not additively decomposable, it is a non-linear and 
monotonic transformation of the class of Generalized Entropy measures (see Shorrocks 1980).
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addition, such distances can be further decomposed into two additional components: the part of 
the distance involving gaps in favour of one group and the part involving gaps in the opposite dir
ection. Thus, we are able to assess not only ‘how far apart’ any two groups are, but also their cor
responding relative position, that is, whether one group is more or less disadvantaged with respect 
to the other, and vice versa. This kind of information cannot be inferred from the comparison of 
group-based life expectancies alone.

There is a long tradition of defining inequality measures based on all possible pairwise compar
isons. The well-known Gini coefficient and other conceptually related measures (which have often 
been used in lifespan inequality analysis, e.g., Aburto et al., 2022; Shkolnikov et al., 2003; Smits & 
Monden, 2009) are constructed exactly in that way. The novelty here is not on the inequality index 
itself but in the proposed decomposition and the insights it can generate for a better understanding 
of health inequality across and within social groups.2 Unlike current existing approaches, this new 
framework can explicitly assess how different groups perform vis-a-vis each other—thus integrat
ing comparisons across individuals and social groups.

A new approach to decompose lifespan variation
We present a new decomposition approach that, most notably, applies to the absolute and relative 
Gini coefficients. The Gini coefficient was originally proposed to measure income and wealth in
equality, and is one of the most popular indices in the social sciences. As thoroughly discussed by 
Yitzhaki & Schechtman (2013), there are several equivalent ways to define the Gini coefficient, 
which might depend on the context and the application. In this paper, we define it using life table 
notation. Life tables have been extensively used by demographers, biologists, epidemiologists, and 
actuarial scientists to describe the mortality and survival experience of a population (Preston et al., 
2001). The literature on the measurement of lifespan inequality is based on the study of the 
age-at-death distributions described by such life tables, rather than by crude death counts by 
age, because the latter are affected by the age structure of the population(s) one is working with 
(e.g., crude death counts might be higher in low-mortality populations owing to the larger shares 
of individuals surviving to older ages, where the risk of mortality is inevitably higher). These prob
lems are sidestepped with the use of life tables, which render comparable populations with differ
ent age structures.

D
is

tr
ib

ut
io

n 
of

 d
ea

th
s

Age

Scenario 1
eo

A eo
B

dx
A dx

B

Scenario 2
eo

A eo
B

dx
A

dx
B

Figure 1. Two scenarios with two hypothetical age-at-death distributions dA
x and dB

x from two populations A and B. 
In both scenarios, the corresponding means of the distributions (eA

0 and eB
0 , respectively) are the same.

2 As discussed in further detail in Section 6, the Gini index is not additively decomposable as described in (1). 
However, it is amenable to other decomposition approaches, like the one proposed in this paper.
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In life tables, ℓ0 denotes the initial population at age 0, which is usually set to 1 or 100,000 and 
referred to as the radix. Each life table has associated an age-at-death distribution for all the re
ported ages, commonly denoted by d = {d0, · · · , dω}, where dx is the number of individuals 
who die at age x and ω is the maximum possible age.3 Note that 

􏽐ω
x=0 dx = ℓ0, so d can be thought 

as the density function of the age-at-death distribution. For additional details on life tables, see for 
instance Preston et al., (2001).

Using this life table notation, the absolute Gini coefficient can be defined as

Δ(d): =
1

2ℓ2
0

􏽘ω

a=0

􏽘ω

b=0

dadb|a − b| . (2) 

This measure of inequality considers all possible pairs of ages and calculates the average similarity/ 
dissimilarity among them—obtaining what is oftentimes referred to as the ‘average inter- 
individual difference’ (or AID). A related measure is the relative Gini coefficient of the life table, 
given by

G(d) : =
1

2ℓ2
0e0

􏽘ω

a=0

􏽘ω

b=0

dadb|a − b| =
Δ(d)
e0

, (3) 

where e0 is the life expectancy at birth. These two measures both have a clear interpretation: The 
absolute Gini coefficient measures half the expected age-at-death difference between two random
ly chosen individuals, whereas the relative Gini coefficient is defined as the ratio between the ab
solute Gini and the life expectancy associated to d (that is, it puts the AID in relation to the mean of 
the age-at-death distribution). In the remaining of this section, we present decompositions of Δ(d), 
which are later extended to G(d) in Appendix B.

Decompositions: the two-group case
Assume a population that is partitioned in two groups, for instance females (F) and males (M), with 
respective population sizes nF and nM, such that the total population is n = nF + nM. Given the group- 
specific age-at-death distributions dF = {dF

0, · · · , dF
ω} and dM = {dM

0 , · · · , dM
ω }, it is easy to show 

(see details in Appendix C) that the overall lifespan inequality can be broken down as

Δ(d) = SFIF
W + SMIM

W + SFMIFM
B , (4) 

where

IF
W : =Δ(dF) 

IM
W : =Δ(dM) 

IFM
B : =

1
2ℓ2

0

􏽘ω

a=0

􏽘ω

b=0

dF
adM

b · |a − b|

SF : =
nF

n

􏼐 􏼑2 

SM : =
nM

n

􏼐 􏼑2 

SFM : =2
nFnM

n2 

3 In this paper, we show results for ages ranging from 0 to ω, the minimum and maximum possible ages, respectively. 
The decomposition formulas we propose do not change if those bounds are changed to a and b, respectively (with 0 ≤ a < 
b ≤ ω).
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Equation (4) has an intuitive interpretation: It decomposes overall inequality in a within-group 
(SFIF

W + SMIM
W) and a between-group (SFMIFM

B ) component. The within-group component is the 
weighted sum of the inequality within each of the groups (i.e., women and men), and the 
between-group takes into account the age-at-death differences between women and men. More spe
cifically, IF

W and IM
W are the pairwise comparisons as defined in (4) within each group, whereas IFM

B 
measures half of the expected difference in years of life lived between a randomly chosen woman and 
a randomly chosen man. The latter is a simple way of measuring how ‘close’ or ‘far apart’ the two 
age-at-death distributions are.4 The coefficients SF, SM and SFM are the population weights of each 
component, satisfying SF + SM + SFM = 1.

Decompositions: the multiple-group case
Assume now that the population we are studying is partitioned in G ≥ 2 groups. For each popu
lation subgroup g we have an age-at-death distribution dg = {dg

0, · · · , dg
ω}. The population size 

of each group is denoted as ng. Analogously to the two-group case, Δ(d) can be decomposed as

Δ(d) = ΔW(d) + ΔB(d) =
􏽘G

g=1

SgIg
W +

􏽘G

g=2

􏽘g−1

h=1

SghIgh
B , (5) 

where

Ig
W : =Δ(dg) 

Igh
B : =

1
2ℓ2

0

􏽘ω

a=0

􏽘ω

b=0

dg
adh

b · |a − b|

Sg : =
ng

n

􏼐 􏼑2 

Sgh : =2
ngnh

n2 

Equation (5) breaks down total inequality (as measured by the absolute Gini) in a within-group 
(ΔW(d)) and a between-group (ΔB(d)) component. Like before, the within-group component is a 
population-weighted average of the terms Ig

W , which measure the extent of lifespan inequality 
within each of the groups. The between-group component is a population-weighted average of 

the terms Igh
B , which measure half the expected age-at-death difference between two randomly 

chosen individuals, one from group g and another from group h. Once again, these terms should 
be interpreted as functions measuring the distances that exist among pairs of length-of-life 
distributions.

Breaking down inequality among groups
The distance function across group pairs Igh

B in the between-group component of (5) can be further 
decomposed into two additional sub-components. Typically, the age-at-death differences |a − b| 
included in these terms sometimes go in favour of one group (say, g), and sometimes in favour 
of the other (h). Putting together the age-at-death differences to the advantage of one group on 
one side and the differences to the advantage of the other group on the other, we naturally obtain 
the following decomposition:

Igh
B = Ahg + Agh, (6) 

4 There are other and even simpler ways to define distances between length-of-life distributions. For instance, to 
measure the distance between the corresponding life expectancies at birth: |eF

0 − eM
0 |. Yet, none of them would fit into 

the decomposition shown in (4).
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where

Ahg =
1

2ℓ2
0

􏽘ω

a=0

dg
a

􏽘ω

b=a

(b − a) · dh
b

􏼠 􏼡

(7) 

and

Agh =
1

2ℓ2
0

􏽘ω

b=0

dh
b

􏽘ω

a=b

(a − b) · dg
a

􏼠 􏼡

. (8) 

The term Ahg contains all age-at-death differences in favour of group h, that is: the cases when the 
randomly chosen individual from group h has a longer lifespan than the randomly chosen individ
ual from group g. When the randomly chosen individual in group g outlives the one from h, their 
contribution to Ahg is 0. The opposite happens with Agh. Thus, Ahg measures the ‘average advan
tage in length of life for those individuals of group h outliving those of g’. This natural decompos
ition quantifies not only whether two groups are ‘close’ or ‘far apart’ from each other, but also the 
extent to which one of them is systematically more advantaged than the other. In other words, it 
speaks about the groups’ relative position.

To illustrate how the new Ahg, Agh terms behave, in Figure 2 we show some hypothetical exam
ples. In panel A, one has two age-at-death distributions that are identical (i.e., dg = dh). When this 
happens, then Ahg = Agh = Igh

B /2, and none of the two groups can be considered to be disadvantaged 
with respect to the other. In real-world examples, though, age-at-death distributions are not identi
cal, and some of them might represent a better state of affairs than others. In panels B and C, we show 
examples where the two age-at-death distributions (dg and dh) partially overlap, but the individuals 
of group h tend to live longer than those of g. In these scenarios, 0 < Agh < Ahg, with higher values of 
Ahg indicating a better state of affairs for group h vis-a-vis group g. In the limit, when the two 
age-at-death distributions do not overlap (say, all individuals in group h live longer than all individ
uals in group g), then Ahg = I gh

B and Agh = 0. This has been illustrated in panel D. Importantly, the 
Ahg and Agh terms are sensitive to the differences in longevity among all individual pairs from groups 
g and h. In panel D, the age-at-death distributions are further apart, so the value of Ahg is higher than 
the one observed in panel C (where the two distributions are closer to each other).

Plugging the new terms of (7) and (8) into (5) yields

Δ(d) =
􏽘G

g=1

SgIg
W +

􏽘G

g=2

􏽘g−1

h=1

Sgh(Agh + Ahg). (9) 

This is one of the key inequality decompositions introduced in this paper. On the one hand, it con
tains terms describing the extent of inequality within each group (SgIg

W). On the other hand, it con
tains terms describing not only the distances across groups, but also their relative performance 
vis-a-vis each other (Sgh(Agh + Ahg)). Equation (9) nicely shows how total inter-individual vari
ability (Δ(d)) can be broken down into clearly interpretable pieces explaining not only how hetero
geneous the different subgroups are (the within-group component), but also how these groups fare 
against each other (the between-group component).

Using matrix notation
In some cases, it is useful to represent all the terms in (9) using a more compact matrix notation. 
For that purpose, we define the distance matrix

MD : =

I1
W I12

B · · · I1G
B

I21
B I2

W
. .

. ..
.

..

. . .
. . .

.
I(G−1)G

B

IG1
B · · · IG(G−1)

B IG
W

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, (10) 
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which has the within-group comparison values Ig
W in the diagonal, and the between-group com

parison values Igh
B off the diagonal. A generic member of the distance matrix in row g and column 

h can thus be interpreted as ‘half the expected difference in length-of-life between a randomly chos
en individual from group g and a randomly chosen individual from group h’. Similarly, we define 
the advantage matrix

MA : =

I1
W/2 A12 · · · A1G

A21 I2
W/2

. .
. ..

.

..

. . .
. . .

.
A(G−1)G

AG1 · · · AG(G−1) IG
W/2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(11) 

containing (half) the within-group inequality values in the diagonal, and the ‘advantage terms’ Agh 

off the diagonal. A generic member of the advantage matrix in row g and column h can thus be 
interpreted as ‘the average advantage in length of life for those individuals from group g with re
spect to those from group h’.

From (6), we have that Igh
B = Ahg + Agh for all pairs (g, h), which yields

MD =MA +M′A, 

where M′A is the transposed matrix of MA. While both MD and MA are G × G matrices with posi
tive entries, the former is symmetrical, but the latter is not. Moreover, it is possible to retrieve the 
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dg = dh

(a)
IB
gh

= 3.4
Agh = 1.7
Ahg = 1.7
Pgh = 0.5
Phg = 0.5

dg dh

(b)
IB
gh

= 5.50
Agh = 0.25
Ahg = 5.25
Pgh = 0.12
Phg = 0.88

dg dh

(c)
IB
gh

= 10.02
Agh = 0.01
Ahg = 10.01
Pgh = 0.01
Phg = 0.99

dg dh

(d)
IB
gh

= 25
Agh = 0
Ahg = 25
Pgh = 0
Phg = 1

Fig. 2. Four scenarios (a–d) with two hypothetical age-at-death distributions dg
x and dh

x from two population 
subgroups g and h. In each scenario, we report the values of Igh

B , Agh, Ahg , Pgh, Phg (see  (6)–(8), (13), (14)).
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distance matrix MD from the advantage matrix MA, but not vice versa. Using this notation, the 
decomposition in (9) can be re-written more compactly as

Δ(d) = p′ ×MD × p = p′ × (MA +M′A) × p, (12) 

where p = (p1, …, pG) is the (column) vector of population shares across groups (i.e., pg = ng/n), 
and p′ denotes its transposed.

Further extensions
In this section, we present an extension of the decomposition approach introduced in (5) and (9) 
with potentially many empirical applications. We show how the ‘pairwise comparison approach’ 
introduced in this paper can be used to measure the probability that individuals from a given group 
outlive individuals from other groups.

Over- and under-performance probability measures
The between-group component of both the absolute or relative Gini coefficients is based on the 
expected age-at-death differences across individuals belonging to two different groups taken at 
random. The pairwise comparisons-based approach can also be used to measure a similar yet fun
damentally different question, like assessing the probability that individuals belonging to one 
group live longer than the individuals of another group. That is, rather than looking at ‘how 
many additional years (on average) are individuals from one group expected to live with respect 
to individuals from the other group’, we can simply ask how likely is it that individuals from 
one group outlive those from the other group. To answer this question, for any pair of groups 
g, h ∈ {1, · · · , G}, we define the probability that a randomly chosen individual from group g lives 
longer than a randomly chosen individual from group h as

Pgh : =
1
ℓ2

0

􏽘ω−1

b=0

dh
b

􏽘ω

a=b+1

dg
a

􏼠 􏼡

, (13) 

and the probability that the individual in group h outlives the one in group g as

Phg : =
1
ℓ2

0

􏽘ω−1

b=0

dg
b

􏽘ω

a=b+1

dh
a

􏼠 􏼡

. (14) 

Therefore, whenever Pgh > Phg, individuals from group g are expected to live longer than those from 
group h. Note that (13) and (14) are formally equivalent to the terms Agh and Ahg defined in (7) and (8)). 
The only difference is that here the age-at-death gap (a − b or b − a) has been replaced by a value 
of 1 whenever one age is bigger than the other. Thus, the terms included in (13) and (14) are only 
sensitive to the relative position of longevity outcomes from groups g and h, but not to the distance 
that might exist among them. To illustrate this point, consider the panels C and D from Figure 2. 
Since in both panels one has that virtually all individuals in group h outlive those of group g, then 
Phg ≈ 1 and Pgh ≈ 0 in both cases, even if the gaps in longevity outcomes increases when moving 
from C to D—a change that is captured by the terms Agh and Ahg.

Interestingly, the Pgh and Phg terms coincide with the outsurvival probability indicator φ intro
duced by Vaupel et al. (2021),—which is presented in a continuous setting and restricted to two 
groups only. Since there is the (relatively small) possibility of ties, the probabilities Pgh and Phg do 
not add up to one. For this to happen, we must add the probability of ties to Pgh and Phg, say

Pgh + Phg +
1
ℓ2

0

􏽘ω

a=0

dh
adg

a = 1. (15) 

The last term is typically very small in relative terms, so Pgh + Phg ≈ 1. Based on these definitions, 
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and mimicking the advantage matrix MA form (11), we can define the performance probability 
matrix

MP : =

P11 P12 · · · P1G

P21 P22
. .

. ..
.

..

. . .
. . .

.
P(G−1)G

PG1 · · · PG(G−1) PGG

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

, 

where Pgh and Phg are as in (13) and (14), and Pgg is the probability that a randomly chosen indi
vidual from group g lives longer than a randomly chosen individual from the same group. 
Adapting (15) to the case where g = h, yields

Pgg =
1
2

1 −
1
ℓ2

0

􏽘ω

a=0

(dg
a)2

􏼠 􏼡

≈
1
2

, 

provided that the summatory inside the parenthesis is relatively small. Like MA, MP is a G × G 
asymmetrical matrix. Its elements indicate the probabilities that the different groups in which 
the population is partitioned outperform one another.

Application: Length-of-life inequality in the United States, 1970–2018
In this section, we illustrate the usefulness of our approach by looking at the evolution of lifespan 
inequality in the United States and its decomposition across racial groups since 1970, and by 
Hispanic origin from 2006 onward.5 First, we focus our attention on the US Black and White 
population regardless of ethnicity, treating women and men separately. This means that the over
all population in these cases consists only of US Blacks and Whites, thus ignoring what happens to 
other racial groups. Next, we widen the focus to incorporate ethnicity into the analysis, comparing 
Hispanics (of any race) with non-Hispanic Whites and non-Hispanic Blacks, so that the overall 
population consists of three groups. We carried out all our analyses using the open-source statis
tical software R (version 4.1.1) (R Core Team, 2021).

Life expectancy among Black Americans is several years lower compared with their White coun
terparts. This gap, however, has varied widely over time—peaking at 7.1 years in 1989 and de
creasing steadily since to 3.5 years in 2017 (Arias & Xu, 2019). The Black mortality 
disadvantage diminished during this time due to reduction in mortality levels (HIV, unintentional 
injuries) or delayed disease onset (heart disease, cancer, stroke) in this group (Firebaugh et al., 
2014a; Harper et al., 2012). The lifespans of Black Americans are not only shorter on average, 
but also more varied compared with Whites.

The Black disadvantage in lifespan variability is largely attributed to preventable causes of death 
including heart disease, homicide, HIV/AIDS, and diabetes (Firebaugh et al., 2014b). It is import
ant to note, however, that Blacks do not exhibit higher mortality from all causes of death. 
The opioid epidemic, for example, led to far greater loss of life years among Whites (Sasson & 
Hayward, 2019). Firearm and COVID-19 deaths, on the other hand, are significantly more preva
lent among Blacks than Whites (Sasson & Hayward, 2019; Wrigley-Field, 2020). It is, therefore, 
imperative that we understand the evolution of racial inequality in age-at-death distributions, and 
the intricate ways in which members of each group outlive members of the other.

Ethnicity is yet another important source of heterogeneity in US mortality, in addition to race. 
Hispanics in particular are a growing population group with unique mortality patterns, which will 

5 In distinguishing between race and ethnicity, we follow Directive 15 of the Office of Management and Budget 
(OMB) concerning Race and Ethnic Standards for Federal Statistics and Administrative Reporting. According to the dir
ective, US census and vital statistics data are reported using separate questions regarding race (Black, White, American 
Indian or Alaskan Native, Asian or Pacific Islander) and ethnicity (Hispanic origin/Not of Hispanic origin). While the two 
classifications are not mutually exclusive, US life tables since 2006 are reported for Hispanics as a whole yet for 
non-Hispanics by race. Thus, our three-group analysis is divided into non-Hispanic Blacks, non-Hispanics Whites, 
and Hispanics of all races. For the two-group comparison we use a longer time-series distinguishing between Blacks 
and Whites, irrespective of Hispanic origin, since 1970.
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undoubtedly play a role in shaping US mortality in the future. Estimates of life expectancy by 
Hispanic origin are relatively recent, starting in 2006 (Arias, 2010). In spite of their lower socio
economic status, on average, Hispanics consistently exhibit higher life expectancy and lower life
span variability than non-Hispanic Whites (Lariscy et al., 2015, 2016). Debates about the 
Hispanic mortality advantage are ongoing, but it appears to reflect a combination of selection 
mechanisms, both inward and outward, as well as favourable health behaviours such as lower 
smoking prevalence (Fenelon, 2013; Hummer et al., 2007; Palloni & Arias, 2004).6

Both race and ethnicity are important determinants of mortality in the United States and will con
tinue to be so in the coming years. We illustrate our method, and what new insights can be gained from 
it, using these two case studies. First, using US decennial (1970–2000) and annual (2001–2017) life 
tables (NCHS, 2021), we decompose Black–White mortality inequalities by gender, and show how 
they have evolved over time (Figures 3, 4 and 5). Second, to extend our method to three groups we 
add to our analysis Hispanic origin. From 2006 to 2018, we explore the probabilities that 
non-Hispanic Blacks, non-Hispanic Whites, and Hispanic Americans outlive each other (Figure 6). 
While all analyses are based on official US life tables, there have been important changes in racial 
and ethnic categorization over the years. Since 2000, the US Census permits mixed race identification 
whereas the National Vital Statistics System does not. In order to obtain consistent estimates of popu
lation shares throughout the study period, we relied on the NCHS bridged-population estimates from 
2000 onward (US DHHS, 2020). Life tables have also changed slightly over the years. The US decen
nial life tables are given in single years of age all the way through 110, whereas the annual life tables 
from 2001 and onward end at age 100. In order to make them comparable we extended the latter to 
age 109+ using P-splines, a common method for smoothing mortality rates (Camarda, 2012).

Assessing longevity inequalities in the United States
Figure 3 shows the age-at-death distribution for Blacks and Whites by gender in the United States 
in 1970 and 2017. The vertical lines indicate the corresponding life expectancies at birth. In all 
cases, life expectancies are higher for Whites than for Blacks, but the gap has shrunk over time, 
a result that coheres with Harper et al. (2014), and Firebaugh et al. (2014a),. Beyond means, a vis
ual inspection of the shape of the age-at-death distributions suggests that: (a) lifespan inequality 
has decreased over time; (b) lifespan inequality among Whites is lower than that of Blacks; and 
(c) lifespan inequality among men is higher than among women.

These observations are confirmed in Figure 4, which shows the trends of the Theil and the Gini 
indices of lifespan inequality since 1970 for the US Black and White population, and for women 
and men separately. Most importantly for the purposes of this paper, Figure 4 also depicts the de
composition of these indices in their basic constituents.

The Theil index is representative of the current approaches to assess the influence of population par
titions on overall inequality levels (e.g., Gakidou & King, 2002; Permanyer et al., 2018; Permanyer & 
Scholl, 2019; Seaman et al., 2019; van Raalte et al., 2012). The values of the overall Theil index for US 
females decline from 0.041 in 1970 to 0.024 in 2017. For US males, it goes down from 0.056 in 1970 
to 0.033 in 2017. In both cases, the overall Theil index has been declining from 1970 until 2000 and 
remained relatively stable from 2000 onwards. What about the additive decomposition of the Theil 
index in its within-group and between-group components (T = Tw + Tb; see Appendix A)? As shown 
in the graphs, the between-group component is extremely small, and only explains around 1% of total 
inequality in lifespans among the US Black and White population.

The right panels of Figure 4 show the results corresponding to the absolute Gini coefficient and 
its different decompositions. The values of the overall Gini index (i.e., the Gini index applied to the 
whole US Black and White population) follow a very similar path when compared to those of 
the Theil index. While the levels and scale are different, the trends roughly go in the same direction: 
we also observe a decline in inequalities from 1970 to 2000, followed by a period of relative 

6 The healthy immigrant effect is a well-established phenomenon, in the Unite States and elsewhere, in which immi
grants are healthier on average than the receiving population because they are selected based on their health status, socio
economic status, human capital, or character (Kennedy et al., 2015). By contrast, ‘salmon bias’ is a form of outward 
selection in which less healthy immigrants return to their country of origin as their health deteriorates, eventually dying 
abroad (Abraido-Lanza et al., 1999). US mortality data are census-unlinked, meaning that that numerator (death counts) 
and denominator (person-years) are estimated from different sources. Thus, returning migrants might be included in the 
at-risk population but their deaths might be omitted from the numerator if they had died outside the country, thus result
ing in downward bias of mortality rates for that group.

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/2/217/7023973 by guest on 19 M

ay 2023



228                                                          J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 2

stability until 2017. For females, the overall Gini coefficient goes down from 9.148 in 1970 to 
7.965 in 2017, while for males it goes down from 10.050 to 9.087. Interestingly, these levels of 
overall lifespan inequality can be broken down into clearly interpretable components. Take the 
value of 10.050 observed for males in 1970. That year, the population share for Whites was p1 

= 0.891, whereas Blacks represented p2 = 0.109. Following (12), one has that

10.050 = p′ × M̃D × p = p′ × (M̃A + M̃′A) × p

= 0.891 0.109
( 􏼁 9.685 11.416

11.416 12.081

􏼒 􏼓
0.891
0.109

􏼒 􏼓

=

= 0.891 0.109
( 􏼁

9.685
2

7.695

3.721
12.081

2

⎛

⎜
⎝

⎞

⎟
⎠ +

9.685
2

3.721

7.695
12.081

2

⎛

⎜
⎝

⎞

⎟
⎠

⎛

⎜
⎝

⎞

⎟
⎠

0.891
0.109

􏼒 􏼓

.

As shown in these identities, the overall Gini coefficient is a combination of inequalities among Blacks 
and among Whites, together with other components indicating not only the extent to which Blacks and 
Whites differ from each other, but also whether Blacks outperform Whites and vice versa. More spe
cifically, we can see that the Gini coefficient for Blacks is notably larger than that of Whites (12.081 vs. 
9.685). In addition, the average longevity difference between Blacks and Whites (the term I12

B in (5)) is 
larger than the average longevity difference within Whites (11.416 vs. 9.685). In other words: the 
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Fig. 3. Age-at-death distribution for Black and White females and males in the United States, 1970 (left panels) and 
2017 (right panels). Source: NCHS (2021).
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difference in longevity between a randomly chosen Black and a randomly chosen White is larger than 
the difference in longevity among two randomly chosen Whites. Breaking down the I12

B = 11.416 term 
in its group-specific advantage components, we can also see that the average longevity advantage of 
Blacks over Whites is 3.721, while that of Whites over Blacks is 7.695 (in such a way that 11.416 = 
3.721 + 7.695). Thus, the average longevity advantage of Whites outliving Blacks (A12 = 7.695) is twice 
as large as the average longevity advantage of Blacks outliving Whites (A21 = 3.721). All these numbers 
are plotted in the bottom right panel of Figure 4 for the year 1970.

Performing now the same decomposition exercise for the overall Gini index for males in 2017, we get

9.087 = 0.851 0.149
( 􏼁 8.850 9.673

9.673 10.136

􏼒 􏼓
0.851
0.149

􏼒 􏼓

=

= 0.851 0.149
( 􏼁

8.850
2

5.942

3.731
10.136

2

⎛

⎜
⎝

⎞

⎟
⎠ +

8.850
2

3.731

5.942
10.136

2

⎛

⎜
⎝

⎞

⎟
⎠

⎛

⎜
⎝

⎞

⎟
⎠

0.851
0.149

􏼒 􏼓

As can be seen, lifespan inequality has declined both among Blacks (10.136) and among Whites 
(8.850), but especially among the former. We observe that the differences between Blacks and 
Whites have diminished as well (now I12

B = 9.673). The decomposition of the between-group compo
nent I12

B in its group-specific advantage components has also changed. In 2017, the average longevity 
advantage of male Whites outliving male Blacks has gone down to A12 = 5.942, while the average 
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Fig. 4. Evolution of the Theil and Gini indices and their decompositions over time between 1970 and 2017 for the Black– 
White population in the United States. Source: Authors’ elaboration based on data from NCHS (2021) and US DHHS (2020).
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longevity advantage of male Blacks outliving male Whites has remained at a similar level of A21 = 
3.731. These results indicate that the age-at-death distributions of Blacks and Whites are becoming 
increasingly similar, with the advantage of the later over the former gradually declining over time. 
Very similar patterns can be identified for women as well (see upper right panel in Figure 4). Yet, 
this convergence in age-at-death distributions has not been a steady process throughout the study pe
riod. Periods of great progress—i.e., equalization of Black and White lifespan distributions—occurred 
in the 1970s and 1990s, whereas stagnation and even reversal occurred in the 1980s and early 2000s. 
We address some of the reasons underlying the uneven progress in the Discussion section.

Summing up, the three approaches discussed in this paper offer complementary information 
about longevity inequality trends in the United States. First, according to the group-based means 
approach, the life expectancy gap between Blacks and Whites declined between 1970 and 2017. 
Second, the decomposition of the Theil index shows that lifespan inequality declined in the 
United States between 1970 and 2000 and stagnated from 2000 onwards, and that differences 
in life expectancy between Blacks and Whites only explain 1% of the total inequality in lifespans. 
Finally, the new decomposition approach suggested here provides more information and permits a 
more thorough interpretation of the inequalities between and within the two groups: (a) lifespan 
inequality has been declining both among Blacks and Whites between 1970 and 2017; (b) the aver
age longevity advantage of Whites outliving Blacks has declined over time; and (c) the average lon
gevity advantage of Blacks outliving Whites has remained fairly constant during that period—thus 
resulting in a decreasing White advantage in the age-at-death distribution.

Outliving probabilities
We conclude this empirical section by analysing the time trends in the performance probabilities 
defined in (13) and (14). Because of data availability, we first show the results for Blacks and 
Whites (irrespective of Hispanic origin) from 1970 to 2017 (Figure 5). Next, we examine these 
performance probabilities between non-Hispanic Whites, non-Hispanic Blacks and Hispanics be
tween 2006 and 2018 (Figure 6). As it can be seen in Figure 5, the probability that a randomly 
chosen White outlives a randomly chosen Black is higher than the opposite probability, but it tends 
to decline over time. For females, such probability was 0.604 in 1970, but declined to 0.536 in 
2017. For males, such probability dropped from 0.610 to 0.567, but following a more erratic 
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trajectory over time. Symmetrically, the probability that a randomly chosen Black outlives a ran
domly chosen White has tended to increase over time. In 1970, such probabilities were 0.376 and 
0.373 for females and males, respectively, while in 2017 they were 0.441 and 0.414.

Figure 6 depicts the performance probabilities over time for non-Hispanic Blacks, non-Hispanic 
Whites, and Hispanics between 2006 and 2018. We observe that the probability that Hispanics 
outlive non-Hispanic Whites has tended to increase over time, from 0.542 in 2006 to 0.563 in 
2018 for females, and from 0.529 to 0.548 for males. In addition, the probability that 
Hispanics outlive non-Hispanic Blacks is considerably high, with values around 0.6 for both sexes 
that have remained relatively stable over time. In this three-group comparison, Hispanics perform 
better than non-Hispanic Blacks and non-Hispanic Whites, with the latter two becoming increas
ingly similar over time.

Discussion
Analysts are often interested in measuring inter-individual health inequalities in settings where the 
populations under study are partitioned across socially relevant groups (for instance, defined across 
socioeconomic status, ethnic, religious, or racial lines). A simple and very popular way of measuring 
health inequalities in such settings is to assess groups’ performances by comparing the means of the 
corresponding health outcome—a group-based approach that ignores intra-group heterogeneity. 
Another common approach is to determine how much of the inter-individual variability can be ex
plained by the variable that partitions the population into mutually exclusive groups. For that pur
pose, analysts often choose the so-called ‘additively decomposable inequality measures’ (like the 
Theil index, or the Variance) that break down total inter-individual variability in two components: 
(a) the between-group component (which measures the amount of inequality we would observe if 
we counterfactually removed intra-group variability), and (b) the within-group component (which 
is a weighted sum of the inequalities within the different groups)—see (1). Unfortunately, the second 
approach to inequality measurement does not provide any information about the groups’ relative 
performance. In this paper, we propose a third approach that allows determining not only the health 
variability that might exist across individuals within and between groups, but also the relative per
formance of the different groups vis-a-vis each other. The decomposition method suggested here has 

P
er

fo
rm

an
ce

 p
ro

ba
bi

lit
ie

s

Year

Females

0.35

0.40

0.45

0.50

0.55

0.60

2006 2010 2014 2018

Males

2006 2010 2014 2018

Non−Hisp whites over non−Hisp blacks
Non−Hisp blacks over non−Hisp whites

Non−Hisp whites over Hispanic
Hispanic over non−Hisp whites

Non−Hisp blacks over Hispanic
Hispanic over non−Hisp blacks

Fig. 6. Over- and under-performance probabilities for non-Hispanic Blacks, non-Hispanic Whites, and Hispanics 
between 2006 and 2018. Source: Authors’ elaboration based on data from NCHS (2021).

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/2/217/7023973 by guest on 19 M

ay 2023



232                                                          J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 2

the advantage of integrating comparisons across individuals and social groups into a coherent whole 
and responds to the need of having a summary measure of health inequality ‘which gives an overall 
picture of health inequalities in the population while maintaining pertinent information on [group- 
based] health inequalities’ (Asada, 2010:3).

It is important to clarify that in this paper we focus our attention on measures of inter-individual 
inequality (like the Theil index, the variance or the Gini coefficient) admitting mathematically exact 
decompositions in those settings where the populations under study are partitioned across social 
groups. Thus, we are not delving into other very popular approaches to explore health inequalities 
that either (a) do not have the individuals as the basic units of analysis or (b) are not aiming at pri
marily obtaining exact inequality decompositions. Among the former, we include those approaches 
where the health outcome variable is only meaningful at an aggregate level (e.g., hazard ratios, rela
tive risks, odd ratios, or mortality ratios applying to different population subgroups defined across 
geographical, social, cultural, or economic lines). Among the latter, we include a long and varie
gated list of models that aim at predicting individuals’ health outcomes on the basis of some inde
pendent variables (e.g., income level, educational attainment, employment status, place of 
residence, household type, age, sex, and so on and so forth). In those settings, total inter-individual 
variability of the outcome variable is partly (but not fully) explained by the variability of the inde
pendent variables, and the remaining part is a residual component that the model fails to explain. 
Inter alia, such methods allow incorporating multiple factors to predict the outcome variable and 
estimate their relative role in explaining total inter-individual variability.7 The exact inequality de
composition methods discussed in this paper offer alternative analytical perspectives that can com
plement the aforementioned approaches when assessing health inequalities.

Interpreting the new decompositions
The decomposition approach suggested in this paper applies to inequality measures that are based 
on making all pairwise comparisons across individual outcomes. Prominent members of this class 
include the AID index (or absolute Gini coefficient), or the (relative) Gini coefficient. While both the 
standard ‘additive decomposition approach’ of the Theil index or the variance and the new ap
proach proposed here have a ‘within-group’ and a ‘between-group’ component (see Appendix 
A), the meaning and interpretation of the latter differs completely when moving from one approach 
to the other.8 For standard additively decomposable measures, the between-group component has 
a single term that measures the inequality that would be observed in a hypothetical distribution sup
pressing variability within each of the G groups in which the population is partitioned. For the 
‘pairwise comparisons’-based approach proposed in this paper and described in (9) and (12), the 
between-group component contains the G(G − 1) terms off the diagonal in the advantage matrix 
MA, indicating not only how ‘close’ or ‘far away’ any two group-specific health distributions 
are, but also the extent to which one is (dis)advantaged with respect to the other. In this regard, 
the new approach is much more informative than the currently existing ones as for the groups’ rela
tive performance—something that has been clearly illustrated in the empirical section of the paper.

To further clarify the different kind of information that both approaches convey, let us consider 
two hypothetical scenarios. In the first one, suppose the G groups analyzed have exactly the same 
age-at-death distribution. In that scenario, additively decomposable measures would conclude 
that, since there are no differences in the group-specific life expectancies, the between-group com
ponent is zero. In contrast, all the terms off the diagonal in the distance matrix MD would be a 
constant number x > 0 equal to half the expected age-at-death difference between two individuals 
randomly chosen from the age-at-death distribution shared across all groups. Likewise, the terms 
off the diagonal in the advantage matrix MA would be all constant and equal to x/2. Suppose a 
second hypothetical scenario in which there is no within-group variability and all individuals 

7 In the ‘exact decompositions’ setting discussed in this paper, this goal can be achieved inspecting the size of the 
between-group components ensuing from the corresponding population partitions. That is, each of the factors (e.g., 
race, sex, education, or income) generates a partition of the population, and the larger the size of the corresponding 
between-group component, the more relevant that factor is to explain total inter-individual variability.

8 Indeed, neither the absolute nor the relative Gini coefficients are additively decomposable in the sense described in 
(1). Attempts at breaking down the Gini coefficient along these lines results in a three-term decomposition, G = Gw + Gb + 
R, where Gw and Gb are the standard within-group and between-group components, and R is a residual component 
which is only zero in case the group-specific distributions do not overlap with each other (a circumstance that is very un
likely to occur in practice; see Lambert and Aronson 1993).
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from a given group die at the same age—which naturally coincides with the group-specific life ex
pectancy at birth and can vary across groups. In that setting, additively decomposable measures 
collapse into a single term, measuring the extent of inequality among the different life expectan
cies. Alternatively, in the pairwise comparison approach advocated in this paper, the terms off 
the diagonal in MD would measure the distance between life expectancy pairs |eg

0 − eh
0|, and the 

terms off the diagonal in MA would be equal to either |eg
0 − eh

0| or 0, depending on whether eg
0 > 

eh
0 or eg

0 < eh
0 (e

g
0, eh

0 being the life expectancy of groups g and h, respectively).
Given the fundamentally different ways in which the two types of decompositions are defined, it 

is not surprising that the results they generate vary considerably. The findings reported in the em
pirical section of the paper are very illustrative in this regard. While the between-group component 
of the Theil index is almost non-existent in the US Black–White comparison (it barely explains 1% 
of the total variation) and tells us nothing about the relative performance of the two groups 
vis-a-vis each other, the terms included in the between-group component of the Gini coefficient 
uncover new and valuable information about the longevity advantages of Whites over Blacks, 
and vice versa. Inter alia, they show that while the average longevity advantage of Blacks outliving 
Whites has remained fairly constant, the average longevity advantage of Whites outliving Blacks 
has declined between 1970 and 2017. The small explanatory power of the between-group compo
nent when using additively decomposable measures like the Theil index or the variance has already 
been identified in previous studies (e.g., Edwards, 2011; Permanyer et al., 2018; Permanyer & 
Scholl, 2019; Seaman et al., 2019; Smits & Monden, 2009, van Raalte et al., 2012). This suggests 
that the variables that are commonly used to partition populations into groups (e.g., educational 
attainment, country of residence, ZIP code) are relatively weak predictors of individuals’ longevity 
and that mortality is a highly stochastic process (Caswell, 2009). Yet, as our findings clearly illus
trate, the low predictive power of these groupings on individuals’ longevity does not mean that 
differences across groups are unimportant or non-existent; we can obtain very different insights 
adopting alternative measurement strategies like the one proposed here. The different approaches 
to inequality measurement discussed in this paper are extremely useful and can offer complemen
tary insights to better understand past, contemporary, and prospective health dynamics.

The evolution of racial and ethnic inequalities in length of life in the United States
The US population is racially and ethnically diverse, with each group characterized by its unique mor
tality regime. Black Americans have long been at a disadvantage compared with the majority White 
population (Hummer & Chinn, 2011). Our study period, beginning in 1970, captures only the past 
five decades of this long history of racial inequality. Overall, this period was characterized by progress, 
though uneven at times, toward greater equality in lifespan distributions between Blacks and Whites in 
the United States. We find that among White men and women, lifespan inequality declined steadily 
from 1970 to 2000 but stagnated since the turn of the 21st century and even increased in recent years. 
Among Blacks, lifespan inequality diminished substantially in the 1970s, stagnated in the 1980s, and 
declined steadily during the 1990s and 2000s. Around 2010, however, this trend came to a halt and 
since 2014 an upsurge in lifespan inequality is observed among Blacks.

Applying the new decomposition approach proposed in this paper we can see how the compos
ition of lifespan inequality across and within racial groups has shifted dramatically over time. In 
2017, the longevity advantage of Whites over Blacks plays a much less prominent role than it did 
in the 1970s, while the longevity advantage of Blacks over Whites has remained relatively stable 
over time. Overall, these trends have resulted in a decreasing White advantage in the age-at-death 
distribution. These findings are consistent with prior research: the disproportionate impact of 
HIV/AIDS on Black communities in the 1980s leading to increased mortality in that group 
(Kochanek et al., 1994); the greater reductions in Black mortality from homicide, HIV, and heart 
disease (first among women, followed by men) during the 1990s and 2000s (Firebaugh et al., 
2014a; Harper et al., 2007); and the effect of the opioid epidemic on White Americans and its 
lagged effect on the Black population (Alexander et al., 2018; Sasson & Hayward, 2019). The 
White advantage relative to Blacks, however, is far from disappearing entirely and might have 
worsened since 2018, the last year in our time series. COVID-19 deaths in particular have taken 
a far greater toll on Blacks (as well as Hispanics) in the United States, potentially reversing years 
of progress toward narrowing the Black–White mortality gap (Andrasfay & Goldman, 2021).
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Unlike US Blacks, Hispanic hold a survival advantage relative to the non-Hispanic White popu
lation, in spite of their lower socioeconomic status (Boen & Hummer, 2019; Markides & 
Eschbach, 2005). We replicate this finding but show in addition that from 2006 to 2018 the prob
ability that a randomly selected Hispanic would outlive his or her non-Hispanic White counterpart 
has increased. The Hispanic advantage over non-Hispanic Blacks was even greater but did not 
change substantially during those years. Explanations for the Hispanic survival advantage range 
from health behaviours to selection effects—both of healthy immigrants and unhealthy emigrants 
—but little attention has been given to changes in this advantage over time (Borrell & Lancet, 
2012). As we have shown here, the Hispanic survival advantage is dynamic and warrants addition
al research to understand why it has changed over time.

Final remarks
While the decomposition approach suggested in this paper has many advantages, it is important to 
be aware of its limitations. Indeed, what is unarguably one of its most important strengths (the fact 
that it generates a detailed decomposition informing about many aspects of the health distribu
tion) might turn out to be a disadvantage when the number of groups (G) is relatively large. 
Interpreting the levels and trends of the G within-group and G(G − 1) between-group terms shown 
in (9) and (12) can be daunting if, for instance, one is interested in measuring health inequalities 
around the world—where the population is partitioned in around G ≈ 150 or 200 countries (see, 
for instance, Edwards, 2011; Permanyer & Scholl, 2019, Smits & Monden, 2009). In this line, one 
might further argue that when the number of groups becomes very large, the between-group com
ponent explains almost all the observed variability. While true, it is important to highlight two im
portant issues: (a) by definition, this will happen to any other inequality measure or decomposition 
method;9 and (b) the number of groups in which populations are partitioned is usually fixed and 
tends to remain unchanged across time or space. The decomposition approach proposed in this 
paper is both practical and very informative when the number of groups is relatively low, for ex
ample, when populations are partitioned by educational attainment, religion, ethnic groups, race, 
or income/wealth quartiles/quintiles.

Addressing health inequalities is becoming a top priority for public health planners all over the 
world. The implementation of efficient and fair policies to curb health inequalities can greatly 
benefit from indicators that inform planners not only about the extent of inter-individual variabil
ity, but also about the relative performance of the groups into which populations might be parti
tioned. This is the case of the measures proposed in this paper, which can be very useful to identify 
the main drivers of inequality change over time. While we have illustrated their usefulness using 
age-at-death distributions, the same approach can be implemented with any other health outcome 
measured in a cardinal scale (e.g., length of life lived in different health states (e.g., ‘in good health’, 
‘free from specific diseases or conditions’), height, frailty, grip strength, and so on), so the scope for 
practical applications is extraordinarily large.
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Data availability
The data and code to replicate all the results and figures presented here are publicly available for 
research purposes on the GitHub repository https://github.com/panchoVG/GiniDecomp.
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Appendices
Appendix A. Additively decomposable inequality indices
Here, we show the different additively decomposable inequality indices (i.e., the measures satisfy
ing (1)) referred to in the main text and the corresponding additive decompositions. We will ex
press them using life table notation. Thus, d represents an age-at-death distribution, ℓ0 is the 
radix of the population, e0 is the life expectancy at birth, dx and αx are the life table number of 
deaths and the average age-at-death in the age interval x to x + 1, respectively, and ω is the max
imum possible age. Assuming the population is partitioned across G groups, we denote by eg

0 the 
life expectancy at birth of group g.

We begin with the Theil index, which is defined as

T(d) =
1
ℓ0

􏽘ω

x=0

dx
αx

e0

􏼒 􏼓

log
αx

e0

􏼒 􏼓

.

When the population is partitioned in G groups, the Theil index can be decomposed as

T(d) = Tb(d) + Tw(d) =
􏽘G

g=1

ng

n
eg

0

e0
log

eg
0

e0

􏼒 􏼓

+
􏽘G

g=1

ng

n
eg

0

e0
Tg. (A1) 

The first part in (A1) is the between-group component, which is obtained assuming all individuals 
in each group die at the same age eg

0, so there is no within-group variation. The second term is the 
within-group component, which is a weighted sum of the within-group inequalities measured by 
Tg, the Theil index applied to group g.

Another inequality index that is additively decomposable is the mean log deviation, which is 
defined as

L(d) =
1
ℓ0

􏽘ω

x=0

dx log
e0

αx

􏼒 􏼓

.

When the population is partitioned in G groups, L(d) can be decomposed as

L(d) = Lb(d) + Lw(d) =
􏽘G

g=1

ng

n
log

e0

eg
0

􏼒 􏼓

+
􏽘G

g=1

ng

n
Lg, 

where Lg is the mean log deviation applied to group g. Finally, the variance is the only absolute 
inequality index that is additively decomposable. It is defined as

V(d) =
1
ℓ0

􏽘ω

x=0

dx(αx − e0)2.
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When the population is partitioned in G groups, V(d) can be decomposed as

V(d) = Vb(d) + Vw(d) =
􏽘G

g=1

ng

n
(eg

0 − e0)2 +
􏽘G

g=1

ng

n
Vg, 

where Vg is the variance applied to group g.

Appendix B. Decomposition of the relative Gini coefficient
The same approach used to decompose the absolute Gini coefficient Δ(d) can be applied to G(d), 
the relative Gini coefficient defined in (3). It is straightforward to check that (5) can be adapted to 
the relative context, expressed as

G(d) = GW(d) + GB(d) =
􏽘G

g=1

S̃gĨ
g
W +

􏽘G

g=2

􏽘g−1

h=1

S̃ghĨ
gh
B , (A2) 

where

Ĩ
g
W : =G(dg) =

Ig
W

eg
0 

Ĩ
gh
B : =

Igh
B

(eg
0 + eh

0)/2 

S̃g : =
ng

n

􏼐 􏼑2eg
0

e0 

S̃gh : =
ngnh

n2

(eg
0 + eh

0)
e0 

eg
0, eh

0 being the life expectancy of groups g and h, respectively. The interpretation of (A2) is very 
similar to that of (5): The first part includes G within-group inequality terms and the second part 
includes G(G − 1)/2 between-group terms. The only difference now is that the within- and 
between-group inequality elements are defined in relative terms (i.e., the absolute variation in 
the numerator is put in relation with respect to the corresponding mean/life expectancy in the de
nominator). Like in the previous section, the between-group terms in (A2) measuring the distance 
between pairs of groups can be further broken down in two components as follows:

Ĩ
gh
B = 2

Igh
B

eg
0 + eh

0

= 2
Agh + Ahg

eg
0 + eh

0

􏼠 􏼡

=
2Agh

eg
0 + eh

0

+
2Ahg

eg
0 + eh

0

. (A3) 

Defining

Ãgh : =
2Agh

eg
0 + eh

0

and Ãhg : =
2Ahg

eg
0 + eh

0

, (A4) 

we can rewrite (A2) as

G(d) = GW(d) + GB(d) =
􏽘G

g=1

S̃gĨ
g
W +

􏽘G

g=2

􏽘g−1

h=1

S̃gh(Ãgh + Ãhg), (A5) 

which is the ‘relative version’ of (9). In matrix notation, (A2) and (A5) can be expressed more com
pactly as

G(d) = p′ × M̃D × s = p′ × (M̃A + M̃′A) × s, 

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/2/217/7023973 by guest on 19 M

ay 2023



Permanyer et al.                                                                                                                                         239

where p = (p1, …, pG) is, again, the vector of population shares across groups, and s = (s1, …, sG) is 
a column vector whose elements are defined as

sg : =
ng

n
eg

0

e0
.

M̃D and M̃A are the ‘relative version’ of the distance and advantage matrices MD and MA given 

in (10) and (11); that is, replacing the Ig
W , Igh

B and Agh terms by the corresponding Ĩ
g
W, Ĩ

gh
B and Ãgh 

elements defined in (A2)–(A4).

Appendix C. The two-group decomposition of the absolute Gini coefficient
Assume a population that is partitioned in two groups, for instance females (F) and males (M), with 
respective population sizes nF and nM, such that the total population is n = nF + nM. Following (2), 
given the group-specific age-at-death distributions dF = {dF

0, · · · ,d
F
ω} and dM = {dM

0 , · · · ,d
M
ω }, the 

overall lifespan inequality measured by the absolute Gini coefficient can be broken down as

Δ(d) =
1

2ℓ2
0

􏽘ω

a=0

􏽘ω

b=0

dadb|a − b|

=
1

2ℓ2
0

􏽘ω

b=0

d0db|0 − b| +
􏽘ω

b=0

d1db|1 − b| + · · · +
􏽘ω

b=0

dωdb|ω − b|

􏼠 􏼡

=
1

2ℓ2
0

(d0d0|0 − 0| + d0d1|0 − 1| + d0d2|0 − 2| + · · · + d0dω|0 − ω| + · · ·

+dωd0|ω − 0| + dωd1|ω − 1| + dωd2|ω − 2| + · · · + dωdω|ω − ω|). (A6) 

Note that for any pair of ages a and b

dadb =
nF · dF

a + nM · dM
a

n

􏼒 􏼓
nF · dF

b + nM · dM
b

n

􏼒 􏼓

=
n2

F · d
F
adF

b + n2
M · d

M
a dM

b + nFnM · dF
adM

b + nFnM · dF
bdM

a

n2 ·
(A7) 

In particular, when a = b

dada =
n2

F · d
F
adF

a + n2
M · d

M
a dM

a + 2nFnM · dF
adM

a

n2 .

Using (A6) in (A7), we get

Δ(d) =
1

2ℓ2
0

􏼐 n2
F · d

F
0dF

0 + n2
M · d

M
0 dM

0 + 2nFnM · dF
0dM

0

n2 |0 − 0|

+
n2

F · d
F
0dF

1 + n2
M · d

M
0 dM

1 + nFnM · dF
0dM

1 + nFnM · dF
1dM

0

n2 |0 − 1| + · · ·

+
n2

F · d
F
0dF

ω + n2
M · d

M
0 dM

ω + nFnM · dF
0dM

ω + nFnM · dF
ωdM

0

n2 |0 − ω| + · · ·

+
n2

F · d
F
ω dF

0 + n2
M · d

M
ω dM

0 + nFnM · dF
ωdM

0 + nFnM · dF
0dM

ω
n2 |ω − 0|

+
n2

F · d
F
ω dF

1 + n2
M · d

M
ω dM

1 + nFnM · dF
ωdM

1 + nFnM · dF
1dM

ω
n2 |ω − 1| + · · ·

+
n2

F · d
F
ωdF

ω + n2
M · d

M
ω dM

ω + 2nFnM · dF
ωdM

ω
n2 |ω − ω|

􏼑
·

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssa/article/186/2/217/7023973 by guest on 19 M

ay 2023



240                                                          J R Stat Soc Series A: Statistics in Society, 2023, Vol. 186, No. 2

Re-arranging terms,

Δ(d) =
1

2ℓ2
0

􏼐􏼐nF

n

􏼑2􏼐
dF

0dF
0|0− 0|+ . . . + dF

0dF
ω|0− ω|+ . . . +dF

ωdF
0|ω −0|+ . . . +dF

ωdF
ω|ω − ω|

􏼑

+
􏼐nM

n

􏼑2􏼐
dM

0 dM
0 |0 −0|+ . . . +dM

0 dM
ω |0− ω|+ . . . + dM

ω dM
0 |ω − 0|+ . . . + dM

ω dM
ω |ω − ω|

􏼑

+
2nFnM

n2

􏼐
dM

0 dF
0|0− 0|+ . . . +dM

0 dF
ω|0− ω|+ . . . +dM

ω dF
0|ω − 0|+ . . . + dM

ω dF
ω|ω − ω|

􏼑􏼑
·

= SFIF
W +SMIM

W +SFMIFM
B , 

where IF
W is the within-group variation for females

IF
W : =Δ(dF) =

1
2ℓ2

0

􏽘ω

a=0

􏽘ω

b=0

dF
adF

b · |a − b|, 

IM
W is the within-group variation for males

IM
W : =Δ(dM) =

1
2ℓ2

0

􏽘ω

a=0

􏽘ω

b=0

dM
a dM

b · |a −b|, 

and IFM
B the between-group variation

IFM
B : =

1
2ℓ2

0

􏽘ω

a=0

􏽘ω

b=0

dF
adM

b · |a − b|.

Each of these three terms have respective weights

SF : =
nF

n

􏼐 􏼑2
, SF : =

nM

n

􏼐 􏼑2
, and SFM : =2

nFnM

n2 .
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