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Abstract

In this work we study Mark Kac’s classical problem “Can one hear the shape of a
drum?” and some of its extensions. They are all inverse problems on characterizing
the shape, or at least some geometrical information about the shape, of an Eu-
clidean domain from its Dirichlet spectrum. As to the original problem, we answer
it negatively by providing an example of two different shaped planar drums that
have the same spectrum of frequencies. As to the extensions, we prove that the
spectrum of frequencies of a planar drum characterizes its area. These results are
straightforwardly generalized to higher dimensions. Finally, we comment variants
of Kac’s problem for which there are positive results for the characterization of the
shape of a drum from its spectrum.
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1 Introduction

When we beat a drum its surface vibrates in an oscillatory way. This vibration
induces an oscillatory displacement of the surrounding air that propagates through
space in a so-called sound wave. The frequencies of those oscillations are char-
acterized by the way the surface of the drum vibrates, so they are referred to as
the frequencies of the drum. Bass sounds correspond to low frequencies and treble
sounds correspond to high frequencies. When the sound wave reaches our ears,
their internal structure vibrates according to those frequencies, generating neural
impulses that are sent to our brain in order to reconstruct the sound. So we can
say that what we hear are the frequencies.

1.1 Fundamental frequencies and eigenvalues of the Lapla-
cian

Since the frequencies of a drum are characterized essentially by the way its surface
vibrates, let’s set up the mathematical model of vibrations of a membrane.

The shape of the unperturbed surface of the drum (or simply membrane) will be
modeled by a domain Ω of R2, that is, an open, connected proper subset of R2.

After a beat, the membrane points vibrate vertically in an oscillatory way. Let

v : [0,∞)× Ω −→ R
(t, (x, y)) 7−→ v(t, x, y)

be the vertical displacement of a point (x, y) ∈ Ω at time t.

We would expect that the more tightly curved is the membrane locally at (x, y),
the greater the restoring force. On the one hand, by Newton’s second law, the
restoring force is proportional to the acceleration ∂2v

∂t2
; on the other hand, the tight-

ness of the membrane is controlled by its convexity, measured by its Laplacian
∆v = ∂2v

∂x2 +
∂2v
∂y2

, so we expect ∂2v
∂t2

= ∆v in Ω.

Since the membrane is fixed on its boundary, v(t, x, y) must vanish on all (x, y) ∈
∂Ω. If, in addition, the initial distributions of vertical displacements and velocities
are known, with patterns f(x, y) and g(x, y) respectively, we deduce that v must
be a solution of the wave equation with initial conditions:

∂2v

∂t2
= ∆v in Ω

v = 0 on ∂Ω

v(0, x, y) = f(x, y)
∂v

∂t
(0, x, y) = g(x, y).

(1)

Particularly interesting are the so-called stationary waves : waves for which the
frequency of oscillations is the same for all points and the amplitude of the vertical
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displacements only depends on the membrane point. Such frequencies are called
fundamental frequencies of the membrane or pure tones.

Stationary waves are modeled by functions of the form v(t, x, y) = T (t)u(x, y).
Substituting this in the PDE we have

d2T (t)

dt2
u(x, y) = T (t)∆u(x, y),

or equivalently
1

T (t)

d2T (t)

dt2
=

1

u(x, y)
∆u(x, u).

This is an equality between functions of different variables, so both sides have to
be equal to a same constant −λ < 0. The sign must be negative because the force
is restoring. For the temporal factor we get the harmonic oscillator differential
equation (see [1, Sections 2 and 5]),

d2T

dt2
+ λT = 0,

which has general solution

T (t) = c1 cos(
√
λt) + c2 sin(

√
λt), c1, c2 ∈ R.

So
√
λ

2π
models the frequency of the stationary wave v, that is,

√
λ

2π
is one of the

fundamental frequencies of the membrane.

For the spacial factor we get{
∆u+ λu = 0 in Ω

u = 0 on ∂Ω,
(2)

so u must be an eigenfunction of the Dirichlet Laplacian.

Observe that the eigenvalues λ are in unique correspondence with the fundamen-
tal frequencies of the membrane. Therefore, this provides a mathematical model to
determine them: the fundamental frequencies of the membrane are the square roots
of those positive numbers λ, divided by 2π, for which (2) has a non-trivial solution.

Because of the physical motivation of the problem we will restrict ourselves to
functions u : Ω → R continuous in Ω with piecewise continuous derivatives up to
second order in Ω (see a precise definition in Section 2).

Definition 1.1. A non-trivial piecewise C2 function in Ω solving the Dirichlet prob-
lem (2) is called an eigenfunction of the Dirichlet Laplacian, or simply Dirichlet
eigenfunction. The set of λ ∈ R for which there exists a non-trivial solution of
(2) is called spectrum of Ω and will be denoted Spec(Ω). Their elements are called
eigenvalues of the Dirichlet Laplacian, or simply Dirichlet eigenvalues, and will be
denoted λ(Ω), or simply λ if clear by the context.

Equations (1) and (2) have been deeply studied and many of their properties
are standard. The ones that we will need in this work are presented below, with
references where to find the proofs.
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1.1.1 Classical results for the Laplace operator

The following result, a proof of which can be found in [7, Section 2.4.3], ensures
that the wave equation (1) has a unique solution, according to the physical notion
that the sound of a drum, given the initial conditions, is unique.

Theorem 1.2. Let Ω be a domain of R2. Then, there exists at most one function
v : [0,∞)× Ω → R solving (1).

Thanks to the following result, due to Pockels [20], we can tag the eigenvalues
of the Dirichlet Laplacian with natural numbers. In this work, natural numbers do
not include zero.

Theorem 1.3. All the eigenvalues of the Dirichlet Laplacian form a non-decreasing
sequence of positive numbers tending towards infinity, that is, Spec(Ω) = {λn}n∈N
with 0 < λ1 ≤ λ2 ≤ · · · ↗ ∞.

In general, one should not expect to have closed formulas for the values λn,
because equation (2) is in general not solvable analytically. In Section 2.2 we will
see some particular domains for which we can compute explicitly the eigenvalues.

A key property throughout this work is that the normalized eigenfunctions of
the Dirichlet Laplacian form an orthonormal basis of the Lebesgue space L2(Ω)
equipped with the usual scalar product

⟨f, g⟩ :=
∫
Ω

f(x)g(x)dx.

Theorem 1.4. Let Ω be a domain of R2 with spectrum Spec(Ω) = {λn}n∈N, where
0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · . For all j ≥ 1, let uj ∈ L2(Ω) be the eigenfunction of
the Dirichlet Laplacian with eigenvalue λj and normalized so that ∥uj∥ = 1. Then
the set {uj}j≥1 is an orthonormal basis of L2(Ω).

This result follows from the Spectral Theorem on compact self-adjoint operators
applied to the inverse of the Laplacian (see [2, Theorems 9.8 and 9.9]).

Observe that this theorem provides a method to solving the wave equation (1):
assume that the initial position f and velocity g are in L2(Ω) and define the solution
of the initial wave equation (1) as the following superposition of stationary waves

v(t, x, y) =
∞∑
j=1

(
⟨f, uj⟩ cos(

√
λjt) +

1√
λj

⟨g, uj⟩ sin(
√
λjt)

)
uj(x, y), (3)

where uj are the eigenfunctions of the Dirichlet Laplacian of eigenvalue λj, for all
j ≥ 1.

By construction, each addend is a solution of the PDE with boundary condition
in (1). Thus, formally, interchanging derivatives and summation, (3) satisfies the
PDE and boundary condition of (1). Moreover, since by Theorem 1.4 the functions
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uj form an orthonormal base of L2(Ω), the initial conditions of (1) are also satisfied.
Thus, (3) is a solution of the wave equation.

Note that, since the solution of the wave equation (1) is unique, from (3) we
deduce that the initial conditions characterize the solution of (1). Then all the
possible ways in which a drum can vibrate are characterized by their initial positions
and velocities.

More specifically, all the possible ways in which a drum can vibrate can be
expressed as a superposition of stationary waves, the coefficients of which are char-
acterized by the initial conditions. This way, any sound emerging from the drum
can be decomposed into a superposition of fundamental frequencies. Thus, the
problem of characterizing the sound of a drum reduces to finding its fundamental
frequencies and, as we have already discussed, this is reduced in turn to finding the
eigenvalues of the Dirichlet Laplacian.

1.2 Can one hear the shape of a drum?

We are familiar with the fact that the frequencies of a drum depend on the shape
of the drum: big drums generate lower sounds than small drums. In fact, the shape
of a drum characterizes its frequencies.

In 1966 Kac [14] went a step further and asked if the converse holds, that is,
if the set of fundamental frequencies of a drum characterizes its shape. Note that
if the answer were affirmative, from the set of fundamental frequencies we could,
theoretically, uniquely reconstruct the shape of the drum, in analogy with what our
brain does when reconstructing the sound of the drum from its frequencies. With
this analogy in mind, Kac titled his article [14] with the poetic question “Can one
hear the shape of a drum?”

More specifically, Kac asked if two isospectral domains Ω1 and Ω2, that is, do-
mains with the same Dirichlet spectrum Spec(Ω1) = Spec(Ω2), are necessarily iso-
metric, that is, that one can be obtained from the other through translations,
rotations or reflections.

Although Kac’s question can be mathematically generalized to arbitrary dimen-
sions, and even to manifolds, it was posed for domains in R2. That was appropriate
since Kac was aware of Milnor’s work [17] (done just a couple of years before), who
constructed two non-congruent sixteen dimensional tori whose Dirichlet spectra are
identical.

On the other hand, Kac was also aware of Weyl’s law [25] (which we will study
in detail in Section 4), an asymptotic formula which gives the area of Ω in terms of
the eigenvalues of the Dirichlet Laplacian.

Theorem 1.5. Let Ω be a Jordan measurable domain with area |Ω| and Spec(Ω) =
{λn}n∈N. Then

lim
r→∞

#{λn ∈ Spec(Ω) : λn < r}
r

=
|Ω|
4π
. (4)

As we shall see in Section 4, the condition for a domain to be Jordan measurable
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is not quite restrictive and corresponds to domains that can be well approximated
by finite unions of rectangles.

In his article [14] Kac studied the asymptotic behaviour of the eigenvalues of the
Dirichlet Laplacian from a physical point of view, what lead him to conjecture the
following expansion formula.

Conjecture 1.6. Let Ω be a domain of R2 with area |Ω|, perimeter ℓ(∂Ω) and h
number of holes. Let Spec(Ω) = {λn}n∈N. Then (2)

∞∑
n=1

e−λnt =
|Ω|
4πt

+
ℓ(∂Ω)

8
√
πt

+
1

6
(1− h) +O(t), t→ 0+. (5)

As we will prove in Section 2.1, when they exist, the limit in (4) and

lim
t→0+

t
∞∑
n=1

e−λnt

always have the same value, so the conjectured expansion (5) was consistent with
the already known result of Weyl.

It was therefore reasonable to think that the expansion (5) with more terms would
involve more geometrical parameters of Ω; so conjecturing that Spec(Ω) could fully
characterize Ω was reasonable.

In Section 3 we will show that the answer to Kac’s question is negative by provid-
ing an example of two non-isometric domains that are isospectral. The construction
of such domains is inspired by an idea from group theory concerning permutation
representations, that we shall describe. Having the domains in hand, checking
that they are isospectral will be done by inspection, namely, showing that for each
Dirichlet eigenfunction of one domain there is another Dirichlet eigenfunction of the
other domain with the same eigenvalue. In conclusion, in Section 3 we will prove
the following result:

Theorem 1.7. There exist two non-isometric domains of R2 that are isospectral.

Despite this example closes Kac’s question answering it negatively, several geo-
metrical properties of the domain can be recovered from its spectrum.

In Section 4 we will prove Weyl’s law (4) by following the next steps: first, we
will check it for rectangles; then, for unions of rectangles (domains looking like a
grid); finally, we will prove it for domains that can be well approximated by unions
of rectangles, which are called Jordan measurable domains. The way in which we
will be able to execute the last two steps will be through characterizing the Dirichlet
eigenvalues as extremes of variational problems. To do so, we will need the structure
of Hilbert space of L2(Ω) and the orthogonality of the eigenfunctions, guaranteed
by Theorem 1.4. From these extreme problems will follow a monotonicity order of

(2)In Kac’s original work [14] some factors of (5) are different due to a different normalization
of equation (2).
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the eigenvalues of nested domains. This result will allow to relate the eigenvalues of
a Jordan measurable domain with the ones of unions of rectangles approximating
it from inside and from outside.

Finally, in Section 5 we consider Kac’s problem in arbitrary dimensions and in
compact, smooth Riemannian manifolds. We will prove that only in R1 a “drum” is
characterized by its spectrum, and that the example constructed in Section 3 allows
to construct non-isometric drums of Rd that are isospectral, for d > 2. We will also
present some generalizations of Weyl’s law and Kac’s conjectured expansion formula
and comment variants of Kac’s problem (with restricted hypothesis) that allow to
characterize the shape of a drum from its spectrum.
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2 Mathematical setup and some examples

The Dirichlet problem (2) is well-defined for C2 functions in Ω. Nevertheless, be-
cause of the physical motivation of the problem, we will work with the larger class
of functions defined below.

Definition 2.1. Let C2
∗(Ω) be the set of functions u : Ω → R such that u is contin-

uous in Ω with piecewise continuous derivatives up to second order in Ω.

In this two dimensional study, by being piecewise continuous we mean the fol-
lowing:

Definition 2.2. A function w : Ω → R is said to be piecewise continuous if

i) there exist domains Ω1, . . . ,Ωk ⊆ Ω such that Ω = Ω1 ∪ · · · ∪ Ωk,

ii) the domains Ω1, . . . ,Ωk satisfy that Ωi ∩ Ωj = ∂Ωi ∩ ∂Ωj ∀i ̸= j, and

iii) w is continuous in Ωi, ∀i = 1, . . . , k.

Remark 2.3. Observe that the derivatives of a C2
∗(Ω) function may be discontinu-

ous, but only in a set of Lebesgue measure zero, namely, on the internal boundaries
of the domains Ω1, . . . ,Ωk ⊂ Ω.

ΩΩ2

Ω1

. . .

· · ·
Ωk

Figure 1: Example of the domain Ω of a piecewise continuous function: in each
subdomain Ωj the function is continuous.

Note that for the class of functions C2
∗(Ω), the PDE of (2) may not be well-

defined. We understand the equation ∆u + λu = 0 to hold everywhere except on
the internal boundaries where the derivatives of u are discontinuous, that is, almost
everywhere in Ω (in the Lebesgue sense).

Remark 2.4. It turns out, as proved in [7, Section 6.3.1], that a function u ∈ C2
∗(Ω)

being a solution of ∆u+λu = 0 has more regularity than just being C2
∗(Ω), namely,

it is C∞(Ω) (a standard result known as “interior regularity”). Thus, for convenience
we will work in the space of C2

∗(Ω) functions, but in practice all the regularity needed
for the problem to make sense is guaranteed.
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In the proof of properties of the Dirichlet eigenvalues, the eigenvalues of a related
problem will be an important tool. The problem at hand is the Neumann Laplacian,
although, as far as we know, its Neumann eigenvalues don’t have any physical
interpretation with drums: ∆ũ+ λ̃ũ = 0 in Ω

∂ũ

∂n
= 0 on ∂Ω.

(6)

Here n is the normal vector on the boundary ∂Ω pointing outside the domain Ω.

Definition 2.5. A solution ũ ∈ C2
∗(Ω) \ {0} of (6) is called an eigenfunction of the

Neumann Laplacian, or simply Neumann eigenfunction. The λ̃ ∈ R for which there
exists a non-trivial solution of (6) are called eigenvalues of the Neumann Laplacian,
or simply Neumann eigenvalues, and will be denoted λ̃(Ω), or simply λ̃ if clear by
the context.

Whenever we talk about the spectrum of Ω we will refer to the eigenvalues of
the Dirichlet Laplacian, not to the Neumann ones.

The results of Section 1.1.1 hold analogously for the Neumann problem (6).
Namely, all the Neumann eigenvalues form a non-decreasing sequence of nonnegative
numbers tending towards infinity, 0 = λ̃1 < λ̃2 ≤ · · · ↗ ∞, and the normalized
Neumann eigenfunctions form an orthonormal basis of L2(Ω).

2.1 Equivalence of Weyl’s law and Kac’s first term

To support Kac’s conjectured expansion formula (Conjecture 1.6), let’s start check-
ing that it is consistent with Weyl’s law (Theorem 1.5). The following result implies
that Weyl’s law and the first term of Kac’s expansion formula are equivalent limits.

Proposition 2.6. Let {λn}n≥1 be a sequence of non-decreasing positive numbers
tending towards infinity. Then the following limits are equivalent:

i) lim
r→∞

#{λn < r}
r

= L

ii) lim
t→0+

t
∞∑
n=1

e−λnt = L

Proof. i) =⇒ ii) Let µ be the measure

µ =
∞∑
n=1

δλn ,

where δλn is Dirac’s delta at λn. Observe that

µ({λ < r}) = #{λn < r}. (7)
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By i), for all ε > 0 there exists M > 0 such that for all r > M

L− ε <
µ({λ < r})

r
< L+ ε. (8)

Using the distribution function we have

∞∑
n=1

te−λnt =

∫ ∞

0

te−λtdµ(λ) =

∫ 1

0

tµ
({
e−λt > s

})
ds =

∫ 1

0

tµ

({
λ <

− ln s

t

})
ds.

After the substitution r = − ln s
t

we obtain

t
∞∑
n=1

e−λnt =

∫ ∞

0

rt2
µ({λ < r})

r
e−rtdr.

Then, fixed ε > 0, we can write this as

t
∞∑
n=1

e−λnt =

∫ M

0

rt2
µ({λ < r})

r
e−rtdr +

∫ ∞

M

rt2
µ({λ < r})

r
e−rtdr. (9)

In the limit t→ 0+ the first integral will vanish, so let’s see which is the behaviour
of the second integral. By (8) we can bound from above∫ ∞

M

rt2
µ({λ < r})

r
e−rtdr <

∫ ∞

M

rt2 (L+ ε) e−rtdr = (L+ ε)

∫ ∞

tM

xe−xdx,

where the substitution x = rt has been applied in the last step. Similarly, we can
bound from below∫ ∞

M

rt2
µ({λ < r})

r
e−rtdr > (L− ε)

∫ ∞

tM

xe−xdx.

Since lim
t→0+

∫∞
tM
xe−xdx = Γ(2) = 1, we finally deduce from (9) that

L− ε < lim
t→0+

t
∞∑
n=1

e−λnt < L+ ε.

ii) =⇒ i) This follows from a theorem due to Karamata [15], which we prove

below, following [22, Theorem 10.3].

Theorem 2.7 (Karamata’s Tauberian theorem). Let µ be a (positive) Borel
measure on [0,∞). Suppose that

∫∞
0
e−txdµ(x) <∞ for all t > 0 and that for some

γ > 0, D > 0:

lim
t→0+

tγ
∫ ∞

0

e−txdµ(x) = D.

Then

lim
r→∞

µ([0, r))

rγ
=

D

Γ(γ + 1)
. (10)

9



Assuming this, if the limit ii) holds then

L = lim
t→0+

t
∞∑
n=1

e−λnt = lim
t→0+

t

∫ ∞

0

e−txdµ(x),

so by Karamata’s Tauberian theorem with γ = 1 and (7) we obtain the limit i).

It therefore only remains to prove Karamata’s Tauberian theorem: fix γ, t > 0
and let µt be the measure in [0,∞) given by

µt(A) = tγµ
({
t−1a : a ∈ A

})
,

for A ⊂ [0,∞). Let dν = xγ−1dx. Since

D

Γ(γ)
ν([0, 1)) =

D

Γ(γ)

∫ 1

0

xγ−1dx =
D

Γ(γ + 1)
,

and under the substitution t = 1/r we have

lim
t→0+

µt([0, 1)) = lim
t→0+

tγµ
([
0, t−1

))
= lim

r→∞

µ([0, r))

rγ
,

equation (10) can be rewritten as

lim
t→0+

µt([0, 1)) =
D

Γ(γ)
ν([0, 1)). (11)

We want to see this as an equality between measures of the same set. Thanks
to the following lemma, which is quite standard in measure theory but that for the
sake of completeness we will prove later, it suffices to show that

lim
t→0+

∫ ∞

0

f(x)dµt(x) =
D

Γ(γ + 1)

∫ ∞

0

f(x)dν(x) (12)

for all f ∈ Cc([0,∞)), that is, for all continuous real valued functions with compact
support in [0,∞).

Lemma 2.8. If (12) holds for all f ∈ Cc([0,∞)), then (11) holds.

On the one hand, by hypothesis we have

lim
t→0+

∫ ∞

0

e−xdµt(x) = lim
t→0+

tγ
∫ ∞

0

e−txdµ(x) = D =
D

Γ(γ + 1)

∫ ∞

0

e−xdν(x),

so the measures e−xdµt(x) are uniformly bounded for all t > 0 and (12) holds for
functions of the form f(x) = e−nx with n ∈ N (under the substitution x 7→ nx).
Then, by linearity, (12) also holds for all polynomials in the variable e−x with
independent term equal to zero.

On the other hand, by the Stone-Weierstrass theorem we have the following
result, which we shall prove later.
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Lemma 2.9. The polynomials in the variable e−x with independent term equal to
zero are dense, with the norm ∥ · ∥∞, in the set of continuous real valued functions
on [0,∞) going to zero at infinity.

Thus, the functions f ∈ Cc([0,∞)) can be approximated by such polynomials in
the variable e−x. This proves (12). □

It only remains to check that it is enough to show (12) in order to prove (11),
and that every continuous real valued function on [0,∞) going to zero at infinity
can be approximated by polynomials in the variable e−x with independent term
equal to zero.

Proof of Lemma 2.9. Let f : [0,∞) → R be such that limx→∞ f(x) = 0. Define

g : [0, 1] −→ R

x 7−→

{
f(− lnx) if x ∈ (0, 1]

0 if x = 0.

Clearly, g is continuous in the compact [0, 1]. By the Stone-Weierstrass theorem,
for all ε > 0 there exists a polynomial p̃(x) such that ∥g− p̃∥∞ < ε/2. In particular,

|p̃(0)| = |g(0)− p̃(0)| < ε/2

Define the polynomial p(x) := p̃(x)− p̃(0). Note that the independent term of p is
equal to zero and that, by the triangle inequality,

∥g − p∥∞ ≤ ∥g − p̃∥∞ + ∥p̃− p∥∞ < ε.

Moreover, since for all t ≥ 0 we have that x = e−t ∈ [0, 1] and g(e−t) = f(t), we
get, for all t ≥ 0, ∣∣f(t)− p

(
e−t
)∣∣ < ε,

which implies that ∥f(x)− p (e−x)∥∞ < ε. □

Proof of Lemma 2.8. Let χ[0,1)(x) be the characteristic function on [0, 1), that is,

χ[0,1)(x) =

{
1 if x ∈ [0, 1)

0 if x ̸∈ [0, 1).

Our goal is to show that

lim
t→0+

∫ ∞

0

χ[0,1)(x)dµt(x) =
D

Γ(γ + 1)

∫ ∞

0

χ[0,1)(x)dν(x). (13)

Consider the decreasing sequence of functions {fn}n∈N ⊂ Cc([0,∞)) defined by

fn(x) :=


1 if x ∈ [0, 1)

−nx+ 1 + n if x ∈ [1, 1 + 1
n
)

0 if x ∈ [1 + 1
n
,∞).

11



Clearly fn converge pointwise to χ[0,1), so by the monotone convergence theorem we
have

lim
n→∞

∫ ∞

0

fn(x)dµt(x) =

∫ ∞

0

χ[0,1)(x)dµt(x),

for all t > 0, and

lim
n→∞

∫ ∞

0

fn(x)dν(x) =

∫ ∞

0

χ[0,1)(x)dν(x).

By hypothesis (12) holds for each fn. Therefore, for all ε > 0 there exists δε > 0
such that if 0 < t < δε then

−ε+ D

Γ(γ + 1)

∫ ∞

0

fn(x)dν(x) <

∫ ∞

0

fn(x)dµt(x) < ε+
D

Γ(γ + 1)

∫ ∞

0

fn(x)dν(x),

for all n ∈ N. Taking the limit n→ ∞ we get

−ε+ D

Γ(γ + 1)

∫ ∞

0

χ[0,1)(x)dν(x) ≤
∫ ∞

0

χ[0,1)dµt(x) ≤ ε+
D

Γ(γ + 1)

∫ ∞

0

χ[0,1)dν(x),

for all 0 < t < δε. Taking now the limit ε→ 0+ we get (13). □

2.2 Examples: the rectangle and the right isosceles triangle

Given an arbitrary domain Ω, hardly ever one can find closed formulas for the
eigenfunctions and the eigenvalues of the Dirichlet and Neumann Laplacians. Only
in few cases in which the domain is highly symmetric it is possible to give the
spectrum explicitly. This is the case for a rectangle or a right isosceles triangle, as
we shall see now.

Through these examples we will see how the geometry of Ω characterizes its
spectrum. Moreover, the computations will be useful for further developments.

2.2.1 Rectangle

Let R = {(x, y) ∈ R2 : 0 < x < a, 0 < y < b} be a rectangle of sides a and b, as
shown in Figure 2.

In order to find the eigenfunctions and the eigenvalues of the Dirichlet Laplacian,
let’s solve the Dirichlet problem (2) by separation of variables: a function of the
form u(x, y) = X(x)Y (y) is a solution of (2) if and only if

X ′′(x)Y (y) +X(x)Y ′′(y) + λX(x)Y (y) = 0 in R

X(a)Y (y) = 0 = X(0)Y (y) y ∈ [0, b]

X(x)Y (b) = 0 = X(x)Y (0) x ∈ [0, a].

After dividing the differential equation by X(x)Y (y), this is
X ′′(x)

X(x)
+
Y ′′(y)

Y (y)
+ λ = 0 in R

X(a) = 0 = X(0)

Y (b) = 0 = Y (0).

12



x
x = 0 x = a

y

y = 0

y = b

R
∂
∂x

∣∣∣
x=a

− ∂
∂x

∣∣∣
x=0

∂
∂y

∣∣∣
y=b

− ∂
∂y

∣∣∣
y=0

Figure 2: Rectangle of sides a and b with the normal vectors on its boundary.

Since the resulting differential equation is a linear combination of functions of dif-
ferent variables whose sum is constant we must have, for some α, β ∈ R with
α + β = λ,

X ′′(x)

X(x)
= −α x ∈ [0, a]

X(a) = 0 = X(0),


Y ′′(y)

Y (y)
= −β y ∈ [0, b]

Y (b) = 0 = Y (0).

From standard ODE theory (see [1, Section 2]) this implies that α and β must be
of the form

α =
ℓ2

a2
π2, β =

m2

b2
π2 with ℓ,m ∈ N

and that X(x) and Y (y) must be proportional, respectively, to

Xℓ(x) = sin

(
ℓπx

a

)
, Ym(y) = sin

(mπy
b

)
with ℓ,m ∈ N.

Therefore we see that the functions

uℓ,m(x, y) = kℓ,m sin

(
ℓπx

a

)
sin
(mπy

b

)
(ℓ,m ∈ N, kℓ,m ∈ R \ {0})

are all eigenfunctions of the Dirichlet Laplacian, with eigenvalues

λℓ,m =

[(
ℓ

a

)2

+
(m
b

)2]
π2 (ℓ,m ∈ N). (14)

Moreover, up to a normalizing constant, the set {uℓ,m}ℓ,m∈N is the Fourier basis
of the space of L2(R) functions vanishing on ∂R, which is well-known to be or-
thonormal and complete. Therefore, if it existed another eigenfunction uλ(x, y) of
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the Dirichlet Laplacian of eigenvalue λ different to all λℓ,m of (14), by completeness
we should have uλ(x, y) =

∑
ℓ,m

cℓ,muℓ,m(x, y) and this would contradict Theorem 1.4.

In summary, we have proved the following result:

Proposition 2.10. Let R be a rectangle of sides a and b. Then the set of eigenvalues
of the Dirichlet Laplacian is

Spec(R) =

{
λℓ,m =

[(
ℓ

a

)2

+
(m
b

)2]
π2 : ℓ,m ∈ N

}
and an orthogonal basis of eigenfunctions is{

uℓ,m(x, y) = sin

(
ℓπx

a

)
sin
(mπy

b

)
: ℓ,m ∈ N

}
.

Analogously we obtain, for the eigenvalues and eigenfunctions of the Neumann
Laplacian, the following result:

Proposition 2.11. Let R be a rectangle of sides a and b. Then the set of eigenvalues
of the Neumann Laplacian is{

λ̃ℓ,m =

[(
ℓ

a

)2

+
(m
b

)2]
π2 : ℓ,m ∈ N ∪ {0}

}
and an orthogonal basis of eigenfunctions is{

ũℓ,m(x, y) = cos

(
ℓπx

a

)
cos
(mπx

b

)
: ℓ,m ∈ N ∪ {0}

}
.

2.2.2 Right isosceles triangle

Let T = {(x, y) ∈ R2 : 0 < y < x < c} be a right isosceles triangle of side c and let
R = {(x, y) ∈ R2 : 0 < x < c, 0 < y < c} be the square resulting from adding to
T its reflection along the hypotenuse, as shown in Figure 3. The eigenvalues and
eigenfunctions of the Dirichlet Laplacian in T can be obtained from the already
known solutions in R.

Note that if uR(x, y) is an eigenfunction of the Dirichlet Laplacian in R of eigen-
value λ(R) such that uR(x, x) = 0 for all x ∈ [0, c], then its restriction to T ,

uR(x, y)|T ,

is an eigenfunction of the Dirichlet Laplacian in T of eigenvalue λ(R); conversely,
if uT (x, y) is an eigenfunction of the Dirichlet Laplacian in T of eigenvalue λ(T ),
then its reflection extension

u(x, y) =

{
uT (x, y) if (x, y) ∈ T

−uT (y, x) if (x, y) ∈ R \ T

14



x
x = 0 x = c

y

y = 0

y = c

T

x
x = 0 x = c

y

y = 0

y = c

R

Figure 3: Right isosceles triangle of side c (left) and the square resulting from its
mirror reflection along the hypotenuse (right).

is an eigenfunction of the Dirichlet Laplacian in R of eigenvalue λ(T ).

Following the same notation as in Proposition 2.10 we deduce that all eigenfunc-
tions of T , uT (x, y), can be obtained as combinations of eigenfunctions of R of the
same eigenvalue λℓ,m and vanishing on the hypotenuse. These are of the form:

uT (x, y) =
∑

i,j∈{ℓ,m}

ki,j sin

(
iπx

c

)
sin

(
jπy

c

)

with ki,j ∈ R (not all zero) such that uT (x, x) = 0. This implies that, up to a
normalizing constant,

uT (x, y) =


sin
(
ℓπx
c

)
sin
(
mπy
c

)
− sin

(
mπx
c

)
sin
(
ℓπy
c

)
if i = ℓ, j = m

sin
(
mπx
c

)
sin
(
ℓπy
c

)
− sin

(
ℓπx
c

)
sin
(
mπy
c

)
if i = m, j = ℓ

0 if i = j ∈ {ℓ,m} (trivial).

Observe that the second entry is, up to a sign, equal to the first one. Therefore we
have proved the following result:

Proposition 2.12. Let T be a right isosceles triangle of side c. Then the set of
eigenvalues of the Dirichlet Laplacian is

Spec(T ) =

{
λi,j =

[(
i

c

)2

+

(
j

c

)2
]
π2 : i, j ∈ N, i > j

}

and an orthogonal basis of eigenfunctions is{
ui,j(x, y) = sin

(
iπx

c

)
sin

(
jπy

c

)
− sin

(
jπx

c

)
sin

(
iπy

c

)
: i, j ∈ N, i > j

}
.

2.3 Trivial answer for disconnected regions

Kac’s question is posed for connected regions because of the physical nature in
which it is inspired; if we allow disconnected regions, then it is easy to construct
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non-isometric regions with the same spectra, thus answering negatively to Kac’s
question.

To construct such regions we only need the previous computations and the fact
that for a disconnected region Ω with connected components Ω1, . . . ,Ωk,

Spec(Ω) = Spec(Ω1) ∪ · · · ∪ Spec(Ωk).

Indeed, if uj is an eigenfunction of eigenvalue λ(Ωj) in Ωj, then the function defined
everywhere in Ω as

u(x, y) =

{
uj(x, y) if (x, y) ∈ Ωj

0 if (x, y) ∈ Ω \ Ωj

is also an eigenfunction of eigenvalue λ(Ωj) in Ω; conversely, if u is an eigenfunction
of eigenvalue λ(Ω) in Ω then it is different from 0 in some component Ωj, so its
restriction uj = u|Ωj

is an eigenfunction of eigenvalue λ(Ω) in Ωj.

Following [4], we consider a region Ω1 consisting of the disconnected union of a
square of side 1 and a right isosceles triangle of side 2, and a region Ω2 consisting of
the disconnected union of a rectangle of sides 1 and 2 and a right isosceles triangle
of side

√
2, as shown in Figure 4.

Ω1 :
1

1

λ1,1n,m = (n2 +m2)π2

2

2

λ2,2i,j = 1
4
(i2 + j2)π2, i > j

Ω2 :
2

1

λ1,2N,M =
[(

N
2

)2
+M2

]
π2

√
2

√
2

λ
√
2,
√
2

I,J = 1
2
(I2 + J2)π2, I > J

Figure 4: Regions Ω1 and Ω2 with the eigenvalues of each connected component,
given by Proposition 2.10 and Proposition 2.12.

Proposition 2.13. The regions Ω1 and Ω2 are not isometric but are isospectral,
that is,

Spec(Ω1) = Spec(Ω2).

Remark 2.14. Both domains have the same area and the same perimeter, in ac-
cordance with Weyl’s law and Kac’s expansion formula (5).

Proof. That Ω1 and Ω2 are not isometric follows from the fact that none of the
connected components of Ω1 is isometric to none of the connected components of
Ω2. That Ω1 and Ω2 are isospectral is proved by inspection: note that by the
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previous argument

Spec(Ω1) =
{
(n2 +m2)π2

}
n,m≥1

∪
{
1

4
(i2 + j2)π2

}
i>j≥1

,

Spec(Ω2) =

{[(
N

2

)2

+M2

]
π2

}
N,M≥1

∪
{
1

2
(I2 + J2)π2

}
I>J≥1

.

This can be written as

Spec(Ω1) =
{
(n2 +m2)π2

}
n,m≥1

∪
{
1

4
(i2 + j2)π2

}i+j odd

i>j≥1

∪
{
1

4
(i2 + j2)π2

}i+j even

i>j≥1

,

Spec(Ω2) =

{[(
N

2

)2

+M2

]
π2

}N even

N,M≥1

∪

{[(
N

2

)2

+M2

]
π2

}N odd

N,M≥1

∪
{
1

2
(I2 + J2)π2

}
I>J≥1

.

From here it is straightforward to check that Spec(Ω1) = Spec(Ω2): it suffices
to see that each of the three subsets of Spec(Ω1) above is equal to one of the three
subsets of Spec(Ω2).

For example, for all λ2,2i,j ∈
{

1
4
(i2 + j2)π2

}i+j odd

i>j≥1
, if i is odd then j is even, and

setting N = i and M = j
2
we get λ2,2i,j = λ1,2N,M ∈

{[(
N
2

)2
+M2

]
π2
}N odd

N,M≥1
; if

i is even then j is odd, and setting N = j and M = i
2
we get λ2,2i,j = λ1,2N,M ∈{[(

N
2

)2
+M2

]
π2
}N odd

N,M≥1
.

Conversely, for all λ1,2N,M ∈
{[(

N
2

)2
+M2

]
π2
}N odd

N,M≥1
, setting i = max{N, 2M}

and j = min{N, 2M} we have that λ1,2N,M = λ2,2i,j ∈
{

1
4
(i2 + j2)π2

}i+j odd

i>j≥1
. □
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3 Construction of two different isospectral do-

mains

In 1992 Gordon, Webb and Wolpert [9, 10] found two non-isometric domains with
the same spectrum, thus answering negatively Kac’s question. Their construction
is inspired by a theorem in group theory due to Sunada [10, Theorem 2.1] (see also
Sunada’s original work [24]).

In this section we provide an easier example of two isospectral but not isometric
domains that Gordon and Webb published later in [11]. The construction is inspired
by the same ideas as in [10], but with less algebraic tools.

Without going into details, Sunada’s Theorem gives sufficient conditions for
isospectral manifolds to exist, and its proof explicitly constructs such manifolds.
These conditions require the existence of two almost conjugate subgroups.

Definition 3.1. Let G be a finite group and let F,H be two subgroups of G. Then
F and H are said to be almost conjugate (or Gassmann equivalent) if there exists
a bijection from F to H carrying each element x ∈ F to an element of the form
gxg−1 ∈ H, where g ∈ G may depend on x.

The idea of Gordon, Webb and Wolpert is to adapt Sunada’s construction for
manifolds to Euclidean domains of the plane. For such an adaptation they need the
algebraic tool of permutation representations.

Definition 3.2. Let G be a group. Let X be a finite set and Perm(X) the group
of permutations of the elements of X. A permutation representation of G on X is
a map S : G → Perm(X) that assigns to each g ∈ G a permutation g of elements
of X that preserves the group structure, that is, such that for all g, h ∈ G, if g, h
and gh are the permutations assigned to g, h and gh, respectively, then gh = gh.
Abusing the notation, we will identify a permutation representation S with its image
S(G).

Remark 3.3. It may happen that two different permutation representations of a
group G on a set X, S and S ′, are almost conjugate. Roughly speaking, if this
happens then S and S ′ look different but encode the same information.

With the previous remark in mind, we sketch the idea to construct two non-
isometric domains with same spectra:

From group theory it is known an example of two different permutation repre-
sentations of the free group G of 3 letters on a set X of 7 elements, S and S ′, that
are almost conjugate. We take X to be 7 right isosceles triangles and we take the
three letters of G to be the labels of their edges. We use S and S ′ to construct two
different domains Ω and Ω′ by joining the triangles of X through their edges.

Roughly speaking, by inheritance of the properties of S and S ′, the domains Ω
and Ω′ look different, so they are candidates to be non-isometric, but they encode
similar information, so they are candidates to be isospectral. Finally, we explicitly
check that indeed Ω and Ω′ are isospectral but not isometric.

Let’s carefully follow the steps of the previous sketch to provide a rigorous proof.

18



3.1 Two permutation representations which are almost con-
jugate

From [12] we have an indication on where to find almost conjugate permutation
representations. Let G = ⟨α, β, γ⟩ be the free group of 3 letters and let X =
{1, 2, 3, 4, 5, 6, 7}. We consider two different permutation representations of G on
X, denoted S and S ′, given by the Cayley graphs of Figure 5.

S
7

3

5

6

2

4

β

1

γ

α

γ

β

α S ′
1

2

4

6

5

3

β′

7

α′

γ′

α′

β′

γ′

Figure 5: Two different Cayley graphs describing two different permutation repre-
sentations of G in X, S on the left and S ′ on the right. Colors are irrelevant now
but will be helpful later.

The Cayley graph encodes all the information about the permutation represen-
tation. For example, in the graph on the left of Figure 5, the fact that nodes 3
and 7 are joined by an edge α, expresses the fact that 3 and 7 are permuted by the
permutation assigned to α. Thereby, in transposition product notation,

α = (37)(26) β = (35)(24) γ = (56)(12)

are the generators of the permutation representation S of G on X. Analogously,
for the Cayley graph on the right of Figure 5,

α′ = (46)(57) β′ = (24)(35) γ′ = (12)(56)

are the generators of the permutation representation S ′ of G on X.

In [19, Section 3] it is proved that if two subgroups of the symmetric group Sn

have the same order and contain the same number of elements of order k, for all
divisors k of n, then such subgroups are almost conjugate.

It is straightforward to check that S =
〈
α, β, γ

〉
and S =

〈
α′, β′, γ′

〉
are two

groups of order n = 168 with the same number of elements of order k, for any
divisor k of n. So this implies that S and S ′ are almost conjugate.
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3.2 Construction of the domains

We take a model right isosceles triangle T with labels on its edges α, β, γ. Then we
choose X to be 7 copies of that model triangle, X = {T1, . . . , T7} and consider the
free group G = ⟨α, β, γ⟩. From X, S and S ′ we will construct the domains Ω, Ω′.

T
β

γ

α

We use the permutation representation S to construct a domain Ω invariant
under the action of S following the steps below.

In the Cayley graph of Figure 5, 7 is joined to 3 by an edge labeled α, so we
reflect the triangle T7 through its α edge and label the resulting triangle T3. Since
3 is joined to 5 by an edge labeled β, we reflect the triangle T3 through its β edge
and label the resulting triangle T5. We continue the process and obtain the domain
of Figure 6.

T7
β

γ

α

T7
β

γ

α

T3
βγ

α

T7
β

γ

α

T3
βγ

α
T5

β γ

α
(· · · )

T7
β

γ

α

T3
βγ

α
T5

β
γ

α

T6
αγ

β

T2
α γ

β

T1
β

γ

α

T4
α γ

β

Ω

≡

Figure 6: Picture of the first steps to construct the domain Ω, following the previous
instructions (above) and the resulting domain (below). Colors are irrelevant but
help visualizing reflection symmetries.
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Analogously, we use the permutation representation S ′ to construct the domain
Ω′ of Figure 7, which is also invariant under the action of S ′.

T ′
7

β
γ

α

T ′
3
βγ

α

T ′
5

β
γ
α

T ′
6

αγ

β

T ′
4

α γ

β

T ′
1

β
γ

α

T ′
2

α γ

β

Ω′

≡

Figure 7: Picture of the domain Ω′ constructed from S ′ following the previous
instructions. Colors are irrelevant but help visualize reflection symmetries.

It is straightforward to check that Ω and Ω′ are not isometric.

3.3 The domains are isospectral

Our purpose is to construct, from a given eigenfunction ψ of the Dirichlet Laplacian
in Ω of eigenvalue λ, an eigenfunction of the Dirichlet Laplacian in Ω′ of the same
eigenvalue λ. This will ensure that Spec(Ω) ⊆ Spec(Ω′). The process we will follow
to see this inclusion will make clear how to prove the other inclusion.

We will use the following immediate properties of the Dirichlet equation (2).

• Superposition principle: a linear combination of solutions of (2) is also a
solution of (2).

• Reflection principle: letX be a domain whose boundary contains a straight
segment L, let m(X) be the mirror reflection of X along that segment and
suppose that X ∩m(X) = L. Define the domain X ′ = X ∪m(X) ∪ L. Then
an eigenfunction ϕ in X can be extended to an eigenfunction ϕ′ in X ′ as the
negative of its mirror reflection through the segment L, that is

ϕ′(x, y) =


ϕ(x, y) if (x, y) ∈ X

−ϕ(m(x, y)) if (x, y) ∈ m(X)

0 if (x, y) ∈ L,

where m(x, y) is the mirror reflection point through the segment L of (x, y).

Observe that the reflection principle is a generalization of the procedure we have
followed in Section 2.2.2 to compute the eigenvalues of a right isosceles triangle from
the ones of a square.
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Let ψ be an eigenfunction of the Dirichlet Laplacian in Ω of eigenvalue λ. For
each triangle Tj (j = 1, . . . , 7) of Ω, we denote the restriction of ψ in Tj as ψj (with
the understanding that it is zero outside the triangle Tj), as shown in Figure 8.

Observe that since ψ ∈ C2
∗(Ω) we have that ψ7 = ψ3 on the α (red) edge (similarly

for the other internal edges), and since ψ is a solution of (2) we also have that ψ7 = 0
on the β (green) and γ (blue) edges (similarly for the other external edges).

By the reflection principle one can define the function ψj of triangle Tj in any
other triangle Tk, a method that is known as transplantation. For example, ψ3 can
be defined in T2: first, by reflection along the β edge transplant ψ3 in T5 as −ψ3;
next, by reflection along the γ edge transplant −ψ3 in T6 as ψ3; finally, by reflection
along the α edge transplant ψ3 in T2 as −ψ3.

We now consider a function ψ′ defined in Ω′ piecewise on its triangles T ′
1, . . . , T

′
7,

as shown in Figure 8. There, the function −ψ3 + ψ2 − ψ1 defined in triangle T ′
4 is

understood to be the superposition of the transplanted functions ψ3, ψ2 and ψ1 in
T ′
4 (similarly for the other triangles).

Ω

ψ7

ψ3 ψ5

ψ6 ψ2

ψ1

ψ4

Ω′

ψ3 −
ψ5+ψ6

−ψ7 +
ψ3+ψ4

ψ7 +
ψ5+ψ2

−ψ7 +
ψ6+ψ1

−ψ3 +
ψ2−ψ1

−ψ6 −
ψ4+ψ2

−ψ5 +
ψ4+ψ1

Figure 8: Original eigenfunction in Ω and the transplanted function in Ω′.

We claim that the function ψ′ given in Figure 8 is an eigenfunction of the Dirichlet
Laplacian in Ω′ of eigenvalue λ. Indeed, by linearity, the equation ∆ψ′ + λψ′ = 0
is satisfied in each triangle T ′

1, . . . , T
′
7, because each ψj is a solution of the same

equation. Also, by linearity, ψ′ has piecewise continuous derivatives up to second
order. Moreover, it is straightforward to check that ψ′ is continuous in Ω′, so that
ψ′ ∈ C2

∗(Ω
′), and that ψ′ = 0 on ∂Ω′.

Let’s check, as an example, the restriction of ψ′ in T ′
7. Since ψ3 = ψ5 on the β

edge (green) of T3, T5 ⊂ Ω and ψ6 = 0 on the β edge (green) of T6 ⊂ Ω, we have that
ψ3−ψ5+ψ6 = 0 on the boundary β edge (green) of T ′

7 ⊂ Ω′. Similarly, since ψ3 = 0
on the γ edge (blue) of T3 ⊂ Ω and ψ5 = ψ6 on the γ edge (blue) of T5, T6 ⊂ Ω,
we have that ψ3 − ψ5 + ψ6 = 0 on the boundary γ edge (blue) of T ′

7 ⊂ Ω′. So ψ′

vanishes on the external boundary of T ′
7. Analogously, since ψ3 = ψ7 on the α edge

(red) of T3, T7 ⊂ Ω, one has ψ5 = 0 on the α edge (red) of T5 ⊂ Ω and ψ6 = ψ2 on
the α edge (red) of T6, T2 ⊂ Ω, we have that ψ3 − ψ5 + ψ6 = ψ7 + ψ5 + ψ2 on the α
edge (red) of T ′

7, T
′
5 ⊂ Ω′. Thus, ψ′ is continuous through that internal edge of Ω′.
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For the sake of completeness, we show in Figure 9 how an eigenfunction ψ′ of Ω′

is transplanted into an eigenfunction of Ω of the same eigenvalue.

Ω
−ψ′

3 +
ψ′
5−ψ′

6

ψ′
7 +

ψ′
3−ψ′

4

−ψ′
7 +

ψ′
5−ψ′

2

ψ′
7 +

ψ′
6−ψ′

1

ψ′
5 +

ψ′
4+ψ

′
1

ψ′
6 −

ψ′
4+ψ

′
2

ψ′
3 +

ψ′
2−ψ′

1

Ω′

ψ′
7

ψ′
3 ψ′

5

ψ′
6 ψ′

4

ψ′
1

ψ′
2

Figure 9: Original eigenfunction in Ω′ and the transplanted eigenfunction in Ω.

Following the principles of this construction, several other counterexamples were
later constructed; in [4] some of them are shown.
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4 We can hear the area of a drum

Even though the domains of Section 3 answer negatively Kac’s question, in general
some geometrical information of a domain can be inferred from its spectrum, as we
explained in Section 1. In this section we prove Theorem 1.5 in the Introduction,
which shows that the area of a domain Ω is determined by its spectrum. To prove it,
we ask our domain to have a minimum regularity, which is to be Jordan measurable.
As we shall prove in Section 4.5, Jordan measurable domains are those domains such
that their boundary has zero Lebesgue measure.

Theorem 4.1 (Weyl’s law). Let Ω be a Jordan measurable domain with Jordan
measure (or simply area) |Ω| and Spec(Ω) = {λn}n∈N. Let r > 0 and denote

NΩ(r) = #{λn ∈ Spec(Ω) : λn < r}.

Then

lim
r→∞

NΩ(r)

r
=

|Ω|
4π
.

The proof will need several results, so let us sketch it.

First, we will check it for rectangles. This will allow to state an analogous result
for the Neumann eigenvalues. As discussed earlier, the Neumann eigenvalues will
be an important tool to prove properties of the Dirichlet eigenvalues.

From these results we will show that Weyl’s law holds for finite unions of adjacent
rectangles (domains looking like a grid). To see this, we will additionally need
the so-called maximin principles, which we will prove using calculus of variations.
From these principles we will establish an order relationship between the Dirichlet
and Neumann eigenvalues and an order relationship between the eigenvalues of
nested domains. This will allow to prove the theorem for grids from Weyl’s law for
rectangles.

From here it seems natural to prove Theorem 4.1 for “arbitrary” domains by
approximating them by finite unions of rectangles. It is to ensure that such a
construction can be done that we require our “arbitrary” domains to be Jordan
measurable.

In Theorem 4.1 we have implicitly defined the counting function of Dirichlet
eigenvalues in the domain Ω, denoted by NΩ(r). We can similarly define the count-
ing function of Neumann eigenvalues in the domain Ω as

MΩ(r) = #{λ̃ Neumann eigenvalue in Ω : λ̃ < r}.

4.1 Weyl’s law for rectangles

Let R be a rectangle of sides a and b. We have seen in Section 2.2.1 that

Spec(R) =

{
λℓ,m =

[(
ℓ

a

)2

+
(m
b

)2]
π2 : ℓ,m ∈ N

}
.
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Geometrically, NR(λ) is the number of points (ℓ,m) ∈ N × N lying inside the

ellipse of semi axes a
√
r

π
and b

√
r

π
,

x2(
a
√
r

π

)2 +
y2(

b
√
r

π

)2 = 1. (15)

This is a hard arithmetic problem that we will not consider in full detail. Oth-
erwise, we will look for a first-order approximation of the value NR(λ).

Recall that for an ellipse x2

α2 +
y2

β2 = 1 of semi axes α and β its area is παβ and

its perimeter is 2π
√

α2+β2

2
.

xa
√
r

π

y

b
√
r

π

Figure 10: Points of the form (ℓ,m) ∈ N × N lying inside the quarter of ellipse of

semi axes a
√
r

π
and b

√
r

π
.

This way, each point (ℓ,m) can be viewed as the right upper corner of a square of
side 1 of the grid N×N. This square is entirely contained in the first quadrant and
lies inside the ellipse (15). Then NR(r) coincides with the number of such squares,
and since they have area 1 we deduce that NR(r) is at most the area of this quarter
ellipse,

NR(r) ≤
1

4
π
a
√
r

π

b
√
r

π
=
ab

4π
r.

As we are about to see, for large r the discrepancy between NR(r) and
ab
4π
r is of

order r1/2, that is
ab

4π
r −NR(r) = O(r1/2). (16)

As soon as this is proved, there exists a constant C > 0 such that for r large

rab

4π
− Cr1/2 ≤ NR(λ) ≤

rab

4π
,

which implies the statement:

lim
r→∞

NR(r)

r
=
ab

4π
=

|R|
4π

.
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It only remains to check that (16) holds.

Let n be the number of unit squares contained in the first quadrant and inter-
secting the boundary of the ellipse (15). Observe that NR(r) − rab

4π
is bounded by

n, so it is enough to see that n = O(r1/2).

Let nx =
⌊
a
√
r

π

⌋
+ 1 and ny =

⌊
b
√
r

π

⌋
+ 1. Geometrically, nx is the number of

columns of the grid that intersect the boundary of the quarter ellipse. Similarly, ny

is the number of rows of the grid that intersect the boundary of the quarter ellipse.

Since nx and nx+ny are of order O(r
1/2) it is enough to see that nx ≤ n ≤ nx+ny.

Take r big enough so that nx, ny > 1.

The inequality nx ≤ n follows from the fact that the boundary of the ellipse
touches one or more squares per column of the grid. Let’s see now the inequality
n ≤ nx + ny.

We can view the boundary of the quarter ellipse as the graph of the continuous
and strictly decreasing curve

γ(x) =
b
√
r

π

√√√√1− x2(
a
√
r

π

)2 , 0 ≤ x ≤ a
√
r

π
.

Therefore, this curve can intersect a square of the grid in five possible ways, shown
in Figure 11:

i) crossing its left and right sides,

ii) crossing its upper and lower sides,

iii) crossing its left and lower sides,

iv) crossing its upper and right sides, or

v) crossing one of its vertices (ignorable case).

i) ii) iii) iv) v)

Figure 11: Possible ways in which a continuous and strictly decreasing curve can
intersect the squares of a grid.

Assume that case v) does not happen. Then, the region defined by the squares
of the grid that intersect the boundary of the ellipse is locally as in Figure 12 (like
a descending ladder), where m1 ≥ 0 and m3 ≥ 0 denote the number of adjacent
squares of type i), m2 ≥ 0 and m4 ≥ 0 denote the number of adjacent squares of
type ii), and the shaded squares are those of types iii) and iv).
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columns

rows

︸ ︷︷ ︸
m1 ︸︷︷

︸

m2

︸ ︷︷ ︸
m3 ︸︷︷

︸

m4

+1

︸︷︷
︸

+m2

+1

︸︷︷
︸

+m4

+1

+1
︸ ︷︷ ︸
+m1

+1
︸ ︷︷ ︸
+m3

+1

Figure 12: Number of rows and columns of the grid N×N intersecting a local part
of the boundary of an ellipse.

As it is clear in Figure 12, locally the number of squares intersecting the boundary
of the ellipse is m1 + m2 + m3 + m4 + 5, whereas locally the number of columns
that intersect the boundary of the ellipse is m1 +m3 + 3, and locally the number
of rows that intersect the boundary of the ellipse is m2 +m4 + 3, with

m1 +m2 +m3 +m4 + 5 ≤ (m1 +m3 + 3) + (m2 +m4 + 3) .

Moreover, the region defined by the squares of the grid that intersect the bound-
ary of the ellipse consists in concatenations of pieces like in Figure 12, so from the
previous inequality follows that n ≤ nx + ny.

If case v) happened in a common vertex of two squares, add an extra square
adjacent to both of them. If the error was bounded by n, it is also bounded by
n+1, and now the region that define these n+1 squares is as before, that is, locally
as in Figure 12.

Remark 4.2. Recall that the Neumann eigenvalues of the rectangle R are λ̃ℓ,m =[(
ℓ
a

)2
+
(
m
b

)2]
π2 with ℓ,m ∈ N ∪ {0}. So, denoting

MR(r) = #{λ̃ℓ,m such that λ̃ℓ,m < r},

we analogously see that

lim
r→∞

MR(r)

r
=

|R|
4π

.

4.2 Characterization of the eigenvalues by maximin princi-
ples

We will characterize the Dirichlet and Neumann eigenvalues by means of minimiza-
tion problems. This will allow to show order relations between them, to compare
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eigenvalues of nested domains and to show the relation in between the eigenvalues
of a domain and the ones of a disconnected subset of it.

Let ∇ :=
(

∂
∂x
, ∂
∂y

)
denote the gradient operator. We denote the norm of L2(Ω)

by ∥ · ∥Ω, or simply by ∥ · ∥ if Ω is clear by the context. Recall that it is the norm
induced by the scalar product, ∥ · ∥ =

√
⟨·, ·⟩.

Throughout this section we invoke Green’s identities (see [23, Sections 7.1, 7.2]
for a proof).

Theorem 4.3 (Green’s identities). Let u, v ∈ C2
∗(Ω). Then,∫

∂Ω

v
∂u

∂n
=

∫
Ω

∇v · ∇u+
∫
Ω

v∆u (Green’s first identity)

∫
Ω

u∆v − v∆u =

∫
∂Ω

u
∂v

∂n
− v

∂u

∂n
(Green’s second identity)

The first eigenvalues λ1 and λ̃1 have to be treated separately, so let’s start with
them.

Theorem 4.4. Let λ1 be the smallest eigenvalue of the Dirichlet Laplacian in Ω.
Then

λ1 = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w|∂Ω = 0

}
.

Moreover, a function w that attains the minimum is an eigenfunction of the Dirich-
let Laplacian of eigenvalue λ1.

Remark 4.5. The minimum of Theorem 4.4, and all the minima that will appear
later, should, a priory, be defined as infima, but, as shown in [7, Section 8.2], these
infima are attained.

Proof. Let us refer to the functions w ∈ C2
∗(Ω) \ {0} with w|∂Ω = 0 as admissible

functions.

Let m be the minimum of the statement and let u be an admissible function
attaining the minimum. Then, for all admissible functions w

m =

∫
Ω
|∇u|2∫
Ω
|u|2

≤
∫
Ω
|∇w|2∫
Ω
|w|2

.

In particular this holds for admissible functions of the form w(x) = u(x) + εv(x),
where ε > 0 and v(x) is also admissible. Then the function

f(ε) :=

∫
Ω
|∇(u+ εv)|2∫
Ω
|u+ εv|2

=

∫
Ω
|∇u|2 + 2ε∇u · ∇v + ε2|∇v|2∫

Ω
u2 + 2εuv + ε2v2

has a minimum at ε = 0. Therefore,

0 = f ′(0) =

(∫
Ω
u2
) (

2
∫
Ω
∇u · ∇v

)
−
(∫

Ω
|∇u|2

) (
2
∫
Ω
uv
)(∫

Ω
u2
)2 .
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This implies that ∫
Ω

∇u · ∇v =

∫
Ω
|∇u|2∫
Ω
u2

∫
Ω

uv = m

∫
Ω

uv. (17)

With this, together with Green’s first identity, we can write, for all v ∈ C2
∗(Ω) with

v|∂Ω = 0,∫
Ω

(∆u+mu)v =

∫
Ω

(∆u)v+m

∫
Ω

uv = −
∫
Ω

∇u · ∇v+
∫
∂Ω

v
∂u

∂n
+

∫
Ω

∇u · ∇v = 0.

In particular, this must hold for all v ∈ C∞
c (Ω), which implies

∆u+mu = 0 in Ω.

This proves that u is an eigenfunction of the Dirichlet Laplacian of eigenvalue m.
It only remains to see that m is the smallest eigenvalue.

Let λ be an arbitrary eigenvalue of the Dirichlet Laplacian, with associated
eigenfunction v. Then, by Green’s first identity,

m ≤
∫
Ω
|∇v|2∫
Ω
|v|2

=

∫
Ω
(−∆v)v∫
Ω
v2

=

∫
Ω
(λv)v∫
Ω
v2

= λ,

as desired. □

A similar minimization problem characterizes the first eigenvalue of the Neumann
Laplacian.

Theorem 4.6. Let λ̃1 be the smallest eigenvalue of the Neumann Laplacian in Ω.
Then

λ̃1 = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}
}
.

Moreover, a function w that attains the minimum is an eigenfunction of the Neu-
mann Laplacian of eigenvalue λ̃1.

Proof. Let m̃ be the minimum of the statement and let ũ ∈ C2
∗(Ω) \ {0} be a

function that attains the minimum. The argument of the previous proof is valid
until equation (17). Now Green’s first identity gives∫

Ω

(∆ũ+ m̃ũ)v =

∫
∂Ω

v
∂ũ

∂n
∀v ∈ C2

∗(Ω). (18)

In particular, for all v ∈ C∞
c (Ω) we must have∫

Ω

(∆ũ+ m̃ũ)v = 0,

which implies that ∆ũ+ m̃ũ = 0 in Ω. Then (18) writes as

0 =

∫
∂Ω

v
∂ũ

∂n
∀v ∈ C2

∗(Ω).

In particular, taking v = ∂ũ
∂n

∣∣
∂Ω
, we see that ∂ũ

∂n

∣∣
∂Ω

≡ 0. This shows that ũ is an
eigenfunction of the Neumann Laplacian of eigenvalue m̃.

Similarly we see that m̃ is the lowest eigenvalue of the Neumann Laplacian. □
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The other eigenvalues λn, λ̃n of both the Dirichlet and Neumann Laplacians are
characterized by related minimization problems.

Lemma 4.7. Let n ≥ 2. Suppose that the first n−1 eigenfunctions of the Dirichlet
Laplacian v1, . . . , vn−1 are known, with respective eigenvalues λ1, . . . , λn−1. Then
the n−th eigenvalue of the Dirichlet Laplacian is

λn = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w|∂Ω = 0, w orthogonal to v1, . . . , vn−1

}
.

Proof. Let us refer to the functions w ∈ C2
∗(Ω) \ {0} with w|∂Ω = 0 and orthogonal

to v1, . . . , vn−1 as admissible functions.

Let m be the minimum of the statement and let u be an admissible function that
attains the minimum. Following the same argument as in the proof of Theorem 4.4,
we get ∫

Ω

(∆u+mu)v = 0 (19)

for all admissible functions v.

In order to deduce from this that ∆u + mu = 0, we need (19) to hold for all
functions v ∈ C2

∗(Ω) \ {0} with v|∂Ω = 0, not just for the subspace orthogonal to
v1, . . . , vn−1. Let’s see that this is indeed the case.

By Green’s second identity we can write, for j = 1, . . . , n− 1,∫
Ω

(∆u+mu)vj =

∫
Ω

u(∆vj +mvj) = (m− λj)

∫
Ω

uvj = 0. (20)

Let now h ∈ C2
∗(Ω) \ {0} with h|∂Ω = 0 be arbitrary, and define the function

v(x) = h(x)−
n−1∑
k=1

ckvk(x), ck =
⟨h, vk⟩
⟨vk, vk⟩

.

Then v is admissible, so by (19)

0 =

∫
Ω

(∆u+mu)v =

∫
Ω

(∆u+mu)

(
h−

n−1∑
k=1

ckvk

)

=

∫
Ω

(∆u+mu)h−
n−1∑
k=1

ck

∫
Ω

(∆u+mu)vk.

By (20) we deduce that, for all h ∈ C2
∗(Ω) \ {0} with h|∂Ω = 0,∫

Ω

(∆u+mu)h = 0.

We have already seen that this implies that ∆u+mu = 0, so m is an eigenvalue of
the Dirichlet Laplacian. Let’s finally see that m is the n−th eigenvalue.
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Any other eigenfunction vj of eigenvalue λj with j ≥ n is an admissible function,
so by Green’s first identity

m ≤
∫
Ω
|∇vj|2∫
Ω
|vj|2

=

∫
Ω
(−∆vj)vj∫
Ω
|vj|2

=

∫
Ω
(λjvj)vj∫
Ω
|vj|2

= λj.

Moreover, m is not one of the λk, k = 1, . . . , n − 1, because then u and vk would
be eigenfunctions of the same eigenvalue, which would contradict the orthogonality
of u with respect to v1, . . . , vn−1. Therefore m = λn. □

Adapting the previous proof, with the techniques of the proof of Theorem 4.6,
an analogue for the Neumann eigenvalues is the following.

Lemma 4.8. Let n ≥ 2. Suppose that the first n−1 eigenfunctions of the Neumann
Laplacian ṽ1, . . . , ṽn−1 are known, with respective eigenvalues λ̃1, . . . , λ̃n−1. Then the
n−th eigenvalue of the Dirichlet Laplacian is

λ̃n = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w orthogonal to ṽ1, . . . , ṽn−1

}
.

The proof is analogous to the previous one and we skip it.

Remark 4.9. The minimization problems given by the previous lemmas require
knowledge on the eigenfunctions. We would like to characterize the eigenvalues
without the help of the eigenfunctions, and this is what the maximin principles will
achieve.

Theorem 4.10 (Dirichlet’s maximin principle). Let n ≥ 2 and let y1, . . . , yn−1

be n− 1 arbitrary piecewise continuous functions in Ω. Define

Λn(y1, . . . , yn−1) :=

min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w|∂Ω = 0, w orthogonal to y1, . . . , yn−1

}
.

Then the n−th eigenvalue of the Dirichlet Laplacian is

λn = max
y1,...,yn−1

Λn(y1, . . . , yn−1).

Proof. Fix y1, . . . , yn−1 piecewise continuous. Let v1, . . . , vn be the first n normalized
eigenfunctions of the Dirichlet Laplacian and consider

w(x) =
n∑

j=1

cjvj(x), c1, . . . , cn ∈ R (not all zero)

such that w is orthogonal to y1, . . . , yn−1. This is achievable, since c1, . . . , cn are n
unknowns and we have n− 1 linear equations of the form

0 = ⟨w, yk⟩ =
n∑

j=1

⟨vj, yk⟩cj, k = 1, . . . , n− 1.
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By definition of Λn and the orthogonality of the vj we have

Λn ≤ ∥∇w∥2

∥w∥2
=

〈
n∑

j=1

cj∇vj,
n∑

l=1

cl∇vl

〉
〈

n∑
j=1

cjvj,
n∑

l=1

clvl

〉 =

n∑
j=1

n∑
l=1

cjcl
∫
Ω
∇vj · ∇vl

n∑
j=1

c2j

.

By Green’s first identity, since vk|δΩ = 0 for k = 1, . . . , n, we get

Λn ≤

n∑
j=1

n∑
l=1

cjcl
∫
Ω
(−∆vj)vl

n∑
j=1

c2j

=

n∑
j=1

n∑
l=1

cjcl
∫
Ω
(λjvj)vl

n∑
j=1

c2j

=

n∑
j=1

c2jλj

n∑
j=1

c2j

≤ λn,

where we have used the orthogonality of the vj and, in the last step, that λ1 ≤ λ2 ≤
· · · ≤ λn.

Therefore Λn(y1, . . . , yn−1) ≤ λn for all choices of the y1, . . . , yn−1, hence

max
y1,...,yn−1

Λn(y1, . . . , yn−1) ≤ λn.

By Lemma 4.7 we have that λn = Λn(v1, . . . , vn−1). Then we have the chain of
inequalities

λn = Λn(v1, . . . , vn−1) ≤ max
y1,...,yn−1

Λn(y1, . . . , yn−1) ≤ λn,

which proves the theorem. □

Adapting the previous proof with the techniques of the proof of Theorem 4.6 we
get an analogous result for the Neumann eigenvalues.

Theorem 4.11 (Neumann’s maximin principle). Let n ≥ 2 and let ỹ1, . . . , ỹn−1

be n− 1 arbitrary piecewise continuous functions in Ω. Define

Λ̃n(ỹ1, . . . , ỹn−1) :=

min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w orthogonal to ỹ1, . . . , ỹn−1

}
.

Then the n−th eigenvalue of the Neumann Laplacian is

λ̃n = max
ỹ1,...,ỹn−1

Λ̃n(ỹ1, . . . , ỹn−1).

4.3 Consequences of the maximin principles

The maximin principles are useful to see order relations between the eigenvalues of
the Dirichlet and Neumann Laplacians in various domains, because they are stated
in terms of minimums over a set. If a set is included in another set, then the
minimum over the latter will be lower than the minimum over the former.

This allows to prove that the Neumann eigenvalues are never greater than the
Dirichlet ones.
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Theorem 4.12. Let λj and λ̃j be the j−th eigenvalues of the Dirichlet and Neu-
mann Laplacians, respectively. Then for all j ≥ 1,

λ̃j ≤ λj.

Proof. We have to treat separately the eigenvalues λ1, given by the minimum of
Theorem 4.4, and λ̃1, given by the minimum of Theorem 4.6: all functions over
which the minimum is taken for λ1 are also taken to compute the minimum for λ̃1,
but not conversely. Hence λ̃1 ≤ λ1.

Similarly, fixed y1, . . . , yn−1 piecewise continuous functions in Ω, all functions
over which the minimum Λn(y1, . . . , yn−1) of Dirichlet’s maximin principle is taken
are also taken to compute the minimum Λ̃n(y1, . . . , yn−1) of Neumann’s maximin
principle, but not conversely. Then Λ̃n(y1, . . . , yn−1) ≤ Λn(y1, . . . , yn−1), which
implies that

λ̃n = max
ỹ1,...,ỹn−1

Λ̃n := Λ̃n(y1, . . . , yn−1) ≤ Λn(y1, . . . , yn−1) ≤ max
y1,...,yn−1

Λn = λn.

□

The following consequence of the maximin principles is related to the result that
we have seen in Section 2.3, and that we remind now as a lemma.

Lemma 4.13. Let G1, . . . , Gm be pairwise disjoint domains, and let G be the dis-
connected region with connected components G1, . . . , Gm. Then

i) The set of Dirichlet eigenvalues of G consists in the union of the Dirichlet
eigenvalues of G1, . . . , Gm: Spec(G) = Spec(G1) ∪ · · · ∪ Spec(Gm).

ii) The set of Dirichlet eigenfunctions in G consists in the union of the Dirichlet
eigenfunctions in G1, . . . , Gm (with the understanding that they vanish every-
where except in one Gk).

Corollary 4.14. Let Ω be a domain. Consider a partition of Ω in disjoint domains
G1, . . . , Gm, and denote by G the disconnected region with connected components
G1, . . . , Gm. Let n ≥ 2 and let y1, . . . , yn−1 be arbitrary piecewise continuous func-
tions in Ω. Then

i) The union of all Dirichlet eigenvalues of all the separated domains G1, . . . , Gm

forms an increasing sequence λ1(G) ≤ λ2(G) ≤ · · · ≤ λn(G) ≤ · · · such that

λ1(G) = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0} and w = 0 on
m⋃
j=1

∂Gj

}
,

and, for n ≥ 2,

λn(G) = max
y1,...,yn−1

(
min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗(Ω) \ {0}, w = 0 on
m⋃
j=1

∂Gj and

w is orthogonal to y1, . . . , yn−1

})
.
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ii) The union of all Neumann eigenvalues of all the separated domains G1, . . . , Gm

forms an increasing sequence λ̃1(G) ≤ λ̃2(G) ≤ · · · ≤ λ̃n(G) ≤ · · · such that

λ̃1(G) = min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗

(
Ω \

m⋃
j=1

∂Gj

)
\ {0}

}
,

and, for n ≥ 2,

λ̃n(G) = max
y1,...,yn−1

(
min

{
∥∇w∥2

∥w∥2
: w ∈ C2

∗

(
Ω \

m⋃
j=1

∂Gj

)
\ {0} and

w is orthogonal to y1, . . . , yn−1

})
.

Proof. The region G can be written as

G = Ω \
m⋃
j=1

∂Gj,

and its boundary is

∂G =
m⋃
j=1

∂Gj.

Then, functions w continuous in G vanishing on ∂G are continuous functions in Ω,
and piecewise continuity of the derivatives in Ω is inherited from piecewise continuity
in G. Thus, Theorem 4.4, Theorem 4.6 and Dirichlet’s and Neumann’s maximin
principles in G write as the statements. □

From this result we can order the Dirichlet and Neumann eigenvalues of both a
domain and its partitioned components, as we see below.

Theorem 4.15. Let Ω be a domain and consider a partition of Ω into disjoint
domains Ω1, . . . ,Ωm. Then, for all n ≥ 1,

λ̃n(Ω1 ∪ · · · ∪ Ωm) ≤ λ̃n(Ω) ≤ λn(Ω) ≤ λn(Ω1 ∪ · · · ∪ Ωm).

Proof. Theorem 4.12 gives the inequality λ̃n(Ω) ≤ λn(Ω). Let’s now see the in-
equality λn(Ω) ≤ λn(Ω1 ∪ · · · ∪ Ωm).

By the previous corollary and Dirichlet’s maximin principle (or Theorem 4.4 for
n = 1), the functions over which the minimum for λn(Ω1 ∪ · · · ∪Ωm) is taken must
satisfy the extra condition, with respect to the ones of the minimum for λn(Ω), to
vanish on the internal boundaries. Thus λn(Ω) ≤ λn(Ω1 ∪ · · · ∪ Ωm).

Similarly we prove that λ̃n(Ω1 ∪ · · · ∪ Ωm) ≤ λ̃n(Ω).

By the previous corollary and Neumann’s maximin principle (or Theorem 4.6 for
n = 1), the functions over which the minimum for λ̃n(Ω) is taken must satisfy the
extra condition, with respect to the ones of the minimum for λ̃n(Ω1 ∪ · · · ∪Ωm), to
be continuous on the internal boundaries. Thus λ̃n(Ω1 ∪ · · · ∪ Ωm) ≤ λ̃n(Ω). □
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Corollary 4.16. Let Ω be a domain and consider a partition of Ω into disjoint
domains Ω1, . . . ,Ωm. Then, for all r > 0,

NΩ1(r) + · · ·+NΩm(r) ≤ NΩ(r) ≤MΩ(r) ≤MΩ1(r) + · · ·+MΩm(r).

Theorem 4.17. Let Ω and Ω′ be two nested domains, that is, such that Ω ⊂ Ω′.
Then for all n ≥ 1,

λn(Ω) ≥ λn(Ω
′).

Proof. Again we make use of Dirichlet’s maximin principle. For such purpose, we
assume that the functions y1, . . . , yn−1 over which the maximum is taken can be
defined both in Ω and Ω′.

Fix n ≥ 2. Observe that every function w ∈ C2
∗(Ω) \ {0} with w|∂Ω = 0 and

orthogonal to y1, . . . , yn−1 can be extended to a function w′ ∈ C2
∗(Ω

′) \ {0} with
w′|∂Ω′ = 0 and orthogonal to y1, . . . , yn−1 if we define w′ to be

w′(x) =

{
w(x) if x ∈ Ω

0 if x ∈ Ω′ \ Ω.

Moreover ∥∇w∥2Ω = ∥∇w′∥2Ω′ and ∥w∥2Ω = ∥w′∥2Ω′ .

So Λ′
n(y1, . . . , yn−1) ≤ Λn(y1, . . . , yn−1), and we have already seen that this im-

plies that λn(Ω) ≥ λn(Ω
′).

The result is clear for λ1(Ω) and λ1(Ω
′) by Theorems 4.4 and 4.6. □

4.4 Weyl’s law for grids

Let Ω be the union of a finite number of adjacent rectangles R1, . . . , Rm. Observe
that |Ω| = |R1|+ · · ·+ |Rm|.

Let r > 0. Then we get, by Corollary 4.16,

NR1(r) + · · ·+NRm(r)

r
≤ NΩ(r)

r
≤ MR1(r) + · · ·+MRm(r)

r
.

By the computations of Section 4.1, Weyl’s law holds for a single rectangle, thus,
for j = 1, . . . ,m

lim
r→∞

NRj
(r)

r
=

|Rj|
4π

= lim
r→∞

MRj
(r)

r
.

From this we obtain

lim
r→∞

NR1(r) + · · ·+NRm(r)

r
=

|Ω|
4π

= lim
r→∞

MR1(r) + · · ·+MRm(r)

r
. (21)

By the sandwich theorem, this implies Weyl’s law for grids.

It seems now very natural to prove Weyl’s law for an “arbitrary” domain Ω
approximating it by two grids Gi and Go, such that Gi ⊂ Ω ⊂ Go. For such
purpose, we would want the two grids to have areas arbitrarily close to the area
of Ω. Such construction may not be guaranteed for domains with very irregular
boundaries, so we need to impose some restrictions.
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4.5 Jordan measurable domains

Fix N ∈ N ∪ {0} and let h = 2−N . Consider the lines

x = jh, j ∈ Z y = kh, k ∈ Z,

that define a dyadic lattice SN that divides R2 into squares Σ of side length h,
parallel to the Cartesian axes.

SN

Σ

Observe that when passing from the lattice SN to SN+1 each of the squares of
SN splits into four squares of SN+1.

Let Ω be an arbitrary open bounded nonempty subset of R2. We consider the
domain consisting of all the squares of the lattice SN that are entirely contained in
Ω:

ωN(Ω) = {Σ ∈ SN : Σ ⊂ Ω}.

Similarly, we consider the domain consisting in all the squares of the lattice SN that
intersect Ω:

ωN(Ω) = {Σ ∈ SN : Σ ∩ Ω ̸= ∅}.

Clearly the following properties are satisfied, for all N ≥ 0:

i) If A ⊂ B then ωN(A) ⊂ ωN(B) and therefore |ωN(A)| ≤ |ωN(B)|.

ii) If A ⊂ B then ωN(A) ⊂ ωN(B) and therefore |ωN(A)| ≤ |ωN(B)|.

iii) ωN(Ω) ⊂ ωN+1(Ω) and therefore |ωN(Ω)| ≤ |ωN+1(Ω)|.

iv) ωN(Ω) ⊃ ωN+1(Ω) and therefore |ωN(Ω)| ≥ |ωN+1(Ω)|.

v) ωN(Ω) ⊂ Ω ⊂ ωN(Ω) and therefore |ωN(Ω)| ≤ |Ω| ≤ |ωN(Ω)|.

Therefore, the area sequences
{
|ωN(Ω)|

}
N≥0

and {|ωN(Ω)|}N≥0 are bounded and

monotone, which implies that they have a limit. It may happen that ωN(Ω) = ∅,
and in such case we write |ωN(Ω)| = 0.
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Definition 4.18. Let Ω be an arbitrary open bounded nonempty subset of R2. The
inner Jordan measure of Ω is

mi(Ω) = lim
N→∞

|ωN(Ω)| = sup
N≥0

|ωN(Ω)|,

and the outer Jordan measure of Ω is

mo(Ω) = lim
N→∞

|ωN(Ω)| = inf
N≥0

|ωN(Ω)|.

The set Ω is said to be Jordan measurable if and only if mi(Ω) = mo(Ω), and in
such case its Jordan measure is m(Ω) = mi(Ω) = mo(Ω). The quantity m(Ω) is
also called area of Ω.

Remark 4.19. As we shall see later, Jordan measurable domains Ω are always
Lebesgue measurable, with m(Ω) = |Ω|, but not necessarily the other way around.
Actually, although m(Ω) is called Jordan measure, it does not define a measure:
countable unions of Jordan measurable sets need not be Jordan measurable. More
precisely, we will see that Jordan measurable domains are those such that their
boundaries have Lebesgue measure equal to zero.

Let’s now see some properties of Jordan measurable sets.

Definition 4.20. An elementary figure is a subset σ of R2 that can be represented
as a finite union of rectangles with edges parallel to the Cartesian axes, any two of
which either do not intersect or intersect only along some parts of their boundaries.

Figure 13: Example of an elementary figure (left) and one of its representations as
a finite union of rectangles (right).

Some immediate properties of the inner, outer and Jordan measures are the
following. For any Ω open bounded nonempty subset of R2:

i) 0 ≤ mi(Ω) ≤ mo(Ω).

ii) If mo(Ω) = 0 then Ω is Jordan measurable with Jordan measure equal to 0.

iii) For all N ≥ 0, ωN(Ω) and ωN(Ω) are elementary figures.

iv) Elementary figures are Jordan measurable sets with Jordan measure equal to
the sum of the areas of the rectangles of one of its representations.
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Proposition 4.21. Let Ω be an arbitrary bounded nonempty subset of R2 and let
σ be an elementary figure. Then

i) mi(Ω) = sup
σ⊂Ω

|σ|.

ii) mo(Ω) = inf
σ⊃Ω

|σ|.

Proof. We prove i). Part ii) is done analogously.

Observe that ωN(Ω) is an elementary figure contained in Ω for all N ≥ 0, so
clearly the inequality

sup
N≥0

|ωN(Ω)| ≤ sup
σ⊂Ω

|σ|

holds and we only have to prove the reverse inequality.

Let σ be an arbitrary elementary figure contained in Ω. By the monotonicity of
ωN(Ω), for all ε > 0 exists n ∈ N such that

|σ| < |ωn(σ)|+ ε ≤ |ωn(Ω)|+ ε ≤ mi(Ω) + ε.

From this we deduce that for all ε > 0

sup
σ⊂Ω

|σ| ≤ mi(Ω) + ε,

which implies that
sup
σ⊂Ω

|σ| ≤ mi(Ω),

concluding the proof. □

The following result will help us to prove Weyl’s law for Jordan measurable
domains.

Proposition 4.22. Let Ω be an arbitrary bounded nonempty subset of R2. Then
Ω is Jordan measurable if and only if for all ε > 0 there exist elementary figures σ
and σ such that σ ⊂ Ω ⊂ σ and |σ| − |σ| < ε.

Proof. Suppose that Ω is Jordan measurable and fix ε > 0. Then there exists n ∈ N
such that

|ωn(Ω)| −
ε

2
≤ m(Ω) ≤ |ωn(Ω)|+

ε

2
.

Choosing σ = ωn(Ω) and σ = ωn(Ω) we have σ ⊂ Ω ⊂ σ and |σ| − |σ| < ε.

Reciprocally, suppose that for all ε > 0 there exist elementary figures σ and σ
such that σ ⊂ Ω ⊂ σ and |σ| − |σ| < ε. Then, by Proposition 4.21 we have

|σ| ≤ sup
σ⊂Ω

|σ| = mi(Ω) ≤ mo(Ω) = inf
σ⊃Ω

|σ| ≤ |σ|.

This implies that mo(Ω)−mi(Ω) < ε, so Ω is Jordan measurable. □
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This characterization of Jordan measurable sets seems impractical when it comes
to checking whether a set is Jordan measurable. To find a more checkable condition,
let’s characterize the condition of being Jordan measurable with the more common
Lebesgue measure of its boundary.

Lemma 4.23. Let Ω be an arbitrary bounded nonempty subset of R2. Then Ω is
Jordan measurable if and only if for all ε > 0 there exists an elementary figure σ
such that ∂Ω ⊂ σ and |σ| < ε. In such case, mo(∂Ω) = 0.

Proof. Suppose that Ω is Jordan measurable. Then by Proposition 4.22, for all ε > 0
there exist elementary figures σ′ and σ′′ such that σ′ ⊂ Ω ⊂ σ′′ and |σ′′| − |σ′| <
ε. We can assume that ∂Ω ∩ ∂σ′ = ∅ = ∂Ω ∩ ∂σ′′, since otherwise we could
enlarge σ′′ and shrink σ′ by adding and taking away, respectively, rectangles covering
∂Ω ∩ ∂σ′ ∩ ∂σ′′. Then

∂Ω ⊂ σ′′ \ σ′ ⊂ σ′′ \ σ′ := σ.

Observe that σ is an elementary figure with |σ| = |σ′′| − |σ′| < ε.

Reciprocally, suppose that for all ε > 0 exists an elementary figure σ such that
∂Ω ⊂ σ and |σ| < ε. We can assume that ∂Ω ∩ ∂σ = ∅, since otherwise we could
enlarge σ by adding a square of area less than 1

2
(ε−|σ|) covering a point in ∂Ω∩∂σ.

Consider the elementary figures

σ′′ = Ω ∪ σ, σ′ = Ω \ σ.

Clearly σ′ ⊂ Ω ⊂ σ′′, σ′′ \ σ′ = σ and |σ′′| − |σ′| = |σ| < ε. By Proposition 4.22,
this implies that Ω is Jordan measurable. □

Let us denote the inner Lebesgue measure of Ω as Li(Ω) and the outer Lebesgue
measure of Ω as Lo(Ω). Recall that

Lo(Ω) = inf

{∑
n∈N

|Rn| : Ω ⊂
⋃
n∈N

Rn, Rn open rectangles

}
.

Therefore, for all Ω the outer Jordan measure is never lower than the outer
Lebesgue measure,

Lo(Ω) ≤ mo(Ω),

since every elementary figure is, in particular, a countable union of rectangles. We
have equality on compact sets, as we see in the following lemma.

Lemma 4.24. Let K ⊂ R2 be a nonempty compact set. Then Lo(K) = mo(K).

Proof. It suffices to see that Lo(K) ≥ mo(K). Fix ε > 0 and consider an open cover
of K of the form

K ⊂
⋃
n∈N

Rn with Rn rectangles such that
∑
n∈N

|Rn| ≤ Lo(Ω) + ε.

39



Since K is compact, there exists a finite sub-cover,

{Rnk
}Nk=1 ,

which, in particular, form an elementary figure. Therefore,

mo(Ω) ≤
N∑
k=1

|Rnk
| ≤

∞∑
n=1

|Rn| ≤ Lo(Ω) + ε.

This implies that mo(Ω) ≤ Lo(Ω), concluding the proof. □

Recall that a set E that has Lo(E) = 0 is Lebesgue measurable with Lebesgue
measure equal to zero. Then we have the following characterization of being Jordan
measurable in terms of Lebesgue measure.

Proposition 4.25. A nonempty bounded set Ω is Jordan measurable if and only if
∂Ω has Lebesgue measure equal to zero.

Proof. By Lemma 4.23, the set Ω is Jordan measurable if and only if mo(∂Ω) = 0,
and since ∂Ω is compact, by Lemma 4.24, this is equivalent to Lo(∂Ω) = 0, which
concludes the proof. □

4.6 Weyl’s law for Jordan measurable domains

Jordan measurable domains are precisely the ones for which the scheme of the end
of Section 4.4 works.

Let Ω be a Jordan measurable domain and fix ε > 0. By Proposition 4.22, there
exist σ and σ elementary figures such that σ ⊂ Ω ⊂ σ, with |σ| ≤ |Ω| ≤ |σ|, and
|σ| − |σ| < ε.

Ωσ

σ

Figure 14: Example of elementary figures approximating the domain Ω from inside
and from outside.
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Since σ ⊂ Ω ⊂ σ, by Theorem 4.17, the eigenvalues of σ, σ and Ω are ordered,
for all n ≥ 1, as

λn(σ) ≤ λn(Ω) ≤ λn(σ),

and therefore, for all r > 0, we have

Nσ(r)

r
≤ NΩ(r)

r
≤ Nσ(r)

r
.

Since the elementary figures σ and σ are finite unions of rectangles, by Section 4.4,
we have

|σ|
4π

= lim
r→∞

Nσ(r)

r
≤ lim inf

r→∞

NΩ(r)

r
≤ lim sup

r→∞

NΩ(r)

r
≤ lim

r→∞

Nσ(r)

r
=

|σ|
4π

<
|σ|+ ε

4π
.

Finally, since |σ| ≤ |Ω| < |σ|+ ε, in the limit ε→ 0+ we get

lim
r→∞

NΩ(r)

r
=

|Ω|
4π
.

4.7 Weyl’s law using Karamata’s Tauberian theorem

Recall from Section 2.1 that Weyl’s law is equivalent, thanks to Karamata’s Taube-
rian theorem, to the limit

lim
t→0+

t
∞∑
n=1

e−λnt =
|Ω|
4π
, (22)

so an alternative way of proving Weyl’s lay is to prove (22). Without going into
details, let us present a sketch of this proof.

First, we identify the left hand side of (22) with the trace of the heat kernel,
as we shall see below. Thus, the problem reduces to understanding the asymptotic
behaviour of the heat kernel.

For all n ≥ 1, denote by fn the normalized eigenfunction of the Dirichlet Lapla-
cian in Ω of eigenvalue λn.

Denote a point of Ω as x and consider the heat equation, for u : [0,∞)×Ω → R,
∂u

∂t
= ∆u in Ω

u = 0 on ∂Ω

u(0,x) = g(x) with g ∈ L2(Ω).

On the one hand, the solution, u, of the heat equation can be expressed in terms
of the so-called heat kernel,

K(t,x,y) =
∞∑
n=1

fn(x)fn(y)e
−λnt,
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as

u(t,x) =

∫
Ω

K(t,x,y)g(y)dy. (23)

Indeed, formally

∂u(t,x)

∂t
=

∫
Ω

∂K(t,x,y)

∂t
g(y)dy =

∫
Ω

(
∞∑
n=1

− λnfn(x)fn(y)e
−λnt

)
g(y)dy

=

∫
Ω

(
∞∑
n=1

∆fn(x)fn(y)e
−λnt

)
g(y)dy =

∫
Ω

∆K(t,x,y)g(y)dy

= ∆u(t,x).

It can be shown (using the monotone and dominated convergence theorems) that
every interchange of derivatives, integrals and series is justified. Moreover, (23)
satisfies the boundary condition

u(t,x)|∂Ω =

∫
Ω

(
∞∑
n=1

fn(x)|∂Ωfn(y)e−λnt

)
g(y)dy = 0,

and the initial condition

u(0,x) =

∫
Ω

(
∞∑
n=1

fn(x)fn(y)

)
g(y)dy =

∞∑
n=1

fn(x)

∫
Ω

fn(y)g(y)dy

=
∞∑
n=1

⟨g, fn⟩fn(x) = g(x),

where in the last equality we have used that, by Theorem 1.4, the functions fn form
a complete orthonormal basis of L2(Ω).

On the other hand, the trace of the heat kernel is

tr(K) :=

∫
Ω

K(t,x,x)dx =
∞∑
n=1

e−λnt. (24)

The diagonal of K(t,x,y) has an expansion around t = 0 of the form (see [21,
Theorem 7.15])

K(t,x,x) =
t→0+

1

4πt

(
1 +

∞∑
j=1

tjaj(x)

)
, (25)

where aj(x), j ≥ 1, are smooth functions in Ω. Therefore (22) follows from (24)
and (25),

t
∞∑
n=1

e−λnt =

∫
Ω

tK(t,x,x)dx =
1

4π

∫
Ω

(
1 +

∞∑
j=1

tjaj(x)

)
dx −→

t→0+

|Ω|
4π
.
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5 Beyond plane domains

As we have indicated throughout Section 1, Kac’s problem can be generalized to
arbitrary dimensions, and even to manifolds. In any case, the spectrum of a “drum”
does not characterize its shape, except in R1.

5.1 Drums in R

In one dimension, the sound of a “drum” (or, more appropriately, of a string)
characterizes its shape. Let’s see how. Let (a, b) be an interval of R (the analogue
of an open, connected proper subset of R2). As before, the sound of the string
is characterized by the eigenvalues of the Dirichlet Laplacian, that writes in one
dimension as 

d2u(x)

dx2
+ λu(x) = 0 x ∈ (a, b)

u(a) = 0 = u(b)
(λ > 0).

This is the harmonic oscillator differential equation that we have discussed in
Section 1.1, with Dirichlet boundary conditions. From standard ODE theory we
know that their solutions are proportional to

un(x) = sin
(√

λn(x− a)
)
, with λn =

(
nπ

b− a

)2

and n ∈ N.

Therefore, the spectrum of the “one dimensional drum” is

Spec((a, b)) =

{
λn =

(
nπ

b− a

)2

: n ∈ N

}
,

and clearly if two “drums” are isospectral then they have the same length, which
in R implies that one is a translation of the other, being therefore characterized.

5.2 Drums in Rd, d > 2

Drums in R2 can naturally be generalized to domains (that is, open connected
proper subsets) Ω of Rd, d > 2. In higher dimensions, the wave equation writes as
(1), where the d−th dimensional Laplacian is ∆ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
d
. Similarly, the

fundamental frequencies are in unique correspondence with the eigenvalues of the
Dirichlet Laplacian (2) (in d dimensions).

Then, naturally Kac’s question can be generalized by asking if two isospectral
domains Ω

(d)
1 and Ω

(d)
2 of Rd, that is, such that Spec(Ω

(d)
1 ) = Spec(Ω

(d)
2 ), are nec-

essarily isometric, that is, if there exists a bijection φ : Ω
(d)
1 → Ω

(d)
2 that preserves

the Euclidean metric.

It turns out that, as in the two dimensional case, the answer is negative: the
construction of the domains in Section 3 can be used to produce examples of two
different drums in higher dimensions that sound the same.
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Indeed, let Ω and Ω′ be the plane domains of Section 3 and consider the domains
of Rd defined as

Ω
(d)
1 := Ω× [0, π]d−2, Ω

(d)
2 := Ω′ × [0, π]d−2.

As we shall prove below, the spectrum of Ω
(d)
1 is characterized by Spec(Ω) and

the spectrum of Ω
(d)
2 is characterized by Spec(Ω′) so, by Section 3, the domains Ω

(d)
1

and Ω
(d)
2 are isospectral but not isometric.

For simplicity we prove it in R3. By induction on the dimension, by means of
adding Cartesian products of the form [0, π], the result will be clear in Rd.

Denote the eigenfunctions of the two dimensional Dirichlet Laplacian in Ω by
un(x1, x2), with eigenvalue λn. Clearly, these functions induce eigenfunctions of the

3−dimensional Dirichlet Laplacian in Ω
(3)
1 given by

ψn,k3(x1, x2, x3) := un(x1, x2) sin(k3x3), where k3 ∈ N.

Note that, indeed, each ψn,k3 is an eigenfunction of the 3−dimensional Dirichlet

Laplacian in Ω
(3)
1 of eigenvalue λn + k23.

In fact, we claim that
{ψn,k3(x1, x2, x3)}n,k3∈N (26)

is an orthogonal basis of L2(Ω
(3)
1 ). That these functions are orthogonal is clear.

To prove that they form a base, suppose that there exists h ∈ L2(Ω
(3)
1 ) that is

orthogonal to all ψn,k3 , that is, using Fubini’s theorem, such that for all n, k3 ∈ N

0 =

∫
Ω×[0,π]

h(x1, x2, x3)un(x1, x2) sin(k3x3)dx1dx2dx3

=

∫ π

0

(∫
Ω

h(x1, x2, x3)un(x1, x2)dx1dx2

)
sin(k3x3)dx3.

Since {sin(k3x3)}k3∈N is the Fourier basis of L2([0, π]), this implies that∫
Ω

h(x1, x2, x3)un(x1, x2)dx1dx2 = 0 for almost every x3, ∀n ∈ N.

Since {un}n∈N is, by Theorem 1.4, an orthogonal basis of L2(Ω), this implies that

h(x1, x2, x3) = 0 almost everywhere.

This proves that the orthogonal set (26) is complete, and hence, an orthogonal basis

of L2(Ω
(3)
1 ). Thus,

Spec(Ω
(3)
1 ) =

{
λn + k23

}
λn∈Spec(Ω)

k3∈N
.

By induction, for arbitrary d > 2 we obtain
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Spec(Ω
(d)
1 ) =

{
λn +

d∑
j=3

k2j

}
λn∈Spec(Ω)
k3,...,kd∈N

, Spec(Ω
(d)
2 ) =

{
λ′n +

d∑
j=3

k2j

}
λ′
n∈Spec(Ω′)
k3,...,kd∈N

.

Nevertheless, as in the two dimensional case, the Dirichlet eigenvalues char-
acterize several geometrical parameters of the domain. In particular, Weyl’s law
generalizes in Rd as

lim
r→∞

NΩ(r)

rd/2
= ωd

|Ω|
(2π)d

,

where ωd is the volume of the unit ball in Rd and |Ω| is the d−dimensional volume
of Ω. In fact, in 1980 Ivrii [13] proved the finer asymptotic formula

NΩ(r) = ωd
|Ω|
(2π)d

rd/2 − ωd−1

4

ℓ(∂Ω)

(2π)d−1
r(d−1)/2 +O(r(d−1)/2) as r → ∞,

where ℓ(∂Ω) is the (d− 1)−dimensional volume (surface) of ∂Ω.

5.3 Drums as manifolds

The Dirichlet Laplacian can be defined in any d−dimensional compact, smooth
Riemannian manifold M with metric tensor g = (gij) as follows.

Let ∆ be the Laplace-Beltrami operator,

∆ =
1√
det g

∂

∂xi
gij
√

det g
∂

∂xj
,

where g−1 = (gij) is the inverse tensor of g. If M does not have a boundary (as,
for example, the n−dimensional torus), the eigenfunctions of the Laplace-Beltrami
operator are the solutions u :M → R, for λ > 0, of

∆u+ λu = 0 in M.

If M has a boundary (as, for example, the Möbius strip) the eigenfunctions of
the Laplace-Beltrami operator with Dirichlet boundary conditions are the solutions
u :M → R, for λ > 0, of {

∆u+ λu = 0 in M

u = 0 on ∂M,

In any case, the set of λ > 0 for which there exist eigenfunctions is the spectrum of
M , denoted by Spec(M).

Then the “Can one hear the shape of a drum?” problem naturally poses for
manifolds: the condition of being isospectral is now understood in the previous
sense, and the condition of being isometric, which gives the notion that two domains
are equivalent, is replaced by the condition of being congruent, in the sense that
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two manifolds M1 and M2 with metric g are congruent if and only if there exists a
bijection φ :M1 →M2 that preserves the metric g.

As mentioned in Section 1.2, in 1964 (two years before Kac posed his famous
problem) Milnor [17] constructed two non-congruent sixteen dimensional tori whose
spectra are identical.

As in Rd with the Euclidean metric, several expansion formulas related to the
eigenvalues of the Laplace-Beltrami operator have been found. For example, in 1967
McKean and Singer [16] found the following expansion formula: if M is a compact,
smooth Riemannian manifold without boundary such that Spec(M) = {λn}n≥1,
Vol(M) is the Riemannian volume ofM and K(x) is the scalar curvature at a point
x ∈M , then

(4πt)d/2
∞∑
n=1

e−λnt = Vol(M) +
t

3

∫
M

K(x)dx+O(t2), t→ 0+.

All the results that we have presented are related to the study of the eigenvalues.
As one could have expected, the eigenfunctions also encode geometrical information
of the domain (or manifold), and their study constitutes a broad field of research.
Several results concerning the eigenfunctions can be found in Zelditch’s book [27].

5.4 Restricted versions of Kac’s problem

The restriction of Kac’s problem (on characterizing the shape of a domain through
its Dirichlet spectrum) to certain families of domains may lead to positive results.
As a motivating example, suppose that we know that Ω is a right isosceles triangle:
then we can characterize it from its spectrum. Indeed, just note that a right isosceles
triangle is characterized by its side c and, from the computations of Section 2.2.2,
this is determined by the lowest eigenvalue:

since λlowest = λ2,1 =

[(
2

c

)2

+

(
1

c

)2
]
π2, necessarily c = π

√
5

λlowest
.

This opens Kac’s problem to restricted classes of domains with more regularity
than just being open, connected proper subsets of R2 (and all the natural general-
izations to higher dimensions and manifolds).

The first non-trivial result came in Durso’s doctoral thesis [6], in 1988. She
proved that if T1 and T2 are two arbitrary isospectral triangles then they are iso-
metric.

In 2009 Zelditch [26] went a step further and proved an analogous result for the
larger class D of domains whose boundary is piecewise analytic and has reflection
symmetry along the x−axis. More precisely, a domain Ω is in D if there exists an
analytic function f : [−a, a] ⊂ R → [0,∞) only vanishing on the boundary, that
is, f(x) = 0 if and only if x ∈ {−a, a}, such that Ω is the region bounded by the
graphs of y = f(x) and y = −f(x).
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5.5 Can a human hear the area of a drum?

An important fact that one should notice is that to recover the area of a drum by
Weyl’s law we need all the eigenvalues of the Dirichlet Laplacian. To hear the area
of a drum we would need a perfect ear, one that hears all the frequencies of the
drum. However, humans only perceive a finite range of frequencies.

Thus, the following question naturally arises: are there domains for which their
area, or even their shape, is characterized by a finite quantity of Dirichlet eigenval-
ues?

In 1989 Chang and Deturk [3] proved that, knowing that Ω is a triangle, it is
enough to know a finite number of eigenvalues of Spec(Ω) to determine Ω. However,
their proof does not show how many or which eigenvalues are enough.
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