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Abstract

In this work, we give an introduction to complex geometry and Calabi-Yau
manifolds. We begin by recalling the necessary background of differential geome-
try, as well as defining the de Rahm cohomology and the Ricci curvature. Then we
turn to complex geometry, giving some precise examples, extending differential
forms to the complex case and defining Dolbeault cohomology, Chern classes and
holonomy. We then focus on Kähler manifolds, which are the previous steps to
define Calabi-Yau manifolds, whose properties will be briefly studied. We close
the work with a few ideas of a basic string theory model.

Resum

En aquest treball, introduim la geometria complexa i les varietats de Calabi-
Yau. Comencem recordant la part de geometria diferencial necessària, defininint
també altres conceptes com la cohomologia de de Rahm o la curvatura de Ricci.
Passem seguidament a la geomtria complexa, donant alguns exemples precisos i
extenent les formes diferencials al cas complex, com també definint la cohomolo-
gia de Dolbeault, les classes de Chern o l’holonomia. Ens fixem després en les
varietats de Kähler, que seran el pas intermedi per definir les varietats de Calabi-
Yau, les propietats de les quals estudiarem breument. Tanquem el treball amb
algunes idees d’un model bàsic de teoria de cordes.

2020 Mathematics Subject Classification. 14F25, 14F40, 14F45, 14J60, 14J30, 14J32, 53Z05, 55N99,
58A12, 58A14.
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Introduction

Since the 19th century, physics has had a huge progress. However, three main
problems have needed to be faced from then, and the last one has not been solved
yet. During the second part of that century, Maxwell developed his Maxwell equa-
tions, which describe the electromagnetic field. However, a first problem quickly
emerged. Mixing Maxwell equations with Newton’s laws of motion implied that
an observer could, for example, be as quick as light, and hence be in a reference
frame in which light would not move. It is well known that Einstein gave the
solution to this problem by introducing his theory of Special Relativity (SR) in 1905.
Recall that before Einstein, space S and time T were absolute, with

S = R3, T = R

and both are equipped with an euclidean metric. SR had some important im-
plications in our conception of space and time: time (as space) would not anymore
be absolute, but it depended on the motion of the observer. We could not continue
considering space and time as separate, different things of Universe. We, from
then on, must deal with spacetime, a four-dimensional space with three spatial
dimensions and another temporal, but not anymore independent. This spacetime
was called the Minkowski space

M4 = (T × S, g)

where g is a metric which is not euclidean, but lorentzian. But a second problem
emerged: since light always moves at c, i.e. it mantains in every reference frame
the same speed, and no thing can move faster than light, gravity seemed to contra-
dict it, as it was considered to act instantaneously. Again, Newton gave response
to this problem by publishing in 1915 his theory of General Relativity (GR).

GR implications went even further on our conception of spacetime, since not
only the observer’s motion, but even mass and energy could modify the space-
time. In fact, mass and energy would curve the spacetime, and the action of
gravity would be explained by these deformations on spacetime. However, locally
we could continue considering the space as a Minkowski space. Hence, everything
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seemed to be solved. But again, a new problem was found. A new field of physics
was being developed exponentially during the first half of the 20th century: Quan-
tum Mechanics (QM). It had a totally different approach and goals, since it firstly
studied little things as atoms and fundamental particles. QM and GR worked well:
in fact, all experimental tests seemed to prove the validity of both theories. How-
ever, going through a theoretical analysis of these theories considered together,
they were proved to be incompatible: QM and GR, although giving predictions of
reality with and outstanding accurancy both, could not be valid at the same time.
This is the third main problem, known as the central problem of modern physics [10].

Back on time, Kaluza had suggested in 1919 that the Universe could have more
than four dimensions. Precisely, he proposed that the spatial dimensions might
not be three, but four, giving therefore rise to a five-dimensional spacetime. The
reason behind this bizarre idea was the following: he realised that adding this
new spatial dimension, it was much more simple to put General relativity and the
Maxwell equations of the electromagnetic field together. In fact, since he had an
extra dimension, he got a few more equations than the ones Einstein had gotten
before. Equations relating the three common dimensions were exactly the same of
GR. But surprisingly the extra ones were the Maxwell equations. He had unified
gravity and electromagnetism just by adding a new spatial dimension. Although
melting space and time was a revolutionary idea and in some sense strange, in
the end we ended up with the same dimensions we started with. But how can we
even imagine that there is an extra spatial dimension if we can not see it [6]?

The answer to this apparently difficult question was given by the same Kaluza
together with Klein in 1926. Basically, they postulated that spatial dimensions can
be either large, as the three known dimensions which are infinite, or curled up
on themselves: so little and curled up that we have not been able to find them.
Further analysis suggested that the characteristic length of these extra dimensions
could be around the Planck length, which is approximately 10−35 m. Hence, if
this dimension is enough small we might not be able to see it, although it actually
exists. Imagine looking at an electricity wire from a big distance: we would see a
line, i.e. a one-dimensional space, even if in fact there are more dimensions, which
we may discover getting closer to it. The space could then be described, according
to Kaluza and Klein, as

M5 =M4 ×M1

where M1 would be the new dimension. They both proposed this new extra
dimension to be circular, hence M1

∼= S1. Therefore, an object at a point of the
space would have four degrees of freedom of movement, although the one curled
up would not affect the classical motion of the bodies, at least at first glance. What
remained proved was that one could not reject the existence of extra dimensions
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if these were enough small. These ideas were put under the name of Kaluza-
Klein theory. Anyway, further reasearch proved contradiction when introducing
the electron, since the mass-charge ratio was rather different than the empirical,
which at that time was already very accurate. Hence, the interest in Kaluza-Klein
theory reduced much, also because from the 1930s to the 1960s many fundamental
particles were discovered and much progress was made in quantum mechanics.
There was no need of extra dimensions to continue progressing [6].

By the end of the 1960s the main structure of the Standard Model was finished,
all predictions were generally proved right by experimental methods but it still
remained the problem of incompatibility between GR and QM. In that situation,
Kaluza-Klein theory was rediscovered: considering that Kaluza started his studies
on the topic in the late 1910s little was known about nuclear forces, it was thought
that Kaluza might have been too conservative by only adding an extra dimension.
Since more forces were known, more dimensions might be needed. So physicists
added more new extra dimensions, imposing at the same time the validity of
supersymmetry, which roughly speaking was a continuation of the classical study
of symmetries, but adding modern variables as the spin [9, 13, 10].

And finally string theory arrived, which seemed to solve the incompatibility of
GR with QM. It postulates that the fundamental constituents of matter are not
particles -point-like, without an spatial structure- but tiny strings of a character-
istic length of the Planck length. Hence, fundamental objects were thought to be
two-dimensional objects whose mass, charge and other intern properties would
depend on their vibration mode. Mixing string theory with supersymmetry and
fundamental forces unification resulted in the need of a ten-dimensional space-
time. Therefore, six extra dimensions were needed, and they would have to be
curled up, tiny. This is one of the basic postulates of string theory, although fur-
ther reaserch has suggested eleven-dimensional spacetimes or even more.

Therefore six extra curled up dimensions were from then on needed. The local
structure of the new spacetime considered could be written as

M10 =M4 ×M6

where M4 is the local Minkowski space. Physicists started asking themselves
about the shape of these dimensions, about what was M6. If M6 was considered
as complex more supersymmetry emerged, and it was rather convenient for these
dimensions to be Ricci-flat in the abscence of masses around, so a kind of complex
manifolds were proposed, the Calabi-Yau manifolds [9, 4, 16, 13].
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About this work

In order to deeply understand the problem of extra dimensions of the Uni-
verse, and hence at least be capable of introducing Calabi-Yau manifolds, a strong
background on complex geometry is needed. Therefore, our goal in this work is
introducing complex geometry and the necessary objects to arrive to Calabi-Yau
manifolds.

After a quickly review of smooth manifold, i.e. the real case, we give an in-
troduction to complex geometry and its basic concepts and objects. Complex ge-
ometry is the branch of mathematics that studies complex manifolds, which are
topological spaces that locally resemble Cn, for a certain n. These manifolds are
defined by the transition functions between charts being holomorphic functions,
which can be defined as differentiable functions that satisfy the Cauchy-Riemann
equations. The main object of study in complex geometry are the complex struc-
tures of these manifolds, which are defined as a choice of an almost complex
structure, which is a smooth endomorphism of the tangent bundle, that is inte-
grable: we will later discover what does integrable mean. Smooth manifolds that
admit an integrable complex structure are called complex manifolds. Actually,
we will see that there exist two different and equivalent constructions of complex
manifolds [11].

An intermediate step between complex manifolds and Calabi-Yau manifolds
is Kähler manifolds, which are complex manifolds equipped with a metric com-
patible with the complex structure and whose fundamental form is closed. We
will give some examples and characterization of Kähler, going then quickly to
Calabi-Yau manifold’s definition.

Calabi-Yau manifolds were named after Eugenio Calabi and Shing-Tung Yau,
who first introduced them in the 1970s. They are defined as a class of compact
Kähler manifolds with a Ricci-flat metric, although there are plenty of equivalent
definitions in the literature. As Kähler manifolds, they are also equipped with a
Kähler metric. The most important property of Calabi-Yau manifolds is the exis-
tence of a Ricci-flat Kähler metric. This means that their scalar curvature is zero
and that their complex structure is parallel with respect to the Levi-Civita connec-
tion. Calabi-Yau manifolds have many interesting geometric properties, and they
have been extensively studied in mathematics, particularly in algebraic geometry
and differential geometry. Their properties have also made them useful in physics,
particularly in theories such as string theory and supersymmetry, where they are
used as internal spaces for extra dimensions, as already said [16, 4].

Finally, although not being the scope of this work but the motivation, we will
close the work by giving some ideas on string theory. Precisely, we will focus on
a basic model of bosonic string theory [9, 13].



Chapter 1

Preliminaries

"The Beauty of the House is immesurable. Its Kindness infinite."

- Susanna Clarke, Piranesi

In this chapter we aim to introduce manifolds with an infinite-differentiable struc-
ture and the related objects that we will later use in the next chapters. To do so
we mainly follow [8, 5]. We first recall what a topological manifold is:

Definition 1.1. An n-dimensional topological manifold is a topological space M satis-
fying that:

1. M is second countable, i.e. its topology admits a countable basis.

2. M is Hausdorff, i.e. for all pairs x, y ∈ M there exist disjoint open subsets
U, V ⊆ M such that x ∈ U and y ∈ V.

3. M is locally homeomorphic to Rn, i.e. for all x ∈ M there exists an open
neighbourhood U ⊆ M which admits an homeomorphism U ∼= Rn.

1.1 Smooth manifolds

Definition 1.2. A smooth atlas on a topological manifold M of dimension n is a
set of tuples {(Ui, ϕi)} such that M =

⋃
i Ui and ϕi : Ui → Rn are the coordinate

functions, which induce homeomorphisms ϕi : Ui
∼= ϕ(Ui) ⊆ Rn and such that

the transition functions

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩Uj) ⊆ Rn −→ Rn

are smooth, i.e. C∞.
Any pair (U, ϕ) is called a smooth chart. Two smooth atlases {(Ui, ϕi)}, {(Vj, ψj)}

5



6 Preliminaries

are called equivalent if ∀i, j the map

ϕi ◦ ψ−1
j : ψj(Ui ∩Vj)→ ϕi(Ui ∩Vj)

is smooth.

We might see that the equivalence between smooth atlases is a relation of
equivalence, which can be easily proved by checking the three properties of re-
lations of equivalence.

Definition 1.3. An n-dimensional smooth manifold (M,A) is a topological manifold
M endowed with a smooth atlas A.

Definition 1.4. A smooth structure on a topological manifold M is a class of equiv-
alence of smooth atlases. For a smooth atlas A, the smooth structure is denoted
[A].

Remark 1.5. Given two smooth manifolds with equivalent atlases, the smooth
manifolds are usually said to be equivalent. Actually, it is common defining a
smooth manifold as a topological manifold endowed with a smooth structure.

Definition 1.6. A smooth map f : M → N of smooth manifolds (M, {(Ui, ϕi)})
and (N, {(Vj, ψj)}) is a map for which for all i, j the functions

ψj ◦ f ◦ ϕ−1
i : ϕi(U) ⊆ Rn −→ Rn

are smooth.

Example 1.7. 1. (Euclidean spaces). For n ≥ 1, Rn is a smooth manifold when
endowed with the atlas {(Rn, id)}.

2. (n-spheres) Define the n-sphere to be the set

Sn := {x ∈ Rn+1 : x2
1 + . . . x2

n+1 = 1}

Let Sn be endowed with the atlas {(Sn \ {x}, φx), (Sn \ {y}, φy)}, where x, y ∈
Sn, x 6= y and φx, φy are the stereographic projections from the sphere to
Rn from the basepoints x, y respectively. Then the n-sphere is a smooth
manifold.

3. The cartesian product of smooth manifolds is a smooth manifold as well.
The dimension of the product manifold is the sum of the dimensions.

4. Any open subset N of a smooth manifold M, the latter with smooth at-
las {(Ui, ϕi)}, is itself a smooth manifold with induced smooth atlas {(Y ∩
Ui, ϕi|Y)}.
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1.2 Tangent spaces

Let M be a smooth manifold. We denote F (M) the set of all maps f : M → R

such that for every chart (U, ϕ), the composition

f ◦ ϕ−1 : ϕ(U) ⊆ Rn → R

is smooth.

Remark 1.8. Note that the triple (F (M),+, ·) has the structure of an R-vector
space, with the operations defined as

( f + g)(p) := f (p)+ g(p), (λ f )(p) := λ f (p), ∀ f , g ∈ F (M), λ ∈ R, p ∈ M

Moreover, it is a ring with the product

( f g)(p) := f (p)g(p)

Definition 1.9. An R-derivation on an n-dimensional smooth manifold M at p ∈ M is
an R-linear map D : F (M)→ R satisfying the Leibniz product rule, i.e.

D( f g) = D( f )g(p) + f (p)D(g), ∀ f , g ∈ F (M)

Definition 1.10. The set of all derivations at p is called the tangent space of M at p
and is denoted Tp M.

Remark 1.11. Observe that (Tp M,+, ·) is an R-vector space with the operations
naturally defined as

(D1 + D2) f = D1 f + D2 f , (λ · D) f = λD f , D1, D2, D ∈ Tp M, λ ∈ R

The following result is proved using elementary linear algebra. For a detailed
proof, see §2.1 of [5].

Theorem 1.12. Tp M is a n-dimensional R-vector space.

For a chart (U, ϕ) of M with ϕ = (x1, . . . , xn) local coordinates, for p ∈ U the
ordered set of derivations {(

∂

∂x1

)
p

, . . . ,
(

∂

∂xn

)
p

}
forms a basis of Tp M. Each derivation of the basis acts on a smooth function
f : U ⊆ M→ R as (

∂

∂xi

)
p
( f ) =

∂( f ◦ ϕ−1)

∂xi
(ϕ(p))
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Definition 1.13. Let f : U ⊆ M → R be a smooth function and p ∈ M. We define
and denote the differential of the function f at the point p ∈ M as

(d f )p : Tp M −→ R

D 7→ D( f )(p)

Definition 1.14. The cotangent space T∗p M is the dual vector space (Tp M)∗, i.e. the
space of R-linear maps ω : Tp M → R. The elements of the cotangent space are
called 1-forms.

Remark 1.15. Observe that in the way that we defined the differential of an appli-
cation at a point of the manifold, (d f )p is a 1-form.

For a chart (U, ϕ) of M with ϕ = (x1, . . . , xn) the local coordinates, we have
that the ordered set of differentials{

(dx1)p, . . . , (dxn)
}

is the dual basis of
{(

∂
∂x1

)
p

, . . . ,
(

∂
∂xn

)
p

}
, therefore a basis for T∗p M. Each differ-

ential of the basis acts on a basis derivation as

(dxi)p

(
∂

∂xj

)
p
=

∂xi

∂xj
(ϕ(p)) = δij

Smooth maps between manifolds induce maps between their tangent spaces:

Definition 1.16. Let f : M → N be a smooth map between manifolds. The map
f∗ : Tp M→ Tf (p)N defined by

f∗(v)(h) := v(h ◦ f ), h : N → R a smooth function

is called the pushforward of v by f .

Remark 1.17. f∗ is also called the differential of f and denoted d f , as it sends
derivations on M to derivations on N.

1.3 Tangent bundles

Definition 1.18. A fibre bundle on a topological space M with fibre F is a surjective
continuous map π : E → M such that for every point p ∈ M, there exists an
open neighbourhood U, so that there is a homeomorphism h : π−1(U) ∼= U × F,
where F is a topological space. Then, U is called a trivializing neighbourhood of p
and h a local trivializing map. A fibre bundle is called trivial if M is a trivializing
neighbourhood of every point p ∈ M and hence E ∼= M× F. Ep := π−1(p) is said
to be the fibre over p ∈ M.
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From now on we will consider M as an n-dimensional smooth manifold again
and the fibre bundle π : E→ M to be smooth.

Definition 1.19. Let π : E → M be a fibre bundle and M a smooth manifold. The
fibre bundle is said to be a real vector bundle of rank k if

1. The fibre of every point has the structure of a k-dimensional real vector space.

2. The local trivialization maps h are diffeomorphisms.

3. h(p, ·) : Ep → {p} ×Rk is an isomorphism of vector spaces.

Definition 1.20. For U ⊆ M an open subset, a local section of a real vector bundle
π : E → M is a smooth map s : U → E such that π ◦ s = idU . A section is called
global if it is defined on the entire manifold M.

We might take the disjoint union of tangent spaces on every point p ∈ M to
form a vector bundle, which will be called the tangent bundle of M and denoted
TM:

TM :=
⊔

p∈M

Tp M = {(p, v) : p ∈ M, v ∈ Tp M}

where the projection function π is defined as

π : TM −→ M, π(p, v) = p

Thus, the fibre at each point p ∈ M will be its tangent space, i.e. π−1(p) = Tp M.

Remark 1.21. The tangent bundle TM of M is itself a smooth manifold of dimen-
sion 2n.

For a chart (U, ϕ) of M we define the map

ΨU : π−1(U) −→ R2n

(p, v) 7−→ (p1, . . . , pn, λ1, . . . , λn)

with ϕ(p) = (p1, . . . , pn) and λi the components of v in the canonical basis of
TpU. Then TM can be given a topology by the preimages of the open sets of R2n

endowed with the Euclidean topology. An atlas is then given by {(π−1(Ui), ΨUi)}.
We now introduce the notion of vector field on a manifold:

Definition 1.22. A section of the tangent bundle s : M→ TM is called a vector field
on M. We denote X (M) the set of all vector fields on M.
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Remark 1.23. Note that a vector field is of the form X := (p, Xp), where Xp is a
derivation at p. Hence X (M) acts canonically on F (M) as

X : F (M) −→ F
f 7−→ X f : M −→ R

p 7−→ Xp f (p)

We now introduce an important object called the Lie bracket. Although it seems
that its derivatives are of order higher than 1, we will see that in fact it defines a
vector field on M:

Definition 1.24. Let X, Y ∈ X (M) be vector fields. We define the Lie bracket [X, Y]
of X and Y by

[X, Y] f := X(Y f )−Y(X f )

where f : M→ R is any smooth function.

Proposition 1.25. The Lie bracket [X, Y] of X and Y is a vector field.

Proof. For any chart (U, ϕ) of M, with ϕ = (x1, . . . , xn), locally we can express the
vector fields as

X = ∑
i

ai
∂

∂xi
, y = ∑

i
bi

∂

∂xi

where ai, bj are smooth. Therefore

[X, Y] = XY−YX = ∑
i

∑
j

ai
∂bj

∂xi

∂

∂xj
− bj

∂ai

∂xj

∂

∂xi

which is clearly a vector field.

Corollary 1.26. The Lie bracket is antisymmetric.

1.4 Differential k-forms

We now introduce the cotangent bundle

π : T∗M −→ M

which is defined similarly as we have done with the tangent bundle. It is also
given the structure of a smooth manifold as we have done before with the tangent
bundle.
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Definition 1.27. A differential 1-form on M is a section of the cotangent bundle
s : M → T∗M, which assigns to any point p 7→ (p, wp), where wp ∈ T∗p M is a
1-form. We denote by A1(M) the set of all differential 1-forms.

Note that locally on a chart (U, ϕ), with ϕ = (x1, . . . , xn), the 1-form can be
given by

ω :=
n

∑
i=1

ωidxi

where the functions ωi : U → R are smooth.

Example 1.28. As we have already seen, the local expression for the differential of
a function f ∈ F (M) is

d f =
m

∑
i=1

∂( f ◦ ϕ−1)

∂xi
dxi

We will now introduce the generalization of forms, i.e. the k-forms. They are
sections of the k-th exterior power of the cotangent bundle, which for a smooth
manifold M we will denote

∧k
M :=

∧k
(TM)∗

Remark 1.29. This object is indeed a vector bundle and it is given a smooth struc-
ture again in an analogue way as we have already done more than once for bun-
dles.

Definition 1.30. Let k ≥ 0. A differential k-form of M is a section of
∧k M, i.e. a map

ω : M −→
∧k

M

p 7−→ (p, ωp)

We denote by Ak(M) the set of all differential k-forms on M.

Remark 1.31. The differential 0-forms are the functions f ∈ F (M).

Locally the differential k-forms can be expressed as

ωp := ∑
i1<...<ik

ωi1,...,ik dxi1 ∧ . . . ∧ dxik

with functions wi1,...,ik being smooth.
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Definition 1.32. The differential dω of a differential k-form ω is the k+ 1-form defined
as

dω(X0, . . . , Xk) := ∑
i
(−1)iXi(ω(X0, . . . , X̂i, . . . , Xk))+

+∑
i<j

(−1)i+jω([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk)

where Xi ∈ X (M) and the terms with a hat above are omitted.

Although the global definition might not be always handy, the differential dω

of a k-form ω is locally expressed as

dω := ∑
j

∑
i1<...<ik

∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

which is quite more useful. In addition, we get a map for k ≥ 0 on the set of
differential k-forms

d : Ak(M) −→ Ak+1(M)

Definition 1.33. Forms that are image of other forms under d are called exact,
while forms whose image under d is 0 are called closed.

Proposition 1.34. The composition of d with itself is the zero map, i.e. d ◦ d = 0.

Proof. Take a k-form ω and get its differential dω. Locally it will be

dω := ∑
j

∑
i1<...<ik

∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ . . . ∧ dxik

and we might now apply again d:

d2ω := ∑
k

∑
j

∑
i1<...<ik

∂2ωi1,...,ik

∂xk∂xj
dxk ∧ dxj ∧ dxi1 ∧ . . . ∧ dxik

By the smoothness of ωi1,...,ik , the crossed partial derivatives satisfy
∂2ωi1,...,ik

∂xk∂xj
=

∂2ωi1,...,ik
∂xj∂xk

and considering that the wedge product is antisymmetric we get the re-
sult.

Remark 1.35. The relation d ◦ d = 0 states that exact forms are closed.

Definition 1.36. The exterior wedge product of differential forms is defined as

∧ : Ak(M)×Al(M) −→ Ak+l(M)

(α, β) 7−→ α ∧ β
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The set of all forms AdR(M) :=
⋃

k≥0Ak(M) has the structure of an algebra
with the product defined as in Definition 1.36. This algebra is usually called the
de Rham algebra and for this reason it is denoted with the subscript dR.

Lemma 1.37. Let α be a k-form and β a l-form. Then

1. β ∧ α = (−1)klα ∧ β

2. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ

Proof. Since the wedge product is antisymmetric and we need to take kl permu-
tations to invert it, we get the factor (−1)kl and hence the first statement. Then,
considering the general Leibniz product and that the exterior derivative acts on a
form as in Definition 1.32, one can see that k permutations are needed to take the
product of each differential of the basis with β, getting as a consequence the factor
(−1)k of the second statement.

Finally, given a smooth map between manifolds f : M → N, there exists an
induced function f ∗ : AdR(N) → AdR(M) called the pullback map which locally is
defined as

f ∗(ω) = ∑
i1<...<ik

(ωi1,...,ik ◦ f )d fi1 ∧ . . . ∧ d fik

with fi being the i-th component of f in N.

1.5 De Rham cohomology

We now introduce de Rham cohomology, which will provide us a topological
invariant. Let (M, J) be an n-dimensional complex manifold. Since d satisfies
d ◦ d ≡ 0 we can define a cochain complex

0→ A0(M)→ A1(M)→ . . .→ Ak(M)→ . . .An(M)→ 0

called the de Rham complex.

Remark 1.38. Note that since the cross product cancels for dimension > n, the de
Rham complex terminates.

Related to the de Rham complex there is the de Rham cohomology.

Definition 1.39. Let M be a smooth manifold. The de Rham cohomology group of M
is defined as

Hk
dR(M, R) :=

Ker(d : Ak(M)→ Ak+1(M))

Im(d : Ak−1(M)→ Ak(M))
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Example 1.40. For any manifold M composed of k disconnected components, each
one of them connected, H0

dR(M, R) = Rk. The kernel considered represents the set
of functions on M with derivative 0 everywhere, so these functions must be con-
stant on each connected component. Hence we see that the dimension of H0(M, R)

is actually the number of disconnected components of M.

It turns out that the de Rham cohomology groups only depend on the topo-
logical structure of the manifold, i.e. there is not a dependence on the differential
structure at all and hence any two homeomorphic manifolds have the same coho-
mology groups [7, 4]. Therefore de Rham cohomology is a topological invariant
and so does the dimension of the cohomology groups. We then define the follow-
ing invariant:

Definition 1.41. Let M be an n-dimenional smooth manifold. The Betti numbers
bk(M) are defined as

bk(M) := dimR Hk
dR(M, R), k = 0, . . . , n

Remark 1.42. Note that for compact n-dimensional smooth manifolds bk < ∞, for
all k = 0, . . . , n.

Related to Betti numbers of a compact manifold we can define the Euler char-
acteristic, which will be a topological invariant of M [7]:

Definition 1.43. Let M be a compact n-dimenional smooth manifold. The Euler
characteristic is defined as

χ(M) =
n

∑
k=0

(−1)kbk(M)

1.6 Riemannian manifolds and Ricci curvature

Definition 1.44. Let M be a smooth manifold. A Riemannian metric on M is a family
of positive-definite inner products

gp : Tp M× Tp M −→ R

such that for any vector fields X, Y ∈ X (M) the assignement

g : M −→ R

p 7−→ gp(X|p, Y|p)

is set to be smooth. A smooth manifold endowed with a Riemannian metric is
called a Riemannian manifold (M, g).
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Remark 1.45. A Riemannian metric provides the manifold a norm | · |M by setting

| · |p : Tp M −→ R+

v 7−→ gp(v, v) ≥ 0

Remark 1.46. We could relax the conditions on the function g by non imposing
the function to be positive-definite. Then, we would say g is a pseudo-Riemannian
metric and hence a manifold M equipped with g a pseudo-Riemannian manifold. It
is a more general notion than Riemannian manifolds.

We now define the concepts we need to be able to define the Ricci curvature,
which will be needed in the following chapters. Since there is no natural way to
define the directional derivative of a vector field on a manifold, we introduce its
equivalent, the connections [11, 1]:

Definition 1.47. Let M be a smooth manifold. A connection on TM is an R-bilinear
map X (M)×X (M)→ X (M) such that for X, Y ∈ X (M) and f ∈ C∞(M),

D f XY = f DXY and DX( f Y) = (X f )Y + f DXY

Definition 1.48. For any connection D on TM, the torsion of the connection D is
defined as

T : (X, Y) 7→ DXY− DYX− [X, Y]

A connection D on TM is called torsion-free if T ≡ 0, i.e. for X, Y ∈ X (M),

DXY− DYX = [X, Y]

Theorem 1.49. There exists on any Riemannian manifold (M, g) a unique torsion-free
connection consistent with the metric, i.e. sucht that if X, Y, Z ∈ X (M)

Xg(Y, Z) = g(DXY, Z) + g(Y, DXZ)

See §§2.B of [8] for proof.

Definition 1.50. The torsion-free connection consistent with the metric is called
the Levi-Civita connection.

Example 1.51. The Levi-Civita connection of the Euclidean space is simply DXY =

dY(X).

Since we will need it in following chapters, we now define parallel transport
of vectors along curves on manifolds. We need first a result whose proof can be
found as well in §§2.B of [8].
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Theorem 1.52. Let (M, g) be a Riemannian manifold, D be its Levi-Civita connection
and c : I ⊆ R→ M be a curve on M. There exists a unique operator, denoted D

dt , defined
on the vector space of of vector fields along the curve c which satisfies

1. For any real function f : I → R ,

D
dt
( f Y)(t) = f ′(t)Y(t) +

D
dt

Y(t)

2. if there exists a neighbourhood of t0 ∈ I such that Y is the restriction to c of a vector
field X defined on a neighbourhood of c(t0) in M, then

D
dt

Y(t0) = (Dc′(t0)X)c(t0)

Definition 1.53. A vector field along a curve c is called parallel if D
dt X = 0.

Definition 1.54. The parallel transport from c(0) to c(t) along a curve c in (M, g) is
the linear map Pt from Tc(0)M to Tc(t)M, which associates to v ∈ Tc(0)M the vector
Xv(t), where Xv is the parallel vector field along c such that Xv(0) = v.

We finally define the notions of curvature and Ricci curvature:

Definition 1.55. The curvature tensor of a Riemannian manifold (M, g) is the tensor
defined by

Rp(x, y)z = (D2
Y,XZ− D2

X,YZ)p = (DY(DXZ)− DX(DYZ) + D[X,Y]Z)p

where X, Y, Z ∈ X (M) and x = Xp, y = Yp, z = Zp.

We can now define the Ricci curvature and, moreover, what is understood for
a Ricci-flat manifold. It will be an important concept to understand Calabi-Yau
manifolds.

Definition 1.56. The Ricci curvature of a Riemannian manifold (M, g) is the trace of
the endomorphism of Tp M given by v 7→ Rp(x, v)y. We shall denote the Ricci
curvature by Ric.

Definition 1.57. Riemannian manifolds whose Ricci curvature is proportional to
the metric, i.e. Ric = λg, are called Einstein manifolds. Riemannian manifolds
whose Ricci curvature is zero are called Ricci-flat.



Chapter 2

Complex manifolds

"SÓC.-Vamos a ver si de algún modo nos ponemos de acuerdo, Crátilo.
¿No dirías tú que una cosa es el nombre y otra aquello de lo que es nombre?"

- Platón, Crátilo

We introduce in this chapter what a complex manifold is, give some examples
and see the differences between complex and smooth manifolds. We then define
Dolbeault homology, Chern classes and holonomy, which will be topological and
complex structure invariants that will allow us to characterize and to distinguish
the different complex structures. To do so, we generally follow [11], but also
[4, 1, 17].

2.1 Holomorphic functions

Due to the reiterate use that we will do of the holomorphic property of complex
functions of several variables, we first recall what a holomorphic function of sev-
eral variables f : U ⊆ Cn → Cm is
We shall define the general case in three natural steps.

Definition 2.1. Let U ⊆ C be an open subset. A function f : U → C is holomorphic
if for all z0 ∈ U the limit

f ′(z0) := lim
z→z0

f (z)− f (z0)

z− z0

exists. Then f ′(z) is called the derivative of f (z) in U.

Definition 2.2. Let fi : U ⊆ Cn → C be a a complex function of n complex
variables. We say that fi is holomorphic if it is holomorphic in each variable when
fixing the others.

17
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Now we just need to extend the Definition 2.2 to the general case

Definition 2.3. Let f : U ⊆ Cn → Cm be a complex function of n complex variables
to m values in C. We say that f := ( f1, . . . , fm) is holomorphic if ∀i = 1, . . . , m the
function fi is holomorphic.

Remark 2.4. Let be f : U ⊆ Cn → Cm and denote zj = xj + iyj and f (z1, . . . , zn) =

(P1 + iQ1, . . . , Pm + iQm), where xj, yj ∈ R and Pi, Qi : U ⊆ R2n → R. Note that a
function will be holomorphic if and only if Pi(zj), Qi(zj) are differentiable in R2n

and the pairs of Cauchy-Riemann relations hold, i.e.

∂Pi

∂xj
=

∂Qi

∂yj
,

∂Pi

∂yj
= −∂Qi

∂xj

2.2 Complex manifolds

Definition 2.5. A holomorphic atlas on a smooth manifold of dimension n is an atlas
{(Ui, ϕi)} such that the coordinate functions induce a homeomorphism ϕi : Ui

∼=
ϕ(Ui) ⊆ Cn and such that the transition functions

ϕij := ϕi ◦ ϕ−1
j : ϕj(Ui ∩Uj)→ Cn

are holomorphic.
Any pair (U, ϕ) is called a holomorphic chart. Two holomorphic atlases {(Ui, ϕi)},
{(Vj, ψj)} are said to be equivalent if ∀i, j the map

ϕi ◦ ψ−1
j : ψj(Ui ∩Vj)→ ϕi(Ui ∩Vj)

is holomorphic.

Note that, as in the smooth case, the equivalence of holomorphic atlases is a
relation of equivalence. The definition of complex manifold is analogue to the real
case, too:

Definition 2.6. An n-dimensional complex manifold (M,A) is a smooth manifold M
of real dimension 2n endowed with a holomorphic atlas A. We will often refer to
the complex manifold simply as M.

We will see that there is an equivalent treatment of complex manifolds based
on smooth manifolds having an endormorphism on their tangent bundle which
satisfies some properties. However, we first see some examples of complex mani-
folds:

Example 2.7. 1. Cn is a complex manifold for all n ≥ 1 with holomorphic atlas
{(Cn, Id)}.
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2. Any open subset Y of a complex manifold X, the latter with holomorphic
atlas {(Ui, ϕi)}, is itself a complex manifold with induced holomorphic atlas
{(Y ∩Ui, ϕi|Y)}.

3. The cartesian product of complex manifolds is a complex manifold.

4. (Complex Lie groups) Let G be a complex manifold and a group. G is called
a complex Lie group if the group operations · : G → G and −1 : G → G are
holomorphic. Examples of Lie groups are GL(n, C), SL(n, C). Also Cn can
be seen as a Lie group.

5. (Complex projective spaces) Let PCn be the n-dimensional complex projec-
tive space, i.e. PCn is the set of lines [z] in Cn+1. Equivalently it can be seen
as

PCn := (Cn+1 \ {0})/C∗,

where here C∗ acts on Cn+1 \ {0} as a complex scalar multiplication. The
points [z] ∈ PCn have homogeneous coordinates [z0 : . . . : zn].

It can be given an open covering by the sets

Ui := {[z] ∈ PCn : zi 6= 0}

which we assure to be open giving PCn the quotient topology. Considering
the bijective maps

ϕ : Ui −→ Cn

[z0 : . . . : zn] 7−→ (
z0

zi
, . . . , ẑi, . . . ,

zn

zi
)

we get an atlas {Ui, ϕi} which is holomorphic.

As in the real case, we can define functions between complex manifolds:

Definition 2.8. A holomorphic map f : M→ N between complex manifolds (M, {(Ui, ϕi)})
and (N, {(Vj, ψj)}) is a smooth map for which the functions

ψj ◦ f ◦ ϕ−1
i : ϕi(U)→ Cn

are holomorphic.

Definition 2.9. A biholomorphic map f : X → Y is a bijective holomorphic map
whose inverse is also holomorphic. Two complex manifolds X and Y are said to
be biholomorphic if there exists a biholomorphic map between them.
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Although complex and smooth manifolds seem similar, the rigidity of holo-
morphic functions compared to the smooth ones gives them really different be-
haviours. We might see a first difference between complex and smooth manifolds,
regarding functions on manifolds having the property of compactness:

Proposition 2.10. Let X be a compact connected complex manifold. Any holomorphic
function f : X → C is constant.

Proof. Since X is compact, there is a point x ∈ X in which | f (x)| is maximum.
Given a local chart of x, (U, ϕ), i.e for which x ∈ U, the map f ◦ ϕ−1 : ϕ(U) → C

is defined on an open subset ϕ(U) ⊆ Cn, therefore due to the maxiumum principle
on ϕ(U) is locally constant. Since X is connected, f must be constant.

However, it is a property that clearly doesn’t apply to the real case, as we see
in the following example:

Example 2.11. Consider the smooth manifold S1 with the differential atlas {S1, i :
S1 ↪→ R2}. Clearly S1 is a compact and connected manifold. However, we can
easily see that the function πx : S1 → R defined by πx(x, y) = x is differentiable
and non-constant.

In the last example we have given S1 as a submanifold of the smooth manifold
R2. We give now the precise definition for complex submanifolds:

Definition 2.12. Let X be a complex manifold of complex dimension m and let
Y ⊆ X be a smooth submanifold of real dimension 2k. Y is a complex submanifold of
complex dimension k if there is an atlas {(Ui, ϕi)} of X satisfying Ui ∩Y ∼= ϕi(Ui) ∩
Ck, where we embed Ck into Cm via (z1, . . . , zk) 7→ (z1, . . . , zk, 0, . . . , 0).

We have as a consequence of Proposition 2.10 the following corollary

Corollary 2.13. There are no compact complex submanifolds M of Cm of positive dimen-
sion

Proof. If we had a compact complex submanifold M of Cm, the chart maps of Cm

would restrict to non-constant functions on the compact M, contradicting Propo-
sition 2.10.

Again, in Example 2.11 we have a case in which the compact smooth manifold
S1 ⊆ R2 is indeed a submanifold of R2, providing us a way of seeing this huge
difference between complex and smooth manifolds.
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2.3 Almost complex manifolds

We give in this section an equivalent definition of complex manifolds, using
the fact that smooth manifolds equipped with an structure satisfying some partic-
ular conditions are indeed complex manifolds and there is an equivalence among
them. This alternative definition facilitates the extension of differential k-forms to
complex manifolds.
Let U ⊆ Cn be an open subset, which in particular is a 2n-dimensional smooth
manifold. Hence, for each p ∈ U, the tangent space TpU has dimension 2n. The
canonical basis for TpU is {

∂

∂x1
, . . . ,

∂

∂xn
,

∂

∂y1
, . . . ,

∂

∂yn

}
where zi = xi + iyi are the canonical coordinates of Cn. The vector space TpU
admits an endomorphism J given by

J
(

∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= − ∂

∂xi

which can extended to a vector bundle endomorphism on the tangent bundle
J : TM→ TM.

Definition 2.14. An almost complex structure on a smooth manifold M is a linear
endomorphism J : TM → TM such that J2 = −1. The couple (M, J) is called an
almost complex manifold.

We see how J2 = −1 is similar to the imaginary unit i2 = −1. Assuming we
are in R2n, the almost complex structure provides us a Cauchy-Riemann relation
being given the other. Hence, J allows us to endow Tp M, and therefore TM, with
the structure of a complex vector space whose scalar multiplication is given by
(x + iy)v := xv + yJ(v).

Proposition 2.15. Let (M, J) be an almost complex structure. Then M is even-dimensional.

Proof. Since J2 = −1, we have that det(J2) = (−1)n, where n := dim M. Given
that M is smooth and therefore a real manifold, det(J) must be real. Hence n must
be even.

Not every even-dimensional smooth manifold admits an almost complex struc-
ture. The following theorem states which n-spheres admit an almost complex
structure.
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Theorem 2.16. (Borel & Serre) The sphere Sn admits an almost complex structure if and
only if n = 2 or n = 6.

The reader eventually interested in its proof, which is beyond the scope of this
work, can check the original paper [3].

Definition 2.17. A map of almost complex manifolds is a smooth map f : M → N
such that the map f∗ : TM → TN satisfies f∗ ◦ JM = JN ◦ f∗, where the subscript
of J indicates the manifold associated to the bundle considered.

Theorem 2.18. Any complex manifold X admits a natural almost complex structure, i.e
X has an underlying almost complex manifold.

Proof. Take the holomorphic charts (U, ϕ), ϕ = (z1, . . . , zn) on X and for zi =

xi + iyi define the linear morphism ∂/∂xi 7→ ∂/∂yi, ∂/∂yi 7→ −∂/∂xi. See that it
does not depend on the chart.

We now give a result that gives us the actual equivalence between complex
manifolds and almost complex manifolds under a particular condition. When a
certain tensor related to the almost complex structure is identically zero for any
pair of vector fields, an almost complex manifold will have an underlying complex
manifold and conversly, the smooth manifold underlying a complex manifold can
be added an almost complex structure. As it is again beyond our goal, the inter-
ested reader might check [17].

Theorem 2.19. (Newlander-Nirenberg integrability theorem) An almost complex
structure J on a smooth manifold M arises from a complex manifold if and only if NJ ≡ 0,
where NJ : TM× TM→ TM is the Nuijenhuis tensor, defined by

NJ(X, Y) := [X, Y] + J[X, JY] + J[JX, Y]− [JX, JY]

Remark 2.20. Since the Lie bracket [X, Y] is antisymmetric, the Nuijenhuis tensor is
antisymmetric as well.

Definition 2.21. Let J be an almost complex structure. If NJ ≡ 0, J is called an
integrable almost complex structure or a complex structure.

We finally give an alternative definition of complex manifold, which is equiv-
alent to Definition 2.6 by Theorem 2.19 and often given as the main definition in
many references.

Definition 2.22. (Alternative) Let (M, J) be an almost complex manifold. If J is
integrable, we say that (M, J) is a complex manifold.
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It is an open problem whether it exists an almost complex manifold not admit-
ting a complex manifold for dimension n ≥ 6. In particular, it is not known if S6

is or is not a complex manifold. The following result is conjectured by Yau:

Conjecture 2.23. (Yau). Any almost complex manifold of dimesion n ≥ 6 is a complex
manifold.

2.4 Complexified differential forms

We fix (M, J) to be an almost complex manifold of dimension 2n in this section.
Consider now the complexification of TM, i.e. the cross product TCM := TM⊗R

C. Then J can be extended to TCM by J(v⊗ z) := J(v)⊗ z. The eigenvalues of J
are ±i. We can consider the ±i-eigenspaces of J on TCM:

T1,0M := {v ∈ TCM : J(v) = +iv} T0,1M := {v ∈ TCM : J(v) = −iv}

Remark 2.24. TCM, T1,0M and T0,1M are actually tangent bundles in C, i.e. com-
plex vector bundles.

However, even for M being an complex manifold TCM, T1,0M and T0,1M have
not a priori a holomorphic structure, i.e. they are not generally holomorphic vector
bundles.

Definition 2.25. The bundles T1,0M and T0,1M are called respectively holomorphic
tangent bundle and antiholomorphic tangent bundle of the almost complex manifold
M.

Natural bases of the bundles T1,0M and T0,1M are, respectively,{
∂

∂zi
:=

1
2

(
∂

∂xi
− i

∂

∂yi

)} {
∂

∂z̄i
:=

1
2

(
∂

∂xi
+ i

∂

∂yi

)}
Remark 2.26. Note that J restricted to the holomorphic tangent bundle corre-
sponds to the multiplication by i, while J restricted to the antiholomorphic tangent
bundle corresponds to multiplication by −i.

Proposition 2.27. Let M be an almost complex manifold. Then we get a direct sum
decomposition

TCM = T1,0M⊕ T0,1M

Proof. It follows from the direct sum decomposition on all fibres, i.e. the tangent
spaces for all p ∈ M.
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This direct sum decomposition induce decompositions on the dual tangent
bundle as well as on the exterior powers of these objects.
We now introduce the complexified cotangent bundle similarly as we have already
done with the tangent bundle. We have

T∗CM := T∗M⊗R C

We can introduce the generalization of differential k-forms, the complexified dif-
ferential k-forms or C-differential forms. They will be sections of the complexified
k-th exterior power of the cotangent bundle:

Definition 2.28. For an almost complex manifold M one defines the vector bundles

∧k
M :=

∧k
(TCM)∗

∧p,q
M :=

∧p
(T1,0M)∗ ⊕C

∧q
(T0,1M)∗

These complexified objects are indeed vector bundles and they are given a
smooth manifold structure again in an analogue way as we did for the tangent
bundle. Note that we are using the fact that we got a decomposition of the com-
plexified (co)tangent bundle.

Definition 2.29. Let k ≥ 0. The C-differential k-forms of M are the sections of
∧k M,

i.e. maps

ω : M −→
∧k

M

p 7−→ (p, ωp)

We denote by Ak
C(M) the set of all C-differential k-forms in C.

Remark 2.30. In the following we will often refer to C-differential k-forms simply
as differential k-forms; the context will tell us whether the forms are complexified
or not. The C-differential k-forms we have defined are in fact defined on the
complexified bundles.

The map d is often called the exterior derivative. We may now use the decom-
position of the complexified exterior power of the cotangent bundle to actually
decompose the differential k-forms.

Ak
C(M) := Ak

dR(M)⊗R C =
⊕

p+q=k

Ap,q(M)

where Ap,q(M) is the space of sections of
∧p,q M. Again, the almost complex

structure permits us to refine the mathematical objects we are considering, in this
case the k-forms. Using the same fact we can refine the action of the map d:
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Definition 2.31. We define the operators ∂ and ∂̄ as

∂ := Πp+1,q ◦ d : Ak(M) −→ Ap+1,q(M), ∂̄ := Πp,q+1 ◦ d : Ak(M) −→ Ap,q+1(M)

where given k = p + q, the projection operators of k-forms are defined as

Πp,q : Ak(M) −→ Ap,q(M)

We finally want to give a characterization theorem of complex manifolds. As
it will be more clear, we will state the particular results in a few lemmas and then
collect them, already proved, in a general theorem.

Lemma 2.32. Let (M, J) be an almost complex manifold. NJ ≡ 0 if and only if [T0,1M, T0,1M] ⊆
T0,1M.

Proof. (⇒) We know by Theorem 2.19 that NJ ≡ 0 equives to the statement that
(M, J) is a complex manifold. Then consider that M is a complex manifold and a
char (U, ϕ), with zj = xi + iyj its j-th component. Given {e1, . . . , e2n} the standard
basis of R2n, by definition

∂

∂xj
= ϕ−1

∗ (ej),
∂

∂yj
= ϕ−1

∗ (ej+n), j = 1, . . . , n

where moreover the structure J is compatible with the induced map ϕ∗. Using the
local basis { ∂

∂z̄j
} of T0,1M we may write two local vector fields X, Y in T0,1M as

X = ∑
i

Xi
∂

∂z̄i
, Y = ∑

i
Yi

∂

∂z̄i

[X, Y] = ∑
i,j

Xi
∂Yj

∂z̄i

∂

∂z̄i
−∑

i,j
Yi

∂Xj

∂z̄i

∂

∂z̄i

and therefore, since [X, Y] is also a local vector field in T0,1M, we see that NJ =

0 =⇒ [T0,1M, T0,1M] ⊆ T0,1M.
(⇐)Conversely, for X, Y vector fields of T0,1M, defining the vector field Z := [X +

i JX, Y + i JY] one can see that

Z− i JZ = NJ(X, Y)− i JN(X, Y)

and hence Z is a vector field of T0,1M only if NJ ≡ 0.

Remark 2.33. Note that [T0,1M, T0,1M] ⊆ T0,1M and [T1,0M, T1,0M] ⊆ T1,0M are
equivalent.
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Lemma 2.34. Let (M, J) be an almost complex manifold. Then d = ∂ + ∂̄ if and only if
for all forms in A1,0(M) is satisfied Π0,2 ◦ d = 0.

Proof. (⇒) The first implication is trivial since d = ∂+ ∂̄ clearly implies Π0,2 ◦ d = 0
for all forms in A1,0(M).
(⇐) The converse holds true as well, since d = ∂ + ∂̄ holds on Ap,q(M) if and only
if dα ∈ Ap+1,q(M)⊕Ap,q+1(M). Then, locally one has that α ∈ Ap,q(M) can be
expressed as

α = ∑ f αi1 ∧ . . . ∧ αik ∧ β̄ j1 ∧ . . . ∧ β̄ jl

where αi ∈ A1,0(M) and β̄ j ∈ A0,1(M). Now, using the Leibniz rule, d f ∈
A1,0(M) ⊕ A0,1(M) trivially. dαi ∈ A2,0(M) ⊕ A1,1(M) by assumption. Then,
complex conjugating the hypothesis we get Π2,0 ◦ d = 0 on A0,1(M) and hence
dβ̄ j ∈ A1,1(M)⊕A0,2(M), getting then the result that states d = ∂ + ∂̄.

Lemma 2.35. Let (M, J) be an almost complex manifold. Π0,2 ◦ dα = 0 for all forms in
A1,0(M) if and only if [T0,1M, T0,1M] ⊆ T0,1M.

Proof. Let α be a (1, 0)-form and X, Y sections of T0,1M. Then, it can be seen that
differentiating using standard formulae one gets

(dα)(X, Y) = X(α(Y))−Y(α(X))− α([X, Y]) = −α([X, Y])

and hence α satisfies (Π0,2 ◦ d)α = 0 if and only if [X, Y] is always of type (0, 1).

We can finally collect the last results in a general theorem, which is basically
already proved.

Theorem 2.36. Let (M, J) be an almost complex manifold. Then the following are equiv-
alent:

1. M is a complex manifold.

2. NJ ≡ 0

3. d = ∂ + ∂̄

4. [T0,1M, T0,1M] ⊆ T0,1M

5. On A1,0(M) one has Π0,2 ◦ d = 0

6. ∂̄2 = 0
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Proof. It is a consequence of Lemmas 2.32, 2.34, 2.35.

Corollary 2.37. On a complex manifold we get

∂2 = ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0

Proof. It is direct from the fact that on a complex manifold d = ∂ + ∂̄ and d ◦ d ≡
0.

2.5 Cohomology on complex manifolds

The de Rahm cohomology groups that were defined in the previous chapter
can be adapted to the case of C-differential forms on complex manifold. We have

Hk
dR(M, C) :=

Ker(d : Ak
C(M)→ Ak+1

C
(M))

Im(d : Ak−1
C

(M)→ Ak
C
(M))

= Hk
dR(M, R)⊗R C

But we might also use the fact that the bundles of complex manifolds decompose
in holomorphic and antiholomorphic bundles. Since ∂̄ satisfies ∂̄ ◦ ∂̄ ≡ 0 we can
define another cochain complex

0→ Ap,0(M)→ Ap,1(M)→ . . .→ Ap,k(M)→ . . .Ap,n(M)→ 0

called the Dolbeault complex.

Definition 2.38. In an analogue way, the Dolbeault cohomology groups are defined
as

Hp,q
∂̄

(M) :=
Ker(∂̄ : Ap,q

M → A
p,q+1
M )

Im(∂̄ : Ap,q−1
M → Ap,q

M )

Remark 2.39. Since ∂ and ∂̄ are complex conjugate, and hence Hp,q
∂̄

(M) = Hq,p
∂ (M),

we might only calculate the Dolbeault cohomology, instead of calcultating as well
the antiDolbeault cohomology, which is related to the ∂-operator.

Example 2.40. Consider the complex projective space CPn, n ≥ 1. Its Dolbeault
cohomology groups are [11]

Hp,q
∂̄

(CPn) ∼=
{

C p = q, p ≤ n

0 p 6= q
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Dolbeault cohomology is an invariant of complex structures. Moreover, it is
related to de Rham cohomology, so it is useful to compute the latter in many cases.
For compact complex manifolds the dimension of both de Rham and Dolbeault
cohomologies are finite. We define an analogue of Betti numbers for Dolbeault
cohomology groups:

Definition 2.41. Let (M, J) be an n-dimensional complex manifold. The Hodge
numbers of M are defined as

hp,q(M) := dimC Hp,q
∂̄

(M), 0 ≤ p, q ≤ n

Betti and Hodge numbers are not independent. In fact there are many rela-
tions, with these depending on the kind of complex manifold we are looking at.
In the most general case it can be seen the following [11]:

Proposition 2.42. Let M be an n-dimensional complex manifold, n < ∞. It is satisfied

hp,q = hn−p,n−q (Serre duality),

bk ≤ ∑
p+q=k

hp,q

It is common to organize the Hodge numbers into a diamond-shape diagram,
the so-called Hodge diamond. As an example, for a 3-dimensional complex man-
ifold M we would write

b6 h3,3

b5 h3,2 h2,3

b4 h3,1 h2,2 h1,3

b3 h3,0 h2,1 h1,2 h0,3

b2 h2,0 h1,1 h0,2

b1 h1,0 h0,1

b0 h0,0

Remark 2.43. Note that for all n-dimensional connected compact complex man-
ifolds h0,0(M) = 1, since forms f ∈ A0,0(M) with ∂̄ = 0 are the holomorphic
functions, which globally can only be constant, i.e. H0,0

∂̄
(M) ∼= C. Therefore, by

Serre duality, hn,n(M) = 1.

Example 2.44. Consider the complex projective space CP2. Its Hodge diamond is
[11, 9]

1 1
0 0 0
1 0 1 0
0 0 0
1 1
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Example 2.45. Consider the Hopf surface M ∼= S1 × S3. Its Hodge diamond is
[11, 9]

1 1
1 1 0
0 0 0 0
1 0 1
1 1

2.6 Chern classes

Given a fiber F, a structure group G and a base manifold M we may construct
many fibre bundles over M. It is interesting to classify these bundles and see how
much they differ from the trivial bundle M× F. To do so, we might use charac-
teristic classes, which are subsets of cohomology classes of the base space, i.e. M.
Therefore they measure the non-triviality of the bundle and represent obstructions
which prevent the bundle from being trivial. Precisely, we are interested in Chern
classes:

Definition 2.46. Let E be a complex vector bundle over a complex manifold M.
Let F = dA + A ∧ A be the curvature two-form of a connection A on E. We define
the total Chern class of E as

c(E) := det(1 +
i

2π
F)

Remark 2.47. Since F is a two-form, c(E) is a direct sum of forms of even degrees.
Moreover, since E is n-dimensional, for 2j > n we get that cj(E) ≡ 0 and as a
consequence of the k-rank of the bundle, for j > k Chern classes vanish as well.

Definition 2.48. We define the Chern classes cj(E) ∈ H2j
dR(M) by the expansion

c(E) = 1 + c1(E) + c2(E) + . . .

Definition 2.49. The Chern classes of a complex manifold M are

cj(M) := cj(T1,0M) ∈ H2j
dR(M)

Remark 2.50. Since the definition of Chern classes depends on a connection A on
the bundle, one might think that Chern classes depend on the choice of A. How-
ever this is not the case and Chern classes are invariants. For further information
see [4].



30 Complex manifolds

We might give some useful formulae to compute Chern classes. For the de-
duction of these formulae, see [15].

c0(E) =[1]

c1(E) =
[

i
2π

TrF
]

c2(E) =

[
1
2

(
i

2π

)2

(TrF ∧ TrF− Tr(F ∧ F))

]
...

ck(E) =

[(
i

2π

)k

det F

]

2.7 Holonomy

There is another concept relating the complex geometry of a Riemannian man-
ifold (M, g) which is holonomy. Since to the metric g there is a unique Levi-Civita
connection D, so it is possible to define the parallel transport of vectors along a
path γ on M, we can obtain plenty of isomorphisms

Pγ : Tp M ∼= Tq M

Since the only scope of this section is introducing holonomy in order to make little
use of it when defining Calabi-Yau manifolds, we are not giving proves. See §§4.A
of [11] for detailed deductions.

Lemma 2.51. Pγ is an isometry.

Corollary 2.52. If γ is a closed path with γ(0) = γ(1) = p then Pγ ∈ O(Tp M, gp) ∼=
O(n).

Definition 2.53. Let (M, g) be a Riemanninan manifold. For any point p ∈ M, the
holonomy group at p Holp(M, g) ⊆ O(Tp M) is the group of all parallel transports
Pγ along closed paths γ : [0, 1]→ M with γ(0) = γ(1) = p.

Definition 2.54. Let (M, g) be a Riemanninan manifold. For any point p ∈ M, the
restricted holonomy group at p Hol◦p(M, g) ⊆ Holp(M, g) is the group of all parallel
transports Pγ along contractible paths γ, i.e. with 1 = [γ].
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Proposition 2.55. Let (M, g) be a simply connected Riemannian manifold. Then Hol◦p(M, g) ∼=
Holp(M, g).

Proof. Given the fact that M is simply connected, all paths γ satisfy [γ] = 1 ∈
π1(M). Hence we get we get the non trivial inclusion Holp(M, g) ⊆ Hol◦p(M, g)
and therefore the isomorphism.

Proposition 2.56. If two points p, q ∈ M can be connected by a path γ : [0, 1] → M
such that γ(0) = p, γ(1) = q, then Holp(M, g) ∼= Holq(M, g).

Proof. Since there is a path γ connecting p and q, we can define the parallel trans-
port along γ, Pγ. Hence we get Holq(M, g) = Pγ ◦ Holp(M, g) ◦ P−1

γ , which leads
to the isomorphism.

Given the isomorphism between holonomy groups at points which are path-
connected, we can finally define the holonomy group of a simply connected man-
ifold M:

Definition 2.57. Let (M, g) be a simply connected Riemannian manifold. We de-
fine its holonomy group Hol(M, g) as the holonomy group at any point p ∈ M.

2.8 Holomorphic bundles

We will only introduce holomorphic vector bundles in order to be able to de-
fine the canonical bundle of a complex manifold. However, we should notice that
a holomorphic vector bundle is not the same as a complex vector bundle: the latter
is simply a differentiable vector bundle whose fibers are complex.

Definition 2.58. Let M be a complex manifold. A holomorphic vector bundle of rank
r on M is a complex manifold E together with a holomorphic projection map
π : E → M and the structure of an r-dimensional complex vector space on any
fibre E(x) := π−1(x) satisfying that there exists an open covering M =

⋃
i Ui and

biholomorphic maps ψi(Ui) ∼= Ui ×Cr commuting with the projections to Ui such
that the induced map π−1(x) ∼= Cr is complex linear.

Remark 2.59. A holomorphic vector bundle is also a complex vector bundle.

Example 2.60. The holomorphic tangent bundle T1,0M of a complex manifold M
and its dual are both holomorphic vector bundles.

The following result, although tagged as theorem, is a meta-theorem. There is
an analogue for real (smooth) vector bundles.
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Theorem 2.61 (Meta-theorem). Any canonical construction in linear algebra gives rise
to a geometric version for holomorphic vector bundles.

Let M be a complex manifold. We will now denote by ΩM the holomorphic
cotangent bundle (T1,0M)∗ and by TM the holomorphic tangent bundle T1,0M.

Definition 2.62. The bundle of holomorphic p-forms is defined Ωp
M :=

∧p ΩM for
0 ≤ p ≤ n and KM := det(ΩM) = Ωn

M is called the canonical bundle of M.

It can be proved [11, 1] that the definition is independent of the open covering
and the maps ϕi. Hence, for different choices with get isomorphic vector bundles
and thus TM, ΩM and KM are invariants of the complex manifold M.

Definition 2.63. The simplest holomorphic vector bundle over M of rank k, i.e.
M×Ck, is called trivial.



Chapter 3

Kähler manifolds

"No sé per on camino, sé només
que vaig cap al no-res. [...]
No podré veure mai
la veritable mar al fons."

- Joan Vinyoli, Vent d’aram

3.1 Hermitian structures

The first step in order to introduce Kähler manifolds is defining what does
actually mean for a Riemannian metric and an almost complex structure to be
compatible. In the case they will be compatible, we will be able to define the
notion of hermitian structure, which is the previous step to Kähler. In this section
we mainly follow [11, 1]

Definition 3.1. Let (M, J) be an almost complex manifold. A Riemannian metric
g on M is said to be compatible with the complex structure J if for all p ∈ M one
has

gp(v, w) = gp(Jv, Jw), ∀v, w ∈ Tp M

Definition 3.2. A Riemannian metric g on M is an hermitian structure on M if it
is compatible with the complex structure J. The induced form ω := g(J(·), ·) is
called the fundamental form.

Proposition 3.3. Every almost complex manifold admits a hermitian structure.

33
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Proof. Given a Riemannian metric g on M, we can define a new metric

h(X, Y) := g(X, Y) + g(JX, JY)

that satisfies the requirements of Riemannian metrics and using the fact that g is
positive-definite it satisfies h(X, Y) = h(JX, JY).

Proposition 3.4. The fundamental form is a real (1, 1)-form.

Proof. Since

gp(J(v), w) = gp(J(J(v)), J(w)) = −gp(v, J(w))

we see that ω is alternating and hence ω ∈ ∧2 M. Now one finds applying J to ω

that

J(ω)(v, w) = ω(J(v), J(w)) = gp(J2v, Jw) = ω(v, w)

and hence, since Jω = ω, we get ω ∈ ∧1,1 M.

Definition 3.5. A complex manifold (M, J) endowed with an hermitian structure
is called an hermitian manifold.

Roughly speaking, we have just taken a step forward the riemannian struc-
tures imposing our Riemannian metric to be compatible with the almost complex
structure. Note then that the set of Hermitian manifolds is a subset of Riemannian
manifolds.

Remark 3.6. The hermitian structure g is uniquely determined by the fundamental
form ω together with the almost complex structure J. Actually, g(·, ·) = ω(·, J(·)).

Locally the fundamental form ω is of the form

ω =
i
2

n

∑
i,j=1

hijdzi ∧ dz̄j

where (hij(p)) is a positive-definite hermitian matrix for any p ∈ M.

Remark 3.7. Note that until now the definitions are equally valid for almost com-
plex structures, either integrable or not. However, from now on we are using the
differential decomposition d = ∂ + ∂̄, which implies the almost complex structure
to be integrable and hence the manifold to be complex.
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3.2 Kähler manifolds

We now consider the almost complex structure J integrable, i.e. J is actually a
complex structure. We add a restriction to the set of hermitian manifolds to get
Kähler manifolds defined. This restriction will be on the fundamental form of the
hermitian manifold.

Definition 3.8. A Kähler structure is an hermitian structure g whose associated
fundamental form ω is closed, i.e. dω = 0. A complex manifold endowed with
a Kähler structure is called a Kähler manifold. The fundamental form ω is then
known as the Kähler form.

Remark 3.9. Although hermitian structures exist on any complex manifold, Kähler
structures do not always exist. In Example 3.18 we see that the Hopf surface
M = S1 × S3 is not Kähler.

dω = 0 implies that the hermitian metric tensor is defined by a unique function
u called the Kähler potential:

hαβ̄ =
∂2u

∂zα∂z̄β

Actually, the condition dω = 0 is equivalent to have the hermitian structure g
osculating in any point to order two to the standard metric, i.e. (hij) being of the
form

(hij) = id + O(|z2|)

Example 3.10. 1. Cn is Kähler with the standard flat metric

hij = h
(

∂

∂zi
,

∂

∂z̄j

)
=

1
2

δij

with a fundamental form

ω =
i
2

n

∑
j=1

dzj ∧ dz̄j =
i
2

∂∂̄|z|2

and hence with Käher potential u(z) = 1
2 |z|2.

2. Products of Kähler manifolds are Kähler.

3. (Complex projective spaces) Getting a hermitian structure fixed on Cn+1, the
Fubini-Study metric is a canonical Kähler metric on the projective space PCn.
Being Ui the standard open covering, one defines

ωi :=
i

2π
∂∂̂ log

(
n

∑
j=1

|zl |2
|zi|2

)
∈ Ω1,1(Ui)
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4. A Riemann surface, i.e. a compact complex 1-dimensional manifold with h
hermitian metric is always Kähler, since ω is always closed by dimensional
reasons, since there are no 3-forms. Therefore, any U ⊆ C endowed with a
compatible metric is Kähler.

Proposition 3.11. Any complex submanifold of a Kähler manifold is again Kähler.

Proof. Let g be a Kähler metric on a complex manifold X = (M, J) and consider
the restriction to the submanifold Y ⊆ X, g|Y, which is clearly again riemannian.
Since TpY ⊆ TpX, g|Y is invariant under J for any p ∈ Y and the restriction to TpY
is an almost complex structure JY on Y, g|Y is compatible with JY and therefore
g|Y defines an hermitian structure on Y. Then by definition ωY = g|Y(JY(·), ·) =
g(J(·), ·)|Y = ω|Y and therefore we get dYωY = dY(ω|Y) = (dXω)|Y = 0.

Corollary 3.12. Any projective manifold is Kähler.

Proof. By definition we can embed any projective space into PCn for a certain n.
By restriction of the Fubini-Study metric we get the Kähler structure.

However it should be clear that the inverse is not true. Therefore:

Remark 3.13. Not every Kähler manifold is projective, as we have seen that Cn,
which is not projective, is Kähler.

However, we might ask ourselves whether compact Kähler manifolds either are
or not always projective spaces, which is much more stronger than the last remark.
See [18] as a reference, where it is shown that for dimension greater than or equal
to 4, there exist compact Kaehler manifolds which do not have the homotopy type
of projective complex manifolds. Therefore:

Proposition 3.14. Not every compact Kähler manifold is projective.

We can now find properties and restrictions of Kähler manifolds related to Betti
and Hodge numbers, i.e. using cohomology. This set of restrictions is commonly
known as the Kähler package, being actually a powerful set of restrictions on the
cohomology of compact complex manifolds. It will be mainly useful to easily
identify which manifolds are not Kähler just looking at their Hodge diamonds. In
the following we will consider compact complex manifolds.
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Proposition 3.15. Let M be a compact n-dimensional Kähler manifold. b2k(M) > 0 for
k = 0, . . . , n.

Proof. Assume b2k(M) = 0. Since dωk = 0 we get ωk = dα. Using Stokes theorem
we would find ∫

M
ωn =

∫
M
(ωn−k ∧ dα) =

∫
M

d(ωn−k ∧ α) = 0

which cannot be because ωn is a volume form and hence never zero.

The following theorem is basic for the topological characterisation of Kähler
manifolds. See [11, 1] for proof.

Theorem 3.16. (Hodge decomposition) Let M be a compact Kähler manifold. We have
an isomorphism

Hk
dR(M)⊗C ∼=

⊕
p+q=k

Hp,q
∂̄

(M)

and Hp,q
∂̄

(M) = H̄q,p
∂̄

(M).

Therefore, Theorem 3.16 imposes conditions on Hodge numbers and hence
symmetries on the Hodge diamond. We list them in the following corollary:

Corollary 3.17. Let M be a compact Kähler manifold. Then

bk = ∑
p+q=k

hp,q, hp,q = hq,p, b2k−1 ∈ 2Z

Proof. The first and second relations follows directly from dimensional analysis of
the theorem results. For the third one we have, for k ∈ {1, . . . , n},

b2k−1 = ∑
p+q=2k−1
0≤p,q≤n

hp,q = ∑
p+q=2k−1
0≤p<q≤n

(hp,q + hq,p) = ∑
p+q=2k−1
0≤p<q≤n

2hp,q ∈ 2Z

that actually proves what we wanted to.

Example 3.18. The Hopf surface M = S1 × S3 is not Kähler, as b1(M) = 1 /∈ 2Z

[4, 1].

The next two propositions gives us characterisations of Kähler manifolds which
will be useful in the next chapter, when we will study the properties of Calabi-Yau
manifolds. For detailed proof see [1].
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Proposition 3.19. A connected Riemannian manifold of real dimension 2n is a Kähler
manifold if and only if its holonomy group is contained in U(n).

Proposition 3.20. A connected Riemannian manifold of real dimension 2n is a Ricci-flat
Kähler manifold if and only if its reduced holonomy group is contained in SU(n).



Chapter 4

Calabi-Yau manifolds

"Tu ho has volgut,
que et trenes com un fil amb el seu fil
i retorces la corda."

- Gabriel Ferrater, Teoria dels cossos

We now introduce the concept of Calabi-Yau manifolds, which are a particular
case of Kähler manifolds. As we will see, there are plenty of different definitions
of what a Calabi-Yau manifold is. We enumerate some of them for then seeing the
eventual equivalences that there exist. References for this section are [14, 4, 19, 16].

4.1 Definition and equivalences

Definition 4.1. A Calabi-Yau manifold of real dimension 2n is a compact n-dimensional
Kähler manifold (M, J, g) such that g is a Ricci-flat metric.

Given a first definition of Calabi-Yau manifolds, we aim to compare it to the
different definitions that one can find out in the literature. We now see that a
Ricci-flat Kähler manifold equives to a Kähler manifold with vanishing first Chern
class:

Proposition 4.2. Let (M, J, g) be a compact Ricci-flat Kähler manifold. Then c1(M) = 0.

Proof. We have seen that for a complex vector bundle E over M, c1(E) =
[ i

2π TrF
]
,

where F is the curvature two-form of a connection A. Recall also that the Chern
classes of a manifold M are defined as the Chern classes of their holomorphic

39
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tangent bundles. In this case it can be seen that F = −iR, where R is the Ricci
two-form. Then

c1(M) =

[
1

2π
TrR

]
and if R ≡ 0 then c1(M) = 0.

However the opposite is much more complicated. It was conjectured by Calabi
that a compact Kähler manifold with vanishing first Chern class admits a unique
Ricci-flat metric. The uniqueness was proved by Calabi, while the existence by
Yau much more later [12]. Hence

Theorem 4.3. Let (M, J, g) be a compact Kähler manifold with c1(M) = 0. Then there
exists a unique metric g′ being Ricci-flat.

Given the equivalence, we get that a compact Kähler manifold is a Calabi-Yau
manifold if and only if its first Chern class vanishes. Actually, in many references
a Calabi-Yau manifold is defined by imposing the first Chern class of a compact
Kähler manifold to vanish. Actually, we will now see three more results which will
lead to an equivalence between five different conditions, all of them equivalent for
defining Calabi-Yau manifolds.

Remark 4.4. Recall that by Proposition 3.20 we have that for (M, J, g) a com-
pact Kähler manifold, M is Ricci-flat if and only if the holonomy group satisfies
Hol(g) ⊆ SU(n).

Proposition 4.5. Let (M, J, g) a compact Kähler manifold. The canonical bundle KM is
trivial if and only if there exists a globally defined, non-vanishing (n, 0)-form.

Proof. (⇒) Recall that KM =
∧n,0 M, so its sections are the (n, 0)-forms. Since KM is

trivial, it is isomorphic to M×C. Therefore, there is a globally-defined differential
(n, 0)-form α, which is a section of M× {1}, which is non-vanishing.
(⇐) The existence of a globally-defined and non-vanishing differential (n, 0)-form
α implies that the canonical bundle is trivial directly.

Remark 4.6. Using the last proof, it is clear that any globally defined (n, 0)-form
on M can be written f α for some function f . Since f α is wanted to be holomorphic
and M is compact, f must be holomorphic and hence, by the maximum principle,
f has to be constant. We get in this case h3,0(M) = 1.

It can be proved [4] that c1(E) = 0 equives to
∧k E being trivial, where k is the

rank of E. Therefore we see this last result:
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Proposition 4.7. Let (M, J, g) a compact Kähler manifold. c1(M) = 0 if and only if the
canonical bundle KM is trivial.

Proof. The canonical bundle is the determinant line bundle of the holomorphic
cotangent bundle. Therefore KM =

∧n(T1,0M)∗ is trivial if and only if c1((T1,0M)∗) =

−c1(T1,0M) = −c1(M) = 0.

Seen the equivalences above, we can give a more general definition of Calabi-
Yau manifolds, which indeed contain inside five different definitions which can be
found in the literature.

Definition 4.8. (Alternative) A Calabi-Yau manifold of real dimension 2n is a compact
n-dimensional Kähler manifold (M, J, g) satisfying either one of the following con-
ditions.

1. M is Ricci-flat,

2. c1(M) = 0,

3. Hol(g) ⊆ SU(n),

4. the canonical bundle KM is trivial,

5. there exists a globally defined, non-vanishing (n, 0)-form.

Remark 4.9. It is possible to generalize the definition of Calabi-Yau manifolds to
noncompact manifolds, hence admitting the noncompact Calabi-Yau manifolds, also
known as local Calabi-Yau manifolds, in the sense that they are open neighbourhoods
in Calabi-Yau manifolds. The simplest local Calabi-Yau manifold is Cn.

We are mostly interested in low dimensional Calabi-Yau manifolds, specially in
Calabi-Yau manifolds of complex dimension n = 3. This motivates the following
definition:

Definition 4.10. Let M be a Calabi-Yau manifold of complex dimension n. Then
we say that M is

• a Calabi-Yau elliptic curve, if n = 1.

• a K3 surface, if n = 2.

• a Calabi-Yau threefold, if n = 3.

Remark 4.11. Note that the real dimension of Calabi-Yau threefolds is 6.
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4.2 Cohomology

We restrict the study of cohomology to complex dimension 3, i.e. to Calabi-
Yau threefolds, as we have already said that these are the Calabi-Yau manifolds of
physical interest. However many results extend to higher dimensions.

Remark 4.12. Recall that for Kähler manifolds, the Hodge numbers satisfy, by
complex conjugation and Serre duality, hp,q = hq,p = hn−p,n−q = hn−q,n−p.

For Calabi-Yau manifolds there is further duality, i.e. more symmetry in the
Hodge diamond, which is often called holomorphic duality.

We have seen in Remark 4.6 that there is a unique holomorphic volume form
and hence h3,0(M) = 1. Moreover, by using Stokes theorem one can see [4] that
given a (0, q) cohomology class, there is a unique (0, 3 − q) cohomology class
related, so h0,q(M) = h0,3−q(M). Using both facts we get

h3,3 = h0,0 = h3,0 = h0,3 = 1

Still, in it is proved [4] that h1,0(M) = 1. This directly implies that

h1,0 = h0,1 = h3,2 = h2,3 = h2,0 = h0,2 = h3,1 = h1,3 = 1

and therefore we get a Hodge diamond very simplified, with only two Hodge
numbers to determine left:

1 1
0 0 0
b4 0 h1,1 0
b3 1 h2,1 h2,1 1
b2 0 h1,1 0
0 0 0
1 1

We can still use the Euler characteristic two get a constraint for the two Hodge
numbers left. Computing it we get

χ(M) =
6

∑
k=0

(−1)kbk = 2(h1,1 − h2,1)

It actually implies that if we can compute the Euler characteristic, then we only
need to compute one of the two independent Hodge numbers to get all the topo-
logical information of the manifold.
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In [4] it is seen that χ(M) can be obtained by the integral over M of the top
Chern class of the manifold, in this case c3(M). We hence get another constraint

χ(M) =
∫

M
c3(M) = 2(h1,1 − h2,1)

An interesting fact, specially in the field of theorethical physics, is that Calabi-
Yau threefolds are conjectured to come in mirror pairs (M, W), where M, W are
Calabi-Yau manifolds such that H1,1

∂̄
(M) ∼= H2,1

∂̄
(W) and H2,1

∂̄
(M) ∼= H1,1

∂̄
(W). This

is the idea behind mirror symmetry and supersymmetry [19].

4.3 The quintic Q in PC4

This final section briefly gives an example of a type of Calabi-Yau manifolds in
the complex projective space PC4. We give final results. The reader might check
[9, 4, 2].

The quintic Q is given by a polynomial of degree 5 in the coordinates of PC4,
which are obviously homogeneous. In [4] it is proved that the total Chern class of
Q is

c(Q) = 1 + 10x2 − 40x3

A first remark is that Q is a submanifold of PC4, which is Kähler, so Q is Kähler
by Proposition 3.11 and Corollary 3.12. Accepting that the total Chern class of Q
is as stated, we can see how the first order term is 0, i.e. c1(Q) = 0 and Q is a
Calabi-Yau manifold.

Then, we know that integrating c3(Q) = −40x3 over Q we get the Euler char-
acteristic χ(Q). It can be done using Poincaré duality [4]. Computing it one gets

χ(Q) =
∫

Q
c3(Q) = −200

Finally, determining one out of the two Hodge numbers left we get directly the
other. The idea for computing h2,1(Q) is that h2,1 is related to the number of
infinitesimal deformations of the complex structure of the manifold. In the case
these manifold is given by a polynomial, that is our case, these deformations are
actually the free parameters. Further computing gets to the existence of 101 free
parameters for Q. Hence

h2,1(Q) = 101 =⇒ h1,1(Q) =
χ(Q)

2
+ h2,1(Q) = 1

A final remark concerning h1,1(Q) is that it is the number of different Ricci-flat
Kähler forms on Q. We see then that there is only 1 for Q.
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To sum up, the Hodge diamond of Q is

1 1
0 0 0
1 0 1 0

204 1 101 101 1
1 0 1 0
0 0 0
1 1

However, we recall that Calabi-Yau manifolds come in mirror pairs. Therefore,
there exists a Calabi-Yau manifold Q̃ with just 1 infinitesimal deformation of the
complex structure and 101 different Ricci-flat Kähler forms, which is the mirror
couple of Q.



Chapter 5

Basic string theory model

"Se vogliamo che tutto rimanga come è, bisogna che tutto cambi"

- Tomasi di Lampedusa, Il Gattopardo

In this chapter we mainly follow Chapters 11 and 12 of [13] to introduce a basic
model of string theory. Consider a manifold X, which we do not characterize yet.
The manifold X will be our spacetime, often a product of a certain n-dimensional
space M and time R. We want to define field theories on the manifold X. The field
theory will be called a (n + 1)-dimensional field theory, where n is the dimension of
the spatial part of X.

Definition 5.1. Let X be a manifold. We say that f is a field on X if f can be locally
expressed in local coordinates on X.

Generally, the fields of interest will be sections of vector bundles on X and
maps from X to another manifold. Let now F be a set of fields on X. A physical
theory is determined by giving an action

S : F −→ R

which is a functor over the fields in F .

Example 5.2. In classical physics, the solutions to the equations of motion can be
found by considering a (0 + 1)-dimensional field theory, i.e. with X = R being
the time. Then, the position x(t)of a particle of mass m is found by minimizing
the action S over F := { f : X → R3}, in this case considering R3 as the space in
which the particle can move. In this case the action is

S(x(t)) =
∫ (m

2

(
dx
dt

)2

−V(x(t))

)
dt

45
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where V is a potential energy depending on the position. Clearly in this case
minimizing the action is equivalent to solving a differential equation on x(t). In
the physician’s jargon, minimizing S is written δS[x(t)] = 0.

Definition 5.3. A field is called bosonic if it commutes with any other field. The
fields which are not bosonic are called fermionic.

Example 5.4. A typical fermionic field can be given considering 1-forms on a
manifold and definint the product of these forms as the wedge product. Then,
locally we can express

ψ(x) = ∑ fi(x)dxi, ϕ(x) = ∑ gidxi, ⇒ ψ(x) ∧ ϕ(x) = −ϕ(x) ∧ ψ(x)

We now introduce an elementary bosonic string model. Among the bosonic
fields in the Euclidean space Rn there are the smooth maps

f : Σ −→ Rn

where Σ is a compact 2-dimensional smooth manifold. We assume Σ to be ori-
entable.

Remark 5.5. Note that the smooth maps f : Σ −→ Rn clearly satisfy the condition
to be bosonic fields, as with the typical product f (p)g(q) = g(q) f (p), for f , g
smooth maps and p, q ∈ Σ.

This is called a string theory in the sense that Σ can be sliced into circles, which
are the strings of the model. The idea is that some slices can contain more than a
string, which would mean that there is more than one "particle", and even in some
slices circles can eventually intersect, which would represent the string interaction.

We need an additional field on our bosonic model to determine the action on
it. This additional field is a Riemannian metric on Σ:

Definition 5.6. A Riemannian metric on Σ is a smooth section of T∗Σ⊗ T∗Σ which
is positive definite at every point of Σ.

Recall that in a chart U with local coordinates (x1, x2) we can express the metric
as

2

∑
i=1

2

∑
j=1

gij(x)dxi ⊗ dxj

where gij(x) are smooth real-valued functions at x ∈ U.



47

It can be shown that the bosonic string action [13], which is a functional of the
field f and the metric g can be written as

S( f , g) =
−1
2πα

∫
Σ

n

∑
i=1

2

∑
j,k=1

(
gjk(x)

∂ fi

∂xj

∂ fi

∂xk

)
Φ

where α is a constant with units of area, gij(x) the (i, j)-component of the inverse
of the matric (gij) and Φ =

(√
det g(x)

)
dx1 ∧ dx2 is the area form.

It happens that studying string theory in Cn rather than in Rn increases the
number of supersymmetry transformations. Since it is not the scope of this work
to introduce supersymmetry, we will say, roughly speaking, that supersymmetry
transformations are changes of variables which do not affect the action S and that
transform bosonic fields to fermionic ones and vice versa. However, the reader
can check Chapter 11 of [13] for an introduction, or even [9, 2] to go further.

In the complex case, following the notation we have used in prior chapters
for complex geometry, the bosonic string action for a field f : Σ → Cn, locally
expressed φ1(z), . . . , φn(z), becomes

S( f , g) =
−i

2πα

∫
Σ

n

∑
j=1

(
∂φj

∂z
∂φ̄j

∂z̄
+

∂φ̄j

∂z
∂φj

∂z̄

)
dz ∧ dz̄

Still, turning X into a complex manifold is not enough to get relevant super-
symmetry transformations of the action S. Actually, it is needed that the metric
satisfies dω = 0, i.e. the manifold to be Kähler.

Although we will end here, considering the string theory that is attempting
to describe our Universe and which needs, as already said, 6 extra dimensions,
it might seem reasonable imposing them to be Ricci-flat, as it could for exemple
exist some symmetry with GR. In the end, GR is proved to work well and in the
abscence of masses we get a flat spacetime. So more or less string theory has to
be "compatible" with GR, although obviously it should improve it and eventually
introduce corrections on GR. In that case, Calabi-Yau threefolds would directly be
the candidates to give a shape to these extra dimensions, as they are indeed.
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