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Abstract

Cardiovascular diseases are a major cause of death and disability. Deep le-
arning-based segmentation methods could help to reduce their severity by aiding
in early diagnosing but high levels of accuracy are necessary. The vast majority
of methods focus on correcting local errors and miss the global picture. To ad-
dress this issue, researchers have developed techniques that incorporate global
context and consider the relationships between pixels. Here, we apply persistent
homology, a branch of topology that studies the topological structure of shapes,
along with deep learning methods to improve the heart segmentation. We use
multidimensional topological losses to avoid spurious components and holes and
increase the total accuracy. We evaluate the performance of three different appro-
aches: using the dice and pixel-wise losses with the sum of persistences of label
diagrams as a regularizer, using the dice and pixel-wise losses with the bottleneck
distance as a regularizer, and using both losses without any regularization. We
find that, while more computationally demanding, the methods using topological
regularizers outperform the other method in terms of accuracy.
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Resumen

Las enfermedades cardiovasculares son la principal causa de muerte e incapa-
cidad. Los métodos de segmentación basados en aprendizaje profundo podrían
ayudar a reducir su gravedad mediante la ayuda en la detección temprana, pero
para ello son necesarios altos niveles de precisión en la segmentatión. La gran
mayoría de los métodos se centran en corregir errores locales y pierden la visión
global. Para abordar este problema, los investigadores han desarrollado técnicas
que incorporan el contexto global y consideran las relaciones entre los píxeles. En
este trabajo aplicamos el concepto de homología persistente, una rama de la to-
pología que estudia la estructura topológica de las formas, junto con los métodos
de aprendizaje profundo para mejorar la segmentación del corazón. Utilizamos
funciones de pérdida topológicas multidimensionales para evitar componentes y
agujeros espurios y aumentar la precisión total. Evaluamos el rendimiento de tres
enfoques diferentes: utilizando las funciones de pérdida dice y píxel a píxel, junto
con la suma de persistencias de los diagramas de las etiquetas como un regula-
rizador; utilizando las funciones de pérdida dice y píxel a píxel con la distancia
bottleneck como un regularizador; y utilizando ambas funciones de pérdida sin
ningún tipo de regularización. Encontramos que, aunque son más computacio-
nalmente exigentes, los métodos que utilizan regularizadores topológicos superan
al otro método en términos de precisión.



Resum

Les malalties cardiovasculars són la principal causa de mort i incapacitat. Els
mètodes de segmentació basats en l’aprenentatge profund podrien ajudar a reduir
la seva gravetat mitjançant l’ajuda de la detecció precoç, però per això, són neces-
saris que tinguin un alt nivell d’exactitud en la segmentació. La gran majoria dels
mètodes es centren en corregir errors locals i perden la visió global. Per abordar
aquest problema, els investigadors han desenvolupat tècniques que incorporen el
context global i consideren les relacions entre els pixels. En aquest treball apli-
quem el concepte d’homologia persistent, una branca de la topologia que estudia
l’estructura topològica de les formes, juntament amb els mètodes d’aprenentatge
profund per millorar la segmentació del cor. Utilitzem funcions de pèrdua topo-
lògiques multidimensionals per evitar components i forats indesitjats i augmentar
la precisió total. Evaluem el rendiment de tres enfocaments diferents: utilitzant
les funcions de pèrdua dice i pixel a pixel, juntament amb la suma de persistèn-
cies dels diagrames de les etiquetes com a regularitzador; utilitzant la funció de
pèrdua dice i pixel a pixel amb la distància bottleneck com un regularitzador, i uti-
litzant ambdues funcions de pérdua sense cap tipus de regularització. Trobem
que, encara que són més computacionalment exigents, els mètodes que utilitzen
regularitzadors topològics superen l’altre mètode en termes de precisió.
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Chapter 1

Introduction

Cardiovascular diseases (CVDs) are a leading cause of death globally [4, 23].
According to the World Health Organization, 17.9 million die each year because of
CVDs. Early diagnostics could prevent up to 90% of CVDs [6, 7]. Medical imaging
has been transformative in healthcare and is essential for diagnosing and treating
CVDs. Several technologies, including computed tomography and magnetic res-
onance imaging, have been particularly useful for providing detailed anatomical
information of the heart.

In order to accurately measure morphological and pathological changes, it is
often necessary to segment the important structures in cardiac medical images.
The process of identifying and separating the various components of the heart,
known as whole heart (substructure) segmentation (WHS), is important for ana-
lyzing and understanding the anatomy and function of the heart, which translates
into a variety of clinical applications, including computer-aided diagnosis [9] and
surgery.

Nowadays, machine learning models have achieved enough computational
power to aid in cardiac magnetic resonance (CMR) image segmentation [23]. How-
ever, extreme accuracy is required. For example, the inability measuring the cir-
cumference or the width of the walls could misidentify heart conditions such as
hypertrophic cardiomyopathy [8]. In response, some promising deep learning
methods have emerged to increase the accuracy of the segmentation. Among
them, incorporating prior knowledge about the topology of the segmented object
have recently came into the spotlight.

1.1 Brief introduction to deep learning

Deep learning is a subfield of machine learning that involves using layered
algorithms to automatically extract useful features from data, in which each layer
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2 Introduction

performs a specific function. Deep learning has a wide range of applications, such
as facial recognition [2] or stock market predictions [3]. In contrast to traditional
machine learning approaches, which rely on manually created features and rep-
resentations of the data, deep learning involves the automatic feature learning
through the use of these layered algorithms in order to improve its predictions.

The deep learning field was originated trying to reproduce a model that em-
ulated intelligent behaviour [1], despite the reason of its current success is not
its similarity with the human brain. Inspired by the function of the biological
neurons, it started with a primitive model working on circuits and evolved to the
creation of the first net and the later discovery of the Perceptron. The first neural
networks were created stacking multiple perceptrons together. By placing per-
ceptrons side by side we can create a single neural network’s layer. By stacking
multiple one-layer neural networks on top of each other, we can create a multi-
layer neural network, also known as a multi-layer perceptron. More insight on the
topic [1] is available if the reader wished to explore further.

Afterwards, the appearance of the forward pass algorithm and backpropagation
algorithms contributed to the success of modern neural network models. Now,
they are the basis of some of the most relevant and commonly used machine
learning models.

Neural networks are designed to learn complex mathematical functions based
on a set of training data points and to generalize these functions to new data from
the same distribution. They are trained using a dataset of input-output pairs,
and the goal of the training is to learn a function that maps inputs to outputs
based on the examples in the training dataset. The predictions made by the neural
network will generally be most accurate for inputs that are similar to the ones
that the network was trained on. This can be compared to using a Taylor Series
approximation to model a function, which may be accurate within a certain range
but could fail outside of that range.

However, there are some results, the Universal Approximation Theorems that
discuss the approximation capabilities of feedforward networks on the space of
continuous functions between two Euclidean spaces. One of the versions states
that a neural network with one hidden layer that has a sufficient but finite num-
ber of neurons can accurately approximate any continuous function with inputs
within a specific range, with the desired amount of error, given enough hidden
units [43, 44] and depending on the activation functions used [42].

However, we cannot know the necessary size of the network [45]. In prac-
tice, having a big enough network is not achievable most of the time, but neural
networks are still pretty useful to approximate any kind of function.

Since neural networks were discovered, researchers have tried to maintain their
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capabilities while reducing the number of computational units. Nowadays, there
is no generic way to determine the best structure for a neural network [14]. The
depth and width of neural networks interact with other hyperparameters, making
impossible to isolate a specific hyperparameter and study it independently. Pa-
rameters like the depth of the network, the type of the activation functions used, the
thresholds of the activation functions or the cost function are just too many vari-
ables to keep in mind. An in-depth analysis is important to carefully choose the
hyperparameters that fit the problem we want to solve. This careful selection will
decide the generalization gap, the difference between the performance of a machine
learning model on the training data and its performance in test data.

In 2015, it was proved that the depth of a feedforward neural network is ex-
ponentially more valuable than the width [33], using weak assumptions about the
activation functions. One of the reasons is that multiple layers allow to learn fea-
tures at different levels of abstraction, while wide enough layers could memorize
the desired outputs. However, adding more layers to a neural network increases
the non-linearity of the model. This means that the optimization problem be-
comes more non-convex, or difficult to optimize, as the number of layers increases.
Highly non-convex problems can be challenging for optimization algorithms to
solve, and may result in the algorithm failing to find a good minimum or overfit-
ting the dataset. Nonetheless, neural networks tend to converge to optimal local
minima despite this non-convexity, as it was pointed out in [15].

1.2 Heart segmentation

For a long time the segmentation was done manually, but it is a tedious and
impractical job. However, automating this process can be challenging due to the
large variation in heart shape, the varying quality of clinical images and the lack
of clear edge or boundary information. Moreover, unlike other organs like the
lungs and the liver, the heart is made up of multiple elements, including the
left and right ventricular cavities, the aorta, myocardium and atria. In order to
develop effective algorithms for WHS, a large dataset of training images is often
necessary. In addition, it is difficult to perform comparisons between different
methods, largely due to differences in the datasets and evaluation metrics used.

Most of the time the access to large datasets is not possible and the number of
training datasets is limited. Furthermore, the technique used to obtain the images
can vary the image quality and appearance. This caused that the algorithms devel-
oped usually did not have good accuracy, despite the performance and reliability
that they actually showed.

Many state of the art methods focused on improving the segmentation using
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atlas-based approaches (Anatomical atlases with annotated locations and shapes)
[10], which had the advantage of providing solid spatial priors and are effective for
use in medical imaging due to their ability to impose constraints on both location
and shape. However, this proposals cause artifacts and disconnected regions, so,
as a bigger amount of data was becoming accessible [11] another solutions that
were based in convolutional neural networks appeared in the last decade.

Convolutional neural networks (CNNs) are a type of machine learning model
that have been successful in tasks related to visual data, such as classification,
recognition, and segmentation. These models use spatial context and weight shar-
ing between pixels across multiple layers to learn about visual data.

Out of these networks, the fully convolutional (segmentation) networks (FCNs)
are one of the most commonly used [13]. FCNs have the advantage of being
very efficient for pixel-level predictions because they only involve feedforward
operations, and they also incorporate spatial context into the predictions. The
architecture consists of two modules: a downsampling path and an upsampling
path. The first path includes convolutional and max-pooling layers, which are
commonly used in convolutional neural networks for image classification tasks.
The second path includes deconvolutional layers, which increase the size of the
feature maps and output the score masks.

However, FCNs have some limitations [12], including difficulty in capturing
local geometry and the need for a large amount of training data. To outperform
the FCNs and to reduce the amount of data needed to train the models, the U-Net
was created [16]. Speedly, FCNs and its modified version, U-Net, filled the state of
the art [16, 17, 18, 19]. In addition to this models, a measure of the overlap between
two sets of data, the Dice similarity coefficient, was proposed [20], increasing the
performance of the models by solving the problem of evaluating how well the
algorithm identified the boundaries between different objects or regions in the
image.

For instance, in the Automatic Cardiac Diagnosis Challenge (ACDC) [21], all
eight of the highest ranked segmentation techniques were neural network-based
methods. In the M&Ms challenge, all the teams used different variations of the
UNet architecture as their baseline model for image segmentation [22]. Finally,
in the Multi-Modality Whole Heart Segmentation (MM-WHS) challenge the deep
learning models showed better accuracies [23], despite some of the models got bad
results in the blinded evaluation.

Focusing on the state of the art of the M&Ms challenge, which dataset will
be used in this work, all the teams used different variations of the UNet archi-
tecture as their baseline model for image segmentation, as we mentioned before.
Four teams used the nnUNet, which includes UNet architectures in 2D and 3D
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as well as a cascaded UNet. Four other teams used a traditional UNet, while
the remaining teams used UNets combined with residual connections, attention
mechanisms, modified structures, or dilated convolutions. One team also pro-
posed using a modified Spatial Decomposition Network with an AdaIN decoder.
There was a degree of variability in the backbone architectures used among the
different participants.

A further line of research has extended U-Net’s architecture to 3D [24] and it
seems that it’s beginning to obtain promissing results [24, 25]. However, we are
going to focus in the 2D approach in this work.

Actual state-of-the-art methods often fail when the input data is not consis-
tent, a problem that plagues models based on the segmentation of heart ele-
ments [22]. Additionally, these convolutional models require a sufficient amount
of data to learn the multiple elements present in medical images and understand
their shapes and relationships [19]. This is a mayor problem, since dealing with
a limited number of training datasets is a common issue for most medical imag-
ing computing problems. There is also a difficulty in transferring the weights
learned from a fully convolutional network (FCN) to new tasks because the ele-
ments within the FCN are closely connected for the current problem.

A tool that has shown promising results solving the inconveniences of CNN
is incorporating prior knowledge to convolutional neural networks. Using prior
knowledge about the shape of the organs and its spatial location can improve the
performance of image analysis techniques, especially when images are compro-
mised by random pixels [26], since it tends to predict values that are located on
the reduced-dimension data structure that has been extracted. This is a common
problem in cardiac image segmentation, as raw volumetric CMR images from stan-
dard scans may contain various artifacts due to limitations in clinical acquisition
protocols. Also, it has been proven that incorporating prior knowledge in medical
image segmentation has improved the accuracy of the models [34]. One of the
reasons is that the artifacts are not propagated to the prediction [28]. Another one
is that this models converge faster to the actual shape.

While techniques such as CNN-based segmentation are highly effective, it can
be challenging to incorporate prior knowledge about the highly constrained na-
ture of anatomical objects into these approaches. However, many methods have
appeared that are not tied to any specific neural network architecture or applica-
tion and can be used in combination with any of the current leading techniques
for segmentation [26]. This in contrast to the classification models that solely use
cross-entropy functions that do not take into consideration the underlying infor-
mation of the output space, since they evaluate each pixel individually.
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1.3 Persistent homology applied to heart segmentation

We find in the state of the art two types of topology specification: connectivity
and genus [34]. The first specification focuses on the connectivity of the segmen-
tation, while genus focuses on avoiding spurious or internal holes in the final
segmentation. We find some early examples of topology preservation in segmen-
tation [35, 36, 37]. Also, topological losses have been applied for some years to
different segmentation problems, like the segmentation of the fetal cortex [38].
However, the state of the art methods focus in developing different kind of CNN
with local losses that miss the topological features.

Both Dice similarity coefficient and binary cross-entropy are commonly used as
loss functions for training and evaluating image segmentation algorithms, but they
have a limitation in that they evaluate each pixel individually and not the overall
structure of the image. This can lead to topological errors in the segmentation,
since connectivity and holes are ignored. Small voxel-wise mistakes can lead to
large topological errors.

In order to address this issue and improve the accuracy of whole-structure
segmentation, most researchers are applying techniques from algebraic topology.
Algebraic topology is a branch of mathematics that uses algebraic methods to
study topological spaces and their properties. It provides a powerful framework
for understanding the fundamental characteristics of spaces, such as the number
of connected components, the presence of holes or voids, and the connectivity of
different parts of the space. Algebraic topology also offers a way to compare and
contrast different spaces, which is useful in a wide range of applications. Specifi-
cally, one of the main tools in algebraic topology is Homology, which provides a
way to quantify and classify the different types of holes or voids in a space.

Given the ability of algebraic topology to extract fundamental characteristics
of a space, it is also particularly useful in the field of data analysis, where the data
can be represented as a space with different features. In such field, one specific
application of algebraic topology is the use of persistent homology.

Persistent Homology is used to extract and summarize topological informa-
tion from large or complex data sets. This features are analyzed by constructing
a sequence of spaces, known as a filtration. For each space in the filtration, the
topological features are identified and their lifetimes are recorded. These lifetimes,
known as persistence intervals, provide a measure of the stability of the topologi-
cal feature. The idea behind is to track the evolution of topological features as the
scale of analysis changes.

Recently, researchers have been focusing on developing loss functions that pri-
oritize the preservation of topology [29, 30, 31, 32]. Most of these functions com-
pare the model predictions with the Ground Truth by utilizing Betti numbers, a
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tool in algebraic topology that can extract topological features of a space. Betti
numbers are used to count the number of connected components, holes or voids
in a space, and provide a way to summarize and compare the topology of different
spaces. As Betti numbers are discrete, it is necessary to use persistent homology to
compute topological features of space, a mathematical tool that measures the topo-
logical features of data that persist across multiple scales. To study the topology
generated by the data, instead of focusing on a specific threshold and comput-
ing its persistence, a differentiable function based on persistence diagrams (the
central tool from topological data analysis) is used as a regularizer for the neural
networks loss function.

Determining the homology of various topological spaces can be a challenging
task, but simplifying the space can make the process easier. One approach is to
use simplified structures called cubical complexes, a union of unit cubes of various
dimensions, as a replacement for the original space. These cubical complexes
allow us to apply algorithmic computation of homology, which can make the task
of understanding the original space easier. On the other hand, one might not
have direct access to the original space, but instead only a set of discrete samples
which can then be used to construct a cubical complex. Cubical complexes allow
representations of volume data. Using cubical complexes allows to avoid usual
triangulation of the space and to reduce the size of the abstract complex, since
it triangulates spaces created out of pixeled data in the natural way [49]. The
application of such complexes has been deeply studied [50, 51, 52, 53].

To encode topological features of cubical complexes we will use multi-scale
topological descriptors of data called persistence diagrams. To incorporate them
as regularizers to optimize a neural network, we will provide a method to com-
pute the gradient of the topological penalty: providing a unified framework for
optimization with persistent diagrams using gradient descent is required.

Recently, some differentiability approaches focusing on persistent homology
have emerged in an attempt to incorporate persistent homology regularizers to
heuristic functions [56, 61, 60]. Using results in [56] we will provide a framework
to differentiate the objective function

M−→ Bar −→ R,

with M a parameter space with a differential structure and Bar the set of persis-
tence diagrams.

We will provide a more extensive introduction to persistent homology in later
sections and review the performance and accuracy of different topological regu-
larizers applied to the M&Ms dataset.
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1.4 Contributions

In this work, a convolutional neural network with a persistent homology-based
topological loss for multi-class image segmentation was implemented. This ap-
proach builds upon previous successful uses of persistent homology in image
segmentation by incorporating topological information [29, 30, 31, 32, 35, 36, 37].
The topological loss function was integrated into the overall loss function of the
CNN to ensure that the model not only considered traditional pixel-level accuracy,
but also preserved the topological information of the images. The results of the
model were promising, with a higher accuracy in image segmentation compared
to traditional geometrical losses.

The model was tested on a dataset of images from the second edition of the
M&Ms challenge and it was able to achieve good results in terms of accuracy. In
addition, the model was able to generalize well to new images and the results
were consistent across different images.

In the following sections, more details on the specific problem addressed, the
dataset used, and the pre-processing steps will be provided. Also, a more in-depth
analysis of the results will be presented and the limitations of the approach and
potential future work will be discussed. Overall, this project contributes to the
growing body of research on the use of persistent homology in image segmen-
tation and highlights the importance of preserving topological information for
robust image analysis.



Chapter 2

Neural Networks

2.1 References

Prior to the definition of artificial neural networks, we should introduce its
main components: neurons, activation functions, biases, weights and layers. We
will use the books Deep Learning Architectures: A Mathematical Approach [39] and
Deep Learning [40] as a guide.

2.2 Artificial Neurons

Definition 2.1. ( [39], Definition 5.1.1) An abstract neuron is a quadruple (x, w, φ, y),
where xT = (x0, . . . , xn) is the input vector, wT = (w0, . . . , wn) is the weight vector,
with x0 = −1 and w0 = b, the bias and φ is an activation function that defines the
outcome function y = φ(xTw) = φ(∑n

i=1(wi ∗ xi)).

The computation of a neuron is divided into two operations: the first one
correspond to the summation of the inputs, called signal, represented as

xT ∗ w = wTx = w1x1 + · · ·+ wnxn − b.

The second one corresponds to the application of the activation function. The final
result is given by

y = f (x) = φ(wTx) = φ(w1x1 + · · ·+ wnxn − b).

In the model of the artificial network the abstract neuron adjusts the weights
vector w in such a way to minimize a certain error function, called the cost func-
tion, that compares the desired target variable ŷ to the prediction y, in order to
learn the desired variable ŷ.

9
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Example 2.2. The segmented function

g(x1, x2) =

{
0 if x1 ≤ 0

1 if x1 > 0

can be reproduced updating the weights w0 = 0, w1 = 1 and w2 = 0, so the
inequality x1w1 + x2w2 > b is satisfied.

2.3 Activation Functions

Neural networks use nonlinear functions φ : R → R to learn other nonlinear
functions. They are called activation functions. An activation function takes the
weighted sum of the inputs of the neuron and produces an output. The output of
the activation function is used as the final output of the neuron, and it is passed
on to the next layer of the network.

Example 2.3. The activation function used in the model of a biological neuron is
the function φ : R→ R, defined as

φ(x) = φ(
n

∑
i=0

(wi ∗ xi)) = φ(b +
n

∑
i=1

(wi ∗ xi)) =

{
1 if ∑n

i=1(wi ∗ xi) > b

0 if ∑n
i=1(wi ∗ xi) ≤ b

where bT = (b1, . . . , bn) is called the bias vector.

2.4 Cost Functions

The mathematical tool that measures how well a neural network is performing
on a given task is the cost function. It is a function that measures the deviation of
the model predictions from the target outputs, the error. It is used to optimize the
weights and biases of the connections between neurons during the training pro-
cess, by minimizing the error between the predicted output and the true output.

Observation 2.1. A cost function can also be called an error function or a loss
function.

Example 2.4. In classification tasks a common cost function is the cross-entropy
function

J(w, b) =
1
n

n

∑
i=1

(yi − ŷi)
2.

It is used both in binary and multi-class classification problems.
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Another useful cost function to calculate the deviation between a continuous
function and a predicted function is the Supremum Error function.

Example 2.5. Supremum Error Function. Given a function g : [0, 1] → R and a
function fw,b being the predicted mapping of the input and outputs of the previous
function, then the cost function between g and f is

C(w, b) = sup
x∈[0,1]

| fw,b(x)− g(x)|.

2.5 Neural Network’s Layers

When taking a group of artificial neurons, each with identical inputs {xi}n
i=1

and activation function φ, and connecting them together to another neuron, we
create a layer, a group of artificial neurons assembled together to perform a specific
task within the network.

Most neural networks are constructed as a series of stacked layers, each made
up of interconnected neurons that process and transmit information. These net-
works can be represented as graphs, with edges representing the connections be-
tween neurons and associated weights. The first layer is referred to as the input
layer and the last layer is referred to as the output layer.

Notation 2.1. The weights are represented with w(l)
ij , being (l) the index of the

layer, i the index of the input neuron and j the index of the output neuron. The
index i = 0 represents the bias. The neurons x(l)i are represented using the lower
index i to indicate a neuron in the (l)-layer.

As stated in a previous section, a neuron in the (l + 1)-layer receives a number
n of inputs {x(l)i }n

i=1 and returns an output s(l+1)
n . An activation function φ is

applied afterwards obtaining

x(l+1)
n = φ(s(l+1)

n ) = φ(
n

∑
i=1

(w(l+1)
ij x(l)i − b(l+1)

j )).

We can use matrix notation to make the signals in a layer more understandable:
s(l+1)

1
...

s(l+1)
n

 =


w(l+1)

11 . . . w(l+1)
n1

...
...

w(l+1)
1n . . . w(l+1)

nn




x(l)1
...

x(l)n

−


b(l+1)
1

...
b(l+1)

n




x(l+1)
1

...
x(l+1)

n

 =


φ(s(l+1)

1 )
...

φ(s(l+1)
n )
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Notation 2.2. In a (l)-layer we will express the weights matrix as W(l), the input
vector as X(l−1), b(l) will be the bias vector and s(l) will be the signal vector.

Using the previously defined notation, the previous relations can be repre-
sented as

s(l) = W(l)T
X(l−1) − b(l),

X(l) = φ(s(l)) = φ(W(l)T
X(l−1) − b(l)).

Definition 2.6. The input of a neural network is a finite non-empty sequence X =

(x1, . . . , xn) ∈ Rn.

It is a feature vector from a training example and matches the first layer of the
network.

Definition 2.7. The output of a neural network is a finite non-empty sequence
Y = (y1, . . . , yn) ∈ Rn.

The output is the prediction of the neural network and matches the last layer
of the network.

Definition 2.8. The depth of a neural network is defined as the L ∈ N number of
layers.

Definition 2.9. The depth of the lth layer is defined as the nl ∈ N number of
neurons.

2.6 Feedforward Neural Networks

A specific type of neural networks is the Feedforward Neural Network. These
networks have a sequence of layers that are linked together and contain groups
of interconnected neurons. The information flows in one direction through these
layers. They are also known as Deep Feedforward Networks or Multilayer Perceptrons
(MLPs).

The goal of a feedforward network is to find the values of the parameters θ

that result in the best approximation of the target function f ∗. To do this, the
feedforward network defines a mapping y = f (x; θ) and adjusts the values of the
parameters θ through the learning process. The objective is to find the values of θ

that result in the function f (x; θ) being as close as possible to the function f ∗.
We can define the output of a feedforward neural network as the predicted

mapping fw,b : Rn → Rm, with

Yn = φ(W(n)Yn−1 − bn),

Y1 = X.
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Observation 2.2. Assuming that all neurons in a feedforward neural network are
linear, with φ(x) = x, the output of a linear network would be

Y = W(n)Yn−1 = W(n) . . . W(1)X−W(n) . . . W(2)b1 − . . .−W(n)bn−1 − bn.

Taking
W = W(n) . . . W(1)

and
b = −W(n) . . . W(2)b1 − . . .−W(n)bn−1 − bn

we obtain
Y = WX− b,

indicating the equivalence between the neural network and a single linear neuron.

Feedforward neural networks are often referred to as networks because they
consist of layers of interconnected neurons that are connected in a specific ar-
rangement. The most common structure for feedforward neural networks is a
chain structure, in which the functions performed by the neurons are connected
in a linear sequence. Additionally, feedforward neural networks often use affine
transformations followed by fixed nonlinear functions, called activation functions,
to process and transmit the information.

A formal definition, then, would be:

Definition 2.10. ([39], Definition 6.2.5) Let Ul = 1, 2, . . ., 0 ≤ l ≤ L, and consider
the sequence of affine functions α1, . . . , αL

αl : F (Ul−1)→ F (Ul)

and the sequence of activation functions φ(l) : R → R. Then the corresponding
feedforward neural network is the sequence of maps f0, f1, . . . , fL where

fl = φ(l) ◦ αl ◦ fl−1, 1 ≤ l ≤ L,

with f0 given.

Next we are going to introduce an important example of feedforward neural
network: a Convolutional Neural Network, but first we need to define the convolution
operation:

Definition 2.11. Let x : R → R be a continuous function, a ∈ R and w : R → R a
continuous weighting function, a convolution is a function s : R→ R with

s(t) =
∫

x(a)w(t− a) da.
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Figure 2.1: Feedforward neural network with N+1 layers and an input and output
vectors of equal size. Image source: [55]

Observation 2.3. The convolution function is usually denoted with the asterisk
symbol:

s(t) = (x ∗ w)(t).

Example 2.12. Convolutional neural networks (CNNs) are a type of feedforward neu-
ral network, known for their use of convolutional layers, which are the building
blocks of CNNs. These layers are similar to fully-connected layers, but are more
efficient to train as they have many weights set to zero.

An example of weights matrix with is

W =


w1 w2 0 0 0 0
0 w1 w2 0 0 0
0 0 w1 w2 0 0
0 0 0 w1 w2 0
0 0 0 0 w1 w2


In the case of convolutions applied to images, a kernel K convolve with an

input image I giving a map of features as an output. We can assume that the
functions x and w are defined on the integers and apply a discrete convolution [40,
Section 9.1]:

s(t) = (x ∗ w)(t) =
∞

∑
i=−∞

x(a)w(t− a).

Since convolutions are applied to multidimensional arrays, we assume that the
functions x and w are zero everywhere but in the finite set of values stored in the
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arrays. This way, if we apply convolutions to a two-dimensional input I and a
two-dimensional kernel K [40, Section 9.1]:

s(i, j) = (x ∗ w)(t) = (I ∗ K)(i, j) = ∑
m

∑
n

I(m, n)K(i−m, j− n).

A specific case of a convolutional layer is the Transposed Convolutional Layer. It
performs convolutional operations to carry out upsampling.

Example 2.13. A pooling layer is another common component in a convolutional
network. It applies a pooling function to the output of the layer to further modify it.
A pooling function is used to condense the output of the network at a particular
location by replacing it with a summary statistic computed from the nearby out-
puts.This helps to reduce the spatial dimensionality of the output and make the
model more robust to small changes in the input.

A common pooling operation is the max pooling [46], a down-sampling tech-
nique that reduces the spatial size of the input by taking the maximum value over
a rectangular set of neighboring pixels:

[39, Section 15.1] Let f : [a, b] → R be a continuous function and consider the
equidistant partition of the interval [a, b]

a = x0 < x1 < . . . < xn−1 < xn = b.

The partition size, b−a
n , is called stride. Denote by Mi = maxxi−1,xi f (x) and consider

the simple function Sn(x) = ∑n
i=1 Mi1[xi−1,xi ])(x). The process of approximating the

function f (x) by the simple function Sn(x) is called max pooling.

Finally, the last example of layer used in convolutional neural networks is the
Dropout layer.

Example 2.14. A dropout layer is a layer that randomly removes a specified per-
centage of neurons from the network during training, this percentage is a hyper-
parameter. The purpose of this is to create a balance between the model’s perfor-
mance during training and testing, thus reducing overfitting. However, dropping
too many neurons might decrease the dimension of the parameter space so much
that can cause the parameter space to shrink excessively and, as a result, the model
will not fit the data well. This situation is called underfit.

Considering the output of a layer with N neurons as

y =
N

∑
j=1

σ(wjx + bj),

we drop uniformly n neurons one at a time, obtaining the outputs

yj = y− σ(wj + bj), j = 1, . . . , n.
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The dropout is performed with a probability of qi = q = 1
n . Then, the expected

output is given by

n

∑
j=1

qjyj =
1
n

n

∑
j=1

yj = (1− 1
n
)y = (1− q)y.

2.7 Gradient descent

Deep learning models employ optimization techniques to minimize a cost
function. One key distinction between linear models and neural networks is that
the nonlinearity of neural networks often results in nonconvex loss functions,
meaning that the optimal solution is not necessarily a global minimum. This
makes it more challenging to find the optimal values of the model parameters
using traditional optimization methods. As a result, neural networks are typi-
cally trained using iterative gradient-based optimizers that aim to drive the cost
function to a very low value, rather than finding the global minimum. These op-
timizers use the gradient of the loss function to update the model parameters in a
direction that reduces the loss by determining the derivative of the function f ′(x),
which indicates the direction to change the input in order to decrease the output:

f (x + ϵ) ≈ f (x) + ϵ f ′(x).

Observation 2.4. Maximization is also possible in the optimization of the loss
function using a minimization algorithm to minimize − f (x).

We will use the concepts of partial derivative, gradient and directional derivative.
At a given point x, the partial derivative ∂u

∂xi
measures the rate of change of the

function f with respect to the variable xi as xi increases, keeping all other variables
as constants. It describes how much the function f changes as a results of a change
in the variable xi at the point x.

On the other hand, the gradient vector is the generalization of the derivative in
the case where the derivative is computed with respect to a vector.

The gradient vector ∇ f (x1, . . . , xn) computes the direction in which the func-
tion f increases most rapidly and the direction orthogonal to the level surfaces,
given inputs x1, . . . , xn. At each point in the domain of the function f ,∇ f (x1, . . . xn)

assigns a vector with element i being the partial derivative of f with respect to the
component xi.

The directional derivative in a particular direction u, which is a unit vector,
represents the slope of the function f in that direction. It indicates the rate at
which the function f changes as a result of a change in the direction u. To deter-
mine the direction in which the function f decreases faster, we can compute the
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directional derivative in various directions. The directional derivative provides us
with information about the rate of change of f in a specific direction at a given
point, and we can use it to identify the direction in which f decreases the most.

To simplify the problem of minimizing this function, we will establish a rela-
tionship between the directional derivative and the gradient vector.

Theorem 2.15. [41, Section 14.6, Theorem 3] If f is a differentiable function of
x and y, then f has a directional derivative in the direction of any unit vector
u⃗ = ⟨a, b⟩ and

Du f (a, b) = fx(x, y)a + fy(x, y)b.

Proof. If we define a functiong of the single variable h by

g(h) = f (x0 + ha, y0 + hb)

then, by the definition of a derivative, we have

g′(0) = lim
h→0

g(h)− g(0))
h

= lim
h→0

f (x0 + ha, y0 + hb)− f (x0, y0))

h
= Du f (a, b). (2.1)

On the other hand, we can write g(h) = f (x, y), where x = x0 + ha, y = y0 + hb,
so the Chain Rule gives

g′(h) =
∂ f
∂x

dx
dh

+
∂ f
∂y

dy
dh

= fx(x, y)a + fy(x, y)b.

If we now put h = 0, then x = x0, y = y0, and

g′(0) = fx(x0, y0)a + fy(x0, y0)b. (2.2)

Comparing Equations 3.1 and 3.2, we see that

Du f (a, b) = fx(x0, y0)a + fy(x0, y0)b.

Extending this theorem to a number n of variables (which is a matter of no-
tation) we can use it to calculate the partial derivative using the gradient vector,
since fx(x, y)a + fy(x, y)b = ⟨ fx(x, y), fy(x, y)⟩ · u⃗. Then, to decrease f we should
move in the direction of the negative gradient −∇ f (x1, . . . , xn). This method is
called gradient descent method or steepest descent method.

In the gradient descent algorithm we start at a chosen point x, which is nor-
mally a random point, and pick a learning rate η. At each iteration we compute
the gradient of the function at the current point ∇ f (x1, . . . , xn) and we update the
current point by moving in the opposite direction of the gradient −∇ f (x1, . . . , xn),
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using the learning rate η to control the size of the steps. The algorithm will be as
follows:

Algorithm 1 Gradient descent algorithm

1: procedure GradientDescentAlgorithm(x, η)
2: z← x
3: for i← 0 to N do
4: z← z−∇ f (z)η
5: end for
6: end procedure

There are many variations of the algorithm, like stochastic gradient descent, in
which the gradient is computed using a randomly picked portion of the obser-
vation. Nowadays, stochastic gradient descent algorithm is the dominant training
algorithm for deep learning models.

2.8 Backpropagation

To calculate the gradient of the error, we utilize a widely-known algorithm
called backpropagation. It is a supervised learning algorithm that uses gradient
descent to train a neural network.

Let C(w, b) be a neural network’s cost function. The goal is to compute the
gradient of the function ∇C = (∇wC,∇bC).

Using the chain rule, the partial derivatives of the weights w(l)
i,j and biases bj

are

∇wC =
∂C

∂w(l)
i,j

=
∂C

∂s(l)j

∂s(l)j

∂w(l)
ij

, ∇bC =
∂C

∂b(l)j

=
∂C

∂s(l)j

∂s(l)j

∂b(l)j

.

The first factor will be denoted as

δ
(l)
j =

∂C

∂s(l)j

and we define it as the sensitivity of the error in relation of the signal.
Also, we can simplify both expressions computing the second factor of each

partial derivative:

∂s(l)j

∂w(l)
i,j

= x(l−1)
i ,

∂s(l)j

∂b(l)j

= −1.
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Thereby, we obtain after the corresponding substitutions

∂C

∂w(l)
ij

= δ
(l)
j x(l−1)

i ,
∂C

∂b(l)j

= −δ
(l)
j .

Finally, we obtain the expression

∇C = (∇wC,∇bC) = δ
(l)
j (x(l−1)

i ,−1).

We deduce that in order to obtain the gradient ∇C it is sufficient to compute
the deltas δ

(l)
j .

In order to obtain an algorithm to calculate the partial derivatives, we express
the deltas of the (l − 1)-layer in terms of the ones in the (l)-layer. First step is to
take in consideration that the signal s(l−1)

j affects all signals s(l)j , since every delta
depends on all the deltas from the posterior layers

δ
(l−1)
i =

∂C

∂s(l−1)
i

=
d(l)

∑
j=1

∂C

∂s(l)j

∂s(l)j

∂s(l−1)
i

.

Substituting yields

δ
(l−1)
i =

d(l)

∑
j=1

δ
(l)
j

∂s(l)j

∂s(l−1)
i

.

We have obtained an expression to represent the delta δ
(l−1)
i in terms of the

deltas δ
(l)
j from the above layer. Focusing in the partial derivative

∂s(l)j

∂s(l−1)
i

,

∂s(l)j

∂s(l−1)
i

=
∂

∂s(l−1)
i

(
d(l−1)

∑
j=1

w(l)
ij x(l−1)

i − b(l)j ).

Using x(l)j = φ(s(l)j ),

∂s(l)j

∂s(l−1)
i

=
∂

∂s(l−1)
i

(
d(l−1)

∑
j=1

w(l)
ij φ(s(l−1)

i )− b(l)j ) = w(l)
ij φ′(s(l−1)

i ).

Finally, we obtained an expression to compute the gradient, the backpropagation
formula

δ
(l−1)
i = φ′(s(l−1)

i )
d(l)

∑
j=1

δ
(l)
j w(l)

ij .

Using this formula we iterate backwards applying the derivatives of the weights
and biases of the (l)-layer to compute the ones in the (l− 1)-layer. The calculations
backpropagate through the layers. The computation of the last layer’s deltas depend
on the cost function.
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Example 2.16. Assuming the cost function is the half mean squared error,

C(w, b) =
1
2
∥x(L) − z∥2.

We can compute the partial derivative of the cost function with respect to the
signal s(L)

j to obtain the delta δ
(L)
j ,

δ
(L)
j =

∂C

s(L)
j

= (x(L) − zj)φ′(s(L)
j ).



Chapter 3

Persistent Homology

3.1 References

Our references during the whole section will be the book Computational Topol-
ogy [47] and the paper A framework for differential calculus on persistence barcodes [56].

3.2 Complexes

3.2.1 Simplicial Complexes

Definition 3.1. Let S = {u0, u1, . . . , uk} be a set of points in Rd. A point ∑k
i=0 λiui

is called an affine combination of the set S if the values of λi add up to 1. The set of
all such affine combinations is known as the affine hull of S.

Definition 3.2. A set of points S = {u0, u1, . . . , uk} is affinely independent if for any
two identical affine combinations ∑ λiui and ∑ µiui we have λi = µi for all i.

We derive that each affine hull is a k-plane when the k + 1 points are affinely
independent. When determining whether or not a set of k + 1 points are affinely
independent, it is necessary to check for linear independence among the k vectors
ui − u0 for 1 ≤ i ≤ k. In the context of Rd, it is impossible to have more than
d linearly independent vectors. As a result, the maximum number of affinely
independent points that can exist in Rd is d + 1.

We will use the notation I to refer to the index set of labels.

Definition 3.3. A convex combination is an affine combination with λi > 0 for all
i ∈ I. The set of all such affine combinations is known as a convex hull.

Definition 3.4. We define a k-simplex as the convex hull of a set S of k + 1 affinely
independent points, σ = conv{u0, . . . , uk}. The dimension of σ is dim σ = k.

21
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The points u0, . . . , uk are the vertices of the k-simplex σ, while the edges are
convex hulls of pairs of vertices. When the convex hull is a subset H ⊂ S with
H ̸= ∅, it is called a face. The face is proper if H ̸⊂ S. For faces τ we write τ ≤ σ,
and we write τ < σ if τ is a proper face of σ. In the latter case we say that σ is a
(proper) coface of τ.

The boundary of a simplex σ is the collection of all its proper faces, and the
complement of the boundary is called the interior of σ.

Definition 3.5. A simplicial complex K is a finite collection of simplices such that
for any simplex σ ∈ K, if τ ≤ σ then τ ∈ K, and for any two simplices σ, σ0 ∈ K,
their intersection σ ∩ σ0 is either empty or a face of both σ and σ0.

3.2.2 Abstract Complexes

Next we are going to define an abstraction of a simplicial complex, eliminating
coordinates from the definition. This will simplify computations. This abstraction
will still follow the intersection properties of simplicial complexes in Definition 3.5,

Definition 3.6. An abstract simplicial complex is a finite collection of non-empty sets
A in which if α ∈ A and β ⊆ α, then β ∈ A.

The elements of α are referred to as vertices and the elements of A are referred
to as simplices. The dimension of an abstract complex is the maximum dimension
of its simplices,

dim(A) = max
α∈A

(dim(α)) = max
α∈A

(card α− 1).

Definition 3.7. A subcomplex of B is an abstract simplicial complex A ⊆ B.

Definition 3.8. A filtration is sequence of abstract simplicial complexes {Ki}i∈I

such that K0 ⊆ · · · ⊆ Kn.

Abstract simplicial complexes are a useful tool to analyse the properties of
topological spaces.

Transforming a geometric simplicial complex into an abstract simplicial com-
plex is a straightforward process: it involves replacing each vertex’s coordinates
with a unique label. However, the inverse process, converting an abstract simpli-
cial complex into a geometric one, is somewhat more challenging. This requires
assigning coordinates to the vertices in a way that satisfies the conditions for a
geometric simplicial complex. If this is possible, the resulting geometric simplicial
complex is referred to as a geometric realization.
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3.2.3 Cubical Complexes

Digital images have a cubical structure, since two dimensional images are com-
posed of pixels and three dimensional images are made of voxels. We are going
to present an example of an abstract simplicial complex which is useful to ob-
tain topological descriptors of pixelized data, formed by glueing together cubes of
various dimensions, a cubical complex.

Definition 3.9. We define an elementary interval as a closed interval Ie ⊂ R with
Ie = [m, m + 1], m ∈N.

Definition 3.10. We define an n-cube σ ⊂ Rn as the product of n elementary
intervals C = ∏n

i=1 Iei . The number of non-degenerate elementary intervals n is
defined as the dimension of the n-cube.

We will refer to the 3-cubes as voxels, the 2-cubes as squares, the 1-cubes as
edges and the 0-cubes as vertices. Cubical complexes C composed of elements of
dimension 2 (the pixels) will be useful to represent volumes/images V.

Being an abstract simplicial complex, the dimension of a cubical complex is the
maximum dimension of its n-cubes.

Definition 3.11. A cubical complex C is a collection of n-cubes so that if c ∈ C and
c′ ⊆ c, then c′ ∈ C.

There is an example of a filtration that is frequently used while working with
cubical complexes:

Definition 3.12. Let f : K0 → R be a function defined on the vertices of a simplicial
complex K. We define define the lower-star filtration of K as the extension of f to
every simplex σ ∈ K, namely F( f )(σ) = maxv∈σ f (v).

3.3 Homology

Definition 3.13. [48, Section 2.4.2] Let K be a simplicial k-complex with mp number
of p-simplices, 0 ≤ p ≤ k. A p-chain c in K is a formal sum of p-simplices added
with some coefficients, that is, c = ∑

mp
i=1 αiσi where σi are p-simplices and αi are

coefficients. Two p-chains c = ∑ αiσi and c′ = ∑ α′iσi can be added to obtain
another p-chain

c + c′ =
mp

∑
i=1

(
αi + α′i

)
σi.

Definition 3.14. A chain group or group of p-chains (Cp,+) is the abelian group (or
vector space, if coefficients in a field are used) containing all p-chains.
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Figure 3.1: Example of a filtration of a cubical complex obtained from a 3 × 3
image. Image source: [55]

Notation 3.1. A group of p-chains can be represented as Cp = Cp(K), with K a
simplicial complex.

We will refer to the (p− 1)-chain consisting of the sum of the (p− 1)-faces of a
p-simplex σ as the boundary of σ.

Definition 3.15. The p-th boundary operator is a linear map ∂p : Cp(K) → Cp−1(K)
sending every p-simplex σ = [u0, . . . , un] to

∂pσ =
p

∑
j=0

(−1)j[u0, . . . , ûj, . . . , un],

where ûj marks the fact that uj is omitted.

We will refer to a boundary operator as a boundary homomorphism, since it
commutes with addition:

∂p(c + c′) = ∂p
(
∑ aiσi + ∑ biσi

)
= ∂p

(
∑ aiσi

)
+ ∂p

(
∑ biσi

)
= ∂p(c) + ∂p(c′).

Definition 3.16. A chain complex is a sequence of abelian groups together with
boundary homomorphisms,

. . .
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ Cp−2
∂p−2−−→ . . .

such that ∂p ◦ ∂p+1 = 0 for all p.
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Proposition 3.17. [47, Section IV.1] Fundamental lemma of homology: ∂p∂p+1d = 0
for every integer p and every (p + 1)-chain d.

Proof. [47, Section IV.1] We just need to show that ∂p∂p+1τ = 0 for a (p + 1)-
simplex τ. The boundary ∂p+1τ consists of all p-faces of τ. Every (p− 1)-face of τ

belongs to exactly two p-faces, so ∂p
(
∂p+1τ

)
= 0.

Definition 3.18. A p-cycle is a p-chain c with ∂c = 0.

Since the boundary operator commutes with addition, all p-cycles are con-
tained in a group that is called the p-cycle group Zp = Zp(K). It is a subgroup of
the group of p-chains. With regard to Zp, the group of p-cycles Zp is the kernel of
the p-boundary homomorphism ker ∂p = Zp, since Cp is sent to the zero of Cp−1.
Being a subgroup of an abelian group, it is also abelian.

Definition 3.19. A p-boundary is a p-chain c with ∂d = c, where d is a (p+ 1)-chain.

We can also define the group obtained by applying the boundary homomor-
phism on the p-chains ∂p(Cp), the p-boundary group Bp = Bp(K). It contains all
p-boundaries. We have that im ∂p = ∂p(Cp) = Bp(K). Using Proposition 3.17, it
follows that ∂p−1Bp−1 = ∂p−1∂p(Cp) = 0 for p > 0. Hence, Bp−1 ⊆ Zp−1.

Definition 3.20. [47, Section IV.1] The p-th homology group of a simplicial complex
K is the p-th cycle group modulo the p-th boundary group, Hp(K) = Zp(K)/Bp(K).
The p-th Betti number is the rank of this group, βp = rank Hp(K).

Every element of Hp is obtained by adding a p-cycle c to the boundary group,
c + Bp. The resulting elements of the sum of c and Bp belong to the class [c] called
the homology class of c. We will say that all elements belonging to [c] are homologous.
We will denote two homologous elements c, c′ as c ∼ c′.

The rank of a p-homology group indicates the number of p-dimensional fea-
tures: the rank of a 0-dimensional homology group counts the number of con-
nected components, while the rank of a 1-dimensional homology group counts
the number of holes, while the 2-dimensional features are voids.

Since the rank is a discrete quantity, we cannot use it in optimization. Simply
comparing Betti numbers in a topological error function would result in a discrete-
valued function. We need to define a way to track the evolution of homological
features over a filtration.
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3.4 Persistent Homology

3.4.1 Persistence Modules

We are going to present one of the key components of persistent homology:
the persistence modules. They are algebraic structures that can be assigned to a
simplicial complex (or more generally, a continuous filtration) in order to track
the birth and death of topological features.

Definition 3.21. Let K be a field. We define a persistence module V over K as an
indexed family of K-vector spaces {Vr}r≥0 and a doubly-indexed family of linear
maps

{vt
s : Vs → Vt | s ≤ t}

satisfying the composition law

vt
s ◦ vs

r = vt
r ∀r ≤ s ≤ t,

with vt
t being the identity map on Vt for all t .

Definition 3.22. We define a homomorphism ϕ : V → W between two persistence
modules V and W as a collection of linear maps

{ϕ : ut → vt | t ∈ T}

such that
Us

us
t−−−→ Utyϕs

yϕt

Vs
vs

t−−−→ Vt

commutes for all s ≤ t.

The collection of persistence modules has the structure of a category, since it
is a collection of objects with a collection of morphisms, a composition operation
and an identity morphism for every object. We will denote it as Pers.

Definition 3.23. Let J be an interval and K a field. Then IJ is defined as the
K-persistence module with spaces

IJ =

{
K if t ∈ J,

0 if otherwise,

and maps

it
s =

{
1 if s, t ∈ J,

0 if otherwise.
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Definition 3.24. Let U and V be persistence modules. We define the direct sum
W = U

⊕
V of U and V as

Wt = Ut
⊕

Vt, ws
t = ut

s
⊕

vt
s.

Definition 3.25. [54, Section 1.4] A persistence module W is indecomposable if the
only decompositions W = U

⊕
V are W

⊕
0 and 0

⊕
W.

Proposition 3.26. [54, Proposition 1.2] Interval modules are indecomposable.

Theorem 3.27. [54, Theorem 1.3] Suppose that a persistence module V over K = R

can be expressed as a direct sum of interval modules in two different ways:

V =
⊕
l∈L

IJl =
⊕

m∈M

IKm .

Then there is a bijection σ : L→ M such that Jl = Kσ(l) for all l.

We derive from this theorem that, if existing, the decomposition of a given
persistence module V as a direct sum of interval modules V =

⊕
l∈L IJl is unique.

We call the finite multiset J the barcode of V. We can also represent the barcode
set with a finite multiset B of points of the form (inf J, sup J), to which we add the
multiset ∆∞ having multiple copies of the set ∆ = {(b, b) | b ∈ R}.

Definition 3.28. [56, Section 2.2.1] A persistence diagram is the union B ∪ ∆∞ of a
finite multiset of elements in R× R̂, where R̂ = R∪ {+∞}, with countably many
copies of the diagonal ∆. The set of persistence diagrams is denoted by Bar∆.

Definition 3.29. [56, Section 2.2.1] Given two barcodes D, D′ ∈ Bar, viewed as
multisets, a matching is a bijection γ : D → D′. The cost of γ is the quantity

c(γ) = sup
x∈D
∥x− γ(x)∥∞ ∈ R∪ {+∞}.

The set of all matchings between D and D′ is denoted by Γ (D, D′).

Definition 3.30. [56, Section 2.2.1] The bottleneck distance between two barcodes
D, D′ ∈ Bar∆ is defined as

d∞
(

D, D′
)
= inf

γ∈Γ(D,D′)
c(γ).

Thereby the space of persistence diagrams can be equipped with a metric struc-
ture, opening the possibility of doing metric analysis.
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3.4.2 Persistence Diagrams for Homology Groups

Let {Ki}i∈I be a filtration. Thus, Ki ⊆ Kj for all i, j ∈ I with i ≤ j. Hence Ki

is a subcomplex of Kj and has a well defined inclusion map f i,j : Ki → Kj. Since
homology can be applied to each of the simplicial complexes, the inclusion maps
Ki → Kj induce Z2-linear maps f i,j : Hp(Ki) → Hp(Kj) for all i, j ∈ I with i ≤ j. It
follows that

f k,j
p ◦ f i,k

p = f i,j
p ∀i ≤ k ≤ j.

Using Definition 3.21 we infer that the homology groups of a filtered simplicial
complex together with the induced linear maps form a persistence module. We
can then formulate a definition of persistence diagrams for filtrations created by
linear maps. First we need some previous definitions.

Definition 3.31. Let {Ki}i∈I be a filtration. The p-th persistent homology of {Ki}i∈I

is the pair
({Hp(Ki)}1≤i≤l , { fi,j}1≤i≤j≤l) ∀i, j ∈ I, i ≤ j.

From this sequence of complexes we obtain a sequence of homology groups
connected by homomorphisms,

0 = Hp(K0)→ Hp(K1)→ · · · → Hp(Kn) = Hp(K).

Definition 3.32. The p-th persistent homology groups are the images of the homo-
morphisms induced by inclusion, Hi,j

p = im f i,j
p , for 0 ≤ i ≤ j ≤ n.

Definition 3.33. The p-th persistent Betti numbers are the ranks of the p-th persistent
homology groups, β

i,j
p = rank (Hi,j

p ).

Observation 3.1. It is worth mentioning that Hi,i
p = Hp(Ki).

According to [47, Section VII.1], we can express the p-th persistent homology
group as

Hi,j
p = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).

This equality works for every dimension p and for every pair i ≤ j.
Persistent homology groups are algebraic structures that measure the survival

of homology classes throughout a sequence. Given that scenario, we say that a
class γ in Hp(Ki) is born at Ki if γ ∈ Hp(Ki) and γ ∈ Hi−1,j

p . Likewise, we say
that γ dies at Kj if f i,j−1

p (γ) ∈ Hi−1,j−1
p but f i,j

p (γ) /∈ Hi−1,j
p . We will represent

the birth of γ at Ki as b(γ) = i and the death of γ at Kj as d(γ) = j. We will
refer to the difference between the birth and death of γ as the persistence of γ,
pers(γ) = d(γ)− b(γ).
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Definition 3.34. We define the p-th persistence diagram of the filtration {Ki}i∈I as a
finite multiset of points (b(γ), d(γ)) in the extended real plane R̂2 = (R∪{±∞})2.
The multiplicity of the p-dimensional classes will be represented with µ

i,j
p and is

defined as

µ
i,j
p : = (β

i,j−1
p − β

i,j
p )− (β

i−1,j−1
p − β

i−1,j
p ), ∀i < j, ∀p.

Lemma 3.35. [47, Section VII.1] Fundamental Lemma of Persistent Homology. Let ∅ =

K0 ⊆ K1 ⊆ . . . ⊆ Kn = K be a filtration. For every pair of indices 0 ≤ k ≤ l ≤ n
and every dimension p, the p-th persistent Betti number is βk,l

p = ∑i≤k ∑j>l µ
i,j
p .

3.4.3 Monotonic Functions

We want to extend the definition of persistent homology to ensure the existence
of well-defined filtrations on simplicial complexes. To do so we will use a special
type of functions called monotonic functions that wil allow us to create filtrations.
We will redefine the definitions of births and deaths of a homology class applied
to monotonic filtrations, since it presents some differences.

Considering a simplicial complex K and a real-valued function f : K → R, we
say that f is monotonic if f (σ) ≤ f (τ) when σ ⊆ τ. From the monotinicity we
derive that K(a) = f−1(−∞, a] is a subcomplex of K, for every a ∈ R. We call K(a)
the sublevel set of the point a.

Accordingly, given a set of real values {ai}i∈I ⊆ R, with ai ≤ aj for i ≤ j, we
define the monotonic filtration of f respect to ai as the filtration

. . . ⊆ K(ai−1 ⊆ K(ai) ⊆ K(ai+1) ⊆ . . .

Definition 3.36. Let K be a simplicial complex, {ai}i∈I ⊆ R a sequence of real
values and f : K → R a monotonic function. Let {Ki}i∈I be the monotonic filtration
defined by f and {ai}i∈I . The birth of a homology class γ is defined as b(γ) = f (Ki)

if γ is born at Ki. Likewise, we define the death of a homology class γ as d(γ) =
f (Kj) in case γ dies at Kj, or d(γ) = ∞, in case γ does not die.

Using the previous definition we can adapt the definition of the persistence
diagram for monotonic functions:

Definition 3.37. Let {ai}i∈I ⊆ R be a sequence of real values, f : K → R a mono-
tonic function and {Ki}i∈I the monotonic filtration defined by f and {ai}i∈I . We
define the p-th persistence diagram of {Ki}i∈I as the multiset of points in R̂2 denoted
as Dgmp( f ) such that Dgmp( f ) = {( f (Ki), f (Kj)) : (i, j) ∈ I}.
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Figure 3.2: Let D and D̂ be two different persistent diagrams, where D contains the
white points and and D̂ contains the black points. We can draw squares twice the
bottleneck distance between D and and D̂, due to the definition of the bottleneck
distance. Image source: [47]

The coordinates of the elements in the persistence diagram (b, d) ∈ Dgmp( f )
are the birth and death associated with a specific homology class γ, respectively.

Persistence diagrams are used to extract features from monotonic functions.
They are a useful tool to compare the topological structure of different functions
and measure their similarity. However, to do so we still need to define a metric
returning the distance between persistence diagrams.

As in [47, Section VII.2], we will consider that the diagram consists of finitely
many points above the diagonal and infinitely many points on the diagonal. The
latter points will be useful to simplify the definition.

Definition 3.38. Let X, Y be persistence diagrams. Let S = {η : X → Y} be a set
of bijections between them. We define the bottleneck distance between X and Y as

W∞(X, Y) = inf
η : X→Y

sup
x∈X
∥x− η(x)∥∞.

The Stability Theorem for Filtrations proves stability of the bottleneck distance:

Definition 3.39. [47, Section VII.2] Stability Theorem for Filtations. Let K be a
simplicial complex and let f , g : K → R be monotonic functions. For each di-
mension p, the bottleneck distance between the diagrams X = Dgmp( f ) and
Y = Dgmp(g) is bounded above by the L∞-distance between the given functions,
W∞(X, Y) ≤ ∥ f − g∥∞.
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3.5 Differentiability

In [56] a differential framework is provided to prove differentiability of the
composition

L : M−→ Bar∆ −→ R.

The theory focuses on simplicial complexes and needs to be adapted, for this
work, to cubical complexes determined using lower-star filtration.

We wil analyse the differentiability of the function Bp : M→ Bar∆. Specifically,
of the composition of two functions: first the parametrization F given the lower-
filter function obtained from a parametrization F0 : M → RK0

on the vertices K0

of K. The second function is the persistent homology operator Dgmp:

Bp : M F−→ RK
Dgmp−−−→ Bar∆.

We next provide two differentiability results for cubical complexes. They will
allow us to study differentiability of images represented as 3-cubes.

Proposition 3.40. [56, Proposition 5.2] Let F0 : M→ RK0 be a Cr parametrization
of filter functions on the vertices of K. The induced parametrization F : M→ RK

is Cr at each θ /∈ Sing (F0), where Sing (F0) is the boundary of the set{
θ ∈ M | ∃

(
v, v′

)
∈ K0, F0(θ)(v) = F0(θ)

(
v′
)}

.

Specifically, for every θ /∈ Sing (F0), letting

v̄ : σ ∈ K 7→ argmax
v vertex in σ

F0(θ)(v) ∈ K0

by breaking ties wherever necessary, there is an open neighborhood U of θ such
that F (θ′) (σ) = F0 (θ′) (v̄(σ)) for every θ′ ∈ U and σ ∈ K, from which follows that
F is Cr at θ.

We use Proposition 3.40 with F the parametrization given the lower-filtration.

Corollary 3.41. [56, Corollary 5.4] For any Cr parametrization F0 : M → RK0 on
the vertices of K, the induced barcode valued map Bp : θ ∈ M 7→ Dgmp(F(θ))
is r-differentiable outside Sing (F0). Moreover, at θ ∈ M\ Sing (F0), for any bar-
code template

(
Pp, Up

)
of F(θ) and any choice of ordering (σ1, σ′1) , . . . , (σm, σ′m),

τ1, . . . , τn of
(

Pp, Up
)
, the map B̄p : M→ Rm ×Rn defined by

B̄p : θ′ 7−→
[(

F0
(
θ′
)
(v̄ (σi)) , F0

(
θ′
) (

v̄
(
σ′i
)))m

i−1 ,
(

F0
(
θ′
) (

v̄
(

σ′j

)))n

j−1

]
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is a local Cr lift of BP around θ. The corresponding differential for BP at θ is:

dθ,B̃p
Bp(∗) =

[(
dθ F0 (

∗) (v̄ (σi)) , dθ F0(∗)
(
v̄
(
σ′i
)))m

i=1 ,
(

dθ F0 (
∗)

(
v̄
(

σ′j

)))n

j=1

]
.

We represent images as vectors I ∈ [0, 1]n×m, with n the height (in pixels) and
m the width (in pixels). The pixels are represented as coordinates of I. Let K0

be a cubical complex given by n×m images considering each pixel a vertex. We
will restrict the images to the smooth manifold (0, 1)n×m and consider the vertex
parametrization F0 : (0, 1)n×m → RK0 .

Since F0 = Id, F0 is C∞ and we can apply Corollary 3.41.
Focusing on maps V : Bar∆ → N , we have differentiability results for different

examples of functions.

Definition 3.42. [56, Definition 3.10] Let V : Bar∆ → N be a map on barcodes.
Let D ∈ Bar and r ∈ N ∪ {+∞}. V is said to be r-differentiable at D if, for all
integers m, n and all vectors D̃ ∈ R2m × Rn such that Qm,n(D̃) = D, the map
V ◦Qm,n : R2m ×Rn → N is Cr on an open neighborhood of D̃.

Following Definition 3.42, for every m, n the map V ◦Qm,n exists and is unique.
The map will be differentiable if it is differentiable for every D̂, for every m, n.

Therefore, the map V is ∞-differentiable for every D ∈ Bar∆.
Let V : Bar∆ → R, with V(D) = ∑(b,d),b<d<∞ d − b for every D ∈ Bar∆. Let

D ∈ Bar∆ and its inverse image D̂ ∈ R2m+n. Finally, we have that

V ◦Qm,n : (b1, d1, . . . , bm, dm, v1, . . . , vn) ∈ R2m+n 7→
m

∑
i=1

di − bi ∈ R

and V ◦Qm,n is C∞.
There is also a proof of the differentiability of the bottleneck distance:

Proposition 3.43. [56, Proposition 7.9] For any D ∈ Bar∆,

(i) d∆∞ is ∞-differentiable at D, and

(ii) for any m ∈ N and D̃ ∈ R2m ×R0 such that Qm,0(D̃) = D, there are exactly
two non-zero components in the gradient ∇D̄ (d∆∞ ◦Qm,0), one with value 1

2
and the other with value − 1

2 .



Chapter 4

Experiments

4.1 Environment

The project was written in the Python programming language, version 3.7,
which is the default version in Google Collab, the environment used. The libraries
that have been used in the project are the Tensorflow framework [68] and the
library Gudhi [69], specifically the Python modules.

Tensorflow is a machine learning framework that allows to represent the com-
putation and state of deep learning algorithms during the computation.

On the other hand, the Gudhi library (Geometric Understanding in Higher
Dimensions) contains implementations of algorithms and data structures for com-
putational topology.

The high-level Keras API [70], created to simplify the implementation of neural
networks and integrated in Tensorflow, was also used in the project.

4.2 Dataset

The dataset focus on the right ventricle segmentation from CMR and it was
obtained from the second edition of the M&Ms Challenge (M&Ms-2). It is a dataset
for scientific benchmarking to promote the development of deep learning models
in cardiac image segmentation.

Three clinical centers from Spain, contributed to the challenge providing 360
cardiac magnetic resonance (CMR) studies for analysis in total.

The subjects included in the study were selected from various cardiovascu-
lar disease groups and healthy volunteers. The list of pathologies suffered from
the subjects is Dilated Left Ventricle, Dilated Right Ventricle, Hypertrophic car-
diomyopathy, Arrhythmogenic cardiomyopathy, Tetrology of Fallot, Inter-atrial
communication and Tricuspid regurgitation.

33
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Different scanners were used for both axis, assuring heterogeneity of the data.
Each CMR study was manually annotated by an expert clinician, and the annota-
tions were reviewed and finalized by four researchers to reduce variability.

As per the clinical protocol, the short-axis and long-axis 4-chamber views
were labeled at the end-diastolic (ED) and end-systolic (ES) phases, which are
the phases used to calculate important clinical biomarkers for cardiac diagnosis
and monitoring. Three main regions were evaluated: the cavities of the left and
right ventricles and the myocardium of the left ventricle, represented by channels
0, 1, and 2, respectively.

4.3 Preprocessing

Due to the lack of an adequated equipment, only a portion of the data pub-
lished in the second M&Ms challenge was considered. In total, 720 long-axis
images.

Each of the two types of CMR images, long-axis and short-axis, was considered
independently, since the mixing of both datasets was out of the scope of this work.
We focused in the long-axis images in this work.

The input images were rescaled from values in the interval [0,255] to values
in the interval [0,1]. Since not all the images had the same resolution, they were
reshaped to a common shape. An input shape of 128× 128 was selected. We did
not pick a bigger shape because the model performance depends on the input
images. The information contained within the images was enough to compute the
segmentation. Also, a smaller shape could have caused the loss of information.

Regarding the labels, they also were reshaped to a 128 × 128 shape. Four
channels were added, each of them containing the segmentation of an atlas: the
channels correspond to the segmentations of the left and right ventricle cavities,
the left ventricle myocardium and the background, respectively. The latter was
considered for its topological properties.

The final shape of the input data is 128× 128× 1 and the shape of the labels
and output of the model is 128× 128× 4.

Based on the works [76, 77], the subset of tested images for the long-axis con-
sisted of 30% of the total: 616 ∗ 0.3 ≈ 216 images. The remaining set of images was
partitioned into 400 images of training data and 104 images of validation data.

4.4 Metrics

When it comes to deep learning segmentation, it’s essential to keep an eye
on the accuracy and loss of our model. These two metrics play a crucial role in
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determining how well our model is performing. To measure the capabilities of
our model, we have used the following accuracy metrics: Categorical Cross Entropy
Accuracy, Intersection-Over-Union and Dice Coefficient. These methods are some of
the most commonly used accuracy functions [72, 73].

The Categorical Cross Entropy Accuracy is defined as

CCE(y, ŷ) = − 1
n

n−1

∑
i=0

yi ∗ log(ŷi),

with n the number of samples.
The Intersection-Over-Union is expressed as

IoU =
AI

AGT + APB − AI
,

with AI := Area of intersection, AGT := Ground Truth Area and APB := Predicted
Box Area.

The Dice Coefficient is calculated as

DSC =
2|X ⋂

Y|
|X|+ |Y| ,

given two sets X and Y.
The selected optimizer is Adam [71], an efficient extension of the Stochastic

Gradient Descent algorithm. The learning rate for the experiments is lr = 0.001.
A weighted combination of the local losses Dice Loss and Pixel-Wise Loss was

complemented with topological regularizers:

L = LDice(Y, Ŷ) + αLPixel−Wise(Y, Ŷ) + βLRegularizer(Y, Ŷ).

After some preliminary tests, the coefficients α, β were set to 2.0 and nl =

number of classes of the label, respectively.
The topological loss LRegularizer is the result of adding the topological loss for

every channel. The first topological loss used is the degree-p total persistence:

Persp(D) : = ∑
(τi ,τj∈D)

|pers(τi, τj)
p|,

with D a persistence diagram and pers(τi, τj) : = |τi, τj|, given a tuple (τi, τj)∈ D.
For this dataset we have considered p = 1, so for the sake of clarity we call this
distance the total persistence. The other topological loss is the bottleneck distance.

The bottleneck distance is applied to a set of channels i ∈ I1 for a set of dimen-
sions d ∈ I2, with I1 ⊂ {0, 1, 2, 3} and I2 ⊂ {0, 1}. The related loss is

Bottleneck(I1, I2, Image1, Image2) = ∑
c∈I1,d∈I2

αc,dW∞(Dc,d
1 , Dc,d

2 ),
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with Image1 the label and Image2 the prediction, αc,d the weight associated with
the channel c and the dimension d and Dc,d

1 , Dc,d
2 , the persistence diagrams associ-

ated with the label and the prediction for c, d. The value of the set of weights is
0.01 for the channels 0,1,3 and 0.025 for the channel 2.

It is important to note that the relationship between accuracy and loss is not
inverse, which means that a model can have high accuracy but still have a certain
level of uncertainty. This is due to other factors such as overfitting, underfit-
ting, and data distribution that can also affect the model’s performance. Addi-
tionally, the threshold used to classify predictions can impact accuracy, where a
higher threshold would result in higher accuracy but higher uncertainty. Some
researchers argue that accuracy alone may not provide a complete picture of
the performance of a model, particularly in cases where the dataset is imbal-
anced [74]. Therefore, it is important to consider multiple factors, not just accuracy
and loss [57, 58]. This way, we will only assess the accuracy values from the results
in conjunction with a visual examination.

4.5 Training

A custom training loop was incorporated to the model to be able to perform the
necessary computations to obtain the persistence diagrams and apply the selected
regularizers.

To prevent overfitting, an early stopping callback was added to stop the compu-
tations of the model once the learning stage finished. Early stopping is an opti-
mization technique that stops the training once a model starts overfitting. This is
achieved keeping a record of the losses for every epoch and when the loss stops
decreasing for a number of preselected epochs, the training stops.

The selected early stopping value was 20 epochs. The loss with a topological
regularizer was checked every iteration and weights of the model were saved in
case the loss reached its minimum. When the training finished the weights of the
epochs with the best loss were loaded and some predictions were made to do a
visual check of the precision of the method.

We have used a batch size of 50 images, so the number of iterations to arrive
to an epoch is 8. We also fixed a maximum of 1000 epochs, an arbitrary number
but hard to reach, to avoid infinite loops.

Unlike the training loop, the testing and validation loops had a fixed loss of

L = LDice(Y, Ŷ) + αLPixel−Wise(Y, Ŷ),

with the value of α remaining the same as in the training loop.
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Figure 4.1: 3-D visualization of the model’s downsampling and upsampling
paths. Source of the library used to create the image: [82].

4.6 Model

The model that has been used is a U-Net Neural Network [16]. This model
was created to use the data available more efficiently, by capturing more context,
and to reduce computation time [16]. As we explained in a previous section, it is
the predefined model in the image segmentation state of the art.

The model follows the typical arquitechture of a convolutional network. It
consists of a contraction path and a expansion path. The first is composed of con-
volutional and max pooling layers. The second consist of concatenations of con-
volutional layers from the contraction path and transposed convolutional layers.
As the authors explained: "The architecture consists of a contracting path to capture
context and a symmetric expanding path that enables precise localization".

The input data starts with the shape 128× 128× 1 and is downsampled through
the continuous applications of convolution layers with a 3× 3 filter, dropouts of
the 10% of the neurons and max pooling layers with a 2× 2 filter with stride 2.
Then, the data reaches the shape 8× 8× 160 and enters in the expansive path.

In the expansive path the data is upsampled with convolutional transpose lay-
ers with a 3× 3 filter and 3× 3 convolutions. The dropout layers located in this
path allow the model to achieve more generalization by dropping a 20% of the
neurons. The last layer is located at the end of the upsampling path and its a 1× 1
convolution.

All convolutional and convolutional transpose layers have a RELU activation
function. Through the last layer the output reaches the shape 128× 128× 4.

A summary of the networks architecture can be found in a visual representa-
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Figure 4.2: A CMR image segmentation next to every one of its four channels.

tion in Figure 4.1 and in Figure 4.8 .

4.7 Results

We will consider the terms GL := Geometrically local Loss (combination of
Pixel-Wise Loss and Dice Loss), PWL := Pixel-Wise Loss, DL := Dice Loss, PL :=
Total persistence Loss, BL := Bottleneck Loss, MeanIoU := Intersection-Over-Union
Accuracy, CE := Cross-Entropy Accuracy and DC := Dice Coefficient Accuracy,
in the subsequent tables.

We applied several methods to compare the resulting accuracies and identify
the best technique to implement CMR segmentation. To reduce the computation
time, the persistence diagrams of the four channels were pre-computed before the
training started. The pre-computations were done not only to be able to return the
persistence diagrams in every iteration, avoiding computations, but also to avoid
the complexity of the calculation in the Tensorflow’s graph: they were feeded as
constants rather than tensors. The precission of the model was tested against the
216 images of the testing dataset, using the accuracies mentioned in Section 4.4.

Due to the artifacts in the labels provided in the dataset, belonging to the
halo of the heart chambers (Figure 4.2), the resulted segmentation in the dataset
presented some difficulties.

We could see some improvements applying the loss to every channel indepen-
dently. In this case using the total persistence distance, barcodes augmented the
accuracy several points with respect to the non-regularized loss, as it is show in
Table 4.1. In the table 4.2 the accuracies for the model with the Bottleneck Loss
regularizer are shown.

Nevertheless, using persistent homology in the labels for the four channels did
not retrieve a sufficient increase in the results, considering the computation time
incremented (doubled) even after the pre-computations were done, as we can see
in Table 4.3.

Something to take into account is that the third channel did not have artifacts
at all. The fourth channel had a very little amount of artifacts: a number of only
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Table 4.1: Comparison of the results of the combination of the geometric losses vs
the results calculating the total persistence of all the channels in order, represented
with (i) for the ith-channel, for every accuracy.

Metric GL GL+PL(0) GL+PL(1) GL+PL(2) GL+PL(3)

MeanIoU accuracy (%) 61.0391 62.4377 60.5381 60.0784 65.7350

CE accuracy (%) 95.2583 95.7985 95.3162 95.140 48 96.3788

DC accuracy (%) 96.2591 96.6109 96.2927 96.0831 97.2049

Time spent (hours) 2.255 2.671 2.482 2.930 3.630

Table 4.2: Comparison of the results of the combination of the geometric losses vs
the results from the calculation of the bottleneck distance using the actual persis-
tence of all the channels, represented with (i) the ith-channel, for every accuracy.

Metric GL GL+BL(0) GL+BL(1) GL+BL(2) GL+BL(3)

MeanIoU accuracy (%) 61.0391 64.2347 66.0457 65.7243 63.1268

CE accuracy (%) 95.2583 96.1227 96.4405 96.3299 96.0592

DC accuracy (%) 96.2591 96.9546 97.1654 97.0742 96.8970

Time spent (hours) 2.255 3.248 2.678 3.968 3.654

Table 4.3: Comparison of the results of the combination of the geometric losses vs
the results from the calculation of the bottleneck loss using the persistence of all
the labels, with (i) representing the dimension, for every accuracy.

Metric GL GL+BL(0,1) GL+BL(1) GL+BL(0)

MeanIoU accuracy (%) 61.0391 62.0236 64.9727 65.8017

CE accuracy (%) 95.2583 95.5660 96.2320 96.3586

DC accuracy (%) 96.2591 96.5259 97.0676 97.2157

Time spent (hours) 2.255 9.064 4.001 3.453
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four images out of the 400 training images in the dataset had irregularities for the
dimension 0, matching some of the artifacts in dimension 1 for the other channel,
creating holes without color that were considered as independent background
components.

However, ignoring the irregular representations in the labels and forcing a
preselected set of input diagrams in the regularizers did also improved the seg-
mentation. This method is similar to already existing methods in the state of the
art in which a topologically ideal set of labels was considered [29, 30].

Specifically, the inputs were:

• Channel 0 dimension 0: []

• Channel 0 dimension 1: []

• Channel 1 dimension 0: []

• Channel 1 dimension 1: []

• Channel 2 dimension 0: []

• Channel 2 dimension 1: []

• Channel 3 dimension 0: []

• Channel 3 dimension 1: [0., 1.]

Meaning that all the channels have a single connected component and no holes,
except for the last channel, the background, with one hole referring to the heart
chambers. In the Table 4.4 we can find the results related to the computations.

Table 4.4: Summary of the results forcing a preselected set of ideal persistence
diagrams, using different methods for every accuracy.

Metric GL GL+PL GL+BL

MeanIoU accuracy (%) 61.0391 65.9230 63.8866

CE accuracy (%) 95.2583 96.4536 96.0734

DC accuracy (%) 96.2591 97.2698 96.8952

Time spent (hours) 2.255 3.691 8.296

While using the topological losses a careful analysis of the data acquires more
relevance, since it could be prone to deteriorate the segmentation with a fixed
ideal set of labels.
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Figure 4.3: Example of segmentations using different methods. The first image is
the input image and the second is the label. The next images correspond to the
segmentations using the methods: bottleneck loss for dimension 0 and 1 applied to
channels 0, 1 and 2; the bottleneck loss applied to a set of ideal labels for dimension
0 and 1; the total persistence applied to a set of ideal labels for dimension 0 and 1;
and the loss without regularizers.

These results might indicate that the satisfactory segmentation performed in [29,
30] is due to the lack of artifacts in the labels provided in the ACDC dataset [21].

The computations limited to the fourth channel did not retrieve any results.
The segmentation worsen instead.

We find in figure 4.3 an example of segmentation using all the methods. Images
in order: input image, label, segmentation using bottleneck for channels 2 and 3,
segmentation using bottleneck with a set of ideal labels, segmentation using sum
of persistence for channels 2 and 3, segmentation using persistence with an ideal
set of labels, segmentation without regularizers.

A summary of the accuracies can be found in Figure 4. It is a comparison be-
tween accuracy plots. The first column corresponds to the MeanIoU Accuracy, the
second to the categorical Accuracy and the third to the Dice Coefficient Accuracy.
Every row corresponds to a training with a different loss.
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Figure 4.4: Four vectorized summaries extracted from a persistence diagram.
Image source: [78]

4.8 Next steps

We also considered the use of finite-dimensional vector representations of per-
sistent diagrams. The persistence diagrams vectorizations have been proposed as
topological priors and have shown predictive power [63, 62].

This priors summarize the information provided by the persistent homology
features: Betti Curves [65], Persistence Landscape [63], Persistent Image [62] and 2D
Histogram [66], among others.

Specifically, previous results on persistence images have shown relevant per-
formance gains comparing this technique with other methods like the bottleneck
or wasserstein distances [62]. Nonetheless, the computation time for persistent
images in this project exceeded to a large degree the computation of the other
methods, even with a reduced dataset.

However, a new line of research have recently appeared that promise an injec-
tive invariant reduction in the complexity of the data applying some filters. This
method is called convolutional persistence [67] and could be helpful to alleviate the
problem of efficiency of some persistent homology methods in dataset segmenta-
tion.

Another line of research is the Ensemble deep learning models for segmentation.
They are the result from a combination of multiple models, aggregating the output
of each of them.

Ensemble models have been applied to a variety of medical imaging tasks,
showing an increment in accuracy [79, 80, 81]. Two pretrained models, one trained
to segment long-axis CMR images and the other trained to segment short-axis
CMR images, could be ensembled to obtain a model that can learn the segmenta-
tion of a CMR image in both axis for the same patient and use it to learn twice as
the number of features and hopefully learn the correlation between them.
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Figure 4.5: Row 1 Figure 4.6: Row 2

Figure 4.7: Row 3

Figure 4.8: Model summary



Chapter 5

Conclusions

In this work we implemented a cutting-edge method to regularize a CMR seg-
mentation using persistent homology. We built a convolutional model to perform
segmentation in CMR images and applied topological regularizers to enhance the
segmentation. The underlying hypothesis of this work was that by incorporat-
ing persistent homology, a segmentation model can avoid large topological errors
caused by traditional geometrical losses. As a result, we developed and evaluated
a topological regularizer.

A topological analysis of the data was necessary to improve the segmenta-
tion, which was tricky due to the perturbations in the labels. The regularization
method improved the segmentation compared with geometrical losses. Not only
the accuracy was higher, but also the segmentations were visually more consistent.

However, we found that applying the regularizer only to one channel rather
than all the channels at the same time not only resulted in a reduction of compu-
tation time, but also in higher accuracy. This could be attributed to the fact that
the parameters learned by the model to optimize certain channels may negatively
impact the segmentation of the remaining channels.

Moreover, by applying a set of ideal labels, that is, calculating the persistence
diagrams ignoring the artifacts in the labels, we obtained worse results. To per-
form the segmentation focusing in the shape of the chambers and ignoring the
artifacts retrieved a better accuracy than performing the segmentation without a
topological regularizer. Nevertheless, the accuracy obtained from the use of the
actual persistence diagrams was higher.

Our findings also indicated that setting an ideal set of labels may not be the best
method for segmentation when working with data that has perturbations. This
method retrieved segmentations that ignored the halo surrounding the chambers
in the label images. This could be a problem not only because of the loss of
accuracy but also because the halo represents the walls of the chambers, which

44



45

helps geometrical losses such as dice loss or pixel-wise loss in the segmentation.
Furthermore, since every channel has topological properties on its own, finding

a loss that that incorporate them to the model could improve the segmentation.
There is a need to for a combined approach to analyze the channels altogether.

While our approach may have some processing time limitations, since every
set of persistence diagrams added to the bottleneck loss increments the accuracy
substantially, it could still be used for real-time segmentation with appropriate
adjustments. Certain optimization techniques, such as using heuristics to speed up
the classification step or carefully selecting and evaluating features, could improve
the overall speed of the process. Furthermore, the techniques mentioned in Section
4.8 could use persistent homology to improve the segmentation and at the same
time being computationally efficient. Finally, testing the model using the entire
dataset, with a deeper model and a higher early stopping value, would allow us
to fully evaluate the capabilities of our methods.
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[24] Çiçek, Özgün, et al. "3D U-Net: learning dense volumetric segmentation
from sparse annotation." International conference on medical image com-
puting and computer-assisted intervention. Springer, Cham, 2016.

[25] Yu, Lequan, et al. "Automatic 3D cardiovascular MR segmentation with
densely-connected volumetric convnets." International conference on med-
ical image computing and computer-assisted intervention. Springer, Cham,
2017.

[26] Oktay, Ozan, et al. "Anatomically constrained neural networks (ACNNs):
application to cardiac image enhancement and segmentation." IEEE transac-
tions on medical imaging 37.2 (2017): 384-395.

[27] Nosrati, Masoud S., and Ghassan Hamarneh. "Incorporating prior
knowledge in medical image segmentation: a survey." arXiv preprint
arXiv:1607.01092 (2016).

[28] Duan, Jinming, et al. "Automatic 3D bi-ventricular segmentation of cardiac
images by a shape-refined multi-task deep learning approach." IEEE trans-
actions on medical imaging 38.9 (2019): 2151-2164.

[29] Clough, James R., et al. "A topological loss function for deep-learning based
image segmentation using persistent homology." IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 44.12 (2020): 8766-8778.

[30] Byrne, Nick, et al. "A persistent homology-based topological loss for CNN-
based multi-class segmentation of CMR." IEEE Transactions on Medical
Imaging (2022).



BIBLIOGRAPHY 49

[31] Mosinska, Agata, et al. "Beyond the pixel-wise loss for topology-aware delin-
eation." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.

[32] Hu, Xiaoling, et al. "Topology-preserving deep image segmentation." Ad-
vances in neural information processing systems 32 (2019).

[33] Eldan, R., and O. Shamir. "The power of depth for feedforward neural net-
works: arXiv preprint." (2016).

[34] Nosrati, Masoud S., and Ghassan Hamarneh. "Incorporating prior
knowledge in medical image segmentation: a survey." arXiv preprint
arXiv:1607.01092 (2016).

[35] Han, Xiao, Chenyang Xu, and Jerry L. Prince. "A topology preserving level
set method for geometric deformable models." IEEE Transactions on Pattern
Analysis and Machine Intelligence 25.6 (2003): 755-768.

[36] Zeng, Yun, et al. "Topology cuts: A novel min-cut/max-flow algorithm for
topology preserving segmentation in N–D images." Computer vision and
image understanding 112.1 (2008): 81-90.

[37] Vicente, Sara, Vladimir Kolmogorov, and Carsten Rother. "Graph cut based
image segmentation with connectivity priors." 2008 IEEE conference on com-
puter vision and pattern recognition. IEEE, 2008.

[38] Caldairou, Benoît, et al. "Segmentation of the cortex in fetal MRI using
a topological model." 2011 IEEE International Symposium on Biomedical
Imaging: From Nano to Macro. IEEE, 2011.

[39] Calin, Ovidiu. Deep learning architectures. Springer International Publish-
ing, 2020.

[40] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[41] Stewart, James. Calculus. Cengage Learning, 2015.

[42] Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Universal approx-
imation of an unknown mapping and its derivatives using multilayer feed-
forward networks." Neural networks 3.5 (1990): 551-560.

[43] Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feed-
forward networks are universal approximators." Neural networks 2.5 (1989):
359-366.



50 BIBLIOGRAPHY

[44] Cybenko, George. "Approximation by superpositions of a sigmoidal func-
tion." Mathematics of control, signals and systems 2.4 (1989): 303-314.

[45] Barron, Andrew R. "Universal approximation bounds for superpositions of
a sigmoidal function." IEEE Transactions on Information theory 39.3 (1993):
930-945.

[46] Zhou, Yi-Tong, and Rama Chellappa. "Stereo matching using a neural net-
work." ICASSP-88., International Conference on Acoustics, Speech, and Sig-
nal Processing. IEEE Computer Society, 1988.

[47] Edelsbrunner, Herbert, and John L. Harer. Computational topology: an in-
troduction. American Mathematical Society, 2022.

[48] Dey, Tamal Krishna, and Yusu Wang. Computational topology for data anal-
ysis. Cambridge University Press, 2022.

[49] Wagner, Hubert, Chao Chen, and Erald Vuçini. "Efficient computation of
persistent homology for cubical data." Topological methods in data analysis
and visualization II. Springer, Berlin, Heidelberg, 2012. 91-106.

[50] Gray, Stephen B. "Local properties of binary images in two dimensions."
IEEE Transactions on computers 100.5 (1971): 551-561.

[51] Li, Xiaoxing, Paulo RS Mendonça, and Rahul Bhotika. "Texture analysis us-
ing Minkowski functionals." Medical Imaging 2012: Image Processing. Vol.
8314. SPIE, 2012.

[52] Schladitz, Katja, Joachim Ohser, and Werner Nagel. "Measurement of intrin-
sic volumes of sets observed on lattices." 13th International conference on
discrete geometry for computer imagery. Vol. 4245. Berlin, Heidelberg, New
York: Springer, 2006.

[53] Svane, Anne Marie. "Estimation of intrinsic volumes from digital grey-scale
images." Journal of mathematical imaging and vision 49.2 (2014): 352-376.

[54] Chazal, Frédéric, et al. The structure and stability of persistence modules.
Vol. 10. Berlin: Springer, 2016.

[55] Bleile, Bea, et al. "The persistent homology of dual digital image construc-
tions." Research in Computational Topology 2. Springer, Cham, 2022. 1-26.

[56] Leygonie, Jacob, Steve Oudot, and Ulrike Tillmann. "A framework for dif-
ferential calculus on persistence barcodes." Foundations of Computational
Mathematics 22.4 (2022): 1069-1131.



BIBLIOGRAPHY 51

[57] Guo, Chuan, et al. "On calibration of modern neural networks." International
conference on machine learning. PMLR, 2017.

[58] Krishnan, Ranganath, and Omesh Tickoo. "Improving model calibration
with accuracy versus uncertainty optimization." Advances in Neural Infor-
mation Processing Systems 33 (2020): 18237-18248.

[59] Chen, Chao, et al. "A topological regularizer for classifiers via persistent
homology." The 22nd International Conference on Artificial Intelligence and
Statistics. PMLR, 2019.

[60] Chazal, Frédéric, and Vincent Divol. "The density of expected persistence
diagrams and its kernel based estimation." arXiv preprint arXiv:1802.10457
(2018).
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Appendices

I Figures from results

In the next pages we will find the graphics corresponding to the resulting
acuracies of the different methods discussed in Section 4.7.
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(a)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the total persistence loss regularizer considering the channel
0.

(b)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the total persistence loss regularizer considering the channel
1.

(c)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the total persistence loss regularizer considering the channel
2.

(d)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the total persistence loss regularizer considering the channel
3.

Figure 1: Comparison between accuracy plots for every channel using the total
persistence regularizer.
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(a)

Accuracies of the long-axis segmentation model using a combination of dice loss,
pixel loss and the bottleneck loss regularizer for all channels and for dimension 0
and 1.

(b)

Accuracies of the long-axis segmentation model using a combination of dice loss,
pixel loss and the bottleneck loss regularizer for all channels and for dimension
1.

(c)

Accuracies of the long-axis segmentation model using a combination of dice loss,
pixel loss and the bottleneck loss regularizer for all channels and for dimension
0.

Figure 2: Comparison between accuracy plots for every channel and varying the
dimension.
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(a)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the bottleneck loss regularizer considering the channel 0.

(b)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the bottleneck loss regularizer considering the channel 1.

(c)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the bottleneck loss regularizer considering the channel 2.

(d)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss and the bottleneck loss regularizer considering the channel 3.

Figure 3: Comparison between accuracy plots for every channel using the bottle-
neck regularizer.
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(a)

Accuracies of the long-axis segmentation model using a combination of dice loss
and pixel loss.

(b)

Accuracies of the long-axis segmentation model using a combination of dice loss,
pixel loss and the total persistence loss regularicer with the inputs the persistence
diagrams considering only three connected components in the labels.

(c)

Accuracies of the long-axis segmentation model using a combination of dice
loss, pixel loss and the bottleneck loss regularizer with the inputs the persistence
diagrams considering only three connected components in the labels.

Figure 4: Comparison between an accuracy plot of a segmentation performed
without regularizers and accuracy plots forcing from a segmentation performed
with a preselected set of ideal persistence diagrams.


