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Abstract

The aim of this work is to examine spatial statistics fundamentals and to study
three different types of models used for flux migration forecasting: gravity models,
radiation models and deep gravity models. The attention is drawn on Gaussian
random fields, stationarity, kriging, Gaussian autoregression models and Markov
random fields. Four gravity models, their respective four multi-linear regression
models and a radiation model are implemented, all pulling the same data, to
forecast migration flows within Catalonia (Spain) in 2019 between comarques by
using data from these locations.

2020 Mathematics Subject Classification. 60G60, 60J10, 62H11, 62J04, 62M20, 62M30, 91B72,
68T07
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"Flow generation" is the name given to the problem of studying migration
flows without using historical data. There is no denying that we live in dynamic
ecosystems and spatial flows are taking place constantly: commuters going to
cities for work, young people leaving their hometowns to pursue a university
degree, people going on vacation, escaping from natural disasters and wars, or
people who change their location for a better opportunity and well-being. The
motives are endless, and so are the variables that determine an exact flow predic-
tion. Studying mobility patterns provides useful information to governments and
entities that look after efficiency in big cities, counties and countries. Since it is
not possible to know exactly the migration flows that are happening, we need to
rely on mathematical models to generate these flows.

Gravity models were introduced in economics in the twentieth century. These
follow Newton’s gravity law to forecast economic flows such as trade, foreign
investment or migration flows between two countries, considering the distance
between them two, and the actual variable that is being studied. This had a pro-
jection towards the study of transport planning, spatial economics and epidemic
spreading patterns. Following a physical law for obtaining a model is not an ex-
clusive thing for gravity models: radiation models are based on how energetic
particles travel through vacuum. However, these models do not capture the struc-
ture of real flows due to the fact that there is a large amount of information missing
and not taken into consideration. The complexity of the geographical landscape
requires of more data than just one variable and the distance between the ori-
gin and destination of the flow: more detailed data needs to be imputed and it
is necessary to understand the characteristics of the spatial flows. This is why
deep learning provides better results: they take into account more data and can
generate realistic flows without information regarding historical data.

The same way that we are not able to register every migration and we use
models to forecast them, many times, data scientists struggle to obtain data of any
kind due to its expensiveness. This is not different to data related to locations. For
instance, we cannot run air pollution tests in every squared kilometer to obtain a
pollution map: it would take a lot of time and money. Once again, we need to rely
on mathematical methods to sort this problem out. Spatial statistics is the area
of study dedicated to statistical analysis of data with spatial information, adding
uncertainty quantification. It gives a probabilistic frame to answer spatial-location
questions. We find land surveying at least in 1400 B.C. in Egypt where the dimen-
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sions of taxable land plots were measured. Areas as botany and ethology have
contributed to spatial statistics research through studying how plants distribute
and animals migrate. This area still has many active issues that are part of the
modern research’s agenda: definition of objects of study, best analytical opera-
tions, how to present data spatially, presentation of results. In this dissertation the
attention is dedicated to provide an introduction to spatial statistics.



Chapter 1

Random Field Modelling

In this chapter, random fields modelling is presented, setting off from Kol-
mogorov’s work from 1933 [3] and the consistency theorem. Gaussian random
fields and some stationarity concepts are revised using the textbook written by P.
Billingsley [34] and Adler and Taylors’ book [38]. Notation about covariance func-
tions are followed using the same notation as Schlather [30] and Steins’[31] books.
As for Kriging, simple and ordinary kriging are explained tracing N. Cressie [33]
and G. Matheron [15], [16] and [17]’s work from the early 1960s. Some work fol-
lows the handbook of spatial statistics written by A. Gelfand, P. Diggle, M. Fuentes
and P. Guttorp [1], and we suggest the reader to have a further revision using this
book.

1.1 Gaussian Random Fields

Pollution, minimum temperatures or wave height on a given day, monthly
precipitation an many other data are often represented on maps. These maps can
be described by random quantities indexed by points in a region of interest, and
the ensemble of these is called random field:

Definition 1.1. Let (Ω, F, P) be a probability space. A random field is a family X =

{Xt}t∈T of random variables Xt indexed by elements t in a subset T ⊆ Rd and defined on
the same probability space.

Let {t1, . . . , tn} ∈ T be a finite set of index values. The random vector (Xt1 , . . . ,
Xtn) has a well-defined probability distribution determined by its joint cumulative
distribution function Ft1,...,tn(x1, . . . , xn) = P(Xt1 ≤ x1; . . . ; Xtn ≤ xn), where xi ∈ R

1
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for i = 1 ÷ n. The Kolmogorov’s Consistency Theorem proves that the probability
distribution of X is uniquely defined by finite dimensional distributions, which are
the set of all joint cumulative distribution functions given t1, . . . , tn, and n ∈ N.
For more details about the theorem and its proof, consult the paper [3].

From now on we are going to assume that these joint distributions are normal,
so only the mean and covariance function is required to be stated. This will ease
our work and relies on the central limit theorem, which states that even when
independent random variables with finite variance are not normally distributed,
their distribution when they are summed up tends towards a normal distribution.
This accounts for Gaussian models popularity.

Definition 1.2. A random variable is normally (or Gaussian) distributed if its probability
density function is

f (x) =
1

σ(2π)1/2 exp

{
−1

2

[
x − µ

σ

]2
}

,

being µ the mean of the distribution and σ the standard deviation.

Formalizing the generalization of the one-dimensional normal distribution to
higher dimensions, a random vector is n-variate normally distributed if every n-
linear combination of its n components has a univariate normal distribution:

Definition 1.3. A random vector (X1, . . . , Xn) has a multivariate normal distribution
with mean vector m = (EX1, . . . , EXn) ∈ Rn and n × n covariance matrix Σ, being
Σij = Cov(Xi, Xj), if any linear combination a⊤X = ∑n

i=1 aiXi, a ∈ Rn, is normally
distributed.

Definition 1.4. Let X be a random vector of dimension n with multivariate normal dis-
tribution. Its join density function is

ϕ(x) =
(

1
2π

)n/2

|Σ|−1/2 exp
{
−1

2
(x − µ)⊤Σ−1(x − µ)

}
where µ is its mean vector, Σ is its covariance matrix and |Σ| is the determinant of Σ.

We can finally define a Gaussian random field:

Definition 1.5. Let (Ω, F, P) be a probability space. A Gaussian random field is a family
X = {Xt}t∈T of random variables Xt indexed by t in a subset T ⊆ Rd and defined on the
same probability space that for any finite set t1, . . . , tn, the random vector (Xt1 , . . . , Xtn)

has a multivariate normal distribution.
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Proposition 1.6. Let m : T → R; m(t) = EXt be the mean of a Gaussian random
field X, being T ⊆ Rd. The function ρ : T × T → R, ρ(ti, tj) = Cov(Xti , Xtj) is its
covariance, if and only if ρ is non-negative definite, this is, for any t1, . . . , tn, n ∈ N the
matrix (ρ(ti, tj))

n
i,j=1 is non-negative definite. In different words, the matrix (ρ(ti, tj))

n
i,j=1

is symmetric and satisfies the property

n

∑
i=1

n

∑
j=1

aiρ(ti, tj)aj ≥ 0.

Proof. "⇐" We check the consistency of the finite dimensional distributions. Choos-
ing µt1 , . . . , µtn a multivariate normal with the covariance matrix Σ(t1, . . . , tn) filled
with ρ(ti, tj). µt1 , . . . , µtn is well defined since by hypothesis Σ(t1, . . . , tn) is non-
negative definite. Besides, µt1 , . . . , µtn are symmetric and their marginals are also
normal with the covariance matrix since they are normal, so it is consistent. Fi-
nally, the Kolmogorov’s consistency theorem is applied.

"⇒" by definition of covariance, it is non-negative definite. QED

1.2 Stationarity

We fix the index set to T = Rd in this section.

Definition 1.7. A random field X = (Xt)t∈Rd is strictly stationary if for all finite sets
t1, . . . , tn ∈ Rd, n ∈ N, all k1, . . . , kn ∈ R and all s ∈ Rd,

P(Xt1+s ≤ k1 ; . . . ; Xtn+s ≤ kn) = P(Xt1 ≤ k1 ; . . . ; Xtn ≤ kn)

Let now X be strictly stationary and its variance EX2
t < ∞ for all t ∈ Rd. Then

P(Xt+s ≤ k) = P(Xt ≤ k), ∀k,

so that both Xt and Xt+s have same distribution. Also, EXt = EXt+s, thus the
mean funtion must be constant. Finally, before defining when a random field
is weakly stationary, notice that if we now consider (Xt1 , Xt2) and (Xt1+s, Xt2+s)

satisfying

P(Xt1+s ≤ k1 ; Xt2+s ≤ k2) = P(Xt1 ≤ k1 ; Xt2 ≤ k2)

so they have same distributions, then their covariance are equal:

Cov(Xt1+s, Xt2+s) = Cov(Xt1 , Xt2)
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and particularly if we set s = −t1 we obtain

ρ(t1, t2) = ρ(t1 + s, t2 + s) = ρ(0, t2 − t1)

which is a function of t2 − t1.

Definition 1.8. A random field X = (Xt)t∈Rd is weakly stationary if

1. EX2
t < ∞, ∀t ∈ Rd

2. EXt ≡ m is constant

3. Cov(Xt1 , Xt2) = ρ(t2 − t1) for some ρ : Rd → R.

Proposition 1.9. Let X = (Xt)t∈Rd be a Gaussian random field. If X = (Xt)t∈Rd is
weakly stationary, it is also strictly stationary.

Proof. Let (Xt1 , . . . , Xtn) a random vector, whose mean vector is (m, . . . , m) and co-
variance matrix Σ(t1, . . . , tn) filled with ρ(tj − ti). The shifted vector is (Xt1+s , . . . ,
Xtn+s), which also follows a normal distribution like the random vector and has
(m, . . . , m) as mean vector and covariance matrix Σ(t1 + s, . . . , tn + s) filled with
ρ(tj + s − (ti + s)) = ρ(tj − ti), no matter the s chosen. Hence, X is strictly station-
ary. QED

Proposition 1.10. Let ρ : Rd → R be the covariance function of a weakly stationary
(Gaussian) random field. The following holds:

1. ρ(0) ≥ 0

2. ρ(t) = ρ(−t), ∀t ∈ Rd

3. |ρ(t)| ≤ ρ(0), ∀t ∈ Rd

Proof.

1. ρ(0) = Cov(X0, X0) = Var(X0) ≥ 0 by definition of variance.

2. ρ(t) = Cov(X0, Xt) = Cov(Xt, X0) = ρ(−t)

3. |ρ(t)|2 = |E[(Xt − m)(X0 − m)]|2 ≤ E[(Xt − m)2]E[(X0 − m)2] = ρ(0)2 which
proves the third claim by taking the square root on both sides. QED

Now let’s consider a weakly stationary random field X and the increment
Xt1 − Xt2 for t1, t2 ∈ T to define a even weaker form of stationarity. We can write
the variance of the increment as the following, so it only depends on the spatial
lag t2 − t1:

Var(Xt2 − Xt1) = Var(Xt2) + Var(Xt1)− 2Cov(Xt2 , Xt1) = 2ρ(0)− 2ρ(t2 − t1)
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Definition 1.11. A random field X = (Xt)t∈Rd is intrinsically stationary if

1. EX2
t < ∞, ∀t ∈ Rd

2. EXt ≡ m is constant

3. Var(Xt1 − Xt2) = f (t2 − t1) for some f : Rd → R

1.3 Kriging

The semi-variogram is often used in geostatistics instead of variance. It only
requires the weaker assumption of intrinsic stationarity. The semi-variogram al-
lows analizing the spatial behaviour of a variable in a defined area, obtaining an
experimental variogram that displays the maximal distance and the way a point
influences another depending on the distance. We can obtain the scope, this is
the maximal distance where a sample influences another sample, and the vicinity
where we can search for samples to estimate the value in a specific point. An-
other application is to use the kriging methodology through the data obtained by
a theorical variogram.

Definition 1.12. Let X = (Xt)t∈Rd be intrinsically stationary. Then, the semi-variogram
γ : Rd → R is defined by

γ(t) =
1
2

Var(Xt − X0), t ∈ Rd.

Note: For weakly stationary random fields we have γ(t) = ρ(0)− ρ(t). Partic-
ularly, γ(0) = ρ(0)− ρ(0) = 0.

Now suppose that, given an intrinsically stationary random field X, we get the
observations via the linear model

Yi = Xti + Ei, i = 1 ÷ n

with additional measurement error terms Ei that are independent, identically dis-
tributed and with mean of zero, with variance σ2

E. Then using the definition of
covariance used before with a γ,

1
2

Var(Yj − Yi) = γX(tj − ti) +
1
2

Var(Ej − Ei) = γX(tj − ti) + σ2
E1{i ̸= j}

so we have
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γY(t) =


γX(t) + σ2

E , t ̸= 0

γX(t) , t = 0

which has a discontinuity in t = 0. This is called the nugget effect. We can intu-
itively assume that as the distance between two sampled values increases, their
dependence between them two diminishes. This can be seen as this limit when it
exists: lim∥t∥→∞ρ(t) = 0. If it exists, we define the sill as lim∥t∥→∞γ(t). The partial
sill, considering the nugget effect, is defined as lim∥t∥→∞γ(t)− lim∥t∥→0γ(t).

Considering the case where there is only one available single finite sample
Xt1 , . . . , Xtn for n ∈ N of the random field X and we want to implement statistical
inference, we assume at least intrinsic stationarity to get an artificial replication.
So, given lag t, all pairs of observations that are ’around’ t apart and to average,
are going to be considered. By doing this we get the following concept:

Definition 1.13. Let Xt1 , . . . , Xtn for n ∈ N, be a finite sample available of a random field
X. The Matheron estimator is defined as:

γ̂(t) =
1

2|N(t)| ∑
(ti ,tj)∈N(t)

(Xtj − Xti)
2

where N(t) = {(ti, tj) : tj − ti ∈ B(t, ϵ)} is the t-neighbourhood, |·| denotes cardinality,
and B(t, ϵ) is the closed ball of radius ϵ and center t.

Two things deserve special mention here. First, the Matheron estimator is
practically unbiased when N(t) is not empty. Still considering X intrinsically
stationary, Eγ̂(t) is the average value of γ(tj − ti) over N(t): we obtained this
because

2|N(t)|Eγ̂(t) = ∑
(ti ,tj)∈N(t)

E
[
(Xtj − Xti)

2
]
= 2 ∑

(ti ,tj)∈N(t)
γ(tj − ti)

Second, the ϵ must be large enough to have a fair number of points in N(t) to
have a stable average, but also small enough to have γ(tj − ti) ≈ γ(t) for tj − ti in
the ball B(t, ϵ).

Furthermore, the Matheron estimator is not parametric but any family γθ that
minimises

∑
j

wj(γ̂(hj)− γθ(hj))
2
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can fit, where wj can either be, for instance, equal to |N(hj)| or |N(hj)|/γθ(hj)
2

and the family of hj is finite. As for the latter value for wj, notice that the smaller
the semi-variogram, the larger the weight for a pair of observations at that aprox-
imated lag, to make up for their rare occurrence.

Focusing now on the goal of making a prediction of the value at a certain
location t0 where no measure has been made, having observed previously values
Xt1 = xt1 , . . . , Xtn = xtn of a random field X = (Xt)t∈Rd at n locations ti ∈ Rd, i =
1 ÷ n, we need, though, the mean function m and the covariance ρ of X.

A linear predictor of Xt0 has the form

X̂t0 = c(t0) +
n

∑
i=1

ciXti

hence,

EX̂t0 = c(t0) +
n

∑
i=1

cim(ti)

then the predictor X̂t0 is unbiased, this is EX̂t0 = m(t0), if and only if

c(t0) = m(t0)−
n

∑
i=1

cim(ti)

Definition 1.14. The mean squared error (mse) of X̂t0 is defined as

E[(X̂t0 − Xt0)
2] = Var(X̂t0 − Xt0) + (E[X̂t0 − Xt0 ])

2

Basically the mse is the sum of the variance and the bias. It is mse(X̂t0) =

Var(X̂t0 − Xt0) when the predictor is unbiased.

Definition 1.15. Let Xt1 = xt1 , . . . , Xtn = xtn be a sample from a random field X =

(Xt)t∈Rd at n locations ti ∈ Rd, i = 1 ÷ n, and collect them in the vector Z. Let Σ be the
covariance matrix of Z, existing and non-singular. Let K = (Ki)

n
i=1 be the n-vector with

entries Ki = ρ(ti, t0). The simple kriging estimator of Xt0 is defined as

X̂t0 = m(t0) + K⊤Σ−1(Z − EZ).

This was named after D.G. Kridge, statistician, mining engineer and pioneer
in the field of geostatistics.

Theorem 1.16. Let Xt1 = xt1 , . . . , Xtn = xtn be a sample from a random field X =

(Xt)t∈Rd at n locations ti ∈ Rd, i = 1 ÷ n, and collect them in the vector Z. Let Σ be the



8 Random Field Modelling

covariance matrix of Z, existing and non-singular. Let K = (Ki)
n
i=1 be the n-vector with

entries Ki = ρ(ti, t0). Then, the simple kriging estimator of Xt0

X̂t0 = m(t0) + K⊤Σ−1(Z − EZ)

is the best linear predictor of Xt0 , t0 ∈ Rd, regarding the mean squared error. The mean
squared prediction error is given by

ρ(t0, t0)− K⊤Σ−1K.

Proof. First we have mse(X̂t0) = Var(X̂t0 − Xt0), since the predictor is unbiased,
and

X̂t0 − Xt0 = c(t0) +
n

∑
i=1

ciXti − Xt0 .

To use a simpler notation, we write c⊤ = (c1, . . . , cn) and Z⊤ = (Xt1 , . . . , Xtn), so
we have Var(X̂t0 − Xt0) = Var(c⊤Z − Xt0) = c⊤Σc − 2c⊤K + ρ(t0, t0), being Σ an
n × n matrix filled up with ρ(ti, tj) and K a n-vector filled up with ρ(ti, t0). The
derivative with respect to ∂c is 2Σc − 2K. This is zero when c = Σ−1K given an
invertible Σ. Nevertheless, notice that whenever Σ is singular, there would be a
solution anyways since K is in the column of Σ.

Let c̃ be a solution of Σc̃ = K. We are going to verify that the null solution
of the derivative is actually the minimiser of the mse. Rewriting the combination
c⊤Z as (c̃ + (c − c̃))⊤Z. To make the notation simpler, let’s call d = c − c̃, so we
have

Var((c̃ + d)⊤Z − Xt0) = c̃⊤Σc̃ + d⊤Σd + 2c̃⊤Σd − 2c̃⊤K − 2d⊤K + ρ(t0, t0)

= c̃⊤Σc̃ − 2c̃⊤K + d⊤Σd + ρ(t0, t0)

= ρ(t0, t0)− c̃⊤K + d⊤Σd

using in the second and last equality that K = Σc̃.
Notice that adding a scalar constant only affects the bias but not the variance.

By adding d to c̃ it only adds a new non-negative term d⊤Σd due to the fact that
the covariance matrix Σ is non-negative. QED

It is worth mentioning that the mean squared prediction error is smaller than
the variance of Xt0 , and this reduction is explained by the fact that the estimator
X̂t0 considers information from locations around t0.

The mean squared error is also called Bayesian loss. The Bayes estimator opti-
mises the Bayes loss over all estimators that are functions of the sample Xt1 , . . . , Xtn .
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Theorem 1.17. Let X = (Xt)t∈Rd be a random field, Xt1 , . . . , Xtn a sample from X, at n
locations ti ∈ Rd, i = 1 ÷ n, collected in the n-vector Z. Then the Bayes estimator of Xt0 ,
t0 ∈ Rd, is given by X̂t0 = E[Xt0 |Z]

Proof. Based on the sample Z, suppose X̃t0 = f (Z) and M = E[Xt0 |Z].

E
[
(X̃t0 − Xt0)

2
]
= E

[
(X̃t0 − M + M − Xt0)

2
]

= E
[
(X̃t0 − M)2

]
+ E

[
(M − Xt0)

2]+ 2E
[
(X̃t0 − M)(M − Xt0)

]
.

Since both M and X̃t0 are functions of Z, we get

E
[
(X̃t0 − M)(M − Xt0)

]
= E

(
E
[
(X̃t0 − M)(M − Xt0)

]
| Z
)

= E
[
(X̃t0 − M)(M − E(Xt0 | Z))

]
= 0.

Finally,

E
[
(X̃t0 − Xt0)

2
]
= E

[
(X̃t0 − M)2

]
+ E

[
(M − Xt0)

2] ≥ E
[
(M − Xt0)

2] .

Note that it is an equality iif E
[
(M − Xt0)

2] = 0.
QED

The Bayes estimator coincides in distribution with the best linear predictor
whenever normality is provided. The Bayes estimator of a component is linear
in Z given the other components, provided multivariate normally distributed ran-
dom vectors and with m(t0) + K⊤Σ−1(Z − EZ) and the conditional variance is
ρ(t0, t0)− K⊤Σ−1K, which depends on Z (the covariances). In addition, we get the
variance as follows

Var(Xt0) = EVar(Xt0 |Z) + Var(E(Xt0 |Z)) = ρ(t0, t0)− (ρ(t0, t0)− K⊤Σ−1K)

= K⊤Σ−1K

Now let’s see the case when we have an unknown global mean. This case is
called ordinary kriging. Consider the model Xt = µ + Et, t ∈ Rd, being µ ∈ R

the unknown global mean and Et a zero mean random field, whose covariance
function is Cov(Et, Es) = ρ(t, s). We are searching a linear unbiased predictor that
optimises the mse, given samples of X at t1, . . . , tn, n ∈ N,

X̂t0 = c(t0) +
n

∑
i=1

ciXti
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at a location t0 ∈ Rd. Using the same notation as before for Z and K. The simple
kriging estimator would be

X̂t0 = µ + K⊤Σ−1(Z − EµZ)

which cannot be computed since we miss µ.

Theorem 1.18. Let be Xt1 = xt1 , . . . , Xtn = xtn sampled from a random field X =

(Xt)t∈Rd with unknown constant mean at n locations ti ∈ Rd, i = 1 ÷ n, and collect
them in the vector Z. Let Σ be the covariance matrix of Z, existing and non-singular. Let
K = (Ki)

n
i=1 be the n-vector with entries Ki = ρ(ti, t0). Then,

X̂t0 = K⊤Σ−1Z +
1 − 1⊤Σ−1K

1⊤Σ−11
1⊤Σ−1Z

is the best linear predictor of Xt0 , t0 ∈ Rd in terms of mean squared error. The mean
squared prediction error is equal to

ρ(t0, t0)− K⊤Σ−1K +
(1 − 1⊤Σ−1K)2

1⊤Σ−11

the last term accounts for the uncertainty regarding the mean.

Proof. Consider

µ = EµX̂t0 = c(t0) + µ
n

∑
i=1

ci

unbiased, for all µ. Notice that when µ = 0 =⇒ c(t0) = 0, hence ∑n
i=1 ci = 1.

Being c⊤ = (c1, . . . , cn), we want to optimise the variance Varµ(c⊤Z − Xt0) with
the scale constraint on c⊤ by using the Euler-Lagrange method. Since Eti is a zero
mean random field, Eti = Xti − µ, then the expected value, considering

(X̂t0 − Xt0)
2 =

(
n

∑
i=1

ci(Xti − µ)− (Xt0 − µ)

)2

= E2
t0
+

(
n

∑
i=1

ciEti

)2

− 2Et0

n

∑
i=1

ciEti ,

is

E
[
(X̂t0 − Xt0)

2] = ρ(t0, t0) +
n

∑
i=1

n

∑
j=1

cicjρ(ti, tj)− 2
n

∑
i=1

ciρ(t0, ti).

To make the notation easier we write 1⊤ = (1, . . . , 1) so we have

ρ(t0, t0) + c⊤Σc − 2c⊤K + λ(c⊤1 − 1)
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the gradient equations (also called score or informant equations) follow as{
0 = 2Σc − 2K + λ1
1 = c⊤1

Multiplying the first equation by 1⊤Σ−1 and assuming that Σ is non-singular,
we get {

0 = 21⊤c − 21⊤Σ−1K + λ1⊤Σ−11
1 = c⊤1

and the Lagrange multiplier is then

λ = 2
1⊤ ∑−1 K − 1⊤c

1⊤Σ−11
= 2

1⊤ ∑−1 K − 1
1⊤Σ−11

.

Now we substitute this value into the first equation and we obtain

c = Σ−1K − λ

2
Σ−11 = Σ−1K +

1 − 1⊤Σ−1K
1⊤Σ−11

Σ−11

and the mean squared error is

ρ(t0, t0) + c⊤Σc − 2c⊤K = ρ(t0, t0)− K⊤Σ−1K +
(1 − 1⊤Σ−1K)2

1⊤Σ−11
.

Finally, let’s see that it is indeed the optimised mse. Given an unbiased linear
predictor (c + d)⊤1 = 1, that is, d⊤1 = 0, whose mse is

ρ(t0, t0) + c⊤Σc − 2c⊤K + d⊤Σd + 2c⊤Σd − 2d⊤K.

We have d⊤Σc = d⊤K when it is not biased using the expression for c. Thus,
we obtain that d = 0 makes the optimal mse.

QED

Note that in this case the mse is larger than when provided simple kriging.

Before getting into the last part of this section, the universal kriging, which
relaxes the constant mean assumption, it is important to mention the case where
Z is sampled from a Gaussian random field (Xt)t∈Rd . In this case we have a
multivariate normally distributed with a mean µ that is constant and unknown to
us, however we know the covariance matrix Σ which is non-singular.
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The log likelihood at Z is the following:

−1
2
(Z − µ1)⊤Σ−1(Z − µ1) = −1

2 ∑
i

∑
j
(Xti − µ)Σ−1

ij (Xtj − µ)

we derive it with respect to µ and we obtain:

−1
2 ∑

i
∑

j

[
−Σ−1

ij (Xti − µ)− Σ−1
ij (Xtj − µ)

]
= 1⊤Σ−1(Z − µ1)

now, this is equal to zero iif 1⊤Σ−1Z = µ1⊤Σ−11, thus

µ̂ =
1⊤Σ−1Z
1⊤Σ−11

Finally, we obtain the ordinary kriging predictor by substituting µ̂, which is
the unique maximiser of the log likelihood because the second order derivative
−1⊤Σ−11 is non-positive, in the simple kriging estimator:

X̂t0 = µ̂ + K⊤Σ−1(Z − µ̂1)

To finish this chapter, we are going to have a look through Universal Kriging.
This model is suitable when we count on sampled values that depend linearly on
p explanatory variables m(t)i, for i = 1 ÷ p and it eases off the constant mean
that the ordinary kriging assumes, so we have a more general assumption which,
given an unknown parameter vector β ∈ Rp and a known function m : Rd → Rp,
is that

EXt = m(t)⊤β

Considering the unbiasedness condition, a linear estimator X̂t0 = c(t0)+∑n
i=1 ciXti

is unbiased when the following equality satisfies for all β:

m(t0)
⊤β = c(t0) +

n

∑
i=1

cim(ti)
⊤β

since we have polynomials on both sides of the equality, coefficients must be equal,
which means that c(t0) = 0 and m(t0) = ∑n

i=1 cim(ti). Under this constraint, the
universal kriging looks for the optimisation of the mse

E

( n

∑
i=1

ciXti − Xt0

)2

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Since M⊤Σ−1M is regular, being M the nxp matrix with rows m(ti), its inverse
(M⊤Σ−1M)−1 exists and, hence, the optimal linear coefficients are the components
of the vector

c = Σ−1
[
K + M(M⊤Σ−1M)−1(m(t0)− M⊤Σ−1K)

]
and its mse is:

ρ(t0, t0)− K⊤Σ−1K + (m(t0)− M⊤Σ−1K)⊤(M⊤Σ−1M)−1(m(t0)− M⊤Σ−1K)

It is important to mention that the covariance matrix Σ has to be of our knowl-
edge, and also that, due to the fact that the field is neither weakly nor instrinsi-
cally stationary as the mean is not constant, the empirical semi-variogram cannot
be used for the estimation. A solution of our interest is to estimate β in terms of
least square, because we would need to know β if we approach this issue via the
residual process (Et)t∈Rd instead. Having said that, we write:

Z = Mβ + E

where Z is again the sample Xti and the rows of M are the m(ti)
⊤ and E is the

vector of residuals. Wanting to minimise

n

∑
i=1

(Xti − m(ti)
⊤β)2 = (Z − Mβ)⊤(Z − Mβ)

over β, its gradient with respect to ∂β is −2M⊤(Z − Mβ), then equalising this to
zero we obtain that

β̂ =
M⊤Z
M⊤M

The vector Z − Mβ̂ has a constant mean of zero when residuals provided also
have mean zero, and its covariance might be estimated by using its empirical
semi-variogram. This aproximation, though, may incur bias.

For more information about maximum likelihood methods and applications,
consult chapter 14 of the book [42].
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Chapter 2

Models and Inference for Areal
Unit Data

In this chapter, three topics are going to be studied: discrete random fields,
Gaussian autoregression models and Markov random fields. We use P. Whittle’s
work on Gaussian autorregression [35] and H. Rue [20]; and D. Brook’s for Besag’s
factorization theorem [10], [22]. Up next, as for Markov random fields, work
by P. Dobrushin is traced [40]. G. Grimmett paper is revised for Gibbs states.
We present as well the Metropolis-Hasting algorithm with the form presented
by Geyer and Thompson [7], having revised before Hastings’s book about Monte
Carlo sampling methods using Markov chains [43]. A brief introduction to Markov
chains, following the textbook written by Meyn and Tweedie [41] is also provided.

2.1 Discrete Random Fields

In this section, random fields are going to count on a discrete index set this
time. This allows us to use observations that have been gathered over areal units,
for instance: census territory boundaries, tomographic bins or simply squares.

Definition 2.1. Let T ̸= ∅ be a finite collection of ’sites’. A random field X on L is a
random vector (Xi)i∈T having L-valued components. If L is finite or countably infinite,
the distribution of X is specified by the probability mass function

πX(x) = P(X = x) = P(Xi = xi, i ∈ T), x ∈ LT.

Otherwise, L ⊆ R and X absolutely continuous with joint probability density πX.

15
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To have a better glimpse of the inference for areal unit data that is being re-
vised in this chapter, let’s have a look at the Ising Model and CAR models. As you
will understand why in just a second, the Ising model was designed for study-
ing ferromagnetism in statistical mechanics where the discrete variables show the
dipole atomic moments of atomic spins, that can be either 1 or -1. CAR models
are mainly used to have a description of spatial variations of explanatory variables
(either latent variables or spatially varying random effects) and spatial relations
among the data, as well as finding ’hot spots’ or clusters.

Definition 2.2. Let’s suppose we have data records of a phenomenon of interest that when
it is observed in a region represented by i ∈ T, the data record equals to 1, and 0 otherwise.
Thus, our L = {0, 1}. Denoting i ∼ j when the i and j regions are adjacent. The Ising
Model is defined by the probability mass function

πX(x) ∝ exp

α ∑
i∈T

xi + β ∑
{i,j}:i∼j

xixj

 , x ∈ LT

where α, β ∈ R.

The α impacts the prevalence. When β = 0, the phenomenon of interest in
each region is observed with probability exp α

1+exp α , independently of the rest of the
regions. When β > 0 presence in a given region encourages presence in regions
around, and when β < 0 presence in a given region discourages presence in re-
gions around. This model is also used in statistical physics to study magnetisation,
setting L = {−1, 1}.

Definition 2.3. Let X be a random field, multivariate normally distributed, with mean
zero, and covariance matrix (I − B)−1K, where K = σ2 I, being I = In the identity
matrix of size n, σ2 > 0 unknown, (I − B) non-singular, and (I − B)−1K symmetric and
positive definite. We assume bii = 0. B is usually a sparse matrix (this is, most elements
of the matrix are zero), for instance, B = ϕW, where ϕ is an unknown parameter, and
W = (wij) a known "neighbourhood" matrix that is: nonnegative (wij ⩾ 0), symmetric,
and wij > 0 ⇔ i ∼ j, this is, i and j are neighbours, (otherwise wij = 0). We assure that
bii = 0 assuming that the relation ∼ is non-reflexive (this is i ̸∼ i, ∀i ∈ T. The matrix
(I − B)−1K is said to follow a conditional autorregression (CAR) model.

Note: the matrix W is also called adjacency matrix. The Gerschgorin disc
theorem is useful to check that the matrix is positive definite.
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Definition 2.4. Let T ̸= ∅ be a finite collection of sites. The local characteristics of a
random field X on T with values in L are, whenever well-defined,

πi(xi|xT\{i}), i ∈ T, x ∈ LT.

The local characteristics for the CAR model are Gaussian distributions with{
E(Xi|Xj, j ̸= i) = ∑j ̸=i bijXj

Var(Xi|Xj, j ̸= i) = κi

This explains why it is called ’conditional autoregression’ model.

Considering the Ising model, we have

log

[
πi(1|xT\{i})

πi(0|xT\{i})

]
= α + β ∑

j∼i
xj

so, it is also known as first-order auto-logistic regression. Now,[
πi(1|xT\{i})

πi(0|xT\{i})

]
= exp

{
α + β ∑

j∼i
xj

}
;

[
πi(1|xT\{i})

1 − πi(1|xT\{i})

]
= exp

{
α + β ∑

j∼i
xj

}
;

πi(1|xT\{i}) = exp

{
α + β ∑

j∼i
xj

}
− πi(1|xT\{i}) exp

{
α + β ∑

j∼i
xj

}
;

πi(1|xT\{i})

(
1 + exp

[
α + β ∑

j∼i
xj

])
= exp

[
α + β ∑

j∼i
xj

]
;

πi(1|xT\{i}) =
exp

[
α + β ∑j∼i xj

]
1 + exp

[
α + β ∑j∼i xj

]
Note that πX(·|xT\{i}) only depends on xj, which are regions indexed by neigh-

bours of i. Let’s prove now that the local characteristics determine the distribution,
given strictly positive distributions.

Theorem 2.5 (Besag’s factorisation theorem - Brook’s lemma). Let X be an L-valued
random field on T = {1, . . . , N}, N ∈ N, such that πX(x) > 0, ∀x ∈ LT. Then,
∀x, y ∈ LT,

πX(x)
πX(y)

=
N

∏
i=1

πi(xi|x1, . . . , xi−1, yi+1, . . . , yN)

πi(yi|x1, . . . , xi−1, yi+1, . . . , yN)
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Proof. Since we assume by hypothesis that πX(x) is strictly positive, the denom-
inator is non-zero. We may write πX(x) = P(xn|x1, . . . , xxn−1)P(x1, . . . , xn−1) but
P(x1, . . . , xn−1)cannot be usefully factorised because we might not been able to
find P(xn−1|x1, . . . , xxn−2) with the conditional distributions given. However, we
can introduce yn and get

πX(x) =
πN(xN |x1, . . . , xN−1)

πN(yN |x1, . . . , xN−1)
πX(x1, . . . , xN−1, yN).

Operating on xn−1 now,

πX(x1, . . . , xN−1, yN) =
πN−1(xN−1|x1, . . . , xN−2, yN)

πN−1(yN−1|x1, . . . , xN−2, yN)
πX(x1, . . . , xN−2, yN−1, yN).

after an analogous introduction of yn−1. We get to the desired equation by repeat-
ing the reduction process. QED

This theorem proves that the local characteristics determine the entire distri-
bution for strictly positive distributions.

Corollary 2.6. Let X be an L-valued random field on a finite collection T ̸= ∅ of sites
such that πX(x) > 0, ∀x ∈ LT. Then the local characteristics determine the whole distri-
bution, that is, if Y is a random field having the same local characteristics as X, it only can
be πY ≡ πX.

Proof. Let a ∈ L be any element. Using Besag’s factorisation theorem, πX(x)
πX(a,...,a)

is determined by the local characteristics. Finally, we obtain the distribution by
normalisation. QED

2.2 Gaussian Autoregression Models

Let’s briefly define again the CAR model before presenting the SAR model:

Definition 2.7. Let K = diag(κi) be a diagonal n × n matrix with κi > 0 and B an
NxN matrix whose diagonal elements bii = 0. Then, provided I − B is invertible and
(I − B)−1K is positive definite, a random field X that is normally distributed with zero-
mean and covariance matrix (I − B)−1K is said to follow a conditional autoregression
(CAR) model.

Using the same notation from last definition and considering the normally-
distributed matrix E = (I − B)X, with mean zero and covariance matrix

(I − B)(I − B)−1K(I − B)⊤ = K(I − B)⊤,
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hence, we have an autoregression X = BX + E (the field E might be spatially
correlated, though, and this is the random irregularity or randomness that can be
found within a given data). In order to assume that this unexplained variation
is independent, we let E be normally distributed with diagonal covariance matrix
D = diag(λi) = (λi)i, with λi > 0 for i = 1 ÷ n. Hence, (I − B)−1D(I − B⊤)−1 is
the covariance matrix of X = (I − B)−1E.

Definition 2.8. Using the previous notation, the random field X = (I − B)−1E is a
simultaneous autoregression (SAR) model.

Proposition 2.9. Any SAR model can be written as a CAR model.

Proof. Let B be an n × n matrix such that I − B is non-singular and bii = 0, ∀i =
1 ÷ n, D an n × n positive definite diagonal matrix. Thus, (I − B)−1D(I − B⊤)−1

is well-defined, positive definite and symmetric. Now, let’s solve

(I − B)−1D(I − B⊤)−1 = (I − M)−1K

for K = diag(κi) and M. This is the same as

(I − B⊤)D−1(I − B) = K−1(I − M).

Finally, we set cii = 0 and we only have to find the scale factors κi. Writing γi for
the i-th element of the diagonal of D, ∀i = 1 ÷ n,

1
γi

+
n

∑
j=1

b2
ji

γi
=

1
κi

and, thus, κi > 0.
QED

Let’s now see the notion of interaction:

Definition 2.10. Let T ̸= 0 be a finite collection of sites, L ⊆ R. An interaction potential
An is a collection {VA : A ⊆ T} of functions VA : LT → R such that V∅(·) ≡ 0 and
VA(x) only depends on the restriction xA of x ∈ LT to sites in A. The interaction potential
V is said to be normalised with respect to a ∈ L if the property that Xi = a for some i ∈ A
implies that VA(x) = 0.

A Gibbs state is a random field whose distribution is defined in terms of inter-
action potentials:
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Definition 2.11. Let X be an L-valued random field on a finite collection T ̸= ∅ of
sites and V an interaction potential. Then X is a Gibbs state with interaction potentials
V = {VA : A ⊆ T}, VA : LT → R, if

πX(x) =
1
Z

exp

[
∑

A⊆T
VA(xA)

]
, x ∈ LT.

The constant Z is called partition function and is quite hard to deal with.

Now let’s see the Möbius inversion formula that we will use to prove a theorem
after.

Theorem 2.12 (Möbius inversion formula). Let T be a finite set and f , g → R two
functions defined on the power set of T, P(T). Then ∀A ⊆ T,

f (A) = ∑
B⊆A

g(B) ⇐⇒ g(A) = ∑
B⊆A

(−1)|A\B| f (B).

This result helps to prove the previous theorem. In particular, it says that there
is only one form to represent a function f like f (A) = ∑B⊆A g(B).

Proof. "⇒" Let g be fixed and f (A) = ∑B⊆A g(B) for A ⊆ T.

∑
B⊆A

(−1)|A\B| f (B) = ∑
B⊆A

(−1)|A\B|
[

∑
C⊆B

g(C)

]
= ∑

B⊆A

[
∑

C⊆B
(−1)|A\C|(−1)−|B\C|g(C)

]

= ∑
C⊆A

[
∑

B:C⊆B⊆A
(−1)|B\C|

]
(−1)|A\C|g(C) = g(A),

where for the last equality we take into consideration the fact that, unless A = C,

|A\C|

∑
k=0

(
|A\C|

k

)
(−1)k = 0.

"⇐" Let f be fixed and g(A) = ∑B⊆A(−1)|A\B| f (B). Now, analogously,

∑
B⊆A

g(B) = ∑
B⊆A

[
∑

C⊆B
(−1)|B\C| f (C)

]

= ∑
C⊆A

[
∑

B:C⊆B⊆A
(−1)|B\C|

]
f (C) = f (A).

QED
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Theorem 2.13. Let X be an L-valued random field on a finite collection T ̸= ∅ of sites
such that πX(x) > 0, ∀x ∈ LT. Then, X is a Gibbs state with respect to the canonical
potential

VA(x) = ∑
B⊆A

(−1)|A\B| log πX(xB), x ∈ LT

where

xB
i =


xi f or i ∈ B

a ∈ L otherwise

and a is a prefixed value. This is the unique normalised potential with respect to a. More-
over, for any element i ∈ A,

VA(x) = ∑
B⊆A

(−1)|A\B| log πi(xB
i |xB

T\i), x ∈ LT.

Proof. Let x ∈ LT. We can set fx(A) = log πX(xA), being A ⊆ T, since πX(x) > 0.
We define now the interaction potential by: VA : LT → R,

VA(x) = ∑
B⊆A

(−1)|A\B| fx(B), x ∈ LT.

Using the Möbius inversion formula we have

πX(x) = exp [ fx(T)] = exp

[
∑

A⊆T
VA(x)

]
.

Now, unfixing x, we obtain that πX is a Gibbs state, whose interaction potential is
{VA : A ⊆ T}. Let’s see now that this interaction potential is normalised. For any
i ∈ A:

VA(x) = ∑
i ̸∈B⊆A

(−1)|A\B| log πX(xB) + ∑
i∈B⊆A

(−1)|A\B| log πX(xB)

= ∑
B⊆A\{i}

(−1)|A\B| log πX(xB)− ∑
B⊆A\{i}

(−1)|A\B| log πX(xB∪{i})

= ∑
B⊆A\{i}

(−1)|A\B|
[
log πX(xB)− log πX(xB∪{i})

]
.

If xi = a ⇒ xB = xB∪{i}, ∀B ⊆ A\{i} ⇒ VA = 0. Hence, the interaction potential
is normalised with respect to a, and xB

T\{i} = xB∪{i}
T\{i} , ∀B ⊆ A\{i}. Thus

πX(xB)

πX(xB∪{i})
=

πi(xB
i | xB

T\{i})

πi(xB∪{i}
i | xB∪{i}

T\{i} )
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Now we are going to see that VA ≡ UA, supposing πX is a Gibbs state with respect
to normalised potentials UA. Let’s fix x ∈ LT and note aT for the realisation with
only a-labels. We define the set function hx(A):

hx(A) = log
πX(xA)

πX(aT)
= ∑

B⊆A
[UB(x)− UB(aT)] = ∑

B⊆A
UB(x),

assuming in the last equation that the interaction potential U is normalised. For
all A ̸= ∅, using the Möbius inversion formula we have

UA(x) = ∑
B⊆A

(−1)|A\B|hx(B) = VA(x)− log πX(aT) ∑
B⊆A

(−1)|A\B| = VA(x).

Since it equals zero when A = ∅, we have finished. QED

2.3 Markov Random Fields

In this section we are going to consider a set of series, T, that has the property
of presenting a symmetric relation ∼. Now the interaction potentials VA(x) are
no longer present except for when A is a singleton or a pair i, j of ∼-related sites.
Now, the conditional distribution of the label at site i, given those at all other sides,
depends only on the labels of site i.

Definition 2.14. Let ∼ be a symmetric relation on the finite set T ̸= ∅ and define the
boundary of A ⊆ T by ∂A = {s ∈ T\A : s ∼ t, t ∈ A}. A random field X on T is a
Markov random field with respect to ∼ if

πi(xi|xT\i) = πX(Xi = xi|X∂i = x∂i)

Definition 2.15. Let T ̸= ∅ be a finite collection of sites. Let ∼ be a symmetric relation
on T. A clique with respect to ∼ is a subset C ⊂ T, for which s ∼ t, ∀s ̸= t ∈ C. The
family of cliques is denoted C.

Theorem 2.16 (Hammersley-Clifford). Let X be an L-valued random field on a finite
collection T ̸= ∅ of sites such that πX(x) > 0 for all x ∈ LT. Let ∼ be a symmetric
relation on T. Then X is a Markov random field with respect to ∼ if and only if

πX(x) = ∏
C∈C

φC(xC)

for some interaction functions φC : LC → R+ defined on cliques C ∈ C.
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This means that when given a Markov random field whose πX is positive, it
has a distribution that can be expressed by the interactions between neighbours,
and it can be written as

πX(x) = exp

[
∑

C∈C
logφC(xC)

]

and X is a Gibbs state with interactions potentials logφC that are not null and
restricted to cliques.

Proof. "⇒" Suppose that X is a Markov random field with πX > 0. Using the
theorem 2.12 we have that X is a Gibbs state with canonical potential

VA(x) = ∑
B⊆A

(−1)|A\B| log πi(xB
i |xB

T\i), x ∈ LT.

We claim that VA(x) = 0 for all A ̸∈ C. If A ⊆ T is not a clique, there are two sites,
s, t ∈ A, s ̸= t, with s ̸∼ t. Hence we have,

VA(x) = ∑
B⊆A

(−1)|A\B| log πs(xB
s |xB

T\s), x ∈ LT.

We rewrite this as

∑
B⊆A\{s,t}

(−1)|A\B| log πs(xB
s |xB

T\s)

+ ∑
B⊆A\{s,t}

(−1)|A\(B∪{s})| log πs(xB∪{s}
s |xB∪{s}

T\s )

+ ∑
B⊆A\{s,t}

(−1)|A\(B∪{t})| log πs(xB∪{t}
s |xB∪{t}

T\s )

+ ∑
B⊆A\{s,t}

(−1)|A\(B∪{s,t})| log πs(xB∪{s,t}
s |xB∪{s,t}

T\s ).

Hence we have

VA(x) = ∑
B⊆A\{s,t}

(−1)|A\B|log

 πs(xB
s |xB

T\s)πs(xB∪{s,t}
s |xB∪{s,t}

T\s )

πs(xB∪{t}
s |xB∪{t}

T\s )πs(xB∪{s}
s |xB∪{s}

T\s )


but, since s ̸∼ t, πs(xB

s |xB
T\s) = πs(xB∪{s,t}

s |xB∪{s,t}
T\s ) and πs(xB∪{t}

s |xB∪{t}
T\s ) =

πs(xB∪{s}
s |xB∪{s}

T\s ), we obtain that VA(x) = 0. Thus, πX(x) = ∏C∈C φC(xC) holds
since the only non-null interaction potentials are for cliques.
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"⇐" Let’s prove that a distribution like πX(x) = ∏C∈C φC(xC) presents the
Markov property. Suppose L countable and denote Ta

i x for the configuration,
which Xi is replaced by a. Then we have

πi(xi|xT\{i}) =
∏i∈C φC(xC)

∑a∈L
[
∏i∈C φC(Ta

i xC)
]

where the side on the right only depends on xi and x∂i. Note that for the absolutely
continuous case, the sum is an integral. QED

Corollary 2.17. Let X be an L-valued random field on a finite collection T ̸= ∅ of sites
such that πX(x) > 0, ∀x ∈ LT. Then, the spatial Markov property

π(XA = xA|XT\A = xT\A) = π(XA = xA|X∂A = x∂A)

holds ∀A ⊆ T, being A nonempty set.

Proof. Using the Hammersley-Clifford theorem,

π(XA = xA|XT\A = xT\A) =
∏A

⋂
C ̸=∅ φC(xC)

∑y∈LA ∏A
⋂

C ̸=∅ φC((T
y
A)C)

where we have replaced xA by y(xA, y ∈ LA) on the set A ⊆ T. QED

The Markov chain is a discreet stochastic process where the probability that an
events happens only depends on the previous event happened, no matter other
passed events. This helps us to use the Monte Carlo maximum likelihood esti-
mation method, since this needs samples from the model of interest. But before
talking about it, let’s define the Markov chain:

Definition 2.18. A Markov chain is a stochastic process of discreet time {Xn : n =

0, 1, . . . } with space of discreet states S where, ∀n ⩾ 0 and ∀x0, . . . , xn+1 ∈ S satisfies

P(Xn+1 = xn+1|X0 = x0, X1 = x1, . . . , Xn = xn) = P(Xn+1 = xn+1|Xn = xn).

This is called the Markov’s property.

In other words, it is an infinite sequence x1, x2, . . . , xk, xk+1, . . . of connected
variables such that when xk is known, for all k, xk+1 is independent of x1, x2, . . . , xk−1.
The following definition is more flexible and used because it gives enough condi-
tions for convergence:
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Definition 2.19. Given a sequence M0, M1, . . . of random variables. We say it is a
Markov chain with transition kernel 1 p(·, ·) if

P(Mt ∈ At; Mt−1 ∈ At−1; · · · ; M1 ∈ A1|M0 = m0)

=
∫

A1

. . .
∫

At−1

∫
At

p(m0, m1) . . . p(mt−2, mt−1)p(mt−1, mt)dm1 . . . dmt−1dmt

∀t ∈ N and all measurable Ai ⊆ Ω, i = 1÷ t. The fixed starting state m0 can be replaced
by any probability distribution on Ω. Of course, for countable state spaces the integral is
changed for a sum.

We might find tricky to work with the joint distribution πX for random fields
X, but we can use the local characteristics πi(xi|xT\{i}) since that will ease the
work. Having said that, we are going to implement the Metropolis-Hastings al-
gorithm to define transitions by making the components Xi one at a time. The
Metropolis-Hasting algorithm is a Monte Carlo method of Markov’s chain used to
obtain a sequence of random samples given a probability distribution that is diffi-
cult to do a direct sampling. It is also used for numerical integration, and mainly
for multidimensional distributions with a high number of dimensions. Finally,
we’ll see that the concept of periodicity can also be defined for Markov chains.

Definition 2.20. The Metropolis-Hastings algorithm has the following steps:

1. The current state is Mt = x ∈ LT. To sample a site i ∈ T and, given some probability
density q(x, y) a new label l ∈ L to yield state

y = (yj)j∈T =


yj = xj f or j ̸= i

yj = l f or j = i

2. Accept the proposal that has probability

A(x, y) =


1 i f πX(y)q(y, x) ≥ πX(x)q(x, y)

πX(y)q(y,x)
πX(x)q(x,y) otherwise

1It is a way of moving randomly from a given position to a new position in space.
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The A(x, y) are called the acceptance probabilities. Notice that the acceptance
probabilities only depend on

πX(y)
πX(x)

=
πi(l | xT\{i})

πi(xi | xT\{i})
.

The transition kernel can be obtained by combining both proposal and acceptance
probabilities: f or x ̸= y, p(x, y) = q(x, y)A(x, y).

Proposition 2.21. Let X be an L-valued random field on a finite collection T ̸= ∅ of sites.
Then the Metropolis-Hastings algorithm satisfies the following properties:

i. so-called ’detailed balance’

πX(x)p(x, y) = πX(y)p(x, y)

ii. πX is an invariant measure, this is, ∀ measurable A ⊆ LT,

πX(X ∈ A) =
∫

P(M1 ∈ A|M0 = x)πX(x)dx

when L = R, and when L is countable:

πX(X ∈ A) = ∑
x

P(M1 ∈ A|M0 = x)πX(x)

Proof. Suppose x ̸= y and πX(x)q(x, y) < πX(y)q(y, x). Then

πX(x)p(x, y) = πX(x)q(x, y) =
πX(x)q(x, y)
πX(y)q(y, x)

πX(y)q(y, x)

= A(y, x)πX(y)q(y, x) = πX(y)p(y, x)

This property (’detailed balance’) implies the invariance:∫
P(M1 ∈ A|M0 = x)πX(x)dx =

∫ (∫
A

p(x, y)πX(x)dy
)

dx

=
∫ (∫

A
p(y, x)πX(y)dy

)
dx =

∫
A

πX(y)
(∫

p(y, x)dx
)

dy =
∫

A
πX(y)dy.

QED

Definition 2.22. A Markov chain (Mt)t∈N0 on a countable state space Ω is irreductible
if ∀x, y ∈ Ω there exists some t ∈ N such that P(Mt = y|M0 = x) > 0. A Markov
chain (Mt)t∈N0 with state space Ω = RT is πX-irreductible if ∀x ∈ Ω and all Borel sets
A ⊂ RT for which πX(A) > 0 there exists some t ∈ N such that P(Mt = y|M0 = x) >
0.
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Note: due to the fact that the probability of returning a single state will be zero
when Ω = RT, the restriction to sets with positive probability is necessary.

Definition 2.23. A πX-irreductible Markov chain (Mt)t∈N0 is aperiodic if there is no
partition into non-empty measurable sets B0, . . . , Br−1, r ⩾ 2, such that ∀t ∈ N,

P(Mt ∈ Bt mod r|M0 = x ∈ B0) = 1

and the union of B0, · · · , Br−1 has πX-mass one.

Theorem 2.24 (Fundamental convergence theorem). If πX is an invariant probability
measure for a Markov chain (Mt)t∈N0 that is πX-irreductible and aperiodic, then Mt

converges to πX in total variation from πX-almost all initial states, this is,

lim
t→∞

sup
A

|P(Mt ∈ A|M0 = x)− πX(A)| = 0

for πX-almost all x. The supremum is taken over all measurable sets.

Theorem 2.25. Let X be an L-valued random field on a finite collection T ̸= ∅ of sites
and (Mt)t∈N0 a Metropolis-Hastings chain on Dπ = {x ∈ LT : πX(x) > 0}. If the
Markov chain governed by q is πX-irreductible and q(x, y) = 0 ⇔ q(y, x) = 0, then
(Mt)t∈N0 is πX-irreductible.

Proof. First, the condition of q(x, y) = 0 when q(y, x) = 0 implies that the ac-
ceptance probabilities on Dπ are strictly positive. Denoting the Markov chain by
(Qt)t∈N0

, ruled by the q(x, y) , qt its t-step transition kernel and pt the t-step transi-
tion kernel of Mt. Let’s see by induction that qt(x, y) > 0 ⇒ pt(x, y) > 0. For t = 1,
suppose q(x, y) > 0, x, y ∈ Dπ. Since A(x, y) > 0, p(x, y) ≥ q(x, y)A(x, y) > 0.
Now, for the step t + 1, suppose qt+1(x, z) > 0 for x, z ∈ Dπ, let’s denote St

p(x)
for the support of pt(x, ·) and St

q(x) for the support of qt(x, ·), and suppose that
St

q(x) ⊆ St
p(x). Since by assumption z ∈ St+1

q (x),∫
St

p(x)
qt(x, y)q(y, z)dy ≥

∫
St

q(x)
qt(x, y)q(y, z)dy > 0.

If z ̸∈ St+1
p (x), then the support of the function y 7→ pt(x, y)q(y, z) would be ∅. The

support of qt(x, ·)q(·, z) would have measure zero by the induction assumption,
which contradicts the inequality. To finish, given an A with positive πX-mass,
since q is πX-irreductible, a t ≥ 1 such that

P(Qt ∈ A|Q0 = x) =
∫

A
qt(x, y)dy > 0

can be found. We obtain, hence, that P(Mt ∈ A|M0 = x) > 0. QED
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Chapter 3

Methods for the Analysis of
Migration Flows

In this chapter, gravity and radiation models are presented and studied. There
is a large amount of literature available. Regarding gravity models, Head and
Mayer’s paper [24] has been revised for a better glimpse of their applications in
International Economics, as well as its economic foundations presented by Colwell
[9] and J. Bergstrand [5]. As for radiation models, recent papers by Inho Hong et
al [21] as well as C. Kang et al, [23] are traced. The first one provides a good
perspective regarding using the models with population data. We recommend
revising papers [11], written by Filippo Simini et al, for an elaborated study on
migration patterns. Literature regarding a comparison with radiation models is
followed through the paper written by A. Amini et al [2]. Finally, deep gravity
model is explained. The literature used for this section is mainly provided by its
authors F. Simini, G. Barlacchi, M. Luca, L. Pappalardo [13].

3.1 What is a gravity model?

Gravity models are models used to forecast and study certain conducts in
social sciences, based on Isaac Newton’s law of gravity1. They were introduced
in economics in the twentieth century by Willian J. Reilly (1931) with the Reilly’s
law of retail gravitation and George K. Zipf (1946) with his Zipf’s law, but it is
Tinbergen (1962), Poyhonen (1963), Pulliainen (1963), Geraci and Prewo (1977)

1Every particle attracts every other particle in the universe with a force that is directly proportional to the
product of their masses and inversely proportional to the square of the distance between their centers [14].

29
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and Abrams (1980) who estimate gravity equations in economics, even though
some authors reference Carey (1858) and Ravenstein (1885). For more information
about it, consult [5] and [29].

Similar to the gravitational interaction of two planets, gravity models use the
distance between two or more countries and their gross domestic product (GDP),
population, certain type of goods and services or any other apropiate variable
to try to estimate migration and trade flows, access to certain services (such as
health care), foreign direct investment, alliances on trade or traffic flow, among
other behaviours. The applications are endless to city planners, transportation
analysts, location firms, social scientists and many others to analyse migration,
commuting, vacationing, shopping, collecting and distributing [24][25].

The main most basic model is the following:

Fij = G ·
Mi · Mj

Dij

where G is a constant, Mi and Mj are the economic dimensions of each country
studied, Dij the distance between the two and Fij is the forecast. Intuitively, it is
fair to think that this model makes sense when considering the fact that the bigger
the distance, the bigger the costs related to the trade, migration or commuting and
thus the smaller the flow.

Given that the gravity model does not hold precisely, it is common to express

Fij = G ·
Mβ1

i · Mβ2
j

Dβ3
ij

· ηij

where η represents the error term, expected to be 1. β1 is called emissivity and it
is the potential to make the movement happen, oftentimes related to an overall
welfare. β2 is called atractiveness and it is the potential to attract movements. β3 is
a parameter of transport friction that justifies the efficiency of the transport between
the two locations. Since the friction of distance is greater when the destination is
further, the friction is rarely linear, and the justification is analogous for the other
two betas [9]. For instance: if there is a highway between locations i and j or any
improvement in the transport infrastructure then β3 will be lower compared to the
case of having an uncomfortable road; β1 will be higher if the rate of unemploy-
ment is high; β2 will be higher if the salaries are higher in that location or it is
more economically active.
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The conventional method to approach this model is by using logarithms on
both sides, so we get a log-log model:

ln Fij = β0 + β1 · ln Mi + β2 · ln Mj − β3 · ln Dij + ϵij

where β0 is ln G and ϵij, the error term, is ln ηij.

A logistic regression is the estimation of the parameters of a logistic model. A
logistic model, also called logit model, models the probability of an event to happen,
considering a linear combination of independent variables. We talk about a multi-
nomial logistic regression when we generalize the logistic regression to a multiclass
problem, which is a problem with multiple possible discrete outcomes [42], so it
can be used to calculate the probabilities of each possible outcome of a categori-
cally distributed dependent variable. This process is also called calibration.

Focusing on migration flows from now on, these are not just determined by the
population of both countries and the distance: there are other factors that influence
them, such as the linguistic and cultural proximity, better opportunities in terms
of employment and salary, safety, political freedom or even climate, among many
others [37]. All these pull and push factors are represented in variables that can
be added to the models.

3.2 What is a Radiation Model?

Physics first used the radiation model to understand the process by which
waves and energetic particles move through vacuum: particles are released in a
certain location and there is a probability p to be absorbed by locations nearby.

In the social science it is applied once again for the study of flows between
different locations. Firstly, the traveler assigns a number to every destination ac-
cording to their fitness, x, chosen from some distribution p(x), representing the
quality of the opportunity presented in that location. Secondly, the traveler rates
again all location but this time considering the distance from the original location.
Then, the closest location with the highest fitness rate and, of course, higher than
the traveler’s fitness threshold, taken as well from the fitness distribution p(x) will
be the chosen one [11]. Hence, Tij the average number of travelers from location i
to j follows this expression:
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Tij = Ti ·
1

1 − mi
M

·
mi · mj

(mi + sij) · (mi + mj + sij)

where Ti = ∑j ̸=i Tij are the departures from i, mi and mj are the number of oppor-
tunities (or population, as explained later) in i and j respectively, M = ∑i mi is the
total number of opportunities and sij is the total opportunities in the circle with
center i and radius |i − j| excluding the origin and the destination population. The
destination of the Oi trips are sampled following a distribution of probabilities of
a trip from i finishes in j. It is necessary to normalize this conditional probability
to make the probability that a journey beginning in the area of interest and ending
there is equal to one. When the finite system is given, this equals 1 − mi

M [4]. In
the original version of the model, the number of opportunities is estimated by the
population in that location (the more population, the more opportunities might
arise in that location), or can also be estimated by the total inflows.

In case a infinite system was given, the number of commuters would be the
following:

T∞
ij = Ti

mi · mj

(mi + sij) · (mi + mj + sij)

Note that Tij −→ T∞
ij when M −→ ∞. According to [4], T∞

ij is a fit approximation
for large systems.

Radiation model, the same way gravity models do, also have different versions
regarding the information needed to run the model. Here [8] it is shown that
better performing models do not even consider population but amenities, since
amenities already provide the information we would take from population itself.
It is worth having a look at papers [36], [27], [45], [23], [26], [2] to check how these
models have been use to replicate observed changes in different cities’ population
and see that it is less effective in developing countries than in developed countries.

The same paper [8] proposes a generalized radiation model for human migra-
tion where the proxys are called urbanization indexes U, which are a weighted
sum of component factors fk:

U = ∑
k

wk fk,
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where fk can be any feature of a locality. Then the model looks like this:

T∞
ij = Ti

Ui · Uj

(Ui + vij) · (Ui + Uj + vij)
,

where Ui and Uj are the urbanization index at i and j, respectively, and vij is
the total urbanization index in the circle with ratio |i − j| excluding source and
destinations’ indexes. Notice that due to the fact that fk have different scales, the
value of each feature must be normalized so they can be comparable to each other.
This can be done either by using the min-max method, adjusted z-score, logistic
z-score or percentile.

3.3 Deep Gravity Model

We finally arrive to our last model: deep gravity model. As you will see, this
model relies in neural networks and it does not need historical data. It provides
good results and makes us wonder to what extent are statistics sufficient for fore-
casting, now that machine learning and AI are promising fast-growing fields. This
chapter is fully based on paper [13]. Nevertheless, since the study of spatial net-
works is out of our scope, we strongly recommend the reader to have a look at
the paper [28], where the model is implemented and its results are compared to
gravity models in the UK, Italy and New York State. Due to the complexity of
the programming behind the model, this one is not implemented to forecasting
migration flows in Catalonia, nonetheless is worth revising.

3.3.1 Fundamentals

The Deep Gravity model is a mobility flows generation model proposed by
F. Simini, G. Barlacchi, M. Luca and L. Pappalardo. The main purpose of this
model is to generate information about mobility flows in any specific region when
there is no information available, setting up probabilities based on geographic data
such as land use, road network, food, health facilities, education, retail facilities
and transport, among others extracted from OpenStreetMap 2, finding non-linear
correlations between those characteristics and mobility flows training deep neural
networks. Compared to deep-learning approaches, the Deep Gravity Model does
not rely on migration flow historical data.

2OpenStreetMap is an international project to create a free map of the world. It is a public and
voluntary geographic information system. https://www.openstreetmap.org
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Gravity models, due to its restricted set of variables, disregards variables that
might be essential to forecast and explain a migration flow, while a deep gravity
model takes into consideration more detailed data that responds to how diverse
are the points of interest, the transportation network and overall how complex is
the geographical landscape.

In the first chapter we mentioned that gravity models are a multinomial logistic
regression equivalent to a linear neural network with one softmax layer. A neural
network is a collection of nodes called neurons, whose interconnections are called
edges. Each neuron can signal other neurons, by sending real numbers, and the
output of each neuron is computed by some non-linear function of the sum of its
inputs. Neurons and edges have weighs that go adjusting as learning goes on. A
softmax layer is a function that converts real values of a k-dimension vector into a
probability distribution of K possible outcomes, this is, to normalize the output of
a network to a probability distribution: σ : RK → (0, 1)K, K ≥ 1,

σ(z)i =
ezi

∑K
j=1 ezj

, f or i = 1 ÷ K, and z = (z1, . . . , zK) ∈ RK.

The method presented in the deep gravity model adapts a nonlinear variant of
the multinomial logistic regression by adding hidden layers, hence, nonlinearities
and constructing more complex representations of the input features.

Definition 3.1. Let R be a surface. A tessellation T is a set of polygons li called locations,
satisfying the following properties:

- The number of locations li contained in the tessellation T is finite: T = {li : i = 1, ..., n}.

- No location overlaps any other one: li ∩ lj = ∅, ∀i ̸=j

- All locations cover the whole surface: ∪n
i=1li = R

Definition 3.2. The flow between locations li and lj, y(li, lj), is the total number of people
moving from li and lj for any reason per unit time. The total outflow, Oi is the total
number of trips per unit time with departure from location li, i.e., Oi = ∑j y(li, lj).

Over a region of interest R and given a tessellation T and the total outflow from
locations in T , we aim to forecast the flows between any two locations in T, having
in mind that we don’t consider flows as input data. This is, we are not to consider
any historical information to generate flows in our region, therefore our model
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tested to work on region R must have been trained on another nonoverlapped
region.

To control the performance of the flow generation models by calculating the
similarity between real and generated flows, the following index will be used.

Definition 3.3. Let yr and yg be the real flows and the generated flows, respectively. The
Sørensen-Dice index or Common Part of Commuters (CPC) is the quotient

CPC =
2 ∑i,j min(yg(li, lj), yr(li, lj))

∑i,j yg(li, lj) + ∑i,j yr(li, lj)

Note: CPC indicates the accuracy of the prediction and CPC∈ [0, 1], where 1
indicates a perfect match and 0 shows a bad performance.

Definition 3.4. The Pearson’s correlation coefficient (PCC) is the covariance of two vari-
ables X, Y divided by the product of their standard deviations:

PCC = ρX,Y =
cov(X, Y)

σXσY
,

used for the linear correlation.

Definition 3.5. Let Oi and Si be the observed values and estimated values, respectively.
The normalized root mean squared error or NRMSE, also called scatter index, is a statis-
tical error indicator

NRMSE =
∑(Si − Oi)

2

∑ Oi
2

Definition 3.6. The Kullback-Leibler divergence, or KL divergence:

DKL(q∥p) = −Eq(x)

[
log

p(x)
q(x)

]
= −

∫
q(x) ·

[
log

p(x)
q(x)

]
dx

measures how a probability distribution q is different from a reference probability distribu-
tion p.

The KL divergence has the following properties:

1. It is not a symetric metric, thus it cannot be used as a distance metric.
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2. When KL = 0, a similar or even the same behaviour of the two distributions is
expected. When KL = 1, the expectation, given the first distribution, approaches
0, since both distributions behave differently.

Definition 3.7. The Jensen-Shannon divergence (JSD), also known as information radius
(IRad) or total divergence to the average:

DJS(q∥p) =
1
2
·
[

DKL

(
p∥ p + q

2

)
+ DKL

(
q∥ p + q

2

)]
Note. The JS divergence is also used for studying the dissimilarity between the

distributions of the real and the generated flows.

In the gravity equation with logarithms being used, the negative of loglikeli-
hood is proportional to the cross entropy loss H = −∑i ∑j

y(li ,lj)
Oi

ln pi,j of a shallow
neural network with an input of dimension two and a single linear layer followed
by a softmax layer. The cross entropy between two probability distributions p
and q under the same set of events provides the average number of bits needed to
identify an event from the set, if the coding scheme is optimised with a probability
distribution q, and the true distribution is p. Let’s see this relation: let qθ(X = i)
the estimated probability of outcome i, to be optimised with the parameter θ. Let
p(X = i) be the frequency (empirical probability) of outcome i in the training set.
Let N be the conditionally independent samples. Having that the likelihood of the
parameter θ is

L(θ) = ∏
i∈X

(estimated probability o f i)(number o f ocurrences o f i) = ∏
i

qθ(X = i)Np(X=i),

so, dividing the log-likelihood by N, we have

1
N

log(L(θ)) =
1
N

log ∏
i

qθ(X = i)Np(X=i) = ∑
i

p(X = i)logqθ(X = i) = −H(p, q),

hence minimizing the cross-entropy is the same as maximizing the likelihood with
respect to θ.

This suggests to project this flow generation goal as a classification problem:
each trip (or the unit flow chosen) from each location of origin is assigned to the
actual location of destination (correct class) among all the given classes, which are
the locations of the tessellation T.

The model gives, for each destination in the tessellation, the probability of an
individual from any location li would go to that destination. These probabilities
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are multiplied by the origin’s total outflow to calculate the average flows from an
origin.

3.3.2 Method (Architecture of deep gravity)

The model computes a n-dimensional vector of probabilities pi,j for j = 1, ..., n
from a given location of origin li. The probabilities are computed the following
way:

Firstly, we concatenate the two feature vectors xi and xj, of the origin and des-
tination locations li and lj, respectively, and the geographic distance ri,j between
them two. The distance is measured along the earth’s surface between the cen-
troids of the polygons that represent the locations. We have then the input vectors
x(li, lj) = concat[xi, xj, ri,j] for i, j = 1, ..., n. The location feature vectors xi give
properties of the location and a spatial depiction of the area, i.e., the number of
hospitals, the length of roads or the number of restaurants. The total number of
features taken into consideration is its dimension d. In this case d = 18, hence each
flow using this model is computed by 39 features: 18 per origin, 18 per destination,
the distance and the population of them two.

The location features considered in this model are the following [13]:

• Population size (1 feature)

• Land-use areas (5 features): total area in km2 for each possible land-use class
(residential, commercial, industrial, natural and retail).

• Road network (3 features): total length in km2 for different types of roads
(residential, main and other).

• Transport facilities (2 features): total number of Points of Interest or POIs
and buildings linked to the transports facilities (bus or train stations, stops
and parkings)

• Food facilities (2 features): total number of POIs and buildings related to
food facilities (bars, cafes, restaurants).

• Health facilities (2 features): total number of POIs and buildings related to
health facilities (clinics, hospitals, pharmacies).
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• Education facilities (2 features): total number of POIs and buildings related
to education facilities (schools, colleges and kindergarten).

• Retail facilities (2 features): total number of POIs and buildings related to
retail facilities (supermarkets, malls, department stores).

It must be mentioned that all features excluding area are divided to the location’s
area so they are normalized.

Secondly, the feed-forward neural network 3 receives in parallel the input vec-
tors x(li, lj). The network used has 15 hidden layers, this is, 15 layers between
the input and the output: the bottom six are of dimensions 256 and the other of
dimensions 128, using an activation fuction a, LeakyReLu (rectified linear unit)
activation function to be precised, which prevents from becoming saturated at 0.
The output of hidden layer h is the vector

z(0)(li, lj) = a(W(0) · x(li, lj))

for h = 0, and

z(h)(li, lj) = a(W(h) · z(h−1)(li, lj))

for h > 0, where W are matrices with parameters learned on the training. The last
layer output is a scalar number that is called score: s(li, lj) ∈ [−∞,+∞]. The higher
this number is, the higher the probability that a trip from li to lj takes place.

The third step, a softmax function transforms the scores into probabilities,
summing up to one:

pi,j =
es(li ,lj)

∑k es(li ,lk)

Finally, the origin’s total outflow is multiplied by the model’s probability to obtain
the generated flow between li and lj.

3a feed-forward neural network is a neural network wherein connections between the nodes do
not form a cycle.



Chapter 4

Methods Implementation and
Comparison

In this chapter, four gravity models are run with 2019 data from Catalonian
comarques along with a radiation model. Predictability patterns are studied in
papers [44] by Xiao-Yong Yan et al, [26] by Marshall et al, [39] by Robert M. Beyer et
al and [45] by Yang et al. We suggest to revise the book [42] for further econometric
analysis and a good perspective for designing models. Appendixes A and B are
provided at the end: appendix A shows the results of the models run in RStudio
and appendix B displays a table of the Catalonian data from 2019 used for the
models. All 2019 data used in the models is extracted from Idescat.cat. The flow
matrix used for the models has a dimension of 1764 registers, as Catalonia has 42
comarques.

4.1 Migration flows within Catalonia using Gravity Models

In this section three different gravity models are going to be tested with R
to forecast the migration flow between comarques1 of Catalonia in 2019. The first
model is going to strictly follow the most basic model and the second one is going
to consider some extra variables.

Since the denominator of the formula is the distance between origin and des-
tination, and the counties are one next to the other, the distance considered is the

1A comarca is a group of municipalities, roughly equivalent to a county in the USA or a district
in the UK. https://en.wikipedia.org/wiki/Comarques_of_Catalonia
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distance between their capitals, so it is never zero. Another alternative would have
been the distance between the center points, also called geographical center or
centroid. Ignoring the problems of the curvature or the Earth’s surface by radially
projecting it to the sea level or geoid surface2. Note that the comarca Vallès Occi-
dental has two capitals and Sabadell has been chosen for computing the distances.
As for the flows within comarques, we have set 10km as the distance between their
origin and destination to avoid cutting registers that might me useful.

Model 1: ln Fij ∼ β1 · ln Mi + β2 · ln Mj − β3 · ln Dij + cij

being Mi the population of origin i and Mj the population of location j, both in
2019, Dij is the distance between locations i and j, and cij is a constant that depends
as well on origin i and destination j.

Model 2: ln Fij ∼ β1 · ln Gi + β2 · ln Gj − β3 · ln Dij + cij

being Gi the GDP of origin i and Gj the GDP of location j, both in 2019, Dij is the
distance between locations i and j, and cij is a constant that depends as well on
origin i and destination j.

Model 3: ln Fij ∼ β1 · ln Mi + β2 · ln Mj + β3 · ln Gi + β4 · ln Gj − β5 · ln Dij + cij

where we add the following variable Gk representing the GDP in 2019.

Model 4: ln Fij ∼ β1 · ln Mi + β2 · ln Mj + β3 · Gi + β4 · Gj + β5 · Ei + β6 · Ej + β7 ·
Ui + β8 ·Uj + β9 ·Yi + β10 ·Yj + β11 · Ri + β12 · Rj + β13 · Ti + β14 · Tj − β15 · ln Dij + cij

here it has been added: Ek representing the number of bachelor’s degrees of more
than 240 ECTS achieved, Uk representing the number of unemployed population,
Yk representing the population between 25 and 44 (associated with increased mo-
bility), Rk representing the industrial waste, Tk representing the number of culti-
vated lands, all in 2019, from both the location of origin and destination.

A summary of these models run in RStudio can be found in Annex I. When
using logs, there is a much more distinguished and or adjusted linear regression
function through the base of the data points, resulting in a better prediction model.
This is shown by adjusted r-squared. Adding new variables does not lower this

2The geoid is the shape that the ocean surface would adopt if winds and tides weren’t there, under
the effect of Earth’s gravity, including gravitational attraction and Earth’s rotation. This surface is
extended through the continents. https://en.wikipedia.org/wiki/Geoid
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indicator, it can only stay the same or make it higher because more information
is being taken into consideration: as you can see, model 4 is better. However, not
always having a low r-squared implies having a bad model.

4.2 Main Issues

When using logarithms, the presence of zeros and negative values is a prob-
lem. Some researches decide to exclude these registers from the sample. This is
not convenient since we are not considering information that might be relevant.
Another solution is to give them a very small value instead. According to [37],
there are two alternatives: the first one consists of using Poisson, negative bino-
mial and zero-inflated models; the second is to use Heckman’s selection model.
However, these don’t seem to be fully convincing: Poisson helps us to not have to
use logarithms but, on the other hand, over-weighs high values; as for Heckman’s
selection model, it is not easy task to find a variable that accounts for null values
in our sample.

It is important to understand as well the data input that is needed. When
studying migration flows we must have a precise definition of which conditions
determine a migrant and their origin, and check that data sources have the same
definition. Regarding our study in Catalonia, migration restrictions between co-
marques do not exist, but it is worth mentioning that, when studying international
migration flows, visa restrictions do exist and are considered. Furthermore, the
extension of territory in Catalonia is not as big as when considering migration
flows between continents, therefore migration costs might be not as high as in
those situations. For instance, you might find a job in a different comarca but you
won’t move there because you prefer commuting.

We notice the inability to accurately capture the structure of the real flows and
a greater variability of real flows than expected. Gravity models generate flows
without considering information that is essential to account for the complexity of
the geographical landscape, such as land use, the diversity of points of interest and
the transportation. More detailed input data is needed along with more flexible
models to generate more realistic mobility flows.

The paper [39] proves that gravity models are not statistically supported and
do not present the quality of understanding the variation of flows across time as
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a response to changes and, therefore, cannot be used to predict migration flows.
We strictly recommend to have a look at the case studied in the paper, as well as
revising the book Econometric Analysis by William H. Greene [42] to have a look
through concepts that build the regression analysis fundamentals, such as dummy
variables, seasonal dummies, indicator variables, semilog functions, lagged inde-
pendent variables, instrumental variables, fixed effects or heteroskedasticity, to
obtain a better knowledge of econometric data analysis.

4.3 Migration flows within Catalonia using the Radiation
Model

To implement the radiation model, we need again the number of population
and commuters, available on Idescat.cat. The data needed for the variable sij has
been extracted by using the SEDAC Population Service by NASA3 and making the
appropiate calculations. Regarding the distance between origin and destination,
we use the distance between the capitals of the comarques.

A summary of this model run in RStudio can be found in Annex I. Radiation
model forecasts flows considering the influence of variables in the proximity of
the flows’ origin, as well as the number of migrations that also originate there to
other comarques, unlike gravity models. Nevertheless, we are still missing a lot of
factors that definitely affect the migration. Once again, as we have seen already
with gravity models, migration flows are not just explained by population and
distance, for instance one might consider the salary or the amount of close friends
in the area. Results obtained with the Radiation model are analogous to the gravity
models run earlier in terms of significance only when logs are used, otherwise
the prediction is bad. Literature revised also asserts this statement, adding that
gravity models have a better overall performance but radiation models do give
competitive results especially for large scales.

4.4 Comparison with Gravity Models

The paper [21] performs a transportation flow comparison between both types
of model and conclude that although gravity models provide an overall better per-
formance, radiation models are also competitive especially at a large scale. How-

3https://sedac.ciesin.columbia.edu/mapping/popest/pes-v3/
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ever, researches state that radiation models have several advantages compared to
gravity models such as clear theoretical background and universality due to the
absence of parameters to be estimated. Besides, prediction for long-distance trav-
els is better with radiation models, despite some unresolved issues like relatively
poor predictability on short-distance travels. Radiation models requires additional
information on Ti, compared to gravity models. The variants of the radiation
models: a population-weighted opportunities model and a radiation model with
an additional scaling exponent have also been studied and can be found in this
paper [44]. Finally, another difference is related to what we mentioned early about
the fact that the number of opportunities is estimated by the population in that
location, which can also be estimated by the total inflows: radiation models do not
depend on the distance between locations, compared to gravity models.



Gravity Models
Model 1 Model 1 without logs

Residual standard error 0.4366 on 1760 DF 890.7 on 1760 DF
Multiple R-squared 0.7484 0.1782
Adjusted R-squared 0.748 0.1768

F-statistic 1745 on 3 and 1760 DF 127.2 on 3 and 1760 DF
NSMRE 0.19028502 0.80285202

Model 2 Model 2 without logs
Residual standard error 0.4426 on 1760 DF 893.4 on 1760 DF

Multiple R-squared 0.7415 0.1731
Adjusted R-squared 0.741 0.1717

F-statistic 1683 on 3 and 1760 DF 122.8 on 3 and 1760 DF
NSMRE 0.20324222 0.80784107

Model 3 Model 3 without logs
Residual standard error 0.4367 on 1758 DF 890 on 1758 DF

Multiple R-squared 0.7486 0.1804
Adjusted R-squared 0.7479 0.178

F-statistic 1047 on 5 and 1758 DF 77.38 on 5 and 1758 DF
NSMRE 0.18753912 0.80076393

Model 4 Model 4 without logs
Residual standard error 0.4205 on 1748 891.5 on 1748 DF

Multiple R-squared 0.7683 0.1823
Adjusted R-squared 0.7663 0.1753

F-statistic 386.3 on 15 and 1748 DF 25.97 on 15 and 1748 DF
NSMRE 0.18692208 0.79891033

Table 4.1: Summary of the results applying gravity models and multi-linear re-
gressions. p-value: < 2.2e-16.
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Radiation Model
Model 1

Residual standard error 0.5725 on 1757 DF
Multiple R-squared 0.5682
Adjusted R-squared 0.5667

F-statistic 385.3 on 6 and 1757 DF
NSMRE 0.72484092

Table 4.2: Summary of the radiation model. p-value: < 2.2e-16.



Conclusions

Spatial statistics offer formal techniques to analyze any entity by using their
topological, geometric or geographic properties. This allows us to gather substan-
tiated data that might be useful to solve real-life problems, such as using high-
quality data when running forecasting models. Gravity and radiation models
enhance forecasting results based on a relation between variables following their
respective formulas by running multi-linear regressions. We confirm that, econo-
metrically, these are methods minimally useful to study migration or economic
policies, as contrasted with different literature. However, despite the fact that
they offer enough satisfaction, they present limitations in terms of accuracy. But
nothing could be further than the truth, its formulas do not consider a pandemic
directly, but indirectly through the GDP or population. The deep gravity model
clearly shows a path towards AI alternatives such as machine learning for more
accurate predictions. Its results rely on more information, since they are trained
on a large set of different data. As next steps for this research, the following three
problems are propounded: to implement these tools to study commuting flows
to work; to study adequate migration policies in the USA for European citizens;
the creation of a deep gravity model specifically for internal migration within a
country trained with migration from many different countries with live data, in-
cluding China when the coronavirus pandemic started - would the detection of
non-migration in a territory alert flows forecasts for other territories?
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Appendixes

Appendix A: models run in R
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Appendix B: 2019 data by comarques

Comarca Population GDP Education Unemployment Youth Waste Cultivated lands
Alt Camp 44.296,00 1.548,60 2.278 2.569 11.810 21.633 20.372
Alt Empordà 141.339,00 3.576 7.328 7.169 37.197 117.724 44.278
Alt Penedès 108.411,00 3.286 6.670 5.277 28.716 59.798 22.751
Alt Urgell 20.177,00 489 1.309 770 5.168 10.430 27.535
Alta Ribagorça 3.802,00 104,5 324 86,5 1.054 2.200 10.095
Anoia 120.738,00 2.791,30 6.116 7.208 32.484 61.492 30.674
Aran 10.093,00 374 754 275 3.121 8.636 31.466
Bages 178.885,00 4.888,40 10.859 9.499 46.161 86.596 28.454
Baix Camp 190.973,00 4.632 11.831 11.232 51.760 108.152 15.412
Baix Ebre 77.596,00 1.849 3.655 4.120 19.671 45.552 35.025
Baix Empordà 134.359,00 3.179 8.224 6.181 34.365 109.545 21.484
Baix Llobregat 825.963,00 28.297 55.668 38.744 222.175 385.545 4.283
Baix Penedès 104.991,00 2.046 5.117 7.346 27.525 72.325 7.523
Barcelonès 2.278.437,00 93.256 283.964 106.470 668.416 1.056.364 141
Berguedà 39.446,00 1.035 2.307 1.817 9.563 17.157 33.721
Cerdanya 18.192,00 473 1.477 452 5.075 13.372 32.276
Conca de Barberà 20.042,00 636,9 1.201 738 4.988 10.560 25.683
Garraf 150.887,00 3.043,50 14.083 8.167 38.470 92.931 1.839
Garrigues 18.833,00 442 875 690 4.681 7.317 39.718
Garrotxa 57.590,00 1.721,60 3.682 2.069 14.743 28.627 14.580
Gironès 193.908,00 6.333 15.760 9.097 54.303 85.620 13.845
Maresme 452.690,00 10.222 36.180 24.291 116.917 253.106 3.362
Moianès 13.603,00 304 984 497 3.400 7.736 9.370
Montsià 67.436,00 1.336,30 2.900 3.555 18.311 34.679 38.719
Noguera 38.770,00 974 1.892 1.790 9.801 16.360 73.595
Osona 160.821,00 4.897 10.221 7.364 42.627 71.642 40.278
Pallars Jussà 13.080,00 288 905 571 3.153 6.913 39.228
Pallars Sobirà 6.932,00 192,3 611 216,8 1.796 5.252 54.464
Pla d’Urgell 36.693,00 1.114,20 1.705 1.401 10.133 16.489 25.279
Pla de l’Estany 32.293,00 884 2.210 1.043 8.542 15.889 9.564
Priorat 9.245,00 175 593 378,7 2.238 4.241 8.951
Ribera d’Ebre 21.865,00 1.087,90 1.020 1.058 5.256 9.830 19.753
Ripollès 25.087,00 626,4 1.557 857 5.906 14.000 32.503
Segarra 23.052,00 801,3 1.127 733 6.184 9.822 46.971
Segrià 209.818,00 6.274,90 13.685 10.842 56.559 88.215 95.162
Selva 171.617,00 4.715 8.299 8.730 45.510 114.380 11.118
Solsonès 13.469,00 360 784 451 3.472 6.909 33.136
Tarragonès 256.730,00 9.011,80 18.238 13.985 74.100 156.946 8.294
Terra Alta 11.490,00 276 496 368 2.561 4.256 22.490
Urgell 36.693,00 1.045,40 1.952 1.719 9.637 17.801 43.131
Vallès Occidental 925.237,00 29.662 72.070 49.475 255.317 400.801 5.680
Vallès Oriental 409.638,00 13.171 26.622 21.463 110.593 195.562 10.017

Table 4.3: 2019 data by comarques extracted from Idescat.cat


