
DOBLE GRAU DE MATEMÀTIQUES I
ENGINYERIA INFORMÀTICA

Treball final de grau

A Gaussian Process-based
Approach to Rendering

Autor: Masa Zsanett Gulyás

Director: Dr. Ricardo Marques

Realitzat a: Departament de Matemàtiques

i Informàtica

Barcelona, 24 de gener de 2023

Contents

Abstract iii

Resum iii

Resumen iv

Acknowledgements v

1 Introduction 1
1.1 Background . 2
1.2 Objectives . 2
1.3 Planning . 3

2 Theoretical Foundations 5
2.1 Monte Carlo and variance reduction techniques 5

2.1.1 Importance Sampling . 6
2.2 Bayesian Monte Carlo . 7

2.2.1 Bayesian Regression . 8
2.2.2 Bayesian Monte Carlo quadrature equations 10

2.3 Physically Based Rendering . 11

3 Bayesian Monte Carlo for Physically Based Rendering 13
3.1 Matching of the Rendering Equation with the Bayesian Quadrature

Equations . 13
3.2 Implementation . 14

3.2.1 Workbench . 14
3.2.2 Renderer . 15
3.2.3 Classical Monte Carlo . 16
3.2.4 Bayesian Monte Carlo . 18
3.2.5 Specifying a more informed prior mean function in the Bayesian

Monte Carlo estimate . 23

i

3.2.6 Experiments performed with the renderer to validate the in-
tegrators . 25

3.2.7 Implementation of error measure and image comparison . . 27

4 Results and Discussion 31
4.1 Performance of Monte Carlo vs Bayesian Monte Carlo 31
4.2 Improving Bayesian Monte Carlo for Rendering: Run Time and

Error Analysis . 33
4.3 Use of a Constant Prior in Bayesian Monte Carlo 33
4.4 Discussion of Results and Future Work 35

5 Conclusion 37

Abstract

Many physically-based image rendering algorithms use the illumination inte-
gral to determine the color of each pixel in the rendered image. This integral has
a component that can be sampled but has no known analytical expression, so it
cannot be computed directly and must be evaluated with approximation methods.
Among these we can find the Monte Carlo (MC) and the Bayesian Monte Carlo
(BMC) integration methods. MC integration consists in defining a random vari-
able such that its expected value is the solution to the integral, and then repeatedly
sampling that random variable to estimate the true value. In contrast, BMC mod-
els the function to be integrated using a Gaussian Process, which allows for the
incorporation of prior information. While MC is conceptually simple and straight-
forward to implement, it has a slower convergence rate compared to BMC. BMC,
on the other hand, allows for better estimates with the same number of samples,
even without prior information, by taking into account all available information
about the samples, in particular the covariance of the sample locations. In this
thesis, I implemented the MC and the BMC algorithms for integration, and com-
pared their performances in two settings: for the estimation of a single integral
with a known true value and for image rendering using the root-mean-squared
error (RMSE). My results showed that the error of BMC converged much faster
compared to MC in both settings, mirroring the existing literature on the topic.
In addition, I experimented with the use of a constant prior in the BMC method,
and found promising results for single integral estimation, although further work
is needed to successfully apply this finding to image rendering.

2020 Mathematics Subject Classification. 60G15, 11K45

Resum

Molts algoritmes de renderització d’imatges basades en la física utilitzen l’integral
d’il·luminació per determinar el color de cada píxel en la imatge renderitzada.
Aquesta integral té un component que es pot mostrejar, però que no té una
expressió analítica coneguda, per la qual cosa no es pot calcular directament i
s’ha d’avaluar amb mètodes d’aproximació. Entre aquests es troben els mètodes
d’integració de Monte Carlo (MC) i de Bayesian Monte Carlo (BMC). La integració
MC consisteix a definir una variable aleatòria, el valor esperat de la qual és la
solució a l’integral, i després mostrejar aquesta variable aleatòria repetidament per
obtenir una estimació del valor real. D’altra banda, BMC fa servir un procés gaus-
sià per modelar la funció a integrar i permet la introducció d’informació prèvia
sobre la funció. MC és conceptualment simple i fàcil d’implementar en compara-
ció amb BMC, però té una taxa de convergència notablement més alta. BMC
permet aconseguir millors estimacions amb el mateix nombre de mostres fins i tot
sense informació prèvia, ja que té en compte tota la informació disponible sobre
les mostres, en particular la covariància de les posicions de les mostres. En aquesta
tesi, he implementat els algoritmes MC i BMC per a la integració i he comparat el
seu rendiment en dos entorns: per a l’estimació d’una única integral amb un valor
real conegut i per a la renderització d’imatges fent servir l’error quadràtic mitjà
(RMSE). Els meus resultats van mostrar que l’error de BMC va convergir molt més
ràpid en comparació amb MC en tots dos entorns, reflectint la literatura existent
sobre el tema. A més, he experimentat amb l’ús d’una funció prèvia constant en
el mètode BMC i he obtingut resultats prometedors per a l’estimació d’una única
integral, encara que es necessita més treball per aplicar aquesta troballa amb èxit
a la renderització d’imatges.

Resumen

Muchos algoritmos de renderizado de imágenes basadas en la física utilizan
la integral de iluminación para determinar el color de cada píxel en la imagen
renderizada. Esta integral tiene un componente que se puede muestrear, pero
que no tiene una expresión analítica conocida, por lo que no se puede calcular
directamente y se tiene que evaluar con métodos de aproximación. Entre estos se
encuentran los métodos de integración de Monte Carlo (MC) y de Monte Carlo
Bayesiano (BMC). La integración MC consiste en definir una variable aleatoria
cuyo valor esperado es la solución a la integral, y luego muestrear esa variable
aleatoria repetidamente para obtener una estimación del verdadero valor. Por
otro lado, BMC utiliza un Proceso Gaussiano para modelar la función a integrar,
y permite la introducción de información previa sobre la función. MC es con-
ceptualmente simple y fácil de implementar en comparación con BMC, pero tiene
una tasa de convergencia notablemente más alta. BMC permite obtener mejores
estimaciones con el mismo número de muestras incluso sin información previa, ya
que tiene en cuenta toda la información disponible sobre las muestras, en particu-
lar la covarianza de las posiciones de las muestras. En esta tesis, he implementado
los algoritmos MC y BMC para la integración, y he comparado sus rendimien-
tos en dos entornos: para la estimación de una única integral con un valor ver-
dadero conocido y para el renderizado de imágenes utilizando el error cuadrático
medio (RMSE). Mis resultados muestran que el error de BMC converge mucho
más rápido en comparación con MC en ambos entornos, reflejando la literatura
existente sobre el tema. Además, he experimentado con el uso de una función
previa constante en el método BMC, y he obtenido resultados prometedores para
la estimación de una única integral, aunque se necesita más trabajo para aplicar
este hallazgo con éxito al renderizado de imágenes.

Acknowledgements

I would like to express my deepest gratitude to my advisor, Ricardo Marques,
for his patience, dedication and help in achieving my goals with this thesis. He
kept me on track with weekly meetings and gave me an awesome masterclass on
Gaussian Processes, a topic that I had struggled to understand at first but now I
find fascinating. Thank you for your continued support!

I would also like to acknowledge the Universitat de Barcelona for the resources
provided throughout my years here. I learned a lot from many excellent lecturers,
and I specifically want to acknowledge Anna Puig for her engaging Computer
Graphics lectures, which sparked my initial interest in the field.

Finally, I want to give my heartfelt gratitude to Rubén for his constant en-
courgament, support, and his very motivating motivational speeches, which kept
me going when I felt overwhelmed by university and work. Thank you also for
teaching me all your cool LATEX tricks.

Chapter 1

Introduction

The synthesis or rendering of photorealistic images from a virtual model is a
central focus in the field of Computer Graphics. Creating realistic images involves
simulating the way light interacts with the surfaces in the virtual scene and de-
termining how much light reaches the virtual camera from the visible parts of the
scene. The amount of light that reaches the virtual camera from a point in the
scene can be obtained using the illumination integral, first formulated by Kajiya [7].
The illumination integral, as presented in this thesis 2.16, comprises terms whose
analytical expressions are not known, making it intractable to compute analyti-
cally. Therefore, its value must be approximated using alternative methods.

Monte Carlo methods are a broad category of mathematical and computational
techniques that rely on statistical sampling to simulate various phenomena or
determine the values of functions. Monte Carlo methods can be used to evaluate
an integral by defining a random variable whose expected value is the solution to
the integral. By drawing samples of this random variable and averaging them, an
estimate of the expected value is obtained, which serves as an approximation to
the integral’s real solution. It is worth noting that Monte Carlo integration should
only be used when it is not feasible or possible to compute the integral analytically.
An example of this is the illumination integral mentioned above.

Although Monte Carlo methods have been used in computer rendering since
the 1980s, such as in the works of Arvo [1], Cook [2], and Kajiya [7], they have been
criticised for for their dependence on the specific sampling distribution chosen
to retrieve samples and for discarding information about the proximity of the
samples [12], which leads to a relatively slow convergence rate to the real result.

In 2002, Ghahramani and Rasmussen [5] introduced a Bayesian approach to
integral estimation that incorporates prior knowledge and explicitly takes into
consideration the proximity of sample locations to achieve more accurate results.
This method, known as Bayesian Monte Carlo, resembles traditional Monte Carlo

1

2 Introduction

methods in its use of sampling for integral estimation. The method uses a Gaus-
sian process to model the unknown function being integrated.

The main emphasis of this thesis is on the application of Bayesian Monte Carlo
for image rendering. However, the traditional Monte Carlo method is also dis-
cussed and is used as reference with the results obtained from Bayesian Monte
Carlo.

1.1 Background

As the main sources in this thesis I used the following two textbooks: Advanced
Global Illumination [3] and Efficient quadrature rules for illumination integrals [11]. In
Advanced Global Illumination, there is extensive background on the rendering equa-
tion and how it is derived from the physics of light transport, as well as a detailed
explanation on Monte Carlo methods and variance reduction techniques, both of
which I cover in Section 2.3 and 2.1, respectively. On the other hand, Efficient
quadrature rules for illumination integrals covers Bayesian Monte Carlo Methods ex-
tensively, which I talk about in detail in Section 2.2. These books draw on the
research of many authors also cited here. The rendering equation was proposed
for the first time by Kajiya [7], in a publication where he suggests the use of a
Monte Carlo method for solving it, and presents a form of variance reduction
called Hierachical sampling. Later, Ghahramani and Rasmussen [5] proposed the
Bayesian Monte Carlo method for evaluating integrals as an alternative to classical
Monte Carlo methods. They show in this publication that Bayesian Monte Carlo
outperforms classical Monte Carlo despite any importance sampling methods ap-
plied to the latter.

The use of Bayesian Monte Carlo for physically-based rendering remains an
active area of research. In [10], a more general Bayesian Monte Carlo solution is
proposed, which addresses non-diffuse BRDFs whereas until then only the perfect
diffuse case had been considered. Additionally, a fast method for determining
hyperparameters is proposed, avoiding the need to learn them for each individual
BRDF. In [8], a theoretical and experimental analysis of Gaussian Processes as a
tool for approximating the incident radiance function on a sphere is performed.
The publication also presents a method for efficient computation and rotation of
spherical harmonics coefficients.

1.2 Objectives

The main objective of this thesis is to design, implement, and evaluate a Bayesian
Monte Carlo algorithm for use in an image rendering application. Specifically, the

1.3 Planning 3

following goals will be accomplished:

1. Create a Python script for prototyping and displaying the error of integral
estimators as the number of samples increases by evaluating the integral of
a specific function over the unit hemisphere.

2. Develop a basic rendering application using Python by incorporating differ-
ent integrator classes to compute the value of each pixel, based on an existing
prototype.

3. Create a classical Monte Carlo algorithm, visualize its error convergence rel-
ative to the number of samples, and develop a "Monte Carlo Integrator" for
the rendering application.

4. Design and implement a Bayesian Monte Carlo algorithm, visualize its error
convergence relative to the number of samples, and develop a "Bayesian
Monte Carlo Integrator" for the rendering application.

5. Optimize the performance of the Bayesian Monte Carlo Integrator for faster
execution.

6. Investigate the use of a constant prior in the Bayesian Monte Carlo method
and its impact on reducing the estimation error.

7. Conduct a comprehensive comparison of the developed methods by evaluat-
ing both their estimations of a known integral over the unit hemisphere and
the resulting complete rendered images.

1.3 Planning

The planning is presented in the Gantt chart 1. The image is in the Appendix
due to its size.

4 Introduction

Chapter 2

Theoretical Foundations

2.1 Monte Carlo and variance reduction techniques

Monte Carlo methods are a class of statistical methods that use random sam-
pling to generate approximate solutions to a broad set of problems. In this thesis,
we are interested particularly in Monte Carlo integration, that is, using random
sampling to approximate an integral. Monte Carlo methods are generally used in
cases where obtaining the integral of a function deterministically is not possible
or computationally unfeasible. Examples of these cases are functions in higher
dimensions or functions that can be sampled but do not have a known analytical
formula. In this section, we will go through the Monte Carlo method for integra-
tion in detail and prove that its convergence rate is 1√

N
where N is the number of

samples.

If the integral we want to solve using Monte Carlo is denoted by

I =
∫ b

a
f (x) dx, (2.1)

we can consider the estimator

Î =
1
N

N

∑
i=1

f (xi)

p(xi)
, (2.2)

where xi are randomly selected samples over the domain of the integral with
probability distribution p(x). It can be proved that Î is an unbiased estimator of I
by showing that its expected value is equal to I:

5

6 Theoretical Foundations

Proof.

E
[
Î
]
= E

[
1
N

N

∑
i=1

f (xi)

p(xi)

]
=

1
N

N

∑
i=1

E
[

f (xi)

p(xi)

]

=
1
N

N
∫ f (x)

p(x)
p(x) dx =

∫
f (x) dx = I.

(2.3)

Since Î is unbiased, there is no systemic error in the estimation, but we still
need to consider random error due to variance. The variance of Î is

V
[
Î
]
= V

[
1
N

N

∑
i=1

f (xi)

p(xi)

]
=

1
N2

N

∑
i=1

V
[

f (xi)

p(xi)

]

=
1

N2 NV
[

f (xi)

p(xi)

]
=

1
N

(
E

[(
f (x)
p(x)

)2
]
− E

[
E
[

f (x)
p(x)

]2
])

=
1
N

(∫ b

a

f (x)2

p(x)
dx − I2

)
:= σ2.

(2.4)

This shows that the variance σ2 decreases linearly in inverse proportion to N.
The estimator’s error, defined as the standard deviation σ, decreases in inverse
proportion to

√
N. This is considered to be a slow convergence rate [3, p. 48];

to decrease the error by half, four times as many samples are needed. To im-
prove the convergence rate of Monte Carlo integration, various variance reduction
techniques have been developed, such as importance sampling.

2.1.1 Importance Sampling

We can see in 2.4 that aside from the number of samples, the probability dis-
tribution from which the samples are taken affects the variance of Î. Importance
sampling consists of choosing a p(x) that will hopefully reduce variance based on
information that might be available about f (x).

It can be proved that the optimal choice of probability distribution function,
which will yield zero variance, is p(x) = f (x)

I .

2.2 Bayesian Monte Carlo 7

Proof.

V
[
Î
]
=

1
N

(∫ b

a

f (x)2

p(x)
dx − I2

)
=

1
N

(∫ b

a

f (x)2

f (x)
I

dx − I2

)

=
1
N

(
I
∫ b

a
f (x) dx − I2

)
=

1
N
(

I2 − I2) = 0.

(2.5)

However the integral I is the result we want to estimate with the Monte Carlo
method in the first place, so clearly it is not possible to obtain the optimal p(x).
What we can deduce from the formula p(x) = f (x)

I is that a good probability
distribution function will closely mimic the shape of the function we are trying to
approximate. This way, we can use any information available of the shape of f (x)
to choose a p(x) that will yield the least amount of variance.

Figure 2.1: Two examples of possible probability density functions p(x). Clearly,
the p(x) on the right is better for sampling f (x) because it mimics the shape of
f (x), and so it will generate samples more frequently in the segments where f (x)
has larger values.

2.2 Bayesian Monte Carlo

In his 1987 paper [12], statistician A. O’Hagan presented two main criticisms to
Monte Carlo integration: 1) the result depends not only on the samples and their
values, but also on the probability distribution they were sampled from, which vi-
olates the Likelihood Principle from a Bayesian point of view, and 2) Monte Carlo
does not consider the distance between samples, leading to redundant informa-
tion in close samples and not enough weight given to isolated samples. A short
example that O’Hagan proposes to demonstrate the second objection is as follows:

8 Theoretical Foundations

Suppose we have three samples x1, x2 and x3 such that x1 = x2. Our estimation
would be

Î =
1
3

f (x1)

p(x1)
+

1
3

f (x2)

p(x2)
+

1
3

f (x3)

p(x3)
=

2
3

f (x1)

p(x1)
+

1
3

f (x3)

p(x3)
. (2.6)

It is clearly unreasonable to give twice as much weight to the exact same sam-
ple if it happens to be repeated. In practice, it is almost impossible to get the exact
same sample twice, but the distance between samples is still valuable information
that is discarded in Monte Carlo integration.

In 2002, Ghahramani and Rasmussen reformulated the Monte Carlo integra-
tion problem into a Bayesian inference problem [5]. This new algorithm avoids the
inconsistencies of classical Monte Carlo, and yields better approximations using
the same number of samples. Instead of attempting to approximate the integral di-
rectly, Bayesian Monte Carlo first finds an estimate of the unknown function f (x)
that can then be either integrated analytically or approximated better than the
original function. Below we are going to describe Bayesian Regression in general
terms and then delinate the Bayesian Monte Carlo Quadrature equations derived
by Ghahramani [5].

2.2.1 Bayesian Regression

Bayesian Regression is an approach for regression that allows approximating a
function f (x) using a Gaussian Process given a set of samples of f (x) and allows
for the introduction of prior information into the estimation.

Definition 2.1 ([13], Definition 2.1). A Gaussian Process (GP) is a collection of random
variables such that each finite sub-collection of them has a joint Gaussian distribution,
which is a normal multivariate distribution.

Let f : Rn → R be the function we want to approximate. Its mean and covari-
ance functions f̄ (x) and k(x, x′) [13, Equation 2.13] are

f̄ (x) = E[f (x)], and k(x, x′) = E[(f (x)− f̄ (x))(f (x′)− f̄ (x′))].

A GP used to approximate f (x) can be characterized solely by its mean and covari-
ance functions [13, Section 2.2]. We denote the Gaussian process of the function
f (x) by GP(f̄ (x), k(x, x′)) and we write f (x) ∼ GP(f̄ (x), k(x, x′)).

The random variables of the GP represent the values of the function f (x) for
all x ∈ Dom(f), where Dom(f) is usually Rn. To approximate f , we obtain a set
of samples D = {((x1, y1), . . . , (xn, yn))}. In this section, we will denote as fi the
value of f on the sample position xi, i.e., f (xi).

2.2 Bayesian Monte Carlo 9

The way in which we define a Gaussian process implies a consistency require-
ment [13, Section 2.2]. This requisite is fulfilled automatically if we impose that
cov(Yp, Yq) = k(xp, xq) [11, 13]. From now on, we will impose this condition on all
the Gaussian processes we define.

There is a problem with the covariance k(x, x′) that we defined previously in
2.2.1, and it is that we cannot compute it because we do not know f (x). Conse-
quently, we must approximate it using a chosen covariance function. Some com-
monly used covariance functions are

• Squared exponential covariance function, defined as

k(x, x′) = σ2
f exp

(
−1

2
∥x− x′∥2

l2

)
, (2.7)

where σ2
f and l are hyperparameters, i.e., parameters that we should select

based on our observations.

• Sobolev covariance function, defined as

k(x, x′) =
22s−1

s
− ∥x− x′∥2s−2 (2.8)

where ∥ · ∥ is the Euclidean norm and s is the smoothnes paramater.

To improve numerical conditioning on the GP model, we can assume the ob-
servations are affected by an i.i.d. Gaussian noise σn, modifying the covariance
cov(Yp, Yq) = k(xp, xq) + σ2

nδpq, where δpq = 1 if p = q and δpq = 0. We do this
because in realistic scenarios, the observed values are affected by several sources
of noise, such as the numerical errors introduced by representing numbers in com-
puters.

Prior and posterior of Gaussian Processes. We have seen that Gaussian Pro-
cesses allow us to model unknown functions f (x) using Gaussian Random Vari-
ables for each possible function value f (x). After preprocessing our data and
building a Gaussian Process with this information, called prior Gaussian Pro-
cess, our objective is to add the information of the, possibly noisy, samples D =

{(xi, Yi)}n
i=1, where Yi = f (xi) + ϵi, to this prior GP to generate a new Gaussian

Process, called the posterior Gaussian Process. From now on, we consider that the
noise on the observations Yi ϵi is given by i.i.d. Gaussian noise with zero mean
and fixed variance σ2

n for all i. We condition the prior GP by applying Bayes’
rule. According to [13], the resulting posterior process is also a GP with mean and
covariance

E[f (x)|D] = f̄ (x) + k(x)Q−1(Y− F̄),

cov[f (x), f (x′)|D] = k(x, x′)− k(x)tQ−1k(x′),
(2.9)

10 Theoretical Foundations

respectively, where

k(x) = (k(x1, x), . . . , k(xn, x))t,

Ki,j = k(xi, xj) with (i, j) ∈ [1, n]2,

Q = (K + σn
2 In),

Y = (Y1, . . . , Yn)
t,

F̄ = (f̄ (x1), . . . , f̄ (xn))
t,

(2.10)

and where In is the identity matrix of dimension n. Note that Y is the vector
containing the observations and F̄ contains the expected values for the samples
from the prior GP.

2.2.2 Bayesian Monte Carlo quadrature equations

Recall that our problem was to estimate the integral (2.1) I =
∫

Rd f (x)dx. In
this chapter, we consider a more general integral of the form

I =
∫

Rd
f (x)p(x)dx, (2.11)

where p(x) is known and f (x) is unknown except for a set of samples D. Note
that the previous Equation (2.1) is only a special case of Equation (2.11) where
p(x) = 1. As we saw previously in Subsection 2.2.1, we can compute a posterior
GP model of f (x) by using the Bayes’ rule over a prior GP given D. Using this
posterior GP model to approximate I is known as the Bayesian Monte Carlo (BMC)
method, which we explore in this section.

Let D be our usual set of samples. Using the previous posterior Gaussian
Process for f (x), we compute the posterior estimate of I, Î = E(I|D) by integrating
both sides of the first equation in (2.9), obtaining

Î = Ī + ztQ−1(Y− F̄), (2.12)

where

Ī =
∫

f̄ (x)p(x)dx,

z =
∫

k(x)p(x)dx,

Q =

k(x1, x1) . . . k(x1, xn)
...

. . .
...

k(xn, x1) . . . k(xn, xn)

 .

(2.13)

2.3 Physically Based Rendering 11

according to [4]. It can be shown that the variance of the previous integral esti-
mate (2.12) follows a Gaussian distribution of mean Î and variance given by

Var(I|D) = V̂ − ztQ−1z, (2.14)

where
V̂ =

∫∫
k(x, x′)p(x)p(x′)dxdx′, (2.15)

also according to [4].
The previous variance (2.14) does not depend on the values of the observa-

tions Y, as defined in (2.10), in contrast with Monte Carlo integration. In addition,
BMC methods are flexible enough to consider arbitrary sampling methods, not
depending on the specific pdf from which sample locations are drawn. In partic-
ular, sample sets that minimize (2.14) are called optimal sample sets, and their use
is one of the reasons why BCM outperforms several state-of-the-art methods [11].

2.3 Physically Based Rendering

Figure 2.2: Example of a photorealistic rendering [6].

Physically based rendering is an approach to realistic image synthesis that models
how light behaves in the physical world. Image synthesis or rendering means
generating images from a model of a virtual three-dimensional scene. Usually
this model will include information about objects and light sources that are in the
scene, and about the viewpoint from which the scene is observed.

12 Theoretical Foundations

Figure 2.3: Image rendering from a virtual scene.

The aim of realistic image synthesis is to make these images mirror reality as
closely as possible. To achieve this, the underlying physical processes regarding
the behavior of light must be simulated with maximum accuracy. In particular,
given a specific point on the scene, called shading point, we compute its color as
the exitant radiance value Lo(ωo) in the direction of the viewer ωo. The exitant
radiance Lo(ωo) at a given shading point in the direction ωo is computed using
the illumination integral. This integral is given by [11]

Lo(ωo) =
∫

Ω
Li(ωi)ρ(ωi, ω0)(ωi · n)dΩ(ωi), (2.16)

where Li(ωi) is the incident radiance in direction ωi, Ω is the hemisphere where
we evaluate the integral, ρ is the BRDF, and n is the unitary normal vector at the
shading point in the surface.

The BRDF, or emphbidirectional reflectance distribution function, defines how
light is reflected at an opaque surface, and is given by

ρ(ωi, ωo) =
dLo(ωo)

dEiωi
=

dLo(ωo)

Li(ωi) cos θidωi
, (2.17)

where Ei is the incident radiant power on the surface per unit surface area and θi

is the angle between wi and the surface normal.
On the other hand, radiance is a physical quantity describes how much radiant

power arrives at, or leaves from, a point on a surface per unit solid angle per unit
projected area. Radiant power quantifies the energy that is emitted, arrives to, or
flows through a surface per unit of time. For further information on the physical
formalization of these concepts, please refer to the textbook [3].

Chapter 3

Bayesian Monte Carlo for
Physically Based Rendering

3.1 Matching of the Rendering Equation with the Bayesian
Quadrature Equations

Recall the illumination integral (2.16)

Lo(ωo) =
∫

Ω
Li(ωi)ρ(ωi, ω0)(ωi · n)dΩ(ωi),

where Li(ωi) is the incident radiance from the direction ωi, ρ(ωi, ω0) is the
BRDF of the material, and n is the normal vector to the surface.

Recall the Bayesian Monte Carlo method, which attempted to solve the inte-
gral (2.11)

I =
∫

Rd
f (x)p(x)dx,

where p(x) has a known analytical expression and f (x) does not, but it can be
evaluated on any given location x.

Normally, the BRDF has a known analytical expression, so the product ρ(ωi, ω0)(ωi ·
n) of the illumination integral is considered to be the known part of the Bayesian
Monte Carlo method, p(x), and the incident radiance Li(ωi) is the unknown part
f (x). Thus, given a set of samples D = {Li(ωj) : j ∈ [1, . . . , n]} we can approxi-
mate the value of Lo(ωo) using BMC.

In my implementation, for simplicity, I considered f (x) = Li(ωi)ρ(ωi, ω0)(ωi ·
n) and p(x) = 1, and my samples were of the form D = {Li(ωj)ρ(ωj, ω0)(ωj · n) :
j ∈ [1, . . . , n]}.

13

14 Bayesian Monte Carlo for Physically Based Rendering

3.2 Implementation

In this thesis, I implemented the classical Monte Carlo and Bayesian Monte
Carlo methods for rendering. The Monte Carlo and Bayesian Monte Carlo estima-
tors were first developed and tested in a prototyping environment which I called
Workbench (more details in 3.2.1). Once the estimator was validated in the Work-
bench, it was applied in a python-based rendering environment (more details in
3.2.2), after some minor modifications. In Bayesian Monte Carlo, I made some
adjustments known to decrease run time, and finally experimented with adding a
constant prior to reduce the error.

3.2.1 Workbench

For each integration method, I fist developed a version in the Workbench, a
script for estimating the integral of a given function over the unit hemisphere 3.1.
Testing an integrator on the Workbench means estimating only one specific inte-
gral over the hemisphere instead of the hundreds or thousands required for image
rendering. This approach is more convenient for prototyping, fine-tuning and val-
idating new estimators than a direct application in a rendering environment. The
Workbench evaluates the error of the methods by comparing their estimations
to the real value of the integral (i.e. the reference or ground truth value). This
means that in the Workbench we must choose functions the integral of which we
can obtain analytically or using another approximation method. In Figure 3.1, a
flow diagram of the Workbench application can be observed. The AppWorkbench
is configured with the function to integrate f (x) and its previously (analytically)
computed integral over the unit hemisphere. The methods to compare and a set
of sample numbers n_samples to use are also specified. For each n_samples, the
samples are generated accordingly. These samples are used to obtain an approxi-
mation of the integral of f (x) with each method. The results are compared against
the pre-computed ground truth and the absolute differenced for each method and
number of samples is graphed with pyplot. The AppWorkbench also allows generat-
ing each batch of samples n times and averaging the error in order to obtain more
stable results.

3.2 Implementation 15

AppWorkbench set up
Function to integrate

Ground truth (true
value of the integral
over the hemisphere

For each number of samples specified (20, 40, ...)

Generate random
samples

For each approximation method

Obtain approximation
of the integral over

the hemisphere

Compare result to
ground truth to obtain

the error

Plot the error of each
method for each

number of samples

Figure 3.1: Workbench application flow diagram.

3.2.2 Renderer

After having tested a method in the Workbench, it can then be modified
slightly for image rendering. For each method, I implemented an Integrator class,
which is initialized from the renderer application 3.2 to compute the color of each
pixel. The renderer application sets up the virtual scene to be rendered, an iterates
over all pixels using the Integrator to obtain their values. To evaluate the error of
rendered images, they were compared to a reference image 3.13 obtained with the
Monte Carlo method 2.1 using 3000 samples per pixel. Figure 3.2 shows a flow
diagram of the rendering application. The AppRenderer initializes the integrator of
the method we want to use for approximating the integral (Monte Carlo, Bayesian
Monte Carlo). It initializes the virtual scene and assigns it to the integrator, and
then it calls the integrator’s pre-render and render methods. In those methods,
the integrator iterates over each pixel, traces a ray to the closest hit on the scene,

16 Bayesian Monte Carlo for Physically Based Rendering

and approximates the illumination integral to obtain the pixel’s color. Finally, the
rendered image is saved locally and displayed.

AppRenderer

Integrator
add to

Initialize Integrator
1

Pre-render and
render

3

Initialize virtual
scene

2

Iterate through
each pixel and
compute color

1

Save rendered
image

2

Figure 3.2: Renderer application flow diagram.

3.2.3 Classical Monte Carlo

Before attempting to use Bayesian Monte Carlo for computing the illumina-
tion integral, I implemented a classical Monte Carlo integrator 2.1. This method
is less advanced than Bayesian Monte Carlo and it allowed me to get a better
understanding on probabilistic methods for image rendering.

To approximate an integral using a Monte Carlo method, first we have to gen-
erate samples over the hemisphere. In our implementation 3.4, this is done by
obtaining two samples from a uniform distribution, u1, u2 ∼ U (0, 1), and then
converting them to the zenith angle and azimuth angle, respectively.

The conversion to hemispherical coordinates was done using the Lambert cylin-
drical projection, which is the most common hemispherical projection used in com-
puter graphics [11, p.19]. A (x, y) ∈ (0, 1)× (0, 1) can be projected onto the unit
hemisphere using the Lambert cylindrical projection as follows:

ϕ = 2πx,

θ = arccos(1− 2y),
(3.1)

3.2 Implementation 17

(a) 20 spp (b) 40 spp (c) 80 spp

Figure 3.3: An example of images rendered with classical Monte Carlo varying
numbers of samples per pixel (spp). Note that, as the number of spp increases, the
visible noise resulting from estimation error is progressively reduced. The RMSE
of each image is 0.02202, 0.01561 and 0.01274, for (a), (b) and (c), respectively.
More details regarding the computation of the RMSE are given in Sec. 3.2.7, and a
precise error comparison with other methods can be found in the results section.

where (ϕ, θ) are the hemispherical coordinates. This results in a uniformly
distributed random direction on the unit hemisphere, which must be rotated ac-
cording to the surface normal of the object which color we are computing.

After obtaining the hemispherical sample positions ω1, ω2, . . . , ωn, we evalu-
ate the integrand f (ωj) = Li(ωj)ρ(ωj) cos(ωj) and the probability distribution
pdf(ωj) on each. To constitute the integrand, we obtain the BRDF ρ from the
properties of the object, and the incident radiance Li(ωj) by tracing another ray in
the direction ωj and obtaining the BRDF of the object if there is another hit or the
background color otherwise. As for pdf(ω), since our chosen PDF is uniform, the
result will be the same for all ωj: p(ωj) =

1
2π .

Finally, when we have the values over f (ω) and p(ω) of all samples, we can
compute the Monte Carlo estimation, for each color channel separately, using the

estimator Î = 1
N ∑N

i=1
f ωj)

p(ωj)
(2.2).

18 Bayesian Monte Carlo for Physically Based Rendering

Find the ray's
closest

intersection
with the scene

Return the
background

Compute the
classical

Monte Carlo
estimation

for _ in range n

Obtain sample

Obtain value Obtain
probability

If there
is no

 intersection

If there
is an

intersection

Figure 3.4: Classical Monte Carlo integrator flow diagram.

3.2.4 Bayesian Monte Carlo

Having tested the Monte Carlo integrator, the next step was the Bayesian
Monte Carlo method. Before the integrator 3.6, I implemented a GP (Gaussian
Process) class that, given a set of sample positions and values, returns a poste-
rior estimate of f (ω) at a given hemispherical direction ω. Recalling the Bayesian
Monte Carlo quadrature equations, we have Î = Ī + ztQ−1(Y − F̄) (2.12), where
Ī =

∫
f̄ (ω)p(ω)dω and z =

∫
k(ω)p(ω)dω (2.13). Assuming no prior informa-

tion (i.e. f̄ (ω) = 0), the BMC quadrature equation (2.12) can be rewritten as
Î = ztQ−1Y.

Therefore, the GP class must compute Q−1 and zt to return the estimate Î. I
used a Sobolev covariance function with smoothness parameter s = 1.4 as found
to be optimal by Marques [9]. I added a noise of 0.01 to the diagonal of Q for ac-
commodating the observations to the assumptions of the GP model and avoiding
numerical instability while inverting Q. For zt, since in general we do not have
an analytic expression to evaluate this vector of integrals, I computed it using the
classical Monte Carlo method with 10000 samples and a uniform PDF.

This implementation gave better results with the same number of samples
when compared to Monte Carlo both in the Workbench and in the rendering ap-
plication in terms of RMSE. However, the execution time was far greater, which
was especially noticeable in the renderer where the estimation has to be computed
for each pixel. This is due to two very costly operations that the algorithm above
has to compute for each estimation: matrix inversion and integration of the co-

3.2 Implementation 19

(a) 20 spp (b) 40 spp (c) 80 spp

Figure 3.5: An example of images rendered with Bayesian Monte Carlo using 4
GPs and varying numbers of samples per pixel (spp). Note that, as the number
of spp increases, the visible noise resulting from estimation error is progressively
reduced. The RMSE of each image is 0.01623, 0.01161 and 0.01040, for (a), (b) and
(c), respectively. More details regarding the computation of the RMSE are given
in Sec. 3.2.7, and a precise error comparison with other methods can be found in
the results section.

variance function over the hemisphere, that are of complexity O(n3) and O(m)

where n is the number of samples of the set D and m is the number of samples
taken from the Sobolev covariance function, respectively.

Luckily, there is a technique known to greatly decrease runtime for render-
ing [10]. It consists of taking a fixed set of sample locations that are re-used for
each pixel, and applying a rotation that aligns them to the new surface normal.
If n⃗0 is the up vector on the unit hemisphere where the original samples were
generated, and n⃗ is the new surface normal, then

a⃗ = n⃗0 × n⃗ =
[

a0 a1 a2

]
is the rotation axis,

α = arccos n0 · n is the rotation angle, and
(3.2)

 c + a2
0(1− c) a0a1(1− c)− a2s a0a2(1− c) + a1s

a1a0(1− c) + a2s c + a2
1(1− c) a1a2(1− c)− a0s

a2a0(1− c)− a1s a2a1(1− c) + a0s c + a2
2(1− c)

 , (3.3)

where c = cos(α) and s = sin(α), is the rotation matrix that aligns n0 to n.
Since the covariance matrix is invariant to rotation [10], Q−1 and zt do not

need to be recomputed. This gives way to a very significant decrease in time
complexity, making the integrator’s runtime similar to that of the Monte Carlo
integrator while reducing the error significantly.

20 Bayesian Monte Carlo for Physically Based Rendering

Find the ray's
closest

intersection
with the scene

Return the
background

If there
is no

 intersection

If there
is an

intersection

Obtain vector
of n samples

Obtain vector
of sample

values

Gaussian Process

Compute new
Q-1 , z, and

weights vector

Compute
estimation

Figure 3.6: Bayesian Monte Carlo integrator flow diagram.

However, this technique has a small downside. The use of the same sample
locations over and over introduces a coherence in the approximation error for
neighboring pixels. This creates low frequency patterns or artefacts in the image
that are visible to the human eye.

To decorrelate the sample directions across neighboring pixels, I have per-
formed an additional random rotation on the azimuth. Considering a random
number γ ∼ U (0, 2π), the matrixcos γ 0 − sin γ

0 1 0
sin γ 0 − cos γ

 , (3.4)

performs a random rotation on the azimuth (assuming y is the vertical axis).
As shown in 3.7, the random rotation of the sample set helps mitigate the prob-

lem of low frequency artefacts due to error coherence across neighboring pixels.
However, in some cases, the pattern might still be visible despite the rotation, be-
cause the sample set is always the same. To cope with this problem, we can use
more than a single sample set to render the final image. In practice, this can be
achieved using a small number of Gaussian processes, each with its own sample
set. When estimating the color of a given pixel, the GP to use is selected ran-
domly 3.8. As it can be seen in 3.5, using 4 GPs with a random rotation on the
azimuth blurs the error patterns very effectively.

3.2 Implementation 21

(a) 1 GP without random rotation.

(b) 1 GP with random rotation.

Figure 3.7: An example of images rendered with Bayesian Monte Carlo with 20, 40
and 80 spp from left to right. The images on top have been generated with 1 GP
without applying a random rotation on the azimuth. The images on the bottom
have been generated with 1 GP and with an added random rotation. It can be
observed that the artifacts visible on the top images are somewhat faded with
the addition of a random rotation. Please also compare with Figure 3.5, where
additional GPs were used to further decorrelate the noise.

22 Bayesian Monte Carlo for Physically Based Rendering

Initialize renderer

Obtain k vectors
of n samples

For each vector of samples

Create a Gaussian
process

Compute and
save Q-1 , z, and

weights vector

For each pixel

Obtain a rotation
matrix to align the

samples to the
surface normal

Randomly select a
vector of samples

and the
corresponding

Gaussian process

Add an extra
random rotation
on the azimuth

Apply rotation to
the samples

vector

Obtain values of
the rotated

samples

If there
is an

intersection

If there
is no

 intersection

Find the ray's
closest

intersection with
the scene

Return the
background

Return the cross
product of the
weights vector

and the values in
the Gaussian

Process

Figure 3.8: Improved Bayesian Monte Carlo integrator flow diagram.

3.2 Implementation 23

3.2.5 Specifying a more informed prior mean function in the Bayesian
Monte Carlo estimate

(a) 20 spp (b) 40 spp (c) 80 spp

Figure 3.9: An example of images rendered with BMCP using 4 GPs and varying
numbers of samples per pixel (spp). Note that, as the number of spp increases, the
visible noise resulting from estimation error is progressively reduced. The RMSE
of each image is 0.01747, 0.01096 and 0.01022, for (a), (b) and (c), respectively.
More details regarding the computation of the RMSE are given in Sec. 3.2.7, and a
precise error comparison with other methods can be found in the results section.

In addition to implementing Bayesian Monte Carlo for rendering, we tried to
test the following hypothesis: The RMSE of a rendered image using the same number
of samples can be improved by leveraging the estimates for adjacent pixels in the form of a
constant prior.

Recall the BMC quadrature equation 2.12, Î = Ī + ztQ−1(Y− F̄), where Ī is the
integral of the prior of the Gaussian Process f̄ (x), and F̄ is the vector of samples of
f̄ (x) evaluated at the same locations as Y. If we assume the prior to be constant,
f̄ = c, then we have that Y = [c, . . . , c] is a constant vector and Ī can be easily
evaluated over the hemisphere.

Our main concern with using a constant prior was whether it would prove
to be suitable for approximating integrals of non-constant functions, since neither
the incident radiance nor the BDRF will be constant in most situations.

For this reason, we first designed a smaller-scale experiment in the Workbench.
We wanted to see if the error of the estimation could be improved for non-constant
functions the integrals of which we know analytically and for which we can find
a constant that has the same definite integral over the hemisphere.

Recall that the function we wish to integrate has the form f (ω) = Li(ω)ρ(ω) cos ω.
To simplify the experiment, we assigned ρ(ω) = 1 and we chose the functions
Li(ω) = cos ω and Li(ω) = cos2 ω. These integrals can be computed analytically

24 Bayesian Monte Carlo for Physically Based Rendering

over the hemisphere:

I1 =
∫

Ω
cos2 ωdω =

∫ 2π

0
dΦ

∫ π
2

0
cos2 θ · sin θdθ =

2π

3
,

I2 =
∫

Ω
cos ω2dω =

∫ 2π

0
dϕ

∫ π
2

0
cos3 θ · sin θdθ =

2π

4
.

(3.5)

In addition, we have that the integral of a constant c over the hemisphere can
be computed as

I =
∫

Ω
cdω = c

∫ 2π

0
dΦ

∫ π
2

0
dθ = 2πc. (3.6)

This way we can impose I1 =
∫

Ω c1dω and I2 =
∫

Ω c2dω and obtain c1 = 1
3 and

c2 = 1
2 such that their integrals over the hemisphere correspond to those of the

functions cos ω and cos2 ω, respectively.
By assigning c1 and c2 as priors for I1 and I2, both times we obtained an

improvement in the workbench, as shown in the results section.
Having obtained promising results in the Workbench, I implemented the addi-

tion of a constant prior in rendering. This time I had to add a pre-rendering step,
where the values of every second pixel using Bayesian Monte Carlo are computed
without a prior 3.10. In the rendering step, the remaining pixels are computed
using a combination of the colors of the adjacent pre-rendered pixels as prior.
Unfortunately, as is shown in the results section, the error measured with the ren-
dered images did not display a significant improvement over not using any prior
in Bayesian Monte Carlo 4.2. The possible reasons for this and ideas for improve-
ment are detailed in the further work section.

3.2 Implementation 25

Figure 3.10: Left: Pre-render of every second pixel with Bayesian Monte Carlo
using no prior information. Right: After rendering the remaining pixels using a
blend of the color of adjacent pixels.

3.2.6 Experiments performed with the renderer to validate the integra-
tors

After implementing each method, I performed a series of tests in tightly con-
trolled conditions so as to validate the correction of the different implementations
of the CMC, BMC and BMCP estimators. Note that the goal of these experiments
is not performing a comparison between the methods (provided later in 4), but
instead to ensure their convergence towards the correct result.

Test 1: f (ω) = cos ω

Consider the illumination integral

Lr(ωo) =
∫

Ω
Li(ωi) · Kd · cos θi dωi. (3.7)

Taking Kd = 1 and Li = 1 constants, we can now evaluate the illumination
integral 3.7 over the hemisphere and obtain a constant value:

Lr(Wo) =
∫

Ω
cos θi dωi =

∫ 2π

0
dϕ

∫ π
2

0
cos θ · sin θdθ = π. (3.8)

By setting the Kd = 1 and Li = 1 manually before rendering, we can make sure
that the illumination integral we are approximating is going to be 3.8 in every
pixel in which there is a hit with an object. Knowing this, I generated a very small

26 Bayesian Monte Carlo for Physically Based Rendering

test scene 3.11 in order to check that the values in pixels where there is a hit are
indeed approximating π.

Figure 3.11: Test scene of a sphere on a plane of size 10x10.

Test 2: f (ω) = cos2 ω.

Another value pair we considered to validate the methods was Kd = 1 and
Li = cos θi where the incident radiance varies over the hemisphere. In this case
the integral evaluates to

Lr(Wo) =
∫

Ω
cos2 θi dωi =

∫ 2π

0
dϕ

∫ π
2

0
cos2 θ · sin θdθ =

2π

3
. (3.9)

Like in the previous test, I tested that all values are around 2π
3 in a simple

scene for all the implemented integrators.

Test 3: Rotation Test

I used this test to validate that I was taking into account the changing orien-
tation of the surface normal in each impact with the scene. For this purpose, I
rendered the default scene with the environment map using only one sample: the
surface normal. If we are obtaining the incident radiance with the correctly rotated
surface normal, this test has to result in a sort of distorted mirror of the environ-
ment map where its elements can be well discerned 3.12. If we tried obtaining
the incident radiance without rotating the normal, we would not have a clearly
recognizable reflection of the environment map on the surface of the objects.

The tests described in this section were performed in all three methods, and
they yielded the correct results.

3.2 Implementation 27

Figure 3.12: Rotation tests. Right: expected result. Left: result without normal
rotation

3.2.7 Implementation of error measure and image comparison

To obtain a numerical measure of the error of an image, we used the root-mean-
square error (RMSE) of the image and a previously computed reference image with
a large number of samples. In our case, we used images generated with classical
Monte Carlo using 3000 samples 3.13 as reference for all error estimates.

root-mean-square error method to compute the difference between a result
image we have obtained and a reference image:

Algorithm 1 Mean squared error method to compute the difference between a
result image and a reference image.

sum← 0
for i← 1 to n do

for j← 1 to m do
sum← sum + norm(re f erence[i, j]− result[i, j])

end for
end for
return sum/(n ∗m)

In order to reduce the chance factor, I programmed a short script to compute
the root-mean-square error and average run time of n renderings of the same
scene. I used the average mean squared error and run time of 20 renderings of the
same scene for all results presented in this thesis.

In addition to a numerical error measure, we found it helpful to have a graphic

28 Bayesian Monte Carlo for Physically Based Rendering

Figure 3.13: Reference images computed with classical Monte Carlo using 3000
samples per pixel. I used the environment map on the left (Arch) during most of
the development stage, and then later switched to the environment map on the
right (Pisa) for the final experiments, as it presents less variation in color, which
allows for a better evaluation of the methods.

representation of the error. I computed the "error images" by finding the dif-
ference, pixel by pixel, of the norm of all three color channels. In this script,
I included the options to either normalise the difference or not, as normalising
yields better images, but when comparing two "error images" it is more useful
to have absolute errors. I also included the options to either represent the errors
in grayscale or using a colormap (from matplotlib) for more aesthetic / visually
pleasing results, with the latter having a longer run time 3.14.

3.2 Implementation 29

Figure 3.14: Error of Monte Carlo with 30 samples compared to a reference image
of Monte Carlo with 3000 samples. Left: Using a colormap (rainbow). Right: No
colormap. Top: Normalized. Bottom: Absolute error.

30 Bayesian Monte Carlo for Physically Based Rendering

Chapter 4

Results and Discussion

In this section I present the results for the Monte Carlo (MC) and the Bayesian
Monte Carlo (BMC) methods. The figures and tables related to rendering show
the mean errors obtained from various methods across multiple identical experi-
ments. To account for computational constraints and the reduction of error vari-
ability with increased sample size, the number of experiments varied based on the
sample size. Specifically, for sample sizes of 20, 40, 60, and 80, the experiments
were repeated 80, 40, 26, and 20 times respectively. Additionally, the figures re-
lated to workbench present the mean errors obtained by averaging the error of all
estimations over 300 runs for each sample size.

4.1 Performance of Monte Carlo vs Bayesian Monte Carlo

In my experiments, in line with previous research, I found that BMC converges
faster than MC. This is because BMC includes uses the covariance of sample loca-
tions for the estimation, while MC discards this information.

I evaluated the integral of cos3(x) over the unit hemisphere in the workbench,
the known value of which is 2π

4 . Figure 4.1 (a) shows the error of both meth-
ods over different numbers of samples, calculated over 300 trials with different
samples used each time.

In image rendering, the results were similar. I generated images using 20,
40, 60, and 80 samples per pixel (spp) with both integrators and used the Root
Mean Squared Error (RMSE) to compare them to a reference image. Note that
to reach the same RMSE value as BMC with 40 samples, MC requires almost
80 samples. This is a significant difference in rendering, where obtaining sample
values is costly. The results can also be visually seen by comparing the two images
generated with the same number of samples per pixel using both methods, as
shown in Figure 4.1 (b).

31

32 Results and Discussion

(a) Workbench: Error of estimation of the integral of cos3(x) over the unit hemisphere.

(b) Rendering: RMSE of rendered images using different numbers of spp.

Figure 4.1: MC vs BMC for integral estimation and image rendering.

4.2 Improving Bayesian Monte Carlo for Rendering: Run Time and Error
Analysis 33

4.2 Improving Bayesian Monte Carlo for Rendering: Run
Time and Error Analysis

The techniques described in Subsection 3.2.4 greatly reduced execution time
of Bayesian Monte Carlo. As an example, the average time to render an image
of 500x500 pixels using 40 samples per pixel (spp) with the improvements was in
the range of 440-590 seconds, while without them, the same image did not finish
rendering in over 24 hours. This is because the naive implementation computes
the Bayesian Monte Carlo quadrature equations 2.2.2 for every pixel. By reusing
sample-location sets, the number of times these computations are executed is re-
duced to the number of Gaussian Processes chosen (4-5 GPs are typically sufficient
to decorrelate the noise).

The additional measures taken to decorrelate the error, also described in 3.2.4,
did not alter the root mean square error (RMSE), as can be seen in Table 4.1. These
results demonstrate that the value of these techniques lies in redistributing the
noise in a way that makes it appear more random, which makes it less noticeable
to the human eye, as shown in Figure 3.7.

Method 20 spp 40 spp 60 spp

BMC 1 GP (no rotation) 0.01741 0.01287 0.01179
BMC 1 GP 0.01751 0.01239 0.01089
BMC 4 GP 0.01732 0.01218 0.01086

Table 4.1: Average RMSE of images rendered with 20, 40, and 60 spp. The runtime
of the naive Bayesian Monte Carlo was too high to be included in this experiment.

4.3 Use of a Constant Prior in Bayesian Monte Carlo

The use of a constant prior in the workbench resulted in a small improvement
when approximating the integral of the function cos2(x) over the unit hemisphere,
as compared to not using any prior 4.2 (a). However, in image rendering, the
use of a constant prior taken from a combination of adjacent pixel colors slightly
delayed convergence to the correct result, as shown in Figure 4.2 (b).

Our choice of a constant prior relies on the assumption that adjacent pixels
will have similar colors. However, this is usually not true for pixels on the edges
or borders of objects. In these cases, using the average of adjacent pixels as a prior
can lead to worse estimates than using no prior at all. Figure 4.3 illustrates that
the error is larger on the borders when using BMCP compared to BMC.

34 Results and Discussion

(a) Workbench: Error of estimation of the integral of cos2(x) over the unit hemisphere.

(b) Rendering: RMSE of rendered images using different numbers of spp.

Figure 4.2: BMC vs BMCP for integral estimation and image rendering.

4.4 Discussion of Results and Future Work 35

4.4 Discussion of Results and Future Work

(a) (b)

Figure 4.3: Error, pixel by pixel, rendered with 40 spp. Subfigure (a) was rendered
with BMC and (b) with BMCP. Note that in (b) the error is visibly more concen-
trated on the borders of the object.

The results of using Bayesian Monte Carlo for image rendering were positive
and consistent with existing research on the topic. Regarding the incorporation of
prior knowledge, it was demonstrated in the workbench that the use of an appro-
priate constant prior can improve estimations of non-constant functions. However,
it is still uncertain if a constant prior can be applied to improve image rendering
as well. The simple prior used in this study was not sufficient to improve the
RMSE in rendering. An important part of the error when using a constant prior
seems to be concentrated on the edges of the objects, which could be addressed in
future work by assigning weights to the adjacent pixels based on their likelihood
of having similar colors to the pixel we are computing. For instance, colors are
more likely to be similar when the surface normals are similar and the points are
closer together in the virtual scene.

36 Results and Discussion

Chapter 5

Conclusion

In this thesis, I successfully implemented the Bayesian Monte Carlo (BMC)
method for image rendering and compared it to the classical Monte Carlo (MC)
method. I also attempted to improve the efficiency of performing image synthesis
with the BMC method by incorporating prior information. Using a Python-based
script, I estimated the value of different integrals over the unit hemisphere to
validate and compare the methods before applying them to image rendering. The
performance of the methods for rendering was evaluated using the root-mean-
squared error with respect to a a reference image generated with a large number
of samples using Monte Carlo.

My results were consistent with previous research, in that I found that the
BMC method outperformed MC using the same information (samples). However,
another important advantage of BMC over MC which I could not fully exploit in
this thesis is the possibility of easily incorporating prior information in the inte-
gral estimate. My experimentation with adding a constant mean prior function
enhanced the BMC estimate in the prototyping phase. This shows that prior in-
formation can affect the BMC estimate in a relevant way, and thus opens doors for
future research in this direction. However, more work has to be done to export
this solution to rendering, where my implementation still needs some tuning. My
results in rendering with a constant prior show that, if inaccurate, prior informa-
tion can lead to worse predictions than no prior at all. Although my choice for the
prior in image rendering in this thesis was not ideal, I have some ideas to improve
it for future work involving taking into account the likelihood of an adjacent pixel
having a similar color to the pixel being computed.

37

38 Conclusion

Bibliography

[1] J. Arvo and D. Kirk. “Particle transport and image synthesis”. In: Proceedings
of the 17th annual conference on Computer graphics and interactive techniques.
1990, pp. 63–66.

[2] R. L. Cook. “Stochastic sampling in computer graphics”. In: ACM Transac-
tions on Graphics (TOG) 5.1 (1986), pp. 51–72.

[3] P. Dutré, K. Bala, and P. Bekaert. Advanced Global Illumination. 2nd ed. Welles-
ley, Massachusetts: A K Peters, Ltd., 2006.

[4] Z. Ghahramani and C. Rasmussen. “Bayesian Monte Carlo”. In: Advances
in Neural Information Processing Systems. Ed. by S. Becker, S. Thrun, and K.
Obermayer. Vol. 15. MIT Press, 2002.

[5] Z. Ghahramani and C. Rasmussen. “Bayesian monte carlo”. In: Advances in
neural information processing systems 15 (2002).

[6] Jay-Artist. The White Room Cycles. [Online; accessed january 19, 2023]. 2012.
url: https://blendswap.com/blend/5014.

[7] J. T. Kajiya. “The rendering equation”. In: Proceedings of the 13th annual con-
ference on Computer graphics and interactive techniques. 1986, pp. 143–150.

[8] R. Marques, C. Bouville, and K. Bouatouch. “Gaussian Process for Radiance
Functions on the Sphere”. In: Computer Graphics Forum. Vol. 41. 6. Wiley
Online Library. 2022, pp. 67–81.

[9] R. Marques, C. Bouville, and K. Bouatouch. “Optimal sample weights for
hemispherical integral quadratures”. In: Computer Graphics Forum. Vol. 38. 1.
Wiley Online Library. 2019, pp. 59–72.

[10] R. Marques, C. Bouville, M. Ribardiere, L. P. Santos, and K. Bouatouch. “A
spherical Gaussian framework for Bayesian Monte Carlo rendering of glossy
surfaces”. In: IEEE Transactions on Visualization and Computer Graphics 19.10
(2013), pp. 1619–1632.

39

https://blendswap.com/blend/5014

40 BIBLIOGRAPHY

[11] R. Marques, C. Bouville, L. P. Santos, and K. Bouatouch. “Efficient quadra-
ture rules for illumination integrals: From quasi Monte Carlo to Bayesian
Monte Carlo”. In: Synthesis Lectures on Computer Graphics and Animation 7.2
(2015), pp. 1–92.

[12] A. O’Hagan. “Monte Carlo is fundamentally unsound”. In: The Statistician
(1987), pp. 247–249.

[13] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning.
Vol. 2. 3. MIT press Cambridge, MA, 2006.

BIBLIOGRAPHY 41

Fi
gu

re
1:

G
an

tt
C

ha
rt

of
th

e
w

or
k

de
ve

lo
pe

d
du

ri
ng

th
e

th
es

is
.

	Abstract
	Resum
	Resumen
	Acknowledgements
	Introduction
	Background
	Objectives
	Planning

	Theoretical Foundations
	Monte Carlo and variance reduction techniques
	Importance Sampling

	Bayesian Monte Carlo
	Bayesian Regression
	Bayesian Monte Carlo quadrature equations

	Physically Based Rendering

	Bayesian Monte Carlo for Physically Based Rendering
	Matching of the Rendering Equation with the Bayesian Quadrature Equations
	Implementation
	Workbench
	Renderer
	Classical Monte Carlo
	Bayesian Monte Carlo
	Specifying a more informed prior mean function in the Bayesian Monte Carlo estimate
	Experiments performed with the renderer to validate the integrators
	Implementation of error measure and image comparison

	Results and Discussion
	 Performance of Monte Carlo vs Bayesian Monte Carlo
	 Improving Bayesian Monte Carlo for Rendering: Run Time and Error Analysis
	 Use of a Constant Prior in Bayesian Monte Carlo
	Discussion of Results and Future Work

	Conclusion

