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It has been suggested that people living in regions with a high incidence of

ultraviolet light, particularly in the B band (UV-B), su�er a phototoxic e�ect during

their lifetime. This e�ect, known as lens brunescence, negatively impacts the

perception of visible light in the “blue” part of the spectrum, which, in turn,

reduces the probability that the lexicon of languages spoken in such regions

contains a word specifically denoting “blue.” This hypothesis has been recently

tested using a database of 142 unique populations/languages using advanced

statistical methods, finding strong support. Here, this database is extended to 834

unique populations/languages in many more language families (155 vs. 32) and

with a much better geographical spread, ensuring a much better representativity

of the present-day linguistic diversity. Applying similar statistical methods,

supplementedwith novel piecewise and latent variable Structural EquationModels

and phylogenetic methods made possible by the much denser sampling of large

language families, found strong support for the original hypothesis, namely that

there is a negative linear e�ect of UV-B incidence on the probability that a language

has a specific word for “blue.” Such extensions are essential steps in the scientific

process and, in this particular case, help increase our confidence in the proposal

that the environment (here, UV-B incidence) a�ects language (here, the color

lexicon) through its individual-level physiological e�ects (lifetime exposure and

lens brunescence) amplified by the repeated use and transmission of language

across generations.

KEYWORDS

color lexicon, ultraviolet light, lens brunescence, weak biases, linguistic diversity,

statistics, phylogenetics

1. Introduction

The proposal that various aspects of language are influenced by non-linguistic factors has

received increased attention during the last two decades (Dediu et al., 2017; Benítez-Burraco

and Moran, 2018) and several such examples have been proposed, with differing degrees of

support and acceptance. For example, it has been proposed that languages with small speaker

populations where communication happens mostly in close-knit social networks of native

speakers (“esoteric languages”) tend to be more complex than those of larger groups with a

high proportion of non-native speakers (“exoteric languages”), a proposal with convincing

theoretical, empirical, and modeling support (Wray and Grace, 2007; Lupyan and Dale,

2010, 2016). Other proposals concern the influence of the environment on speech sounds,

including the negative effect of air dryness on linguistic tone (Everett et al., 2015, 2016) and

on vowels (Everett, 2017), the influence of altitude on ejective consonants (Everett, 2013),
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or the link between vegetation type/density and phonological

inventories (Maddieson and Coupé, 2015). Yet, other class of

proposals concerns the influence of our own biology on language,

such as the positive effect of a small or absent alveolar ridge

prominence on the phonemic use of click consonants (Moisik and

Dediu, 2017), the effect of bite on labiodentals (Blasi et al., 2019;

Everett and Chen, 2021), or the influence of hard palate shape on

vowel systems (Dediu et al., 2019) and on the articulation of the

North American English “r” (Dediu and Moisik, 2019).

This article focuses on a particularly interesting proposal

combining environment, biology, and language, namely that

a particular frequency band of the incoming solar radiation

(ultraviolet light, and more precisely, its band B, with wavelength

between 280 and 315 nanometers) influences, across our lifetimes,

the way we perceive colors (and, in particular, the “blue” part of the

color spectrum) in such a way that the languages spoken in regions

with high UV-B incidence tend to have a word denoting specifically

the “blue” color much less often than the languages spoken under

a low UV-B incidence. This hypothesis was proposed in its modern

form originally by Lindsey and Brown (2002), and Josserand et al.

(2021) tested it using a large database of 142 populations and

advanced statistical methods which allowed the disentangling of

the negative influence of UV-B from the effects of other potential

predictors, finding strong evidence for a negative effect of high

UV-B incidence on the presence of a specific word for “blue.”

While convincing, Josserand et al. (2021) potentially suffered from

the skewed nature of its database with low coverage of certain

geographic regions and language families, raising the issue of its

non-representativity for the present-day linguistic diversity.

Here, this database was greatly extended, not only in terms of

the number of populations/languages (from 142 to 834) but also in

the number of language families (from 32 to 155), as well as the

languages within families and geographic macroareas; in particular,

there is now a very good coverage ofAustralia and Papunesia, which

were very under-represented in the original database. These data

were then re-analyzed using the same methods as in the study by

Josserand et al. (2021), and it was found that extending the database

and increasing its representativity confirms the main finding of

Josserand et al. (2021) and Lindsey and Brown (2002)’s hypothesis

of a negative influence of UV-B incidence on the existence of

a specific word for “blue.” Moreover, this relationship is linear

provided the effect of subsistence strategy is also included, which

accounts for the few hunter-gathering populations in high-latitude

environments, and highlights the asymmetric nature of this effect:

while high UV-B incidence, through its physiological effects on

color perception (lens brunescence), generates a negative pressure

against a specific word for “blue” that might “hide” the effects of

other factors, low UV-B incidence is “neutral,” allowing the other

factors involved in shaping the color lexicon (such as subsistence

strategy) to act “freely.” Moreover, this new database contains

several large families with enough languages that show variation

in terms of the existence of a specific word for “blue” and of the

UV-B incidence received to allow the application of phylogenetic

methods designed to better capture the diachronic aspects of this

influence: while the power is relatively small for individual families,

there is convincing support for a negative diachronic relationship

between UV-B incidence and “blue” especially when using two

“global” language phylogenies.

Far from promoting a “single factor explanation” approach, this

extension, just like the original, Josserand et al. (2021) makes clear

that language is shaped by many factors in complex interplay, but

that it is still possible, when using the right data and methods, to

(partially) disentangle and study their individual effects.

2. Data

The data used here extends the one in Josserand et al. (2021),

which is based on Josserand (2020), which, in turn, checked and

expanded the data in Meeussen (2015), this last one checking

and expanding the original dataset used in Brown and Lindsey

(2004) (please see these respective publications for methodological

details). Josserand et al. (2021) used data from 142 unique

populations, each identified by the Glottolog (Hammarström et al.,

2022) code (or glottocode; Hammarström and Forkel, 2021) of

the main language it spoke, together with information about the

presence (or not) of a specific term for “blue” in the vocabulary, its

geographical location, its elevation from sea level, the incidence of

ultraviolet light (orUV light), the climate (as the first three principal

components of the 19 variables from WorldClim) and humidity

(as yearly median and interquartile range estimated from the

NOAA data), the distances to the nearest lake, river and sea/ocean

(using data from Mapzen), the (log of the) population size (from

Bentz et al., 2018), and the subsistence strategy (a dichotomous

distinction between hunting and gathering, and food production,

combining data from multiple sources: Turchin et al., 2015; Kirby

et al., 2016; Bickel et al., 2017; Blasi et al., 2019) among other

variables is not relevant here. These 142 languages belong to

32 language families and six macroareas (as per Glottolog), and

Josserand et al. (2021) also estimated the putative geographical

location of the proto-languages of these 32 families using various

methods and heuristics (Wichmann et al., 2010; Hammarström

et al., 2022), which allowed the estimation of elevation, UV light,

climate, humidity, and distances to bodies of water for these as well

(ofcourse, using present-day data). The UV incidence data came

from the NASA Total Ozone Mapping Spectrometer (TOMS) for the

year 1998 (see below for details), representing the amount of UV

radiation that impacts the Earth surface (and the humans on it) at

different wavelengths (measured in J/m2), of particular relevance

here being the UV-B band (280–315 nm) considering the effects of

the ozone layer, cloud cover, elevation, and the position of the sun.

The work reported here started from these data, and,

because the limiting factor for testing the main hypothesis

concerns the presence (or not) of a specific term for “blue”

in a language’s vocabulary (from now denoted as blue), the

focus was first on collecting data that allows the estimation of

blue for as many languages as possible. To this end, several

new sources of information were used: on the one hand,

Mathilde Josserand (see Section Acknowledgments) manually

checked several dictionaries (especially for Australian languages)

and she consulted experts in specific languages from the

Laboratoire Dynamique du Langage (DDL), Université Lyon

2/CNRS, Lyon, France (see Supplementary Table 1), and, on the

other hand, she collected data from theDatabase of Cross-Linguistic

Colexifications (CLICS; Rzymski et al., 2020). For CLICS, she

first selected all the languages having a concept for “BLUE”
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(https://clics.clld.org/parameters/837#1/21/1), then she selected all

the languages for which the “BLUE” concept is colexified with the

concept for “GREEN” or any other color. Based on this, she coded

the variable blue as “yes” if and only if the concept “BLUE” is

not colexified with the concept “GREEN”, and as “no” otherwise

(please note that it was decided to not include the 20 languages,

representing ≈ 0.25% of the CLICS data, for which “BLUE” was

colexified with a color concept but not with “GREEN,” due to

the uncertainties surrounding their interpretation here). A further

source of data was represented by version 0.2 of Lexibank (List et al.,

2022), from where the colexification of “BLUE” and “GREEN” was

extracted and converted, when present, into the binary variable blue

as described above for CLICS. The first three sources of data (i.e.,

Josserand et al., 2021, dictionaries, and CLICS) were concatenated,

resulting in 830 datapoints, of which 83 (11.4%) are glottocodes

that appear at least two times in one or more databases. For the

glottocodes that appear more than once in this database, their

information was aggregated by (a) picking just one entry in case

of perfect duplication and (b) only for those duplicated entries

with non-identical values for blue, by taking the means of the

continuous variables [for example, for glottocode abui1241 (Abui,

Timor-Alor-Pantar), CLICS has four entries with “no” for blue

with longitudes 124.63, 124.62, 124.68, and 124.59, which were

summarized in a single entry with longitude 124.63, representing

their mean; please note that manual checking confirms that this

is indeed meaningful]. For the remaining duplicates (i.e., the 70

glottocodes that appear with different values for blue), the following

procedure was implemented: if the duplicates come from different

databases (56 glottocodes), the entry given by Josserand et al. (2021)

(if it exists) was retained preferentially, followed by the manual

coding and expert opinion (if these exist), and, finally, by CLICS

(this hierarchy reflects the subjective confidence in the reliability

and validity of each database with regard to blue); however, there

are 14 cases where the same entry appears more than once in

CLICS (reflecting small-scale intra-linguistic variation), and it was

decided to ignore these given their ambiguous interpretation. This

resulted in an aggregated database with 728 unique datapoints

(i.e., glottocodes), an apparent loss of 102 (12.3%) entries relative

to the concatenated database. To this database, new datapoints

from Lexibank were added corresponding only to glottocodes

not already present in the database and which have the relevant

“BLUE”/“GREEN” colexification information, representing 106

new unique datapoints. The following analyses and plots are based

on this database (or subsets thereof, as appropriate to deal with

missing data in specific variables) with 834 unique datapoints,

comprising 503 datapoints from CLICS, 142 from Josserand et al.

(2021), 106 from Lexibank, and 83 from other sources (see

Supplementary Figure 1 for their distribution across the globe).

The other variables were collected and coded as in

Josserand et al. (2021), with the exception of UV light

incidence and population size. For the incidence of UV

light, Josserand et al. (2021) used the data provided by the

NASA Total Ozone Mapping Spectrometer (TOMS; which,

unfortunately, is not available anymore at its original location,

toms.gsfc.nasa.gov/ery_uv/new_uv/, but can still be found in the

GitHub repository accompanying that paper at https://github.com/

ddediu/colors-UV/tree/master/input_files/toms_nasa_uv), and, in

particular, only the data form the year 1998 (so it could faithfully

replicate the procedure in Brown and Lindsey, 2004). These data

are measures of UV radiation (at several wavelengths, including

the UV-B) as received by the human body taking into account the

thickness of the ozone layer, the cloud cover, elevation, and the

position of the sun, and is measured in J/m2.

This work uses the data from the TOMS Nimbus-

7 UV-B Erythemal Local Noon Irradiance Monthly and

the TOMS Earth Probe UV-B Erythemal Local Noon

Irradiance Monthly, which show the local noon erythemal

UV irradiance values (averaged per month), measured in

mW/m2. These data are split into two datasets, the first

covering the period 01/11/1978 (in the format dd/mm/yyyy)

to 01/05/1993 (TOMS Science Team, Unrealeased; available from

https://disc.gsfc.nasa.gov/datasets/TOMSN7L3mery_008/summa

ry?keywords=erythemal uv as of October 2022),

and the second from the period 01/08/1996

to 01/09/2003 (TOMS Science Team, 1996;

https://disc.gsfc.nasa.gov/datasets/TOMSEPL3mery_008/summa

ry?keywords=erythemal uv), covering thus a total of 22 years, with

a break between 1993 and 1996. Then, the mean for all years and

the standard deviation (computed over the monthly means) for

each location were computed. It is important to note that these

data are comparable with those used in Josserand et al. (2021) with

two differences: first, the data in Josserand et al. (2021) concern,

as explained above, only the year 1998, and second, the data here

are measured in mW/m2, representing the radiation intensity or,

equivalently, the energy per square meter received per second

(vs. in J/m2, which is the energy received per square meter in a

given time) and covers UV-B only (vs. four wavelengths, 305, 310,

320, and 380 nm, with UV-B covering the lowest two values).

For completeness sake, the solar radiation (measured in kJ/m2

day) data from Worldclim were also extracted, representing the

estimated average top-of-atmosphere incident solar radiation

(calculated from latitude) per month for the period 1970–2000; its

mean and standard deviation (across all months) for each location

were computed. It is important to note one fundamental difference

between the TOMS andWorldclim data, namely that while the first

represents the actual UV-B incidence received by the human body

out in the open taking into account various relevant factors (ozone

layer, elevation, cloud cover, and sun’s position), the second is an

estimate of solar radiation at the top of the atmosphere obtained

from the location’s latitude (please note that, for consistency with

the TOMS measures, we will also denote the WorldClim measures

as referring to UV-B). Therefore, a priori, it is to be expected that

the TOMS data are more relevant to the hypothesis tested here

than theWorldclim data.

Concerning population size, Josserand et al. (2021) used the

data from Bentz et al. (2018), in turn based on the last freely

available version of the Ethnologue (Lewis et al., 2013). Here,

these data were expanded by Mathilde Josserand and myself

using two sources: given a glottocode, from its Glottolog entry, we

accessed the corresponding Multitree (http://new.multitree.org/)

metadata, where the number of speakers is provided, or the last

freely accessible version of Ethnologue (18th edition; Lewis et al.,

2015 website as provided through the WayBackMachine snapshot

of 31/12/2015 at https://web.archive.org/web/20151231081912/).

We always used the “total across all countries,” if available,

with the exception of Spanish, Portuguese, French, and English,
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were she used the numbers only for Spain, Portugal, France,

and the UK, respectively. The second source is represented by

Wikipedia (https://en.wikipedia.org/wiki/Main_Page)/Wikidata

(https://www.wikidata.org/wiki/Wikidata:Main_Page), also

accessed from the Glottolog. If several numbers were given, we

chose according to the following criteria: (a) the number that has

the most references, (b) the number with the most recent source, or

(c) if two numbers have the same number of references and equally

recent, we chose the larger one. We used preferentially Wikidata

over Wikipedia. These two sources of data were kept separate

as two different population size variables. Ten languages (with

glottocodes kurd1259, nepa1254, alba1267, basq1248, tzot1259,

mari1278, erzy1239, rian1262, hadz1240, and saya1246) were

detected for which the Ethnologue data contained errors, which

were manually corrected using the 6th January 2013 snapshot of

the 17th edition of the Ethnologue in the WayBackMachine.

For the statistical analyses performed (unless specified

otherwise), the following continuous variables were transformed

as follows: latitude → 1.0–cos(latitude) (so that this is 0.0 at the

equator and 1.0 at the poles) and longitude → cos(longitude)

(range between −1.0 and 1.0, corresponding to −180 and 180◦,

respectively); for population size, elevation, and distances to large

bodies of water, x → ln(x + 1) (where x is the variable’s raw value

and ln is the natural logarithm in base e = 2.718282...; adding 1

avoids −∞ when x is 0); for mean UV, sd UV, and climate PC1,

PC2, and PC3, x→ [x -mean(x)]/sd(x) (i.e., the variable is z-scored

to ensure a mean of 0 and a standard deviation of 1). The same

transformations were applied to the corresponding variables at the

inferred origins of the language families (if applicable).

Specifically for the phylogenetic analyses, a set of phylogenies

that meet several criteria was collected: they belong to large

language families for which there is enough data (the cutoff

point used was of at least 10 languages with data for blue), for

which there is enough variation in the values of blue and UV-

B incidence between the leaves (the languages), and which have

branch lengths (necessary for the type of phylogenetic techniques

employed). With these, trees for 13 language families (Afro-Asiatic,

Atlantic-Congo, Austroasiatic, Austronesian, Hmong-Mien, Indo-

European, Nakh-Daghestanian, Pama-Nyungan, Sino-Tibetan, Tai-

Kadai, Timor-Alor-Pantar, Turkic, and Uralic) and two “global”

phylogenies (see Table 1 for details and sources) were collected. For

all families, the Glottolog trees with three methods for imposing

branch lengths (Round, 2022) were used: “original” (all branches

have equal length), “exponential” (branch lengths are exponentially

distributed: 1/2k for the kth deepest branch), and “ultrametric”

(rescaling the terminal branches so that all tips are equally distant

from the root). Jäger (2018) used the ASJP database (version

17) to estimate a “global” language phylogeny (with branch

length), which also provides subtrees for individual language

families. Moreover, for several families, phylogenies derived from

Bayesian phylogenetic methods applied to the vocabulary, either as

summary (or Maximum Clade Credibility) trees or as a sample of

individual posterior trees (100 or 1,000 such trees), were retrieved.

Finally, Bouckaert et al. (2022) provides another “global” language

phylogeny (with branch length) based on a completely different

method, combining information from different sources (pre-

existing language classifications, geographical location, external

information for language splits, previous Bayesian analyses of

several families, and genetic and archaeological data about human

spreads) in a Bayesian framework.

3. Methods

Most of the methods used here build incrementally on

those used by Josserand et al. (2021), with the exception of

the phylogenetic methods. First, there is the now “standard”

mixed-effects/hierarchical logistic regressions approach, where one

regresses the binary dependent variable blue (i.e., does the language

have a specific word for “blue”?) on various (combinations of)

predictors (such as the mean UV-B incidence), with controlling

for “Galton’s problem” and language contact by having language

family and macroarea as random effects (Jaeger et al., 2011;

Ladd et al., 2015; Josserand et al., 2021). These regressions were

preferentially performed in a Bayesian framework (using brms in

R; Bürkner, 2018), but also using a frequentist approach (using

glmer; Bates et al., 2015) in some cases. In both frameworks,

model comparison (which of two models should be considered

“better”?), model simplification (starting from a “full” model

containing a set of potential predictors, removing the predictors

that do no contribute “significantly,” and retaining only those

that do), and variable selection (does an individual predictor

“significantly” help predicting the dependent variable?) were

performed. In the frequentist framework, the p-values reported

by glmer() for individual predictors (based on the Wald Z-

test) and the p-values reported by anova() (based on the

likelihood ratio test) and 1AIC (difference in Akaike Information

Crierion scores) for model comparison were used throughout

(the α-level was 0.05 and the threshold for 1AIC was 3). In the

Bayesian framework, model comparison was based on BFs (Bayes

factors), WAIC (the Widely Applicable Information Criterion or

the Watanabe-Akaike Information Criterion), LOO (Leave-One-

Out cross-validation), and KFOLD (k-fold cross-validation, with

k = 10) as implemented by bayes_factor() in brms and

by loo_compare() in loo (Vehtari et al., 2022). For BFs,

the cutoff was 1
3 , while for the others, the cutoff was 4.0 points.

Please note that there might be differences between BFs, on the

one hand, and WAIC/LOO/KFOLD, on the other, due to the

default use of improper priors (see, for example, here) and to

intrinsic differences in what these indices capture (McElreath,

2020), such that the decisions here were based on a combination

of these indices. For model simplification and variable selection,

the posterior distribution of the predictor of interest vis-à-vis 0.0

(judged jointly from the posterior plot and the 95%Highest Density

Interval) and formal hypothesis tests against 0 [either directional,

when a direction is a priori hypothesized, or punctual; please note

that this is the posterior probability that the variable is in the given

relationship with 0 or the posterior probability that the variable

is not 0, respectively as given by hypothesis() in brms],

supplemented by model comparison (as described above), were

used. To control for “Galton’s problem,” the family as a random

effect (most models) was included, but also a model where the

“global” language phylogeny of Jäger (2018) and the associated

phylogenetic variance-covariance matrix were as a grouping term
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TABLE 1 The language families for which phylogenies are available, showing the source of the phylogeny, the total number of trees with branch length

provided, the number of leaves (languages) in the phylogenies, the percent of languages with a dedicated word for “blue” (i.e., a value of “yes” for the

variable blue), and the Shannon entropy for blue.

Family Source No. of trees No. of lgs % blue H(blue)

Afro-Asiatic Glottolog (Round, 2021) 3 51 78.4 0.75

Jäger (2018) 1 49 77.6 0.77

Atlantic-Congo Glottolog (Round, 2021) 3 25 44.0 0.99

Jäger (2018) 1 21 42.9 0.99

(Bantu) Grollemund et al. (2015) 1+100 12 33.3 0.92

Austroasiatic Glottolog (Round, 2021) 3 25 76.0 0.80

Jäger (2018) 1 17 64.7 0.94

Austronesian Glottolog (Round, 2021) 3 129 75.2 0.81

Jäger (2018) 1 94 75.5 0.81

Gray et al. (2009) 1+1,000 58 72.4 0.85

Hmong-Mien Glottolog (Round, 2021) 3 23 43.5 0.99

Jäger (2018) 1 11 54.6 0.99

Indo-European Glottolog (Round, 2021) 3 80 85.0 0.61

Jäger (2018) 1 64 90.6 0.45

Chang et al. (2015) 1+1,000 34 97.1 0.19

Nakh-Daghestanian Glottolog (Round, 2021) 3 31 93.6 0.35

Jäger (2018) 1 28 92.9 0.37

Pama-Nyungan Glottolog (Round, 2021) 3 47 19.2 0.70

Jäger (2018) 1 29 27.6 0.85

Bouckaert et al. (2018) 1+1,000 41 19.5 0.71

Sino-Tibetan Glottolog (Round, 2021) 3 80 77.5 0.77

Jäger (2018) 1 37 67.6 0.91

Zhang et al. (2019) 1+1,000 19 73.7 0.83

Tai-Kadai Glottolog (Round, 2021) 3 25 84.0 0.63

Jäger (2018) 1 21 85.7 0.59

Timor-Alor-Pantar Glottolog (Round, 2021) 3 21 38.1 0.96

Jäger (2018) 1 16 25.0 0.81

Turkic Glottolog (Round, 2021) 3 12 91.7 0.41

Hruschka et al. (2015) 1+100 10 90.0 0.47

Uralic Glottolog (Round, 2021) 3 26 96.2 0.24

Jäger (2018) 1 23 100.0 0.00

Honkola et al. (2013) 1+1,000 14 100.0 0.00

“Global” (1) Jäger (2018) 1 641 66.3 0.92

“Global” (2) Bouckaert et al. (2022) 1 703 66.0 0.92

Please note that the source “Glottolog” represents the Glottolog v4.6 trees (Hammarström et al., 2022) downloaded and preprocessed using the glottoTrees package (Round, 2021), with

added branch length using the following methods (see Round, 2022 for details): “original” (all branch length are equal), “exponential” (branch lengths are exponentially distributed: 1/2k for

the kth deepest branch), and “ultrametric” (rescaling the terminal branches so that all tips are equally distant from the root); please note that these branch lengths do not affect the tree topology

but just the lengths of the branches. Jäger (2018) provides a global phylogeny, but also individual phylogenies for each language family. Grollemund et al. (2015) provides one summary and 100

individual posterior trees for Bantu (a subgroup of Atlantic-Congo). Gray et al. (2009) provides one summary and 1,000 individual posterior trees for Austronesian. Chang et al. (2015) provides

one summary and 1,000 individual posterior trees for Indo-European, but all languages have a word for “blue,” making these trees unusable for the phylogenetic methods. Bouckaert et al. (2018)

provides one summary and 1,000 individual posterior trees for Pama-Nyungan. Zhang et al. (2019) provides one Maximum Clade Credibility (MCC) tree for Sino-Tibetan. Hruschka et al.

(2015) provides one summary and 100 individual posterior trees for Turkic. Honkola et al. (2013) and Jäger (2018) provide one tree, and one summary and 1,000 individual posterior trees,

respectively, for Uralic, but all languages have a word for “blue,” making these trees unusable for the phylogenetic methods. Both Jäger (2018) and Bouckaert et al. (2022) provide world-wide

“global” phylogenies constructed using very different methods and data.
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(using brms’s gr() syntax, and ape’s vcv.phylo() function;

Paradis and Schliep, 2019) was run. Likewise, to control for contact,

macroarea as a random effect (most models) was included, but

also a model where a 2D Gaussian process (one per macroarea,

using brms’s grouping gr() function by longitude, latitude, and

macroarea), as suggested in McElreath (2020) and Naranjo and

Becker (2022), was run. Moreover, one extra model was fitted,

where both the “global” language phylogeny of Jäger (2018) and the

2D Gaussian process, as described above, were included.

Second,mediation analyseswere conducted, which can quantify

the direct and the indirect (or mediated) effects of a treatment (T)

on an outcome (O) possibly mediated by a mediator (M). Thus,

there is a direct effect (with strength a, represented as T
a
−→ O)

and an indirect effect “flowing” through M (T
b
−→ M

c
−→ O, with

two components of strengths b and c, respectively), with the total

effect (i.e., the overall influence of T on O, T
րMց
−−−−→ O) of strength

a+ b× c. These are estimated here by fitting the two mixed-effects

regressions (with family and macroarea as random effects) to the

data jointly (using R’s notation):

M ∼ T + (1|family)+ (1|macroarea)

O ∼ T +M + (1|family)+ (1|macroarea)

These were fitted in a Bayesian framework (using brms),

estimating, for each individual component (T → O, T → M,

and M → O), its strength (a, b, and c, respectively), as well as

their 95% HDIs, and their “significance” was judged based on the

inclusion of 0 in the 95% HDI; for the effects (total, direct, and

indirect), their strength (a + b × c, a, and b × c, respectively)

was estimated, as well as their 95% HDIs, and their “significance”

was judged based on the inclusion of 0 in the 95% HDI and

the posterior probability of the hypothesis p(estimate = 0) (using

hypothesis() in brms). These mediation models were also

fitted using piecewise Structural Equation Models in a frequentist

framework (using package piecewiseSEM in R; Lefcheck, 2016),

which allows not only the estimation of the total, direct, and

indirect effects (with bootstrapping 95% CIs and p-values) and of

a, b, and c (with standard errors and p-values) but also to test

the existence of the direct effect using d-separation (within Judea

Pearl’s causality framework; Lefcheck, 2016; Pearl and Mackenzie,

2018). Please note that only those mediation models that make

sense theoretically and where the three components (T → O, T →

M, andM → O) were individually “significant” (as regressions), or

when they were of particular a priori theoretical importance were

actually estimated.

Third, path analysis (Wright, 1934) models were fitted

using lavaan (Rosseel, 2012), which model those relationships

that are theoretically important (see Josserand et al., 2021 for

details) to the primary hypothesis. While this method allows the

simultaneous modeling of multiple influences (paths) between

several variables (which the mediation approach does not), it

cannot (at the moment) control for the effects of family and

macroarea (as the mediation models do); moreover, this was

fitted in a frequentist framework. To address some of these

limitations, path analysis was also conducted in a piecewise

Structural Equation Models framework where the individual

regressions composing themodel are fitted simultaneously either in

a frequentist (using piecewiseSEM) or Bayesian (using brms)

approach, which allow the inclusion of family and macroareas

as random effects and the use of generalized linear models (in

particular, of logistic regression; N.B., piecewiseSEM does

currently have some limitations that might affect the use of

dichotomous variables). However, it can be argued that some

of the predictors are, in fact, indirect measurements of the

unmeasured latent variables that presumably play the causal role,

in particular UV-B incidence (captured by its mean and standard

deviation), “cultural complexity” (partly captured by subsistence

and population size), and possibly climate (captured by various

climate PCs and humidity). Therefore, Structural Equation Models

with latent variables were also implemented using lavaan with

the aforementioned limitations, with the partial exception of also

conducting a multi-group analysis using macroarea as a grouping

factor, which allows the estimation of separate parameters for each

macroarea.

Fourth, various techniques were employed to check which

of the many potential predictors of blue do, in effect, predict

it. For all these techniques, the full dataset was split randomly

into a training (80% of datapoints) and testing (remaining 20%)

datasets, 100 times (this allows the testing of how well the model

generalizes to new “unseen” data). Then, Bayesian multiple logistic

regression with manual model simplification (as implemented by

brms), conditional inference trees (as implemented by ctree()

in package partykit; Hothorn and Zeileis, 2015), random

forests (as implemented by randomForest() in package

randomForest; Liaw and Wiener, 2002), conditional random

forests (as implemented by cforest() in package partykit),

and Support Vector Machines [SVMs, as implemented by

fit(...,model="svm") in the rminer package; Cortez,

2020] were fitted.

Finally, several phylogenetic analyses were performed, as

follows. The phylogenetic signal of blue was estimated using

three methods: the Fritz and Purvis (2010)’ D, as implemented

by phylo.d() in package caper (Orme et al., 2018), which

provides a numeric estimate D of the phylogenetic signal and

also two p-values associated with the hypotheses (D = 0 that

the character is “clumped,” evolving on the phylogeny under

a Brownian motion model and D = 1 that the character is

random relative to the phylogeny, respectively). The remaining

two methods are based on performing the logistic phylogenetic

regression of blue with no predictors, as implemented by

binaryPGLMM() in package ape [Paradis and Schliep, 2019;

which gives the “phylogenetic signal measured as the scalar

magnitude of the phylogenetic variance-covariance matrix s2 * V”

(denoted here as s2) and the p-value of the “likelihood ratio test of

the hypothesis H0 that s2 = 0”], and by phyloglm() in package

phylolm [Ho and Ane, 2014; using Ives and Garland, 2009’s

method, which uses “alpha to estimate the level of phylogenetic

correlation” (denoted here as α); this might come with a warning

if α is too close to its limits, in which case, this probably

means that the phylogenetic signal is, in fact, negligible]. Then,

ancestral state reconstruction for blue was performed (estimating

the probability that a proto-language had a dedicated word for

“blue”) using two methods: the one implemented by ace() in

package ape and based on Pagel (1994) (both the single-rate, ER,
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equivalent in this case to the symmetric, SYM, model, and the

all-rates, ARD, model were used; both estimate the appropriate

transition rate(s), 1 for ER and 2 for ARD, and the probability

of a “0,” i.e., the absence of “blue,” at the root; furthermore,

the two methods were compared, using the Likelihood Ratio test

and AIC, retaining the one best fitting the data), and the one

implemented by rerootingMethod() in package phytools

and based on Yang et al. (1995) (which estimates the marginal

ancestral state estimates by re-rooting the tree; this works only

for symmetric models, in this case ER, and gives the transition

rate and the probability of a “0” at the root). Also, the correlated

evolution of blue with all its potential predictors was estimated

using twomethods: one implemented by fitPagel() in package

phytools based on Pagel (1994) (this only works for binary

characters, so the continuous predictors were dichotomized using

median split, i.e., all values <the median → “0,” all others → “1”),

and the threshold model as implemented by threshBayes()

also in package phytools and based on Felsenstein (2012)

(this is a Bayesian method which works with both discrete and

continuous characters). Finally, phylogenetic regression of blue on

all its potential predictors of interest was performed, using three

methods: the Phylogenetic Generalized Linear Mixed Model for

Binary Data as implemented by binaryPGLMM() in package

ape, the Phylogenetic Generalized Linear Model as implemented

by phyloglm() in package phylolm (implementing the

phylogenetic logistic regression of Ives andGarland, 2009 with both

an optimized GEE approximation to the penalized likelihood of the

logistic regression and themaximization of the penalized likelihood

of the logistic regression methods), and the Bayesian logistic

regression controlling for phylogeny as implemented in package

brms, using gr(glottocode, cov = A,) where A is the

phylogenetic variance-covariance matrix of the language family (in

this case, the “flat” logistic regressions which completely disregard

the phylogenetic information was also estimated, providing a

baseline test of the relationship between blue and the considered

predictor while ignoring Galton’s problem).

4. Results

4.1. The languages

There are 834 unique glottocodes, distributed as shown in

Figure 1. They belong to 155 unique language families (as per

Glottolog, Hammarström et al., 2022), but the distribution is

highly skewed, with most languages belonging to the Austronesian

(glottocode aust1307; 134 languages), Indo-European (glottocode

indo1319; 86 languages), Sino-Tibetan (sino1245; 85), Afro-Asiatic

(afro1255; 51), and Pama-Nyungan (pama1250; 48), while 10 have

only three languages, 8 have just two languages, and 110 only one,

reflecting by and large the actual distribution of languages across

families. Likewise, the distribution of the languages across the six

Glottolog macorareas is uneven: ordered by decreasing number of

languages, there are 350 languages in Eurasia, 187 in Papunesia, 88

in South America, 86 in Africa, 74 in Australia, and 49 in North

America. Therefore, this extension of the database, from 142 unique

datapoints (i.e., unique glottocodes) in 32 unique families to 834

unique datapoints in 155 unique families, resulted in a 5.87 times

(or 487.3%) overall increase, both in terms of new language families

added (123, of which most contain less than five languages but

three are rather large: Nakh-Daghestanian, 32 languages, Timor-

Alor-Pantar, 25, and Hmong-Mien, 25) as well as by adding new

languages to existing families (mostly with just a few new languages,

with the exception of Austronesian, 134 vs. 9; Sino-Tibetan, 8

vs. 9; Pama-Nyungan, 48 vs. 1; Indo-European, 86 vs. 41; Afro-

Asiatic, 51 vs. 13; Tai-Kadai, 25 vs. 1; Austroasiatic, 25 vs. 3; and

Uralic, 28 vs. 9). All macroareas have now many more languages,

with the most dramatic increases for Australia (74 vs. 2 or an

3600.0% increase) and Papunesia (187 vs. 9, 1977.8%), followed

by South America (88 vs. 12, 633.3%), North America (49 vs.

9, 444.4%), Eurasia (350 vs. 79, 343.0%), and Africa (86 vs. 31,

177.4%).

4.2. The variables considered

4.2.1. Is there a dedicated word for “blue”?
The binary variable blue, coding the presence (“yes”) or not

(“no”) of a dedicated word for “blue” in a given language, was coded

for all the 834 languages, of which 549 (65.8%) do have such a word

(i.e., blue is “yes”) and the remaining 285 (34.2%) do not. Visually

(Figure 1), their distribution seems to be spatially non-random,

with the majority of languages without a word for “blue” seemingly

clustered closer to the equator. However, this impression can be

misleading due to various confounding factors (Ladd et al., 2015),

paramount being “Galton’s problem” (Mace and Holden, 2005) and

language contact. The first refers to the fact that related languages

(i.e., languages from the same family) are not independent, as they

may inherit some of their characteristics from the family’s proto-

language, while the second refers to the fact that languages in

contact may come to share characteristics as well.

4.2.2. UV-B incidence
When using TOMS as a source of data, information was

recovered for all 834 (100%) languages. The mean UV-B incidence

(denoted here UVmT) varies between a minimum of 70.9 mW/m2

and a maximum of 238.6 mW/m2, with a mean of 208.5 mW/m2

and a median of 221 mW/m2, and a standard deviation of 29.0

mW/m2 and an inter-quartile range (IQR) of 16.1 mW/m2. As

can be seen in Figure 2, UVmT is sharply skewed toward high

values, reflecting the relatively small number of languages at very

high latitudes.

The standard deviation of the UV-B incidence (UVsT) varies

between a minimum of 1.1 mW/m2 and a maximum of 71.2

mW/m2, with a mean of 16.4 mW/m2 and amedian of 7.6 mW/m2,

and a standard deviation of 17.5 mW/m2 and an IQR of 12.9

mW/m2. As can be seen in Supplementary Figure 2,UVsT is sharply

skewed toward low values, essentially becausemost languages in the

dataset have a low seasonal variation in UV-B incidence.

When using WorldClim as a source of data, information was

recovered for 829 (99.4%) languages. The mean UV-B incidence

(UVmW) varies between a minimum of 6,780 kJ/m2day and a

maximum of 22,681 kJ/m2day, with a mean of 16,499 kJ/m2day

and a median of 17,045 kJ/m2day, and a standard deviation of
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FIGURE 1

Map of the languages in the dataset, showing, for each, if there is a specific term for “blue” in the languages (dark magenta dots) or not (yellow dots).

Figure generated using R version 4.2.3 (2023-03-15) and packages ggplot2 (version 3.4.1) and maps (version 3.4.1), using public domain data from

the Natural Earth project as provided by the R package maps.

FIGURE 2

Map of the languages showing, for each, its mean UV-B incidence (as given by TOMS, in mW/m2), as well the overall distribution of this variable

across all languages (inset). Figure generated using R version 4.2.3 (2023-03-15) and packages ggplot2 (version 3.4.1) and maps (version 3.4.1),

using public domain data from the Natural Earth project as provided by the R package maps.

3470.2 kJ/m2day, and an IQR of 5,270 kJ/m2day. Its standard

deviation (UVsW) varies between a minimum of 448.5 kJ/m2day

and a maximum of 8,625 kJ/m2day, with a mean of 3,460 kJ/m2day

and a median of 2,490 kJ/m2day, and a standard deviation of

2156.6 kJ/m2day and an IQR of 3981.4 kJ/m2day. Please see

Supplementary Figures 3, 4.

There is a negative correlation between the mean and sd of

the UV-B incidence (in TOMS: Pearson’s r = −0.96, p = 0;

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1143283
https://www.naturalearthdata.com/
https://www.naturalearthdata.com/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Dediu 10.3389/fpsyg.2023.1143283

Spearman’s ρ = −0.75, p = 1.26 · 10−149; and in WorldClim:

r = −0.55, p = 7.13 · 10−67, ρ = −0.43, p = 1.26 ·

10−38) as expected due to the relationship between latitude and

seasonality. As hinted by Pearson’s r and Spearman’s ρ and shown

in Supplementary Figure 5, this relationship is clearer for TOMS,

and, for both databases, it is non-linear.

As expected, the two databases are positively correlated with

each other (for mean UV-B incidence: r = 0.78, p = 5.00 ·

10−170, ρ = 0.64, p = 4.78 · 10−96; for sd UV-B incidence:

r = 0.86, p = 1.64 · 10−249, ρ = 0.75, p = 2.49 · 10−148),

but the relationship is far from perfect and is non-linear (see

Supplementary Figure 6), suggesting that the two databases do not

capture the same information about UV-B light incidence.

4.2.3. Elevation, climate, and distance to large
bodies of water

Elevation was available for all 834 (100%) languages and was

heavily skewed toward low altitudes (see Supplementary Figure 7),

ranging between−6 and 5,161m, with amean of 652.1 m, amedian

of 336 m, a standard deviation of 823.4 m, and an IQR of 746.8 m.

Climate data from WorldClim were available for all but

three languages. The first Principal Component, PC1, of the

climate variables, explains 53.9% of the variance and its

high values reflect low seasonality, wet and hot climates (see

Supplementary Figure 8). PC2 explains 23.3% of the variance (see

Supplementary Figure 9), while PC3 explains only 7.1% of the

variance (see Supplementary Figure 10), and they are harder to

interpret.

For specific humidity (measured in grams of vapor per

kilogram of air), data were available for all 834 (100%) languages.

The mean of yearly medians (shortened as median humidity or

humm) ranges from 0.0014 to 0.02, with a mean of 0.012, median

of 0.013, standard deviation of 0.005, and an IQR of 0.01 (see

Supplementary Figure 11). The mean of yearly IQRs (shortened as

median variation or humv) ranges from 0.00035 to 0.012, with a

mean of 0.0044, median of 0.0041, standard deviation of 0.003, and

an IQR of 0.005 (see Supplementary Figure 12).

The distances to the nearest large bodies of water are measured

in kilometers (km) as the crow flies, and are subdivided in the

distance to the nearest lake (dist2lake, or d2l), to the nearest river

(dist2river or d2r), to the nearest sea or ocean (dist2ocean or d2o),

and theminimum between the three (i.e., the distance to the nearest

large body of water irrespective of its type, denoted dist2water or

d2w). These data were available for all 834 (100%) languages. The

dist2lake is heavily skewed to the left with a few extreme outliers,

and ranges between 0.5 and 2,770 km, with a mean of 40.4 km, a

median of 21.4 km, a standard deviation of 115.0 km, and an IQR

of 37.2 km (see Supplementary Figure 13). The dist2river is also

heavily skewed to the left with a few extreme outliers, and ranges

between 0.9 and 3,527 km, with amean of 81.1 km, amedian of 39.7

km, a standard deviation of 176.9 km, and an IQR of 68.5 km (see

Supplementary Figure 14). The dist2ocean is less skewed and ranges

between 0.6 and 2,194 km, with a mean of 317.7 km, a median of

146.5 km, a standard deviation of 354.8 km, and an IQR of 549.4

km (see Supplementary Figure 15). The dist2water is skewed to the

left and ranges between 0.5 and 238.6 km, with a mean of 19.8 km,

a median of 13.1 km, a standard deviation of 24.6 km, and an IQR

of 17.3 km (see Supplementary Figure 16).

4.2.4. Population size and subsistence strategy
For population size collected from both sources, data were

missing only for 63 languages (covering thus 771 or 92.4% of

the languages) in the Ethnologue and 78 (covering 756 or 90.6%

of the languages) in the Wikipedia. The data primarily derived

from the Ethnologue (measured in tens of thousands of speakers

to reduce the order of magnitude of the numbers displayed) are

heavily skewed toward small languages, and ranges between 0 (for

45 languages, including 41 reported as recently extinct) and 84,091,

with a mean of 465.6, a median of 1.0, a standard deviation of

3,480, and an IQR of 29.1 (see Supplementary Figure 17). The data

primarily derived fromWikidata/Wikipedia (also measured in tens

of thousands of speakers), is also heavily skewed toward small

languages, and ranges between 0 (for 46 languages, including 42

reported as recently extinct) and 92,000, with a mean of 663.6,

a median of 1.0, a standard deviation of 4,257.1, and an IQR of

30.9 (see Supplementary Figure 18). There is a strong positive and

1:1 linear relationship between the two sources (Pearson’s r =

0.98 and Spearman’s ρ = 0.98, both with p < 2.2 · 10−16; see

Supplementary Figure 19), with a few languages where the two

estimates differ, in most cases due to the year of the estimate

(very important for extremely endangered languages) or on the

different type of categories of people considered (native speakers

only, including L2 speakers as well, or even ethnicity).

Subsistence data were available only for 712 (85.4%) languages,

and many more (553, 77.7%) practice subsistence modes centered

around food production (“agriculture”) than those (159, 22.3%)

whose subsistence mode is based on hunting, fishing, gathering,

and/or foraging (“hunter-gatherers”). As expected, the latter tend

to be found in marginal lands, being present mainly (in this

dataset) in Australia, South America, and northern Eurasia (see

Supplementary Figure 20).

4.2.5. Language vs. origin-of-family
measurements

For 15 variables, their value at the putative origin of the

language families were also available. However, these values come

with several caveats: first, the putative geographic origins are in

most cases very controversial and come with probably very large

errors; second, the value of the variables are present-day values,

whichmight differ from their values at the time the proto-languages

were spoken (ranging from hundreds to thousands of years, and

usually now known with certitude). For each of these variables, the

origin of family-level values versus the language-level values was

plotted, their Pearson and Spearman correlations were computed,

and their VIF (variance inflation factor) when used (as fixed effects)

to predict blue in a mixed-effects logistic model with family and

macroarea as random effects were estimated (see Table 2).

It can be seen, first, that the geographical locations of the

present-day languages and of the putative origin of language

families are very highly correlated, which is to be expected.

However, there are a few families which show a very large spread

among their daughter languages (Table 3), of particular interest
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TABLE 2 The relationship between the language-level and the family-origin-level values for the 15 variables (1st column) for which the latter could be

estimated.

Variable Pearson’s r Spearman’s ρ VIF

Longitude r = 0.88, p = 6.7 · 10−276 ρ = 0.86, p = 3.9 · 10−248 1.7

Latitude r = 0.86, p = 7.8 · 10−246 ρ = 0.78, p = 3.7 · 10−170 2.4

UV-B (mean; TOMS) r = 0.83, p = 1.8 · 10−214 ρ = 0.67, p = 3.0 · 10−111 2.4

UV-B (sd; TOMS) r = 0.87, p = 4.5 · 10−258 ρ = 0.71, p = 2.3 · 10−129 2.7

UV-B (mean; WorldClim) r = 0.69, p = 1.1 · 10−116 ρ = 0.57, p = 4.1 · 10−73 1.5

UV-B (sd; WorldClim) r = 0.78, p = 1.4 · 10−172 ρ = 0.68, p = 7.8 · 10−115 1.8

Climate PC1 r = 0.68, p = 1.2 · 10−114 ρ = 0.58, p = 2.4 · 10−76 1.5

Climate PC2 r = 0.56, p = 7.5 · 10−70 ρ = 0.55, p = 1.2 · 10−66 1.2

Climate PC3 r = 0.36, p = 1.7 · 10−26 ρ = 0.40, p = 5.5 · 10−33 1.1

Humidity (median) r = 0.75, p = 1.7 · 10−154 ρ = 0.72, p = 3.9 · 10−133 1.7

Humidity (IQR) r = 0.53, p = 5.0 · 10−62 ρ = 0.40, p = 1.3 · 10−32 1.2

Dist. to lakes r = 0.13, p = 0.00017 ρ = 0.15, p = 8.1 · 10−6 1.0

Dist. to rivers r = 0.03, p = 0.373 ρ = 0.02, p = 0.547 1.0

Dist. to oceans/seas r = 0.65, p = 8.2 · 10−101 ρ = 0.61, p = 9.9 · 10−86 1.3

Dist. to water r = 0.30, p = 2.9 · 10−19 ρ = 0.27, p = 5.9 · 10−15 1.1

Shown are: their Pearson’s (2nd column) and Spearman’s (3rd column) columns, as well as the variance inflation factor (VIF, 4th column) of a mixed-effects logistic regression of blue having

the language-level and the family-origin-level values as fixed effects, and family and macroarea as random effects.

here being those with a large spread in latitude, as latitude is the

main driver of UV-B incidence as well as having a strong influence

on climate.

Given these, it is no surprise that most variables show high

correlations between the language-level and family-origin-level

values (except for the distances to lakes and to rivers, the latter being

the only non-significant one, given their high dependence on small-

scale details of geography and climate), but it is also interesting to

note that the highest VIF is ≈ 2.7, which is well below the usual

cutoff of 5, and suggests that the family-origin-level values do not

carry the same information as the language-level values.

4.3. Should the family and macroarea be
modeled as random e�ects?

A priori, it is extremely important to control for Galton’s

problem, and for language contact (Ladd et al., 2015) so, it was also

checked if, on these data, including language family and macroarea

as random effects in a mixed-effects regression model is statistically

justified or not. For this, the null model, m0 (i.e., in which blue is

regressed only on the intercept, without any predictors), with both

family and macroarea as random effects [in R’s notation, m0 =

blue ∼ 1+(1|family)+(1|macroarea)] and the null models thatmiss

one of these random effects [m0−f = blue ∼ 1 + (1|macroarea)

and m0−m = blue ∼ 1 + (1|family)] were compared (in both the

frequentist and Bayesian frameworks). It was found thatm0 has an

Intraclass Coefficient Coefficient, ICC (which can be interpreted

as the proportion of the variation explained by the grouping of

observations as given by the random effects, ranging from 0%, when

the random structure doe not explain anything, to 100%, when

the random structure is enough by itself to explain the data), of

27.3%. Removing family significantly drops the fit (m0 vs m0−f :

LR model comparison’s p = 2.57 · 10−6, 1AIC = 20.1, BF =

16059.0, 1LOO = 14.5, 1WAIC = 15.1, 1KFOLD = 12.8),

as does removing macroarea (p = 2.45 · 10−5, 1AIC = 15.8,

BF = 1108.7, 1LOO = 4.8, 1WAIC = 3.0, 1KFOLD = 10.0).

Thus, both random effects will be systematically included in the

following models.

4.4. The potential predictors of blue
considered individually

Both frequentist and Bayesian logistic mixed-effects regressions

of blue on each of the following predictors of potential interest

individually were performed: UV-B incidence (mean and sd,

separately from TOMS and WorldClim), latitude, subsistence

strategy, elevation, climate (PC1, PC2, and PC3), humidity (median

and IQR), distance to large bodies of water (separately for

distance to lakes, rivers, seas/oceans, and any type of large body

of water), and population size (separately from the Ethnologue

and Wikipedia/Wikidata). For the numeric predictors (all except

subsistence), the process began with the quadratic model [blue ∼

1 + x + x2 + (1|family) + (1|macroarea)], while for discrete

predictors (only subsistence), it started with the linear model. Then,

they were (automatically) simplified by dropping first the quadratic

effect (if it exits), then the linear effect, and retaining the simplest

model (which could well be the null model) that explains the data

equally well as the most complex model. With this, it was found

that the predictors which seem to have an individual effect on

blue with various degrees of confidence are (see Table 4): UV-B
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TABLE 3 Languages families which have a standard deviation of latitude among their languages ≥ the median standard deviations across families of 2.3

(4th column), ordered decreasingly by this column.

Family Glottocode sd (longitude) sd (latitude) No. of lgs

Athabaskan-Eyak-Tlingit atha1245 19.1 15.0 4

Indo-European indo1319 58.4 15.0 86

Atlantic-Congo atla1278 17.5 14.7 25

Tupian tupi1275 5.1 11.7 7

Arawakan araw1281 6.3 10.2 8

Afro-Asiatic afro1255 12.2 9.6 51

Chukotko-Kamchatkan chuk1271 9.3 8.4 2

Nuclear-Macro-Je nucl1710 2.1 8.3 5

Turkic turk1311 25.2 8.0 12

Tungusic tung1282 11.0 7.7 5

Eskimo-Aleut eski1264 45.9 6.5 6

Pama-Nyungan pama1250 11.7 6.5 48

Austronesian aust1307 24.7 6.4 134

Uralic ural1272 21.4 6.1 28

Austroasiatic aust1305 5.0 5.3 25

Uto-Aztecan utoa1244 7.1 4.6 3

Tai-Kadai taik1256 3.9 4.2 25

Dravidian drav1251 2.6 3.8 5

Sino-Tibetan sino1245 6.9 3.3 85

Nilotic nilo1247 1.6 2.9 4

Mongolic-Khitan mong1349 35.6 2.7 3

Pano-Tacanan pano1259 3.0 2.4 8

Yukaghir yuka1259 3.0 2.3 2

The standard deviation of longitude (3rd column), the number of languages with data in the family (5th column), the family name (1st column), and glottocode (2nd column).

as measured at the location of the languages (clearly negative for

the mean, either quadratic [TOMS] or linear [WorldClim], and

clearly positive for sd, probably linear [TOMS] and [WorldClim]),

UV-B at the origins of the language families (suggestive linear,

negative for the mean [TOMS], and positive for sd [TOMS] and

[WorldClim]), latitude at the location of the languages (clearly

linear positive), latitude at the origins of the language families

(linear positive), climate PC1 at the origins of the language families

(possibly negative linear), humidity median and at the origins of

the language families (possibly negative linear), and distance to

lakes (probably negative linear). The clearest signals are thus for

UV-B incidence (negative for their mean and positive for their

standard deviation) and latitude (at the language and family origins,

positive). It is interesting to note that, in general, the frequentist and

Bayesian estimates are in very good numeric agreement, but that

the Bayesian approach tends to be more conservative.

Comparing the two UV-B incidence databases, TOMS and

WorldClim, in terms of their capacity to predict blue when using

UV-B mean in a mixed-effects logistic regression with family and

macroarea as random effects, we suggests that TOMS is a better

predictor [glmer: 1AIC = 6.4, 1BIC = 6.4; brms: BF =

23.0, 1LOO = 2.4(2.6), 1WAIC = 2.3(2.6), 1KFOLD =

3.5(3.4)]. Likewise, fitting a mixed-effects logistic regression of

blue as above, but with UV-B mean and sd from both databases

as fixed effects simultaneously found high VIFs for UV-B mean

(8.6) and sd (12.2) from TOMS, and low VIFs for the mean (2.2)

and sd (2.9) from WorldClim, suggesting that the two databases

contain highly overlapping information. Taken together with the

substantive difference between the two databases in terms of what

they actually mean in terms of UV-B incidence, it was decided to

only use the TOMS data in the reminder of the article.

4.5. Mediation analyses

Several mediation models having blue as outcome were fitted

(see Supplementary Figures 21–39), and it was found that, first,

the significant positive total effect of latitude on blue (Bayesian:

TE = 3.6[1.4, 5.9], piecewiseSEM: TE = 0.03[0.01, 0.05], p =

0.0001; please note that the effects are standardized but not the

regression coefficients) is composed of a non-significant negative
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TABLE 4 The predictors that individually seem to help predict blue in a

mixed-e�ects logistic regression.

Predictor Approach Formula

UV-B (mean; TOMS) Frequentist −0.20± 0.08x2 − 0.93± 0.24x

Bayesian −0.52[−0.83,−0.21]x

UV-B (sd; TOMS) Frequentist 0.57± 0.14x

Bayesian 0.58[0.30, 0.89]x

UV-B (mean; WorldClim) Frequentist −0.36± 0.14x

Bayesian {−0.36[−0.64,−0.09]x}

UV-B (sd; WorldClim) Frequentist 0.32± 0.13x2 + 0.07± 0.16x

Bayesian {0.28[0.02, 0.57]x}

UV-B (mean fam.; TOMS) Frequentist −0.31± 0.15x

Bayesian {−0.31[−0.63, 0.00]x}

UV-B (sd fam.; TOMS) Frequentist 0.31± 0.14x

UV-B (sd fam.; WorldClim) Frequentist 0.33± 0.15x

Bayesian {0.32[0.03, 0.65]x}

Latitude Frequentist 3.07± 1.00x

Bayesian 2.68[0.84, 4.77]x

Latitude (fam.) Frequentist 2.93± 1.08x

Bayesian 2.41[0.29, 4.52x]

Elevation Frequentist −0.06± 0.02x2 + 0.62± 0.23x

PC1 (fam.) Frequentist −0.37± 0.13x

Bayesian {−0.37[−0.64,−0.09]x}

Humidity (median) Frequentist −67.32± 25.12x

Humidity (median fam.) Frequentist −87.21± 31.69x

Dist. lakes Frequentist −0.20± 0.09x

Bayesian {−0.20[−0.38,−0.02]x}

It shows the predictor, the type of regression (frequentist, i.e., using glmer, or Bayesian,

using brms), and the (essential) regression formula. For this last column, it uses the following

conventions: for frequentist regressions, it gives the point estimate± standard error, while for

the Bayesian regressions, it gives the point estimate (i.e., the mean posterior) [95% HDI]. For

both, it gives either the quadratic or the linear formula, as appropriate. If the Bayesian linear

model is not formally better than the null (but marginally so) and the 95% HDI does not

contain 0, it still gives the linear model but enclosed within { and }; please note that the global

intercept α nor its variation by the random effect structure are shown, as these are not relevant

for establishing the direction and relative strength of the predictor’s effect. So, as an example,

the first row is interpreted as a quadratic model (frequentist) with coefficient−0.20± 0.08 for

the quadratic term and−0.93±0.24 for the linear term, while the last row is a Bayesian linear

regression that is not formally better than the null model, but where the slope, −0.20, is very

probably negative, as 0 /∈ [−0.38,−0.02].

direct effect (Bayesian: DE = −5.7[−12.5, 1.1]), piecewiseSEM:

no estimate) and a significant positive indirect effect (Bayesian:

IE = 9.3[2.4, 16.1], piecewiseSEM: IE = 0.03[0.01, 0.05], p =

0.0001), the latter mediated through UV-B mean and composed of

a significant negative effect of latitude on UV-B mean (Bayesian:

βT→M = −7.1[−7.2,−6.9], piecewiseSEM: βT→M = −7.1 ±

0.1, p = 0) and a significant negative effect of UV-B mean

on blue (Bayesian: βM→O = −1.3[−2.3,−0.4], piecewiseSEM:

βM→O = −0.5 ± 0.1, p = 0.0007; see Supplementary Figure 21).

When using UV-B sd instead, the results are similar, but suggest

that UV-B mean is a better mediator of the relationship: the

significant positive total effect of latitude on blue (Bayesian: TE =

3.1[0.1, 5.2], piecewiseSEM: TE = 0.01[0.00, 0.02], p = 0.0006) is

composed of a significant negative direct effect (Bayesian: DE =

−8.9[−15.6,−2.4], piecewiseSEM: DE = −0.02[−0.03,−0.00],

p = 0.009) and a significant positive indirect effect (Bayesian:

IE = 12.0[5.8, 18.6], piecewiseSEM: IE = 0.03[0.01, 0.04], p =

0.0003), the latter mediated through UV-B sd and composed of

a significant positive effect of latitude on UV-B sd (Bayesian:

βT→M = 6.6[6.4, 6.8], piecewiseSEM: βT→M = 6.6 ± 0.1, p =

0) and a significant positive effect of UV-B sd on blue (Bayesian:

βM→O = 1.8[0.9, 2.8], piecewiseSEM: βM→O = 1.5 ± 0.4, p =

0.0003, see Supplementary Figure 22).Climate PC1, population size,

and distance to lakes do not mediate the relationship between

latitude and blue, but subsistence might (piecewiseSEM: IE =

−0.01[−0.01,−0.00], p = 0, βT→M = −0.6± 0.1, p = 0, βM→O =

1.1 ± 0.3, p = 0, Supplementary Figures 23–25, 34). Subsistence

seems to mediate some of the relationship between UV-B (mean

and sd) and blue (Supplementary Figures 28, 29), but population

size does not (Supplementary Figures 30, 31). Focusing on distance

to lakes suggests that its negative effect on blue is, in fact, mediated

by latitude and UV-B incidence (Supplementary Figures 33–39).

4.6. Path analysis and structural equation
models

4.6.1. Path analysis
I fitted various path analyses models that reflect to various

degrees our causal beliefs connecting blue, UV-B, latitude, and

other predictors using three different techniques, each with its own

advantages and disadvantages: “classical” variance-based SEM (as

implemented by lavaan; Rosseel, 2012), frequentist piecewise

SEM (piecewiseSEM; Lefcheck, 2016), and Bayesian piecewise

SEM (using brms; Bürkner, 2018).

With lavaan, two types of path models were fitted, as

in Josserand et al. (2021). The “full” models include all the

potentially relevant variables (latitude, UV-B incidence, distance

to lakes, climate PC1, subsistence, population size, and blue)

and most paths are directional (except for UV-B ↔ climate

PC1, and UV-B ↔ distance to lakes, which are modeled as

correlations). Three such models were fitted: one including

UV-B mean (Supplementary Figure 40), one including UV-B sd

(Supplementary Figure 41), and one including both UV-B mean

andUV-B sd (modeled as correlated; Supplementary Figure 42). All

these models fit the data rather well and are equivalent in terms of

fitting [for all: χ2
(1)

= 0.1, p = 0.74 > 0.05, CFI = 1.0, TLI = 1.02,

NNFI = 1.02, and RMSEA = 0.00], suggesting that using the mean

or the sd of UV-B incidence are equivalent from this pint of view.

Using only the mean results in a negative but non-significant path

UV-B→ blue, using only the sd results in a significant positive path,

and when including both, only the positive path from sd remains

significant; the positive path subsistence → blue is significant in all

models. The “relaxed” models kept the direction of the effect only

in those cases for which there are strong a priori reasons (Figure 3

and Supplementary Figures 43, 44). This results in very good fits to

the data and now the three models have slightly different fits as well

[mean: χ2
(3)

= 0.3, p = 0.96 > 0.05, CFI = 1.00, TLI = 1.01,
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FIGURE 3

The “relaxed” path model using UV-B mean. The labels on the path are the path coe�cients; stars represent significance (* ≤ 0.05, ** ≤ 0.01, and ***

≤ 0.001). Figure generated using R version 4.2.3 (2023-03-15) and package lavaanPlot (version 0.6.2). For all the path models, see

Supplementary Figures 40–48.

NNFI = 1.01, RMSEA = 0.00; sd: χ2
(3)

= 0.1, p = 0.99 > 0.05,

CFI = 1.00, TLI = 1.01, NNFI = 1.01, RMSEA = 0.00; both:

χ2
(5)

= 0.3, p = 0.99 > 0.05,CFI = 1.00,TLI = 1.01,NNFI = 1.01,

RMSEA = 0.00]. As above, including individually the mean and

sd of UV-B incidence results in significant paths to blue of similar

strengths (negative and positive, respectively), but including both

makes their paths to blue non-significant. Likewise, subsistence →

blue is significant and positive in all models.

In contrast with lavaan, piecewiseSEM allows the

inclusion of family and macroarea as random effects, and I

fitted two path models corresponding to the “full” models

above separately for mean and sd UV-B incidence (see

Supplementary Figures 45, 46). Including the mean results in

a much smaller AIC than not including it (1AIC = −263.9), the

model fits the data very well [χ2
(7)

= 141.0, p = 0, and Fisher’s

C(14) = 167.5, p = 0], but the negative effect of mean(UV-B) is

not significant (standardized β = −0.40, p = 0.065). Likewise,

the standard deviation results in a 1AIC = −221.5, the model fits

the data very well [χ2
(7)

= 45.0, p = 0, and Fisher’s C(14) = 69.0,

p = 0], and the positive effect of sd(UV-B) is highly significant

(standardized β = 0.73, p = 0.0003). In both models, subsistence

(AGR) has a significant positive effect on blue.

While more flexible than lavaan, piecewiseSEM still has

certain restrictions that may affect the results, prompting me to

also implement piecewise SEM using brms to fit the two models

described above (see Supplementary Figures 47, 48). The model

including the mean is overwhelmingly better than the one without

it [BF = 1.2·42, 1LOO = 121.2(24.0), 1WAIC = 123.7(23.6),

and 1KFOLD = 120.0(25.6)] and finds a clear negative effect of

mean(UV-B) on blue [β = −1.10[−1.99,−0.23], posterior p(β <

0) = 0.98]. Likewise, the model including the standard deviation

is overwhelmingly better than the one without it [BF = 2.5·16,

1LOO = 70.9(37.9), 1WAIC = 71.7(37.8), and 1KFOLD =

66.3(40.2)] and finds a clear positive effect of sd(UV-B) on blue

(β = 1.93[1.09, 2.79], posterior p(β > 0) = 1.00). Both models

find a significant positive effect of subsistence (AGR) on blue and

there may be hints of a negative effect of distance to lakes and a

positive effect of population size.

4.6.2. Modeling latent variables
However, it is arguably incorrect to include simultaneously

both the mean and standard deviation of UV-B incidence as they

are highly correlated and causally linked, being two connected

aspects of the same unmeasured construct capturing the UV-B

incidence received by a geographic location in a year. Likewise,

subsistence and population size are, arguably, proxies for an

unmeasured “cultural complexity” that might affect blue. Therefore,

I also implemented a series of Structural Equation Models that

explicitly model the latent variables UV-B incidence, measured by

mean(UV-B) and sd(UV-B), and cultural complexity, measured by

subsistence and population size (climate is captured by climPC1).

However, currently only lavaan allows latent constructs and,

given the complexities of fitting such models, I start with the
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main hypothesis and I subsequently added other factors to the

model. First, the model implementing the main hypothesis (see

Supplementary Figure 49) that blue is influenced by the latent UV-

B incidence which is affected by latitude fits the data [χ2
(1)

= 1.9,

p = 0.17 > 0.05,CFI = 1.00, TLI = 0.99,NNFI = 0.99, RMSEA =

0.032] and finds a significant negative effect of UV-B incidence

on blue (standardized β = −0.83, p = 0.008); this latent loads

approximately equally but with opposed signs on themean (loading

fixed to 1.0) and sd (loading −1.003, p = 0). Adding the climate

(climPC1) improves the fit [χ2
(3)

= 1.2, p = 0.75 > 0.05, CFI =

1.00, TLI = 1.00, NNFI = 1.00, RMSEA = 0.00] and does not alter

the relationship among blue, UV-B incidence, and latitude. Further

adding the latent cultural complexity (see Supplementary Figure 50)

makes the model to not formally fit the data anymore [χ2
(9)

= 19.1,

p = 0.025 ≤ 0.05] but the fit indices are still very good (CFI = 0.99,

TLI = 0.99, NNFI = 0.99, RMSEA = 0.04); the relationship

among blue, UV-B incidence, and latitude remains the same (with

a slightly weaker βUVB→blue = −0.64, p = 0.002), and there is

now a significant positive relationship between cultural complexity

(mainly loading positively on subsistence but also on population

size) and blue (βculture→blue = 0.46, p = 0.0). However, adding

the distance to lakes makes the model not fit the data and degrades

its fit indices as well [χ2
(14)

= 144.0, p = 0 ≤ 0.05, CFI = 0.94,

TLI = 0.88, NNFI = 0.88, RMSEA = 0.12] suggesting that

we should not put too much weight on it, but it introduces a

significant negative effect of this variable on blue and does not alter

the previous relationships of interest.

Finally, while lavaan does not currently handle random

effects, I attempted to control for the effect of macroarea

by modeling it as a grouping factor in the first model that

embodies the main hypothesis, estimating the models’ parameters

for each macroarea (N.B., this is fundamentally different

from a random effects approach and cannot be applied to

the language family due to the large number of families and

generally very low number of languages per family). This

fits the data well enough [χ2
(6)

= 11.9, p = 0.065 > 0.05,

CFI = 0.97, TLI = 0.90, NNFI = 0.90, RMSEA = 0.08] and

finds the following estimates of βUVB→blue (with 95% CIs and

p-values) per macroareas: Africa (−2.15[−4.24,−0.06], p =

0.044), Eurasia (−3.24[−5.82,−0.65], p = 0.014),

Australia (1.55[−2.04, 5.13], p = 0.40), Papunesia

(−3.39[−6.51,−0.28], p = 0.033), North America

(0.40[−2.54, 3.35], p = 0.79), and South America

(−1.74[−3.99, 0.51], p = 0.13).

4.7. Predicting blue

4.7.1. Bayesian mixed e�ects regression
A Bayesian mixed effects logistic regression with family and

macroarea as random effects, using all potential predictors as

fixed effects fits well the full dataset (76.6% accuracy, 77.5%

sensitivity, 74.1% specificity, 88.7% precision, and 77.5% recall).

When randomly splitting the dataset into 80% training/20% testing

subsets 100 times, using all the potential predictors, a good fit on

the testing subsets was obtained (70.1± 2.9% accuracy, 74.7± 3.2%

sensitivity, 59.4 ± 6.6% specificity, 81.7 ± 3.9% precision, and

74.7 ± 3.2% recall). Manual simplification retains the following

three predictors [estimate, 95% HDI and p(ROPE)]: UV-B sd (β =

0.81[0.49, 1.11], p(ROPE) = 0.00), subsistence (β = 0.87[0.2, 1.52],

p(ROPE) = 0.0003), and distance to oceans (family) (β =

0.24[0.02, 0.47], p(ROPE) = 0.29); this model still fits the full data

well (76.0% accuracy, 76.7% sensitivity, 74.0% specificity, 89.2%

precision, and 76.7% recall).

4.7.2. Conditional inference trees
A conditional inference tree using all the potential predictors

fits the full dataset well (72.9% accuracy, 72.0% sensitivity, 79.2%

specificity, 96.2% precision, and 74.1% recall) and seems to make

a distinction among the African, Eurasian, North American, and

Papunesian languages, on the one hand, and the South American

and Australian languages, on the other; for the former split, UV-B

(sd) has a positive effect on blue, while for the second, the longitude

of the family has a positive effect (see Supplementary Figure 51).

When randomly splitting the dataset into 80% training/20% testing

subsets 100 times, using all the potential predictors, good fits on the

testing subsets were obtained (70.8 ± 3.5% accuracy, 74.3 ± 4.0%

sensitivity, 62.2 ± 8.4% specificity, 85.0 ± 5.9% precision, and

74.3± 4.0% recall).

4.7.3. (Conditional) random forests
Both random forests and conditional random forests fit the

dataset well (72.3 ± 0.5% accuracy, 75.5 ± 0.4% sensitivity, 64.9 ±

0.8% specificity, 83.3± 0.5% precision, and 75.5± 0.4% recall; and

81.4±0.3% accuracy, 81.2±0.3% sensitivity, 81.9±0.6% specificity,

93.3 ± 0.2% precision, and 81.2 ± 0.3% recall, respectively).

Various measures of variable importance suggest the following top

five predictors: UV-B (mean), distance to oceans (family), UV-B

(sd), latitude, andmacroarea (accuracy-based predictor importance

from random forests);UV-B (mean),UV-B (sd), latitude, population

size, and elevation (Gini-index-based predictor importance from

random forests); and macroarea, latitude (family), climate PC1

(family), UV-B (mean), and UV-B (sd) (unconditional predictor

importance from conditional random forests).

4.7.4. Support vector machines (SVM)
An SVM using all potential predictors fits well the full

dataset (74.7% accuracy, 74.3% sensitivity, 76.0% specificity, 91.7%

precision, and 74.3% recall), and the top five predictors by

importance are as follows: distance to lakes (family), macroarea,

elevation (family), subsistence, and climate PC1 (family). When

randomly splitting the dataset into 80% training/20% testing

subsets 100 times, using all the potential predictors, very good

fits on the testing subsets were obtained (71.5 ± 2.9% accuracy,

71.8±3.4% sensitivity, 70.7±7.4% specificity, 89.9±3.0% precision,

and 71.8± 3.4% recall).

4.7.5. Regressions controlling for phylogeny and
contact

Furthermore, the Bayesian logistic regression of blue on the

full set of potential predictors with manual simplification in brms
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were fitted, using (a) a 2D Gaussian process to model the spatial

relationships between the languages (McElreath, 2020; Naranjo

and Becker, 2022), which should better capture the continuous

dependency of the probability and/or intensity of language contact

on geographical space within macroareas (as opposed to the

categorical use of macroareas as a random effect) while still

including family as a random effect; (b) the “global” language

phylogeny in Jäger (2018) to model the detailed “vertical” historical

relationships between languages (as opposed to the categorical

approach of using language family as a random effect) while still

including macroarea as a random effect; and (c) combining both

(a) and (b) in a single model where a 2D Gaussian process models

the within-macroarea continuous language contact and the “global”

phylogeny to model the detailed “vertical” historical relationships

between languages. However, given that these models are very

computationally expensive, they were not generalized to each

individual predictor nor to the mediation models. Their findings

clearly support the a priori hypothesis: after manual simplification,

the model retained for (a) includes a negative effect of UV-B mean

(β = −0.64[−0.98,−0.29], p(β = 0) = 0.03, p(β < 0) =

1.00), of subsistence (agriculture: β = 1.18[0.51, 1.86], p(β =

0) = 0.03, p(β > 0) = 1.00), and negative of distance to lakes

(β = −0.20[−0.40, 0.02], p(β = 0) = 0.83, p(β < 0) = 0.97).

The models retained in (b) and (c) both include only the negative

effect of UV-B mean (β = −0.83[−1.90, 0.06], p(β = 0) = 0.36,

p(β < 0) = 0.99, and β = −0.73[−1.39,−0.07], p(β = 0) = 0.30,

p(β < 0) = 0.99, respectively).

4.8. Phylogenetic analyses

4.8.1. Language families and trees with branch
lengths

A total of 4,259 trees with branch length for 13 language

families (Supplementary Figures 52–83) and two “global” trees (not

shown due to their size) were collected (see Table 1 for summaries).

The number of languages with data in a family varies between

10 (Turkic; Hruschka et al., 2015) and 129 (Austronesian; Round,

2021), with 641 and 703 languages in the two “global” trees (Jäger,

2018; Bouckaert et al., 2022, respectively). The percent of languages

with a dedicated word for “blue” varies between ≈19% (Pama-

Nyungan; Bouckaert et al., 2018; Round, 2021) and 100% (Uralic;

Honkola et al., 2013; Jäger, 2018), with ≈66% for the two “global”

trees. The corresponding Shannon entropy varies between an

uninformative 0.00 (when “blue” is at 100%) to 0.99 (e.g., Atlantic-

Congo; Jäger, 2018); for the two “global” trees, it is a very high

0.92.

4.8.2. Phylogenetic signal and ancestral state
reconstruction for blue

The phylogenetic signal of blue independently in each of the

available trees was estimated and it was found, in summary, that

there seems to be a significant phylogenetic signal at least in

Austronesian, Indo-European, possibly Hmong-Mien, and the two

“global” trees, but the results are rather patchy and seem to depend

on the particular tree and method used (see Supplementary Table 2

for details). This probably reflects the need for large trees, as the

signal for the two very large “global” trees is quite strong and

consistence across methods.

Given this, it is not surprising that the ancestral state

reconstruction of blue seems to depend on the particular tree

and method used, but the following families seem to have had

a specific word for “blue” in their proto-languages: Afro-Asiatic,

Austroasiatic, Austronesian, Indo-European, Nakh-Daghestanian,

Sino-Tibetan, Tai-Kadai, Turkic, and Uralic, while proto-Pama-

Nyungan seems not to have had it. The “global” tree of Jäger (2018)

seems to have had a specific word for “blue” at its root, but the

other “global” tree (Bouckaert et al., 2022) is uninformative. See

Supplementary Table 3 for details.

4.8.3. Correlated evolution of blue with individual
predictors

The correlated evolution between blue and each of its potential

predictors was estimated separately. Focusing on UV-B incidence,

there seems to be some evidence for correlated evolution between

blue and UV-B mean and between blue and UV-B sd in a

few families and trees (Austroasiatic and Hmong-Mien, and

Austronesian, Hmong-Mien and Pama-Nyungan, respectively), as

well as in both “global” trees (see Supplementary Tables 4, 5). For

the other predictors, there is some evidence for correlated evolution

with blue in some families as well as in one or both “global” trees,

but is inconsistent—please see the full analysis report for details.

4.8.4. Phylogenetic regression of blue on
individual predictors

The phylogenetic logistic regression of blue on each of

the potential predictors separately was performed using two

non-Bayesian and one Bayesian approach, and for each, the

corresponding non-phylogenetic logistic regression was also fitted

as a baseline comparison which ignores “Galton’s problem”

(Mace and Holden, 2005). The results are presented in the

Supplementary Figures 85–92 (see Supplementary Figure 84 for

the full caption and interpretation key) and summarized in

Supplementary Table 6. Several predictors show suggestive signals

of coherent association with blue across multiple families and the

two “global” phylogenies, including UV-B mean (negative), UV-B

sd (positive), longitude (positive), population size (positive), climate

PC3 (negative), and distance to lakes (negative), while climate PC1

varying between families and subsistence (agriculture) seems to

have a positive effect blurred by being constant in so many families.

4.8.5. The e�ect of UV-B incidence on blue in a
phylogenetic context

Putting all these results together and focusing on the a priori

main hypothesis of a negative effect of UV-B incidence on the

existence of a dedicated word for “blue,” it was found that:

first, there is significant correlated evolution for Austroasiatic

and Hmong-Mien using the Bayesian approach, and using both

methods. On the other hand, the logistic phylogenetic regression

finds a significant negative effect only in a few cases (14 or 5.6%

trees belonging to Indo-European, Uralic, and Sino-Tibetan and
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the two “global” phylogenies), but the estimated β ’s are negative

in the majority of cases (≈65% when including the posterior trees,

which give a very strong influence to the few families with such

trees, and ≈75% when excluding them, which gives a much more

balanced view); importantly, there is a significant strong negative

effect for all methods in the two “global” phylogenies.

Second, there is also a signal of correlated evolution between

UV-B sd and blue, and there is a significant positive effect for

11 (4.4%) cases and a positive β for ≈60 and ≈65% of cases,

respectively; there is a strong positive signal in both “global”

phylogenies.

Third, plotting the relationship between blue and UV-B

incidence in each family separately (see Supplementary Figures 85–

92 and the full analysis report) suggests that, first, only two families

(Atlantic-Congo and Tai-Kadai) do not show any effect of UV-B

incidence on blue, nine (sub)families show a signal consistent with

the hypothesis of an effect of UV-B on blue, but three families

show an effect in the opposite direction to that predicted(for UV-

B mean: Uralic, for UV-B sd: Timor-Alor-Pantar, and for both:

Turkic). However, it is clear that for Trukic and Uralic, this is

driven by one outlier each in the north, while for Timor-Alor-

Pantar, there is very little variation in UV-B incidence (The case of

Indo-European is interesting as theMCMC summary and posterior

trees seem to show an opposite effect to the expected one, while

the Glottolog trees show an effect in the expected direction, with

the Jäger (2018) tree showing essentially a null effect). Importantly,

both “global” phylogenies show a clear and significant effect in the

expected direction for both the mean and standard deviation of

UV-B incidence.

4.9. The shape of the relationship between
UV-B incidence and blue

Josserand et al. (2021), based on the original hypothesis by

Brown and Lindsey (2004), only tested a linear negative effect of

mean UV-B incidence on the probability of having a specific word

for “blue.” However, the actual shape of the relationship might not

be strictly linear and its particular shape might give hints as to the

details of the causal mechanisms involved.

To help better understand these relations, the z-scored

values of UV-B incidence (mean and sd) back-map to their

raw values as follows. For UV-B mean: 0.0 → 208.5mW/m2,

−4.75 → 70.89mW/m2, and 1.04 → 238.6mW/m2; in general,

UVraw[mW/m2] = 208.5[mW/m2] + UVz · 29.0[mW/m2].

For UV-B sd: 0 → 16.4mW/m2, −0.87 → 1.13mW/m2,

and 3.13 → 71.2mW/m2; in general, UVraw[mW/m2] =

16.4[mW/m2]+UVz · 17.5[mW/m2]. Supplementary Figures 93–

95 show the relationship between UV-B incidence (mean and sd)

and the presence of a specific word for “blue” globally and per

macroarea.

Polynomial logistic regression up to degree 3 in the fixed

effect were conducted (both Bayesian and non-Bayesian) while

controlling for family and macroarea as random effects, and the

results are extremely similar. ForUV-Bmean, the linearmodel finds

a clear negative relationship, where going from the minimummean

UV-B incidence of 70.9mW/m2 to the maximum of 238.6mW/m2

is associated with a drop in the probability of “blue” from about

94% (with a 95%CI of [77%, 99%]) to about 46% (with a 95%CI of

[30%, 63%]). However, the model with both linear and quadratic

effects fits the data marginally better [vs. linear: χ2
(1)

= 4.93,

p = 0.026, 1AIC = 2.9, 1BIC = −1.8], which suggests

that the relationship might not be linear (or even monotonic) at

low mean UV-B incidences (the confidence interval is very wide),

and instead the probability of “blue” might plateau (or reach a

maximum) at about 140mW/m2 of about 84% [67, 93%] and falls

off to 35% [20, 55%] for the maximum mean UV-B incidence,

and also (but see the very wide 95%CI!) toward 62% [15, 94%]

for the minimum mean UV-B incidence. However, the “dip” at

lower mean UV-B incidences (higher latitudes) could be an artifact

of hunter–gatherer populations whose languages tend to lack a

word for “blue.” Therefore, the same polynomial regression but also

including all the interactions with subsistence was also fitted. With

these, manual model simplification suggests that the best model

(1AIC = 123.6,1BIC = 124.4) actually comprises the linear effect

of UV-B mean and the independent contribution of subsistence

(i.e., with no interaction between the two). For UV-B sd, the linear

and the quadratic models fit equally well [χ2
(1)

= 0.84, p = 0.36,

1AIC = −1.2, 1BIC = −5.9], so we will use the linear model

when going from the minimum sd UV-B incidence of 1.1mW/m2

to the maximum of 71.2mW/m2 is associated with an increase

in the probability of “blue” from about 47% [31, 63%] to about

90% [73, 96%]. Adding the independent contribution of subsistence

results in an even better fit (1AIC = 129.7, 1BIC = 125.7).

Figure 4 shows the predictions of these models: it can be seen that

including subsistence removes the need for a quadratic effect in

UV-Bmean and highlights the overall lower probability of a specific

word for “blue” in hunter–gatherer languages but no detectable

interaction (within the limits of the dataset) between subsistence

and UV-B incidence.

5. Discussion and conclusion

This extension of the database resulted in a massive increase

in the language families covered, and in the languages within

families and macroareas. A slight majority of the languages in

the extended database do have a specific word for “blue” and

are spread across a wide range of UV-B incidences. The other

potentially relevant variables were also extended to all of or to

a sizable proportion of the data. This resulted in a much better

coverage of small families and isolates, and of Australia and

Papunesia, offering a much more representative sample of present-

day linguistic diversity and increased statistical power relative to

the original study (Josserand et al., 2021). Moreover, by increasing

the available data for several large families, it made possible the

application of various phylogenetic methods as well as the addition

of piecewise path analysis and of Structural Equation Models with

latent variables.

Overall, the large set of diverse methods used overwhelmingly

supports the a priori hypothesis of a negative effect of mean UV-

B incidence on the probability that a language has a specific word

for “blue.” First, this negative effect is found in the individual

logistic regression of “blue” on the mean UV-B incidence. Second,

it also appears in the mediation analysis, where mean UV-B
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FIGURE 4

The predictions generated by the fitted regression models of the probability of a dedicated word for “blue” on UV-B mean (top row) or UV-B sd

(bottom row) by themselves (first two columns) or with subsistence (third column). There is no quadratic model for UV-B sd as it fitted slightly worse

than the linear one. The horizontal axis represents the z-scored UV-B incidence (mean or sd) while the vertical axis the predicted probability of “blue.”

The solid curves are the estimates and the shaded areas their 95% CIs. When subsistence is included (third column) the two curves represent

hunter-gatherers (HG; red) and the agriculturalists (AGR; blue). Figure generated using R version 4.2.3 (2023-03-15) and package ggplot2 (version

3.4.1).

incidence fully mediates the overall effect of latitude on “blue,”

and in the various path and Structural Equation models. Third,

the phylogenetic methods provide some evidence of correlated

evolution and of a negative phylogenetic effect in several large

families and in two “global” language phylogenies. Moreover, it

emerged that the annual variation in UV-B incidence is strongly

negatively correlated with mean UV-B incidence (as expected due

to astronomic considerations) and, in most models, both tend to

explain very similar variation, resulting in one “removing” the other

from the model when included simultaneously (most often, the

variation is retained and the mean is “dropped”). With this in

mind, variation in UV-B has a clear positive effect on “blue” in the

individual logistic regression, in the mediation, path and Structural

Equation analyses, and in the suggestive signal in the phylogenetic

analyses. Moreover, modeling the mean and variation in UV-B

incidence as indicators of the latent UV-B incidence recovers the

expected effect of this latent variable on “blue.” Thus, while most

techniques do find a “significant” overall negative effect of mean

UV-B on “blue,” there is none among the remaining techniques that

supports an overall positive effect, and even among the techniques

that suggest no effect, this seems to be due to overlapping variance

with other predictors. While “global” language phylogenies have

serious issues and it is unclear to what degree they reflect the

“vertical” historical connections between languages (especially

beyond the level of established language families), the fact that

two such “global” phylogenies, constructed using widely different

methods and datasets, find overwhelming support for the negative

effect of mean UV-B on “blue” after controlling for “Galton’s

problem” at this global scale is more than encouraging. The fact

that a phylogenetic effect was detected for certain families suggests

that the effect is indeed diachronic and may play out at the time-

scale of within-family divergence (i.e., thousands to hundreds of

years). It is important, however, to point out that the measurements

used here for UV-B incidence (but also for climate, humidity and

distances to bodies of water) are present-daymeasurements that, on

the one hand, may deviate quite strongly from their values during

the periods of interest (presumably more so for some regions than

for others) and, on the other, represent a snapshot of a variable

timeseries (again, in a region- and time-dependent manner). In

particular, the UV-B incidence used may not accurately reflect

historical values due to the human-induced ozone layer depletion

and its depletion and its slow recovery following the “Montreal
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Protocol” from 1978 (see https://en.wikipedia.org/wiki/Montreal_

Protocol), very probably with strong variation across geographic

regions (e.g., Australia), but it is unclear how we can extrapolate

its values back to the pre-industrial period globally and with the

required spatio-temporal resolution (Lindfors et al., 2007; den

Outer et al., 2010; Čížková et al., 2018).

Climate and humidity seem to have a much less clear and

consistent effect in this larger dataset. The previously found

negative effect of distance to lakes on blue, which Josserand et al.

(2021) were careful not to over-interpret, is much weaker but still

arguably discernible at least as a trend in this extended dataset,

especially when using mediation, path analyses, latent variable

SEM, and even phylogenetic regression, but the mediation analyses

conducted specifically with this variable in mind seem to suggest

that this might be due to it being related to latitude and UV-B

incidence (this relationship probably reflects the vagaries of the

current disposition of landmasses on Earth, on the one hand, and

the causal links among latitude, climate, and the density of lakes

and UV-B incidence, on the other).

However, there might be an overall weak effect of subsistence

(practicing agriculture increases the probability of “blue”) and

possibly of population size. Nevertheless, given that both are far-

from-perfect proxies for the unmeasured (and arguably extremely

hard to measure) cultural complexity and capture different aspects

thereof (Josserand et al., 2021), the fact that there is a “switch”

in their contribution to “blue” between Josserand et al. (2021)

and this study should not be taken too literally and, coupled with

the results of Structural Equation Modeling including a latent

“cultural complexity”, gives extra support to the positive influence

of cultural complexity on “blue.” Interestingly, subsistence seems

to be required to properly explain the shape of the relationship

between UV-B incidence and “blue,” as it helps account for the few

northern populations who do not have a specific term for “blue.” It

turns out that these apparent exceptions do, in fact, support the a

priori hypothesis which states that high UV-B incidence generates a

negative pressure against a specific term for “blue,” but, in contrast,

low UV-B incidence does not induce any specific bias for or against

“blue” and, instead, allows other factors to “play freely,” as it were.

And indeed, this is what it was found: the relationship between UV-

B incidence and “blue” is negative linear overall if one accounts

for hunter–gatherer populations living with low UV-B incidence

but do not have a dedicated word for “blue.” This is highly similar

to other cases reported in the literature, in particular concerning

the positive effect of a small or absent alveolar ridge prominence

on click consonants (Moisik and Dediu, 2017) and the negative

effect of an edge-to-edge bite on labiodentals (Blasi et al., 2019),

where the bias is effectively asymmetric. Moreover, the finding

that the relationship is very probably linear should help guide the

search for the detailed causal mechanisms involved, suggesting an

additive effect of UV-B incidence on the perception of blue as

well as an additive effect on language across time. Nevertheless,

as highlighted in Josserand et al. (2021), we must keep in mind

that this is very likely a multi-factorial complex causal process

involving multiple temporal and organizational scales, ranging

from the intra-individual physiological lens brunescence and the

associated perceptual and cognitive mechanisms of compensating

and adapting to it to the large-scale presumably cross-generational

and inter-individual language change in structured communities

reflecting the decreased perception of “blue” among its most

affected (older) members. While many of these components are

still in need of thorough study and require inter-disciplinary and

methodologically diverse approaches, the conversation has already

started (see, for example, Josserand et al., 2021, the recent technical

comment to it in Hardy et al., 2023 and our response in Josserand

et al., 2023, touching on these aspects).

In conclusion, enlarging the database using primary and

secondary sources of data vastly increased its representativity of

the world’s linguistic diversity and allowed the application of

phylogenetic methods to investigate the diachronic component

of the negative influence of UV-B incidence on the existence of

a specific word for “blue.” It can only be highlighted that such

extensions are an essential component of science and that, in this

case, it supports and refines the previous findings of Josserand et al.

(2021) and the original proposal (Lindsey and Brown, 2002) of a

negative effect of UV-B incidence on the probability that a language

has a specific word for “blue.”
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