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Abstract

As a dynamical system, the Arnold Family of circle maps is itself a source of many
curious and particular results and phenomena.

The main goal of this work is to explain and classify the possible dynamics of the
family while encountering these special occurrences. In order to view and deeply un-
derstand the origin behind all the dynamical events that are occurring, we begin by
setting a complete background on circle homeomorphisms. We later make use of the
complexification tool and complex dynamics so we not only complete our discussion,
but we extend it. Actually, we see the dynamics in the whole complex plane, and with
the aid of some programs we provide a visual representation of it.

2020 Mathematics Subject Classification. 30D05, 30D30, 37E10, 37F10, 37F50.
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Introduction

The Arnold or Standard Family of functions is a 2-parameter family of the unit circle
given by

fw, ϵ(θ) = θ + w +
ϵ

2π
sin(2πθ) (mod 1), w, ϵ ∈ R.

It is named after V. Arnold2, who studied it for the first time [Arn91]. Throughout this
project we consider the case ϵ ∈ [0, 1), which makes it a family of circle diffeomor-
phisms. The Standard Family is the central pillar of this thesis and it will be used as the
guiding thread which connects circle maps with complex dynamics, via complexifica-
tion.

In a global view, maps of the circle are those functions which are self-maps of S1 :=
{(x, y) ∈ R2| x2 + y2 = 1}. They are particularly useful due to the topological properties
of S1, which makes them ideal for the study of cycles and phases of an oscillator. Any
circle map can be lifted to a map of the real line via the projection or covering map
Π(x) := e2πix, which sends the real line to the complex unit circle. So we can think
of circle maps as a subset of the real maps which satisfy a certain almost-periodicity
condition.

For the purpose of this work we are mostly interested in homeomorphisms of the
circle. A surprising and important property which only holds for homeomorphisms is
that all points of S1 rotate on average the same angle. In other words, for n sufficiently
large, f n(θ) turns around the unit circle the same number of times independently of
the chosen θ ∈ S1. We will see that whether the rotation number, defined as the average
rotation of a point under a given homeomorphism (see definition 2.7), is rational or
irrational leads to completely different dynamics.

The simplest example of circle homeomorphisms is given by the family of rigid ro-
tations: tw(θ) = θ + w (mod 1), for a fixed w ∈ [0, 1). When the rotation number is
rational, all orbits are periodic; whereas when it is irrational, then all orbits are dense in
S1 because of the famous Jacobi’s theorem. One of the central questions we eventually
aim to give an answer to is whether a given homeomorphism is conjugate to a rigid ro-
tation. This is known as the linearization problem and it is closely related to the arithmetic
properties of the rotation number.

In that context, the Arnold or Standard Family is an excellent choice to explore the

2Vladímir Arnold. Ucranian mathematician, 1937-2010.
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iv Introduction

properties of generic circle homeomorphisms. Indeed, it is nothing but a periodically
perturbed rigid rotation: fw, ϵ(θ) = θ + w + ϵ

2π sin(2πθ) (mod 1); therefore it is not a
trivial family. But, for small ϵ, it neither falls far apart from rigid rotations. Outside pure
mathematics, it also serves to describe a wide range of natural phenomena involving
oscillating quantities. Among its applications, the phase-locked phenomenon (Figure 1)
or the Arnold tongues regions (Figure 2) have been found in areas such as biological
processes or cardiac electric waves. We encounter them while achieving one of our
goals, namely to make a description of the dynamics of the Standard Family according
to the real parameters.

Figure 1: Devil staircase graph which results from plotting the rotation number as a function of
w for the Standard Family.

~~w~2
3

Figure 2: Arnold tongues of the Standard Family: level sets Tρ of the rotation number ρ, for
w, ϵ ∈ [0, 1]. Tongues of every rational number are connected and have nonempty interior.
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The connection of the Standard Family (or in fact any real analytic 1-dimensional
dynamical system) with complex dynamics comes from its complexification. Although
complex functions are more complicated a priori, the complex space gives us the com-
plete picture of what happens because it is an algebraically closed space. A successful
example of the complexification tool is the quadratic family Qc(x) := x2 + c, x, c ∈ R.
When we consider z, c ∈ C, the famous Mandelbrot set, named after B. Mandelbrot3

and first seen in 1978,
M := {c ∈ C| Qn

c (0) ̸→n ∞},

actually gives us a complete description of the dynamics in terms of c ∈ C. This was
not only a historical milestone in complex dynamics which captures the usefulness of
complexification as a tool, but it also uncovers a whole world of new mathematics,
questions and connections to other areas.

To address the complexification of maps of S1, the first problem which must be
solved is when and how a circle map can be extended to a neighbourhood of S1. Form
a general point of view, the domain of real analytic maps reaches (at least) as long as
the radius of convergence of the series at every point. Hence, any real analytic function
can be complexified in a neighbourhood of the real line, and the resulting function is
analytic and therefore holomorphic. The case of circle maps is similar. Each analytic
circle map, as those in the Standard Family, can be complexified in a neighbourhood
of S1, and potentially into C, with {0, ∞} being essential singularities. Indeed, the
complexification of the Standard Family

fw, ϵ(z) = ze2πiwe
ϵ
2 (z−

1
z )

is a holomorphic function defined in C \ {0} with essential singularities at 0 and ∞.

Once we know the Standard Family can be complexified, we need the instruments
from complex dynamics to understand its dynamics in the complex domain. Complex
dynamics is the branch of mathematics which studies the dynamics of complex func-
tions. It is a relatively new area of research, which did not gain consistency until the
early 20th century, when Gaston Julia4 and Pierre Fatou5 developed the global theory.
Since then, plenty of powerful results which allow us to understand the dynamics of
complex functions have been proven, some of them due to renowned mathematicians
like D. Sullivan6, J. Milnor7, J. C. Yoccoz8 or M. R. Herman9. In a general mark, complex
dynamics is closely related to complex analysis and dynamical systems, but it also has
deep connections with other areas such as number theory or topology. In our complex-
ification of the Standard Family it will be interesting to see how the different rotation
numbers give rise to radically different dynamics in the complex plane (see Figure 3).

3Benoit Mandelbrot. Polish-born French and American mathematician, 1924 - 2010.
4Gaston Maurice Julia. French mathematician, 1893 - 1978.
5Pierre Joseph Louis Fatou. French mathematician and astronomer, 1878 - 1929.
6Dennis Parnell Sullivan. USA mathematician, 1941 - present.
7John Milnor. USA mathematician, 1931-present.
8Jean-Christophe Yoccoz. French mathematician, 1957 - 2016.
9Michael Robert Herman. French American mathematician, 1942 - 2000.
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(a) The complex dynamical plane of the Stan-
dard Family for parameters in the T1/3 tongue.
The points coloured in red converge to the at-
tracting 3-cycle (in white) on the unit circle.

(b) The complex dynamical plane of the Stan-
dard Family for parameters in a irrational
tongue. The orbits of the points inside the 2-
connected domain (its boundary in blue) are
conjugate to an irrational rotation.

Figure 3: The complex dynamical plane of the Standard Family for different parameters.

In order to achieve the goals of this project we structure the contents as follows. In
chapter 1, we introduce some preliminary concepts that will be used afterwards. In
chapter 2, we treat the theory of circle maps putting emphasis on the linearization prob-
lem. Moreover, we view how the Standard Family behaves on the unit circle according
to the rotation number. In chapter 3, we introduce the basic notions of complex dy-
namics for rational maps, but also for transcendental ones, since they will be relevant
afterwards. Finally, in chapter 4, we analytically extend the Standard Family to C \ {0}
and we use the results from chapters 2 and 3 to discuss the dynamics of the complex
Standard Family.



Chapter 1

Preliminaries

1.1 Arithmetic

The contents of this section can be found in [BH] and [PM97]. We list subsets of the
irrational numbers that have special properties. The classification criteria is mainly the
velocity of the approximation of an irrational number by rational numbers.

Definition 1.1. (Diophantine numbers) x ∈ R \ Q is a Diophantine number of order
k ≥ 2 if there exists ϵ > 0 such that

|x − p
q
| > ϵ

qk

for all rational numbers p
q . We denote D(k) the set of all Diophantine numbers of order

k, and D := ∪k≥2D(k) the set of all Diophantine numbers.

Remark 1.2. The sequence {D(k)}k is a sequence of nested sets. where D(k) ⊂ D(l) if
and only if k ≤ l. It can be proved that the set of Diophantine numbers has full Lebesgue
measure in [0, 1). In fact, the set of Diophantine numbers of order greater than 2 has
full measure whereas D(2) has zero measure.

We define the continued fraction expansion of x ∈ R \ Q as [a1, a2, a3, ... ]x, where

x =
1

a1 +
1

a2+
1

a3+...

.

We write pn
qn

:= [a1, a2, ..., an], which is the best approximation to x by fractions with
denominator at most qn.

Consider the continued fraction expansion of x ∈ R \ Q. Then(
qn+1

qk−1
n

)
n

< C ∈ R ⇐⇒ x ∈ D(k).

A superset of the Diophantine numbers which is relevant in dynamical systems is
the set of Bryuno numbers.

1



2 Preliminaries

Definition 1.3. (Bryuno numbers) x ∈ R \ Q is said to be a Bryuno number if

∑
n

log(qn+1)

qn
< ∞,

where qn is as above.

We will also mention the set of Herman numbers. Its definition is omitted for it is
quite complicated and the precise characterization of such set lays out of our interest,
yet we recognise its existence and see they have some special properties when it comes
to the linearization problem.

The respective order of such sets of numbers is given by the set inclusions

D(2) ⊂ D ⊂ H ⊂ B.

The set of Liouville numbers is defined as (R \ Q) \ D, and it has null measure.

1.2 Real and complex analysis

The contents of this section can be found in [MH99].

Theorem 1.4. (Countable Nested Intervals Theorem) Let (In)n ⊂ R be a nested sequence of
closed and bounded intervals (In+1 ⊂ In ∀n). Then ∩n In is non-empty.

Theorem 1.5. (Uncountable Nested Intervals Theorem) The Countable Nested Intervals
Theorem holds for an uncountable intersection (Iα)α ⊂ R.

Proof. We write Iα = [aα, bα]. Then

[∩α Iα]
c = [∪α Ic

α] = ∪α [(−∞, aα) ∪ (bα, ∞)] .

Suppose ∪α [(−∞, aα) ∪ (bα, ∞)] = R and observe that ∪α [(−∞, aα) ∪ (bα, ∞)] =

[∪α(−∞, aα)] ∪ [∪α(bα, ∞)]. Besides, recall that aα < bα ∀α. Now, the fact that R is a
union of two disjoint open sets is a contradiction with the connectedness of R. Hence it
is proved that [∩α Iα]

c ̸= R, so ∩α Iα ̸= ∅.

Definition 1.6. (C0 proximity) Let (X1, d1) and (X2, d2) be metric spaces and f , g :
X1 → X2 functions. We say f and g are C0 − δ close if ∀x ∈ X1, d2( f (x), g(x)) < δ.

Definition 1.7. (Uniform convergence) Let ( fn : (X1, d1) → (X2, d2))n be a sequence of
functions and let f : (X1, d1) → (X2, d2) be a function, where (X1, d1) and (X2, d2) are
metric spaces. The sequence ( fn)n converges uniformly to f if

∀ϵ > 0, ∃n0 such that ∀n > n0, d( fn(z), f (z)) < ϵ ∀z ∈ U.

We denote it by ( fn)n ⇒ f . Note that uniform convergence is stronger than pointwise
convergence since the ϵ value is required to be the same for all points.

We say that a sequence converges uniformly on compact subsets (u.c.c.) of U if the
sequence converges uniformly on every compact subset of U.



1.2 Real and complex analysis 3

We denote by F a family of functions from one metric space to another.

Definition 1.8. (Equicontinuity) Let (X1, d1) and (X2, d2) be metric spaces and F =

{ fα : X1 → X2}α a family of functions. We say the family is equicontinuous at p ∈ X1 if
∀ϵ > 0, ∃δ > 0 such that for all x ∈ X1 and all fα,

d1(p, x) < δ =⇒ d2( fα(p), fα(x)) < ϵ.

Definition 1.9. (Bounded variation function) Let (X, d) be a compact metric space. We
say that f : X → R is of bounded variation if

V = Var( f ) := sup{
n

∑
k=1

d(g(xk), g(xk−1))} < ∞,

where the supreme is taken over all possible partitions {x0, ... , xn} of X.

Remark 1.10. If f is Lipschitz and K is a bound of (X, d), then

Var( f ) ≤
n

∑
k=1

C d(xk, xk−1) ≤ CKn

, hence f is of bounded variation.

Now we consider a complex function f and our topological space is the complex
plane or the Riemann sphere.

Definition 1.11. (Riemann sphere) We define the Riemann sphere as Ĉ = C∪ {∞}. One
can define the chordal metric

d(z1, z2) :=
2|z1 − z2|√

1 + |z1|2
√

1 + |z2|2
,

defined in Ĉ. Together they form a metric space.

Throughout the rest of the chapter we assume U ∈ Ĉ is an open subset.

Definition 1.12. (Holomorphic function) Let f : U → Ĉ be a complex function. Then f
is holomorphic at z ∈ U if

limh→0
f (z + h)− f (z)

h

exists. Then we write f ′(z) = limh→0
f (z+h)− f (z)

h . We say f is holomorphic on U if it is
holomorphic ∀z ∈ U and we denote f ∈ H(U). An entire function is a function that is
holomorphic on C.

Definition 1.13. (Meromorphic function) Let f : U → Ĉ be a complex function. f is
said to be meromorphic in U if f is holomorphic in U \ E, where E ⊂ U only contains
isolated points called singularities of f. Moreover, the singularities of f are the poles of
f ; i.e. limz→z0 | f (z)| = ∞ ∀z0 ∈ E.

Definition 1.14. (Conformal map) Let U, V ∈ Ĉ. A conformal map f : U → V is an
holomorphic and bijective map. It is also called biholomorphic.
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Definition 1.15. (Rational map) A rational map R = P
Q is a quotient of polynomials

(with no common roots). The degree of R is deg(R) := max(deg(P), deg(Q)). It coincides
with the topological degree of f , i.e. the number of preimages (counting multiplicity) of
an arbitrary point.

Definition 1.16. (Normal family) Let F ⊂ H(U) be a family of holomorphic functions.
F is a normal family on U if every sequence ( fn)n ⊂ F contains a subsequence which
converges u.c.c. on U.

Remark 1.17. By Hurwitz’s theorem all possible limit functions must be analytic func-
tions of U, or the subsequence converges u.c.c to ∞.

Theorem 1.18. (Arzela-Ascoli) A family F of holomorphic functions is normal in U ⊂ S
if and only if F is equicontinuous on every compact subset of U with respect to the spherical
metric.

Theorem 1.19. (Montel’s Theorem) Let F = { fα : U → Ĉ}α∈I be a holomorphic family. If
there exist z1, z2, z3 ∈ Ĉ such that ∪α fα(U) ⊂ Ĉ \ {z1, z2, z3}, then F is normal in U.

The next results are well-known theorems of complex analysis.

Theorem 1.20. (Analytic continuation principle) Let U ⊂ C be open and simply connected
and let f be holomorphic in U. If the set {z| f (z) = 0} has a limit point in U, then f is identically
0.

Theorem 1.21. (Maximum modulus principle) Let U ⊂ C be open and simply connected
and let f be holomorphic in U. If | f | has a local maximum in U, i.e. it exists z0 such that
| f (z0)| ≥ | f (z)| for all z in a neighbourhood of z0, then f is constant.

Theorem 1.22. (Open mapping theorem) Let U ⊂ C be open and simply connected and let f
be a non-constant holomorphic function in U. Then f sends open subsets of U to open subsets of
C.

1.3 Dynamics and conjugacies

Let X be a topological space and consider f : X → X continuous. We consider the
iterations f (x), f 2(x), f 3(x), ... of x ∈ X under f . The following definitions enable us to
describe and classify points according on the properties of the iterations.

Definition 1.23. (Orbit) We define the orbit of x ∈ X as O(x) := { f n(x), n ∈ Z}. And
the respective forward and backward orbit as O+(x) := { f n(x), n ∈ N} and O−(x) :=
{ f−n(x), n ∈ N}.



1.3 Dynamics and conjugacies 5

Definition 1.24. (Periodic point) We say x1 is fixed if f (x1) = x1. The point x1 is p-
periodic if f p(x1) = x1 for some p ∈ N>0 and f q(x1) ̸= x1 for 0 < q < p. We denote by
< x1 >= {x1, ..., xp} the p-cycle obtained by the orbit of x1. Finally, x is pre-periodic if
some image of x is periodic.

In the case that x is not periodic its orbit is infinite, so O(x) might have limit points.

Definition 1.25. (Invariant set) U ⊂ X is (forward) invariant under f if f (U) ⊂ U and
backward invariant if f−1(U) ⊂ U. U is totally invariant if it is forward and backward
invariant.

Definition 1.26. (w-limit set) The w−limit set of x ∈ X, w(x), is the set of all limit points
of the forward orbit of x.

It is easy to check that w-limit sets are closed and invariant.

Definition 1.27. (Wandering domain) Let f : X → X be an homeomorphism. Then
W ⊂ X is a wandering domain if f n(W) ∩ f m(W) = ∅ for all n, m ∈ Z.

Definition 1.28. (Conjugacy, analytic conjugacy and semiconjugacy) Let X, Y be topo-
logical spaces and let f : X → X and g : Y → Y be continuous functions. We say g and
f are conjugate or topologically conjugate if there exists an homeomorphism h : X → Y
such that

h ◦ f = g ◦ h.

Depending on the properties of the conjugacy function h, we have particular types of
conjugacies. We say f and g are analytically conjugate if h is analytic. We say g is semi
conjugate to f if h is only continuous and surjective.

Remark 1.29. Observe that the relation of being semi conjugate is not reciprocal. So there
might exist a semi conjugacy h such that h ◦ f = g ◦ h, but there is no semiconjugacy h′

such that h′ ◦ g = f ◦ h′.

Conjugacies are most useful when studying dynamical properties of functions. Ob-
serve that if g = h f h−1 is conjugate to f , then gn is conjugate to f n. Therefore orbits
are preserved under conjugacies meaning that fixed points are sent to fixed points un-
der h, periodic orbits to periodic orbits, wandering intervals to wandering intervals and
invariant sets to invariant sets.

Proof. Suppose f p(x) = x, then gp(h(x)) = h f p(h−1(h(x))) = h f p(x) = h(x). Suppose
f n(W) ∩ f m(W) = ∅ =⇒ h f n(W) ∩ h f m(W) = ∅, then gn(h(W)) = h f nh−1(h(W)) =

h f n(W) and gm(h(W)) are disjoint. Suppose f n(U) ⊂ U, then gn(h(U)) = h f n(h−1(h(U))) =

h f n(U) ⊂ h(U).
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Chapter 2

Homeomorphisms of the circle

The aim of this section is to describe properties and types of orientation-preserving
homeomorphisms f : S1 → S1, that is homeomorphisms of the circle that preserve
the order of every pair of points. The case of orientation-reserving homeomorphisms
does not add much difficulty and will also be discussed in less detail. First, we de-
fine the tools we work with and derive important properties. Then we see when an
orientation-preserving homeomorphism behaves similar to rigid rotations, known as
the linearization problem. We end the chapter discussing the Standard Family, which is
a good model for analytic circle maps.

2.1 Lifts and rotation number

In this section we follow Section 1.14 of [Dev03]. We begin defining lifts of circle
maps, since such functions allow us to view circle maps in the real line and to define
the rotation number.

Definition 2.1. (Lift) Let f : S1 → S1 be at least continuous. We call F : R → R a lift of
f if

Π ◦ F = f ◦ Π,

where Π : R → S1 is defined as Π(x) := exp(2πix).
Note that we have the following diagram:

R R

S1 S1

F

Π Π

f

Remark 2.2. Any lift F of f satisfies that F is semi conjugate to f by Π, but it is not a
topological conjugacy.

Remark 2.3. For convenience we will usually refer to a point of S1 by θ ∈ [0, 1). In this
case, the above commutative diagram would be the same, but with Π(x) := x − [x] and
R
Z

instead of S1. Recall that S1 ∼= R
Z

. Having said that, we will refer by f to both maps
f : R

Z
→ R

Z
and f : S1 → S1.

7



8 Homeomorphisms of the circle

(a) Surjective circle map f(x). (b) Lift F(x) of f(x) such that F(0) ∈ [0, 1).

(c) Set of lifts, {F(x) + k, k ∈ Z}.

Figure 2.1: The function represented is f (x) = x + 0.5 + 0.2sin(2πx).

Notice that the next properties hold for continuous circle maps, not necessarily
homeomorphisms.

Given a circle map f , one can wonder if f has a lift. What’s more, we do not know
yet whether lifts exist. The answer is affirmative and it is a rather algebraic property of
circle maps. The proof can be found in [May99].

Proposition 2.4. (Existence of a lift) Let f : S1 → S1 be a continuous map, then f has a lift.

Proof. Let I ⊂ R be an interval with length less than 1, then Π|I : I → S1 is an home-
omorphism. Let J be a proper closed subset of S1, then the set Π−1(J) = {Li} ⊂ R

is a countable union of disjoint closed intervals with length less than 1. Therefore,
for all j ∈ J, each Li has exactly one point belonging to Π−1({j}). Now if f is con-
tinuous then it is possible to divide R into a countable family I of closed intervals
such that f (Π(Ii)) =: Ji is a closed proper interval of S1 ∀Ii ∈ I . We build F by
construction as follows. Name I0 = [a, b] an interval of I containing 0 and choose
p0 ∈ Π−1({ f (0)}). We define F(0) := p0. Name L0 ⊂ R the interval homeomorphic
to J0, so Π|L0

: L0 → J0, which contains p0. We define F on I0 as F := (Π|L0
)−1 ◦ f ◦ Π.

It is clear that Π ◦ F = f ◦ Π. Now we proceed to do the same with the endpoints a,
b; with the only caution of choosing the correct pa and pb so that they belong to the
same interval of the family of intervals Π−1( f (I0)) as p0. That way we assure there is no
jump between L0 and La since pa belongs to both of them. This recurrent construction
determines F.
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Proposition 2.5. Properties of lifts. Let f , g be continuous maps of the circle and F, G their
respective lifts. Then

1. Lifts are not unique. In particular, F2 is a lift of f if and only if F2 − F = k, k ∈ Z.

2. F(x+ 1) = F(x)+ d for some d ∈ Z. If f is a homeomorphism, then F(x+ 1) = F(x)± 1.
The number d ∈ Z is known as the degree of f.

3. If F is surjective, then f is surjective.

4. f is one to one ⇐⇒ F is one to one.

5. Fn is a lift of f n, for n ∈ N.

6. Suppose f is a homeomorphism, then F is an homoeomorphism and F−1 is a lift of f−1.

7. Suppose g is a homeomorphism, then G−1 ◦ F ◦ G is a lift of g−1 ◦ f ◦ g.

8. f is orientation-preserving ⇐⇒ F is increasing.

9. f n(Π(p)) = Π(p) ⇐⇒ Fn(p) = p + k, k ∈ Z.

10. If f has degree d, then F − dId is periodic with period 1. As a result the image of F − dId
is bounded.

11. if |x − y| < 1, then |F(x)− F(y)| < d.

Proof. 1. F2 = F + k =⇒ Π ◦ F2 = Π ◦ F. In the other direction, let F2 be a lift of f ,
then Π ◦ F2 = Π ◦ F =⇒ F2 = F + k.

2. Since π(x + 1) = π(x), directly from the definition of a lift we must have π(F(x +

1)) = π(F(x)). It follows F(x + 1) = F(x) + d, d ∈ Z. Imposing f to be a homeo-
morphism we get d = ±1, depending on the orientation.

3. If F is surjective, then ΠF = f Π is surjective, and then f is surjective.

4. It is easy to prove that both statements are equivalent to say that given a real x, the
only points to have the same image under both Π ◦ F and f ◦ Π are of the form
y = x + n for n ∈ Z.

5. Π ◦ F = f ◦ Π =⇒ Π ◦ Fn = f ◦ Π ◦ Fn−1 =⇒ f 2 ◦ Π ◦ Fn−2 =⇒ ... =⇒
Π ◦ Fn = f n ◦ Π.

6. If f is a homeomorphism then it is either strictly increasing or strictly decreasing,
so it is F, then F is an homeomorphism. Now Π ◦ F = f ◦ Π =⇒ f−1 ◦ Π ◦ F =

Π =⇒ f−1 ◦ Π = Π ◦ F−1.

7. Π G−1 F G = g−1 Π F G = g−1 f Π G = g−1 f g Π.

8. Suppose F is increasing. Let Π(x) ∈ (Π(y), Π(z)), we pick z − y < 1, x ∈ (y, z),
and suppose f Π(x) /∈ ( f Π(y), f Π(z)). Observe that by continuity there must
exist an x′ such that it exits the interval but it is as close to it as we want to,
suppose f Π(x′) = f (Π(z))Π(ϵ), ϵ > 0, and x′ and z are close enough so that
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f Π(x′) does not wrap the circle completely one more time than f (Π(z)). Then
ΠF(x′) = Π(F(z))Π(ϵ) = Π(F(z) + ϵ) =⇒ F(x′) > F(z), which is a contradic-
tion. Hence, it must be f Π(x) ∈ ( f Π(y), f Π(z)). Similarly, if F is decreasing f
must be orientation-reversing.

9. Π(p) is fixed by f ⇐⇒ p is fixed by ΠF ⇐⇒ F(p) = p + k, k ∈ Z.

10. The periodicity follows from (2). A periodic and continuous function is bounded
on the real line. We can compute precise bounds. Suppose f is orientation-
preserving and let x = M and x = m be the maximum and minimum of F −
Id in a period [y, y+1]. Suppose m < M. Recalling that (F − dId)(x) is pe-
riodic with period 1 and F is monotonically increasing, then (F − dId)(M) <

(F − dId)(y) + d − d(M − y) and (F − dId)(m) > (F − dId)(y) − d(m − y). So
(F − dId)(M) − (F − dId)(m) < d − d(M − m) < d, hence the image of F − dId
must be bounded within a length |d| interval.

11. The arguments done in the proof of (10) hold taking y and x instead of the maxi-
mum and minimum. Then F(x)− F(y) = (F − dId)(x)− (F − dId)(y) + dx − dy <

d − d(x − y) + dx − dy = d.

Remark 2.6. The opposite is also true, if a continuous function F is defined on an interval
[a, a + 1] under the condition F(a + 1) = F(a) + d for some d ∈ Z; that defines a lift of
some circle map f . Indeed, F can be defined recurrently on R by such property and it
is globally continuous, and then f (Π(x)) := Π(F(x)) is a well defined continuous map
of the circle.

From now on we assume f is an orientation-preserving homeomorphism of the cir-
cle. A very important topological invariant of circle maps is the rotation number. We
will see that it plays a crucial role in determining the properties of the orbits, as well as
whether f is semiconjugate or not to a rigid rotation.

Definition 2.7. (Rotation number) Let F be a lift of an orientation-preserving homeo-
morphism f : S1 → S1. We define the rotation number of f as

ρ( f ) = lim
n→∞

Fn(x)
n

(mod Z) ∈ [0, 1)

The rotation number gives us an idea of the average rotation of a point under f ,
which happens to be the same for all points in S1. Sometimes it may be useful to
consider the equivalent definition

ρ( f ) := lim
n→∞

Fn(x)− x
n

(mod Z).

Proposition 2.8. (The rotation number is well-defined)
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Proof. Uniqueness. First note that ρ( f ) does not depend on the lift chosen since it is the
fractional part by definition. We need to prove that it does not depend on x. Recall that
if |y − x| < 1, then |Fn(y)− Fn(x)| < 1 because of proposition 2.5 (11). Otherwise, let
[x] denote the integer part of x. Then,

|Fn(x)− Fn(y)| = |Fn(x)− Fn(y + [x − y]) + [x − y]| ≤ 1 + |[x − y]| < ∞,

and therefore

lim
n→∞

(Fn(x)− Fn(y))
n

= 0.

To prove that the limit exists we will distinguish two cases: the case when f has at
least one periodic point or the case when it does not.

(a) Suppose z = Π(x) has period m, then f m(z) = z and Fm(x) = x + k, for some
k ∈ Z. Writing n = jm + r, 0 ≤ r < m and j = j(n) ∈ N, we have:

lim
n→∞

Fn(x)
n

≤ (≥) lim
n→∞

Fjm(x)
n

+ lim
n→∞

Fn(x)− Fjm(x)
n

=
k
m

given that

lim
n→∞

Fjm(x)
n

= lim
j→∞

Fjm(x)
jm + r

= lim
j→∞

x
jm + r

+ lim
j→∞

k
m + r/j

= 0 +
k
m

and

lim
n→∞

|Fn(x)− Fjm(x)|
n

= lim
n→∞

|Fr(Fjm(x))− Fjm(x)|
n

= 0

because Fr-Id is bounded for any r.
(b) Now Fn(x)− x /∈ Z ∀x ∀n. Then, ∃kn ∈ Z s.t. kn < Fn(x)− x < kn + 1 ∀x.
Taking x = 0, Fn(0), ..., Fnm(0) we obtain kn < Fn(0) < kn + 1, kn < F2n(0)− Fn(0) <

kn + 1, ... , kn < Fmn(0)− Fn(m−1)(0) < kn + 1. Adding all the inequalities and dividing
by mn it yields kn

n < Fmn(0)
mn < kn+1

n , which means that | Fmn(0)
mn − Fn(0)

n | < 1
n . It follows

that | Fm(0)
m − Fn(0)

n | < 1
n + 1

m , meaning that Fn(0)
n is a Cauchy sequence and therefore it

converges.

The next important corollaries follow from the proof above and will be used later.

Corollary 2.9. Let F be a lift of an orientation-preserving homeomorphisim of the circle. If
k1 < (F − Id)(x) < k2 ∀x ∈ R, then nk1 < (Fn − Id)(x) < nk2 ∀n.

Remark 2.10. Observe that the non-dependence on x of the rotation number is assured
only for homeomorphisms.

Once we have seen the rotation number is well-defined, we proceed to focus on some
of the most important results about it.

Proposition 2.11. Let f : S1 → S1 be an orientation-preserving homoemorphism of the circle,
then ρ( f m) = m ρ( f ) (modZ).
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Proof. limn→∞
Fmn(x)

n = m limn→∞
Fmn(x)

mn = m limn→∞
Fn(x)

n .

We will now see that the rotation number is a very robust quantity that depends
continuously on the circle maps.

Proposition 2.12. (Continuity of the rotation number) The rotation number depends con-
tinuously on f . Let f : S1 → S1 and g : S1 → S1 be orientation-preserving homoemorphisms
of the circle. Then, for all ϵ > 0, there exists δ such that if f and g are C0 − δ close, then
|ρ( f )− ρ(g)| < ϵ.

Proof. Let F and G be lifts of f and g respectively. First notice that Fm and Gm are as
close as we want to if F and G are close enough. Similarly, F and G are as close as we
want to if f and g are close enough. It follows that |Fm − Gm| < ϵ′ if taking a proper
δ. Because of that and recalling F − Id image is bounded, there exist lifts F and G such
that

r − M < Fm − Id, Gm − Id < r + M, r ∈ Z, M ∈ R.

Using 2.9 it yields
k(r − M) < Fmk(0), Gmk(0) < k(r + M),

and therefore | Fmk(0)
mk − Gmk(0)

mk | < 2M
m . Hence we have proved limmk→∞

|Fmk(0)−Gmk(0)|
mk = 0,

which implies limn→∞
|Fn(0)−Gn(0)|

n = 0.

Proposition 2.13. (Rationality of ρ and periodic points) Let f : S1 → S1 be an orientation-
preserving homoemorphism. Then ρ( f ) is irrational if and only if f has no periodic points.

Proof. =⇒ From the case (a) of the proof of proposition 2.8 it follows that if f has a
periodic point x0, then ρ( f ) is rational. What’s more, ρ( f ) = p/q are the integers such
that Fq(x0) = x0 + p.

⇐= Suppose ρ( f ) is rational, we need to prove f has periodic points. Observe that if
ρ( f ) = p/q, then ρ( f q) = p (modZ) = 0. Hence we may assume ρ( f ) = 0 and proceed
to study the existence of fixed points, without loss of generality. Name F the lift of f for
which the rotation number is directly 0, that is limn→∞

Fn(x)
n = 0. If F(p) = p for some

p we are done. Then we may assume it is either F(x) > x or F(x) < x for all x. We
suppose F(x) > x since the other case is handled similarly.

Now, if there exists k s.t Fk(0) > 1, using 2.9 it yields Fkm(0) > m. Hence limm→∞
Fmk(x)

m >

1 implying limn→∞
Fn(x)

n > 1
k > 0, which is a contradiction.

The other case is Fn(0) < 1 ∀n. Since Fn(0) is increasing and bounded it must
converge. Name y its limit, then F(y) = F(limn→∞ Fn(0)) = limn→∞ Fn+1(0) = y, which
proves that y is a fixed point.

Corollary 2.14. What’s more, we proved that if ρ( f ) = p/q, then Π(limn→∞ Fn(0)) has period
q.



2.1 Lifts and rotation number 13

Finally, we show that the rotation number is a dynamical invariant since it does not
change under topological conjugacies.

Proposition 2.15. (Invariance of ρ) Let f and g be orientation-preserving homoemorphisms of
the circle such that g is semi conjugate to f , then ρ(g) = ρ( f )

Proof. Let F be an arbitrary lift of f . First, recall F − Id is bounded within a length
d f ∈ Z. Call h the semi conjugacy between f and g, so h ◦ g = f ◦ h. In the case h is not
injective we define h−1( f (h(x))) := g(x) and we also get that (H−1 − Id)(F(H(x))) is
bounded since (H−1 − Id)(F(H(x))) := G(x)− F(H(x)) = G(x)− H(G(x)) and H − Id
is bounded. Now, we pick x, H(x) respectively since the rotation number does not
depend on the number chosen.

|ρ(g)− ρ( f )| = | limn→∞
H−1Fn H(x)

n − limn→∞
Fn(x)

n | =

| limn→∞
H−1Fn H(x)

n − limn→∞
Fn(H(x))

n | = | limn→∞
H−1Fn H(x)−Fn(H(x))

n | ≤
limn→∞

dh
n = 0.

We have seen that orentation-preserving homeomorphisms of the circle can have
either irrational or rational rotation number. Therefore, they may or may not have fixed
and periodic points. Recall that there exists some Π(x) ∈ S1 with period q by f if and
only if Fq(x) = x+ p, for some p ∈ Z, if and only if ρ( f ) = p/q. We end this section with
a result that tells us that the behaviour is quite different when the homeomorphism is
orientation-reversing. Actually, these homeomorphims must have zero rotation number.

Proposition 2.16. (Orientation-reversing homeomorphisms) Let f : S1 → S1 be an orientation-
reversing homeomorphism. Then f has exactly 2 fixed points, and hence ρ( f ) = 0.

Proof. Observe that a lift F of an orientation-reversing homeomorphism is decreasing
and F(x + 1) = F(x)− 1. Consider the lift F s.t. F(0) ∈ [0, 1) and G(x) := F(x) + 1. On
the interval [0, 1) both F − Id and G − Id are 0 for some x since

(F − Id)(0) = F(0) ≥ 0, (F − Id)(1) = F(0)− 2 ≤ −1.

Name p1 and p2 the respective fixed points. Clearly p1 ̸= p2 since p1 = F(p1) ̸= G(p1)

and therefore Π(p1) ̸= Π(p2) because both points lay within [0, 1).
Let θ be a distinct point of S1, we need to prove θ is not fixed by f. Swapping

p1 for p2 if needed we have that θ ∈ (Π(p1), Π(p2)), but then f (θ) ∈ (Π(p2), Π(p1))

because f must map the arc (Π(p1), Π(p2)) onto the arc (Π(p2), Π(p1)) given that it is
orientation-reversing, so θ is not fixed.
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2.2 Rigid rotations

In this section we introduce a simple yet important orientation-preserving family of
circle diffeomorphims, rigid rotations.

Definition 2.17. The family of rigid rotations is given by

tw(θ) = θ + w (mod 1),

where w ∈ [0, 1) is the angle parameter that defines a point on the unit circle, so the rotation
map rotates all points an angle 2πw. Abusing notation, we can say

tw(e2πiθ) = e2πi(θ+w).

Observe that the family
Tw(x) = x + w

is a lift of the rigid rotation satisfying Tw(0) ∈ [0, 1) and Tn
w(x) = x + wn.

Figure 2.2: t0.3(θ)

It follows directly from the rotation number definition that ρ(tw) = w. One can
clearly see that if w = p

q then all points have period q.
However, studying the behaviour of the orbits of tw with irrational rotation number

is not so obvious. The following theorem tells us what orbits look like in this case. The
prove is found in [Dev03].

Theorem 2.18. (Jacobi’s theorem) Let w be irrational and consider the rigid rotation tw(θ).
Then every orbit of tw is dense in [0, 1) ∼= S1

Proof. Let us consider the orbit of an arbitrary θ. All points of the orbit are distinct,
since if tn

w(θ) = tm
w(θ) =⇒ 2πnw = 2πmw =⇒ (n − m)w =⇒ w ∈ Z, which is

a contradiction. Now, the orbit of θ is an infinite set of distinct points, therefore there
must be a limit point. Otherwise, ∃ ϵ s.t. |tn

w(θ)− tm
w(θ)| > ϵ ∀n, m, meaning that there

are at most 2π
ϵ distinct points on the orbit! Hence, for any ϵ > 0, there are n, m for

which
|tn

w(θ)− tm
w(θ)| < ϵ, =⇒ |tr

w(ϕ)− ϕ| < ϵ, r := n − m, ϕ := tm
w(θ).

It follows that the sequence ϕ, tr
w(ϕ), t2r

w (ϕ), ... is an arbitrary small partition of S1 as tw

preserves the length of intervals.
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2.3 The linearization problem

Our goal in this section is to get conditions which determine when an orientation-
preserving homeomorphism f is conjugate to a rigid rotation. That tells us a lot since the
dynamics of a rigid rotation is well-known to us. First we see that the problematic case is
when ρ( f ) is irrational, since the rational case is trivial. We proceed to prove Poincare’s
theorem, regarding semiconjugacy, and which also gives us a sufficient condition for f to
be conjugate to a rigid rotation: have no wandering intervals. Lastly we prove Denjoy’s
theorem, which gives f being C2 another sufficient condition for f to be conjugate to a
rigid rotation. Throughout this section we follow [KH95] and [Tur19].

Definition 2.19. (Linearization) A continuous map f : S1 → S1 is linearizable if it is
conjugate to a rigid rotation.

First we see that if ρ is rational the only possible conjugacy is the identity, so no
function with rational rotation number can be linearizable unless it is a rigid rotation
already.

Proposition 2.20. Let f : S1 → S1 be continuous and with rational rotation number. Then,
either f is a rigid rotation or it is non linearizable.

Proof. Suppose f is linearizable and ρ( f ) = p/q is rational. Then f is h-conjugate to
tp/q. This implies that all points are periodic by f with period p/q, since f q(x) =

h−1(tq
p/q(h(x))) = h−1(h(x)) = x and tn

p/q(y) ̸= y for 0 < n < q. Then Fq(x) = x + p
and therefore F(x) = x + p/q, so f is indeed the rigid rotation map and h = Id.

It remains to study the factors that determine whether f is linearizable when ρ( f )
is irrational. The procedure is more complicated, first we prove that every orientation-
preserving homeomorphism is at least semi conjugate to a rigid rotation.

Theorem 2.21. (Poincare’s theorem) Let f : S1 → S1 be an orientation-preserving homeo-
morphism with irrational rotation number ρ. Then f is semi-conjugate to tρ via an orientation-
preserving function.

Before proving it, we prove a list of preliminary propositions that enable us to get to
the main result. This is important since the proof of this theorem is closely tied to the
existence of wandering intervals, which determines the properties of the conjugacy h.

Proposition 2.22. Let f : S1 → S1 be an orientation-preserving homeomorphism with irrational
rotation number, y ∈ S1 and m, n ∈ Z, m ̸= n. Then, for all x ∈ S1, both the positive and
negative semiorbit of x meet the interval I = [ f n(y), f m(y)].
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Proof. The proof for positive semiorbits is equivalent to prove that S1 = ∪k∈N f−k(I).
We denote Ik := f−k(n−m)(I) = [ f n−kn+km(y), f−kn+m+km(y)]. We have that Ik−1 :=

f−(k−1)(n−m)(I) = [ f−kn+km(y), f−(k−1)n+km(y)], so Ik and Ik−1 are contiguous. This im-
plies that either ∪k∈N f−k(I) = S1 or both endpoints of {Ik}k converge. Suppose the
endpoints tend to z, then

z = limk→∞ f−k(n−m)( f m(y)) = limk→∞ f (−k+1)(n−m)( f m(y)) =

limk→∞ f−k(n−m) f n−m( f m(y)) = f n−m limk→∞ f−k(n−m)( f m(y)) = f n−m(z),

which is a contradiction given that f has no periodic points. Hence S1 = ∪k∈N f−k(I).
The proof for negative semiorbits follows from the same argument but considering k ∈
Z≤0.

Proposition 2.23. (Uniqueness of the w-limit set) Let f : S1 → S1 be an orientation-
preserving homeomorphism with irrational rotation number and x, y ∈ S1 arbitrary points.
Then the w-limit set of x and y coincide. We call E the w-limit set of all points of S1.

Proof. Let z ∈ w(x). By definition of the w-set, it ∃(ln)n such that f ln(x) → z. Define
Ik := [ f lk(x), f lk+1(x)]. Because of proposition 2.22, it yields that for all Ik there exists nk

such that f nk(y) ∈ Ik. It follows that the sequence f nk(y) tends to z, then z ∈ w(y). That
proves w(x) ⊂ w(y), and swapping x for y we get the other inclusion.

Now we can consider the w-limit set of a given orientation-preserving homeomor-
phism, since it does not depend on the point. The following definition characterizes the
E set in some cases.

Definition 2.24. (Cantor set) Let X be a topological space. A set of such space is a Cantor
set if it is non-empty, perfect and nowhere dense. A set is perfect if all points are limit
points and it is nowhere dense if it has no interior.

Proposition 2.25. Let E be the w-limit set of an orientation-preserving homeomorphism with
irrational rotation number. Then either E = S1 or E is closed, perfect and totally disconnected,
i.e. a Cantor set.

Proof. E = w(x) is closed since it is an w-limit set. We claim it is the minimal non-empty
closed set that is f -invariant. Indeed, let A be a non-empty closed f -invariant set and
y ∈ A. By invariance, f n(y) ∈ A ∀n ∈ Z, then E = w(x) = w(y) ⊂ ( f n(y))n∈Z ⊂ A.

The boundary of any set is closed, we claim that it is also f -invariant. Therefore
∂E ⊂ E is either E or ∅. In the first case E is nowhere dense. In the second E = S1. We
want to prove that when ∂E = E, then all points of E are limit points. Let y ∈ E = w(y),
then there exists a sequence kn such that f kn(y) → y and f kn(y) ̸= y ∀kn, so y is an
accumulation point of E.

It remains to be proven that ∂E is f-invariant. Let z ∈ ∂E, then there exists ϵ > 0
such that the set { f n(z), n ∈ N} does not intersect (z, z + ϵ) (or (z − ϵ, z)). Then,
{ f n(z), n ∈ N} does not intersect ( f (z), f (z + ϵ)) since f is orientation-preserving.
Hence, f (z) belongs to ∂E. Arguing similarly, if z ∈ Int(E), then f (z) ∈ Int(E).
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Finally, we want to prove that the semiconjugacy is orientation-preserving, the fol-
lowing result gives us a condition for it to be strictly increasing at least in some points.

Proposition 2.26. Let f : S1 → S1 be an orientation-preserving homeomorphism with irrational
rotation number ρ and F the lift of f which gives directly ρ without integer part for x = 0. Then,
for n1, n2, m1, m2 ∈ Z and x ∈ R, we have that:

n1ρ + m1 < n2ρ + m2 ⇐⇒ Fn1(x) + m1 < Fn2(x) + m2.

Proof. We define
g(x) := Fn1(x) + m1 − Fn2(x)− m2,

observe that if g(x) = 0 =⇒ Π(x) is periodic by f which is a contradiction, so it is
enough to consider the second statement of the proposition for one x, we prove it for
x = 0.

⇐=: Suppose Fn1(x) + m1 < Fn2(x) + m2, ∀x.

Fn1(x) + m1 < Fn2(x) + m2, ∀x ⇐⇒ Fn1−n2(y)− y < m2 − m1, ∀y

since F is an homeomorphism and y := Fn2(x). In particular, F2(n1−n2)(0)− Fn1−n2(0) <
m2 − m1 and Fn1−n2(0) < m2 − m1. Combining both inequalities we get F2(n1−n2)(0) <

2(m2 − m1). And inductively, Fn(n1−n2)(0) < n(m2 − m1). Now

ρ := lim
n→∞

Fn(n1−n2)(0)
n(n1 − n2)

≤ lim
n→∞

n(m2 − m1)

n(n1 − n2)
=

m2 − m1

n1 − n2
,

but the equality does not hold because ρ is irrational. That completes the implication.
=⇒ : By contraposition. We can argue the same but swapping < for > which

leads to ρ > m2−m1
n1−n2

. Recall the case of equality in the second statement needs not to be
considered.

Proof of Poincare’s Theorem 2.21. T(x) = x + ρ is a lift of tρ and let F be a lift of f. We pick
x ∈ Π−1(E) and define B := {Fn(x) + m| n, m ∈ Z}, which is the union of all orbits of
x under any lift of f. Therefore Π(B) is the orbit of Π(x) under f. Besides, observe that
Π(B̄) ⊂ E. Indeed, if y ∈ B̄ =⇒ ∃{ni}, {mi} such that Fni(x) + mi → y and therefore
f ni(Π(x)) → Π(y), so Π(y) ∈ E.

We will construct the real semi conjugacy H explicitly so that it satisfies the lift prop-
erty. We begin by defining H in B, then we extend it continuously in B̄ and eventually
in R. That defines the semiconjugacy h in S1 we are looking for. We define HB as
HB : B → R as HB(Fn(x) + m) := nρ + m, which is strictly increasing because of 2.26
and it is continuous. We can extend HB to B̄ as follows, let y ∈ B̄ and (yn)n → y a
sequence in B tending to y, then we claim that HB̄(y) := limn→∞ HB(yn) is well-defined.
To prove the existence of the limit consider a sequence (yn)n which converges to y
monotonously, then HB(yn) is also monotone since HB is strictly increasing. Besides,
let z ∈ B greater than y if the sequence is increasing (or smaller if the sequence is de-
creasing), such a z always exists since B is not bounded. It follows HB(z) is a bound
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of (HB(yn)). That proves convergence since it is a bounded and monotonous sequence.
Now let (y′n)n be another sequence converging to y in B. ∀ϵ > 0, Jacobi’s Theorem
2.18 implies HB(B) := {nρ + m| n, m ∈ Z; ρ ∈ R \ Q} is dense in R and therefore
∃sϵ, tϵ ∈ B, sϵ < tϵ such that

lim
n→∞

HB(yn)− ϵ < HB(sϵ) < lim
n→∞

HB(yn) < HB(tϵ) < lim
n→∞

HB(yn) + ϵ.

Now we pick nϵ large enough such that y′nϵ
lays within (sϵ, tϵ). Hence because of

monotonousness of HB

lim
n→∞

HB(yn)− ϵ < HB(sϵ) < HB(y′nϵ
) < HB(tϵ) < lim

n→∞
HB(yn) + ϵ ∀ϵ > 0,

which proves that both limits are equal so we can write limn→∞ HB(yn) = HB̄(y), then

HB̄(y)− ϵ < HB(y′nϵ
) < HB̄(y) + ϵ ∀ϵ > 0 (2.1)

Finally suppose y ∈ B, we can pick the sequence ((yn) := y)n which clearly converges
to y, therefore we get HB̄(y) := limn→∞ HB(yn) := limn→∞ HB(y) = HB(y). That means
HB̄ = HB in B. What’s more, we have proved continuity of HB by sequences.

The next step is proving HB̄ is continuous and increasing. First, we prove continu-
ity by sequences, we already know continuity for sequences in B. Let (yn)n ⊂ B̄ be a
sequence converging to y ∈ B̄ then we need to prove limn→∞ HB̄(yn) = limn→∞ HB̄(y′n),
where (y′n)n ⊂ B is a sequence converging to y. It is sufficient to pick y′n ∈ B such that
|y′n − yn| < 1

n and |HB̄(y′n)− HB(yn)| < 1
n for all n, observe that such y′n exists because

of equation 2.1. That proves continuity in all B̄. Now let y, z ∈ B̄, y < z then we can pick
sequences (yn)n and (zn)n in B converging to y and z respectively such that yn < zn for
all n. Therefore H(yn) < H(zn) and limn→∞ H(yn) ≤ limn→∞ H(zn). So it is proved that
H is strictly increasing in B and increasing in B̄.

Now we claim HB̄(B̄) → R is surjective. Let r ∈ R, as HB(B) is dense in R there
exists an increasing sequence (rn)n ⊂ B converging to r. Take (bn := H−1

B (rn))n the
preimage of the sequence, which is bounded by H−1

B̄ (r′) for any r′ ∈ HB(B), r′ > r;
and strictly increasing, so (bn)n converges to some point p, then b ∈ B̄. Now HB̄(b) =
limn→∞ HB(bn) = limn→∞ rn = r, so HB̄(B̄) = R.

The last step is to extend HB̄ to R. Let y ∈ R \ B̄, then y lays within an interval
(b1, b2) ⊂ R \ B̄ where b1, b2 ∈ B̄. We define H(y) := HB̄(b1) = HB̄(b2). We claim

HB̄(y) = HB̄(z) ⇐⇒ (y, z) ∩ B is either one point or empty. (2.2)

If HB̄(y) < HB̄(z), we have that HB(B) is dense in (HB̄(y), HB̄(z)) and therefore B is
dense in (y, z). If HB̄(y) = HB̄(z) then HB̄ is constant in [y, z] but also strictly increasing
in B, so there is at most one point of B in (y, z). Hence H is well-defined, surjective,
continuous by construction, and increasing. We claim H ◦ F = Tρ ◦ H in B since

H ◦ F(Fn(x)+m) = H(Fn+1(x)+m) := (n+ 1)ρ+m = Tρ(nρ+m) = Tρ ◦ H(Fn(x)+m).

The equality also holds in B̄ because of continuity

H(F(y)) = lim
n→∞

H(F(yn)) = lim
n→∞

Tρ(H(yn)) = Tρ(H(y))
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and in R. Let us use the same notation where r ∈ R \ B̄ and b1, b2 ∈ B̄ are the end-
points described before. Because of equation 2.2 we have H(b1) = H(b2), which im-
plies Tρ(H(b1)) = Tρ(H(b2)) and H(F(b1)) = H(F(b2)). Then H(F(r)) = H(F(b1)) =

H(F(b2)) and Tρ(H(r)) = Tρ(H(b1)) = Tρ(H(b2)).
H must satisfy one last property so that it is indeed a lift

H(Fn(x) + m + 1) := nρ + m + 1 = H(Fn(x) + m) + 1.

Taking sequences and limits the equality holds in R. That guarantees us that h(Π(x)) :=
Π(H(x)) is an increasing continuous surjective map such that

HF = TρH =⇒ ΠHF = ΠTρH =⇒ hΠF = tρΠH =⇒ h f Π = tρhΠ =⇒ h f = tρh.

Corollary 2.27. Let f : S1 → S1 be an orientation-preserving homeomorphism with irrational
rotation number ρ. Then f is semi conjugate to tρ ⇐⇒ S1 = E, where E is the w-limit set of f.

Proof. ⇐= If E = S1 = w(Π(x)) then { f n(Π(x))} = S1 =⇒ B̄ = R and therefore h has
no constant intervals, so it is strictly increasing and therefore bijective.

=⇒ Suppose f is conjugate to a rotation and let θ ∈ S1, then {tn
ρ(θ)} is dense in S1

which implies {h−1tn
ρ h(θ)} is dense too. Indeed let ϕ ∈ S1 be any point, ∀θ′, ∃n such

that |tn
ρ(θ

′)− h(ϕ)| < δ which implies |h−1tn
ρ(h(θ))− ϕ| < ϵ by continuity of h−1, where

θ = h−1(θ′).

Proposition 2.28. (Wandering intervals) Let f : S1 → S1 be an orientation-preserving homeo-
mophism with irrational rotation number which is not conjugate to a rotation. Then the intervals
I ⊂ S1 \ E are wandering under f.

Proof. E is a Cantor set because of 2.25, so S1 \ E is a union of intervals. Recall that the
semiconjugacy h constructed in the proof of theorem 2.21 maps intervals of S1 \ E into
single points. Let I be one of the intervals of S1 \ E and let y be the point such that
{y} = h(I), then

h( f m(I)) = tm
ρ (h(I)) = {y + mρ}.

Let n, m ∈ Z, n ̸= m, then h( f m(I)) = {y + mρ} and {y + nρ} = h( f n(I)) are disjoint
since ρ is irrational, which implies f m(I) ∩ f n(I) = ∅.

Remark 2.29. Observe that the case where H (and therefore h) is not injective, the graph
of the semiconjugacy has some particular properties. Then S1 \ E is a Cantor set and
there are infinitely many wandering intervals whose union is (S1 \ E)c. It follows that h
is constant on infinitely many intervals and strictly increasing in E. We will discuss this
type of functions in section 2.5 with more detail.
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Observe that Poincare’s Theorem gives a clear distinction between orientation-preserving
homeomorphisms. On the one hand, there are some with rotation-like behaviour which
means orbits are dense - whereas on the other, there are homeomorphisms with wan-
dering intervals.

Next we prove Denjoy’s theorem. Observe that from now on we focus particularly
on diffeomorphisms.

Theorem 2.30. (Denjoy’s theorem) Let f : S1 → S1 be a C1 orientation-preserving diffeomor-
phism with irrational rotation number ρ such that f ′ is of bounded variation. Then f is conjugate
to the rotation tρ.

The proof requires some preliminaries.

Proposition 2.31. Let f : S1 → S1 be a orientation-preserving homeomorphism with irrational
rotation number and let p ∈ S1 be any point. Then there are infinitely many n ∈ N such that
all intervals f k((p, f−n(p))) are disjoint for k = 0, ... , n − 1.. We name N f

p ⊂ N the infinite
set of such naturals.

Proof. First suppose f is a rotation, name it t, so every orbit is dense. We name xk :=
tk(p), x0 = p and In := (p, x−n). Suppose n is such that xk /∈ In for k = −n+ 1, ..., 0, ..n−
1, then all intervals tk((x0, x−n)) are disjoint. Indeed, let 0 ≤ l < k < n, we want to prove
tl((x0, x−n)) and tk((x0, x−n)) are disjoint. We have that xk−l−n and xk−l lay outside In

by hypothesis, then tl(xk−l−n) = xk−n and tl(xk−l) = xk lay outside tl(In). Since these 2
points are precisely the endpoints of tk(In) there are 2 possibilities, either tl(In) ⊂ tk(In)

or they are disjoint. The first case is false given that tl(In) = (x0 + l2πρ, x−n + l2πρ)

and tl(In) = (x0 + k2πρ, x−n + k2πρ) so they have the same length. It remains to be
proved that there are infinitely many n such that xk /∈ In for k = −n + 1, ..., 0, ..n − 1.
Since the orbit of p is dense, there is a subsequence of (xk) converging to p = x0, so we
can always pick an n such that the interval In is as small as we want, in particular, we
need it to be smaller than all the intervals Ik for k = −n + 1, ..., 0, ..n − 1. That completes
the prove for rigid rotations.

Now let f be an arbitrary orientation-preserving homeomorphism with irrational
rotation number, it follows from Poincare theorem 2.21 that f is semiconjugate to an
irrational rotation t by a continuous orientation-preserving function h. Hence

h( f j(p), f m(p)) = (h( f j(p)), h( f m(p))) = (tj(h(p)), tm(h(p))),

and therefore tk((h(p), t−n(h(p))) are disjoint =⇒ h( f k(p), f k−n(p)) are disjoint =⇒
( f k(p), f k−n(p)) are disjoint. Therefore Nt

h(p) ⊂ N f
p so N f

p is also infinite.

Proposition 2.32. Let f : S1 → S1 be a orientation-preserving diffeomorphism such that f ′ is
of bounded variation. Then Φ(x) = log f ′(x) is a function of bounded variation.

Proof. Observe that log( f ′) is well-defined. First we claim that there exists λ > 0 such
that f ′(x) ≥ λ. If f ′ was arbitrary close to 0 then ( f−1)′ would be arbitrary close to
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infinity, but that can’t be since f−1 is a continuous function in the compact set S1. Now
let {t0, t1, ..., tn} be any partition of S1. Then

∑n
k=1 |Φ(tk)− Φ(tk−1)| = ∑n

k=1 |
∫ f ′(tk)

f ′(tk−1)
1
x dx| ≤ ∑n

k=1 |
∫ f ′(tk)

f ′(tk−1)
1
λ dx| =

∑n
k=1

1
λ | f ′(tk)− f ′(tk−1)| ≤ Var( f )

λ .

Hence Var(Φ) ≤ Var( f )
λ .

Proposition 2.33. Let f : S1 → S1 be a orientation-preserving diffeomorphism with a wan-
dering interval I and such that f ′ is of bounded variation. Let V := Var(Φ) = Var(log( f ′)).
Then

e−V ≤ ( f n)′(x)( f−n)′(x) ≤ eV ∀x ∈ I,

for infinitely many natural numbers n

Proof. First observe that because of proposition 2.32, Φ is of bounded variation. Fix x
in I, then for all n ∈ N f

x we get that Pn := { f k(p), f k−n(p)|k = 0, 1, ..., n − 1} forms
a partition of S1 where every point f m(p) is contiguous (there is no other point of the
partition in between) to f m−n(p).

V ≥ ∑n−1
k=0 |Φ( f k(x))− Φ( f k−n(x))| ≥ |∑n−1

k=0 Φ( f k(x))− ∑n−1
k=0 Φ( f k−n(x))| =∣∣∣log

[
∏n−1

k=0 f ′( f k(x))
]
− log

[
∏n−1

k=0 ( f ′)( f k−n(x))
]∣∣∣ =∣∣∣∣log ∏n−1

k=0 f ′( f k(x))
∏n−1

k=0 f ′( f k−n(x))

∣∣∣∣ = ∣∣∣log ( f n)′(x)
( f n)′( f−n(x))

∣∣∣ ,

where the last step follows from the derivative chain rule. Hence we have proved that

e−V ≤ ( f n)′(x)
( f n)′( f−n(x))

≤ eV .

Next we apply the inverse function derivative theorem to f n. It yields

e−V ≤ ( f n)′(x) · ( f−n)′(x) ≤ eV .

It remains to prove that N f
x does not depend on x ∈ I. Actually, we prove there is an

infinite subset of N f
x that does not depend on x, which is enough. Let y ∈ I, it follows

from the construction of the semiconjugacy h in 2.21 that h(x) = h(y). Hence following
the notation in 2.31

h( f j(x), f m(x)) = (h( f j(x)), h( f m(x))) = (tj(h(x)), tm(h(x))) =

(tj(h(y)), tm(h(y))) = (h( f j(y)), h( f m(y))) = h( f j(y), f m(y)),

so both N f
x and N f

y have Nt
h(x)=h(y) as a subset.

We are eventually ready to prove Denjoy’s Theorem.
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Proof of Denjoy’s Theorem 2.30. Suppose f does not conjugate to a rotation and we see it
leads to a contradiction. Taking into account 2.28 we get that f has a wandering interval,
we claim that all of its images and preimages together do not fit in S1. The hypothesis
is Φ is of bounded variation, then the contradiction comes from the inequaltiy of 2.33.
Let n be as 2.33 (n ∈ Ntρ

h(x)), then

l( f n(I)) + l( f−n(I)) :=
∫

I( f n)′(x)dx +
∫

I( f−n)′(x)dx =∫
I [( f n)′(x) + ( f−n)′(x)] dx ≥

∫
I 2
√
( f n)′(x) · ( f−n)′(x)dx ≥∫

I 2
√

e−Vdx = 2l(I) · e−
V
2 .

Therefore l(S1) ≥ ∑∞
i=−∞ l( f i(I)) ≥ ∑n∈Nt

h(x)
l(I) · e−

V
2 = ∞, so the claim is proved.

Corollary 2.34. Let f be a C1 orientation-preserving diffeomorphism of the circle with irrational
rotation number such that f ′ is of bounded variation. Then all orbits under f are dense in S1.

Proof. By contradiction. Because of theorem 2.30, tnh = h f n. Suppose there exists I =

(a, b) ⊂ S1, a < b and x ∈ S1 such that f n(x) /∈ I ∀n. Then h f n(x) /∈ h(I) ∀n, and h(I)
is an interval since h is an orientation-preserving homeomorphism by Denjoy’s theorem
2.30. Actually, tnh(x) = h f n(x) /∈ h(I) ∀n. It follows that f n(x) /∈ I ∀n, which contradicts
Jacobi’s theorem.

2.4 Analytic linearization

In this section we treat analytic linerization of analytical maps of the circle. It is not
our objective to prove the results, but to present them and give a state-of-the-art view
on the subject. The general idea is we have analytic linearization depending on how fast
the rotation number can be approximated with rational numbers, hence depending of
the arithmetic properties of ρ. The results are mainly due to Herman and Yoccoz. The
following results are found in [BF14], [FG03], and were originally proven in [Her79],
[Her] and [Yoc84].

We will see in the following chapter that whether there is analytic linearization or
not has a huge impact on the complex dynamics of the respective complexified map.

Definition 2.35. (Analytic linearization) A continuous map f : S1 → S1 is analytically
linearizable if it is analytically conjugate to a rigid rotation, i.e., the conjugacy function
is analytic.

Theorem 2.36. (Analytic linearization, [Yoc84]) Let f : S1 → S1 be an analytic diffeomor-
phism and ρ ∈ (0, 1]. Then

• If ρ ∈ H, then evert map f with ρ( f ) = ρ is analytically linearizable.

• If ρ /∈ H, then there exists a map f with ρ( f ) = ρ such that f is not analytically lineariz-
able.
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• If ρ( f ) = ρ ∈ B \H, and f is close enough to tρ, then f is analytically linearizable.

Hence if ρ( f ) ∈ H, f is analytically linearizable. If ρ( f ) ∈ B, there always exist
maps which are analytically linearizable and maps that are not. Finally, we comment
that it is yet an open question what happens for ρ( f ) /∈ B, the existence of non analytic
linearizable maps is assured. However, it is an open question for which families this
Bryuno condition is actually optimal. Recall that the rational rotation number obviously
cannot lead to analytic linearization.

We later discuss the analytic linearization problem for the Standard Family.

2.5 The Standard Family

We consider the Standard Family, also called the Arnold Family, of circle maps

f := fw,ϵ(θ) = θ + w +
ϵ

2π
sin(2πθ) (mod Z), θ, w, ϵ ∈ [0, 1),

which has the associated lifts

F := Fw,ϵ(x) = x + w +
ϵ

2π
sin(2πx), x ∈ R.

Notice that fw,ϵ is a diffeomorphism as long as 0 ≤ ϵ < 1, since f ′(θ) = 1+ ϵcos(2πθ) ̸=
0 ∀θ ∈ [0, 1). We want to discuss how ρ( fw, ϵ) varies with w.

Figure 2.3: f0.3, π/5(x) = x + 0.3 + 0.1sin(2πx).

Let us focus on the most obvious properties of the family. The case ϵ = 0 is already
known to us since fw, 0(θ) = tw(θ), so ρ( fw, 0) = w . Furthermore, θ = 0 is a fixed point
for all f0, ϵ so ρ( f0, ϵ) = 0 for all ϵ. Besides, recall that ρ( fw, ϵ) is continuous on w and ϵ

and is increasing on w given that Fw,ϵ(x) is strictly increasing on w for all x and ϵ. It
is particularly interesting to study when ρ( fw, ϵ), viewed as a function of w, is strictly
increasing and when it is constant. The next results are aimed in this direction.

Since our goal is to discuss the rotation number in terms of w, in the following
propositions we consider that 0 < ϵ < 1 is fixed and write fw := fw, ϵ and Fw := Fw, ϵ.

Proposition 2.37. ρ( fw) takes all possible values independently of the fixed ϵ ∈ [0, 1).
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Proof. Let w = 1. Then Fn
1 (0) = n and hence ρ( f1) = 1. Moreover, we have already

claimed that ρ( f0) = 0. It follows from the continuity of the rotation number on w, see
proposition 2.12, that ρ( fw) takes all possible values from 0 to 1 independently of the
fixed ϵ ∈ (0, 1).

The preceding proposition enables us to consider any possible value of the rotation
number, for which there exists at least one member of the standard family with such
rotation number. First we discuss the case when ρ( fw) takes rational values. The prove
is found in [Dev03].

Theorem 2.38. (ρ( fw) is rationally constant) Let 0 < ϵ < 1. Suppose w0 is such that
ρ( fw0) = p/q is rational, then there exists an interval I containing w0 and with non empty
interior s.t. ρ( fw) = p/q ∀w ∈ I .

Proof. Recall that there exists x0 s.t. Fq
w0(x0) = x0 + p ⇐⇒ ρ( fw0) = p/q. Define the

function
g(w, x) := Fq

w(x)− (x + p).

We have g(w0, x0) = 0 and DG(w0, x0) = (
∂Fq

w0
∂w |w=w0 ,

∂Fq
w0

∂x |x=x0 − 1).

If
∂Fq

w0
∂x |x=x0 ̸= 1 the Implicit Function Theorem holds. Hence there is a neigh-

bourhood I of w0 and a function x(w) defined on a neighbourhood of x0 such that
g(w, x(w)) = 0, meaning that Fq

w(x(w)) = x(w) + p, so ρ( fw) = p/q for all w ∈ I .

If
∂Fq

w0
∂x |x=x0 = 1 the preceding argument does not hold and it is slightly more com-

plicated. We consider the Taylor expansion since Fq
w0 is analytic:

Fq
w0(x)− (x + p) = x0 + p + (x − x0) +

(Fq
w0 )

(j)(x0)

j! (x − x0)j + .... − (x + p) =

(Fq
w0 )

(j)(x0)

j! (x − x0)j + ...

where j ≥ 2 is the order of the first non-vanishing derivative, after j = 1, which exists.
Otherwise it would be Fq

w0(x) = x + p which is the case ϵ = 0. We need to prove
I = {w| Fq

w(x)− (x + p) = 0 for some x} has no null interior.
Suppose j is even and Fq

w0
(j)(x0) > 0. First notice that Fq

w(x0)− (x0 + p) < Fq
w0(x0)−

(x0 + p) = 0 for w < w0. It follows from the hypothesis on Fq
w0

(j)(x0) that there exists
xM such that Fq

w0(xM) − (xM + p) = M > 0 when xM is close enough to x0. Because
of continuity on w there exists δ > 0 s.t. Fq

w(xM) > 0 for w ∈ (w0 − δ, w0 + δ). Hence
for w ∈ (w0 − δ, w0) we have Fq

w(x)− (x + p) = 0 for some x laying within x0 and xM

because of the Intermediate Value Theorem. That proves I ⊃ (w0 − δ, w0]. Similarly,
I ⊃ [w0, w0 + δ) if j is even and Fq

w0
(j)(x0) < 0 and I ⊃ (w0 − δ, w0 + δ) if j is odd.

So ρ( fw) must be increasing only when it takes values in R \ Q, the following theo-
rem tells it is actually increasing when ρ( fw) is irrational.

Theorem 2.39. (ρ( fw) is irrationally increasing) Fix ϵ ∈ (0, 1). For each irrational ρ in
[0, 1) there is a unique w0 ∈ [0, 1) such that ρ( fw0) = ρ. Equivalently, ρ( fw) is strictly
increasing at w0.
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We follow the proof from [dMvS93], which consists of some preliminary results
before the eventual proof of the theorem.

Proposition 2.40. Let 0 < ϵ < 1 and α > 0. Then Fn
w+α(x) ≥ Fn

w(x) + α ∀n ∈ N.

Proof. By induction. The case n = 1 is true as

Fn
w+α(x) = x + w + α +

ϵ

2π
sin(2πx) = Fn

w(x) + α.

Now we suppose the case n − 1 holds, then

Fn
w+α(x) = Fw+α(Fn−1

w+α(x)) ≥ Fw+α(Fn−1
w (x)) = Fn

w(x) + α.

Corollary 2.41. Let 0 < ϵ < 1 and α < 0. Then Fn
w+α(x) ≤ Fn

w(x) + α ∀n ∈ N.

Proof. Fn
w+α(x) + (−α) ≤ Fn

w(x), so 2.40 applies with α′ := −α and w′ := w + α.

Remark 2.42. Note that f is a C2 diffeomorphism and therefore it is linearizable when
ρ( f ) is irrational.

Finally, we enunciate the famous Zorn’s Lemma, which will be used in the proof.

Lemma 2.43. (Zorn’s Lemma) Let P be a partially ordered set for some order relation (≤).
Suppose for every totally ordered subset T of P, then T has an upper bound in P (there exists
M ∈ P such that x ≤ M for all x ∈ T). Then P has a maximal element (k ∈ P is a maximal
element of P if there is no greater element than k in P).

Proof of theorem 2.39. Define P := {closed proper subsets of S1 invariant by fw0} and the
order relation U ≥ V ⇐⇒ U ⊂ V. Let T be a totally ordered subset of P, then
UT :=

⋂
U∈T U is a superior cote of T. Indeed, T is clearly closed and invariant by fw0 ,

and it is non-empty because of the Nested Intervals Theorem. It follows from Zorn’s
Lemma that P has a maximal element, name it K. By construction, every orbit in K
is dense in K, otherwise there would be an element greater than K. Besides, ∀θ ∈ K;
θ, fw0(θ), f 2

w0
(θ), ... are all distinct since there are no periodic orbits. Therefore for every

θ in K there exists a sequence {ni} of increasing naturals such that f ni
w0(θ) → θ, this

is due to fw0 being conjugated to a rotation because of theorem 2.30 so corollary 2.27
implies thT all orbits are dense in S1. What’s more, we can choose subsequences tending
to θ strictly from the left and strictly from the right. Therefore, there existS zi ∈ Z such
that {Fni

w0(p)− p − zi} → 0 strictly from the left and strictly from the right where p :=
Π(θ). We now look at Fw0+α(p) as a function on α. First, we consider the subsequence
converging from the left, so

Fni
w0
(p) < p + zi
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and because of proposition 2.40

Fni

w0+(p+zi−F
ni
w0 (p))

(p) ≥ Fni
w0
(p) + (p + zi − Fni

w0
(p)) = p + zi.

Hence the Intermediate Value Theorem states that ∃αi ∈ [0, p + zi − Fni
w0(p)] such that

Fni
w0+αi

(p) = p + zi and therefore ρ( fw0+αi) > ρ( fw0) because one rotation number is
rational and the other is irrational. Observe that {αi} tends to 0 from above, so if
w > w0 we can choose αi s.t. w0 < αi < w and therefore ρ( fw) ≥ ρ( fw+αi) > ρ( fw0).
If w < w0 the proof continues by considering a sub sequence {ni} converging from the
right so that αi < 0 and tends to 0 and argue the same with help of corollary 2.41. We
get ρ( fw) ≤ ρ( fw+αi) < ρ( fw0). Thus, ρ( fw) is strictly increasing when it takes irrational
values.

It follows from the previous results that ρ(w) := ρ( fw, ϵ∈(0,1)) is constant on an inter-
val when it takes rational values and increasing when it takes irrational values. This is
at least surprising since not only the set of w′s such that ρ(w) is irrational (and therefore
increasing) is nowhere dense (actually it is a Cantor set), but also its complementary set
is everywhere dense, yet ρ(w) manages to increase from 0 to 1 continuously. The graph
of ρ(w) is often referred to as a devil’s staircase due to the form that it takes, see figure
2.4. Observe that the staircase is symmetric due to the behaviour of the rotation number
being the same when considering negative values of w.

Proposition 2.44. The set C = {w| ρ( fw) is strictly increasing} is a Cantor set.

Proof. It is nowhere dense, for if w0 ∈ C and let (w0 − ϵ, w0 + ϵ) be an arbitrary small
environment of w0, then

ρ( fw0+ϵ/2) > ρ( fw0) > ρ( fw0−ϵ/2).

Hence there is a rational laying within each rotation number because they are dense
in [0, 1], implying that there are intervals contained in (w0, w0 +

ϵ
2 ) and (w0 − ϵ

2 , w0)

where ρ( fw) is constant.
Let w0 be as before. We want to prove that w0 is a limit point of C. Suppose it is

not, then there exists ϵ > 0 such that ρ( fw) is constant in (w0 − ϵ, w0) and (w0, w0 + ϵ).
Since ρ( fw0) is increasing at w0 and monotonous in general, again, it is

ρ( fw0+ϵ/2) =
p
q
> ρ( fw0) > ρ( fw0−ϵ/2) =

p′

q′
,

where p′
q′ ,

p
q are the constant rational values of ρ( fw) mentioned before. Therefore, there

are infinitely many irrational numbers within ( p′
q′ ,

p
q ), which means that there are in-

finitely many w in (w0 − ϵ, w0 + ϵ) belonging to C. That contradicts our assumption
and ends the proof.

It is also interesting to consider the Lebesgue measure of C. Although we do not
discuss this problem, it can be proven that C has actually positive Lebesgue measure.



2.5 The Standard Family 27

Remark 2.45. Observe the similarities between the rotation number depending on w
for the Standard Family and the semiconjugacy constructed in Poincare’s theorem 2.21.
However, the rotation number case also enables us to consider the rotation number as a
function of the 2-dimensional parameter space (w, ϵ), resulting from all devil staircases
for different values of ϵ. Also, one can easily compute the rotation numbers for different
members of the Standard Family, see the graphs 2.4 and 2.5.

(a) Rotation number of fw for ϵ
2π = 0.1.

(b) Rotation number of fw for ϵ
2π = 0.2 at x = 0.

Figure 2.4: Rotation number as a function on w for different members of the Standard Family.
The graph is said to be a devil stair-case. Observe that the staircase is more visible for large
values of ϵ and it tends to the straight line y = x as fw, ϵ gets closer to the rotation family tw.
Recall that in (b), since ϵ ≥ 1, the rotation number depends on the point.

Let us now discuss the bifurcation diagram of the Standard Family. If we plot the
region with ρ( fw, ϵ) = p/q rational in the parameter space ϵ − w for ϵ ∈ [0, 1), we have
that for ϵ = 0 there is a unique w = p/q, and as we increase ϵ it gives origin to an area
with width equal to the interval of w’s given by 2.38, resulting in a tongue-like shape
region given by

Tρ := {(w, ϵ) | ρ( fw, ϵ) = ρ}.

When ρ( fw, ϵ) is irrational there is a unique w for each ϵ with such a rotation number,
so that gives place to curves with no interior. Hence, we refer to Tρ either as a tongue
or as a curve depending on the case. Observe that every point of the parameter space
where fw, ϵ is a diffeomorphism has a unique rotation number associated to it, so any of
the regions mentioned do not intersect. Again, this is a striking result for if we consider
the horizontal lines ϵ = 0 and ϵ > 0, each w ∈ [0, 1) ∩ Q expands to an interval of
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w′ ∈ [0, 1) defined by ρ( fw′, ϵ) = ρ( fw, 0), while each w ∈ [0, 1) ∪ Q identifies bijectively
with a unique w′ ∈ [0, 1). But yet the length of the horizontal line remains the same.

The tongue corresponding to ρ(w, ϵ) = 0 is easily calculated. Equivalently, fw, ϵ must
have a fixed point:

Fw, ϵ(x) = x =⇒ ϵ = − 2πw
sin(2πx)

for some x. Therefore, this tongue is bounded by ϵ(w) = 2πw and ϵ(w) = −2πw. Since
ρ( fw, ϵ) = 0 is an indicator of whether fw, ϵ has fixed points, the interior of the tongue T0

contains the subfamily of fw, ϵ which has 2 fixed points. And its boundary is actually a
saddle-node bifurcation, so it contains the sub family with 1 neutral fixed point. Outside
this region, fw, ϵ has no fixed points.

~~w~2
3

Figure 2.5: Arnold tongues and curves of the Standard Family in the parameter space. Observe
that given a fixed ϵ, the width of T0 for such ϵ is equal to the length of the first step of the devil
staircase ρ(w)ϵ.

Let us discuss the dynamics deeper. Observe the nature of the fixed points of fw, ϵ =

{θ| sin(2πθ) = −2πw
ϵ }. If 2π|w|

ϵ < 1 then fw, ϵ has 1 attractive fixed point and 1 repelling
fixed point - since f ′(θ) = 1 + ϵ cos(2πθ). If 2π|w|

ϵ = 1 it has a non-hyperbolic fixed
point at 2πθ = π/2 or 2πθ = −π/2 and lastly if 2π|w|

ϵ > 1 it does not have any fixed
point. Therefore when − 2πw

ϵ = −1 there is one non-hyperbolic fixed point at 2πθ = 3
2 π.

As − 2πw
ϵ goes from −1 to 1 there are 2 fixed points originated from the saddle-node

bifurcation 2πθ = 3
2 π which race in opposite directions until they meet at 2πθ = π/2

and disappear in a saddle-node bifurcation.
The discussion is quite more complicated for a general rational tongue Tp/q since

there is no analytic solution of the periodic points equation. However, we see that the
behaviour seen for T0 generalises for all the rational tongues.

Consider (w, ϵ) ∈ Tp/q. We notate x0 a q-periodic point of fw, ϵ. The following result
follows directly from the proof of theorem 2.38.
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Corollary 2.46. We use the notation of theorem 2.38, where j ≥ 2 is the order of the first
non-vanishing derivative of Fq

w, ϵ at x0:

• If ∂Fq
w, ϵ

∂x |x=x0 ̸= 1, then (w, ϵ) belongs to the interior of the tongue.

• If ∂Fq
w, ϵ

∂x |x=x0 = 1 and j is even, then (w, ϵ) belongs to the boundary of the tongue.

It remains to see what happens if ∂Fq
w, ϵ

∂x |x=x0 = 1 and j is odd. Actually, we see that
we never encounter the mentioned situation.

Proposition 2.47. If ∂Fq
w, ϵ

∂x |x=x0 = 1, then j is necessarily even. Actually j = 2.

Proof. We omit the parameters in the notation. Observe that:

F(x) = x + w + ϵ
2π sin(2πx),

F′(x) = 1 + ϵcos(2πx),

F′′(x) = −2πϵsin(2πx),

F(2n+1)(x) = Kn cos(2πx).

On the other hand:

Fq(x) = x + qw + ϵ
2π sin(2πx) + ... + ϵ

2π sin(2πFq−1(x)),

(Fq)′(x) = 1 + ϵcos(2πx) + ϵcos(2πF(x))F′(x) + ... + ϵcos(2πFq−1(x))(Fq−1)′(x),

(Fq)′(x) = 1 + ϵcos(2πx) + ϵ ∏0
i=0 cos(2πF(x))(1 + ϵcos(2πFi(x))) + ... +

ϵ ∏
q−2
i=0 cos(2πFq−1(x))(1 + ϵcos(2πFi(x))).

Hence, assume x0 is such that

1 = (Fq)′(x0) =
q−1

∏
i=0

F′(Fi(x0)) =
q−1

∏
i=0

(1 + ϵcos(2πFi(x0))).

Observe that the derivative calculated by the chain rule and the sum of the deriva-
tives calculated directly are related by:

q−1

∑
i=0

(Fq)′(Fi(x0))− (q − 1) =
q−1

∏
i=0

(1 + ϵcos(2πFi(x0)))−
q−1

∏
i=0

ϵcos(2πFi(x0)).

Therefore:

q − (q − 1) = 1 −
q−1

∏
i=0

ϵcos(2πFi(x0)),

then ∏
q−1
i=0 ϵcos(2πFi(x0)) = 0, which implies cos(2πFk(x0)) = 0 for some k. Hence, by

the chain rule, F(2n+1)(x0) = 0 ⇐⇒ ∃k such that cos(2πFk(x0)) = 0. So it is proven that
all odd derivatives except the first are 0.

Furthermore, observe that in such case the second derivative does not vanish. In-
deed, F(2n)(x0) = 0 ⇐⇒ ∃k such that sin(2πFk(x0)) = 0. Hence either all even deriva-
tives are 0 or all are distinct than 0. The first case does not happen since then it would
be Fq(x1) = (x1 + p) + (x − x1), which is a contradiction.
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Final discussion on the circle dynamics when ρ is rational

Hence, fw, ϵ has either attracting and repelling cycles or neutral cycles, but it cannot
have both types of cycles. Observe that the topological properties of S1 imply that the
number of attracting cycles is equal to the number of repelling cycles. Whenever there
exists an attracting (repelling) q-cycle, it must exist a repelling (attracting) q-cycle in
between. See figure 2.6.

Until now we have seen the nature of the cycles, but we want to quantify them. A
priori, although ρ = p/q assures there is at least one q-cycle, it says nothing about the
number of q−cycles. We will argue in chapter 4 (using complexification) that every map
of the Standard Family has at most one attracting cycle or one neutral cycle. Therefore,
dynamics like 2 attracting cycles or 2 neutral cycles are not possible.

To summarize it, there are 2 possibilities, either one, there is exactly one neutral q-
cycle, or two, there is exactly one attracting q-cycle and a repelling q-cycle in between.
The first case happens at the boundary of the tongue and the second on the interior of
the tongue. The neutral cycle is nothing but the attracting and repelling cycle collapsing.
So basically the behaviour seen for T0 generalises for all the rational tongues.
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Figure 2.6: Dynamics for ρ = 1
3 . All points of the circle, except the 3 repelling periodic points,

are attracted towards an attracting point, in green, under f 3. The inside arrows correspond to f .

Final discussion on the circle dynamics when ρ is irrational

The following discussion is crucial in order to comprehend what the dynamics looks
like in a neighbourhood of S1, when the function is complexified. First of all, recall that
because of Poincare’s and Denjoy’s theorem 2.21 and 2.30, fw, ϵ is conjugate to a rigid
rotation and therefore all orbits are dense in S1. However, the results to highlight are
whether the conjugacy function is analytic or not.

We end the section viewing how theorem 2.36 applies to the Standard Family.

Theorem 2.48. (Analytic linearization for the Standard Family, I) Let ρ ∈ R \ Q be the
rotation number of a member of the Standard Family fw, ϵ. Then

• If ρ ∈ H, then fw, ϵ is analytically linearizable.
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• If ρ ∈ B \ H, then there exists M(ρ) ∈ (0, 1] such that fw, ϵ is analytically linearizable
for all 0 ≤ ϵ < M(ρ).

• If ρ /∈ B, then fw, ϵ is not analytically linearizable.

The next result is due to Herman and a surgical construction in [FG03].

Theorem 2.49. (Analytic linearization for the Standard Family, II) Let ϵ0 ∈ (0, 1). Then
there exists ρ ∈ B \ H such that the maps { fw, ϵ| (w, ϵ) ∈ Tρ and ϵ ≤ ϵ0} are analytically
linearizable and the maps { fw, ϵ| (w, ϵ) ∈ Tρ and ϵ > ϵ0} are non-analytically linearizable.

These theorems are better understood observing the Arnold tongues, see figure 2.5
and 2.7.

wH I \ B B \H

ϵ

ϵ0

Figure 2.7: Sketch of the analytic linearization for the Standard Family. Green maps are analyt-
ically linearizable while red ones are not.

We will see in chapter 4 how those circle maps dynamics generalise to the complex
plane.
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Chapter 3

Complex Dynamics

Let S ∈ {C, Ĉ}, where Ĉ = C ∪ {∞} denotes the Riemann sphere. Holomorphic
maps f : Ĉ → Ĉ are rational maps. Otherwise, if f : C → C or f : C → Ĉ is holo-
morphic and cannot be extended continuously to infinity, it means that ∞ is an essential
singularity, and f is called transcendental. Given a complex function f : S → S, the
phase space S splits into two sets: one where the dynamics is well-behaved, there is
stability and nearby points have similar orbits, And its compliment, where f is chaotic.
Our goal is to characterize such sets. First, we introduce some dynamically important
points. Then we see how the function behaves near such points, and we extend such
behaviour to a semilocal environment whenever possible. Finally, we discuss the global
theory, where we introduce the classification of the stable components theorem and see
some of their properties. We warn the reader that several results of this chapter are not
proven, since our main goal is to give an overview of the basics of complex dynamics
to later apply them to the Standard Family. The general concepts of complex dynamics
come from [Mil06], [BH], [CG93] and [Dev03].

3.1 Introduction

Definition 3.1. (Multiplier) The multiplier of a p-cycle {z1, z1, ..., zp} is defined as λ =

f ′(z1) f ′(z2) ... f ′(zp) = ( f p)′(zi), which happens to be the same for any i = 1, ..., n
because of the chain rule. Note that the multiplier is invariant under conformal conju-
gacies.

That enables us to classify periodic points.

Definition 3.2. (Classification of periodic points) Let z1 ∈ S be a periodic point and λ

its multiplier, then z1 is

• attracting if 0 < |λ| < 1.

• superattracting if |λ| = 0.

• repelling if |λ| > 1.

• neutral or indifferent if |λ| = 1. It is rationally indifferent if λ = e2πi p
q , p

q ∈ Q and
irrationally indifferent otherwise.

33



34 Complex Dynamics

Remark 3.3. The point at ∞ is a fixed point by f if and only if 0 is a fixed point by
h ◦ f ◦ h−1, where h(z) := 1/z. As an example, it is easily proven that z1 = ∞ is a
superattracting fixed point for polynomials of degree equal or greater than 2.

Theorem 3.4. (About the number of periodic points [Ber93], [Ber02]) Any entire tran-
scendental function and meromorphic transcendental function has infinitely many repelling p-
periodic points for all p ≥ 2.

Other dynamically important points and values are the following ones.

Definition 3.5. (Singular, regular, critical and asymptotic values) Let f : U ⊂ S →
Ĉ. We say f is regular at v if there exists a neighbourhood V of v such that for all
components U of f−1(V), then f|U : U → V is a homeomorphism. Otherwise, we say f
is singular at v.

A point z ∈ U is said to be a critical point if f ′(z) = 0. We say its image f (z) is a
critical value.

A point v is an asymptotic value for f if there exists a path z(t) terminating at ∞
when t → ∞ such that limt→∞ f (z(t)) = v.

Remark 3.6. The set of critical values and asymptotic values of f is exactly the set
of points where some inverse branch of f cannot be defined. We denote such set by
sing( f−1).

Example 3.7. Consider the quadratic family f (z) = z2 + c, c ∈ C. Then z1 = 0 is a
critical point, whose critical value is z2 = f (0) = c. Then z2 = c is a singularity of
f−1(z) = (z − c)1/2. Indeed, the square root is non well-defined in a neighbourhood of
z = 0.

Definition 3.8. (Exceptional value) z1 is an exceptional value for f if its backward orbit
is finite.

Example 3.9. f (z) = ez has asymptotic values at z = ∞ (by taking the path through the
positive real line terminating at ∞) and z = 0 (by taking the path through the negative
real line terminating at ∞). These values are also exceptional, since O−(∞) = {∞} and
O−(0) = ∅. Moreover, z = 0 is a singular value, since f|U : U → V cannot be surjective,
since 0 ∈ V is omitted. It is well-known that any inverse branch of the exponential in a
neighbourhood of z = 0 is not well defined.

Theorem 3.10. (About the number of exceptional values) Holomorphic and meromorphic
functions have at most 2 exceptional values. If f is entire then ∞ is an exceptional value. If f is
rational then the exceptional values are in the Fatou set. If f has exactly one pole at z1, then z1

and ∞ are the exceptional values.

Definition 3.11. (Basin of attraction) Let z1 ∈ S be an attracting fixed point, its basin of
attraction is defined as

A f (z1) = A(z1) := {z ∈ S| f n(z) →n z1}.
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The connected component of A(z1) which contains z1 is said to be the immediate basin
of attraction of z1, we note it A∗(z1). The basin of attraction of the p-cycle < z1 > is the
set

A(< z1 >) := {z ∈ S| f np(z) →n zi; for some i = 1, ..., p}.

The immediate basin of attraction is the union of the connected components which
contain zi for i = 1, ..., p.

Proposition 3.12. Let z1 be a (super) attracting periodic point, then there exists a neighbourhood
U of z1 such that f np(z) →n z1 ∀z ∈ U. In particular, A(z1) \ {z1} is not empty.

Proof. Let λ be the multiplier of < z1 > . The limit definition of the derivative implies
that there is a neighbourhood U of z1 such that | f p(z)− f p(z1)|

|z−z1| < |λ| + ϵ. Taking ϵ =

1 − |λ| > 0, it follows that

1 > ρ :=
| f p(z)− f p(z1)|

|z − z1|
=

| f p(z)− z1|
|z − z1|

,

then | f p(z)− z1| = |z − z1|ρ and inductively | f np(z)− z1| = |z − z1|ρn →n→∞ 0, ∀z ∈
U.

3.2 Local and semilocal theory of fixed points

Our goal is to describe the behaviour of f near periodic points. We distinguish the
attracting or repelling case, the superattracting case, the rationally indifferent case and
the irrationally indifferent case. The idea is that there might exist a neighbourhood of
the periodic points where f p is conjugate to a simple map such as the linear map or
a monomial. Then we proceed to extend such conjugacy to a larger neighbourhood.
We also remark the relevance of critical points in such semilocal neighbourhoods. The
indifferent case is somewhat different and linearization is not assured. Actually, the
rationally indifferent case is never linearizable.

Throughout this section we assume z1 is a periodic point by f of period p, that is
f p(z1) = z1, where f is a holomorphic function at least locally. Observe that then 0
is a p-periodic point by the map f (z) − z1, indeed f p(0) − z1 = z1 − z1 = 0, so we
may assume that the periodic point being considered is 0 without loss of generality.
Furthermore, since there is an equivalence between the p-periodic points of f and the
fixed points of f p, it is enough to study the local dynamics around fixed points. Taking
into consideration these observations, we write

f (z) = f (0) + f ′(0)z +
( f )(2)(0)

2
(z − 0)2 + ... = λz + a2z2 + ...

as the expansion in series of f in a neighbourhood around the fixed point z1 = 0, where
λ is the multiplier of z1 = 0.

Finally, we remind the reader that the detailed discussion of local and semilocal
dynamics is found in [BH] and [Mil06].
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Attracting and repelling fixed points

We begin discussing attracting and repelling fixed points, i.e. the multiplier |λ| /∈
{0, 1}. We see this case thoroughly and then we comment on the others with less detail.

Theorem 3.13. (Koenigs’ linearization theorem) Let z1 be a fixed point with |λ| /∈ {0, 1}.
Then f is conformally conjugate to the linear map g = λz, i.e. there exists a conformal map Φ(z)
(from a neighbourhood of z1 onto a neighbourhood of 0 with Φ(z1) = 0) such that Φ ◦ f = g ◦Φ.
Moreover, Φ is unique up to multiplication.

Observe that the inverse function exists at least locally around z1 as long as z1 is
not superattracting, if and only if its derivative does not vanish. Thus, the Inverse
function theorem holds and ( f−1)′(z1) = ( f−1)′( f (z1)) = 1

f ′(z1)
. Then z1 is attracting

(repelling) by f ⇐⇒ z1 is repelling (attracting) under f−1. What’s more, we can
consider a neighbourhood U of z1 where f|U : U → f (U) is a bijective map between
neighbourhoods U and f (U) of z1. Therefore, we can study the dynamics of a repelling
point z1 by f as an attracting point by f−1 : f (U) → U. In particular, there is a local
conformal conjugacy between f and λz ⇐⇒ f−1 is local and is conformally conjugate
to 1

λ z.
That being said, the proof reduces to the case where z1 is an attracting fixed point

located at z1 = 0.

Proof. Existence. Recall we assume z1 = 0 is an attracting fixed point.
We define Φn(z) := 1

λn f n(z), observe that Φn ◦ f = 1
λn f n+1(z) = λΦn+1. We claim

that (Φn)n converges uniformly to some Φ. Taking limits it yields Φ ◦ f = g ◦ Φ. It
remains to be proved that Φ exists and is conformal.

Note that

f (z) = λz + a2z2 + ... =⇒ ∃δ > 0 : | f (z)− λz| ≤ C|z|2, |z| < δ.

Then | f (z)| ≤ |λ||z|+C|z|2 ≤ (|λ|+ C|z|) |z| < (|λ|+ Cδ) |z|. And taking δ′ = min
( 1−|λ|

C , δ
)

so that all iterates of z stay inside B(0, δ′), we get inductively that | f n(z)| < (|λ|+ Cδ′)n |z|,
for |z| < δ′.

Hence

|Φn+1(z)− Φn(z)| =
∣∣∣ f ( f n(z))− λ f n(z)

λn

∣∣∣ ≤ C| f n(z)|2
|λ|n+1 ≤ C (|λ|+ Cδ′)2n |z|2

|λ|n+1 .

Now we take 0 < δ∗ < min
(√|λ|−|λ|

C , δ′
)

so that ρ := (|λ|+Cδ∗)2

|λ| < 1. Therefore, let
m > n, we have

|Φm(z)− Φn(z)| <
m−1

∑
i=n

C|z|2
|λ| ρi =

Cδ∗2

|λ|
m−1

∑
i=n

ρi <
Cδ∗2

|λ| (m − n)ρn, |z| < δ∗,

then (Φn)n is Cauchy uniformly and therefore it converges uniformly.
Finally, observe that Φ is holomorphic since Φn is holomorphic ∀n > 0, what’s more,

Φ′
n ⇒ Φ′. Using that and f (z) = λz + a2z2 + ... =⇒ f n(z) = λnz + (λn−1a2 + ...)z2 +
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... =⇒ Φn(z) = z + O(z2) =⇒ Φ′
n(z) = 1 + O(z). So the Inverse function theorem

assures us Φ is indeed a conformal map in a neighbourhood of 0.
Uniqueness. Let Ψ be another such map, then Ψ ◦ Φ−1 is a conformal map, and

(Ψ ◦ Φ−1)(0) = 0, so (Ψ ◦ Φ−1)(z) = b1z + b2z2 + b3z3 + ... ̸= 0.

Φ−1 ◦ g ◦ Φ = f = Ψ−1 ◦ g ◦ Ψ =⇒ Ψ ◦ Φ−1 ◦ g = g ◦ Ψ ◦ Φ−1.

It follows

∑
i>0

biλ
izi = ∑

i>0
λbizi =⇒ bi = 0, i ≥ 2 (Recall λ /∈ {0, 1}).

Now (Ψ ◦ Φ−1)(z) = b1z =⇒ Ψ = b1Φ, b1 ̸= 0.

Remark 3.14. The method used for the construction of the conjugacy is general. That
is, f is conjugate to g if and only if (Φn)n := (g−n f n)n converges uniformly to some Φ.
And in that case, Φ is the conjugacy.

Corollary 3.15. About the periodic case. Let < z1 > be a p-cycle with |λ| ∈ (0, 1) and
Ui the neighbourhoods of zi obtained in Koenigs’ theorem. Let z be such that z ∈ U1, f (z) ∈
U2, ..., f p−1(z) ∈ Up, then all iterates of z: f i−1+kp(z), i = 1, ..., p lay inside Ui respectively
and each is being attracted to the respective periodic point zi linearly with constant λ after p
iterations are completed.

The next question is whether the conformal conjugacy found in theoem 3.13 can be
extended to a more global environment.

Remark 3.16. Extension of the conjugacy to the basin of attraction. We aim to analyti-
cally extend the local conjugacy from the neighbourhood U of theorem 3.13 to a semilo-
cal neigbourhood of z1, namely, to the whole basin of attraction A(z1). Let z ∈ A(z1),
and consider f n(z) the first iterate belonging to the neighbourhood of z1 defined in
Koenig’s theorem. We define

Φ∗(z) :=
Φ( f n(z))

λn ,

which is a composition of analytic (holomorphic) maps. Then Φ∗(z) := Φ( f 0(z))
λ0 = Φ(z),

so both definitions coincide inside the neighbourhood and

Φ∗( f (z)) := Φ( f n(z))
λn−1 = λΦ{ f−1( f n(z))}

λn−1 = λΦ∗( f n−1(z))
λn−1 := λ

Φ( f n(z))
λ

λn−1

= λΦ( f n(z))
λn =: λΦ∗(z).

So f is analytically conjugate to the linear map λz on A(z1) by the conjugacy Φ∗.
Observe that Φ∗ is not injective in general, though, as there might be points in A(z1)

whose iterates coincide up to certain point. Moreover, for points that are infinitely close
to the boundary of A(z1), it takes infinitely many iterations to lay inside U. Therefore,
Φ∗ : A(z1) → C is holomorphic and onto, but not necessarily injective.
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Theorem 3.17. (Fatou-Julia theorem) The immediate basin of attraction of any attracting
fixed point z1 contains at least one critical point or asymptotic value.

Proof. We prove it by contradiction. Let λ ∈ B(0, 1), λ ̸= 0 be the multiplier of z1. Sup-
pose there are no critical or asymptotic values. Let U0 be a simply connected neighbour-
hood of z1 inside the neighbourhood defined by the Koenings’ theorem and suppose
that it does not contain a critical point or asymptotic value. Then f is regular there, so
there exists a bijective inverse branch g : U0 → U1 with U0 ⊂ U1 and U1 is simply con-
nected. Inductively, there exists a bijective inverse branch gn : U0 → Un, with U0 ⊂ Un

for all n > 0 provided that there are no critical points or asymptotic values in Un for
all n > 0. Furthermore, observe that by construction Un always lay inside the immedi-
ate basin of attraction and note that f n is a holomorphic bijection between Un and U0,
whose inverse is gn.

We will see later in proposition 3.36 that A(z1) ⊆ Ff omits infinitely many points,
hence, since ∪n>0gn(U0) ⊆ A(z1), (gn)n is normal by Montel’s theorem. However, this
is already a contradiction, since z1 ∈ U0 is a repelling point by g, and all functions fail
to be normal in a neighbourhood of a repelling point, see proposition 3.36.

Superattracting fixed points

Next we see the case of superattracting fixed points, here we omit the proof, nonethe-
less it is found in [CG93].

Theorem 3.18. (Böttcher theorem) Let z1 be a superattracting fixed point under f (then f (z) =
z1 + ap(z− z1)

p + ..., ap ̸= 0, p > 1). Then, f is conformally conjugate to zp in a neighbourhood
of z1 onto a neighbourhood of 0. Furthermore, the conjugating map is unique up to multiplication
by a (p − 1)th root of unity.

Remark 3.19. The Böttcher conjugacy Φ is such that it satisfies the functional equation
Φ( f (z)) = Φ(z)p, which can be extended, as we did with attracting fixed points. The
extension of the conjugacy remains analytic except in the set {z| f (z) = z1}. Finally, the
conjugacy holds on the whole basin of attraction if and only if there are no other critical
points apart from z1, in that case f is conjugate to a monomial from the immediate basin
of attraction onto the unit disk. This phenomenon is discussed in [Mil06].

Theorem 3.20. The immediate basin of a super attracting fixed point z1 contains at least one
critical point, which is z1 itself.

Rationally indifferent fixed points

We assume again that the fixed point is z1 = 0, and λ = 1. Then f (z) = z + anzn +

0(zn+1); an+1 ̸= 0, where n is the multiplicity of the fixed point.
Observe that f is a local bijection from a neighbourhood U of 0 into a neighbourhood

f (U) of 0, exactly as what happens with attracting fixed points since λ ̸= 0.
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Definition 3.21. (Parabolic point) z ∈ S is said to be a parabolic point if f ′(z) is a root
of the unity.

Definition 3.22. (Petal) Let P be an open connected set such that P̄ ∈ U ∩ f (U). P is
said to be an attracting petal at 0 for f if

f (P̄) ⊂ P ∪ {0} and f n(z) → 0 ∀z ∈ P.

We say P is a repelling petal if it is an attracting petal for f−1.

The following theorem tells us what the dynamics looks like around rationally indif-
ferent fixed points.

Theorem 3.23. (Leau-Fatou Flower Theorem) Let 0 be a fixed point for f with multiplicity
n ≥ 2, such that λ = 1. Then there are exactly (n − 1) disjoint attracting petals Pi and (n − 1)
disjoint repelling petals P′

i for f, wrapping 0 such that attracting petals alternate with repelling
petals P1, P′

1, P2, P′
2, .... Moreover, (∪iPi) ∪ (∪iP′

i ) ∪ {0} is a neighbourhood of 0.

Now we discuss the theorem for a general λ. Notice that if λ is a mth root of the
unity, then f m(z) = z + azl + ... reduces to the λ = 1 case.

Theorem 3.24. (Leau-Fatou Flower Theorem for λ ̸= 1) Let 0 be a fixed point for f such that
λm = 1, λk ̸= 1 k < m. Then f admits m(l − 1) attracting petals and m(l − 1) repelling petals,
in the sense that these petals are not fixed by f, but by f m.

Remark 3.25. It is evident that f does not conjugate onto a linear map in any neighbour-
hood of a rationally indifferent fixed point, since any neighbourhood contains points
which are attracted and points which are repelled. Also observe that the rationally
indifferent fixed point lays in the boundary of all petals.

Remark 3.26. The attracting petals can be extended to Leau domains, also called parabolic
basins. More information about these domains is found in [Ber00].

Theorem 3.27. Leau domains contain at least one critical point.

Irrationally indifferent fixed points

We end the local theory of fixed points enunciating some theorems concerning irra-
tionally indifferent fixed points. They are found in [BH] and were introduced in [Sie42],
[Bry71] and [Yoc95]. We denote λ = e2πiθ , θ ∈ R \ Q and as we might already expect,
the arithmetic properties of θ play an important role.

Theorem 3.28. There exists λ = e2πiθ such that all polynomials with an irrationally indifferent
fixed point z1 with multiplier λ have no local conjugacy around z1.
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Figure 3.1: Representation of the leau domain for the map f (z) = z2 + z in the complex plane.
Because of the previous discussion, it has exactly 1 attracting and repelling petal around the
only fixed point z1 = 0. Observe that the critical point z = − 1

2 lays inside the attracting petal.
Because there are not more critical points, this map does not have attracting basins nor other leau
domains. It is easily proven that the positive inverse branch (the map has degree 2), f−1(z) :=
−1+

√
1+4z

2 , attracts a neighbourhood of the positive real line. Hence, the repelling petal of f
contains the positive real line, and therefore it is unbounded.

Theorem 3.29. (Siegel theorem) Let f have a fixed point at z1 = 0 with multiplier λ = e2πiθ ,
then f (z) = λz + a2z2 + .... If θ ∈ D, then f is conformally conjugate to the irrational rotation
λz in a neighbourhood of 0. We say f is linearizable around z1.

Actually the sharp condition of the Siegel theorem is known.

Theorem 3.30. (Yoccoz theorem) If θ ∈ B, then f is linearizable.

We comment that in general whether f is linearizable or not is an open problem for
θ /∈ B.

Theorem 3.31. Let f have an irrationally indifferent fixed point at z1. Then f is linearizable
around z1 if and only if { f n}n is normal in a neighbourhood of z1.

Remark 3.32. Note the similarities between the analytic linearization problem for circle
maps discussed in chapter 2 and these results.

Definition 3.33. (Siegel and Cremer points) An irrationally indifferent fixed point with
multiplier λ = e2πiθ is said to be a Siegel point if it is locally conjugate to the irrational
rotation λz. In that case, the Siegel disk of such point is the maximal neighbourhood
where f is conjugate to λz. Otherwise we say it is a Cremer point.

Observe that whenever there exists linearization, every orbit inside the Siegel disk is
dense in a Jordan curve around the fixed point, due to Jacobi’s theorem.

Theorem 3.34. The boundary of a Siegel disk contains a critical point or an asymptotic value.
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Figure 3.2: Representation of the Siegel disk for the map f (z) = e0.5iz + 1
2 z2. z1 = 0 is a Siegel

fixed point. The domain of conjugacy to a rotation, i.e., the Siegel disk, is limited by the orbit of
the only critical point.

3.3 Global theory

Once we have seen the dynamics around periodic points locally, we discuss them
from a global point of view. We enunciate some results which connect the local theory
done with the Julia and Fatou sets, so that we can enunciate the Classification of Fatou
components theorem. We also pay attention to its variations depending on the type of
map taken into consideration. We follow [Ber93], in addition to the references mentioned
before, for the classification theorem of Fatou components.

Definition 3.35. (Fatou and Julia sets) We define the Fatou set of f as

Ff := {z ∈ S| ( f n)n is normal in a neighbourhood of z}.

Convergence on compact subsets to ∞ is also accepted as normality. We define the Julia
set of f as

J f := S \ Ff .

We list some general properties of the Fatou and Julia set. Some follow immedi-
ately from the definition and others connect with the local theory made in the previous
section.

Proposition 3.36. (Properties of J and F) We denote a holomorphic or meromorphic function
by f , a rational function of deg( f ) ≥ 2 by R and a cycle under f by < z1 >.

1. Blow-up property. Let z ∈ J f and U be any neighbourhood of z, then Ĉ \ {a, b} ⊆
∪n≥0 f n(U). This property gives an idea of the "chaotic behaviour" in J f .

2. Both Ff and J f are completely invariant.

3. Ff is open and therefore J f is closed.

4. Ff p = Ff (and J f p = J f ) ∀p > 0.

5. J f has infinitely many points.



42 Complex Dynamics

6. Attracting basins, attracting leau domains and Siegel disks are contained in Ff . What’s
more, J f = ∂A(< z1 >) for any attracting cycle.

7. If z1 is repelling, parabolic or a Cremer periodic point, then z1 ∈ J f .

8. Either Int(J f ) = ∅ or J f = Ĉ.

9. J f is a perfect set.

10. Repelling periodic points are dense in J f , and thus the closure of repelling periodic points
is equal to J f .

11. If z1 ∈ J f and is not exceptional, then J = O−(z1).

Proof. We prove some statements.
1. Suppose ∪n≥0 f n(U) omits at least three values. Then Montel’s theorem implies

( f n)n is normal in U, which contradicts z ∈ J f .
4. Ff p ⊂ Ff is trivial. Let z ∈ Ff , then ∃nk such that f nk u.c.c. on a neighbourhood

of z to g. If we split nk into p subsequences each containing only numbers equal to
j = 0, 1, 2 ..., p − 1 (mod p), at least one has infinitely many numbers, say nkj + j is that
subsequence. Then ( f p)nkj = f pnkj+j−j = ( f pnkj+j)( f−j) u.c.c. to g ◦ f−j.

6. A bounded attracting domain is bounded, therefore it omits infinitely many points
and it is normal by Montel’s theorem. Let z ∈ J f and U a neighbourhood of z1, then
∪n≥0 f n(U) ⊇ Ĉ \ {a, b} =⇒ ∃n, f n(U) ∩ A(< z1 >) ̸= ∅ =⇒ z ∈ ∂A(< z1 >).
If z1 ∈ ∂A(< z1 >) then every neighbourhood of z1 is not normal, for if it was then
( f nk) → z1 in U but f nk(z) ̸→ z1 for all z ∈ ∂A(< z1 >). Hence z1 ∈ J f .

7. Suppose a repelling fixed point z1 is normal, then ( f nk)nk ⇒ g, and ( f nk)′nk
⇒ g′,

but that is impossible since ( f nk)′(z1) = λnk → ∞. If z1 is a parabolic point then any
neighbourhood U of it intersects an attracting petal and a repelling petal. Suppose
f n ⇒ g, then g = z1 in the attracting petal, so g = z1 in U, contradicting the existence of
a repelling petal. Finally, Cremer points being in J f is trivial from the definition.

10. We prove it only for rational functions of degree larger than 2. Let z ∈ J f and not
exceptional, and U a neighbourhood of z. We need to prove that U contains a repelling
periodic point. We consider Φ0, Φ1 2 distinct well-defined branches of f−1. We define

gn(w) :=
( f n(w)− Φ0(w))(w − Φ1(w))

( f n(w)− Φ1(w))(w − Φ0(w))
.

Observe that gn(w) = 0, gn(w) = ∞ ⇐⇒ f n+1(w) = w and gn(w) = 1 ⇐⇒ f n(w) =

w. Hence if U has no periodic points =⇒ gn is normal in U (by Montel’s theorem)
=⇒ f n is normal in U, which contradicts z ∈ J f .

Lemma 3.37. Let z ∈ J f , U be a neighbourhood of z and D be an arbitrary bounded set. Then
there is no sub sequence of the iterates nk such that ∪nk f nk(U) ⊂ D.

Definition 3.38. (Fatou components) A Fatou component is said to be a maximal con-
nected component of Ff .



3.3 Global theory 43

Remark 3.39. (About the dynamics of Fatou components) Let U be a non-wandering
Fatou component, we assume f is holomorphic in U. Then f (U) lays within another
Fatou component V because Ff is completely invariant, and f (∂U) ⊂ J f . Because of the
open mapping theorem, ∂ f (U) ⊂ f (∂U) provided that ∂U is bounded. Therefore it is
f (U) = V

Actually f (U) = V if f is rational. If f is transcendental the equality does not
necessarily hold. However, the elements of the set V \ f (U) are omitted asymptotic
values of f .

Definition 3.40. (Fatou components) Fatou components can can only be

• periodic, if f p(U) = U, ∃p > 0.

• preperiodic, if f k(U) is periodic for some k > 0.

• wandering, if f n(U) ∩ f m(U) = ∅, ∀n, m > 0, n ̸= m.

Furthermore, all components of a cycle of Fatou components are necessarily of the
same type, as Fatou components are a generalized version of the local theory seen in the
previous section (where we saw that the multiplier of a cycle is the same for all points)
and simply connected sets map onto simply connected sets.

Theorem 3.41. Classification of Fatou components. Let f be a rational, entire or meromor-
phic transcendental map and U a periodic Fatou component for f : C → Ĉ. Then

• U is an attracting basin; i.e., there exists an (super) attracting periodic point z1 ∈ U
such that f np(z) → z1 ∀z ∈ U.

• U is a parabolic basin; i.e., there exists a parabolic periodic point z1 ∈ ∂U such that
f np(z) → z1 ∀z ∈ U.

• U is a Siegel disk; i.e., there exists an irrational indifferent periodic point z1 ∈ U and f p

is conformally conjugate to an irrational rotation ze2πiθ in U.

• U is a Herman ring; i.e., U is 2-connected and f p is conformally conjugate to an irrational
rotation ze2πiθ of the standard annulus Ar = A(0, r < 1, 1) := {z ∈ C| r < |z| < 1} in
U.

• U is Baker domain; i.e., ∃z1 ∈ ∂U such that f np(z) → z1 for all z ∈ U, but f p(z1) is
not defined. z1 must be an exceptional point.

Some types of Fatou components require some particular properties for f , so not all
functions are expected to have all cyclic Fatou components, neither wandering domains.
The next results discuss when and when not it is possible to have them. We distinguish
between rational, entire transcendental, and meromorphic transcendental maps.

First we see which maps may have or have not wandering domains and/or Baker
domains. The following result is due to [Sul82].

Theorem 3.42. (Sullivan) A rational map has no wandering domains.
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Figure 3.3: Example of a Herman ring for a map of the Standard family.

This last theorem actually extends to other functions.

Theorem 3.43. (Extension of Sullivan’s theorem) Let p(z) be a polynomial, r(z) a rational
map and τ ∈ C. We notate S := { f | sing( f−1) is a finite set}, F := { f (z) = z + r(z)ep(z)},
N := { f | the poles of f have finite order and f ′(z) = r(z)ep(z)( f (z)− z)} and R := { f ′(z) =
r(z)( f (z) − z)2 or f ′(z) = r(z)( f (z) − z)( f (z) − τ)}. Functions in S, F, N and R do not
have wandering domains.

Remark 3.44. By definition, rational maps cannot have Baker domains. Actually, Baker
domains can only be found at z1 = ∞ if f is entire transcendental (and at the poles if it
is meromorphic transcendental).

Theorem 3.45. (Maps with no Baker domains.) If f ∈ S as above or f is entire and the set
sing( f−1) is bounded, then f has no Baker domains.

Theorem 3.46. If f ∈ S, then f has at most 2 completely invariant domains.

Theorem 3.47. (About entire functions) If f is a polynomial, then all bounded Fatou com-
ponents are simply connected. If f is an entire transcendental function and let U be a Fatou
component which is not simply connected, then U is wandering.

Proof. We prove the first statement. In particular, f is an entire rational map. Let γ be
a closed curve in a Fatou component U. Because of Sullivan’s theorem, U eventually
lays in a cycle of Fatou components. We assume all images of U and all components of
the eventual cycle are bounded. Hence ∪n>0| f n(z)| < M, ∀z ∈ U =⇒ ∪n>0| f n(z)| <
M ∀z ∈ γ =⇒ ∪n>0| f n(z)| < M ∀z ∈ Int(γ), where the last implication is a conse-
quence of the maximum modulus principle. Observe that the sum on n is finite since
U eventually lays in a cycle. Now Montel’s theorem assures Int(γ) ⊂ Ff , in particular
Int(γ) ⊂ U, so U is indeed simply connected.

To prove our assumption, observe that because of the maximum modulus principle
f is bounded ∀z ∈ U since U is bounded and f entire. More concretely, if ∃z ̸= ∞ such
that f (z) = ∞, then f := ∞. Therefore, f (U) is bounded.
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Corollary 3.48. If f is entire then no Fatou component of f is a Herman ring.

In the following theorem we summarize the results commented in [Ber93]. They
have also been discussed in the local theory section and they remark the importance of
critical points.

Theorem 3.49. About singularities and Fatou components. Let f be a meromorphic func-
tion and C = {U1, U2, ..., Up} a p-cycle of Fatou components. Recall that the set of singularities
of f−1 is the set of critical and finite asymptotic values of f and their limit points. We notate
sing( f−1).

• If C is a cycle of attracting or parabolic domains, then there exists j ∈ {1, ..., p} such that
Uj ∩ sing( f−1) ̸= ∅.

• If C is a cycle of Siegel disks or Herman rings, then ∂Uj ⊂ O+(sing( f−1)) ∀j = 1, ..., p.

• Baker domains need no singularities.

One can find more about the connection between Baker domains and singularities
in the reference mentioned.

At this point, one could wonder if these singularities really determine the number of
Fatou cycles. It is evident that attracting and parabolic domains cannot share a common
singularity. However, the same cannot be said about Herman rings nor Siegel disks a
priori. But this is actually the case, the famous Fatou-Shishikura inequality [Shi87]
resolves that.

Theorem 3.50. (Fatou-Shishikura inequality) If #sing( f−1) is finite, then:

#{attracting cycles}+ #{parabolic cycles}+ #{Cremer cycles}+ #{Siegel disks}+
+2#{Herman rings} ≤ #sing( f−1).

Moreover, if f is rational, then #sing( f−1) ≤ 2deg( f )− 2

Corollary 3.51. (Corollary of the Fatou-Shishikura inequality proof) If C = {U1, U2, ..., Up}
is a cycle of Siegel disks and ∂Uj ⊂ O+(c) ∀j = 1, ..., p, for some c ∈ sing( f−1). Then O+(c)
does not accumulate anywhere else.

We do not prove it. The idea of the proof, however, is that a sufficiently small change
in the function transforms the Siegel point into an attracting point without changing the
orbits of the critical points. Hence, the orbit of the critical point cannot lay far from the
boundary of the Siegel disk. We will use this result later.



46 Complex Dynamics



Chapter 4

Complexification of the Standard
Family

Our goal in this chapter is to analyse the complex dynamics of analytic circle maps
f : S1 → S1, that is, when extended to holomorphic maps f̃ defined at least on a
neighbourhood of S1, and such that f̃|S1 = f . We will combine the results in Chapter
2 and 3 to give a description of the complex phase space. We will mainly focus on the
Standard Family, described in section 2.5, in order to view how the properties of the
Arnold Family affect the complex dynamics of the complexified version, and vice versa.
Throughout the discussion we follow [Fag99] and [FG03].

4.1 Complexification of analytic circle maps

We denote a circle map by f , a real map by F and a complex map by F̃. First,
we discuss the complexification of real functions, namely, functions satisfying the lift
condition F(x + 1) = F(x) + k, and then we apply our discussion to circle maps.

Proposition 4.1. (Analytic extension F̃ of an analytic real function F) Let F be an analytic
real function, then there exists a complex function F̃ which is analytic in a neighbourhood U of
the real line and F̃|R = F.

Proof. Since F is analytic, Fx0(x) := ∑n≥0 an, x0(x − x0)n converges in (x0 − Rx0 , x0 + Rx0),
Rx0 > 0, for all x0 ∈ R. Hence, the complex series F̃x0(z) := ∑n≥0 an, x0(z− x0)n converges
in D(x0, R(x0)) for all x0 ∈ R. Then, F̃(z) := F̃x0(z) if z ∈ D(x0, R(x0)) is well defined
in ∪x0∈RD(x0, R(x0)). This is due to the fact that if z0 ∈ D(x0, R(x0)) ∩ D(x1, R(x1)),
then F̃x0(z0) = F̃x1(z0) = ∑n≥0 an, z0(z − z0)n. By definition F̃|R = F.

Corollary 4.2. A map F̃ defined in a neighbourhood of R is an analytic complexification of a
real function if and only if F̃ can be expressed as a series with real coefficients.

Corollary 4.3. If F is periodic, then the domain of definition of the complexified map F̃ contains
R × (−δ, δ), for some δ > 0.

47
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Proof. Note that we think of C as R2. Let p be the period. First observe that [0, p] =
∪x0∈[0, p]D(x0, R(x0)) ∩ [0, p] = ∪x0∈AD(x0, R(x0)) ∩ [0, p], where A is a finite subset
since [0, p] is compact. Hence, using the periodicity

R ⊂ ∪x0∈{A+np, n∈Z}D(x0, R(x0)) ⊂ ∪x0∈RD(x0, R(x0)).

And therefore in fx0∈R{R(x0)} = in fx0∈[0, p]{R(x0)} ≥ minx0∈A{R(x0)} := δ > 0.

Remark 4.4. If F is a lift of a circle map, then F − Id is periodic. Note that the neigh-

bourhood of the real line where F̃ converges is the same as F̃ − Id because Id is analytic
everywhere. Therefore corollary 4.3 also holds for lifts.

Proposition 4.5. Let F be a real analytic map and F̃ its complexification. If F(x + 1) = F(x) +
d, then F̃(z + 1) = F̃(z) + d.

Proof. Consider G(z) := F̃(z + 1)− F̃(z)− d. Then G(z) = 0 for all z ∈ R, and because
of the analytic continuation principle, G(z) = 0 on all its domain.

Let us now consider an analytic circle map f and a lift F. We denote by F̃ its com-
plexification. Let Π(z) := e2πiz. Notice the abuse of notation, since Π is actually the
complexification of Π defined in R. As discussed previously, F̃ is defined from a neigh-
bourhood of the real line to another neighbourhood of the real line. We denote them by
R × (−δ, δ) and R × (−δ′, δ′) respectively.

Remark 4.6. A circle map f is analytic if and only if its lift F is analytic. We consider
Π̃F = ΠF̃ : R × (−δ′, δ′) → A′, where A’ in an annulus containing the unit circle

A′ := {z ∈ C| e−2πδ′ < |z| < e2πδ′}.

And we consider ˜f Π = f̃ Π, the complexification of the real analytic map f Π. Recall that
ΠF̃ = f̃ Π in R, and because of the analytic continuation principle the equality holds in
A := R × (−δ, δ). Thus, f̃ must be defined on A := Π(R × (−δ, δ)) and f̃|S1 = f .

So we have just proved the existence of complexifications of analytic circle maps.

Proposition 4.7. (Complexification of analytic circle maps) Let f be an analytic circle map
and F a lift of f. Let A := R × (−δ, δ) be the domain of the complexification of the lift F̃. Then,
there exists a complexification of f , we denote it by f̃ , defined on A, i.e. f̃|S1 = f and f̃ is
holomorphic on A.

Remark 4.8. Note that if the radius of convergence of the series of F at x ∈ R is ∞, then
F̃ is entire and f̃ is analytic in C \ {0}.

Theorem 4.9. (Symmetry of f̃ ) Let f be a circle map and f̃ the complexification of f in
A := {z ∈ C| e−2πδ < |z| < e2πδ}. Then f̃ is symmetric with respect S1, that is f̃ ◦ τ = τ ◦ f̃ ,
where τ(z) := 1

z̄ . In other words, f̃ ( 1
z ) =

1
f̃ (z)

.
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Proof. We notate A+ := {z ∈ C| 1 < |z| < e2πδ} and A− := {z ∈ C| e−2πδ < |z| < 1}. It
is easy to see that τ : A− → A+ is actually a bijection. And τ|S1 = Id. Then

f̃ τ(e2πiθ) = f̃ (e2πiθ) and τ f̃ (e2πiθ) = f̃ (e2πiθ)

because f̃ (S1) ⊂ S1. Hence the equality holds in S1, and because of the analytic contin-
uation principle, it holds in A, too.

Corollary 4.10. Having f̃ defined in A+ completely determines f̃ , since f̃ ( 1
z ) =

1
f̃ (z)

defines f̃

in A−, and vice versa. As a consequence, the dynamics of f̃ in A+ determines the dynamics in
A−, since f n( 1

z ) =
1

f n(z)
.

Example 4.11. (Rigid rotation) A rigid rotation of the circle is f (e2πiθ) := e2πi(θ+ρ) =⇒
f (z) = ze2πiρ, |z| = 1, ρ ∈ [0, 1). Hence

f̃ (z) = ze2πiρ.

Another way of seeing it is to consider the complexification of the lift. In this case,
F(x) = x + ρ and hence F̃(z) = z + ρ, which obviously has an infinite radius of conver-
gence. That gives us the commutative diagram f̃ Π = ΠF̃. Hence f̃ (e2πiz) = e2πi(z+ρ) =

e2πize2πiρ and therefore f̃ (z) = ze2πiρ.

Theorem 4.12. (Local linearization) Let f̃ : A → A be the holomorphic extension of f . If f
is analytic linearizable, then f̃ is conformally conjugate to e2πiρz in a neighbourhood of S1.

Proof. There exists an analytic circle map ϕ such that g ◦ ϕ = ϕ ◦ f , where g(e2πiθ) =

e2πi(θ+ρ) is a rigid rotation. We consider the holomorphic extension of the rigid rotation,
g̃(z) := ze2πρ = |z|eiArg(z)+2πiρ, and the holomorphic extension ϕ̃ of ϕ. We claim ϕ̃ ◦
f̃ = g̃ ◦ ϕ̃. The equality holds on S1 and therefore, because of the analytic continuation
principle, holds everywhere ϕ̃ and f̃ are defined.

Corollary 4.13. If f is analytically linearizable, then f̃ has a Herman ring which contains S1.

4.2 The Standard Family

Recall that f = fw,ϵ(θ) = θ +w+ ϵ
2π sin(2πθ) and F = Fw,ϵ(θ) = θ +w+ ϵ

2π sin(2πθ).
Let us consider the diagram

R R

S1 S1

Fw, ϵ

e2πiθ e2πiθ

fw, ϵ

Therefore

f (e2πiθ) = e2πiFw, ϵ = e2πiθe2πiwe2πi ϵ
2π (sin(2πθ)) = e2πiθe2πiwe2πi ϵ

2π ( e2πiθ−e−2πiθ
2i ) =

e2πiθe2πiweϵ( e2πiθ−e−2πiθ
2 ).
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From this we obtain
f (z) = ze2πiwe

ϵ
2 (z−

1
z ), |z| = 1,

is another way of expressing the standard family. Hence, the complexification of f must
be f̃ (z) = ze2πiwe

ϵ
2 (z−

1
z ) defined in C \ {0}. That was totally expectable since the radius

of convergence of sin(x) is infinite.

C C

C \ {0} C \ {0}

F̃w, ϵ

e2πiθ e2πiθ

f̃w, ϵ

Proposition 4.14. (Generalities of the standard family)

1. If ϵ = 0, then f̃ is a rigid rotation in C and hence the dynamics is trivial.

2. If ϵ ∈ (0, 1), there are exactly 2 real critical points (symmetric with respect to S1).

3. f̃ has no asymptotic values different from 0, ∞.

4. f̃ has no Baker domains nor wandering domains.

Proof. 2. The critical points are solutions of the equation f̃ ′(z) = 0 ⇐⇒ z2 + 2
ϵ z+ 1 = 0.

Hence there are 2 real critical points c+,− := 1
ϵ ±

√
1
ϵ2 − 1.

3. Due to the periodicity of the covering map, we consider the asymptotic values of
F̃(z) = z + w + ϵ

2π sin(2πz) in C \ Z. Observe that the asymptotic values of F̃ and f̃ are
related by f̃ (γ(t)) = ΠF̃Π−1γ(t), where γ is the path of an asymptotic value.

Therefore, suppose v ∈ C \ Z is an asymptotic value of F̃; i.e., ∃γ : [0, 1) → C \ Z

which:
Im{γ(t)} →t→1 ±∞, F̃(γ(t)) →t→1 v,

since the real part of γ lays inside an interval of 2 consecutive integers. Let Γ be such
that Π(Γ) = γ. We denote y(t) := Im{Γ(t)} = − 1

2π ln(|γ(t)|), x(t) := Re{Γ(t)} =
1

2π (Arg{γ(t)}+ 2πk).
Then,

F̃(Γ(t)) = x + iy + w +
ϵ

2π

e2πixe−2πy − e−2πixe2πy

2i
.

Observe that y(t) →t→1 −∞. The asymptotic behaviour of x(t) is not determined,
we distinguish 2 cases.

First, suppose there exists a sequence (tn)n → 1 such that (x(tn))n is bounded. Then,

F̃(Γ(tn)) ∼ x + iy +
ϵ

4πi
e2πixe−2πy ∼ iy +

ϵ

4πi
e2πixe−2πy →n ∞.

Otherwise x(t) → ±∞, and we can pick a sequence (tn)n → 1 such that x(tn) := kn ∈
Z ∀n. Then, using the formula sin(2π(x+ iy)) = sin(2πx)cosh(2πy)+ icos(2πx)sinh(2πy),
it yields:

F̃(Γ(tn)) = x(tn) + iy(tn) + w + i
ϵ

2π
sinh(2πy(tn)) ∼ x(tn) + i

ϵ

2π
sinh(2πy(tn)) →n ∞.



4.2 The Standard Family 51

Hence, if the limit exists, it must be:

Im{F̃(Γ(t))} → ±∞.

Now, if the limit exists,

| f̃ (γ(t))| = |ΠF̃Π−1γ(t)| = |ΠF̃Γ(t)| = |e2πiRe{F̃Γ(t)}e−2π Im{F̃Γ(t)}| = e−2π Im{F̃Γ(t)},

so | f̃ (γ(t))| → 0 or ∞. Hence, the only possible asymptotic values of f̃ are 0 and ∞.
4. It is a direct consequence of f ∈ S, since sing( f−1) is a bounded set. See theorem

3.43 and theorem 3.45.

Now we use the notation f̃w, ϵ to emphasize the dependence on the parameters.
Whenever we talk about rotation numbers we refer to the respective rotation number
of f̃w, ϵ |S1 = fw, ϵ. We discuss how the complex dynamics evolves when the parameters
change along the tongues or curves in the parameter space of the Standard Family (see
the Arnold tongues picture, Figure 2.5 in section 2.5). The next results are rather a
synthesis of what we learned from the Standard Family, and the complex dynamics
implications of the arithmetic properties of the tongue considered. Recall ϵ ∈ [0, 1), but
we actually consider ϵ > 0, since the case ϵ = 0 is trivial. Recall that ρ denotes the
rotation number and Tρ := {(w, ϵ)|ρ( fw, ϵ) = ρ} is a curve if ρ is irrational and has no
null interior if ρ is rational. Abusing notation, we indicate fw, ϵ ∈ Tρ if (w, ϵ) ∈ Tρ.

Our goal in what follows is to describe the complex dynamics of f̃w, ϵ depending on
the rotation number and using what we know about the circle maps.

Discussion of rational rotation number and attracting cycles

If fw, ϵ ∈ Tp/q, then fw, ϵ has an attracting q-cycle and a repelling q-cycle in S1, then
so has f̃w, ϵ. Hence there exists a q-cycle of attracting basins wrapping around the unit
circle, separated by the repelling q-cycle. Moreover, the attracting basins contain all
the unit circle except the q repelling periodic points. Fuerthermore, since the 2 critical
points are symmetric, they converge under iteration to the attracting cycle. Because of
the Fatou-Shishikura inequality there are no other periodic Fatou components in the
complex plane. See figure 4.1.

Remark 4.15. If z1 ∈ S1 is an attracting fixed point by f q, then f̃ q(z1) = z1 by definition
and | f̃ q ′(z1)| = | f q ′(z1)| < 1, taking the unit circle as the path of the complex derivative.
That proves attracting periodic points in S1 are attracting periodic points in C.

The same discussion actually holds as long as we are on the interior of Tρ=p/q. On
the boundary, each attracting point of the q-cycle collapses with one repelling point of
the repelling q-cycle. This results in a q-cycle of leau domains whose respective petals
emerge from the q double periodic points in the circle. Again, there is exactly one Fatou
cycle, the parabolic one. What’s more, since the derivative of f q

w, ϵ is one at the periodic
points and the second derivative does not vanish, there is exactly one attracting petal
for each periodic point (see proposition 2.47). See figure 4.2.
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To summarize it, if we set off from the inferior vertex of a rational tongue (where
we have a rational rotation), as ϵ > 0 appear the periodic attracting and repelling basins
which remain along all the interior of the tongue. The interesting behaviour, though,
happens as we move towards the boundary, then the attracting and repelling points
collapse and the attracting and repelling cyclic basins become cyclic leau domains.

(a) w = 0.5, ϵ = 0.8 (ρ = 1/2). (b) w = 0.34, ϵ = 0.99 (ρ = 1/3).

(c) w = 0.2, ϵ = 0.95 (ρ = 7/51).

Figure 4.1: The Fatou set is coloured in red when the points are attracted toward the cycle in
the unit circle. The orbits of the points in black eventually escape to infinity or lay in a small
neighbourhood of 0, and they either belong to the Julia set or the Fatou set. Function (a) belongs
to the central tongue T1/2. Therefore it has a 2-cycle of attracting basins, which wraps around
the unit circle. The attracting basins contain the whole circle except the 2 repelling points (the
2 immediate basins of attraction are not connected). The attracting points are also indicated in
white. (b) belongs to T1/3, hence the same happens with a 3-periodic attracting cycle. In picture
(c) there is a cycle of period 51, the attracting points are not coloured in white. Instead, the
orbits of the critical points are coloured in blue. Recall that they converge to the attracting cycle
of period 51.
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(a) w = 0. (b) w = 0.08.

(c) w = 0.1. (d) w = 0.12 (ρw, ϵ = 0.06721085...).

Figure 4.2: Evolution of the dynamics on the first tongue (T0) of the family fw, ϵ=2π0.1 for
different values of w ∈ [0, 0.1]. See figure 4.3. Hence, for w = 0 there is an attracting fixed
point at z1 = −1 and a repelling fixed point at z2 = 1. As w is increased the fixed point moves
along the unit circle towards z3 = −i. They eventually collapse when w = 0.1, giving place to an
attracting and a repelling petal flowering at z3 = −i. For w = 0.12, the attracting and repelling
cycles have disappeared, and a Herman ring (in blue) substitutes them. The map is no more in
T0.

Discussion of the existence of Herman rings when ρ is irrational

Because of theorem 4.12, f̃w, ϵ has a Herman ring if and only if fw, ϵ is analytic lin-
earizable. Note that f is not defined at z = 0, therefore linearization on the circle can’t
lead to Siegel disks. In that case, the Herman ring wraps around z = 0, and contains an
annulus AR := {z| 1

R < |z| < R} for some R > 1. Moreover, recall that it is symmetric
with respect to S1. Finally, it is the only cyclic Fatou component of f̃w, ϵ, because of the
Fatou-Shishikura inequality. Recall that the orbits of both critical points accumulate
onto the boundary of the Herman rings.

We proceed to discuss how maps with Herman rings are distributed along a curve
Tρ of the parameter space of the standard family. If ρ ∈ H, all maps in Tρ have a Herman
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Figure 4.3: Location of the parameters in the Arnold tongues for each case of Figure 4.2.

ring, because there is analytic linearization on the circle (see theorem 2.36). If ρ /∈ B, no
map in Tρ has a Herman ring (see theorem 2.36). However, the most interesting case is
ρ ∈ B \H. The following theorem tells us the modulus of the Herman ring parameterize
the curve Tρ up to a certain limit point where the Herman ring collapses.

Definition 4.16. (Modulus of an annulus) Let U be an annulus (which is therefore
conformally conjugate to Ar for some r < 1). We define the modulus of U as

mod(U) := − log(r)
2π

.

The following theorem can be found in [FG03] and it describes how the modulus
of the Herman ring parameterizes the piece of the Arnold curve for which there exists
analytic linearization (compare with Figure 2.7).

Theorem 4.17. Let Tρ be a curve with ρ ∈ B \ H. Let (w′, ϵ′) ∈ Tρ be such that f̃w′, ϵ′ has a
Herman ring U. Then, there exists a real analytic map:

γ : (0, ∞) → Tρ, γ(t) := (w(t), ϵ(t))

such that

1. γ(1) = (w′, ϵ′).

2. ϵ(t) is strictly decreasing, with limt→∞ ϵ(t) = 0 and limt→0 ϵ(t) = ϵ0 ≤ 1.

3. f̃w, ϵ has a Herman if and only if (w, ϵ) = γ(t), ∃t ∈ (0, ∞); if and only if ϵ < ϵ0.

4. If f̃w, ϵ has a Herman ring, its modulus is t mod(U).

Theorem 4.18. Let ϵ0 ∈ (0, 1). Then there exists w0 ∈ (0, 1) such that (w0, ϵ0) ∈ Tρ∈B\H,
and f̃w0, ϵ0 has no Herman ring. Moreover, if ϵ < ϵ0 remaining on the curve, then f̃w, ϵ has a
Herman ring.
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Remark 4.19. This last theorem tells us that the ϵ0 in theorem 1 can actually be any
ϵ ∈ (0, 1).

Remark 4.20. Observe that theorem 4.17 and 4.18 follow from the ideas in the analytic
linearization of circle maps (section 2.4) and the analytic linearization for the Standard
Family discussion in section 2.5. See theorem 2.48 and 2.49.

Since the domain of the Herman ring is determined by the critical points, observe
that c± →ϵ→0 ±∞, and c± →ϵ→1 ±1. Therefore we expect a large Herman ring for small
values of ϵ and a small Herman ring for large values of ϵ, whenever it exists.

(a) w = 1.9
2π , ϵ = 0.5 (ρw, ϵ = 0.29526221...). (b) w = 0.2, ϵ = 0.85 (ρw, ϵ = 0.15249090...).

Figure 4.4: Herman rings for different values of (w, ϵ). Recall that its boundary (in blue) is
contained in the closure of the orbits of the 2 critical points. All Herman ring contain S1 and are
symmetric with respect S1. For large values of ϵ, the Herman ring is smaller.

Discussion of the dynamics when ρ is irrational and there is no Herman ring

Recall that, in opposition to the 2 previous cases, almost no point in the parameter
space (w, ϵ) leads to this case - since the set of Diophantine numbers has measure 1.
Nevertheless, some things can be said. Actually:

Theorem 4.21. (The Julia set is the whole plane) If ρ( f ) is irrational and f̃ has no Herman
rings, then J f̃ = C.

The proof of theorem 4.21 is done in several steps. First, we see that S1 is contained
in the Julia set. Then we see that f̃ has no cyclic Fatou components. Hence, it does not
have pre periodic components neither. And we already know it does not have wandering
domains.

Proposition 4.22. If ρ( f ) is irrational and f̃ has no Herman rings, then S1 ⊂ J f̃ .

Proof. Suppose there existed a Fatou component U intersecting S1. It can only be one
Fatou component because of corollary 2.34. But U is not wandering nor pre-periodic
because S1 is invariant. It is not a Herman ring by hipothesis, and therefore it is neither
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a Siegel disk (there is no analytic linearization). Baker domains do not exist, and it is
not an attracting domain nor a parabolic domain because orbits in S1 do not converge
anywhere. Hence S1 ⊂ J f̃ .

We already know that Fatou components, if they exist, do not intersect S1. However,
there could be an attracting (parabolic) cycle outside S1 and the analogous attracting
(parabolic) cycle inside S1, or a similar situation with Siegel disks.

Next we see that the orbits of the 2 critical points eventually accumulate in S1. Thus,
S1 works as a Herman ring of modulus 0. Observe that this is what actually happens
when ρ ∈ B \H and ϵ ↗ ϵ0, when the Herman ring collapses to S1.

Proposition 4.23. If ρ( f ) is irrational and f̃ has no Herman rings, then S1 ⊂ O+(sing( f̃−1)).

Proof. We notate P := O+(sing( f̃−1)). Let U := C \ P. Observe P is closed by definition.
We argue by contradiction. So let D ⊂ U be an open and bounded set such that

it intersect S1. We see that this implies that ( f̃ n)n is normal in D, contradicting that
D ∩ J f̃ ̸= ∅.

We consider the inverse branch gn of f̃−n such that f̃−n(D) contains S1. Recall that
S1 is invariant, so that is always possible. And the inverse branch is always well-defined
since ∪ngn(D) never encounters a critical point of f̃ . Indeed, if c ∈ gk(D) ∩ P, then
f̃ k(c) ∈ D ∩ P, which is a contradiction.

We claim (gn)n is normal in D. Indeed, there are infinitely many repelling cycles that
do not intersect gn(D), see theorem 3.4, hence ∪ngn(D) omits all those cycles. Now, by
Montel’s theorem, (gn)n is normal in D, therefore, gnk ⇒ g in D. Moreover, g is analytic
since (gnk)nk is an analytic sequence. Hence, g(D) is either open or it is constant, because
of the Open Mapping Theorem.

Suppose g(z) = z0 ∀z ∈ D. In particular, z0 must be in S1. We claim that this cannot
occur. Let I := [a, b] be a circle interval of S1 ∩ D. We denote its length by l > 0, a ̸= b.
Then, because both endpoints converge to z0, for all ϵ1 = l/2 there exists k1 such that
|gnk(a)− gnk(b)| < ϵ1 = l/2 ∀k > k1. On the other hand, for all ϵ2 = l/2 there exists
k2 such that | f nk(x)− f nk(y)| < |x − y|+ ϵ2 ∀k > k2, as a consequence of the rotation
number non-dependence on the initial point. Hence, ∀k > max(k1, k2):

l = |a − b| = | f nk(gnk(a))− f nk(gnk(b))| < |gnk(a)− gnk(b)|+ ϵ2 < l/2 + l/2 = l.

Therefore, g(D) is open. We have that f̃ nk(gnk(D)) = D. By definition, there exists
k0 such that |gnk(z)− g(z)| < ϵ ∀z ∈ D, ∀k > k0. Where ϵ is chosen small enough so
that {z|z ∈ g(D) and dist(z, ∂g(D)) > ϵ} still intersects S1. Hence,

D′ := {z|z ∈ g(D) and dist(z, ∂g(D)) > ϵ} ⊂ gnk(D) ∀k > k0.

It follows that f̃ nk(D′) ⊂ D ∀k > k0. Again, by Montel’s theorem, ( f̃ nk)nk is a nor-
mal family in D′. Therefore, because of Lemma 3.37, ( f̃ n)n is a normal family in D′,
contradicting that D′ ∩ S1 ̸= ∅.

Remark 4.24. Observe that the orbits of actually both critical points eventually accumu-
late in S1 because of the symmetry.
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Proof of theorem 4.21. We want to prove J f̃ = C. It is sufficient to prove that there are
no cyclic Fatou components nor wandering domains. Then there are not pre periodic
components. We already knew there are not Baker domains, nor wandering domains.
There are no attracting (parabolic) domains since the critical points are not attracted to
any cycle. If there was a Herman ring (it cannot intersect S1), there would be actually
2 because of the symmetry. However, that is impossible due to the Fatou-Shishikura
inequality. Finally, Siegel disks would require a critical point only dedicated to it, due
to corollary 3.51.
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Conclusions

Finally, I would like to give an overview of the project while adding some personal
impressions I have had during its course.

I feel it is fair to say that this work separates in two apparently completely differ-
ent topics: circle maps and complex dynamics, complexification being the tool which
connects them. But maybe that has enriched me even more, as well as given me the
opportunity to realise the powerful tool compelxification is.

Regarding circle homeomorphisms, I have been fascinated by how much could be
said about them. Although it is a seemingly simple topic, the linearization problem
gives an idea of the complexity it has, having a large amount of theory behind it. But
talking about fascination, nothing compares to the devil staircase and Arnold tongues
which result from the Standard Family study. Finding about their particular properties
is a reason I am glad I am a mathematician.

On the other hand, the Standard Family has also served as an "excuse" to discover the
discipline of complex dynamics, which was totally unknown to me. That first glimpse
has been enough to captivate me. I have really enjoyed viewing how some of the most
known complex analysis results appear in complex dynamics. Needless to say, it has an
intrinsic beauty, too. Finally, I could see how these results apply to the Standard Family.
This has allowed me to view how the circle and complex dynamics feed each other, as
well as understanding how the circle dynamics generalises to the complex plane.
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