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A B S T R A C T   

A data fusion approach combining chromatographic and spectroscopic profiles is proposed for the discrimination 
and classification of soothing herbs in different types of herbal preparations. Particularly, chamomile, lavender, 
passionflower, and valerian were considered. The proposed data fusion approach revealed a higher clusterization 
ability than each analytical technique in a separate way, which was assessed through an exploratory analysis 
based on Principal Component Analysis (PCA) coupled to Silhouette analysis: percentage of samples with a 
negative Silhouette width were 19, 15 and 10 for chromatography, spectroscopy and data fusion, respectively. 
Furthermore, a Partial Least Squares – Discriminant Analysis (PLS-DA) model developed based on data fusion 
was able to perfectly discriminate samples of chamomile, passionflower, and valerian in a set of 20 samples, 
overcoming the difficulties related to dealing with different types of herbal preparations including pure herbs, 
infusions, tablets, capsules and herbal drops.   

1. Introduction 

Herbal medicines are herbs, herbal preparations or herbal derivative 
products that comprise as active ingredients plant parts, such as flowers, 
roots or leaves. They can be found as fresh or dried plants, teas, tablets, 
capsules, powders, and extracts, and are mainly used to treat or prevent 
mild to moderate illnesses [1]. Herbal medicines have their origins in 
ancient civilizations cultures, constituting an important part of the 
traditional medicine. Modern science has recognized their active action, 
and it has included in contemporary pharmacotherapy a variety of drugs 
of plant origin, identified by ancient cultures and used throughout the 
times [2,3]. Thus, although it is true that herbal medicines have been 
already used for centuries, nowadays there exists a growing demand for 
medicinal plants worldwide [4]. For instance, the market demand in 
China for herbal medicine has considerably increased, being the annual 
consumption of herbal medicine of more than 400,000 tons [5]. A more 
global analysis of the herbal medicine market suggests that it is expected 
to grow by $ 39.52 billion during 2022–2026, progressing at a com-
pound annual growth rate (CAGR) of 6.69% over the analysis period [6]. 

Although herbal medicines are used as natural remedies and not 

strictly considered as drugs, it should be borne in mind that this does not 
guarantee that they are always safe and beneficial. Thus, quality control 
is of utmost importance and herbal medicines should undergo the testing 
to receive approval from the administration [7]. However, the existence 
of multiple preparations for the same type of herb (e.g., tablet, infusion, 
drop) increases the difficulty in their quality control, thus facilitating the 
possibility of frauds and tampering. This fact, together with the constant 
increase in the use of herbal medicines around the world, makes the 
characterization, identification and authentication of herbal medicines a 
subject of major concern both from a safety and quality control point of 
view [1]. Thus, the aim of this work is to develop a method able to 
discriminate among soothing herbs regardless of their preparation 
method. In particular, chamomile, passionflower, valerian root and 
lavender were considered in this study as the most common soothing 
herbs used to treat or prevent stress and anxiety, which are two recog-
nized emotional disorders nowadays. In particular, chamomile infusions 
are commonly used as mild sedatives to reduce nerves and calm anxiety, 
and to treat insomnia, nightmares, hysteria, and other sleep complica-
tions [8]. Both passionflower and valerian roots are known to increase 
gamma-aminobutyric acid levels in the brain, promoting relaxation, 

* Corresponding author. Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, 
Spain. 
** Corresponding author. Department of Chemical Engineering and Analytical Chemistry, Universitat de Barcelona (UB), Martí i Franquès 1-11, 08028, Barcelona, 

Spain. 
E-mail addresses: claraperezrafols@ub.edu (C. Pérez-Ràfols), nuria.serrano@ub.edu (N. Serrano).  
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easing generalized anxiety, alleviating restlessness and aiding sleep [9, 
10]. Lavender has been revealed as beneficial to sleep, anxiety and 
overall mood [11]. 

Reported applications in the literature for the characterization of 
soothing herbs have usually been based on the use of chromatographic 
fingerprints. This approach is based on the chromatographic separation 
and identification of marker compounds from other components, and it 
is considered one of the most important and accepted approaches for 
quality assessment of herbal preparations [12–15]. Indeed, both World 
Health Organization (WHO) and Food and Drug Administration (FDA) 
have recognized chromatographic fingerprinting as a strategy to eval-
uate the quality of herbs and herbal preparations [16,17]. Nevertheless, 
fingerprints can also be acquired from spectroscopic techniques such as 
ultraviolet–visible (UV–Vis), infrared (IR) and Raman, relying on the 
fact that samples with comparable spectral responses have equivalent 
chemical and pharmaceutical properties [12,18,19]. To the best of our 
knowledge, the combination of chromatographic and spectroscopic 
techniques by data fusion to address this concern has not been described 
yet. Data fusion is an approach where the data from multiple sources of 
different nature are combined and analysed jointly in order to take 
advantage of their features and improve the representation of informa-
tion compared to the respective sources separately [20]. Chromato-
graphic and optical data can be fused using either a low-level or 
mid-level data fusion approach. In the former, each data set is first 
pre-processed independently to reduce noise and redundant informa-
tion, and then the matrices are concatenated to obtain the augmented 
matrix. Nevertheless, this approach requires that both data sets have 
comparable magnitudes to avoid the domination of the larger data set in 
the subsequent analysis. Alternatively, a mid-level data fusion combines 
relevant features extracted from each data set independently, being 
Principal Component Analysis (PCA) the most popular method 
employed in this extraction [21]. 

The current work aims to compare the features of individual UV–Vis 
spectroscopic and chromatographic measurements to those achieved by 
the combination of both to go deeper in the characterization, identifi-
cation and authentication of herbal medicines. Thus, in this study, 
spectroscopic and chromatographic data have been firstly analysed 
individually with pattern recognition methods in order to evaluate the 
capabilities of each analytical technique for the characterization, iden-
tification and authentication of chamomile, passionflower, valerian root 
and lavender in different commercial preparations. Both techniques 
provided complementary information that allowed a data fusion 
approach leading to an improvement of the classification model, thus 
demonstrating the benefits of data fusion in the characterization, iden-
tification and authentication of herbal medicines. 

2. Experimental section 

2.1. Samples and sample treatment 

A total of 20 samples of herbs and herbal preparations of chamomile 
(5 samples: 1 herb, 4 infusion bags), passionflower (5 samples: 1 herb, 1 
herbal drops, 2 tablets and 1 capsule), valerian (8 samples: 1 herb, 1 
infusion bag, 1 herbal drops, 3 tablets and 2 capsules) and lavender (2 
samples: 1 herb and 1 herbal drops) were purchased in herbalist’s shops 
and big stores located in Barcelona (Spain). All considered samples are 
100% pure and it should be noted that not all herbs could be found in all 
types of herbal preparations. Chamomile, passionflower, valerian and 
lavender were selected as four representative examples of soothing 
herbs to alleviate stress and anxiety. 

Sample treatment was then performed as follows: 1.5 g of herb 
samples or one dose of herbal preparation sample were boiled in natural 
mineral water for 5 min, left to cool at room temperature, filtered 
through 0.2 μm nylon filters and stored at − 4 ◦C until further analysis. 

All samples were analysed in triplicate to account for the possible 
variability of the experimental procedure. 

2.2. UV–vis spectroscopic measurements 

UV–vis spectroscopic measurements were performed using a SPELEC 
equipment by Dropsens-Metrohm (Oviedo, Spain) and controlled by the 
software DropView 8400 from Dropsens-Metrohm. UV–vis measure-
ments were carried out using two optical fibres (TFIBER-VIS-UV) with 
their respective collimators coupled to a sample holder CUV-UV from 
Ocean Insight (Orlando, USA). Samples were disposed in plastic cuvettes 
supplied by Eppendorf (Hamburg, Germany) and a cardboard cover was 
employed to protect the cuvette from stray light. Absorbance spectra 
were recorded with wavelengths between 200 and 900 nm in compar-
ison with a blank of pure water. 

Each herbal medicine sample was analysed in triplicate, resulting in 
a total of 60 UV–vis spectra. 

2.3. Chromatographic measurements 

HPLC-UV chromatograms were obtained using an Agilent 1200 Se-
ries instrument (Palo Alto, CA, USA) equipped with a quaternary pump 
(G1311A), a vacuum degasser (G1322A), an autosampler (G1329A) and 
an ultraviolet–visible detector (G1314B), and controlled with the Agi-
lent ChemStation software package. Chromatographic fingerprints of 
considered soothing herbs extracts were acquired with a reverse phase 
Kinetex® C18 column (5 μm C18 100 Å, 100 × 4.6 mm) from Phe-
nomenex (Torrance, CA, USA) and gradient elution using 0.1% formic 
acid in Milli-Q water (solvent A) and methanol (solvent B) as mobile 
phase components. The elution gradient program was as follows: 0–2 
min, isocratic elution at 5% solvent B; 2–4 min linear gradient from 5 to 
25% solvent B; 4–12 min, at 25% solvent B; 12–14 min, from 25 to 45% 
solvent B; 14–16 min, at 45% solvent B; 16–18 min, from 45 to 95% 
solvent B; 18–20 min, at 95% solvent B; 20–21 min, back to initial 
conditions at 5% solvent B; and 9 min keeping this composition of the 
mobile phase for column reequilibration [22]. The chromatographic 
column was kept at room temperature, and a mobile phase flow rate of 1 
mL min− 1 and an injection volume of 20 μL were employed. HPLC-UV 
chromatographic fingerprints were registered at 280 nm. 

Each herbal medicine sample was injected in triplicate, except for the 
four pure herbs, which were injected in quadruplicate and along the 
sequence to be used as references for peak alignment. This generated a 
total of 64 chromatograms. 

2.4. Data treatment 

Both chromatographic and UV–vis spectroscopic data were retrieved 
from the instrument using the corresponding software and treated in a 
Matlab® environment [23]. PCA and Partial Least Squares – Discrimi-
nant Analysis (PLS-DA) models were constructed using PLS_Toolbox 
from Eigenvector Research [24], which is compatible with Matlab. 

Chromatographic data were pre-treated prior to the application of 
chemometrics in order to avoid artefacts resulting from baseline drifts or 
small time shifts. Baseline was removed using the assisted baseline 
estimation and denoising using sparsity (BEADS) algorithm [25,26] with 
the following parameters: filter order = 1, cut-off frequency = 0.004 
cycles/sample, asymmetry ratio = 17, amplitude = 0.1, λ0 = 0.1, λ1 = 1, 
and λ2 = 10. Additionally, chromatographic peaks were aligned using 
the correlation optimized warping (COW) algorithm included in 
PLS_Toolbox. 

As stated in section 2.2, UV–vis data were acquired with SPELEC in 
absorbance mode, using a blank of pure water and within the wave-
length range 200–900 nm provided by the diode array of the instrument. 
This produced 2007 absorbance values per spectrum (ca. a value every 
0.35 nm). However, a preliminary analysis of the spectra showed that 
the region most sensitive to the different types of herbs was between 250 
and 500 nm. Then, only this part of the spectrum, including 700 mea-
surements, was considered for data analysis. 

PCA models built from a single analytical technique were con-
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structed using either pre-treated chromatograms or UV–vis spectro-
scopic profiles, which were column-wise mean centred and scaled to 
unit standard deviation. The employed data sets had a size of 3021 time 
points x 64 samples and 700 wavelengths x 60 samples for chromato-
graphic and spectroscopic data, respectively. For data fusion, the scores 
yielded by each sample in the two previous models for principal com-
ponents 2 to 4 (HPLC) and 1 to 3 (UV–vis) were combined in a single 
matrix (6 PCA scores x 60 samples) that was further employed for the 
building of PCA and PLS-DA models. This can be understood as a mid- 
level data fusion strategy, since extracted features of the data (the 
scores) are used instead of the full preprocessed data [21]. A single 
matrix containing all samples was employed for PCA models. Clusteri-
zation in PCA models was analysed through Silhouette analysis [27], 
which was carried out by a homemade Matlab program. In particular, 
Silhouette width for a sample i was calculated using Equation 1, where 
d(i, g) is the average Mahalanobis distance from sample i to all samples 
belonging to the same cluster and d(i, k) is the average Mahalanobis 
distance from sample i to all samples belonging to other classes. 

si =
d(i, k) − d(i, g)

max(d(i, k) − d(i, g) )
Equation 1 

For PLS-DA, samples were distributed into training (60%) and test 
(40%) sets, ensuring that all classes were evenly represented in both sets, 
except for lavender that was only included in the test set because the 
number of available samples was not high enough to reliably train the 
model. A PLS2 model based on binary 0/1 indexes was built considering 
chamomile, passionflower and valerian as classes. Class index matrix for 
the training set is reported in Table S1 and 3, latent variables (LV) were 
selected, corresponding to the first minimum in the average error clas-
sification from cross-validation (Fig. S1). For this purpose, cross- 
validation was based on venetian blinds, using 10 splits and 1 sample 
per split. 

PLS-DA model was assessed by means of several classification pa-
rameters. Root mean square error (RMSE) is the standard deviation of 
the residuals, sensitivity reports the ratio of samples belonging to a 

considered class correctly classified as such, and specificity indicates the 
ratio of samples not belonging to a considered class correctly classified 
as “out of class”. Additionally, non-error classification rate (%NER) is 
calculated for each class as an average between sensitivity and speci-
ficity, classification rate (%) is the percentage of true positive and 
negative samples with respect to the total samples and accuracy is 
calculated as a global parameter of the model that indicates the per-
centage of total samples correctly classified. 

3. Results and discussion 

Chromatographic fingerprints, as the most common and accepted 
approach for quality assessment of herbal preparations, were first ac-
quired for different formulations of chamomile, passionflower, valerian 
and lavender. For this purpose, an HPLC method previously reported for 
the determination of polyphenolic compounds was employed [22] 
because soothing herbs are known to be rich in polyphenols [28]. Given 
the complex nature of chromatograms, data were first pre-treated to 
correct artefacts that could later distort the chemometric model. In this 
sense, baseline correction and peak alignment are crucial steps. Fig. 1a 
shows pre-treated chromatograms of four samples corresponding to the 
pure herbs of chamomile, lavender, passionflower, and valerian. Visual 
inspection reveals a large number of chromatographic peaks distributed 
along the time axis and with apparent differences among the four 
considered herbs, which indicates that the selected HPLC method may 
be, in principle, suitable for herbal identification. Nevertheless, a closer 
inspection of each class of herbal medicine revealed that different types 
of preparations (e.g. infusion, herbal drop, root, tablet or capsule) also 
result in significant changes in the chromatographic profile. As a 
representative example, Fig. 1b displays the pre-treated chromatograms 
acquired for valerian in different preparations. As it can be observed, 
capsule, tablet and infusion present some common peaks with clear 
differences in the concentration of the extracted substances. Moreover, 
other preparations (especially these extracted from the roots and herbal 
drops) show an obvious different distribution of peaks. Therefore, the 

Fig. 1. Representative pre-treated chromatograms (a, b) and UV–vis spectra (c, d) of three replicates of chamomile (red), lavender (green), passionflower (blue) and 
valerian (cyan) pure herbs (a, c); and several preparations types of valerian (b, d). In chromatograms, baseline was adjusted with BEADS and peaks were aligned with 
COW. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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great variety in formulations available in the market represents a chal-
lenge in the correct characterization, identification and authentication 
of herbal medicines, which is expected as organic compounds will not 
always be extracted with the same efficiency. 

Visual inspection was also carried out with spectroscopic finger-
prints, which have also been reported for the authentication of medic-
inal plants [12,18,19]. Given the distinctive colours of the infusions 
obtained, UV–vis spectroscopic was selected for this purpose. Similar to 
what was observed in HPLC, significant differences could be visually 
detected in spectroscopic profiles of different herbs (Fig. 1c) but also 
among several types of preparations belonging to the same herbal 
medicine (Fig. 1d). Thus, it could be concluded from visual inspection 
that both chromatographic and spectroscopic profiles may be suitable 
for the characterization, identification and authentication of chamo-
mile, passionflower, valerian root, and lavender. Therefore, both sets of 
data were considered for further evaluation by means of chemometric 
analysis. 

Preliminary exploratory analysis was carried out using PCA on the 
full set of samples (20 samples with the corresponding replicates) with 
either chromatographic or UV–vis spectroscopic profiles. Fig. 2 shows 
both the diagram of scores and the Silhouette analysis plot obtained for 
each data set. Regarding the former, it can be observed that both tech-
niques provide some clusterization among the 4 types of soothing herbs 
considered, with chamomile and valerian being the better separated 
group using HPLC (Fig. 2a) and spectroscopic (Fig. 2c) data, respec-
tively. It should be noted that principal components (PC) 1 to 3 were all 
relevant to herbal differentiation when the optical data set was 
considered whereas PC1 in the model built from chromatographic data 
did not contribute to such differentiation, which was much clearer with 
PCs 2 to 4. In order to better assess the clusterization achieved with each 
model, Silhouette analysis was carried out. The Silhouette width is a 
quality measure that specifies how much closer each sample is to the 
cluster it has been assigned to in comparison to other clusters. The value 
of the Silhouette width may range from − 1 to 1, with negative values 
indicating that the sample is actually closer to another cluster than to the 

one it was assigned to Ref. [27]. The results displayed in Fig. 2b and c 
shows that, no matter the data set employed, most samples presented a 
positive Silhouette width. More specifically, 81 and 85% of the samples 
for HPLC and UV–vis data, respectively, presented a positive Silhouette 
width (Table 1). This fact indeed agrees with the clusterization observed 
in the scores diagram. Regarding the measurements that yielded a 
negative Silhouette width, they mostly belong to all three replicates of 
one sample from each class (4 replicates in the case of chamomile using 
HPLC data as this sample corresponds to the herb), which manifests that 
the methodology is reproducible and that differences may be attributed 
to the sample. Only in a limited number of samples different Silhouette 
width signals among the replicates were observed but, in these cases, its 
absolute value was always low. Interestingly, comparing the results 
obtained using chromatographic and UV–vis spectroscopic data, the 
samples yielding negative Silhouette widths are not always the same. 
For example, if we consider passionflower, the most different sample 
employing HPLC data corresponded to an herbal drop preparation 
whereas the most different sample using UV–vis spectroscopic data was 
the pure herb. Similarly, the two considered lavender samples were 
found to be much closer using HPLC data than spectroscopic data. These 
facts point out that the information provided by each technique is not 
the same and may be complementary, which prompted the application 
of data fusion. 

In order to build a model combining the information provided by 
chromatographic and UV–vis spectroscopic profiles, the scores obtained 
from the two PCA models previously constructed were assembled in a 
single matrix. This mid-level data fusion approach presents several ad-
vantages over the simple combination of both fingerprints (as in raw 
data) including the possibility to perform specific data pretreatment in 
each profile and the inclusion of a similar number of data points from 
each technique. The latter is important to ensure that both techniques 
have a similar weight in the joint PCA model. The scores diagram ob-
tained with PCA (Fig. 3a) shows a clear clusterization between the four 
types of herbal medicines, which was confirmed through the Silhouette 
analysis (Fig. 3b). As it can be observed in Table 1, this PCA model based 

Fig. 2. Scores diagram (a, c) and Silhouette analysis (b, d) plots for PCA models constructed using individual data from chromatographic (a, b) and UV–vis spec-
troscopic (c, d) profiles. Colour code: chamomile (red), lavender (green), passionflower (blue) and valerian (cyan). (For interpretation of the references to colour in 
this figure legend, the reader is referred to the Web version of this article.) 
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on joined information from chromatographic and spectroscopic profiles 
provided a better clusterization (90% of samples with positive Silhou-
ette width) than the PCA models previously obtained with separate data. 
In particular, it should be stressed that this model was able to correctly 
clusterize all chamomile and lavender samples, providing negative 
Silhouette widths only for one sample of valerian and one sample of 
passionflower. The loadings of this PCA model (Fig. 3c) indicated that 
HPLC data had a higher contribution to the joint PCA model, as the 
scores on all three PCs deriving from the chromatographic PCA model 
(variables 1 to 3) had a great contribution to at least one PC. Never-
theless, the first variable related to spectroscopic data (variable 4) also 
contributed greatly to PC1 and, to a lesser extent, variable 5 contributed 
to PC2. This demonstrates that both analytical techniques provided 
complementary information, which benefits a data fusion approach. 

The results provided in the exploratory analysis revealed that data 
fusion is the approach that has a better potential in differentiating 
among different classes of herbal herbs when several herbal preparation 
types are considered. Thus, the combined data from chromatographic 
and UV–vis spectroscopic profiles was considered for a further classifi-
cation model, which was based on PLS-DA. For this purpose, the whole 
set of samples was distributed between a training (60% of samples) and a 
test set (40% of samples), and a PLS-DA model was built. It should be 
pointed out that, although lavender samples were included in the test set 
as out-of-class samples, the low number of available samples prevented 
the inclusion of lavender as a main class when building the PLS-DA 
model. In the developed PLS-DA model the optimum number of LVs 
was 3 (Fig. S1) and the cumulative variances explained in X and Y blocks 

were 92.9% and 51.6%, respectively. The model capability was evalu-
ated by means of the receiver operating characteristics curves (ROC), 
which are displayed in Fig. 4. As it can be observed, the model provided 
an excellent discrimination capability for all three classes, with an area 
under the curve (AUC) of 1.000 (Fig. 4a–c). Discriminant thresholds 
were defined as the point where the specificity line crosses with the 
sensitivity line (Fig. 4d–f), thus minimizing the number of false positives 
and false negatives. As expected from the ROC curves, the selected 
threshold enabled the PLS-DA model to correctly predict the class of all 
samples in the training set (Fig. 5, Table S2). Consequently, ideal values 
were obtained for all classes in the training set, with low root mean 
square errors (RMSE), 100% non-error classification rate (%NER) and 
classification rate (%CCR), 1.000 values for both sensitivity and selec-
tivity (Table 2), and an accuracy of 100%. The developed PLS-DA model 
was then externally validated using the test set, providing perfect pre-
dictions in the case of chamomile and passionflower and only miss- 
predicting three replicates of one sample of lavender as valerian 
(Fig. 5, Table S2). RMSE values were still low for the test set and 
excellent discrimination figures of merit were obtained (Table 2), with a 
global accuracy of 87.5%. Additionally, the advantages of employing a 
data fusion approach were confirmed through the VIP scores (Fig. 6), 
which revealed that the most important variables (i.e. those with VIP 
score higher than 1) in the discrimination between chamomile, 
passionflower, and valerian were all three scores from HPLC profiles 
(variables 1 to 3 in Fig. 6) and the first score from spectroscopic profiles 
(variable 4). Moreover, although PLS-DA models built using solely op-
tical or chromatographic profiles provided an excellent performance for 

Table 1 
Percentage of samples with a positive and negative Silhouette width obtained from PCA models using chromatographic profiles, UV–vis spectroscopic profiles and the 
combination of both data sets.    

Chamomile Lavender Passionflower Valerian Global 

HPLC data Silhouette width >1 75 100 73 84 81 
Silhouette width <1 25 0 27 16 19 

UV–vis data Silhouette width >1 80 50 80 96 85 
Silhouette width <1 20 50 20 4 15 

Combined data Silhouette width >1 100 100 80 88 90 
Silhouette width <1 0 0 20 12 10  

Fig. 3. Scores diagram (a), Silhouette analysis (b), 
and loadings (c) plots for PCA models constructed 
using joint data from chromatographic and UV–vis 
spectroscopic profiles. Colour code for (a) and (b): 
chamomile (red), lavender (green), passionflower 
(blue) and valerian (cyan) (c). In the loadings plot, 
variables 1 to 3 correspond to HPLC and variables 4 
to 6 to UV–vis spectroscopic data. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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the training set (100% accuracy in both cases), the prediction of the test 
set was not as good, yielding an accuracy of 75% for both optical and 
chromatographic data, which is much lower than the 87.5% provided by 
the PLS-DA model built with the data fusion approach. Thus, the ob-
tained results fully prove that the proposed UV–vis spectroscopic and 
chromatographic data fusion strategy would be an excellent tool for the 
authentication of herbal medicines. 

4. Conclusions 

The results obtained in this work demonstrate the benefits of data 
fusion in the discrimination of complex systems such as herbal medi-
cines, in which great variety can be found in a single class, for example, 
among different types of herbal preparations. For this purpose, chro-
matographic and UV–vis spectroscopic profiles were first assessed 
separately, confirming through PCA and Silhouette analysis that the 

Fig. 4. ROC curves (a–c) and plots of sensitivity (sn, blue) and specificity (sp, red) values as the class threshold is changed (d–f), for each class considered in the PLS- 
DA model: chamomile (a,d), passionflower (b,e) and valerian (c,f). In d-f, the vertical grey dashed line represents the discriminant threshold: 0.153 for chamomile, 
0.135 for passionflower and 0.091 for valerian. AUC: area under the curve. (For interpretation of the references to colour in this figure legend, the reader is referred 
to the Web version of this article.) 

Fig. 5. Calculated response obtained for each class in the developed PLS-DA model for both training and test sets: chamomile (a), passionflower (b) and valerian (c). 
The horizontal grey dashed line represents the discriminant threshold: 0.153 for chamomile, 0.135 for passionflower and 0.091 for valerian. Colour code: chamomile 
(red), lavender (green), passionflower (blue) and valerian (cyan). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Table 2 
Classification parameters (root mean square error (RMSE), non-error classification rate (%NER), classification rate (%), class specificity, and sensitivity) obtained in 
training and test sets. For training set, parameters were calculated by cross-validation based on venetian blinds, using 10 splits and 1 sample per split.   

PLS-DA model RMSE %NER Classification rate (%) Specificity Sensitivity 

Training set Chamomile 0.3100 100.0 100.0 1.000 1.000 
Passionflower 0.3925 100.0 100.0 1.000 1.000 
Valerian 0.5486 100.0 100.0 1.000 1.000 
Average  100 100 1.000 1.000 

Test set Chamomile 0.2517 100.0 100.0 1.000 1.000 
Passionflower 0.2928 100.0 100.0 1.000 1.000 
Valerian 0.5473 91.7 87.5 0.833 1.000 
Average  97.2 95.8 0.944 1.000  
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experimental profiles acquired were appropriate for the discrimination 
of chamomile, lavender, passionflower and valerian (81 and 85% of 
samples presented a positive Silhouette width using chromatographic 
and spectroscopic data, respectively). Nevertheless, the problematic 
samples were not the same in both models, which suggested that they 
were not relying on the same type of chemical information and, thus, 
data fusion could be a more suitable approach. Indeed, Silhouette 
analysis on the PCA model constructed with joint data showed an 
improved clusterization, with 90% of samples presenting a positive 
Silhouette width. Thus, data fusion approach was selected as the best 
option for herbal medicine discrimination and a PLS-DA model was built 
considering chamomile, passionflower and valerian as classes. The 
developed model was able to perfectly discriminate between the three 
classes of soothing herbs, overcoming the difficulties encountered when 
dealing with different types of herbal preparations. 
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