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Abstract: Rapid growth in the generation of data from various sources has made data visualisation
a valuable tool for analysing data. However, visual analysis can be a challenging task, not only
due to intricate dashboards but also when dealing with complex and multidimensional data. In
this context, advances in Natural Language Processing technologies have led to the development of
Visualisation-oriented Natural Language Interfaces (V-NLIs). In this paper, we carry out a scoping
review that analyses synergies between the fields of Data Visualisation and Natural Language
Interaction. Specifically, we focus on chatbot-based V-NLI approaches and explore and discuss three
research questions. The first two research questions focus on studying how chatbot-based V-NLIs
contribute to interactions with the Data and Visual Spaces of the visualisation pipeline, while the
third seeks to know how chatbot-based V-NLIs enhance users’ interaction with visualisations. Our
findings show that the works in the literature put a strong focus on exploring tabular data with
basic visualisations, with visual mapping primarily reliant on fixed layouts. Moreover, V-NLIs
provide users with restricted guidance strategies, and few of them support high-level and follow-up
queries. We identify challenges and possible research opportunities for the V-NLI community such as
supporting high-level queries with complex data, integrating V-NLIs with more advanced systems
such as Augmented Reality (AR) or Virtual Reality (VR), particularly for advanced visualisations,
expanding guidance strategies beyond current limitations, adopting intelligent visual mapping
techniques, and incorporating more sophisticated interaction methods.

Keywords: data visualisation; natural language interface; chatbot; survey

1. Introduction

Nowadays, the large increase in data generated by a wide myriad of sources, such
as social media, scientific simulations and IoT sensors, has highlighted the need to make
data more understandable [1]. In this context, data visualisation is essential for discovering
data insights and identifying patterns, trends and outliers. Indeed, visual representations
can transform raw data into meaningful stories that are easier for people to process and
comprehend [1]. However, creating the right visualisations to help users easily understand
the data is a challenging task. These representations should provide analysts with the
appropriate parameters, layouts and interactions to explore huge and complex datasets,
especially in terms of their size, the number of attributes (i.e., multidimensional data) and
the relationships between them (i.e., correlations, dependencies, hierarchical relationships,
network configurations) [2].

In recent years, a wide range of complex and multidimensional data visualisations
have been proposed in the scientific community [1], either for specific datasets [3] or as
more general visualisation methods [4,5], such as Sankey diagrams [6], Sunburst maps [5],
tree maps [7] and network graphs [8]. But not only academic research is interested in data
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analysis to improve or examine their work; many companies also rely on data analytics
to improve their businesses and, hence, enhance the services provided to their users [9].
Consequently, visualisation methods and tools are evolving rapidly and constantly to solve
new challenges posed in the field to adapt to changes.

Although static visualisations, i.e., those that do not have any interactive elements,
are useful in certain circumstances, such as analysing simple data, this is not the case
with large multidimensional data containing complex relationships that require more user
interactions to navigate through the data [10]. Indeed, the complexity of the data and its
multidimensionality requires a wide range of interaction possibilities to filter specific data,
to show projections in 2D and 3D, to examine connections between data items and cluster
them, and to obtain statistics, among others [11]. This complexity leads to the design of
intricate visualisation systems with steep learning curves [12]. Non-expert users, who are
not used to working with visualisations or analysis tools, can have particular difficulties
selecting the visualisation method that best fits their data. Fortunately, advances in sensors
and Natural Language Processing (NLP) technologies have facilitated the use of natural
interaction methods based on body gestures and conversations that allow for the creation
of seamless and comfortable user experiences [13].

Focusing on Visualisation-oriented Natural Language Interfaces (V-NLIs), many aca-
demic research projects and popular companies, such as Tableau, IBM Watson and Mi-
crosoft, have introduced and integrated them into their visualisation tools. These tools
are effective and easy to learn, since they allow users to interact with visualisations using
natural language, without needing to transform their queries into tool-specific actions and
therefore allowing them to focus on their analysis [12]. In this context, natural language is
considered a complementary input modality to direct manipulation (WIMP—Windows
Icons Menus Pointers). In fact, the results of various studies have confirmed that users
were more comfortable and interested in using multiple input modalities, i.e., multimodal-
ity [14,15]. Another major benefit of including Natural Language in visualisations is its
inclusiveness [16], as it can support blind and low-vision people when interacting with
visualisations.

Recently, large generative models such as ChatGPT [17] and DALL-E [18] have given a
great impulse to the NLP field and surely may be exploited by V-NLI soon. However, NLIs
(Natural Language Interfaces) still face major challenges. For instance, users’ expectations
are usually very high since they want to communicate with the system in the same way as
they interact with other human beings. The conversational system therefore has to deal
with ambiguities that might even be interpreted differently by different people [19].

Moreover, most NLIs for visualisation started out relying on limited jargon (i.e.,
vocabulary based on specific data), simple visualisations (e.g., bar charts, line charts) and
functions such as filtering and selection. For instance, Cox et al., who were pioneers
in the field, proposed a basic system using form-based interaction, meaning that users
typed their queries (analytical intents) into a text box in order to obtain the corresponding
visualisation outputs [20]. As research has advanced, more sophisticated V-NLIs have been
developed, such as those referred to as chatbot-based. Chatbots are intelligent conversational
systems that not only provide visual outputs to users but also guide them, especially users
with less experience in visual analytics, with additional aids such as textual feedback,
recommendations, and complex multi-stepped queries [21].

Despite V-NLI being a relatively new field, several survey papers have already ad-
dressed this topic. Shen et al. [12] presented a broad review of NLIs for visualisation. They
summarised various features of NLIs including query interpretation, human interaction
and dialogue management to highlight existing gaps in the field. Moreover, they analysed
a variety of NLIs for visualisation including simple (one turn interactions), conversational
(systems that track the conversation with follow-up questions) and narrative storytelling
(systems that show multiple visualisations side by side with annotations).

Other reviews of the literature have focused on specific aspects of V-NLIs.
Srinivasan et al. [11] proposed three task-based categories: visualisation-related tasks, data-
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related tasks and system-control-related tasks. Moreover, a recent systematic review [22]
analysed NLIs both for databases and for data visualisations in terms of input and output.
On the input side, they examined multimodality and different types of queries, such as
open-ended or factual. On the output side, they considered those that give textual answers,
generate new visualisations and interact with existing ones.

In summary, previous works have focused on reviewing Visualisation-oriented Nat-
ural Language Interfaces that were mainly conceived as form-based question-answering
systems, where the users ask the system questions using UI (User Interface) widgets, and
the system’s answer takes the form of text, a filtered visualisation and/or a new visual-
isation. Nevertheless, recent advances in Natural Language Processing have facilitated
a double enhancement of these systems, both in its inner workings (NLU—Natural Lan-
guage Understanding and NLG—Natural Language Generation) and in its interface. The
interface is now a chatbot (embodied or not) that engages in conversation with the users
to facilitate their interaction with visualisations. To the best of our knowledge, there has
been no attempt in the V-NLI literature to specifically examine the relationship between
the fields of data visualisation and chatbots. Thus, this paper presents a scoping review
that analyses synergies between both fields and also summarises knowledge gained in
analysing research works that have proposed chatbot-based V-NLIs for data visualisation.
Our contribution is as follows:

• We present a scoping review to study the synergies between both data visualisation
and chatbots fields to analyse how the use of chatbots improved data visualisation
and visual analysis.

• We propose an analysis framework based on the three spaces of the data visualisation
pipeline, i.e., Data Space, Visual Space and Interaction Space as well as on a char-
acterisation of chatbots using four dimensions called AINT (A—Anthropomorphic,
I—Intelligence, N—Natural Language Processing, and T—inTeractivity).

• We extract insights and challenges that will be helpful for researchers to develop and
improve V-NLIs.

2. Background

In this section, we explore the two topics of this review, data visualisation and chatbot-
based V-NLIs. We present the main vocabulary relating to these topics, which we will use
to analyse them.

2.1. Data Visualisation

A common data visualisation process consists of several steps [12,23]. Figure 1 details
the data flow through these steps constructing the visual structures and how the end-user
can interact with the data involved in each step (from right to left, see the arrows in the lower
part of the figure), filtering regions (View Transformation), changing visual parameters
(Visual Mapping), and making more complex requests on the data (Data Transformation).
Starting from the three spaces in which the visualisation takes place—Data Space, Visual
Space and Interaction Space—we present the most relevant characteristics that will serve
as a basis for describing the works under study in this scoping review.

Figure 1. Overview of the Data Visualisation pipeline adapted from [12].
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Data Space

The Data Space (shown in green in the upper-left part of Figure 1) covers the space
in which the data are directly processed. When the input data are in a tabular format, the
Data Transformation stage usually offers a set of operations to filter, cluster and aggregate
data, among other functions, which can help to provide some data insights. To describe the
related works in this systematic review, we use Shneiderman’s [24] categories based on the
implicit nature of the data, which are: data where items are distributed along the orthogonal
axis (1D, 2D and 3D), data containing items in higher dimensionalities (complex use of
the space when the dimension is greater than three), trees or hierarchical distributions
(connected data), and networks (complex interconnected data). The two former categories
are based solely on dimensionality, considering data as a set of individual items or sampled
points in the space, in a structured or unstructured way, but without interconnections
between them. However, trees and networks encode relationships between the sampled
points: trees describe data containing parent–child relationships, while networks codify
more complex relationships, which may be directed or undirected [25]. Moreover, in all
the data categories, each point contains samples of different attributes that Shneiderman
categorised as nominal, numerical (ordinal or quantitative) and temporal. Moreover, if
these attributes are mapped into a 2D or 3D space, they are considered spatial.

Actually, these data categories help to identify the Data Transformation (see the first
blue square in Figure 1), which is decisive for discovering insights in the data. Classical
data transformations such as grouping, aggregation, enclosure and binning temporal items
are widely associated with specific data categories in the visualisation community [26]. For
instance, while aggregation functions such as mean and sum are suitable for quantitative
data, grouping is better suited to nominal and ordinal data, and binning intervals is the
right transformation in the case of temporal samples [12]. In addition, recent works have
proposed more complex transformations of multidimensional datasets to extract mean-
ingful subsets using relational queries [27–29]. In the case of connected structures, the
topology can play an important role in the transformations, and also in the next stage of
Visual Mapping [30]. For instance, extracting the largest path is a common transforma-
tion in elongated trees, and obtaining the widest level is a more typical transformation
in compact hierarchies. Therefore, regarding the data types and their different transfor-
mations, in our study, we categorised data as: (1) tabular data, i.e., data with individual
and non-connected items, where classical data transformations are enough, and (2) com-
plex data, i.e., high-dimensional, temporal and interconnected data, which require more
complex transformations. Moreover, both categories of data not only involve different
transformations but also different strategies in the successive steps of the pipeline.

Visual Space

The second space involved in the data visualisation process is the Visual Space (shown
in blue in the upper-middle part of Figure 1), which refers to how to map the data in visual
structures (the Visual Mapping Step) and how to display them in a viewport (the View
Transformation Step).

The Visual Mapping Step involves the definition of the next three aspects:

• The spatial substrate—i.e., the space and the layout used to map the data;
• The graphical elements—i.e., marks such as points, lines, images, glyphs, lines, etc.;
• The graphical properties—also called retinal properties, i.e., size, colour, orientation,

etc. [23].

In the spatial substrate, a wide variety of layouts for displaying data have been
proposed, from the simplest, such as those based on coordinate axes, to the more complex,
such as those representing networks [31,32]. In fact, the more basic and simple they are, the
more they are exploited in different applications. In our work, we classify these layouts as
basic and advanced. Basic layouts refer to chart-based layouts, which have x and y axes
(e.g., bar, line, scatter plot), table-based layouts and map-based layouts (such as a bubble
map). We consider advanced layouts to be those that deal with higher dimensionalities
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(e.g., parallel coordinates) and with connections (e.g., radial tree, circle packing, network
graph, sunburst diagram, chord diagram).

Even with this simple classification into basic and advanced, we still have a wide range
of basic and advanced layouts, and identifying the appropriate layout is therefore complex,
especially if the users who analyse the data are not experts. Again, depending on the data
types, some layouts fit better (i.e., a 3-aligned axis is a good choice to show quantitative
spatial 3D data where each axis corresponds to one coordinate, and the circle packing
layout fits well for simple hierarchical data). Moreover, once the layout has been selected,
the next challenge is how to map the data attributes onto it. End-users can select and
assign these characteristics manually, i.e., user-defined [33], but systems commonly use
pre-defined layouts that only fit specific data. For example, Ref. [34] maps conversational
hierarchical data with specific labelled attributes (e.g., negative or positive) to a stacked
bar layout that is custom-designed for their data with indentations showing the hierarchy,
and is therefore not flexible enough to be adapted to other data. Indeed, other approaches
propose rule-based strategies to choose the layouts and their configuration dynamically
according to the analysed data.

These rule-based approaches are commonly used in commercial systems such as
PowerBI [35] and Tableau in [36]. Tableau integrated the “Show Me” algorithm [37], which
selects and maps layouts depending on data type (text, date, date and time, numeric or
boolean), data role (measure or dimension) and data interpretation (discrete or continuous).
For example, to create a bar chart, users need to place at least one quantitative attribute and
one categorical attribute to the y and x axes, respectively, and Tableau then automatically
creates the bar chart. Similarly, Tableau needs two quantitative attributes to automatically
create a scatter plot. Several academic studies used the “Show Me” algorithm to select
visualisation methods [38–40]. Another rule-based method [30] deals with hierarchical
data and infers the tree-based layout depending on the shape of the data hierarchy, i.e.,
they use tree layouts for elongated trees and radial layouts for compact structures. More
intelligent approaches infer the most suitable layout using some visual examples given by
users [41], while others recommend layouts from among five key design choices [42] and
use pre-trained NN models that map data to predefined chart templates [28].

Additionally, the Visual Mapping step must consider which graphical elements to
use and their properties. There is a broad range of graphical elements (also called mark
types) used to map attributes, such as points, lines, glyphs, icons and symbols. Some of
them are more suitable for displaying quantitative attributes such as points, while others
are better suited to nominal data, where a symbol can communicate the meaning of the
data in a pictorial way [2,43]. In this paper, we analyse the related works in terms of a
semantic continuum of the graphical elements which goes from the more abstract (e.g.,
points, cross, stars) to the more meaningful or symbolic (e.g., glyphs, icons). We also take
into account the graphical properties that can enhance one’s understanding of the graphical
elements, such as colours, size, position, orientation, value, textures, shapes, connectivity,
grouping and animation. In addition, as in layout selection, finding adequate graphical
elements for a given dataset and its properties is not a trivial task. In general, users can
interactively select these graphical elements, although, as in the case of layouts, other
methods have been proposed based on expert-defined rules [44] and intelligent algorithms
that recommend [45] or infer the elements by means of pre-trained models with the most
commonly used graphical elements [46]. Thus, in summary, to analyse the reviewed papers
in terms of the visual mapping identification, i.e., to choose layouts and graphical elements
and properties, we use the following categories: fixed, user-defined, rule-based (we refer
to basic rule-based methods as those that follow a set of heuristics and make decisions
based on them), and intelligent methods (intelligent methods involve the use of machine
learning, artificial intelligence or other computational techniques to enable systems to learn
from data, adapt and make decisions in a more flexible and adaptive manner).

Once the visual mapping is performed, the View Transformation stage allows users
to change the viewpoint (e.g., zooming and panning), perform location probes (to measure
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values in samples), and create some distortions in the image (i.e., change the projection
type) [23]. Additionally, view transformation allows users to take into account multiple
views simultaneously, as well as animations and others. Some view transformations
emphasise data with importance-driven strategies to enhance values and regions of interest,
among other factors. Focus+Context [47] highlights the important data (focus) while the
rest of the data provide additional information on the background (context), which allows
users to see the details as well as the entire perspective. For example, imagine a line chart
showing sales over time in which the peak point is highlighted (focus) but you can still see
the all sales over time in the background (context). Other methods use the size of the items
to show different levels of detail simultaneously, such as the multi-resolution approach [48],
which allows users to select different resolutions to drill down and see details as needed.
For example, a treemap exploits multiresolution, showing overall sales of all the continents
in the outer rectangles so that the user can select a specific continent to view the details of
sales of its countries in nested rectangles. We will describe the reviewed works in terms of
the number of views that they use simultaneously (Single/Multiple) and the strategy used
to emphasise regions or parts of the view (zoom, panning, focus+context, level of detail,
multiresolution and others).

Interaction Space

Last but not least is the Interaction Space (shown in blue in the upper-right part of
Figure 1), where the users interact with all the previous steps defined above. There have
been many attempts to categorise different interactions [49,50]. Yi et al. [10] proposed
seven interaction methods based on the user’s intents: select, explore, reconfigure, encode,
abstract/elaborate, filter and connect. Select is used for marking data points choosing data
points, layouts, while explore refers to navigating through the data, including functions
such as zooming and panning. Reconfigure can be used to swap layout attributes on the
x and y axis, or can use an algorithm to cluster some data points together in a network
visualisation. Encode is used to assign or change graphical properties in terms of colour,
size and shape. Abstract/elaborate displays details on demand such as collapsing/drilling
down on a visualisation. The filter method shows data that fulfill a given condition. Finally,
the connect method highlights the relationships between data items.

Users can utilise all these methods through different interaction styles. In our study,
we consider a coarse two-labelled categorisation: Basic and Advanced. Basic styles refer to
the WIMP (Windows, Icons, Mice, Pointer), while Advanced styles involve techniques such
as Virtual Reality (VR), Augmented Reality (AR) and Natural Language. These categories
will help us to explore the value that a visualisation-oriented chatbot can add to these
interaction styles.

2.2. Chatbot

Chatbots are software systems able to engage in conversations with users [51], thereby
representing a natural interface for them. This naturalness has favoured its spread in
domains such as education [52], health [53], business [54] and, of course, fields such as
visualisation analysis [55,56].

In Figure 2, we propose a general characterisation of chatbots using four dimensions,
named AINT, depending on how we view them. First, chatbots may have Anthropomor-
phic (A) properties such as appearance [57] and gender and also may be endowed with
personality and emotions [58]. Second, as an Intelligent system (I), task-based chatbots
can proactively make data-driven decisions to give support to users’ activities, and social
chatbots maintain meaningful and engaging conversations with their users. In any case,
chatbots can also be enhanced through a variety of AI methods and techniques, for example
predicting users’ necessities and behaviours and thereby personalising the UX (User eXpe-
rience) [59]. Third, as a Natural language processing system (N), chatbots usually consist
of an NLU (Natural Language Understanding) part [60], which understands the intentions
(goals) of the users (i.e., the inputs), maintaining the visual context of the conversation, but
they must also provide a textual, visual, auditive answer to them, based on that context.



Appl. Sci. 2023, 13, 7025 7 of 34

Those answer types (i.e., the outputs) can be either predefined or automatically generated.
In the specific case of text, they are usually created by an NLG (Natural Language Gener-
ation) system [61]. Finally, as an interactive system (T), chatbots can be integrated with
different interaction styles (WIMP, VR, XR) and be equipped with a multimodal interface
through voice, text and gestures.

Figure 2. AINT—General characterization of a Chatbot based on four dimensions: A—Anthropomorphic,
I—Intelligence, N—Natural Language Processing, and T—inTeractivity.

Next, we put our focus on chatbots in the specific context of visualisation. We analyse
several aspects of the interactive space of a visualisation-oriented chatbot (see Figure 3),
including its user interface as well as its input and output mechanisms, which are listed
next to them in the figure, and will be explained in the following. From this analysis, there
will emerge the main V-NLI features (User Interface, Input and Output, indicated in bold)
and sub-features (indicated in italic) that will lead the analysis of the related work in this
scoping review.

Figure 3. The interactive space’s components of a V-NLI: User Interface, Input and Output.



Appl. Sci. 2023, 13, 7025 8 of 34

User Interface

Visualisation-oriented Natural Language Interfaces (V-NLIs) are interactive systems
(AINT) designed to facilitate the users’ visual analytic tasks. They can be designed using
two different user interfaces (UI): a form-based interface and a chatbot-based interface.
On one hand, a form-based V-NLI [40,62] (see Figure 4) is usually composed of a text
box that allows the users to introduce the visualisation query using natural language,
though it also has other widgets, for example, to refine (filter) the resultant visualisation.
Nevertheless, these forms are usually not designed to engage in follow-up questions with
the visualisation system. On the other hand, a chatbot-based interface [63] (see Figure 5) is
distinguished by a named entity (also known as an agent), with gender and appearance, as
well as with the ability to recognise and express emotions, while having personality traits
(i.e., empathetic, fun, neutral). Chatbots are usually presented to the users as a separate
“chat window” from the visualisations. This window displays the conversation but also
complementary outputs (explanation, charts, and others), as we will see later. We can say
that a chatbot-based V-NLI may have all of the aforementioned chatbot characteristics, i.e.,
AINT, meanwhile form-based V-NLI are potentially endowed with all of them except the
anthropomorphic traits, i.e., INT.

Figure 4. Snowy [40], a form-based V-NLI example. Dashboard including: (A) Attribute panel,
(B) manual view specification and filter panel, (C) NL input box and textual feedback, (D) visualisa-
tion space, and (E) query recommendation panel.

Figure 5. TransVis [63], a chatbot-based V-NLI example. Dashboard including; (1) Architecture
visualisation, (2) and (3) area line graphs, and (4) chatbot window.
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Input

The types of inputs (analytical questions) that a V-NLI system deals with are low-
and high-level queries. In Low-level queries, the users explicitly describe their intent, for
example, “Show me action films that won an award in the past 10 years”. Therefore, these
queries can be interpreted easily. In contrast, High-level open-ended queries are naturally
broader and their interpretation can be more complex [15,50]. In many cases, these high-
level analytical questions should be decomposed as a series of low-level queries and be
answered as such [64]. For example, to answer “What are the trends in award-winning films?”
the system needs to infer the low-level queries: first, visualise award-winning films over a
certain period of time, and then show their relevant characteristics (genre, special effects,
franchises and others). Whenever the V-NLI system is not able to give an answer to this
type of complex question, it might need to ask additional questions to the users. Note
that both types of queries allow the users to interact with the data by means of the seven-
interaction methods (select, explore, reconfigure, encode, abstract/elaborate, filter and
connect) as defined in the description of the Interaction Space in Section 2.1, at any of
the steps (View Transformation, Visual Mapping and Data Transformation) of the data
visualisation pipeline as depicted in Figure 1.

Moreover, queries can be One-turn or Follow-up. In One-turn queries, the users ask
the system in a single shot. Thus, even when the conversation may flow along several
one-turn queries, it may not be necessary for the V-NLI system to maintain the context of
the conversation [65]. On the other hand, the users usually perform Follow-up queries,
which are a series of interconnected questions [66]. Therefore, the system should be able
to remember the context of the conversation while answering the questions [15,39]. For
example, if the first query is “Colour nodes by age” and the second query is “Now by gender”,
NLI understands that the user continues talking about nodes and wants to use the same
function, colour, but now colouring them by gender.

Nevertheless, the underlying system (AINT) may fail to understand the queries
of the users’, thus not meeting their expectations [67]. Moreover, inexperienced users
may have difficulties expressing their queries about visualisations. Then, the design of
the conversational system faces the challenge of understandability, i.e., the ability of the
system to be aware of the users’ intents, really knowing and grasping the nuances of users’
intentions, and also the challenge of discoverability [19], i.e., the ability of the users to know
what they can ask to the system. Indeed, both properties are closely related since designing
chatbots for discoverability may improve understandability.

The challenges of both understandability and discoverability require an interactive
conversational system to guide the users on how to effectively communicate their goals
(also referred to as intentions). Well-known Conversational Guidance strategies are
based on help—the chatbot gives the users hints on what to ask; intent auto-complete
functions—the system makes suggestions of possible intents while the users are writing the
intent [62,68–70]; and intent recommendations [40]—after giving a response, the system
suggests, based on data or on the previous turns of the analytical conversation, possible
next intents to the users. Additionally, the understandability problem of NLIs is mainly
derived from the biggest challenge that NL poses, which is ambiguity. One solution is to
ask the users what they meant or to use disambiguity widgets [62,68]. For instance, when
the user query is “Show me medals for hockey”, the NLI might not correctly interpret which
type of hockey the user is referring to. Then, a widget may appear for the term ‘Hockey’
showing two options ‘indoor hockey’ and ‘ice-hockey’ as both of these sports are basically
called hockey. Thus, users can select the right one either through direct manipulation or by
using natural language.

In the context of follow-up queries, the V-NLI should help the users to transition
through the different visualisation states of the analysis. Indeed, research studies concluded
that users prefer to carry out analytical conversations, meaning users want to go beyond the
first visualisation they receive when making a request to the conversational interface [71].
Nevertheless, previous Conversational Guidance strategies (help, auto-complete and rec-



Appl. Sci. 2023, 13, 7025 10 of 34

ommendations) may be sufficient for helping with the (initial) users’ intent but could be
insufficient for inferring the user’s transitional intents (elaborate, adjust/pivot, start new,
retry and undo) throughout the different visualisation states (interaction methods such
as select attributes, filter, encode, transform) of an analytical conversation [67]. Therefore,
intelligent Conversational Guidance (AINT) approaches are needed to predict users’ goals
based on their interactions throughout the analytical conversation and then proactively
guide the user.

Another aspect of analytical visualisations is that they require dealing with co-reference,
since the users may refer differently to the same entity during the conversation, for example,
using pronouns. Fortunately, nowadays the most common NLP toolkits such as spaCy
and AllenNLP incorporate components for co-reference resolution in their pipelines [72].
Moreover, an interesting case of co-reference arises when natural language interfaces coexist
with other interaction styles (Multimodality) such as menu selection (WIMP—Window
Icon Mouse Pointer) and direct manipulation (XR—Virtual or Augmented Reality) [73]. It
may happen that users’ NL queries refer to what they directly manipulated using clicks,
gestures or eye-gaze, and, in consequence, the V-NLI system should keep also track of
these non-textual references, i.e., the users’ reference to what they did, not only to what
they said. Thus, there should be a way of translating (WIMP, VR, AR) manipulations
in the visualisation to text (with named entities) and so to be ready to be solved by the
co-reference model.

Output

In addition to the requested visualisation, a V-NLI can consider Complementary
Output such as Feedback, either text or visual: (i) to inform about the query’s success or
failure, (ii) to justify relevant decisions taken by the system, (iii) to provide the users with
additional explanations to better interpret the resulting visualisation (textual, oral, graphs,
or statistics) and annotations, and (iv) to display changes in the User Interface (highlighting
menus, buttons). Specifically, annotations are superposed visual elements that enhance the
generated visualisation and thereby further communicate more information [74]. Another
type of complementary output is a visual narrative, which is text combined with images
presenting the information with narrative components (actor, plot, setting) [75]. Finally,
when there are other Interaction Styles integrated into the V-NLI system, the output
should be synchronised to help the users be aware of the operation performed (e.g., filters
updated in WIMP), and it should also be enhanced to facilitate a better understanding of
the required visualisation (e.g., overlying images in AR) and to better communicate the
system’s response (e.g., haptic feedback in VR).

3. Method

We conducted this scoping review (a method that is used to analyse existing literature
rapidly by mapping information using defined key concepts to find evidence and iden-
tify research gaps [76]) following the guidance article by Peters et al. [77] and we used
the PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
Extension for Scoping Reviews) checklist, introduced by Tricco et al. [78]. That is, we
first introduce our main objective, stating three research questions. Next, we explain the
inclusion and exclusion criteria used to find the relevant works in the area, as well as the
searching strategy. Finally, we describe the categories we have selected to analyse the
compiled studies.

Note that we considered different PRISMA recommendations as follows. First, regard-
ing the publication bias, we conducted a comprehensive and non-selective search across
multiple databases, including searching for unpublished studies and personal communica-
tion with researchers to obtain complete information about relevant studies. Second, related
to language bias, although PRISMA recommends that systematic reviews should not be
limited to studies published in a specific language, a limitation of our study is the selection
of English-only papers because of both the limited resources for translation and the lack
of a comprehensive non-English literature. Third, for a future updating of this review, we
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propose to revise the search strategy, reassess inclusion and exclusion criteria, conduct a new
quality assessment, and update the data analysis. Finally, notice that we do not have any
conflict of interest that could potentially bias the objectivity or impartiality of our review.

3.1. Objectives

The main objective of this scoping review is to systematically map the research con-
ducted in chatbot-based NLIs for data visualisation. We primarily focus on answering
the question, “How has the use of chatbots improved data visualisation and visual analysis?”
In this context, we want to analyse specifically the synergies between both fields of data
visualisation and chatbots based on the three spaces of the data visualisation pipeline, i.e.,
Data Space, Visual Space and Interaction Space (see Figure 1). Therefore, we will describe
and summarise the scientific evidence on this topic to identify any existing gaps and offer
future research directions. To further clarify our goal, we explore three research questions
related to each space.

• RQ1: How do chatbot-based V-NLIs contribute to interactions with the Data Space?
• RQ2: How do chatbot-based V-NLIs contribute to interactions with the Visual Space?
• RQ3: How do chatbot-based V-NLIs enhance the user’s interaction with the visualisation?

3.2. Study Selection

In this review, articles were selected according to the inclusion criteria, which we
define as the following: (i) Articles that are related to Natural Language Interfaces with
data visualisations; (ii) Articles that are written in English; (iii) Articles that are published
between 2000 and 2023; and (iv) Articles long or short that are published in a journal,
conference or book chapter. Furthermore, articles were excluded if (i) Articles included NLI
or visualisation individually, i.e., NLI used to answer questions directly from a database or
visualisations lacking NL input modality; (ii) Full text of the article was not available; and
(iii) Articles that did not present and contribute original work (i.e., opinion articles).

3.3. Sources of Evidence and Search Strategy

The search strategy was developed according to the three-step JBI [79] standard
approach recommended for scoping reviews:

• Step 1. Limited search to refine initial keywords: to find related articles, we searched
databases (IEEE Xplore, the ACM Digital Library and Springer) with a combination of
keywords including {(‘chatbot’) AND (‘visualisation’)}, {(‘natural language interface’)
AND (‘visualisation’)}. We found a total of 3550 records in this step of the search (IEEE
Xplore: 473, ACM: 525, Springer: 2552).

• Step 2. Search with refined keywords on Google Scholar, in relevant conferences (Eu-
roVis, IEEE VIS, CHI) and research groups of the area, as well as recent surveys and
systematic reviews: (‘chatbot’) AND (‘data visualisation’)}, {(‘natural language inter-
face’) AND (‘data visualisation’)}, {(’conversational agent’) AND (‘data visualisation’)}.
We found 3148 references without duplicates.

• Step 3. Hand-refined search of found references: we screened titles and abstracts of
the papers selected in the first two steps, and, if necessary, we reviewed the full text.
In the final selection, excluding surveys, reviews and poster papers, we identified
62 recent articles from selected sources that are about the Natural Language Interface
for Data Visualisation (V-NLI). However, as we focus concretely on chatbot-based
V-NLIs, we excluded 42 of these articles, and we selected a total of 20 related articles.

3.4. Data Extraction

To analyse the collected works, we use the categories defined in Section 2, exploring
the three spaces involved in the data visualisation pipeline (Data, Visual and Interaction
Spaces), as well as chatbot characteristics (the interface, the Input and the complementary
Output). In the following, we summarise the categories detailing the tables where the
reviewed works are analysed.
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Categories related to the Data Space (see Table 1) include:

• Description of data.
• Data type (Tabular or Complex).
• Attributes (Nominal, Numerical, Temporal, Spatial).
• Data transformation.

In relation to the Visual Space (see Table 2), the characteristics considered include:

• Visualisation Category (Basic or Advanced) and Type.
• Abstract (Lines, Points, Bar) and Symbolic (glyphs, icons) graphical elements.
• Visual Mapping Identification (Fixed, User-defined, Rule-based, Intelligent).
• View Transformation (Single or Multiple).
• Interaction Style (Basic—WIMP or Advanced—NL) .

In the Interaction Space, we collect information about the seven interaction methods
proposed by Yi et al. [10]: select, explore, reconfigure, encode, abstract/elaborate, filter
and connect.

Finally, regarding chatbots:

• V-NLI Interface (chatbot-based or form-based).
• Input:

– Query Type (low or high);
– One-turn or Follow-up queries;
– Conversational Guidance (Help, Auto-complete, Recommendation);
– Multimodality (WIMP, Touch, Gestures).

• Output:

– Feedback (textual or visual): inform, justify, decisions, additional explanations (text,
oral, graph, statistics, annotations), UI changes (menus, buttons) and narratives.

– Interaction Style (WIMP, VR, AR).

Table 1. Summary of V-NLIs (ordered alphabetically by name) in defined data categories. Description
of data, Data type (tabular and complex), Attributes (Nominal (Nom), Numerical (Num), Temporal
(Temp), and Spatial (Spat)), and Data Transformation.

V-NLI Year Data Space

Description of Data Data Type Attributes Data Trans.

ACUI [80] 2017 Software bundles Complex (Network) Nom

Ava [81] 2020 Data science Tabular Num X

Boomerang [82] 2021 Finance Tabular Nom, Num X

Chat2Vis [83] 2023 Movies, Cars, etc. Tabular Nom, Num

ConVisQA [69] 2020 Conversations Complex (Hierarchical) Conversation

Data@Hand [84] 2021 Health metrics Complex (Temporal) Num, Temp X

DataBreeze [85] 2020 Colleges Tabular Nom, Num

Evizeon [39] 2017 Diseases, houses Tabular Nom, Num, Spat, Temp X

FlowNL [70] 2022 Hurricanes Complex (Flow) Hurricanes, Spat, Num

GameBot [86] 2020 Sports data Tabular Nom, Num, Temp

GeCoAgent [87] 2021 Diseases Tabular Nom X

InChorus [88] 2020 Finance Tabular Nom, Num, Temp X

Iris [89] 2018 Data science Tabular Nom, Num X

MIVA [90] 2020 Coronavirus data Tabular Nom, Num, Spat, Temp

ONYX [91] 2022 Coronavirus data Tabular Nom, Num, Spat, Temp

Orko [15] 2017 Football players Complex (Network) Nom, Num

Snowy [40] 2021 Movies Tabular Nom, Num, Temp X

Talk2Data [64] 2021 Finance, Cars Tabular Nom, Num, Temp X

TransVis [63] 2021 Transient Complex (Network) Nom, Num

Valetto [92] 2018 Cars Tabular Nom, Num X
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Table 2. Summary of V-NLIs in defined visualisation categories. Visualisation Category (Basic
and Advanced), Graphical Elements (Lines, Points, Bars), Visual Mapping Identification (Fixed,
User-defined, Rule-based and Intelligent), and View Transformation (Single and Multiple views).

V-NLI
Visual Space

Visual Mapping
View
Trans.Visualisation Graphical Visual Mapping

Category (Type) Elements Identification

ACUI [80] Adv (Network) Lines, Points Fixed Single

Ava [81] Basic (Line) Lines User-defined Single

Boomerang [82] Basic (Bar, Scatter, Line) Lines, Points Rule-based Multiple

Chat2Vis [83] Basic (Bar, Scatter, Line, Box-plot) Lines, Points, Bars Intelligent & User-defined Multiple

ConVisQA [69] Adv (Hierarchical stacked bar) Bars Fixed Single

Data@Hand [84] Basic (Bar, Line) Lines, Bars Fixed Multiple

DataBreeze [85] Basic (Dots) Points Fixed Single

Evizeon [39] Basic (Bar, Scatter, Line, Map) Lines, Points, Bars Fixed & Rule-based Multiple

FlowNL [70] Adv (Flow) & Basic (Bar, Map) Lines, Bars Fixed Multiple

GameBot [86] Basic (Bar, Line, Table, Shot) Lines, Points, Bars Rule-based Single

GeCoAgent [87] Basic (Pie) Pies Fixed Single

InChorus [88] Adv (Parallel) & Basic (Bar, Scatter, Line) Lines, Points, Bars Rule-based & User-defined Single

Iris [89] Basic (Scatter) Points User-defined Single

MIVA [90] Basic (Bar, Line, Map) Lines, Points, Bars Fixed Multiple

ONYX [91] Basic (Bar, Scatter, Map) Points, Bars Fixed & User-defined Single

Orko [15] Adv (Network) & Basic (Bar) Lines, Points, Bars Fixed Multiple

Snowy [40] Basic (Bar, Scatter, Line) Lines, Points, Bars Rule-based Single

Talk2Data [64] Basic (Bar, Scatter, Line, Pie, Area) Lines, Points, Bars, Pies Rule-based Multiple

TransVis [63] Adv (Network) & Basic (Line) Lines, Points Fixed Multiple

Valetto [92] Basic (Scatter) Points Fixed Single

4. Results

In the 20 articles identified by our search strategy (Section 3.3), we included 10 articles
that are chatbot-based [63,80–83,86,87,89,91,92] and 10 articles that are form-based NLIs but
have some chatbot characteristics such as providing feedback [15,39,40,62,64,69,70,84,88,90].

4.1. Data Space

We analysed all the research works in terms of the main characteristics involved in the
Data Space; see Figure 6.

Figure 6. Data Space overview and the main characteristics of the data involved in the visualisa-
tion pipeline.

Table 1 summarises the analysed research works describing the explored data through
visualisation: movies, sports, coronavirus, finance and others. We found that 70% (14/20) of
them used multidimensional tabular data [39,40,64,81–83,85–92], while some of them also
included spatial data [39,70,90,91]. Moreover, the table details the kind of data attributes
each V-NLI supports (nominal, numerical, temporal, spatial). Six of the twenty visualisation
systems used complex data. For instance, Ref. [80] has data related to software bundles and
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services such as OSGi bundles, and [15] uses network data displaying the relationships
between football players. Furthermore, Ref. [69] has hierarchical data that is collected from
online conversations and [70] works with flow data such as hurricanes. Finally, Ref. [84]
has sequential temporal data (e.g., sleep time during each night), and [63] has transient
data which is a data type that is relevant to a time period; in this case, it is the quality of
software services over time.

Regarding the Data Transformation step, 10/20 V-NLIs used a kind of data transfor-
mation. For example, Ava [81] and Iris [89] are both designed to facilitate data science
tasks and they transform data to perform statistical analyses, such as logistic regression
and finding correlations, respectively. Similarly, Valetto [92] and Boomerang [82] compute
correlation between attributes, and the latter also finds aggregated values. Data@hand [84],
InChorus [88], Evizeon [39] and Snowy [40] also perform aggregation functions such as
average and sum. GeCoAgent [87] also computes aggregation functions, as well as other
data transformations such as clustering, regression, etc., while extracting genomics data.
Finally, Talk2Data [64] calculates the difference between numerical attributes. In general,
the reviewed methods applied basic transformations that were not highly complex, i.e.,
those that entail more “intelligent” data processing.

4.2. Visual Space

Regarding the Visual Space (Figure 7), we summarise in Table 2 the reviewed works
in terms of Visual Mapping components (graphical elements, identification and type of
visualisation or substrate) and View Transformation details (use of single or multiple views
and the type of interactions). Most of the articles employed explicitly basic visualisations
(14/20, 70%) [39,40,64,81–87,89–92]. The most common methods are bar charts, line charts
and scatter plots.

Figure 7. View Space overview and the main characteristics of the Visual Mapping and the View
Transformation steps.

Most of the V-NLIs include a combination of these common methods [40,64,82–84,86]. Ad-
ditionally, Chat2Vis [83] includes a box plot, Talk2Data [64] has a pie chart and Gamebot [86]
offers users game shot charts about football and basketball games, as well as displays games
statistics in tables. Moreover, some V-NLIs include a map chart, while [39,90,91] have 2D
maps in addition to the most popular methods, and [70] includes a 3D map. There are five
V-NLIs that have only one visualisation method: GeCoAgent [87] has a pie chart, Ava [81]
has a line chart, Valetto [92] and Iris [89] have scatter plots, and DataBreeze [85] uses dots
to visualise every data point individually.

Only a small percentage of these studies used advanced visualisation methods (6/20,
30%) (see Figure 8). For example, Bieliauskas and Schreiber [80] and Orko [15] implemented
network visualisations as their main visualisation. In addition, Orko includes additional
basic visualisation methods such as a bar chart to support its main visualisation. On the
other hand, Tansvis [63] uses a line graph as the main visualisation for analysing transient
data (quality of the software system over time), though it has a network graph for displaying
the overview of the software system, where users can select a part to explore transient
behaviours. ConVisQA [69] created a novel design to show the hierarchical structure of
conversations using stacked bar charts with indentations to show the hierarchy. ConVisQA
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also displays the conversations on the right-hand side of the screen. InChorus [88] supports
popular basic visualisations such as bar, line and scatter, and they also included one complex
option, parallel plots. FlowNL [70] used flow visualisation to show flows occurring on
the earth (e.g., hurricanes). FlowNL also included basic visualisation methods for giving
additional information such as a bar chart displaying the velocity of the hurricanes.

Figure 8. Four proposals for complex visualisation: (a) ConVisQA [69], (b) FlowNL [70] including
(a) input box, (b) dialog box to solve unknown terms, (c) query formula, (d) objects, (e) suggested
queries, and (f) visualisation, (c) InChorus [88], and (d) Orko [15] including (A) input box, (B) network
visualisation, (C) access icons, (D) details container, (E) summary container, and (F) filter and
visual encodings.

Moreover, all V-NLIs, including basic and advanced visualisations, used abstract
graphical elements (lines, points, bars), though we did not encounter any use of symbolic
graphical elements such as icons or glyphs.

We examined the Visual Mapping Identification in the previous works and found
that 50% (10/20) of them only have fixed visual mapping [15,63,69,70,80,84,85,87,90,92].
Meanwhile, only 10% (2/20) of them support user-defined mapping [81,89], while 20% (4/20)
use only the rule-based visual mappings [40,64,82,86] method. Finally, there are V-NLIs that
support a combination of two visual mappings [39,83,88,91].

For example, Data@Hand [84] is a mobile application on which users can track their
daily steps and sleep time, among others. It has basic fixed visualisations that are displayed
when users open the application. On V-NLIs such as Orko [15], ConVisQA [69], Miva [90],
and DataBreeze [85], when the dataset is uploaded, data are directly displayed with one pre-
defined visualisation method. FlowNL [70] displays flow visualisations on a 3D world map
with NL commands. GeCoAgent [80,87] both have fixed visualisations that are updated
with NL queries. TransVis [63] and Valetto [92] automatically generate visualisations from
natural language, though both of these systems have only one fixed visualisation. TransVis
uses transient data (quality of service vs. time) that is visualised with a line area graph and
Valetto uses a scatter plot to visualise tabular data (e.g., cars).

There are V-NLIs that allow user-defined visual mapping. For instance, Ava [81] and
Iris [89] use NL to perform complex data science tasks such as statistical analysis and both
support visualising data with one available visualisation when asked.

Snowy [40] is one of the V-NLIs that support rule-based visual mapping to select
layouts and graphical elements. It has three visualisation methods—bar chart, scatter plot
and line chart—and the system automatically selects and updates the visualisation method
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depending on the user’s queries and pre-defined visualisation mapping rules. They use an
adaptation of the “Show Me” [37] algorithm to decide the visualisation method according
to data attributes. They follow rules such as displaying a scatter plot if there are two
quantitative attributes on the x and y axis or displaying a bar chart if there is one qualitative
and one categorical attribute. Boomerang [82] and Talk2Data [64] use NL to provide users
with multiple visualisations. In Boomerang, when the user asks a question [82], the system
provides the user with various visualisation recommendations about the data, whereupon
the user can further explore and ask more related questions. On the other hand, Boomerang
uses the recommendation panel to display different visualisations with a combination
of data attributes on scatter plots and bar charts. To show these recommendations, the
system computes the degree of interest, relevance and timeliness of data attributes to show
visualisations that are related to users’ intents. To select which attributes to visualise, they
compare their data and written text by transforming them into binary vectors.

Similarly, Talk2Data [64] generates multiple visualisations after NL queries and the
system also annotates the visualisation and gives textual answers. The system follows a
rule-based approach in which it associates different data facts with different visualisation
methods. Data facts are extracted from the data. For example, a categorisation fact includes
categorical data and is associated with a bar chart. Finally, Gamebot [86] helps users
to analyse basketball and football games by giving textual information about the data
and showing users related visualisations, assigning diverse statistical information about
the game (e.g., individual player statistics) to different visualisation methods (e.g., game
overview with a flow chart). Gamebot asks users if they are interested in visualisations
and, to facilitate the analysis, it offers the users buttons to customise (when necessary) and
then displays visualisations.

As we stated earlier, there are four V-NLIs that support a combination of several visual
mapping strategies. For example, InChorus [88] uses rule-based mapping to automatically
select a visualisation depending on the attribute type detected from users’ queries and
it also allows users to explicitly request a visualisation method. Onyx [91] uses fixed
visualisation methods but users can change these methods using WIMP or NL. Moreover,
Ref. [39] is the only V-NLI that has a combination of fixed and rule-based mapping. It has
multiple fixed visualisations, although, if a user’s query cannot be answered by existing
visualisations, the system creates new appropriate visualisation using the aforementioned
“Show Me” algorithm [37]. Finally, Chat2Vis is the only V-NLI that uses artificial intelligence
(Large Language Models—LLM) for visual mapping. Moreover, users can specify in their
query which type of chart they want to use to visualise the data.

Related to View Transformation, most of the explored works use a single view to
visualise data (11/20, 55%) [15,21,69,70,81,85–89,91,92]. There are nine V-NLIs that have
multiple views. Boomerang [82] displays multiple recommended visualisations simul-
taneously, while Talk2Data [64] generates multiple visualisations with annotations in a
visualisation narrative style. In the case of MIVA [90], there are three fixed visualisations
(bar, line, map), which are simultaneously updated to answer users’ queries. Similarly,
Evizeon [39] supports synchronised multiple views. Moreover, in Data@hand [84] and
TransVis [63], multiple visualisations can be observed. Chat2Vis [83] demonstrates vi-
sualisation outputs using three views that use different LLM models to compare their
performance. Finally, Orko [15] and FlowNL [70] have complementary visualisations in
addition to primary ones.

Furthermore, there are V-NLIs that also support other view transformations. For
example, Refs. [15,69,80,82,84] support Focus+Context. Data@hand’s [84] users can analyse
their sleep time across a month and they can ask the system to show the days the user
woke up at 8 a.m. In this way, the system highlights the days the user woke up at 8 a.m.
but also displays in the background in grey the data for the whole month. Similarly,
Refs. [15,80] have network visualisations and users can highlight certain nodes to see in
detail while viewing the whole visualisation in the background. ConVisQA [69] gives users
the opportunity to see the whole hierarchy while highlighting certain parts in response to
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users’ NL queries. On the other hand, Boomerang [82] uses an approach similar to small
multiples (i.e., grid-like layout) on the right-hand side of the screen as recommendations
while letting users ask questions on the left-hand side, as well as displaying users charts in
the chat window. Similarly, this can also be seen in Talk2Data [64], as users can observe
multiple related visualisations at the same time. However, we did not encounter any
V-NLIs with multi resolution among the selected articles.

4.3. Interaction Space

The Interaction space refers to all the interactions that users can make throughout the
different stages of the visualisation pipeline (see Figure 9).

Figure 9. Interaction Space affects all the steps of the visualisation pipeline.

In the literature, the use of different interaction styles varies. Most V-NLIs (13/20, 65%) use
both Basic (WIMP) and, naturally, Advanced (NL) interactions [15,39,40,63,69,70,84–86,88,90–92],
while (7/20, 35%) of them use only Advanced (NL) interactions [64,80–83,87,89]. Addi-
tionally, in Table 3, we provide information on how each V-NLI used the seven interaction
methods proposed by [10].

V-NLIs used the interaction techniques outlined in Table 3 at various stages of the
pipeline illustrated in Figure 1. While some V-NLI interactions are designed for only one
stage, others included interactions at multiple stages. The most used interaction techniques
are select and filter. V-NLIs such as [63,80,82,84] use NL to interact with visualisations
selecting (marking a data point) and filtering (showing something conditionally) data
according to user queries. Boomerang [82] selects and filters data at the data transformation
stage to create visualisations using NL. Data@hand [84] and TransVis [63] also use these
techniques at the data transformation stage to update visualisations. Similarly, Refs. [87,92]
use NL to update visualisations using filtering at the data transformation stage, while
Chat2Vis [83] does this to generate visualisations. Others, such as [69,88,90,91], use both
direct manipulation and NL to filter visualisations at the visual mapping stage. Refs. [39,40]
use both basic and advanced interaction techniques at the visual mapping stage to filter
visualisation and [39] uses advanced interaction while using the select method. Orko [15]
and Databreeze [85] use both NL and direct manipulation to filter and select data on visual-
isations. Moreover, Gamebot [86] asks users if they want to see a visualisation related to
their query, and before displaying the visualisation, the chatbot asks questions to users to
filter the data to customise it before visualising and it gives users options with buttons. Sim-
ilarly, Ava [81] uses NL to interact with data and not visualisations. It uses NL to perform
complex data science tasks such as statistical analysis and generating visualisations from
libraries. Finally, Ref. [64] uses advanced NLP-based interaction techniques when labelling
selected data visualisation (maximum sale), and Ref. [70] uses both interaction styles.

The next most used method is Encode [15,40,63,64,83,85,88,89,91,92]. For example,
Refs. [15,40,85,88,91] allow users to colour and size data points and add/remove attributes
by using Basic (WIMP) and Advanced (NL) interactions at the visual mapping stage.
On the other hand, Valetto [92] and TransVis [63] use NL commands to add or remove
attributes at the data transformation stage. Similarly, Iris [89] uses NL to interact with data
in Visual Mapping (i.e., users can select different attributes for axis), but not with View
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Transformations. On the other hand, Talk2Data [64] and Chat2Vis [83] only interact at the
Data Transformation stage, allowing NL queries to colour visualisations.

Table 3. Use of seven interaction methods in V-NLIs. N: Natural Language and W: WIMP—Windows
Icons Menus Pointer.

V-NLI Select Explore Reconfigure Encode Abstract/
Elaborate Filter Connect

ACUI [80] N N N

Ava [81] N

Boomerang [82] N N

Chat2Vis [83] N N

ConVisQA [69] W & N

Data@Hand [84] N N N

DataBreeze [85] W & N W & N W & N W & N

Evizeon [39] N W N W & N

FlowNL [70] W & N

GameBot [86] W

GeCoAgent [87] N

InChorus [88] W W & N W & N W & N W & N

Iris [89] N

MIVA [90] W & N

ONYX [91] W & N W & N

Orko [15] W & N W W & N W & N N

Snowy [40] W & N N W & N

Talk2Data [64] N N

TransVis [63] N W N W N

Valetto [92] W W & N N

The reconfigure method is supported by four V-NLIs [39,85,88,92], which are used to
change the visual perspective of the data in the visual mapping. For instance, Valetto [92]
uses gestures (a basic interaction) to flip the axis in the visualisation mapping stage. InCho-
rus [88] uses both basic and advanced interaction methods, such as re-ordering data in the
step of data transformation, to reconfigure the visualisation. Similarly, in the same step,
Databreeze [85] uses a combination of basic and advanced interactions to rearrange data
points and Evizeon [39] uses advanced interactions for this task.

Furthermore, the explore method, which is considered to be zooming and panning in
the View Transformation stage, is used in four V-NLIs [15,39,63,88], all with basic interac-
tions. It should be noted that Evizeon [39] and Orko [15] also automatically zoom in/out to
the part of the visualisation that is related to users’ query, though users cannot ask it to zoom
in directly using NL. The abstract/elaborate method is used in four V-NLIs [40,63,84,88] to
drill down to show more details. For example, Ref. [84] transforms data to show average
hours of sleep over various months, and users can choose the visual mapping to see each
month separately in more detail using NL. Similarly, Ref. [40] uses NL to do drill downs,
while, on the other hand, TransVis [63] uses direct manipulation. InChorus [88] uses both
modalities. Finally, the connect method is only used by two V-NLIs [15,80]. Both of these
V-NLIs have network visualisation and use the connect method to highlight the relation-
ships between links using Advanced interactions (i.e., using Focus+Context visualisations).
While [66] performs this at the data transformation stage, Ref. [15] does this at the visual
mapping stage.
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4.4. Interactive Space of a V-NLI

Table 4 summarises the chatbot input categories in related work. Among the exist-
ing work, 50% (10/20) integrated Chatbot-based V-NLIs [63,80–83,86,87,89,91,92]. These
V-NLIs have a chat window in which users can engage in conversations with a bot to
analyse data visualisations. In some tools, the chat window is separated from the main
visualisation dashboard [63,80,87,91,92], and in others, the visualisations are displayed
in the chat windows [81–83,86,89]. For instance, both Iris [89] and Ava [81] were de-
veloped to help users perform complex data science tasks such as statistical analysis.
While [89] displays visualisations in a single chat window, Ref. [81] has two windows,
one containing the chatbot and the other showing the actions the chatbot performs,
such as displaying visualisations. Moreover, we consider half of the approaches to be
Form-based V-NLIs [15,39,40,64,69,70,84,85,88,90].

Table 4. Summary of input chatbot categories of V-NLIs. V-NLI interface (chatbot-based or form-
based), Query Type (low or high), Follow-up query, Conversational Guidance: Help (data-based,
user-based: based on what the user can ask), Auto-complete and Recommendation (recommend next
action from D: Data, N: previous NL intent, W: previous WIMP interaction), and Input Modality.

V-NLI

V-NLI Interface Input

Chatbot Form Query T. Follow-Up Conversational Guidance Multimodal.

Help Autocom. Recom.

ACUI [80] X low

Ava [81] X low Hint/help D, N

Boomerang [82] X low

Chat2Vis [83] X low & high

ConVisQA [69] X low X WIMP

Data@Hand [84] X low D Touch

DataBreeze [85] X low X Touch

Evizeon [39] X low X X WIMP

FlowNL [70] X low X WIMP

GameBot [86] X low WIMP

GeCoAgent [87] X low X

InChorus [88] X low Touch

Iris [89] X low

MIVA [90] X low WIMP

ONYX [91] X low data-based WIMP

Orko [15] X low X N Touch

Snowy [40] X low X data-based D, N, W WIMP

Talk2Data [64] X low & high D

TransVis [63] X low user-based WIMP

Valetto [92] X low user-based Gestures

When we explored different Query Types, we found that most of the previous research pre-
sented V-NLIs that support only low-level queries (90% (18/20)) [15,39,40,63,69,70,80–82,84–92].
For instance, in Refs. [40,69,70,80,82,84,85,88,90–92], users can ask direct queries and receive
answers such as filtered or highlighted data points on visualisations or new visualisations.
Moreover, there are V-NLIs that have more specific datasets and the chatbot is designed
to ask users questions or give prompts to perform the analysis [63,81,86,87,89]. For ex-
ample, Ref. [86] asks users questions to show them visualisations about basketball or
football games, and [87] does this to help users extract genomics data into tables. Moreover,
Refs. [81,89] both ask users questions to complete data science tasks. Finally, two V-NLIs
support both low and high level queries, Talk2Data, which is form-based [64] and Chat2Vis,
which is chatbot-based [83]. Specifically, Talk2Data [64] uses high-level questions to interact
with data using basic interaction techniques such as filtering, and they split high-level
queries into smaller sub queries to find answers. An example from Talk2Data is, “Which
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genre has more user reviews, fiction or non-fiction books?” They break down this question into
two: “How many reviews does the fiction book category have?” and “How many reviews does the
non-fiction book category have?”. On the other hand, Chat2Vis [83] is able to understand more
complex queries such as “Show the number of products with a price higher than 1000 or lower
than 500 for each product name in a bar chart, and rank the y-axis in descending order?” using
several LLMs, which generate correct visualisations. Nevertheless, these models require
some refinements because they may generate unnecessary extra information.

Additionally, these queries can be only One-turn or Follow-up. There are only four
V-NLIs that support follow-up queries [15,39,40,85] and all of them support only low-level
queries. After each query, Ref. [40] recommends follow-up queries on a list. On [15,39,85],
users can refer to entities using determiners and pronouns.

One of the important characteristics of chatbots is having Conversational Guidance.
In the visualisation context, chatbots can help users to ask the right questions, suggest
possible queries, navigate them through visualisations, and explain the tool operations
that chatbots can perform. According to the results, 40% (8/20) of the existing tools do not
provide [80,82,83,85,86,88–90] the user with any conversational guidance, while the rest of
the tools (12/20, five of them chatbot-based) recommend tasks or queries [15,40,64,81,84],
help users [40,63,81,91,92], or auto-complete queries [39,69,70,87] designed to increase the
discoverability of the NLI, helping users to understand what the NLI is capable of doing.

For example, users can ask for help from the chatbot in Valletto [92] and TransVis [63]
regarding what users can ask the chatbot. Ava [81] gives hints on how to execute actions
based on previous interactions. Onyx [91] helps with what it is able to do, and when
something is not clear, it gives users instructions to go into the training interface and teach
the system. Snowy [40] supports users by providing possible intents based on data before
starting the analysis.

Moreover, Ava [81] gives users recommendations about how to continue the analysis,
i.e., which actions it can do next. It also gives the users choices and asks them follow-up
questions about whether they want to perform the action that the chatbot recommended.
These recommendations are based on data and previous users’ intents expressed in natural
language. Data@Hand [84] and Talk2Data [64] recommend intents to users according to
the data, and Orko [15] suggests to users possible operations on tool-tip when the system is
not sure about a user’s query. Snowy [40] offers three different kinds of recommendations.
The first one are recommendations depending on the data, which are displayed at the
beginning to start the analysis, since users may sometimes be new to the dataset and do
not know what to ask. Moreover, it offers users recommendations as a follow-up intent
depending on previous NL intents and WIMP interactions. Furthermore, some V-NLIs are
designed to collect specific information from users in a structured format in which chatbots
ask questions or give the users prompts to complete the analysis [81,86,87,89].

Finally, 13 of the reviewed V-NLIs have additional Multimodality to Natural Lan-
guage (NL). For example, Refs. [39,80] have ambiguity widgets with which users can
interact. Moreover, with V-NLIs [15,84,85,88], users can interact with the user interface
using touch. Users can also select filters and interact with data without using NL. It should
be noted that these systems have synchronised input modalities. For example, in [15], users
can select a node with touch and ask a query about that node. Moreover, in [85], users can
select data points and ask the system to move them to the left-hand corner.

Similarly, Refs. [40,90] have synchronised input modalities such as, when a user selects
a part of the visualisation using the mouse while answering the query, the system remem-
bers this selection. Refs. [70,91] have filters through which users can interact with them
using WIMP. In TransVis [63], users can employ the WIMP to select a part of visualisation
to explore in depth, while Gamebot [86] offers the users buttons during the conversation
and Valetto [92] uses gestures to change visual encoding such as flipping the axis.
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4.5. Chatbot Output

Finally, we explored the Output categories of the chatbot (see Table 5). Giving Feed-
back is one of the most important qualities of chatbots. All of the works in this review
give the users textual feedback and some of them give visual feedback as well. The only
exception is Chat2Vis [83], which, probably due to its recentness, is not yet integrated into
a visualisation platform. Basically, textual feedback is used to inform or justify chatbot
decisions to the users. Works such as [15,40,80,90] inform users about the success or failure
of their queries. Moreover, Refs. [63,81,86,87,89] provide the users with informative feed-
back, additional explanations and follow-up questions to users to carry on the analysis. For
example, after creating a decision tree, Ref. [81] can ask users if they want to see another
plot. Refs. [63,89] ask users questions to continue the analysis, such as “Which column should
I use on the x-axis” and “What is the recovery time you want to use?”

Table 5. Summary of output chatbot categories of V-NLIs.

V-NLI
Output

Feedback (Textual or Visual) Int. Style (WIMP, VR, AR)

ACUI [80] Textual (inform)

Ava [81] Textual (inform, additional explanation)

Boomerang [82] Textual (inform, additional explanation), Visual (Graph) WIMP

Chat2Vis [83] Visual (generating titles)

ConVisQA [69] Textual (inform, additional explanation, Visual (Changes in UI) WIMP

Data@Hand [84] Textual (inform), Visual (Changes in UI) WIMP

DataBreeze [85] Textual (inform), Visual (Changes in UI) WIMP

Evizeon [39] Textual (inform), Visual (Changes in UI) WIMP

FlowNL [70] Textual (to understand), Visual (Graph) WIMP

GameBot [86] Textual (inform, additional explanation) , Visual (Buttons) WIMP

GeCoAgent [87] Textual (inform, additional explanation)

InChorus [88] Textual (inform), Visual (Changes in UI) WIMP

Iris [89] Textual (inform, additional explanation)

MIVA [90] Textual (inform), Visual (Changes in UI) WIMP

ONYX [91] Textual (inform, additional explanation) , Visual (Changes in UI) WIMP

Orko [15] Speech (inform), Visual (Graph, Changes in UI) WIMP

Snowy [40] Textual (inform), Visual (Changes in UI) WIMP

Talk2Data [64] Textual (narrative, Visual (annotation) WIMP

TransVis [63] Textual (inform, additional explanation), Visual (Changes in UI) WIMP

Valetto [92] Textual (inform, additional explanation), Visual (Changes in UI) WIMP

Works such as [15,39,84,85,88] proposed different informative feedback types. For
example, Ref. [84] gives users three types of textual feedback: to confirm that it had applied
the command to visualisation, to inform users that the command is not valid, and when
it fails to understand. Databreeze [85] also has three available textual feedback types: to
confirm successful action, after a follow-up command, and after partially understanding a
command. Evizeon [39] has five types of textual feedback: (i) when the intent is understood
and the result is shown, (ii) when it does not understand the request but the system guesses
the nearest operable result, (iii) when the query is partially understood feedback appears
with highlighting the unknown word, (iv) when it understands the query but cannot find
any result, and (v) when it does not understand the intent. InChorus [88] has three different
feedback styles, after a successful operation, after completing a successful operation but
not having an effect on the visualisation (e.g., asking to sort by date but the data are
already sorted by date), and after an invalid command. Orko [15] is the only one that gives
informative feedback using speech and it supports giving feedback after successful and
unsuccessful commands.
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Moreover, Boomerang [82] informs users about the insights of the data and additionally
gives answers to direct questions such as “Is there a correlation between sales and profit?”.
Similarly, ConVisQA [69] gives answers to direct questions such as “what is the most negative
comment?” while displaying the textual answer with updated visualisation. Although
FlowNL [70] does not give users feedback to inform them, it asks users the meaning of
words if it does not understand the given query. Moreover, ONYX [91] informs users
about the action it has performed and gives instructions to users to teach the meaning
of the unknown commands using WIMP. Valetto [92] provides feedback to inform users
when there is a misunderstanding and provides additional information to users such as
stating the correlation of two attributes. Finally, Ref. [64] provides explanations about
visualisations for creating narrative storytelling.

Furthermore, we explored related work that provided users with additional visual
feedback, such as supplementary graphs with main visualisation or changes on filters on
the UI that have been applied by the chatbot. For example, Boomerang’s [82] main goal is to
show users multiple recommended visualisations related to users’ queries on the right-hand
side of the screen; however, relevant graphs are also displayed in the chat window when
required. FlowNL [70] presents users with an ambiguity widget and has two auxiliary
charts, one being a histogram displaying the velocity magnitude of hurricanes, while the
other is a 2D map chart that is used to signal to specific regions. Additionally, visualisation
is synchronised with a table. ConVisQA [69] visualises a hierarchical structure of comments
on the main visualisation that is synchronised with actual comments displayed on the right
side of the screen. Moreover, Orko [15] visualises additional charts (e.g., bar) and shows on
the user interface whose filters are activated and display widgets in response to queries.
Similarly, Ref. [39] presents related widgets after each query. Gamebot [86] displays buttons
to assist the conversation.

V-NLIs such as [40,63,84,85,88,90–92] have visual feedback on the UI. For example,
Ref. [84] displays an ’Undo’ button after every query; further, the user interface changes
according to queries such as displaying related filters. InChorus [88] and Snowy [40] show
applied filters on the WIMP; additionally, in Snowy, selected attributes can be seen as well.
Filters and attributes shown on the UI are updated after each query in [90,91]. Moreover,
Valetto [92] highlights the recognised text in the chatbot’s UI. For example, when a user
asks to “Add acceleration to the graph”, it changes the colour of the ’Add’ token in the user’s
sentence. Finally, Talk2Data [64] shows annotations with visualisations, and Chat2Vis [83]
titles the visualisations from the users’ query.

4.6. Technology behind V-NLIs

In this section, we briefly explore the software technologies used in the reviewed works.
We can distinguish between those that directly use NLP-toolkits and those that use chatbot
frameworks. For the former, we found multiple examples. The most used NLP-toolkit is
open-source CoreNLP in Java [93]. For instance, Snowy [40], Miva [90] and Evizeon [39] all
use it. Others use CoreNLP in combination with other toolkits, such as [15], which combines
CoreNLP with NLTK [94] and AIML [95], and ConvisQA [69], which integrates CoreNLP
with an ANTLR parser [96]. Some works use other NLP-toolkits; for example, Valetto [92]
uses spaCy toolkit [97]. Finally, Data@Hand [84], which focuses on speech recognition,
uses Apple speech framework [98] and Microsoft Cognitive Services [99] for IOS and
Android devices, respectively, and Compromise NLP toolkit [100] to perform part-of-speech
tagging. Among the V-NLIs that use chatbot frameworks, running independently from the
visualisation module, we find: ACUI [80] using Rocket Chat open-source software [101];
Boomerang [82] based on IBM Watson Assistant [102]; GeCoAgent [87] based on Rasa [103];
and TransVis [63] employing Google Dialogflow4 [104].

Moreover, other works proposed customised solutions. Gamebot [86] uses rule-based
word matching. Iris [89] uses domain-specific language that transforms Python functions
into an automata (finite state machine). Ava [81] employs a state machine to control natural
language conversations. FlowNL [70] uses a declarative language to filter and combine data
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to derive structures and translates natural language queries into declarative specifications
to render visualisations. Finally, the latest contributions to the field: Chat2Vis [83] uses
LLMs, while Talk2Data [64] uses a novel decomposition model that is extended from
sequence-to-sequence (deep neural networks) architectures.

5. Discussion

In the following, we review the research questions stated in Section 3.1 to explore how
the use of chatbots may improve data visualisation and visual analysis, and also open up
new research trends in this field.

5.1. RQ1: How Do Chatbot-Based V-NLIs Contribute to Interactions with the Data Space?

To answer this research question, we contrasted the results of the input characteristics
of V-NLIs (Table 4) with how these systems deal with the data space stage in the visu-
alisation pipeline (Table 1). We found that most of the works allow the users to express
only low-level queries, and those that consider high-level queries do so with simple data
types (see Figure 10, signal a and b) and attributes, i.e., tabular data with numerical and
nominal attributes. Therefore, there is a gap in the use of natural language for the analysis
of complex data (network and hierarchical) and also in the use of spatial and temporal
attributes. This gap can be due to two reasons.

Figure 10. Spider chart displaying the relationship between data types and input V-NLI characteristics.

Remark 1. We suggest designing V-NLIs considering complex data using high-level queries and
extending their study to Post-WIMP interfaces, i.e., the so-called immersive analytics in VR and AR.

First, low-level queries may make it difficult for users to perform visual analytic tasks
with complex data (e.g., analysing subgraphs in network visualisations). Actually, the use
of NLP to elaborate high-level queries on this type of data has limitations on both sides. On
one hand, users need to express their intents. On the other hand, the NLP understanding
system has to deal with ambiguities. Indeed, Talk2Data [64] and Chat2Vis [83] are the
only reviewed works that used high-level queries, both with tabular data. However, the
former has a form-based interface, and although the latter is chatbot-based, it lacks chatbot
qualities such as conversational feedback and viewing conversation history. In this context,
some recent approaches attempted to split NLI high-level intents directly into nested
SQL-queries [105,106].

Second, complex data are usually projected into a two-dimensional space, hindering
queries about complex structures, such as multivariate hierarchical and network data,
which would be better queried in a three-dimensional space [107]. Therefore, we suggest
designing V-NLIs considering high-level queries as well as extending their study beyond
WIMP interfaces, i.e., the so-called immersive analytics in VR and AR [108].
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Moreover, independently of the user’s intents (low or high queries), all the examined
V-NLIs contemplate simple data transformations (i.e., simple aggregations and statistical
analysis such as correlations and logistic regressions). Note also that those simple data
transformations have normally been incorporated into V-NLI systems that consider follow-
up queries [39,40]. The reason can be found in analytical conversations, where this type of
query makes it easier for the user to request successive data transformations beyond the
initial or current visualisation. In this context, we suggest that V-NLI systems allow users
to ask for more complex data transformations, such as visual binning or the extraction of
subsets for the analysis of specific parts of the data [30,109,110] To do so, we think that
combining Natural Language with other interaction styles may help the user to express the
context of the visualisation, in line with the proposal of Beck et al. [63], where the user’s
NL-based queries refer to the part of the visualisation selected with the mouse. For example,
suppose there is a 3D scene that shows a hierarchical graph. In this scenario, the user could
utilise a VR hand controller to indicate the specific part of the visualisation to which the
query refers. This idea would also be useful to indicate the target in focus+context and
multi-view visualisations.

Remark 2. Combining Natural Language with other interaction styles (VR, AR) may help the
user to better express the data queries using the visual context during the conversation.

Additionally, to let users better express their intents with less ambiguity, V-NLI systems
use either guidance strategies or multimodality. Few works provide users with help or rec-
ommendations based on the data type, which is currently mainly tabular data [40,64,81,84].
We think that extending these guidance strategies to intricate data may improve human-
chatbot interaction in terms of discoverability since the users can flow more directly through
the visual analytics process based on those recommendations [111]. Regarding multimodal-
ity, most systems allow user–chatbot interaction combined with WIMP, but few of them
allow touching [15,84,85,88] and only one work uses gestures [92]. Therefore, there are
also opportunities for improvement particularly in relation to multimodality [112], which
can also facilitate the transformation of the data since the users can communicate with the
system in a more complete way (not only using text and voice but also gestures and gaze).
Multimodality can also foster the development of a collaborative analysis of visualisations.
Moreover, multimodality can be an additional input for the NLP system to enhance the
context in analytical conversations.

Remark 3. Multimodality can facilitate data transformations since the users can communicate with
the system in a more complete way (not only using natural language but also gestures and gaze).

5.2. RQ2: How Do Chatbot-Based V-NLIs Contribute to Interactions with the Visual Space?

By addressing this research question, we aim to shed light on how V-NLIs in the
literature (Tables 4 and 5) can support users’ tasks in the Visual Space (Table 2) of the
visualisation pipeline. Figure 11 shows the scope of advanced and basic visualisations
in both V-NLI and visualisation dimensions; see the borders in purple and green colour,
respectively. As we can appreciate in the magenta- and blue-coloured polygons, V-NLIs
that consider basic layouts embrace these dimensions in greater measure than those con-
sidering advanced layouts. Furthermore, the empty space of the spider reveals that there
is a lot of room for research on different aspects of both basic and advanced visualisa-
tions in V-NLIs. This gap can be explained by the fact that the field is still in its early
stages of development, and consequently, many researchers focused on exploring the
foundational aspects of the technology. Moreover, the reviewed research works usually
concentrated on one aspect of the V-NLI at a time. For example, some works investigated
query recommendation [40,113,114], others explored multimodality [15,88], whereas others
focused on designing personalised V-NLIs for specific data and user profiles such as data
scientists [86,87].
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It is especially interesting to focus the analysis on conversational guidance strategies
(Auto-complete, Help, Recommendation and Follow-up; see Figure 11, purple arc) since
they improve the interpretability/understanding of the NLI query, guide the user along the
process of the analysis, and so have a positive impact on the whole user experience. During
this review, we came across works that include different kinds of conversational guid-
ance [15,39,40,63,64,69,81,84,85,87,91,92], few of them supporting multiple types [40,81].
Nevertheless, there is an unexplored aspect in these works, which is that guidance strate-
gies can be designed by focusing on the visualisation pipeline. Indeed, this aspect allows
us to analyse this RQ but in reverse: “How the can visualisation process contribute to improve
V-NLIs?”. In this context, a recent research project proposes the so-called eXplainable NLI
(XNLI) [115], which is based on a high-level grammar for statistical graphics (Vega-lite
specification [116]). Thanks to this grammar, the system is able to provide the users with ex-
planations of the following visualisation process as well as tips for interactively reviewing
the natural language-based query. We firmly believe that this idea can be extended to more
advanced visualisations thanks to recent proposals such as GoTree [117], a grammar that
allows tree visualisations to be instantiated by specifying different aspects such as visual
elements, layouts and coordinate systems.

Remark 4. Chatbots’ guidance strategies can be designed leaning on the visualisation pipeline.
That is, “How can the knowledge about the visualisation process improve V-NLIs?”

Figure 11. Spider chart displaying the relationship between Visual Space and V-NLI characteristics of
analysed works.

Another way to facilitate a visual analysis, especially for inexperienced users, is to
perform an automatic Visual Mapping, i.e., selecting the visualisation layouts and graphical
elements automatically. When we explored related works, we found that most of the
V-NLIs that support advanced visualisations do so with fixed layouts (see Figure 11, dark
green arc). There is only one V-NLI that visualises an advanced visualisation (parallel
plots) according to a rule-based visual mapping [88]. One possible reason for this lack of
works may be that selecting visualisation layouts and graphical elements automatically is a
complex task since it requires the V-NLI, first, to interpret user input accurately and, second,
select the appropriate visualisation method based both on the data and on the context
of the conversation. Moreover, most of the works that use rule-based visual mapping
identification are form-based V-NLIs.

Note that only one study included in this scoping review explored intelligent Visual
Mapping [83]. As a first step in this direction, DashBot [118] presents a new method
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for training agents to imitate human exploration behaviour in visualisations using deep
reinforcement learning. It has the potential to develop visualisation recommenders without
requiring pre-existing training datasets. However, it uses simple data types (tabular) with
basic visualisations and does not use NLP. Sevi [119] is another ML-based data visualisation
system that creates visualisations using text or speech. Sevi’s key component includes
an end-to-end neural machine translation model called ncNet [28], which was evaluated
using a cross-domain benchmark called nvBench [120]. The inputs of the model are an
optional chart template and the NL query, outputting a chart styling of the rendered
visualisation. Another approach is to combine user-defined Visual Mapping identification
and automatic identification, which can give experienced users more freedom in their
analysis, as demonstrated by Srinivasan et al. in their work with InChorus [88]. We
think that the latter work paves the way to V-NLIs similar to those found in the field of
mixed-initiative (human–machine collaboration) Procedural Content Generation [121].

Furthermore, recent advances in chatbot technology, such as ChatGPT-4 [122], demon-
strate its ability to respond to visual queries. We firmly believe that these advances can
also be applied to the field of data visualisation. For example, users can ask the chatbot to
show them a visualisation of a particular layout by sending an image showing the desired
layout. In fact, a recent study has focused on creating data visualisations using Natural
Language with ChatGPT-3 and GPT-3.5 [83]. The study proposed using Large Language
Models (LLMs) to create data visualisations from tabular data with basic visualisation
methods. The system is able to select the appropriate visualisation type based on user
queries. However, these advances come with several challenges, such as difficulties in
specifying refinements to plotting elements, variability in the type of plot generated, and
their non-deterministic nature. Given the fact that none of the works reviewed in this
scoping review use NL interactions to change symbolic Graphical Elements, such as glyphs
and colour palettes, these generative approaches can potentially be used to generate them
during analytical conversations.

Remark 5. Recent Generative AI models can potentially be used to generate visual layouts and
graphical elements.

Finally, regarding the spider graph in Figure 11 (see turquoise arc), we found that
most of the V-NLIs that offer multiple views are form-based and have basic visualisations.
Two of them have only an NL input modality [64,82]. However, others are multimodal,
offering input modalities such as WIMP [39,63,70,90] and touch [15,84]. Additionally,
some platforms allow the users to utilise two modalities simultaneously [15,85]. Although
multimodality can be beneficial for any kind of visualisation, whether basic or advanced, we
think that exploring multimodality, especially with advanced visualisations, is a promising
research topic since they represent complementary inputs and outputs to improve the
expressiveness of users’ intentions and, consequently, the user experience in V-NLIs. For
instance, users can ask to zoom in on a region of nodes or select a cluster that is on the side
by showing gestures or, in a VR environment, using a VR controller to point. Alternatively,
users could request a zoom level where the data are most densely clustered, or ask the
system to identify the places of data points on the visualisation (e.g., by asking “What’s above
the largest node?” and then requesting further details). Additionally, graphic animations
could be incorporated into the explanations provided by the system, enhancing the user’s
understanding of the data.

5.3. RQ3: How Do Chatbot-Based V-NLIs Enhance the User’s Interaction with the Visualisation?

For this research question, we analysed the input (Table 4) and output (Table 5)
characteristics of V-NLIs against the Interaction Space (seven interaction methods shown in
Table 3). As can be appreciated in Figure 12, both chatbot-based and form-based approaches
cover a similar, short range of interactive methods—Filtering and Selecting being the most
covered—including some values near zero, especially with chatbot-based approaches



Appl. Sci. 2023, 13, 7025 27 of 34

(see the complex interactions Abstract/Elaborate [63], Connect [15,80], Reconfigure [92],
Explore [63] in yellow dots). This may be due to the difficulty of understanding when the
user’s intentions imply these complex interactions. Indeed, a recent study along these lines
explores the use of a deep learning-based NL interpreter to translate NL utterances into
editing actions, such as data operations (e.g., Filter, Aggregate), Encoding (e.g., changing
colour, shape), and Reconfigure (e.g., position) [123]. Moreover, the emerging Large
Language Models (LLM), which have proven their performance in various natural language
tasks, open up new possibilities in Abstract and Elaborate interactions through step-by-step
reasoning, such as the LLM Minerva developed by Google [124], which currently solves
mathematical and scientific questions.

Figure 12. Spider chart displaying the relationship between the type of V-NLIs and interaction methods.

Another interesting finding is a passive listening mode that allows the chatbot to
observe conversations happening between users and automatically proposes Select or Filter
methods accordingly [80]. In line with this, a recent study explored an always-listening
agent that acts as a third collaborator in a multi-person visual analysis. The agent generates
visualisations based on observations it makes from users’ conversations [125]. We think
that this idea of passive listening can be extended with other input signals, such as eye
tracking [126] and emotional measures such as the tone of voice [127].

Remark 6. In collaborative scenarios, the chatbot may “observe” conversations happening between
users and proactively propose the adequate interaction methods to perform users’ tasks.

Furthermore, although most V-NLIs support multiple input modalities (e.g., NL and
WIMP or Touch), we did not encounter any V-NLI integrating VR and AR technologies.
These technologies can easily provide additional inputs to the seven methods investigated,
such as gaze, gestures and locations [128]. These technologies are not only important for
input purposes, but also as additional means of enriching chatbot outputs, as in surround
sounds, user’s movements and haptic feedback using VR gloves or HMD (Head Mounted
Displays). In fact, increasing the levels of immersion with multisensory stimulation has
been demonstrated over the past decades to enhance data visual analysis tasks [108], al-
though there is still room for improvement in terms of interactions with data visualisations.
For instance, virtual teleportation is a common technique to guide users through data
analysis in VREs. Teletransportation also could be used by the chatbot to situate the user
near to the new generated visualisation that results from Select, Filter and Explore actions.

In fact, multisensory output systems can also be exploited by chatbots in non-immersive
environments. In our scoping review, regarding the sound feedback, we found only one
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incipient experiment with promising results that uses speech instead of textual output [15].
Indeed, there is a recent study [14] that compared voice vs. screen-based conversational
agents created for purposes other than visualisation analysis. It observed that pairs of
participants working together tended to take more conversational turns when speaking
with a chatbot directly than when the same conversation is conducted in a chat window.
However, in the specific context of visual analysis, both output systems (screen and sound)
offer complementary advantages. That is, screen-based chatbots allow the users to track
their conversation history, while sound-based chatbots allow them to seamlessly and
quickly interact when working together. Thus, we suggest investigating how chatbots
integrate both speech and textual conversations to support users’ collaborations during the
visual analysis.

In relation to complementary visual feedback, most of the reviewed V-NLIs provided
the users with complementary visual feedback in the form of supplementary graphs and
changes in the UI that provide information about chatbot responses. Nevertheless, there
is still room for improvement. For instance, animated transitions [129] can help users to
understand how changes in the visualisation settings are affecting the display and pop-up
windows can show additional information or graphs. Additionally, the idea of visual
narrative storytelling used in the reviewed form-based work [64] can be exploited in depth
by chatbots helping users to summarise their data analysis findings. In line with this, it is
important to take into account the lessons learned by the data analysis community during
the last decade, such as the fact to avoid unbiased views of the explored data [130].

Remark 7. Visual narrative storytelling can be exploited in depth by chatbots helping users to
summarise their data analysis findings, guaranteeing unbiased views of the explored data.

Additionally, in most of the reviewed chatbot works, textual feedback is used to inform
users about the success or failure of their intents. Among them, there are works in which
the V-NLIs also provide textual answers to direct questions [69,82], and short explanations
about visualisation [64]. The current progress in generating LLMs definitely expands the
scope of this kind of feedback, being able to provide more detailed explanations generated
by LLMs with enriched information, such as including external links to detailed information
of some topic. Moreover, text generation LLM from images offered by ChatGPT-4 [122]
could be exploited by training it on the specific task of generating more information about
the visualisations (i.e., transfer learning).

Remark 8. The current progress in generating LLMs definitely expands the scope of chatbots’
feedback, being able to provide more detailed explanations with enriched information.

Last but not least, an important aspect in the development of any interactive system is
the evaluation under the perspective of the Human–Computer Interaction (HCI) (i.e., ease
of use, perceived usefulness, understanding and learnability, user satisfaction). Indeed,
this aspect was not deeply covered in the V-NLI reviewed works, unlike that performed in
other application domains (smartphone interfaces [131,132], web [133]).

6. Conclusions

This scoping review brings together the fields of data visualisation and chatbot-based
interaction to study the body of literature on Visualisation-oriented Natural Language
Interfaces (V-NLIs). Our aim is to provide an overall picture of the current state of V-NLIs
and to identify and highlight future research directions. To do so, we first defined related
categories and terminology for each space in the visualisation pipeline (Data Space, Visual
Space, Interaction Space) and also outlined characteristics and key concepts of chatbots,
following the proposed four dimensions (AINT—Anthropomorphic, Intelligent, Natural
Language Processing, Interactive). Then, guided by three research questions that let us
analyse prior V-NLIs with the lens of both fields, we provided a summary of the aspects that
are currently focused on and supported by V-NLIs, as well as their limitations. Specifically,
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the limitations found are related to the complexity of the analysed data, the type of queries
supported by the chatbot, the lack of visual mapping automatisation, and the supported
interaction styles. Finally, we highlighted and suggested potential promising research
directions that may also help to overcome the aforementioned limitations. Specifically,
exploring more advanced techniques in each dimension of the chatbot characterisation
(AINT) will open up new challenges for the V-NLI research community.
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