
  

  

Abstract— Although sleep apnea is one of the most prevalent 

sleep disorders, most patients remain undiagnosed and 

untreated. The gold standard for sleep apnea diagnosis, 

polysomnography, has important limitations such as its high cost 

and complexity. This leads to a growing need for novel cost-

effective systems. Mobile health tools and deep learning 

algorithms are nowadays being proposed as innovative solutions 

for automatic apnea detection. In this work, a convolutional 

neural network (CNN) is trained for the identification of apnea 

events from the spectrograms of audio signals recorded with a 

smartphone. A systematic comparison of the effect of different 

window sizes on the model performance is provided. According 

to the results, the best models are obtained with 60 s windows 

(sensitivity=0.72, specificity=0.89, AUROC=0.88). For smaller 

windows, the model performance can be negatively impacted, 

because the windows become shorter than most apnea events, by 

which sound reductions can no longer be appreciated. On the 

other hand, longer windows tend to include multiple or mixed 

events, that will confound the model. This careful trade-off 

demonstrates the importance of selecting a proper window size 

to obtain models with adequate predictive power. This paper 

shows that CNNs applied to smartphone audio signals can 

facilitate sleep apnea detection in a realistic setting and is a first 

step towards an automated method to assist sleep technicians.  

 

Clinical Relevance— The results show the effect of the window 

size on the predictive power of CNNs for apnea detection. 

Furthermore, the potential of smartphones, audio signals, and 

deep neural networks for automatic sleep apnea screening is 

demonstrated. 

 

I. INTRODUCTION 

Sleep apnea is one of the most common sleep disorders, 
affecting 25-50% of the adult population, especially elderly 
and obese individuals [1]. It is characterized by the occurrence 
of breathing pauses (apneas) or reductions in the airflow 
(hypopneas) during the night, leading to intermittent hypoxia 
and awakenings. Sleep apnea is associated with increased 
cardiovascular and cerebrovascular morbidity and mortality 
[2], but also an increased risk of motor vehicle accidents 
related to sleepiness. However, despite the high prevalence 
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and serious consequences of this disease, most patients remain 
undiagnosed and untreated. 

The gold standard for sleep apnea diagnosis is 
polysomnography (PSG) in a sleep laboratory. PSG measures 
multiple physiological signals during the night. Then, trained 
sleep specialists evaluate these signals to obtain the apnea-
hypopnea index (AHI), which is the number of apneas and 
hypopneas per hour of sleep. Patients can be classified as 
normal (AHI<5), mild sleep apnea (5≤AHI<15), moderate 
sleep apnea (15≤AHI<30), and severe sleep apnea (AHI≥30) 
[3]. Nevertheless, PSG has serious limitations, including its 
high cost and complexity, the discomfort for the patient, long 
waiting lists, and the fact that the AHI is measured only for 
one night, which may not necessarily be representative. For 
these reasons, there is a need for alternative cost-effective 
methods for sleep apnea detection. 

Much research has been devoted to the development of 
portable systems for home sleep monitoring [4]. Such devices 
usually rely on a simplified approach, measuring only one or a 
few signals that provide a high clinical value. Some of these 
signals are respiratory flow, thoracic effort, oxygen saturation 
(SpO2), or audio signals [4]. The analysis of acoustic breathing 
and snoring signals has emerged as a promising approach for 
sleep apnea monitoring since they only require a low-cost 
sensor (a microphone) and can be used to detect apneas and 
hypopneas as an absence or reduction in sound [5], [6]. Audio 
signals can even be recorded with the built-in microphones of 
smartphones. Indeed, due to their wide availability and their 
integrated sensors, smartphones can be powerful tools for 
mobile health (mHealth) applications, including sleep 
monitoring [7]. Several attempts have been made to screen or 
monitor sleep apnea at home using smartphones [8]–[11], 
although they are not yet clinically validated. 

Most of the approaches presented in the literature for 
automatic apnea detection use interpretable rule-based 
algorithms. Instead, other approaches employ machine 
learning or deep learning techniques, due to their increased 
learning capabilities when facing complex patterns. 
Specifically, the advances in deep learning have led to the 
possibility of building models without human-engineered 
features. Deep learning is gaining higher interest for sleep 
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apnea detection, and multiple examples can be found in the 
literature, mostly using convolutional neural networks (CNN), 
long short-term memory (LSTM) networks, or recurrent 
neural networks (RNN) from different signals: respiratory 
signals [12],  electrocardiogram (ECG) [13], SpO2 [14], chest 
bioimpedance [15], or tracheal sound [16].   

In a previous work, a rule-based algorithm was presented, 
based on entropy analysis of acoustic signals recorded with a 
smartphone for home sleep apnea diagnosis [10]. The aim of 
this paper is to test the potential of CNNs for apnea detection 
from smartphone audio signals. The main reason for choosing 
CNNs is that there is no need for feature extraction, as they can 
take images as inputs, and thus directly extract information 
from the time-frequency maps of audio signals. On the other 
hand, a key factor in machine and deep learning models, and 
especially for sleep apnea detection, is the size of the window 
to segment the recordings, which usually depends on the signal 
type and the application. For these reasons, the objectives are: 
1) to build a CNN model for the identification of apnea events 
in audio signals recorded with a smartphone, and 2) to analyze 
the effect of different window sizes in the model performance. 

II. MATERIALS AND METHODS 

A. Dataset 

This study uses real-life data gathered from 25 patients (14 
men, 11 women, mean±std age: 56±16) enrolled for an 
overnight sleep test. The study was approved by the Ethics 
Committee of Hospital Clínic de Barcelona (protocol code 
HCB/2017/0106). Informed consent was obtained from all 
participants. 16 patients underwent in-lab PSG, while 9 
patients underwent a home sleep apnea test with ResMed 
ApneaLink AirTM. PSG recordings contained multiple 
channels, including respiratory signals at a sampling rate (fs) 
of 32 Hz (nasal cannula, thermistor, and thoracic and 
abdominal effort), single-lead electrocardiogram (fs=256 Hz), 
and SpO2 (fs=1 Hz). ApneaLink measured respiratory flow 
through a nasal cannula (fs=100 Hz), thoracic movement 
(fs=10 Hz), and SpO2 (fs=1 Hz). Simultaneously, overnight 
audio recordings were acquired (fs=48 kHz) with the built-in 
microphone of a smartphone (Samsung Galaxy S5) that was 
placed over the subjects’ thorax using an elastic band. This 
configuration had been successfully tested in previous studies 
[10], [17]. The mean recording length was 6.5±1.4 hours.  

The smartphone and the reference system (either PSG or 
ApneaLink) were synchronized based on timestamps. Data 
from the reference system were annotated by trained sleep 
specialists. Following the AASM guidelines [3], 2 subjects had 
normal AHI, 3 mild AHI, 13 moderate AHI, and 7 severe AHI. 

B. Signal Processing and Representation 

Audio signals were downsampled to 5 kHz, applying an 
anti-aliasing low-pass filter. To reflect a realistic measurement 
and check the robustness of the model when working with raw 
data, the full-night audio signals were used, and no artifact 
detection or signal cleaning was performed. 

The experimental setup was chosen to assess the feasibility 
of a CNN trained with time-frequency representations of audio 
signals for the prediction of apnea events. Recordings were 
split into non-overlapping sections of different lengths (10, 20, 
30, 45, 60, 90 and 120 s), to investigate the effect of a varying 

window size. Each section was labeled as ‘apnea’ if the central 
point of that section was inside one of the apnea events 
annotated by the sleep experts, and as ‘non-apnea’ otherwise. 
For this preliminary study, all apneas (obstructive, central, or 
mixed) were considered, whereas hypopneas were excluded 
from the analysis. The spectrogram of each section was 
calculated, with a window length of 0.1 s, 25% overlap, and 
512 points for the fast Fourier transform computation. The 
spectrogram magnitude was log-transformed for a better 
visualization because breath and snore sounds have more 
components in the low-frequency bands [5]. Then, the 
spectrograms were standardized to have zero mean and unit 
variance, in order to ensure that all characteristics in the sound 
signal were visible regardless of signal amplitude. An example 
of the proposed time-frequency representation for an apnea 
and a non-apnea section can be seen in Fig. 1. 

C. Modeling 

A custom CNN model was built in Python, using 
Tensorflow and Keras libraries, to automatically extract time-
frequency domain features from the audio spectrograms and 
classify them into apnea or non-apnea events. The network 
architecture and model hyperparameters were set after some 
preliminary testing and based on previous experience. As 
shown in Fig. 2, the proposed deep neural network architecture 
consists of five consecutive convolutional blocks followed by 
a flattening layer, a fully connected layer with 50 neurons and 
ReLU activation, a dropout layer with a dropout rate of 0.4 to 
reduce overfitting, and finally a fully connected layer with a 
softmax activation function, whose output can be interpreted 
as the probabilities of ‘apnea’ and ‘non-apnea’. Each 
convolutional block is composed of a 2D convolutional layer 
with 100 output filters, a kernel size of 3x3, and ReLU as 
activation function, followed by a 2D max-pooling layer with 
pool size of 2x2, and a dropout layer with a dropout rate of 0.4.  

The networks were trained with a batch size of 16 using 
Adam optimization algorithm with a learning rate of 0.001 and 
categorical cross entropy as loss function. Early stopping was 
employed to determine the number of training epochs and 
prevent overfitting, by saving the model with the best area 
under the precision recall (PR) curve (AUPRC) in the 
validation set, with a patience of 50 epochs. 

D. Evaluation 

The 25 subjects were divided into training and validation 
sets. Data from 17 subjects were used for training, and from 
the remaining 8 subjects for validation. It was ensured that data 
from the same subject were not simultaneously present in both 
groups and thus the performance of the models was evaluated 
on data from new, previously unseen patients. As the number 
of apnea events was much lower than that of non-apnea, the 
dataset was highly imbalanced. If the models were trained with  

 

Figure 1.  Example of spectrograms of non-apnea and apnea events. 
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Figure 2.  The proposed convolutional neural network architecture. 

 

the original data distribution, they would be biased towards 
predicting non-apnea events. However, to avoid this problem, 
the majority class was randomly subsampled in order to obtain 
a training set that is balanced (equal number of apnea and non-
apnea events). For evaluation purposes, though, it is important 
to keep the original imbalanced data to reflect a realistic 
measurement. When evaluating the performance of the model, 
all possible data from the patients in the validation set were 
retained, in this case using overlapping windows 1 second 
apart (1 s stride), so that a prediction for each second of the 
recording can be made. 

For each window size (ranging from 10 s to 120 s), audio 
spectrograms were calculated, a CNN model was trained, and 
then it was used to predict the labels of the validation set. A 
decision threshold of 0.5 was used to determine the apnea/non-
apnea classifications. The metrics that were used to assess the 
performance of the models in the validation set included the 
sensitivity (Se, also known as recall), specificity (Sp), positive 
predictive value (PPV, also known as precision), negative 
predictive value (NPV), and accuracy (Acc). The 
combinations of Se and Sp for different decision thresholds 
can be summarized in a receiver operating characteristic curve 
(ROC). The area under this curve (AUROC), and the AUPRC, 
which is often preferred for imbalanced classification, were 
also calculated. 

III. RESULTS AND DISCUSSION 

The performance of the models for each window size is 
summarized in Table I and in the ROC and PR curves in Fig. 
3. The results suggest that the best window size for the 
detection of apnea events with this CNN model is 60 s, as 
indicated by the highest AUPRC, AUROC, and Se, while 
having good values of Sp, NPV, and Acc. With small window 
sizes (10 s and 20 s), results are much worse, presumably 
because the windows are shorter than most apnea events and 
sound reductions cannot be captured. The model performance 
rises for windows longer than 30 s, reaching the best AUPRC 
at 60 s. For windows of 90 and 120 s, the predictive power of 
the model drops because these windows are too long and may 
contain multiple respiratory events of different origin. 

The model with 60-s windows demonstrates a remarkable 
Sp, NPV, Acc, and AUROC. The Se is 72%, due to the epoch-
by-epoch comparison, and the fact that the exact start and end 
times of apneas do not perfectly match the manual annotations. 
Most apneas in the validation set (94%) are correctly detected 
by the CNN model, albeit sometimes slightly shifted. This is 
also because human annotations of the position of apneas are 
not exact to the second. Additionally, human annotations were  

TABLE I.  PERFORMANCE OF MODELS FOR VARYING WINDOW SIZE 

Window Se Sp PPV NPV Acc AUROC AUPRC 

10 s 0.667 0.514 0.050 0.976 0.520 0.626 0.058 

20 s 0.540 0.532 0.042 0.968 0.533 0.588 0.063 

30 s 0.572 0.859 0.133 0.982 0.849 0.754 0.186 

45 s 0.570 0.917 0.207 0.983 0.905 0.802 0.283 

60 s 0.718 0.891 0.201 0.988 0.885 0.877 0.522 

90 s 0.668 0.913 0.225 0.986 0.904 0.846 0.286 

120 s 0.593 0.931 0.246 0.984 0.918 0.813 0.243 

 

 

Figure 3.  ROC and PR curves for each window size. The dotted lines 

indicate the performance of a model with random predictions based 

on the imbalanced data, clearly outperformed by the CNN models. 

 

based on signals of different origin and using several channels 
(respiratory flow, thoracic effort, oxygen saturation…), 
whereas the CNN model is trained only with audio signals. 
Nonetheless, detecting 94% of the apneas is a slight 
improvement from the 89% reported in a previous paper based 
on a rule-based algorithm for sleep apnea diagnosis from 
smartphone audio signals [10]. 

Although most of the metrics are reasonably good, the PPV 
is quite low for all the window sizes, which also affects the 
AUPRC. This is a common problem when dealing with highly 
imbalanced data [18]. The models were trained with balanced 
classes, leading to a very good performance in that scenario 
(for the 60-s window: Se=0.92, Sp=0.90, PPV=0.91, 
NPV=0.92, Acc=0.91). However, when moving to the original 
distribution, the ratio between apneas and non-apneas is 
almost 1:50, and thus the PPV is seriously affected. Most false 
positives (FP) occur in healthy subjects or patients with mild 
sleep apnea, especially in regions where there are sound 
artifacts or the quality of the audio signal was poor. A pre-
processing step for cleaning the signal, discarding artifacts and 
low-quality regions, could help to improve the performance of 
the model. Moreover, typically, only events longer than 10 s 
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are annotated, but the models make decisions on a per-second 
basis and thus can lead to isolated or short FP. A post-
processing step can help to remove these FP. The combination 
of audio with other signals (e.g., oxygen saturation or thoracic 
movement) could also contribute to increase the model 
precision and could easily be integrated in the smartphone 
system. 

To test the potential benefits of overlapping windows as a 
method for data augmentation to improve the generalization 
capabilities of the model, the best model (60 s windows) was 
trained when applying a 59 s overlap (1 s stride). The results 
with that model were: Se=0.880, Sp=0.775, PPV=0.130, 
NPV=0.994, Acc=0.779, AUROC=0.910, AUPRC=0.456. 
Using a large window overlap, more data is available to train 
the model, but this has a higher computational cost. In the 
experiment, when using overlapping windows, the model 
predicted more apnea events and, therefore, the Se notably 
increased, but at the cost of more FP and hence a lower Sp and 
PPV. Future investigations will focus on the effect of window 
overlap, to robustly determine the best strategy in this regard. 

IV. CONCLUSION 

Sleep apnea is a highly prevalent sleep disorder, but most 

patients remain undiagnosed and untreated. One of the 

reasons is the limitations in current diagnostic techniques. 

Here we propose a CNN for detecting apnea events from time-

frequency representations of audio signals recorded with a 

smartphone. We also provide a systematic comparison of 

different window sizes, showing the effect of this parameter 

in the performance of the model. 

The best predictive power was obtained when the model 

was trained with audio spectrograms from 60-s windows, a 

size that was long enough to capture the sound reductions 

corresponding to apneas, without including multiple events. 

These results should be corroborated in future studies with a 

higher sample size to validate the generalization capabilities 

of the model with data from new patients and extract more 

robust conclusions. Other time-frequency methods could be 

tested, to check if they can improve the predictions. Model 

complexity could also be increased to include hypopneas and 

other respiratory events in the predictions, while the 

combination of audio with other signals could help to further 

guide the algorithm and improve its accuracy. However, this 

proof-of-concept shows the potential of CNN from 

smartphone audio signals as a simple, automatic, and cost-

effective tool to facilitate sleep apnea detection in a realistic 

setting, and thus assist sleep technicians in the monitoring and 

management of patients. 
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