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Abstract 

This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic 

reduction within the context of electro-Fenton (EF) process. Different strategies 

developed to improve the reduction rate are discussed, dividing them into two 

categories that regard the mechanistic feature that is promoted: electron transfer control 

and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer 

control includes: (i) the formation of a series of active sites in both carbon- and metal-

based materials, and (ii) the use of other emerging strategies such as single atom 

catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by 

mass transport control, the main routes involve the application of magnetic fields, pulse 

electrolysis, interfacial Joule heating effect and photoirradiation. Finally, challenges are 

singled out and future prospects are described. This review aims to clarify the Fe3+/Fe2+ 

cycling process in EF process, eventually providing essential ideas for smart design of 

highly effective systems for wastewater treatment and valorization at industrial scale. 

 

Keywords: electron transfer; Fe3+ reduction; Fenton’s reaction; hydrogen peroxide; 

mass transport enhancement  
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1. Introduction 

In recent years, the electro-Fenton (EF) process has emerged as a potentially viable 

technology for wastewater treatment, owing to some remarkable results achieved. The 

target effluents under study, containing a great variety of pollutants of emerging 

concern,1-3 belong to different industrial sectors such as pharmaceutical, textile, 

chemical, petrochemical, agricultural and food-processing, among others. In fact, 

because of its great efficiency and multiple advantages, EF has gained increasing 

popularity over the last years. In the conventional EF process, H2O2 is formed in-situ 

via the cathodic two-electron oxygen reduction reaction (ORR, reaction (1)), thereby 

being catalytically decomposed by soluble iron ions at acidic pH to produce •OH (with 

E° = 2.8 V vs SHE) via Fenton’s reaction (2).4-8 The need of external addition of Fe2+ 

catalyst is minimized because Fe3+ can be continuously reduced to Fe2+ at the cathode 

surface via reaction (3).9-11 As a matter of fact, the cathodic regeneration of Fe2+ via 

reaction (3) is a major feature of EF process, since it ensures the continuous production 

of •OH through reaction (2). The reaction (4) between H2O2 and Fe3+ also regenerates 

Fe2+; however, it is much slower and produces the less powerful oxidant hydroperoxyl 

radical HO2
•. In the absence of an efficient Fe2+ regeneration, reaction (4) becomes rate-

limiting as occurs in the chemical Fenton process. Accordingly, Fe2+ regeneration is a 

distinct characteristic of EF process that becomes the key step to control its efficiency. 

O2 + 2e- + 2H+  H2O2 (E0 = 0.695 V vs. SHE at acid pH) (1) 

H2O2 + Fe2+  Fe3+ + •OH + OH- (k2≈70 M-1 s-1) (2) 

Fe3+ + e-  Fe2+ (E0 = 0.771 V vs. SHE) (3) 

H2O2 + Fe3+  Fe2+ + HO2
• + H2O (k2≈0.02 M-1 s-1) (4) 



 

6 

  

2H2O + 2e-  H2 + 2OH- (E0 = -0.827 V vs. SHE) (5) 

The efficiency of EF is largely dependent on both, H2O2 accumulation in the 

medium and the ability of Fe3+ reduction. As a result, in recent years, a growing body 

of investigations has focused on H2O2 production via two-electron ORR due to concerns 

about the low reactivity/selectivity related to oxygen mass transport limitations.12-15 A 

series of reviews on cathodic H2O2 generation via 2-e- ORR has been published, mainly 

concerning the development of novel cathodes and devices to increase the H2O2 

accumulation.16,17 In contrast to the considerable attention given to H2O2 production, 

little research has focused on the Fe3+ cathodic reduction, which constitutes a missing 

gap because Fe2+ regeneration is a crucial step in EF. To address this need, this review 

summarizes the mechanisms involved in Fe2+ regeneration during EF, as well as the 

strategies that have been developed to enhance the reaction. 

It could seem that the Fe3+ cathodic reduction in the EF process is comparable to 

the homogenous iron reduction in chemical Fenton-based processes, which have been 

previously reviewed.18,19 However, unlike these non-electrochemical processes, Figure 

1a shows that the Fe3+ reduction through heterogeneous electron transfer in EF takes 

place at the cathode surface. This reaction is a function of the applied potential, which 

has a major effect on the double layer within the cathode/electrolyte region. The 

thermodynamic standard reduction potential of Fe3+ in solution (see reaction (3)), 

whereas the heterogeneous Fe3+ reduction in EF is driven by the external potential 

applied to the cell, which is the so-called overpotential.20 Electron kinetics, diffusion, 

and hydrodynamics determine the rate of iron cathodic reduction. As shown in Figure 

1b, the local cathode/electrolyte region includes the double layer (0.5-10 nm thick) and 

the diffusion layer (1-100 μm thick). The iron ions motion in the diffusion layer is 

driven by diffusion, while in the double layer (including the inner Helmholtz plane (IHP) 
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and outer Helmholtz plane (OHP)), it is dominated by the strong electrostatic field. Also, 

unlike conventional Fenton, in EF there appears a pH gradient between the bulk solution 

and the close vicinity of the cathode (the specific pH value in each volume portion 

denoted as microenvironment) (see Figure 1b). More precisely, the pH in the cathodic 

microenvironment could reach a value as high as 13, or even greater because of the 

continuous cathodic production of OH- resulting from the HER (reaction (5)) or from 

ORR as dissolved O2 in the vicinity of cathode becomes reduced.21,22 Considering the 

abovementioned differences between the Fe3+ reduction in conventional Fenton 

(homogeneous reaction) and EF (mainly heterogeneous reaction), it is evident that there 

is still a knowledge gap to clearly elucidate the behavior observed in both processes. 

The understanding of the fundamentals of the Fe3+ cathodic reduction in EF is thus of 

great relevance to guide its efficient design and scale-up.  

This review, for the first time, intends to systematically compile recent progress 

on the different approaches that have been developed to boost the Fe3+ cathodic 

reduction in the EF process for enhancing the Fe2+ regeneration. First, the basic 

mechanisms of the Fe3+/Fe2+ cycling process during EF are discussed. The strategies to 

enhance the Fe2+ regeneration via Fe3+ cathodic reduction are subsequently detailed and 

examined, distinguishing between: (i) approaches for electron transfer acceleration, and 

(ii) designs for mass transport improvement. To sum up, a description of challenges and 

proposal of future prospects is presented. 
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Figure 1. (a) Fe3+/Fe2+ cycle in the electro-Fenton process (without considering the involvement of 

electrogenerated H2O2, for the sake of simplicity). (b) Scheme of the structure of the cathode/electrolyte 

interface, including the inner Helmholtz plane (IHP), outer Helmholtz plane (OHP), and diffusion layer. 

(c) Historical development of strategies for Fe3+ cathodic reduction in the EF process. X1, X2, X3 account 

for the different distances to the electrode surface: IHP, OHP and diffusion layer. E1, E2, E3 are the related 

potentials positioned at X1, X2 and X3, respectively. 
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2. Fundamentals of Fe3+ cathodic reduction 

2.1. Fe3+cathodic reduction in EF 

Prior to reviewing the strategies to increase the Fe3+-to-Fe2+ conversion rate, this 

subsection presents the mechanistic fundamentals of Fe3+ reduction. Overall, once 

soluble Fe2+ is oxidized into Fe3+ in the bulk via the classical Fenton´s reaction (2), the 

metal ions diffuse through the solution until the active sites are reached on the cathode 

surface, where they receive the electrons to be reduced to Fe2+ via reaction (3). As can 

be seen in Figure 1a, the pH affects the Fe3+/Fe2+ cycle. First, dissolved Fe3+ in the bulk 

solution precipitates in the form of insoluble hydroxide when pH is over 4 (H+ 

concentration of 10-7-10-8 M), not being further available for Fe2+ regeneration .
23

 Fe2+ 

can co-precipitate with insoluble complexes, reducing the amount of soluble Fe2+ 

available for Fenton´s reaction (2).24 Second, special attention must be paid to the pH 

in the close vicinity of the cathode, which increases due to the formation of OH- through 

the HER by reaction (5) and ORR by reaction (1). The local pH could be as high as 13, 

which is much higher than that in the bulk, as previously modelled.21 The local 

alkalinization of the volume near the cathode causes the Fe3+ precipitation as it 

approaches the electrode surface. This dynamic and alkaline microenvironment in the 

vicinity of the cathode could also impede the mass transport of iron ions. The iron 

precipitation can be partly minimized by promoting the mass transport of H+ and OH- 

from and toward the bulk solution, respectively, which can be achieved by means of 

enhanced convection. However, the continuous supply of H+ from the bulk to the 

cathode vicinity via forced convection cannot be maintained owing to mass transport 

limitations, leading to concentration overpotentials. 

The rate of Fe3+ cathodic reduction can be simply expressed as r = k1[Fe3+] (where 

k1 represents the heterogeneous rate constant for electron transfer and [Fe3+] is the local 



 

10 

  

Fe3+ concentration), also involving H+ (acid pH) and e-.25 Therefore, there are two 

potential strategies to improve the reduction rate: 

(i) The enhancement of electron transfer by regulating the kinetic rate constant 

through catalytic effects, as for example those emerging upon creation of active sites in 

carbon- or metal-based materials, use of single atom catalysts and confinement methods; 

(ii) The enhancement of mass transport by increasing the concentration of 

Fe3+/Fe2+ ions near the cathode surface through a physical effect such as a magnetic 

field, pulse electrolysis or interfacial Joule heating effect. 

2.2. History of cathodic Fe3+/Fe2+ cycling in EF  

As can be observed in Figure 1c, the first investigation on the cathodic Fe3+/Fe2+ 

cycling process in the field of wastewater treatment dates to 1986, when the Fe3+ 

reduction rate was optimized to obtain the maximum phenol degradation by an EF 

process involving the electrochemical generation of the Fenton´s reagent.26,27 

Nevertheless, note that the term “electro-Fenton” was first used by Prof. Brillas in 

1996.28 After their first publication, the Brillas’ group has made significant progress in 

EF process, laying the foundations of the technology, especially on the aspects related 

to the use of carbon-based cathodes like carbon-PTFE gas-diffusion electrodes for H2O2 

electrogeneration and Fe3+ reduction. At the initial stage of EF development, only 

commercial cathodes like lead, stainless steel, titanium, and graphite were used to 

assess the Fe3+/Fe2+ cycle, with stainless steel cathode showing the highest initial 

current efficiency in an EF-like process with external H2O2 addition.29 With the rapid 

progress in materials science, a series of new cathodes and surface modification 

methods were introduced into EF research. These novelties included oxygen-functional 

groups or heteroatom electrode doping,30 the use of carbon-based nanomaterials such 

as graphene31 and, more recently, emerging single atom catalysts32 and confinement 
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effects33 (see Figure 1c). Aside from the progress on cathode materials for improving 

the Fe3+ reduction, other phenomena have been implemented to enhance the Fe3+/Fe2+ 

cycling, as for example photoirradiation, magnetic fields, pulse electrolysis and 

interfacial Joule heating effect.34 In summary, the development of cathodic iron 

reduction in EF has taken two main directions: (i) the survey and fabrication of different 

cathode materials to boost the electron transfer to Fe3+, and (ii) the application of 

external fields to enhance the mass transport of iron ions to the cathode surface.  

3. Electron transfer improvement 

The Fe3+-to-Fe2+ cathodic conversion in EF is simultaneously controlled by 

electron transfer on the cathode (k1) and the mass transport of iron ions to/from the 

cathode (closely related to the local Fe3+ concentration). This section is focused on the 

electron transfer process during the occurrence of the Fe3+/Fe2+ cycle, determined by a 

catalytic effect. Since the nature and content of active sites on the cathode surface are 

the basis for such catalytic effect, different types of active sites and the involved 

mechanisms in the Fe3+ reduction are reviewed, along with the state-of-art of existing 

processes for increasing the number of active sites to improve the Fe2+ regeneration. 

3.1. Electron-rich carbon-based materials  

Carbon materials are prepared by thermochemical conversion of organic feedstock. 

They show excellent “electron shuttle” capacity to mediate electron transfer, as in the 

case of iron reduction. Consequently, carbon materials have been widely used to favor 

different redox reactions.35 Carbon-based materials include carbon nanotubes, activated 

carbon, hydrothermal carbon, biochar, graphene, graphite, carbon black, fullerol and 

coal, among others.36 Systematic reviews on the synthesis of the surface functional 

groups are available in the literature.17,37-40 Even though the reduction mechanisms of 
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Fe3+ species on carbon materials in EF are not yet fully understood, three types of active 

sites on the surface of carbon materials have been reported to be directly involved in 

iron reduction (see Figure 2): 

(i) The carbon backbone itself, which serves as electron donor via conjugated 

aromatic (sub-)structures, edge atoms and defects;41-43 

(ii) oxygen-containing surface functional groups bonded to carbon atoms, giving 

rise to carbonyl, quinone, hydroquinone, hydroxyl and epoxy groups that act as active 

sites:44,45 

(iii) heteroatom-based active sites introduced in the carbon structure. 

 

Figure 2. Classification of catalytic active sites in carbonaceous materials for Fe3+ reduction in EF. 

 

3.1.1. Carbon-based structures as electron donor 

Electron conductivity through the conjugated π-electrons in carbon materials is 

well known, being defined as an electron shuttling phenomenon.51 In general, carbon 

materials are only the interface where electron transfer occurs (Fe3+ reduction, O2 

reduction or any other competing reactions), and their catalytic properties remain stable 
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as long as their structure is not altered by the chemical environment or exceedingly high 

electrode potentials.45 However, it has been reported that the structure of some materials 

such as granular activated carbon, porous carbon and graphene aerogel may act as an 

electron donor to boost the Fe3+ reduction via reaction (6), where (carbon material)+ 

and carbon material are their oxidized and reduced states, respectively. The reduced 

form can be recovered via reaction (7).31,41,47 

Carbon material + Fe3+  (Carbon material)+ + Fe2+  (6) 

(Carbon material)+ + H2O2 Carbon material + HOO• +H+  (7) 

A similar behavior has been observed on powdered activated carbon (PAC) and 

carbon nanotubes (CNTs), where CNTs presented a higher reduction capacity than 

PAC.48 It should be noted that the difference in the Fe3+ reduction efficiency could also 

come from the disparity in the active surface areas (and thus the number of active sites) 

of the materials, as also verified when comparing the reduction ability of a planar-like 

gas-diffusion cathode and a 3D carbon felt,49 but further research is needed to confirm 

the main phenomena involved. Cage-like C60 fullerene, rich in electrons and 

unsaturated bonds, can also provide electrons to boost Fe3+ reduction, as recently 

reported.51
 Worth mentioning, electron holes, defective sites and special edges 

(armchair and zigzag edges) may appear during the fabrication of carbon materials, and 

such sites can provide extra electronic states behaving as active sites for iron reduction. 

For example, Yoo et al.39 found that the delocalized π-electrons of graphitic layers in 

porous carbon promoted Fe3+ reduction. These authors reported that the edge of the 

carbon plane bound with unsaturated carbon/heteroatoms (like oxygen) was enriched 

in unpaired electrons that were transferred to Fe3+ for reduction. Nanoscale carbon 

quantum dots (CQDs) derived from thermal decomposition of glucose also proved to 

accelerate the Fe2+ regeneration. Their reduction ability was utilized to reduce 
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chloroauric acid to form gold nanoparticles.51 Zubir et al.52 fabricated a graphene oxide 

(GO)-Fe3O4 composite and confirmed the continuous reduction of Fe3+ to Fe2+ from the 

unpaired π electrons of GO transferred to Fe3O4. 

3.1.2. Surface functional groups  

3.1.2.1. -COOH 

The electron transfer rate of Fe3+ cathodic reduction has been found to be strongly 

dependent on the oxygen-containing functional groups on the cathode surface, as 

observed for carbonyl groups.53,54 In general, a compound with a standard redox 

potential lower than E° (Fe3+/Fe2+) could reduce Fe3+ into Fe2+. O-containing 

functionalities with a low redox potential are then able to reduce Fe3+ in EF, as is the 

case of single-walled CNTs with Eº = 0.5 V/SHE,55 and oxygen functional groups 

doped on carbon felt.56 Yang et al.44 reported that carboxyl groups (-COOH) instead of 

hydroxyl (-OH) and carbonyl groups (-C=O) were the active sites for Fe(III) 

complexation, which promoted the Fe(III) reduction.  Fe complexation accelerated the 

homolytic cleavage of the formed Fe-OOH complexes by H2O2, which is the rate-

limiting step for iron reduction (k = 2.7 × 10-3 s-1). This acceleration was attributed to 

two aspects: (i) a much lower charge transfer energy from H2O2 to Fe(III) as the electron 

density of Fe(III) migrated to the -COOH groups, and (ii) a weaker Fe-O bond caused 

by the carbonyl group steric effect. The important role of -COOH in iron reduction was 

also reported for fullerol.50 At low pH (< 5.0), the formation of carbonyl/carboxyl and 

an open-caged structure induced the formation of Fe(III)-fullerene surface complexes 

that experienced intramolecular electron transfer for iron reduction enhanced by visible 

light following reactions (8)-(10), where * denotes an excited state. At an extremely 

lower pH value, more protonated fullerol had less oxygen-binding sites for Fe3+ 
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complexation. In a word, -COOH served as iron anchor via complexation, which was a 

prerequisite for Fe(III) reduction. Note that despite the effective Fe3+ reducing capacity 

of O-bearing functional groups, from our perspective, more attention should be paid to 

the stability of such active sites in future investigations. For instance, it has been 

reported that -COOH tended to be reduced during electrolysis at negative potential.57 

Kou et al.58 reported that Fe3+ was sufficient to oxidize carboxyl groups on graphene 

following a first-order reaction at a high temperature of 90 oC via reaction (11), whereas 

it was negligible at low temperature.  

Fe(III)-C60(OH)
x

*  
dark/slow
→      60 X OX[C (OH) ] +Fe(II) 

(8) 

Fe(III)- 3 *

60 XC (OH)  
visible light/fast
→          60 X OX[C (OH) ] +Fe(II) 

(9) 

Fe(III)-C60(OH)
x

•−  →  60 XC (OH) +Fe(II)  
(10) 

Fe3+ + -COO-  -COO•Fe2+ → Fe2+ + CO2 (11) 

 

3.1.2.2.  -OH 

On the surface of carbon prepared by hydrothermal carbonization (HTC), Qin et 

al.45 suggested that hydroxyl groups bound with iron ions, instead of -COOH, favored 

the electron transfer from the hydroxyl moiety to Fe3+. The controversy regarding the 

active sites on HTC-derived carbon and multi-walled carbon nanotubes is attributed to 

the differences in the redox properties of such materials that are determined by pyrolysis 

conditions including feedstocks, heat treatment temperature and pyrolysis time, among 

others. For instance, Klüpfel et al.46 reported that the electron donating moieties (like 

phenolic structures) in both grass and wood-based chars varied with heat temperature 

(below 400 oC). Phenolic structures in biomass-derived black carbon were observed as 

the dominant electron donating sites when heat temperature ranged from 200 to 500 oC. 



 

16 

  

Even though a clear mechanism of iron reduction through the surface -COOH/-

OH groups is still lacking, a possible pathway inspired by Sun and Skyllas-Kazacos59 

can be proposed. So, -COOH/-OH functional groups can be envisaged to provide H+ to 

assist the transport of Fe3+ ions from the bulk to the close vicinity of the cathode where 

complex-assisted reduction takes place. The -COOH moieties release H+ more easily 

than -OH counterparts, as verified by some researchers.30,60Another possible 

explanation is that Fe3+ might migrate toward -OH and then bind to it and form surface 

[FeOH]2+ (see Figure 3), which is more prone to be reduced into Fe2+ as compared to 

Fe3+, as reported by Xu et al.30
 In fact, surface -COOH/-OH tend to follow a similar 

mechanism in boosting iron reduction as chelating agents such as oxalate, citrate and 

ethylenediamine tetraacetic acid (EDTA), forming strong complexes with iron via 

ligand-to-metal transfer processes. These complexes have a strong influence on the 

redox potential of Fe3+.30 

Figure 3. The plausible mechanism of various functional groups for cathodic Fe2+ regeneration. 

 

3.1.2.3. Other functional groups 

Aside from -OH/-COOH functional groups, the presence of a substantial 

concentration of quinone moieties is regarded as beneficial to facilitate the electron 

transfer during redox reactions, like Fe3+ reduction.30 The mechanism of quinone-

moieties-assisted Fe3+/Fe2+ cycling might follow a similar pathway to homogenous 

quinone and quinone-like reducing compounds, transferring electrons to Fe3+.61 
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Phosphate ions originated from reaction (12), similarly to -COOH and -OH, act as H+ 

source, thereby increasing the local surface H+ concentration. A high H+ concentration 

may enhance the electron transfer, eventually boosting the iron cycling. In addition, it 

was reported that the energy barrier (37.2 kJ mol-1) for proton transfer in phosphate is 

much lower as compared to that using sulfonate (69.6 kJ mol-1).62 This is because 

phosphate ions present a much higher affinity to Fe3+ with a low Ksp (= 10-36), meaning 

that the phosphate Fe uptake capacity reached 246 mg·g-1.63,64 

H3PO4 H+ + H2PO4
- 2H+ + HPO4

2-- 3H+ + PO4
3-  (12) 

3.1.3. Active sites from heteroatom doping  

Heteroatom doping has been confirmed as an efficient strategy to tune the 

electronic/surface structure of carbonaceous cathodes, thus endowing a greater 

reactivity and selectivity for the ORR.
65,66 Its role in iron reduction has drawn attention 

only recently.67 Specifically, Liu et al.67 clarified the mechanism of Fe3+ reduction on 

an N-doped carbon aerogel cathode (NDCA), including four pathways (see Figure 4a) 

that considered the different iron forms in solution at pH 3: Fe3+ (route I), FeSO4
+ (route 

II), Fe(OH)2
+ (route III), and [FeOH]2+ (route IV). It is noticeable that the graphitic-

/pyridinic-N groups on NDCA were found to act as complexing agents with iron ions 

to generate FeNx, as confirmed by synchrotron-based X-ray absorption fine structure 

(XAFS). Pyrrolic N with unpaired electrons tends to donate electrons via intermolecular 

electron transfer to Fe(III)-complexes through the conductive carbon framework. A 

similar mechanism was proposed by Ma et al.,68 as depicted in Figure 4b. The 

enhancement of Fe3+/Fe2+ cycling was due to the improved electron transfer entailed by 

the coordination of Fe ions with N, and the synergistic effects of Ni and Al in graphene 

(see Figure 4b). Indeed, doped N atoms in graphene served as ligands to adjust the 

redox characteristics through ligand-field effects. 
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Figure 4. Possible mechanism of electrochemical Fe3+-complex reduction on a nitrogen-doped carbon 

aerogel cathode. Reproduced with permission from ref 67 and 68. Copyright 2020 American Chemical 

Society 

 

3.2. Electron-rich metal-based materials  

In general, the Fe3+-to-Fe2+ conversion in the EF process is driven by the 

electrochemical reduction via reaction (3), where electrons are supplied from the power 

source. From a boarder view, electron-rich metal-based materials can also provide 

electrons for Fe3+ reduction. Since the reduction potential of Fe(III) in iron-oxide 

surfaces is lower than that of aqueous Fe3+, heterogeneous catalysts might be more 

suitable for boosting the Fe(II) regeneration.69 In this subsection, electron-rich metal-

based materials for Fe(III) reduction are presented, discussing the active sites involved 

in the reduction process. These materials can be used in EF to provide an additional 

electron source for cathodic iron reduction aside from the electrons supplied from the 

workstation. 

The active sites in electron-rich metal-based materials can be divided into four 

types, as illustrated in Figure 5, based on their mechanisms: (i) exposed reductive 

metallic sulfides/phosphides, (ii) metallic centers (ZVI, ZVAl, etc.) or low-valence 

metal ions, (iii) exposed facets and (iv) other indirectly formed reducing reagents, like 

reductive H*, intermediate products of O2
•- at the cathode, polyvalent metals or defects. 

Their corresponding mechanisms for boosting Fe3+ reduction are discussed below. 
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Figure 5. Classification of the electron-rich metal-based materials used for Fe3+ reduction. 

3.2.1. Exposed reductive metallic active sites 

A series of metal sulfide-based heterogeneous catalysts (MoS2, WS2, Cr2S3, CoS2, 

PbS or ZnS) have been synthesized to alleviate the key limitation of Fe3+/Fe2+ 

cycling.70,71 In these novel systems, unsaturated S atoms add protons to form H2S and 

then, the exposed reductive metallic active sites are available to accelerate iron 

reduction playing a co-catalytic effect in Fenton’s reaction (2). Taking MoS2 depicted 

in Figure 6a, the oxidation of surface Mo4+ to Mo6+ by Fe3+ from reaction (13) is 

possible once the unsaturated S atoms capture protons forming H2S. The exposed Mo4+ 

allows the Fe3+ reduction and thus the limitation in EF can be substantially alleviated.72 

Mo4+ ions are regenerated with the aid of H2O2 to maintain the catalytic cycle (reaction 

(14)), whereas Mo4+ can also be formed from Mo oxidation with Fe3+ (see reaction (15)). 

The utilization of metal sulfide-based heterogeneous catalysts improved the organic 

decay rate by 18.5-fold, demonstrating first, the efficiency of the Mo-assisted Fe2+ 

catalytic regeneration process, and second, the importance of boosting Fe2+ 
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regeneration in EF. Since the release of H2S gas poses potential harm, the researchers 

proposed MoO2 to replace MoS2 to avoid its formation. The mechanism of MoO2 in 

iron reduction includes the following steps (Figure 6b): (i) Fe3+ is initially adsorbed on 

the surface of MoO2, and (ii) Fe3+ is reduced to Fe2+ by Mo4+ via reaction (13), similarly 

to metal sulfides-based catalysts.73 In addition to Mo4+, Fe3+ ions can be reduced by the 

abundant defects in CoS2 according to reactions (16)-(19).74 

On the other hand, WO3 was also used as electron donor to accelerate the reduction 

of Fe3+ through available W4+ active sites via reaction (20).72,75 The use of other metals 

(M = Mn, Cu, Co, Zn, Ni, etc.) as catalysts in combination with iron is a promising 

option because they enhance the Fe3+ reduction following reaction (21) in concomitance 

with the formation of •OH by Fenton-like reactions. Despite the high efficiency of the 

abovementioned powder catalysts, including metal sulfides-based heterogeneous 

catalysts, these systems still suffer from concerns about reuse in practical applications. 

To alleviate the continuous supply of catalysts with high cost and need for separation, 

a 3D-MoS2 sponge loaded with MoS2 nanospheres and graphene oxide (GO) 

(sponge@MoS2@GO, Figure 6c) was developed.72 The sponge@MoS2@GO floated 

on the sewage and was used in a pilot-scale experiment with 150 L solution to remove 

aromatic organics. Fe2+ was regenerated by the reductive Mo4+, achieving a 50-fold 

higher pollutant degradation as compared to the system in the absence of the co-

catalyst.72 Based on those works, MoS2 as co-catalyst was introduced in the EF process 

to enhance the Fe3+/Fe2+ cycle, confirming the improved Fe3+ reduction capacity of this 

system.76 

Mo4+ + 2Fe3+  2Fe2+ + Mo6+  (13) 

Mo6+ + H2O2  2H+ + O2
 + Mo4+  (14) 
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4Fe3+ + Mo0  4Fe2+ + Mo4+  (15) 

O2 + e- (defect)  O2•-  (16) 

O2 + 2e- (defect) + 2H+  H2O2  (17) 

O2•- + Co4+/Co3+  1O2 + Co2+  (18) 

Fe3+ + e- (defect)  Fe2+  (19) 

W4+ + 2Fe3+  2Fe2+ + W6+  (20) 

Mn+ + Fe3+  Fe2+ + M(n+1)+ (M = Mn, Cu, Co, Zn, Ni, etc.)  (21) 
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Figure 6. Mechanism of iron reduction through the Mo-based catalyst: (a) MoS2. Reproduced with 

permission from ref 70. Copyright 2020 Elsevier). (b) MoO2. Reproduced with permission from ref 73. 

Copyright 2019 Elsevier. (c) Sponge@MoS2 @GO. Reproduced with permission from ref 76. Copyright 

2020 John Wiley and Sons. 
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3.2.2. Metals and their low-valence ions  

Ni, Mn, Cu, Mo and Fe are electron-rich metals with multi-valences that could act 

as electron donors to boost the Fe3+ reduction. For instance, Fe involving its lowest 

valence (i.e., ZVI) plays two main roles in the EF process: (i) to become a source of 

iron ions for Fenton’s reaction (2), via oxidation as shown in reactions (22)-(24), and 

(ii) to provide electrons for Fe3+ reduction from reaction (25), as also occurs with Ni in 

reaction (26). 

Fe0 – 2e-  Fe2+                  (E0 = -0.440 V vs. SHE for reduction) (22) 

Fe0 + O2 + 2H+  H2O2 + Fe2+  (23) 

Fe0 + H2O2 + 2H+  Fe2+ + 2H2O  (24) 

2Fe3+ + Fe0  3Fe2+  (25) 

2Fe3+ + Ni0    2Fe2+ + Ni2+  (26) 

In the case of zero-valence metal, some of us77 used a three-dimensional porous 

metallic iron-foam cathode to solve the issue of the low Fe2+ regeneration rate. It was 

found that the chemical regeneration of Fe2+ via reactions (25) and (26) on nickel-iron-

foam was crucial for the continuous production of Fe2+ ions for phenol degradation (see 

Figure 7a). The utilization of ZVI along with carbon in EF has also been reported by 

Zhang et al.78 The iron-carbon (Fe-C) micro-electrolysis system relies on the formation 

of numerous microscopic galvanic cells, where iron acts as anode and carbon serves as 

cathode. The modification of Fe-C particles catalyst with PTFE prevents iron releasing 

into the solution. In this system, Fe3+ reduction by Fe0 via reaction (25) was reported as 

well.78,79  

Although PTFE could prevent iron release from metal-based catalysts to some 

extent, a better strategy to alleviate the issue consists of a catalyst anchored into the 

cathode, in which chemical/electrochemical reduction can slow or even suppress Fe 
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dissolution. For example, a nickel-iron foam (Ni-F) cathode was used in EF for phenol 

degradation, as presented in Figure 7b.80 In this system, the Ni-F composite cathode 

could provide Fe2+ ions in a controlled manner via complex chemical/electrochemical 

redox processes (chemical corrosion from reactions (23) and (24) and Fe3+ 

chemical/electrochemical reduction reactions (3) and (25). The Zhang’s group81,82 

designed some novel Fe@Fe2O3 core-shell nanowires and confined them into multi-

wall carbon nanotubes to obtain an oxygen-fed gas-diffusion electrode. This core-shell 

structure along with activated carbon fiber prevented the complete leaching of Fe3+ and 

Fe2+ into the bulk. In this way, the in-situ cycling of iron species (Fe0 → Fen+ → Fe2O3) 

was achieved. Zhao et al.83 proposed a one-step metal-resin process to fabricate an iron-

copper-carbon (FeCuC) composite aerogel cathode for EF, where Cu0 acted as a 

reduction promoter for boosting electron transfer. One interesting finding was that Fe0 

particles were embedded in the 3D structure of the carbon aerogel and the surface iron 

was removed during activation treatment (CO2/N2). The metals in the FeCuC composite 

cathode were crosslinked with the carbon framework, being highly stable even in acid 

solution. Other metal oxides like CeO2, with a redox cycle between 3+ and 4+ oxidation 

states, also favor the electron transfer rate in the Fe3+/Fe2+ cycle in EF and thus, boost 

iron reduction through the interaction between Ce4+/Ce3+ and Fe3+/Fe2+ pairs. It was 

reported that the synergistic effect of Fe-Ce promoted the regeneration of Fe2+/Ce3+ 

according to reactions (3) and (27)-(29).84,85 Similar mechanisms were proposed for 

composite electrodes such as γ-FeOOH-graphene-polyacrylamide carbonized aerogel 

(γ-FeOOH GPCA) as shown in reaction (29),86 MnCo2O4 loaded on carbon fiber 

(MnCo2O4-CF),87self-supporting carbon fiber paper (CFP) decorated with MnO2-Fe3O4 

CFP@MnO2-Fe3O4/C,88
, and CuFeNLDH-CNTs modified graphite.89 
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Figure 7. Mechanisms of zero-valent metal-catalyzed Fe3+ reduction in the electro-Fenton process: (a) 

nickel-foam. Reproduced with permission from ref 77. Copyright 2018 Elsevier. (b) Nickel-iron foam 

cathode. Reproduced with permission from ref 80. Copyright 2018 Elsevier. 

 

 

Ce4++ e-  Ce3+ (E0 = 1.72 V vs. SHE) (27) 

Fe2+ + Ce4+  Fe3+ + Ce3+  (28) 

γ-FeOOH + 3H+ + e-  Feads
2+  Fe2+  (29) 

The main concern with the use of these metal-based catalysts is the inevitable 

dissolution in the acidic or even neutral medium used in EF. Hence, stability needs to 

be taken into consideration for large scale applications. A strategy to improve this 
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consists in encapsulating the metal nanoparticles into carbon nanotubes and wash Fe 

particles remaining outside of the carbon shells, as investigated previously.90,91 

3.2.3. Exposed facets  

The reactivity of surface atoms varies at different facets.92 In this regard, facet-

dependent physicochemical properties such as redox potential and hydrophilicity could 

differ with exposed facets and hence, influence reactions occurring at the surface. It has 

been reported that adsorption was facet-dependent in hematite, where the {0 0 1} facet 

presented stronger adsorption than its {1 0 0} counterpart due to the abundant surface 

hydroxyl groups and adsorption site densities in the former.93 A similar study showed 

that hematite {0 0 1} provided more reaction sites for interfacial electron transfer, thus 

promoting a larger electron transfer rate (19.6 s-1) than hematite {1 0 0}.93,94 The former 

facet, with a more positive redox potential, could facilitate iron cycling. Considering 

that Fe3O4 has a face-centered cubic crystal, its surface energy increases in the 

following order: {1 1 1} < {1 0 0} < {1 1 0}. Polyhedral Fe3O4 nanoparticles with 

exposed {1 1 0} facets account for 38.5%, and Fe3+ reduction can be boosted due to its 

higher surface.95 Huang et al.96 conducted a series of experiments about the variations 

of specific metals on various crystal planes at the molecular scale combining 

spectroscopic and theoretical calculations. They found that hematite {1 1 0} could 

confine Fe2+ in a five-coordination binding mode, while there was a six-coordinated 

bond in {0 0 1}. The difference in iron coordination not only controlled the efficiency 

of the Fe3+/Fe2+ cycle, but also determined the formation of the •OH. This was explained 

in terms of the much lower activation energy for H2O2 decomposition in the five-

coordination mode. Well-established synthesis methods for hematite with special facets, 

the related growth mechanisms, and the interactions between different facets and Fe2+ 

have been previously reviewed.93 
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Rational design of well-defined crystal surfaces for iron reduction is still 

challenging if the desirable planes are required because in general, high-energy planes 

vanish rapidly and are transformed into low-energy ones, minimizing the total surface 

free energy under equilibrium conditions.97 Some excellent reviews have systematically 

discussed the synthesis methods for crystal facet engineering.98 As reviewed by Wang 

et al.,98 a substantial body of investigations have been focused on the facet-controlled 

synthesis of TiO2, but there is a lack of work on other metals. 

3.2.4. Other indirectly formed intermediates 

3.2.4.1.  Active hydrogen (H*/[H]/H2) 

Compared to other reducing agents like metal or metal sulfides-based catalysts, 

active hydrogen (abbreviated as H*/[H]/H2) is a clean reagent that has become a hot 

topic in environmental application, although it is still underplayed.99 H*, as a catalytic 

intermediate, is generally formed at the cathode during a two-electron transfer HER 

through either a Volmer-Heyrovsky or Volmer-Tafel mechanism. In HER, H2O is 

reduced at the cathode and H* is produced via reactions (30)-(32).100,101 H* is 

theoretically a strong reducing species (Eº = -2.106 V/SHE) and it could reduce species 

in the bulk, like Fe3+ from reaction (33) or nitrate.102 

Regarding materials for improving the H* formation, as described in Figure 8, 

noble metals like Pd0 enhance the adsorption/storage of H2 and then activate it to form 

H* from reaction (34).103 Georgi et al.104 utilized H2/Pd pairs to enhance Fe3+ 

regeneration via reaction (35). 

H2O + e-  H* + OH- (Volmer)  (30) 

H2O + H*+ e-  H2(g) + OH-  (Heyrovsky)  (31) 

2H*  H2(g)  (32) 
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[Fe(H2O)5(OH)]2+ + H*  

[Fe(H2O)6]
2+ 

△rGº = -87 kJ mol-1 (pH≈ 3) (33) 

≡Pd-H2  2 ≡Pd-H*  (34) 

Pd-H* + Fe3+  Pd + Fe2+ + H+  (35) 

 

Figure 8. Different materials used for the formation of active H*. 

 

Considering the Pd scarcity and its high cost, other abundant elements were 

incorporated into Pd-based catalysts to lower its concentration.105 Zeng et al.103 

fabricated a three-dimensional catalyst, where Pd was loaded on the large surface area 

of Al2O3. They found that 360 μM Fe3+ could be completely reduced to Fe2+ within 1 

min using Pd@Al2O3 catalyst (see Figure 9a). In another work, the presence of Ni 

promoted H* atoms owing to its strong metal-hydrogen (metal-H*) binding strength.102 

Some of us utilized a nickel-foam cathode to assist the Fe3+/Fe2+ cycle with the help of 

H* atoms.106
 Liu et al.107 introduced the use of atomic H* in the EF process to accelerate 

the regeneration of chemisorbed Fe(II)-complexes at a near-neutral pH using a Ni-

deposited carbon felt cathode based on the d-band center theory. They observed the 
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formation of atomic H* on Ni-deposited carbon-felt cathode. The density functional 

theory (DFT) simulations showed that coordinated Ni atom at the Ni-deposited carbon-

felt cathode could be the active sites for H2O adsorption to be then reduced to atomic 

H* (see Figure 9b). Apart from metallic Ni, a Ni-based compound like Ni(OH)2 was 

proven to be an excellent catalyst for H2O dissociation as well, since it formed a 

metal/hydroxide interface that provided more active sites for active H* atoms formation 

(see Figure 9c).108 
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Figure 9. Generation of active hydrogen and its application in various configurations: (a) Pd@Al2O3 

catalyst. Reproduced with permission from ref 103. Copyright 2020 Elsevier. (b) Carbon-coated Ni foam. 

b Carbon-coated Ni-foam

a Pd@Al2O3 catalyst

c Nickel hydroxide
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Reproduced with permission from ref 107. Copyright 2019 American Chemical Society. (c) Nickel 

hydroxide. Reproduced with permission from ref 108. Copyright 2021 Elsevier. 

 

 

Liu et al.107 elucidated the roles of active H*, electrons and electric field in the 

nitrate cathodic reduction. The in-situ produced active H* at the cathode was the 

responsible for nitrate reduction rather than the previously speculated H2.
98 Attention 

should be paid over soluble H2 dissolved at normal temperature/pressure that could also 

reduce Fe3+ back to Fe2+. This suggests that it is needed to retain H2 in the bulk 

solution.99 From this assumption, metal-organic frameworks (MOFs) favoring H2 

adsorption were explored, which could be promising due to their high specific surface 

area, adjustable pore size and open metal sites. Tang and Wang109 prepared a Pd/MIL-

101(Cr) catalyst and found that the MOF could kept H2 in the bulk. The reduction of 

Fe3+ through the solid Pd/MIL-101(Cr) catalyst was improved by 10-fold with the H2-

MIL-101(Cr) system and 5-fold with the H2-Pd0 one. Unsaturated iron sites (CUSs) in 

MOFs served as active sites to boost the cycling of the Fe(III)/Fe(II) couples. However, 

there was a concern about the proportion of Fe(III) in CUSs that was still too high, 

leading to a much higher electron density of iron centers, not good for Fe(III) reduction. 

To solve this drawback, Gao et al.110 proposed the introduction of functional groups 

with strong electron-withdrawing ability such as -NH2, -CH3, H-, Br-, and -NO2 to 

lower the electron density of iron centers. Among them, -NO2 was confirmed to present 

superior catalytic activity in a wide pH range (4-8) with the highest electrophilicity, 

although organic ligands face issues for potential large-scale applications. In a different 

approach, Yang et al.111 proposed a rational Fe(II) substitution to develop a mixed-

valence MIL-53(Fe) catalyst (denoted as FeⅡ-MIL-53(Fe)). The partial Fe(III) 

precursor was displaced by Fe(II) salts and the high portion of Fe(II) in CUSs favored 

iron reduction. 
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This subsection has discussed the high reactivity of active H* for cathodic Fe(III) 

reduction. H* detection is crucial to understand the fundamental mechanism involved. 

Among the several approaches to confirm the presence of active H*, KIO3 as a non-

volatile active H* scavenger deems as an effective method to capture this species 

according to reaction (36). A more intuitive analysis by NMR and ESR spectroscopy 

has also been applied.112 More frequently, active H* has been monitored using electron 

paramagnetic resonance with 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as the 

trapping agent. The interference of •OH in ESR during the H* measurement was 

avoided by addition of the scavenger t-butanol (TBA) since it can selectively capture 

the •OH.113 Protocols for the identification, quantification and generation methods of 

H* in electrocatalytic systems are described elsewhere.110 

H* + IO3
-  •OH + IO2

-  (36) 

3.2.4.2. Radicals 

Superoxide ion (O2
•-) is formed through the reduction of O2. Among various 

formation routes for this radical, the electrochemical reduction is potentially the most 

convenient, where O2 accepts one electron to form it from reaction (37).115 O2
•- is a 

short-lived species in aqueous solution, but its lifespan could be extended when protons 

are absent because it disproportionates in water according to reaction (38). Considering 

its moderate redox potential (-0.32 V vs. SCE at pH 7.5) in front of that of Fe3+/Fe2+ 

(reaction (3)),19,115,116 the reduction of Fe3+ by O2
•- following reaction (39) is more 

thermodynamically favored than the reduction with H2O2 from reaction (40) and HO2
• 

from reaction (41). To investigate the reduction ability of O2
•-, some of us fabricated a 

novel carbon nitride graphite-based gas diffusion electrode (g-C3N4@GDE) and 

confirmed its role in cathodic iron reduction.117 Moreover, we recently designed a novel 

microbubble-assisted rotary tubular titanium cathode (MRTTC) to alleviate the issue of 
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a low Fe3+ reduction rate in the EF process.34 In this MRTTC, iron reduction attained a 

200% enhancement as compared to the conventional EF process since the formation of 

O2
•- provided an additional reduction pathway for Fe3+ cycle via reaction (39) aside 

from its direct cathodic reduction by reaction (3). A similar finding was reported by 

Zhang et al.118 using a novel 3D anthraquinone/polypyrrole modified graphite felt 

(AQS/PPy-GF) cathode. The formation of O2
•- has also been suggested in a three-

dimensional EF system with nickel foam as particle electrode, which was said to 

promote reaction (42).119,120 However, its role in iron reduction was not clearly 

demonstrated in this work. O2
•-could be detected by chemical reactions, spin trapping 

and direct measurement. More details can be found in the work of Hayyan et al.115 

Although O2
•- favors the Fe3+ reduction via reaction (39), its formation through the 

monoelectronic reduction of O2 competes with the two-electron ORR to yield H2O2 

(reaction (1)). As a result, the balance between H2O2 and O2
•- formation must be 

optimized to achieve the best degradation efficiency. Other strategies proposed in the 

review, for example, the introduction of surface functional groups, active sites from 

heteroatom doping, and mass transport methods, not only assist the electrochemical 

Fe3+/Fe2+ cycle, but also boost the two-electron ORR to produce H2O2. 

O2 + e-  O2
•-  (37) 

2O2
•- + H2O  O2 + HO2

- + OH-  (38) 

O2
•- + Fe3+  Fe2+ + O2 k = 5 × 107 M-1 s-1 (39) 

H2O2 + Fe3+  Fe2+ + HO2
• + H+ k = 0.02 M-1 s-1 (40) 

HO2
• + Fe3+   Fe2+ + O2 + H+ k = 2 × 103 M-1 s-1 (41) 

Ni + 2O2  Ni2+ + O2
•-  (42) 
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Apart from O2
•-, organic radicals such as R

•
 formed in a novel Fe-N-graphene 

wrapped Al2O3/pentlandite composite were also responsible for Fe3+ reduction, where 

R
•
 mainly acted as the electron donor.69 This reduction mechanism occurred as follows: 

once R
•
 was formed, it was freely added to the graphene region resulting in an enhanced 

electron transfer from organic to iron ions. Transition metals can induce the formation 

of persistent free radicals (PFRs) via electron transfer from phenol/quinone moieties to 

metal atoms (e.g., CuO and Fe2O3). PFRs serve as electron donors for Fe3+/Fe2+ cycling 

with half-lives of hours, days and even months unlike the short life of •OH.121 

3.3. Other emerging strategies  

As illustrated in Figure 10, other emerging strategies to boost Fe3+ cathodic 

reduction include: (i) single-atom catalysts to atomically disperse the active sites, (ii) 

unique microenvironments arising from confinement effect, and (iii) the introduction 

of reducing chelating agents. 

 

Figure 10. Other emerging strategies to enhance cathodic reduction.  
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3.3.1. Single-atom catalysts 

Single-atom catalysts (SACs) with isolated metal atoms are deemed as a new 

frontier in heterogeneous catalysis science, tracing back to the investigation of 

Maschmeyer et al.122 in 1995. SACs can maximize the dispersion of active sites and 

thus, improve the catalytic atom-utilization efficiency. The energy level/electronic 

structure and unsaturated coordination environments suffer fundamental alterations 

when they are reduced to atomic scale. In this way, SACs could significantly improve 

the corresponding activity.123 

The utilization of SACs for iron reduction was, for the first time, reported by Yin 

et al.,124 who revealed that the decay of Fe(NO3)3 in the confined nanopores of a support 

with abundant Si-OH groups promoted Fe sites dispersed at an atomic level, as can be 

seen in Figure 11. The atomic Fe catalytic sites anchored on a sandwich structure 

avoided acid leaching and Fe agglomeration using the layered structure. So, the high-

density N atoms and “six-fold cavities” in g-C3N4 firmly encapsulated Fe at the atomic 

level.125-127 To improve the exposed metal active sites, single Fe atom anchored in 

pyridinic-N-dominated and defect-enriched graphene (N-DG) nanosheets were created, 

as shown in Figure 11a, in which defect-rich graphene favored the Fe immobilization. 

The synergistic effects of the Fe-N and Fe-O sites promoted the two-electron ORR in 

the Fe/N-DG catalysts as well. Considering that SACs are still in their infancy, most of 

the work has focused on the promotion of the two-electron ORR. In our opinion, iron 

cycling can also be enhanced in the presence of SACs. On the other hand, constructing 

the atomic dispersed catalysts is still challenging since the obtention of atoms involves 

high surface energy and they tend to aggregate to form nano nanoparticles.32 Chen et 

al.32 systematically summarized innovative fabrication methods related to wet-

chemistry approaches to obtain atomic dispersion of metal centers, which include defect 
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engineering strategy, spatial confinement strategy, coordination design strategy and 

other sacrificial template approaches. 

 

 

Figure 11. (a) Schematic illustration of the preparation methodology to obtain Fe/N-DG catalysts. 

Reproduced with permission from ref 127. Copyright 2021 Elsevier. (b) Single atom Fe sites on SBA-

15. Reproduced with permission from ref 124. Copyright 2019 American Chemical Society. 

 

3.3.2. Confinement effects 

Cavities of nanostructured materials offer a special environment that 

confines/entraps the reactant molecules, eventually enhancing their electrocatalyst 

efficiency. These properties derive from their nanosized spatial morphology termed as 
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nanoconfinement effects.128,129 In 1987, Derouane131 was the first to define confinement 

effects and postulated a general theory over the van der Waals physisorption energy W 

of a molecule within a “confined environment” according to Eq. (43): 

W (s) = 
-C

4d
3
(1-

s
2

)
3
 

 (43) 

where d is the distance between the molecule and the pore wall, s = l/a is the curvature 

indicator, a is pore radius, l is the radius of the molecule, and C is a constant. 

It can be deduced from Eq. (43) that the W value in the confined pore is 

approximately 8-fold higher than that in the plane. As reviewed in ref 129 and 131, the 

confinement in nanospace can substantially change the physicochemical properties of 

encapsulated substances, including hydrogen bond network, water flow rate, phase 

transition, and even the alteration of energy barriers, kinetics, and pathways of chemical 

reactions. Once the molecules are encapsulated into nanometer-sized confinements, 

some interesting phenomena can take place. For example, Yang et al.132 observed the 

formation of singlet oxygen (1O2) rather than the commonly observed •OH from 

Fenton’s reaction (2), which was catalyzed by 2 nm Fe2O3 nanoparticles confined inside 

multiwalled carbon nanotubes (MWCNTs) with inner diameter of 7 nm. Similarly, the 

melting point of ionic liquids inside CNTs reached 473 K, much higher than the melting 

temperature in unconfined state (279 K).133 In this regard, confinement not only ensures 

better interaction between reactants and active species, but also presents a synergetic 

effect provided by the unique microenvironments. This favors a series of catalytic 

reactions, including the Fe3+-to-Fe2+ conversion.134 

Recently, Su et al.134 took advantage of CNTs unique hollow and tubular 

nanostructure to confine Fe0. The study confirmed the confinement effects on tuning 

the iron valences, where Fe0 instead of iron oxide was observed inside CNTs and the 
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conversion of Fe3+ to Fe2+ assisted by Fe0 was achieved. The confined Fe0 inside CNTs 

favored the two-electron ORR and less iron was released from this cathode material. 

Zhang et al.135 recently found that the degradation rate was enhanced one order of 

magnitude when the reaction occurred in a channel smaller than 20 nm because a larger 

amount of •OH was confined for fast organic oxidation avoiding parasitic reactions due 

to •OH limited lifespan. The research of Shermukhamedov et al.136 analyzed the 

influence of confinement effects on the Fe3+/Fe2+ redox couple in single wall carbon 

nanotubes. They found that the electron transfer rose with decreasing nanotube diameter 

from 3.5 to 0.8 nm since the solvent reorganization energy was lower in smaller 

nanotubes. 

3.3.3. Introducing emerging chelating agents  

Zhang and Zou23 have reviewed the application of chelating agents in Fenton and 

Fenton-like reactions at high pH values in a systematic manner. In this subsection, only 

the emerging chelating agents with the ability to enhance the Fe3+/Fe2+ cycle will be 

analyzed, especially inorganic chelating agents since the organic ones increase total 

organic carbon (TOC) load along with the potential toxicity effects. They can act as 

quenching agents and consume reactive species, thus decreasing the oxidizing 

ability.137 Some inorganic ligands have been used in the EF process, including sodium 

disilicate (SD), tetrapolyphosphate (4-TPP), tripolyphosphate (3-TPP), pyrophosphate 

(PP), Na3PO4, HSO3
- ion, SO3

2- ion, and hydroxylamine sulfate,137,139 which are 

discussed in detail below. 

Cui et al.140 reported that a low-cost sodium disilicate (SD) chelating agent could 

extend the operation of the EF process at neutral pH (from 6 to 8), where Fe(II)-DS 

activated O2 to form additional H2O2, enhancing the efficiency according to reactions 

(44)-(47). Disilicate ions were then removed via the addition of CaO or CaCl2.  Guan et 
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al.141 compared the performance of various ligands (PO4
3-, humic acid (HA) and SiO3

2-) 

on the transformation of Cr(VI) and iron reduction, reporting a similar trend. 

Fe2+ + disilicate  [disilicate-Fe(II)]  (44) 

[disilicate-Fe(II)] + O2  [disilicate-Fe(III)] + O2
•-  (45) 

[disilicate-Fe(II)] + O2
•-  [disilicate-Fe(III)] + H2O2 + 2OH-  (46) 

[disilicate-Fe(II)] + H2O2  [disilicate-Fe(III)] + •OH + OH-  (47) 

Following the pioneer work of Wang et al.142 describing the chelating properties 

of tetrapolyphosphate, we used polyphosphates like tetrapolyphosphate (4-TPP), 

tripolyphosphate (3-TPP) and pyrophosphate (PP) as supporting electrolytes to 

circumvent the pH limitation in the EF process (see reactions (48)-(50)).143,144 As an 

interesting result, it was found that the addition of TPP accelerated the cathodic cycle 

of Fe3+/Fe2+ via decreasing the redox potential, also promoting the oxidation of Fe2+ to 

form •OH. Figure 12 shows that the •OH generation ability decreased in the order: Fe2+-

4-TPP > Fe2+-3-TPP > Fe2+-PP ≈ Fe2+-PO4, which was in good agreement with charge 

transfer calculations by DFT and ultraviolet photoemission spectroscopy (UPS, Figure 

12c).106,143 The potential eutrophication concern derived from the presence of 

polyphosphate supporting electrolytes was addressed by CaCl2 precipitation, and a 

promising high value-added compound was obtained after treatment.145 

O2 + Fe2+-TPP  Fe3+-TPP + O2
•-  (48) 

Fe2+-TPP + O2
•- + 2H2O  Fe3+-TPP + H2O2 + 2OH-  (49) 

Fe2+-TPP + H2O2  Fe3+-TPP + •OH + OH-  (50) 
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Figure 12. (a) PL spectra of 2-hydroxyterephthalic acid (TAOH) for different ligands, (b) ESR spectra 

of various Fe2+-ligand complexes, and (c) energy level diagram of the Fe2+-ligands and target molecule 

in contact and following the Schottky-Mott vacuum level alignment, in which VL, Φ, EF, ΦBe, Eg, EA, 

LUMO and HOMO stand for vacuum level, work function, Fermi level, electron injection barrier, energy 

gap, electron affinity, the lowest unoccupied and highest occupied molecular orbitals, respectively. 

Reproduced with permission from ref 143. Copyright 2019 Elsevier. 

 

 

3.3.4. Microbial electro-Fenton systems 

In recent years, bioelectrochemical and electro-Fenton systems (i.e., bio-electro-

Fenton or bio-EF) have been merged by some scholars, giving rise to an EF process 

that can be self-powered by a microbial fuel cell. Usually, in bio-EF systems, the anodic 

chamber contains a bioanode colonized by microorganisms that converts the chemical 

energy stored in organic feed into electricity (Figure 13a). Thus, the performance of 

bio-EF is largely dependent on the electroactive bacteria that transfer electrons to the 

electrode surface upon oxidation of the organic matter contained in the anolyte. The 
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cathodic compartment generally consists of a conventional EF half-cell equipped with 

an electrode material capable of producing H2O2 (reaction (1)) that is further employed 

in Fenton’s reaction (reaction (2)). A great advantage of bio-EF is its capacity to deal 

with refractory pollutants or wastewater in the catholyte in the absence of external 

power supply, since such wastes are generally toxic for the bioanode microorganisms. 

There are several types of bio-EF processes, depending on the biocell configuration, 

which include microbial fuel cells (MFCs)-EF, microbial electrolysis cells (MECs)-EF, 

microbial reverse electrodialysis cells (MRECs)-EF and MFC-powered MEC-EF. Such 

systems have been systematically described in recent review papers.146-147 In bio-EF 

systems, microbial cultures are not directly involved in the degradation of pollutants on 

the cathodic chamber because the microorganisms are isolated in the anodic 

compartment.149 As such, Fe2+ regeneration mainly depends on the cathodic Fe3+ 

reduction, following the mechanisms that have been described throughout the text. The 

efficiency of such iron reduction powered by the harvested bio-electrons has been 

demonstrated using Shewanella decolorationis S12,150 Shewanella putrefaciens SP200, 

151 Pseudomonas,152 and mixed bacterial cultures from sludge.153-155 Recently, a novel 

bio-EF system (Figure 13b) was proposed, in which Fe2+ mainly converted by 

Pseudomonas and Geobacter at anode chamber transported into cathodic part via cation 

exchange membrane for Fenton’s reaction (2).152 However, the low current output from 

the bio-EF process is still a concern for quantitative cathodic iron reduction.156 Because 

of the oxidative environment generated in the EF half-cell of bio-EF systems, it is 

preferable to keep microorganisms in the anodic half-cell.  

Whatsoever, it has been reported that microbial communities constituting a 

biocathode are promising options to remove toxic metals via microbial reduction.157 As 

for the iron reduction, the first study on biocathodes to improve the regeneration rate of 
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dissolved Fe2+ in MFC was reported by Zhang’s group (Figure 13c),158,159 who used the 

iron-reducing bacterium (IRB) Geobacter sulfurreducens. This study was aimed at 

regenerating Fe2+ from ferric sludge derived from a neutral Fenton process. The 

regenerated Fe2+ solution was then used as catalyst for the Fenton treatment of domestic 

wastewater polluted with pharmaceuticals. Other IRBs include Rhodoferax 

ferriredueens, Geothrix fermentans, Desulfobulbus propionieus, Shewanella 

futrefaciens, and Geobacter metallireducens. Among them, Geobacter and Shewanella, 

whose whole genome sequencing has been completed, have been widely 

investigated.160 For instance, it was reported that a Geobacter sulfurreducens-enriched 

biocathode enhanced the Fe2+ generation rate three-fold as compared to the cathode 

without biofilm. The authors outlined that the electrons used for Fe3+ reduction were 

originated from two sources: (i) the external circuit that connected with the bioanode, 

where microbial degradation of organics takes place, and (ii) the anaerobic metabolism 

of IRBs forming the biofilm, which are believed to be produced from a complex trans-

periplasmic electron transfer chain involving a variety of c-type cytochromes (Figure 

13d).161 Hence, in the metabolic route, electrons are collected from the oxidation of the 

quinone pool by the tetraheme c-type cytochrome (CymA) located in the inner-

membrane.162 The small tetraheme cytochrome (STC) serves as redox shuttle to 

mediate electron transfer between CymA and other enzymes. This process culminates 

with the electrons arriving at the outer membrane, where they are transferred to Fe3+ to 

trigger its reduction. Overall, three ways for electron transfer from the outer membrane 

to dissolved Fe3+ can be distinguished (Figure 13c): (i) electron transfer mediators such 

as outer-membrane CymA,163 (ii) direct contact with Fe3+ ions,164 and (iii) through 

adhered conducting structures such as highly conductive monolateral pili.165 
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As final consideration, the exploration of bio-EF processes incorporating 

biological half-cells in multiple stack cell reactors to boost Fe2+ regeneration can be 

envisaged as a novel research opportunity. 
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Figure 13. (a) Mechanism of the bio-EF system with a bioanode to supply electrons for cathodic iron 

reduction. Reproduced with permission from ref 148. Copyright 2019 Elsevier. (b) A novel double-

chamber bio-EF with iron transported between anode and cathode chambers. Reproduced with 

permission from ref 152. Copyright 2022 Elsevier. (c) A two-chamber microbial electrolysis cell (MEC) 

with iron-reducing bacteria supported on a biocathode. Adapted with permission from ref 159. Open 

Access. 
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4.  Mass transport improvement 

In EF, the pH distribution in the cathode vicinity is different from the bulk pH (see 

Figure 1a). Theoretical calculations can be performed from Eqs. (51)-(53): 

M(OH-)=
It

zF
 

 (51) 

[OH-]=
It

250zFπd
2
δ
 

 (52) 

pH=14+log（
It

250zFπd
2
δ
） 

 (53) 

where  is the thickness of local layer (m), t is the electrolysis time (s), I is the applied 

current (A), z is the number of transferred electrons, F is the Faraday constant (96485 

C mol-1), and d is the diameter of the cathode (m). 

The results obtained with the above equations coupled with local pH sensor allow 

establishing that the pH in the vicinity of cathode can reach values as high as 13 with 

continuous production of OH- via HER/ORR and a relative slow supply of H+ from the 

bulk. The pH in the cathode vicinity has been reported to keep high despite strong 

mechanical mixing.21 Inevitably, the local cathodic alkaline environment leads to the 

formation of Fe(OH)3 and reduces the amount of soluble iron ions, as confirmed by 

previous investigations, especially in EF with gas-diffusion electrodes.166 Effective 

strategies are then required to modulate the cathodic local alkaline environment to boost 

iron mass transport and prevent its precipitation, which is detrimental for Fe3+ 

reduction.167,168 This subsection discusses the approaches to improve iron mass 

transport in local environment, including: 

(i) The application of physical phenomena such as magnetic fields to produce 

additional forces on iron ions and favor their local mass transport; 
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(ii) the use of pulse electrolysis instead of conventional continuous signals; 

(iii) the promotion of interfacial Joule heating effect to increase the temperature in 

the close vicinity of cathode. 

4.1. Magnetic fields (magnetization)  

Magnetic fields have attracted great attention and present an interesting effect on 

physicochemical processes in electrochemical systems.169,170 The introduction of 

magnetic fields in EF is attractive because of their availability, efficiency, and relatively 

low cost.171 In general, there are two forces involved when applying magnetic fields to 

electrochemical systems: the Lorentz force (FL) given by Eq. (54) and the magnetic 

field gradient forces or Kelvin forces ( F B ) defined by Eq. (55):172,173 

LF =j  B   (54) 

B

0

X dB
F = B

μ dx
  

 (55) 

where j is the current density, B is the magnetic field, X is the volume susceptibility of 

magnetic species, μ0 is the permeability of free space (usually its value is 4π×10-7 H m-

1), and 
dB

dx
is the time change rate of the magnetic field (T m-1). 

F B  arises from the magnetization of species with different magnetic properties in 

the applied nonuniform magnetic fields, including those with 

paramagnetic/diamagnetic/ferromagnetic nature.173,174 According to Eq. (55), F B  is 

proportional to the susceptibility of magnetic species (closely related to the 

paramagnetic/diamagnetic/ferromagnetic nature of the species), the magnetic field, and 

its gradient. The formed F B  would be lower than the external applied magnetic field 

if species are antimagnetic ions. On the contrary, F B  could be intensified for the 
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paramagnetic ions, such as O2 and NO3
-. This enhancement can be largely boosted with 

ferromagnetic species such as Fe, Co and Ni ions,  

Several reviews on the combined effects of magnetic fields in electrochemistry, 

involving kinetics, mass transport and double layer, among others, have been published 

during the last decades.175 The magnetic field was proven to accelerate the Fe3+ 

reduction as well,176,177 and the boosting mechanism has been described as follows:178 

(i) It enhances the convection and thus reduces the thickness of the diffusion layer 

by complex micro-magnetohydrodynamic (MHD) phenomena derived from the 

Lorentz Force imposed on the positively charged iron ions (X = 14750 × 10-9 M-1) (see 

Figure 14a);174 

(ii) it alters the accumulation of paramagnetic species (Fe2+ and Fe3+) at the 

cathodic interface due to formed forces acting on iron ions.179,180 These paramagnetic 

species tend to accumulate along the magnetic lines with a higher magnetic flux 

intensity owing to the magnetic field gradient force F B  that is induced.173,175 
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Figure 14. (a) Magnetically-induced micro-magnetohydrodynamic (MHD) convection. Reproduced 

with permission from ref 174. Copyright 2014 Elsevier. (b) Mechanism of pre-magnetized iron for 

enhancing the Fe3+ reduction in the EF process. Reproduced with permission from ref 181. Copyright 

2020 Elsevier. 

 

The influence of the magnetic field on cathodic iron reduction dates back to 1954, 

when Yang and co-workers reported the use of a magnetic field placed perpendicularly 

to the cathode, favoring the accumulation of a larger concentration of paramagnetic 

Fe2+ near the cathode region as compared to the trial in the absence of the magnetic 

field.182 Very recently, Tian et al.181 introduced a weak magnetic field in EF from 

ferromagnetic Fe0 and paramagnetic Fe2+/Fe3+. F B  induced the corrosion of 

magnetized Fe0 and generation of paramagnetic ions (especially Fe2+) responsible for 
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the Fenton’s reaction (2). An enhancement of the mass transport of iron ions to the 

cathode was also observed, which can be explained by the movement of Fe2+ towards 

the magnetic lines with higher magnetic field flux intensity, as shown in Figure 13b. A 

similar phenomenon was also observed for the paramagnetic Cu2+ (X = 1460  10-9 M-

1).183 

4.2. Pulse electrolysis 

Compared to conventional galvanostatic or potentiostatic modes in electrocatalytic 

processes, pulsed current/potential was reported as a novel strategy to boost iron 

reduction. Pulse electrolysis induces not only periodic changes in the cathode potential, 

but also local changes in the environment of the electrode surface. Our groups 

developed a dual-cathode pulsed current EF system to assist iron reduction thanks to 

the minimization of cathode surface alkalization,166 as shown in Figure 15a. By using 

this system, the low H+ concentration in the vicinity of the cathode resulting from the 

ORR and H2 evolution was avoided with the current pulses, which allowed abundant 

H+ in the bulk migrate toward the cathode surface during the current off-time (2 s). 

Similarly, the accumulated OH- diffuses out and thus, the mass transport of iron ions is 

enhanced. Aside from regulating the iron mass transport via pulsed current, 

reactivity/selectivity of other reactions like ORR or the electrochemical CO2 reduction 

(CO2RR) can also be tuned. Ding et al.184,185 (Figure 15b) found that pulsed potential 

also tuned the charge/discharge process of the electric double layer, modifying in turn 

the adsorption of reaction intermediates like *OOH, *O2 and *H, as confirmed by DFT 

stimulations. The boosted reactivity/selectivity might be due to the suppressed HER via 

a dynamic rearranging of such surface intermediates. A comprehensive review of pulse 

electrolysis was summarized by Liu et al.186, who concluded that both modified surface 

states along with induced chemical environments of the formed intermediates were the 
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dominant factors to tune the corresponding selectivity. From the enhancement of 

ORR/CO2RR reactivity/selectivity, one can suggest that the chemical state of iron ions 

along with the kinetic rate of iron reduction could be tuned simultaneously to the mass 

transport enhancement. However, limited attention has been given to pulse electrolysis 

and further research is needed to go deeper into the mechanistic understanding of iron 

reduction enhancement by the dynamic chemical microenvironments generated. 

 



 

52 

  

Figure 15. (a) Plausible mechanism in a two-electrode pulsed current system for EF process. Reproduced 

with permission from ref 166. Copyright 2020 Elsevier. (b) Pulsed current system. Reproduced with 

permission from ref 185. Copyright 2022 Elsevier. 

 

4.3. Interfacial Joule heating effect 

Although the electrochemical Fe3+/Fe2+ cycling is a function of applied potential, 

as stated in section 2.1, it is also influenced by temperature. An early investigation by 

Qiang et al.187 showed that a rise in bulk solution temperature significantly improved 

the Fe2+ electrochemical regeneration rate, increasing from 48% at 10 oC to 80% at 46 

oC. This phenomenon was in good agreement with the Arrhenius equation, 

corroborating that the Fe3+ reduction rate is temperature-dependent. More important, 

increased mass transport can be expected as well, since the diffusion coefficients (D) 

of iron ions are a function of temperature.  

However, it is not feasible to heat the whole solution to the desired temperature, 

not only because an energy input with a specific heat capacity as high as 4.2 kJ kg-1 C-

1 is needed, but also because the electrochemical Fe2+ regeneration takes place mainly 

in the cathodic double layer, not in the bulk. Therefore, the “interfacial Joule heating” 

(IJH) effect could be used to increase the temperature within the double layer itself. The 

IJH is known as the heat released from current dissipation to the surrounding 

environment, according to Joule’s law. Pei et al.188 demonstrated the existence of a 

temperature gradient between the double layer and the bulk through the IJH effect, 

increasing the temperature from 23.6-28.2 ºC in the bulk to 59.8 ºC at the surface of the 

electrode. The temperature gradient was more pronounced at higher current density and 

only existed in the boundary layer of the electrode. The rate constant (k) and diffusion 

coefficients (D) of Fe3+/Fe2+ within the boundary layer were then increased, boosting 

the mass transport as shown in Eqs. (56) and (57). Although the IJH effect could 

increase the temperature and boost the mass transport of Fe3+/Fe2+, the electrodes 
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themselves could undergo some damage if the temperature rises too high. As can be 

seen in Figure 16, the highest temperature reached by the IJH effect on the surface of a 

titanium suboxide (TiSO) plate (x = 0 cm) working at 10 mA cm-2 was 70 ºC. The 

electrode had a surface area of 105 cm2 and high resistance of 25 ± 2 Ω. In this case, no 

damage to the electrode surface was reported.189 On the contrary, it was reported that 

the localized current-induced IJH effect rose the temperature up to 500 oC to locally 

melt the microstructure of an Au electrode with a potential as high as 100 V.190 This 

was due to the high resistance of the Schottky barrier at the Au-ZnSe nanowire contact. 

Hence, the temperature increase induced by the IJH effect is largely dependent on the 

electrode/catalysts’ resistance, applied potential/current density, cell configuration and 

electrolysis time. If is therefore necessary to control the local temperature generated by 

the IJH effect in order to avoid damage to the electrode structure. 

𝑘(t) = k0 exp {-
Ea

R
[

1

T(t)+273.15
-

1

𝑇0+273.15
]} 

 (56) 

Dt = 
D0μ

0

T0+273.15

Tt+273.15

μ
t

 
 (57) 

where Ea is the activation energy, T is the temperature in ºC, and μ is the kinematic 

viscosity. 

The thermodynamics and kinetics of Fe3+ ions reduction within the boundary layer 

can be modified by the IJH effect. The boosted molecular thermodynamic movement 

coupled with lower kinematic viscosity can drive Fe3+/Fe2+ ions to move faster to/from 

the electrode. This can be related to theoretical calculations based on the collision 

theory and the Maxwell function given by Eqs. (58)-(62) for average values of speed 

νm, kinetic energy EK‑ m, rotational energy ER‑ m and internal energy EI‑ m. 

f(v)= 4π(
m

2πkT
)
1.5

exp(-
mv2

2kT
)v2 

 (58) 
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vm = ∫ vf(v)dv

∞

0

 = √
8RT

πM
 

 (59) 

EK-m = 
iK

2
kT 

 (60) 

ER-m = 
iR

2
kT 

 (61) 

EI-m = 
iI

2
kT 

 (62) 

where k is the Boltzmann constant (1.38 × 10-23 J K-1), v (m s-1) is the molecular speed, 

T is the temperature (K), and m is the molecular mass (kg), and M is the molar mass 

(g/mol). 

Considering the commonly used high current density in the EF process, the IJH 

effect-based EF could show an impact on Fe3+ reduction as well. However, more 

investigation is needed, especially to attain a trade-off between the current efficiency 

for desirable reactions and the IJH effect. 
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Figure 16. (a) Temperature on the surface of a TiSO anode (x = 0 cm) detected with thermocouples at 

locations of x = 0-5 cm. (b-c) Temperature field modeled at the location on scales of x = 0-5 cm and x = 

0-500 nm. Reproduced with permission from ref 191. Copyright 2019 American Chemical Society. (d) 

Nanotip-enhanced local temperature. Reproduced with permission from ref 189. Copyright 2022 Elsevier. 

(e-g) Electrochemical oxidation of phenol, p-CP, and 2,4-D at low temperature, in which the shadow 

zones indicate decoupled contribution of the IJH effect. Reproduced with permission from ref 188. 

Copyright 2020 American Chemical Society. 
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 4.4. Photo-assisted electrolysis 

The photo-assisted EF process is known as photoelectro-Fenton (PEF), in which 

electrochemistry and photocatalysis are combined. In PEF, the solution is irradiated 

with UVA light (λ = 315-400 nm, λmax = 360 nm) or visible-light. A higher Fe3+ 

reduction rate is found because of the following photolytic reactions:192-194 

(i) Photosensitive Fe3+ ions are directly reduced to Fe2+ via photon absorption 

according to reaction (63) for Fe3+ and reaction (64) for [Fe(OH)]2+, the predominant 

form in acidic medium at pH 2.5-3.5 (Figure 17a);195 

(ii) photolysis of Fe(III)-carboxylate complexes ([Fe(OOCR)]2+) to Fe2+ by 

reaction (65). These complexes are formed with short-chain acids, which are the final 

degradation by-products during EF prior to total mineralization to CO2. The most 

commonly formed carboxylic acid is oxalic acid, which originates Fe(III)-oxalate 

complexes like (Fe(C2O4)
+, Fe(C2O4)

2− and Fe(C2O4)3
3−) via the general reaction (66) 

(Figure 17b);196 

(iii) photoinduced electrons (eCB
-) by UV/Vis illumination over a semiconductor 

(e.g., TiO2) could also assist the Fe3+/Fe2+ cycle at its surface by reactions (67) and 

(68).196 

Fe3+ + H2O + hν  Fe2+ + •OH + H+  (63) 

[Fe(OH)]2+ + hν  Fe2+ + •OH k = 0.0012 s-1 (64) 

[Fe(OOCR)]2+ + hν  Fe2+ + CO2 + R•  (65) 

2[Fe(C2O4)n]
(3-2n) + hν  2Fe2+ + (2n-1)C2O4

2− + 2CO2  (66) 

Semiconductor + h   eCB
− + hVB

+  (67) 

≡ Fe(III) + eCB
−  ≡ Fe(II)  (68) 
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Figure 17. (a) Photosensitive Fe3+ ions are directly reduced to Fe2+ via photon absorption. Reproduced 

with permission from ref 194. Copyright 2020 Elsevier. (b) Photolysis of Fe(III)-carboxylate complexes. 

Reproduced with permission from ref 196. Copyright 1993 American Chemical Society. 

4.5. In-situ H+ formation 

Aside from the abovementioned methods for iron reduction, in-situ H+ generation 

via the anodic oxygen reduction reaction (OER, reaction (69)) has also been reported 

as a strategy to enhance the iron mass transport in EF in an undivided two-electrode 

cell.56 The OER is the bottleneck for H2 evolution from water splitting, owing to its 
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high overpotential (1.23 V vs. SHE), which means that a high current is needed to drive 

the anodic H+ generation via reaction (69). On the cathode surface, H2 evolution tends 

to prevail over the iron reduction or the ORR at such high current. To tackle this issue, 

the cathodic current density should be lower than the anodic one, aiming to favor the 

iron reduction. To achieve this, modifications in the total surface area of the cathode 

have been reported, as depicted in Figure 18.198 A larger number of cathodes was used 

in the EF cell, which resulted in a lower current density in each cathode, depressing H2 

evolution in favor of Fe3+ reduction. The H+ formed via the OER can diffuse into the 

cathodic local area and prevent the iron precipitation. In this way, the mass transport of 

iron ions was enhanced. Analogously, Yuan et al.199 proposed a divided EF system with 

one anode and two cathodes, where excessive H+ exists in the system, resulting in an 

improvement of the Fe3+/Fe2+ cycle. A recent study of Zhang et al.56 also reported a 

similar strategy to boost the iron cathodic reduction.  

2H2O  O2 + 4H+ + 4e- E0=-1.229 V vs.SHE (69) 
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Figure 18. (a) Schematic diagram of a self-sufficient electro-Fenton system. Plot of pH versus time with 

different (b) initial pH and (c) number of cathodes. Reproduced with permission from ref 198. Copyright 

2022 Elsevier. 
 

 

5. Challenges and future prospects 

Despite the achievements obtained so far to enhance the Fe2+ regeneration in EF, 

there are still some concerns regarding the Fe3+/Fe2+ cycling that should be surmounted 

in future investigations to widen the implementation of EF in industrial applications.  

(i) Cathodic iron reduction along with H2O2 formation via the 2-e- ORR is 

triggered in active sites on the electrode surface. It is then of great importance to clarify 

the active sites for each specific reaction. This will help to design cathode materials 

with suitable active sites for each reaction to maximize the EF performance. 
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(ii) In general, hydrated Fe3+ is the main form taken into consideration when 

evaluating the Fe3+/Fe2+ cycling. However, the speciation of Fe3+ at different pH values 

presents a series of aqueous Fe3+ species with different properties. For example, the 

electron-deficient Fe3+ is more susceptible to electronegative sites, but [FeOH]2+ 

species can bind with electropositive sites via electron-rich oxygen.67 In this regard, the 

speciation of Fe3+ at different pH values should be taken into consideration, including 

reactivity for iron recovery, H2O2 decomposition, and so on. It is well known that both 

homogeneous and heterogeneous iron reduction reactions are involved in EF,200 and 

consequently, attention should be given to both types of processes.  

(iii) The diffusion and double layer at the cathode side, whose length is in the 

millimeter range, are the main reaction zones for both H2O2 cathodic production and 

iron reduction. More fundamental investigations related to the processes taking place 

in this area are needed to lay down the mechanistic aspects involved, such as the spatial 

and temporal distributions of dissolved oxygen, H+, Fe2+ and Fe3+ in such 

microenvironment. For instance, the active species formed in a local alkaline 

environment at the cathode may be different from the species in the bulk since the 

electric field can be as high as 109 V m-1. Hence, operando spectroscopic or microscopic 

tools are crucial to analyze these phenomena, such as in-situ X-ray photoelectron 

spectroscopy, in-situ electrochemical attenuated total reflection Fourier-transform 

infrared spectroscopy or operando X-ray absorption spectra measurement. 

(iv) Simulations are needed when in-situ operando spectroscopic or microscopic 

techniques fail to unveil the nature in the microenvironment. It is known that modeling 

in the EF process via density-functional theory (DFT) calculations is mainly based on 

the electronic effects in the cathode structure. Besides, in recent years, molecular 

dynamics simulations have been also used in EF to do the simulation from a large-scale 
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atomic view.201 However, the cathodic iron reduction and H2O2 generation via ORR are 

controlled by both mass transport and electronic effects.202 Hence, models that are 

closer to real conditions are needed. Among the proposed models, microkinetic 

modeling proposed by Huang, which incorporated the electronic effects, double-layer 

effect and mass transport, constitutes a good example.203 

(v) The dominant role conferred to Fe2+ is the activation of the cathodic 

electrogenerated H2O2 into •OH through Fenton’s reaction (2). However, this is limited 

by the narrow operation pH and iron sludge production and hence, more cleaner ways 

must be developed to produce •OH. For example, the three-electron oxygen reduction 

reaction (O2 - H2O2 -
•OH), activated by atomic H*.204 

(vi) Aside from the magnetic field, magnetohydrodynamics favoring iron 

reduction, its influence in the spin-dependent electrochemical behavior of Fe3+/Fe2+, 

and the electron-transfer process should be further investigated. Recent works have 

shown a magnetic field-controlled spin-dependent reduction reaction in Pd 

nanoparticles.205 and Ni2+/Ni0 .206 The influence of formation and detachment of 

cathodic H2 with magnetic fields should also be considered as it leaves more active sites 

for iron reduction.  

(vii) Although many studies have reported the enhancement of iron mass transport 

via MHD in the presence of magnetic fields, more fundamental research is needed to 

clarify the changes in the inner and outer Helmholtz planes, as well as in the diffusion 

layer. 

(viii) Aside from Fe3+ reduction, other factors altering the double-layer structure 

may have significant effects. For example, cations in the double layer might induce the 

cation promotion effect, consisting in the modification of the rate-determining electron 

transfer to O2 following the order: Cs+ > K+ > Li+.207, 208 In addition, the common anions 



 

62 

  

present in the water like CO3
2- and SO4

2- may have a significant irreversible poisoning 

effect on the ORR as reported for Pt/C catalysts.209 The influence of different ions on 

the structure of the double-layer and how they affect the cathodic iron reduction or ORR 

in EF have not been investigated in detail yet. 

(ix) For the well-established H2O2 generation via ORR, the following unified key 

performance indicators are commonly used as benchmark: onset potential and reduction 

current (from voltammetric studies), yield and selectivity (from rotating ring-disk 

electrode measurements) and current efficiency (from bulk electrolysis). In contrast, 

there is a lack of such indicators for cathodic iron reduction. Several EF works have 

reported the evolution of total Fe, Fe2+ and Fe3+ during the treatment as a means to 

evaluate the cathodic iron reduction capacity. These measurements could be considered 

as plausible Fe3+ reduction performance indicators.138 In addition, current efficiency for 

Fe3+ reduction could be another potential indicator that has not been explored. In this 

regard, unified benchmarks for the evaluation of the catalytic activity for Fe3+ reduction 

should be developed. 

(x) Even though this review paper has focused on the fundamental aspects 

regarding the Fe2+ regeneration during EF, scale-up investigations using real 

wastewater samples are crucial for large-scale applications, since other organic and/or 

inorganic components of the actual matrices may have important effects on the 

performance. For instance, the presence of ions like Ca2+, Mg2+ and CO3
2- in water may 

result in cathodic salt precipitation (mostly CaCO3 and MgCO3) caused by local 

alkalization.210 Salt precipitation may result in electrode passivation, leading to high 

energy consumption and additional maintenance costs. Besides, electrode passivation 

may be irreversible even after acid-washing recovery.211 Several investigations have 

demonstrated the efficiency of EF in the treatment of real industrial wastewater, 
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generally at bench-scale,212 whereas larger-scale reports are still scarce.213 The readers 

are referred to recent review papers by authoritative groups on EF applications, 

advances and prospects for further details.202, 214-216 

6. Conclusions  

This work reviews the main mechanisms involved in the regeneration of Fe2+ ions 

from Fe3+ cathodic reduction during EF, as well as other strategies that have been 

implemented to enhance such process. The ideas presented here offer a critical point of 

view on the progress of Fe2+ regeneration in EF, aiming at drawing more attention to 

this essential process that ensures the availability of Fe2+ ions that allows maintaining 

the Fenton´s reaction (2). The main approaches that have been explored to boost the 

Fe3+ reduction to Fe2+ have been directed to enhance either the electron transfer or mass 

transport. Electron transfer strategies include the development of electron-rich 

materials, single-atom catalysts, materials with confinement effects, inorganic chelating 

agents and even microbial fuel cells. The use of magnetic fields, pulse electrolysis, the 

interfacial Joule heating effect, and photoirradiation with UVA light have been 

proposed as mass transport improvement approaches. More research is required in all 

these fields in the next future to achieve a better development and understanding of the 

processes considered in them.  

This review paper gives the basis to better understand the Fe3+-to-Fe2+ conversion 

in EF, which can guide scientists in the development of enhanced cathode materials for 

both H2O2 production and Fe2+ regeneration, as well as novel catalysts for higher 

efficiency, with the goal of designing highly effective EF systems for wastewater 

treatment at industrial scale. Regarding water disinfection, the spread of Covid-19 has 

awakened the awareness for the need of next-generation disinfection techniques, where 
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EF could find a great niche of opportunities. In this context, this manuscript provides 

some hints to boost the •OH production and hence, the disinfection performance, 

through the optimization of Fe2+ regeneration. 

The ultimate goal of investigating the Fe2+ regeneration efficiency during EF is to 

encourage the EF application at large scale. One of the major challenges of EF is its 

high energy consumption derived from its operation costs related to electricity, which 

could be a limitation, especially in rural areas with restricted access to the electricity 

grid. The use of renewable energy sources such as solar and wind could alleviate such 

issues, increasing at the same time the competitiveness of this technology.10, 217 In the 

same line, EF could be easily scaled up for industrial applications in countries with 

accessible electricity prices such as Canada, where electricity cost is 50% lower than in 

the US.218,219 On the other hand, the installation/initial capital costs are still elevated, 

estimated at approximately USD $27,000-$40,000 per m3 of treated wastewater, 

establishing a COD removal rate of 85%.220 Although there are still some challenges to 

scale-up the EF process, we do believe that it will find industrial applications in the 

near future if enough data on operation and equipment costs of larger-scale systems are 

proven to be competitive. From our perspective, the main niche of application is the 

treatment of hard-to-treat industrial wastewater employing devices powered by 

renewable energy sources with net zero carbon emissions. In this regard, solar PEF with 

solar collector-type photoreactors is one of the most promising EF alternatives for either 

centralized or on-site wastewater treatments in sunny locations. 
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