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Abstract

This thesis explores the great potential of computer-assisted proofs in the advancement of

mathematical knowledge, with a special focus on using computers to refute conjectures by

finding counterexamples, sometimes a humanly impossible task. In recent years, mathemati-

cians have become more aware that machine learning techniques can be extremely helpful

for finding counterexamples to conjectures in a more efficient way than by using exhaustive

search methods. In this thesis we do not only present the theoretical background behind some

of these methods but also implement them to try to refute some graph theory conjectures.

Resum

Aquest treball explora el gran potencial de les demostracions assistides per ordinador en

l’avenç del coneixement matemàtic, centrant-se especialment en l’ús d’ordinadors per refutar

conjectures trobant contraexemples, una tasca humanament impossible moltes vegades. En els

darrers anys, investigadors i investigadores en matemàtiques han anat veient que l’aprenenatge

automàtic, conegut com machine learning en anglès, pot ser molt útil a l’hora de trobar con-

traexemples a conjectures d’una manera més eficient que utilitzant mètodes de cerca exhaus-

tiva. En aquest treball no només presentem el marc teòric d’alguns d’aquests mètodes sinó

que els implementem per intentar refutar algunes conjectures del camp de la teoria de grafs.
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1 Introduction

1.1 Motivation

In the 1970s, Paul Cohen, an American mathematician and Fields medal winner, is said to

have predicted that ”at some unspecified future time, mathematicians would be replaced by

computers” [1]. Even though this statement is far from being true right now, mathematicians

do rely on machines to perform big computations and have been doing so for decades.

A mathematical proof is a step-by-step logical argument that verifies that a given mathemat-

ical statement is true. Reading, understanding and writing proofs is part of the day-to-day

job of a mathematics researcher. It is not difficult to see how in some parts of a mathemati-

cian’s job a human brain can be replaced by a computer because of how fast these machines

can perform computations. However, developing a proof requires something different. The

process of writing a proof generally follows a deductive step-by-step logic and can be seen

as a somewhat creative task. For this reason, proof assistants are still very controversial for

researchers in mathematics, even though some see them as game-changing tools.

Today’s society is experiencing a growing interest in the application of artificial intelligence,

AI from now on, to day-to-day activities. This topic is not a trivial one, but rather a hot one.

Many researchers are now working at the intersection of AI and proof assistants, either trying

to find how these two can work best together to assist mathematics researchers or building

algorithms and models that help solve mathematical problems.

A conjecture is a proposition on a set of mathematical objects and arguments that is suspected

to be true and is awaiting to be proved or refuted. To show a conjecture is not true it

suffices to find a construction that is a counterexample. However, conjectures tend to be

difficult to refute manually, especially in graph theory, if one does not have an intuition of

a counterexample. Moreover, graph theory problems often involve large constructions and

dealing with computationally complex problems. On a more positive note, spectral graph

theory 2 conjectures can easily be translated into a language the machine (i.e. computer) can

understand and an algorithm can easily evaluate.

AI has proved to be useful and more efficient than brute force algorithms at finding counterex-

amples to several conjectures so this thesis tries to dig deeper in this promising application.

1.2 Objectives

The main objective of this thesis is to explore first hand the capabilities of reinforcement

learning, a subfield of AI, to find counterexamples to mathematical conjectures. In particular,

2The spectrum of a matrix is the set of its eigenvalues. Since a graph has multiple matrix representations,
it makes sense to talk about spectral graph theory as a subfield of graph theory dealing with results involving
spectrum related invariants on these matrix representations of a graph.
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to graph theory conjectures, since this mathematical field and its concepts can be easily

translated to machine language. Moreover, graph theory has a lot of real-world applications.

Another goal of this thesis to allow us to get familiarized with open problems in graph theory

and to help us learn more about this fascinating field, including how some of these conjectures

can be discovered using special mathematical software packages.

This thesis replicates A. Z. Wagner’s work in [2] to find a counterexample to one of the

conjectures presented in his paper, Conjecture 1 in this thesis. Moreover, it further tries to

find counterexamples to Brouwer’s conjecture, Conjecture 2, as well as to Conjecture 3, one

variant of Brouwer’s conjecture.

1.3 Structure of this Thesis

This thesis is organized as follows:

• Section 2 introduces the concept of computer-assisted proofs or proof assistants to the

reader, what they are and where they have been used so far.

• Section 3 reviews all necessary graph theory concepts and results so that the reader can

follow through the graph theory conjectures presented later in the thesis.

• Section 4 presents several software packages that help discover new graph theory conjec-

tures as well as the relevant conjectures this thesis tries to refute by means of machine

learning techniques.

• Section 5 contains all necessary machine learning concepts so that the reader can become

familiar with this field and the kind of problems it solves as well as is able to follow

through the practical part of this thesis.

• Section 6 discusses the reinforcement learning methods that have been implemented to

try to refute the studied graph theory conjectures as well as the results and limitations

of such implementation. We also present several requirements for us to be able to use

these approaches for a given problem.

• Section 7 presents the conclusions reached after these months of work as well as some

lines of work that could be further researched and developed from this thesis.

Further, this thesis has a practical part that consists of a code implementation of two reinforce-

ment learning algorithms that try to find counterexamples to some graph theory conjectures.

The code can be found [3].
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2 Computer-Assisted Proofs and the Role of Learning-Powered

Counterexample Search

2.1 A Brief Introduction

Computers have been of use to mathematicians for decades. In some instances, it is thanks to

computers performing numerical calculations and being able to manipulate complex formulas

that mathematicians can obtain results in the first place. A promising use-case of computers is

by acting as proof assistants. That is, by helping researchers in mathematics develop a formal

proof or to disprove a given statement by means of finding a counterexample. Computer-

assisted proofs can be replicated and are verifiable pieces of code that can be inspected in

detail.

Automated theorem proving is a subfield of automated reasoning, which is in itself a subfield

of computer science, that strongly relies on mathematical logic. The systems behind proof

assistants receive what is trying to be proved or disproved translated as a set of concepts,

objects and instructions a computer can interpret and process. There are many software

packages that allow computers to act as proof assistants, some of them being Mathematica,

Sage or community-maintained open source programming languages that allow you to write

your own code.

The algorithms behind proof assistants can be designed in many ways. Most computer-assisted

proofs that have been developed to date correspond to proof-by-exhaustion, otherwise known

as brute force, implementations to several mathematical theorems.

Other approaches use machine learning techniques, a subfield of AI, to try to prove or disprove

a given statement. This second group corresponds to the proof assistants covered in this

thesis and will be referred to as learning-powered proof assistants. This type of proof

assistants has a great potential to find counterexamples to statements suspected to be false.

One advantage of using learning-powered systems to disprove conjectures is the fact that they

may encounter counterexamples that are rather counter-intuitive and therefore difficult to

originate in a human mind. Furthermore, they can find larger examples since the underlying

techniques do not exhaust the entire space of examples but use a probabilistic approach

instead.

Among all existing machine learning techniques to build a good autonomous system to find

counterexamples, reinforcement learning, quickly stands out as the most promising one, as

this thesis will further explore.

On a final note, computer-assisted proofs go much beyond what we can discuss in this thesis

and are an active field of mathematical research, see for instance [4].

3



2.2 Literature Review

There are two very famous cases of computers helping mathematics prove theorem correctness.

One of these instances is the four color theorem3, shown to be true in the 1970s by K.

Appel and W. Haken [5, 6, 7] using a computer that run for over 1000 hours of computation

time checking over 2000 possible cases one by one. By now, shorter proofs to this theorem

exist, such as the one presented by N. Robertson, D. Sanders, P. Seymour and R. Thomas in

[8].

Another well-known case of a result that was proved to be true using a proof assistant is the

Kepler conjecture 4. It had previously been shown that a proof-by-exhaustion would suffice

to prove the conjecture was true and T. Hales finally managed to prove its correctness with

around 100,000 linear programs. His proof was finally accepted in 2014 and can be found,

alongside complementary results and material, in [9].

There are no known formal proofs without the assistance of a computer to any of the afore-

mentioned results.

Some very interesting work has been published in the field of automated proof assistants in

graph theory. In particular, to find counterexamples to conjectures suspected to be false.

In the following paragraphs, we present several papers in which authors are able to find

counterexamples to some conjectures by using computer search.

M. Rocauriol and T. Cazenave use search techniques in [10] to disprove some spectral graph

theory conjectures. In particular, they show how Monte Carlo Search algorithms can be used

to construct graphs and find counterexamples in a matter of minutes.

In [11], G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström refute up to 8 open

published conjectures from an exhaustive list of potential counterexamples and using a new

generation algorithm for snarks 5.

More examples of graph theory counterexamples being found by means of computer search

can be found in [12, 13, 14]. Despite the fact that this thesis works mainly with graph theory

constructions, mathematicians working in other fields have applied similar computer search

methods and successfully found counterexamples to several conjectures, see [15, 16, 17].

The reasoning behind using exhaustive search techniques to look for counterexamples stems

from the fact that one can prove that if a counterexample exists, then there must be one

among a huge but finite set of examples, which then is exhaustively tested by a computer.

3The four color theorem is a well-known graph theory result that states that at most four colors are
required to color the regions of a given map so that no two adjacent regions have the same color.

4The Kepler conjecture states that the close packing (either cubic or hexagonal) of equally sized spheres
is the densest possible packing.

5See Definition 1 for a definition of snark.
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A. Z. Wagner uses a completely new approach, reinforcement learning, in [2] to refute several

graph theory conjectures. One of them being about the sum of the largest eigenvalue and

matching number of graphs and another one about the distance spectrum and proximity of

graphs, among others. For each problem, Wagner measures how close a given construction is

to being an actual counterexample and builds a reinforcement learning agent to create and

evaluate random constructions. His code is publicly available at [18].

No similar developments have been presented before by other authors, making Wagner’s work

an unprecedented new development with great potential. What makes his contribution so

remarkable is the fact that he used machine learning to find counterexamples in a more

efficient manner than just by using exhaustive search, which has been a popular method to

find counterexamples in the literature.

In [19], authors try Wagner’s method to find a counterexample to another graph theory

conjecture but they do not reach any. However, from Wagner’s approach they learn some

particularities about which kind of graphs are more likely to be a counterexample to the

conjecture they are trying to disprove. With this new information, they manage to narrow

down the problem and are able to find a counterexample using exhaustive search.

5



3 Graph Theory Preliminaries

Graph theory is the mathematical field that studies graphs, mathematical structures used

to model pairwise relations between objects. One subfield of graph theory is spectral graph

theory, which studies the properties of a graph by looking at the characteristic polynomial,

eigenvalues and eigenvectors of matrix representations of that graph.

This section assumes no prior knowledge about graph theory but some degree of familiarity

with linear algebra concepts, such as the definition of matrix and eigenvector. Moreover, it

touches on all necessary graph theory definitions and results that will allow us to present and

understand some conjectures in Section 4. Those conjectures will be the ones that will be

studied in detail and then tried to be disproved. In particular, this section is an introduction

into spectral graph theory, which is the study of the properties of a graph with respect to

the characteristic polynomial, eigenvalues, and eigenvectors of the matrices associated to the

graph.

The reader can check [20] and [21] if they want to dive deeper in these concepts and read

further about graph theory.

3.1 The Basics

A (simple, undirected) graph G consists of a finite vertex set V (G) and an edge set E(G),

where an edge is an unordered pair of distinct vertices of G. The edge connecting vertices x

and y is denoted as xy.

The following is an example of a graph. In this and all the graphs shown in this section we

have labeled the vertices.

Figure 1: Example of a (simple, undirected) graph with finite vertex and edge sets.

A subgraph of G is a graph the vertex set and edge set of which are subsets of the vertex

set and edge set of G respectively.
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Figure 2: Example of a subgraph of the graph shown in Figure 1.

If xy is an edge, then x and y are said to be adjacent or that y is a neighbour of x and we

denote it as x ∼ y.

An independent vertex set of a graph G is a subset of the vertices such that no two vertices

in the subset are adjacent in G.

A vertex is incident with an edge if it is one of the two vertices of the edge.

A simple graph is said to be complete if every pair of vertices are adjacent. The complete

graph of n vertices is usually denoted as Kn. Kn has
(
n
2

)
edges.

Figure 3: Complete graph K4.

The degree of a vertex v ∈ V (G), denoted as d(v) is the number of edges in E(G) that are

incident to v taking into account that loops are considered twice, i.e. a vertex that is only

adjacent to itself with a loop has degree 2.

If G is a graph, we denote by

i. δ(G) = min{d(v) : v ∈ V } the minimum degree of G.

ii. ∆(G) = max{d(v) : v ∈ V } the maximum degree of G.

G is a regular graph of degree r if δ = ∆ = r. That is, all vertices have degree r. K4 as

shown in Figure 3 is regular of degree 3.
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Lemma 1. (Euler’s Handshake Lemma) For every graph G, if we add the degrees of its

vertices, we get twice the number of edges m. That is,∑
v∈V (G)

d(v) = 2m.

Proof. We can prove this by induction on m. If m = 0, the result is trivial. If m = 1, then

either n = 2 and each of the two vertices has degree 1 or the edge is a loop and there is a

single vertex of degree 2. In both cases, the equality we are trying to prove holds true.

Now assume such equality is true for m ≤ k and let G be a graph with m = k + 1 edges.

Consider any edge e from G and the graph H = G− e (i.e. we remove edge e from G). Then,

every vertex in H has the same degree as in G except two vertices that have one degree less

than they have in G (if e is not a loop) or there is only one vertex having two degrees less (if

e is a loop).

In either case, using the induction hypothesis, we obtain:∑
v∈V (G)

d(v) =
∑

v∈V (H)

d(v) + 2 = 2(m− 1) + 2 = 2m.

Lemma 2. If G is a simple n-vertex graph, then
∑

u∈V d(u) ≤ n2 − n.

Proof. By the Handshake Lemma, the sum of the degrees of all vertices of a graph G is equal

to twice the number of edges of G. That is,
∑

u∈V d(u) = 2m, with m = #E(G). Moreover,

a simple graph has, at most,
(
n
2

)
edges. By putting all this together one obtains:

∑
u∈V

d(u) = 2m ≤ 2

(
n

2

)
=

2(n− 1)n

2
= n2 − n. (1)

The complement of a graph G, denoted as G, is the graph with the same vertex set as G

but with edge set consisting of the edges not present in G. That is, the edge set of G is the

complement of the edge set of G.
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Figure 4: Complement of the graph in Figure 1.

A walk of length k between the vertices v1, vk+1 of a given graph is a sequence of k edges of

the form v1v2, v2v3, . . . , vkvk+1. In particular, this walk can also be denoted as v1v2 . . . vk+1.

If v1 = vk+1, then it is a closed walk of length k.

A cycle is a closed walk of length k where all edges and intermediate vertices are different.

When a graph consists of only one cycle and no other vertices involved, it can be denoted

as Ck, where k is the number of vertices of such graph. For example, C3 is a triangle and is

known as the triangle graph.

Figure 5: Cycle C5.

A trail is a walk for which all edges are different. A path is a trail for which all vertices are

also different.

An Eulerian tour is a closed walk in G that visits each edge exactly once. If G has an

Eulerian tour, G is said to be an Eulerian graph.

A graph is said to be connected if there exists a path between every pair of vertices. K4,

shown in Figure 7, is connected.

A connected graph with n vertices is unicyclic if it has exactly n edges. The triangle, C3, is

a unicyclic graph.

Similarly, a connected graph with n vertices and n+ 1 edges is bicyclic.
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Figure 6: Example of a bicyclic graph.

A tree is a connected graph with no cycles.

Figure 7: Example of a tree graph.

A threshold graph is a graph that can be constructed from a one-vertex graph by a sequence

of operations of the form (i) add an isolated vertex or (ii) take the complement.

A clique of a graph G is a complete subgraph of G.

A split graph is a graph the vertices of which can be partitioned into two disjoint sets K

and I such that K is a clique and I an independent vertex set. Complete graphs are split

graphs.

A chord of a graph cycle G is an edge that connects two vertices of G but that is not part of

the edge set of G. The edge joining vertices a and c in Figure 6 is a chord of C4

A chordal graph is a simple graph such that every graph cycle of length four and greater

has a cycle chord.

If G′ ⊆ G and G contains all edges xy ∈ E(G) with x, y ∈ V (G′), then G′ is an induced

subgraph of G. We say that V (G′) induces or spans G′ in G and denote this as G′ =:

G[V (G′)]. An induced cycle in G is a cycle in G forming an induced subgraph. Moreover,

one can deduce that an induced cycle is one that has no chords.

The following structural characterization of split graphs will be important in Section 6 when

looking for counterexamples to Conjecture 2.
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Theorem 1. Let G be a graph. Then G is split if and only if G and G are chordal.

Proof. =⇒ Suppose G is split and contains a chordless cycle C of length ≥ 4. By definition

of split graph, the vertices of G can be partitioned into two disjoint sets K and I such that

K is a clique and I an independent vertex set. At least 1 vertex and at most 2 vertices of

C are in K. Since any two vertices in K are connected, as it is complete by definition, this

implies that I must contain at least 2 connected vertices. Therefore, G must be chordal. If

G is split, then G is also split, and so G must also be chordal.

⇐= This proof is a consequence of Foldes and Hammer [22]. Suppose both G and G are

chordal. It follows that the largest induced cycles in both G and G are triangles. Let K be

the maximum clique in G. If there are multiple maximum cliques, let K be the clique such

that E(G[V (G) \K]), i.e. the edge set of the graph induced by V (G) \K is minimized. We

show that no two vertices in V (G) \K are adjacent.

By contradiction. Suppose that x and y are two adjacent vertices in V (G) \K. We can pick

two distinct vertices u, v ∈ K such that x ̸∼ u and y ̸∼ v, i.e. xu ̸∈ E(G) and yv ̸∈ E(G).

Clearly, neither x nor y are adjacent to all vertices in K, as this would imply that K is not

maximum. In addition, if x and y were adjacent to all vertices in K except some vertex z,

then we could form a larger clique K ′ = K \ {z} ∪ {x, y}.

We also claim that exactly one of the edges in {xv, yu} is in E(G). If xv, yu ∈ E(G), then

(x, y, u, v) would be an induced cycle C4 in G. If neither edge was in E(G), then (x, y, u, v)

would be an induced cycle C4 in G. Without loss of generality, we suppose that yu ∈ E(G).

We claim that y is adjacent to all vertices of K except v. Otherwise, there would exist some

vertex w ∈ K, w ̸= v such that yw ̸∈ E(G). Either x is adjacent to w or x is not adjacent to

w. If x ∼ w, then (x,w, u, y) forms an induced cycle C4 in G. If x ̸∼ w, then (x, v, y, w) is an

induced cycle C4 in G.

So far, we have that x, y ∈ V (G) \K, xy ∈ E(G \K), and u, v ∈ K. Further, without loss of

generality we have that y is adjacent to all vertices in K except v, and x is not adjacent to u

or v.

Now, we prove that all neighbors of v in V (G) \K must be adjacent to y. Suppose otherwise

and let t be a vertex in V (G) \K adjacent to v and not adjacent to y. If t ̸∼ x then (x, t, y, v)

would form an induced cycle C4 in G. However, if t ∼ x, then (x, t, v, u, y) forms an induced

cycle C5 in G.

With what we have shown so far, we can construct another clique K ′ in G that provides a

smaller edge set in the graph induced by V (G)\K ′, yielding a contradiction to the minimality

in the choice of K.
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Let this graph be K ′ = K \ {v} ∪ y, then the edge set of the graph induced by V (G) \ K ′

contains at least one fewer edge than the graph induced by V (G) \K. That is, the edge xy

is lost and we do not gain a corresponding edge xv. This is a contradiction and therefore no

two vertices in V (G) \K are adjacent.

A directed graph is a graph in which the edges have a direction. Such direction is usually

indicated with an arrow on the edge.

Figure 8: Example of a directed graph.

Graphs that are not directed are called undirected graphs. All graphs discussed in this

thesis are assumed to be undirected.

Vertex coloring is the process of assigning colors to the vertices of a graph such that no

two adjacent vertices get the same color label. Similarly, edge coloring is an assignment of

colors to the edges of a graph such that no two incident edges have the same color.

Figure 9: Example of a vertex coloring of the
Petersen graph.

Figure 10: Example of an edge coloring of the
Desargues graph.

Definition 1. A snark is an undirected graph with exactly three edges per vertex whose

edges cannot be colored with only three colors.

A subset M ⊂ E(G) is a matching of G if any pair of edges in M are not adjacent. That is, a

matching is a set of edges without common edges. A matching M covers a vertex v ∈ V (G)

if there exists an edge in M incident at v.
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M is a perfect matching if it covers all vertices of G. M is a maximum matching if

there does not exist another matching M ′ with a larger number of edges. If M is a perfect

matching, then it is also a maximum matching. However, the converse is not generally true.

Figure 11: Example of a maximum matching.
Figure 12: Example of a perfect matching.

The number of edges in a maximum matching is referred to as matching number and is

usually denoted as µ.

3.2 Spectral Graph Theory

All graphs have several matrix representations associated and, by studying such matrices and

their invariants, one may learn important characteristics about those graphs. Here are some

key notions and results in the field of linear algebra and spectral graph theory.

Let us recall that a matrix A is symmetric if it satisfies AT = A, where AT refers to the

transpose matrix of A, and that the spectrum of a matrix is the set of its eigenvalues.

Moreover, the spectral radius of a square matrix is the maximum of the absolute values of

its eigenvalues.

Here we present some necessary properties of symmetric matrices.

Lemma 3. Let A be a real symmetric matrix. If u and v are eigenvectors of A with different

eigenvalues, then u and v are orthogonal.

Proof. Suppose that Au = λu and Av = τv. As A is symmetric, uTAv = (vTAu)T . However,

the left-hand side of this equation is τuT v and the right-hand side is λuT v, and so if τ ̸= λ,

it must be the case that uT v = 0.

Lemma 4. The eigenvalues of a symmetric matrix A are real numbers.
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Proof. Let u be an eigenvector of A with eigenvalue λ. Then, by taking the complex conjugate

of the equation Au = λu we get Au = λu and so u is also an eigenvector of A. By definition,

u, u ̸= 0 so uTu > 0. By the previous lemma, u and u cannot have different values so λ = λ

and the claim is proved.

Due to its length and the need to prove some intermediate results, the proof of the below

theorem is beyond the scope of this thesis. One can find its proof in Chapter 8 of [23],

Theorem 8.1.3.

Theorem 2. A symmetric n×nmatrix A has n real eigenvalues, accounting for their algebraic

multiplicities.

Let G be a graph. The adjacency matrix A of a graph G is the 0-1 matrix with rows and

columns indexed by the vertices of G such that Axy = 1 if x and y are adjacent and Axy = 0

otherwise. The adjacency matrix is a n×n square matrix (i.e. it has n rows and n columns),

with n being the number of vertices of the graph. Moreover, the adjacency matrix is also

symmetric.

Let G be an undirected graph. The incidence matrix B of a graph G is the 0-1 matrix with

rows indexed by the vertices and columns indexed by the edges, where Bxe = 1 if vertex x

is incident to edge e and Bxe = 0 otherwise. For directed graphs, we have that the directed

incidence matrix which not only consists of 0’ and 1’s as elements but also -1’s. Depending

on the direction of a given edge, its corresponding entry in the directed incidence matrix will

be 1 or -1.

The degree matrix D of a graph G is the square matrix that represents the degree of all

vertices of such graph. If v1, ..., vn are the vertices of G, the degree matrix takes the following

form:


d(v1) · · · 0
...

. . .
...

0 · · · d(vn)

 .

Definition 2. The Laplacian matrix of a graph G, denoted as L, is the square matrix

D − A, where D and A are the degree and the adjacency matrix of G, respectively. The

matrix Q = D +A, also square, is called signless Laplacian of G.

We present the following lemma as it is useful for another result. However, its proof is beyond

the scope of this thesis.

Lemma 5. Both the Laplacian and signless Laplacian matrices of a graph G are positive

semidefinite as we can express them as L = NNT and Q = BBT , where B is the incidence
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matrix of G and N the directed incidence matrix of the directed graph obtained by orienting

the edges of G in an arbitrary way.

Usually, the (ordinary) spectrum of a finite graph G is by definition the spectrum of the

adjacency matrix A and the Laplace spectrum of a finite undirected graph is the spectrum

of the Laplace matrix L.

Note that for an undirected graph, the adjacency matrix and the Laplacian matrix are sym-

metric. Therefore, by Theorem 2, L has n real eigenvalues, being n the number of vertices of

G.

The distance between two vertices x and y of a graph G, denoted as dxy, refers to the length

of a shortest path between x and y in G and it is +∞ if there is no path.

Definition 3. The distance matrix D′ of a graph G is the matrix with rows and columns

indexed by the vertices of G such that the xy-entry corresponds to the distance between the

vertices x and y.

Let us note that for a connected graph G the function d : V ×V → N is a metric, in particular

all distance matrices have 0’s in the diagonal. Moreover, they are symmetric.

LetG be a graph with vertex set V (G). The transmission Tr(x) of a vertex x is defined as the

sum of the distances from x to all other vertices of that graph. That is, Tr(x) =
∑

y∈V (G) dxy.

Definition 4. The distance Laplacian of a connected graph G is the matrix DL = T −D′,

where T is the diagonal matrix with Tr(xi) in the i-th diagonal entry.

The proof of the following theorem can be found in [24].

Theorem 3. Let G be a graph with vertex set V (G) and edge set E(G), λ the spectral radius

and d(u) the degree of vertex u ∈ V (G). Then,

λ ≤ max
v∈V

( ∑
uv∈E

d(u)
)1/2

.

Observation. Given Theorem 3 and Lemma 2, one can easily see that

λ ≤ max
v∈V

( ∑
uv∈E

d(u)
)1/2

<
(∑
u∈V

d(u)
)1/2 ≤ (n2 − n)1/2 < n. (2)
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4 Graph Theory Conjectures

In mathematics, a conjecture is a formal statement or proposition that is believed to be

true but that has not been proved yet. When a conjecture is proved to be true, it becomes a

theorem.

Conversely, to disprove a conjecture, it suffices to find a counterexample or to show that

such conjecture contradicts a statement previously proven to be true. One then says that the

conjecture is false.

Researchers in mathematics work on trying to prove or disprove conjectures, some of them

being very old statements that have been unsolved for decades. This section explores some

ways to create new conjectures using a computer and gives some such conjectures from spectral

graph theory.

4.1 Finding Graph Theory Conjectures Using Mathematical Software

Often times conjectures appear after mathematicians notice a pattern that holds true for

many cases, thus indicating that such pattern may always hold. In some fields within math-

ematics, graph theory being one of them, mathematicians use software packages to discover

new conjectures. This shows that computers can help mathematics move forward by not only

assisting mathematicians in proving or disproving results but by giving mathematicians hints

about possibly true statements.

The first system for automated discovery of conjectures used by graph theorists is GRAPH,

an interactive programming system for the classification and extension of knowledge in the

field of graph theory. This system was developed and built at the Faculty of Electrical

Engineering at the University of Belgrade in the early 1980s by Dragoš Cvetković and other

collaborators [25]. GRAPH allowed mathematicians to find conjectures and prove theorems

in graph theory, especially in spectral graph theory.

In recent years, graph theorists have been obtaining new conjectures from more modern

systems for automated conjecture discovery. Two examples of such newer systems areGraffiti

and AutoGraphiX, referenced by Wagner in [2] and Roucairol and Cazenave in [10].

In broad terms, most automated conjecture discovery systems are based on one of the following

principles:

• The system takes advantage of the ability of the computer to perform fast computations

involving the values of invariants of a series of graphs or expressions containing such

invariants, i.e. the GRAPH system.

• The system exploits compilations of relationships between graph invariants. For several

classes of graphs it substitutes constant or equivalent expressions for graph invariants,
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as in constraint programming tasks or routines.

• The system generates several conjectures of a simple form (i.e. inequalities between two

invariants or between an invariant and the sum of two other invariants) and then selects

those which are interesting. That is, the ones that cannot be implied by previously

known conjectures, do not contradict any results known to be true and those the system

itself is not able to falsify. Graffiti is one of such systems. All conjectures created by

Graffiti appear in the website Written in the Wall [26], which documents the status of

nearly 1000 conjectures.

• The system enumerates all graphs of given classes, possibly exploiting symmetry. If

a property cannot be disproved by small counterexamples, then the system creates a

conjecture from such property.

• The system uses heuristic optimization tools to identify extremal or near-extremal fami-

lies of graphs classes of graphs which are extremal or near extremal for some invariants or

expressions that act as constraints. It then studies such families and deduces conjectures

from them, i.e. the AutoGraphiX system.

Many conjectures obtained from automated conjecture discovery systems and their proofs or

refutations have ended up becoming pieces of work published in several journals, showing

that these systems really do make mathematics advance. More about automated conjecture

discovery can be found in [25] and [27].

4.2 Some Spectral Graph Theory Conjectures

In this subsection we introduce the spectral graph theory conjectures we try to disprove.

In the following section we will see how these conjectures can be translated to problems a

reinforcement learning can understand and dive into the end-to-end implementation of such

problems.

Conjecture 1. Let G be a connected graph with n ≥ 3 vertices, with largest eigenvalue λ∗

and matching number µ. Then

λ∗ + µ ≥
√
n− 1 + 1.

Observation. When we talk about the eigenvalues of a graph (i.e. without specifying its

matrix representation), we will assume that these eigenvalues are the eigenvalues of that

graph’s adjacency matrix.

Conjecture 1 first appeared in [25] and was originally obtained from AutoGraphiX. This same

conjecture was refuted by Stevanović in [28], where he noted that there exists an infinite

family of counterexamples. However, he did not use a learning-powered approach as Wagner
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did and the counterexample given by Stevanović was a larger graph (n = 600 vertices) than

the one Wagner found (n = 19 vertices). Moreover, Wagner notes that this conjecture appears

to be true for graphs with n ≤ 18 vertices.

The second conjecture we will be working with is Brouwer’s conjecture. Prior to presenting

it in this thesis, we need to introduce some results.

The following was conjectured by Grone and Merris in [29] and proved to be true by Hua Bai

in [30].

Theorem 4. (Grone-Merris) For all undirected graphs and all t = {1, ..., n} the following

inequality holds
t∑

j=1

λj ≤
t∑

j=1

#{v | d(v) ≥ j}.

For t = 1 this is immediate by Expression (2). Moreover, for t = n the equality holds.

In [21], the authors present the following conjecture, which is a variation of the Grone-Merris

theorem.

Conjecture 2 (Brouwer). Let G be a graph with n vertices, e edges and Laplace eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then, for each 1 ≤ t ≤ n it is true that

t∑
i=1

λi ≤ e+

(
t+ 1

2

)
.

The above result is stronger than the Grone-Merris theorem for some t if and only if the graph

is not a split graph [31].

Conjecture 2 is known to be true for threshold graphs, despite the fact that such proof is not

included in [29]. Nonetheless, the authors state that it can be proved by induction.

Moreover, this conjecture is known to be true for:

• t = 1, see Expression (2);

• t = 2 [32];

• t = n and t = n− 1 [33];

• trees [34];

• unicyclic and bicyclic graphs [33, 35];

• regular graphs [31, 36];

• split graphs [31, 36];
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• cographs [31, 36];

• graphs with n ≤ 10 vertices [31, 36].

In [37] Chen also shows that when Brouwer’s conjecture holds for t = p with 1 ≤ p ≤ (n−1)/2,
then it is also true for t = n − p − 1. Further, Cooper finds in [38] several constraints for

several types of graphs regarding Brouwer’s conjecture.

There exist several variants to Brouwer’s conjecture:

Conjecture 3. Let G be a graph with n vertices and e edges such that the signless Laplacian

has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then, for each 1 ≤ t ≤ n it is true that

t∑
i=1

λi ≤ e+

(
t+ 1

2

)
.

This variant to Brouwer’s conjecture is proposed by Ashraf, Omidi, and Tayfeh-Rezaie in [39].

In this same paper, the authors prove this conjecture is true for t = 1, 2, n−1, n for all graphs

and for all t for regular graphs and for trees. Moreover, they also check by computation that

it holds for all graphs up to 10 vertices.

Finally, we present one final variant to Brouwer’s conjecture. Nonetheless, trying to find a

counterexample for it is beyond the scope of this thesis.

Conjecture 4. Let G be a graph with n vertices and e edges such that the signless distance

Laplacian has eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn = 0. Then, for each 1 ≤ t ≤ n it is true that

t∑
i=1

λi ≤ e+

(
t+ 1

2

)
(n− 2t+ 1

3
).

This conjecture is proposed by Alhevaz, Baghipur, Ganie and Pirzada in [40].

It would be natural to study a variant of Conjecture 4 for the distance Laplacian as well but

no conjecture has been published about this.
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5 Machine Learning Preliminaries

This section assumes the reader is familiar with basic concepts of probability and statistics,

such as random variables and conditional probabilities.

5.1 Introduction to Machine Learning

Artificial Intelligence, usually abbreviated as AI, is defined as the capability of a machine

to behave as if it had human intelligence. AI systems are capable of performing complex tasks

in a way that is similar to how problems are solved by humans.

Machine learning is a subfield of AI that provides a system with the ability to gain or

acquire knowledge and improve from experience without being explicitly programmed to do so,

in contrast to traditional computational approaches to a problem. The term machine learning

was first coined in the 1950s by Arthur Samuel [41], a computer scientist who developed a

computer program to play checkers and realized that the more the machine played, the better

it performed.

Despite the fact that it is a continuously developing discipline, machine learning is already

being used to solve many real-world problems in a vast variety of fields, including healthcare,

logistics and banking. Moreover, machine learning has advanced dramatically in the last two

decades, going from something that only existed in research centers to a technology that

has widespread commercial uses. Recent progress in this discipline has been motivated both

by the development of new learning algorithms and the larger availability of data and lower

storage and computation costs.

Machine learning lies at the intersection of statistics and computer science. We now present

some key definitions that are useful to understand machine learning concepts.

Let us recall that given an arbitrary set X , a collection A of subsets of X is a σ-algebra on

X if:

i. X ∈ A,

ii. for each set A ∈ A, then Ac ∈ A, where Ac is the complement of set A,

iii. for each infinite sequence {Ai} of sets that belong to A, the set
⋃∞

i=1Ai belongs to A,
and

iv. for each infinite sequence {Ai} of sets that belong to A, the set
⋂∞

i=1Ai belongs to A.

A measurable space is a pair (X ,A) where X is a set and A a σ-algebra of subsets of X .
Let (X ,Σ) and (Y, T ) be measurable spaces. A function f : X → Y is said to be measurable

if for every E ∈ T , then f−1(E) := {x ∈ X |f(x) ∈ E} ∈ Σ. For measurable spaces X and Y
we defineM(X ,Y) to be the set of measurable functions from X to Y.
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Further, a (finite) collection of random variables {X1, ..., Xn} is mutually independent if

and only if for any sequence of numbers {x1, ..., xn}, the events {X1 ≤ x1}, ..., {Xn ≤ xn} are
mutually independent events. That is, for every k ≤ n and for every k indices 1 ≤ i1 ≤ ... ≤ in,

P
( k⋂

j=1

Aij

)
=

k∏
j=1

P (Aij ),

where P (A) is the probability of event A taking place.

A (finite) collection of n random variables {X1, ..., Xn} is said to be independent and iden-

tically distributed, denoted as i.i.d, if each variable has the same probability distribution

as the other variables and is mutually independent.

Formally, learning can be defined in the following way.

Definition 5. Let X ,Y and Z be measurable spaces. In a learning task, one is given data

in Z and a loss function L : M(X ,Y) × Z → R. The goal is to choose a hypothesis set

F ⊂M(X ,Y) and construct a learning algorithm which is a mapping

A :
⋃
m∈N
Zm → F ,

that uses training data s = (z(i))mi=1 ∈ Zm to find a model fs = A(s) ∈ F that performs well

on the training data s and also generalizes to unseen data z ∈ Z. Performance is measured

using the loss function L and generalization means that the out-of.sample performance of

fs at z behaves similar to the in-sample performance on s. Further, we are assuming that

z(1), ..., z(m), z are realizations of i.i.d random variables Z(1), ..., Z(m), Z.

Most machine learning problems belong to one of the three following paradigms, depending

on the availability of an output variable in the data as well as on how the machine learning

model is trained.

• In methods belonging to the supervised learning paradigm there is an outcome, also

referred to as response or target variable, in the data that is being measured. The goal

is to predict that outcome or to determine to which class or category it belongs. The

data in supervised learning problems is said to be labelled. Given a set of data, one

must split it into two sets. Part of this data (usually about 80% of the original dataset)

is used to train the model, while the remaining data is used to test how well the model

can predict the desired outcome or how well it generalizes and classifies observations. A

linear regression for prediction purposes is an example of a supervised learning method.

• The unsupervised learning approach does not deal with labelled data but instead

aims at recognizing patterns that exist within the data in order to infer rules from them.
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In a sense, there is nothing being predicted. Typical unsupervised learning problems

are clustering, association and dimensionality reduction.

• A third paradigm is reinforcement learning, which lies in the middle of supervised

and unsupervised learning as the algorithm is only provided with a response showing

how well the system is performing. The system learns from continuous feedback and it

does not receive a dataset as in the other two paradigms. Instead, the data the system

uses is generated as more iterations of the algorithm take place. Reinforcement learning

is studied in more detail in section 5.3.

Machine learning problems can be classified into several categories, depending on what they

are trying to solve. The main types of machine learning problems are the following.

• Classification problems belong to the supervised learning paradigm. The response

variable of such problems is a categorical variable that consists of two or multiple cate-

gories or classes. We classify a given observation into one of these categories.

• Another type of problems that belong to the supervised learning paradigm are regres-

sion problems. As opposed to classification problems, regression problems deal with

numerical or continuous target variables to predict.

• Clustering problems fall under the unsupervised learning paradigm. In this type of

problems, models try to learn the underlying structure of the data and compute how

similar a set of observations are.

• Reinforcement learning problems, which are studied in more detail in section 5.3.

5.2 Introduction to Deep Learning

This subsection presents basic concepts and notions to get started in deep learning, an ex-

tremely popular machine learning subfield. More about the field of deep learning can be read

in [42, 43, 44]. A good resource to read about the mathematics behind deep learning is [45].

One cannot talk about deep learning without first discussing neural networks. The neuron

is the foundational unit of the human brain. Each neuron receives information from other

neurons, processes this information in a unique way and sends the result to other neurons.

We can translate this into an artificial model that can be represented on a computer. Just as

biological neurons do, artificial neurons can take a given set of inputs x1, x2, ..., xn multiplied

by a specific weight w1, w2, ..., wn. These weighted inputs are summed together and passed to

a function f to produce an output y = f(z), where z =
∑n

i=0wixi + b and b is referred to as

the bias. The output of a neuron is either 0 or 1, determined by whether z is above or below

an arbitrarily set threshold α. That is,
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y =

0, if z ≤ α

1, otherwise
.

This can be thought of a binary classification problem since there exist two classes, 0 and 1,

and we need to classify y into one of them. Moreover, the threshold can be understood as

the minimum probability of y belonging to class 1 for y to be considered to actually belong

to class 1.

This simple neuron structure can be represented in the following diagram:

Figure 13: Example of an artificial neuron, from [42].

Sometimes, f is denoted as
∑

.

Artificial neurons as the one presented above were developed in the 1950s and 1960s by F.

Rosenblatt [46], who was inspired by previous work done by W. McCulloch and W. Pitts [47].

Nowadays, however, it is more common to use more sophisticated artificial neuron models.

So far, one could say that this characterization of artificial neurons bears an important re-

semblance to a linear regression specification and this is partly true because a single neuron

only allows us to solve linear problems.

To solve more complex (i.e. non-linear) problems one can can have several neurons organized

in a sequential manner. Just as neurons in the human brain are organized in multiple layers

and information flows (input) from one layer to another until sensory input is converted

into conceptual understanding (final output), one can construct an artificial neural network

consisting of several layers of neurons passing information to one another sequentially. Such

architecture is known as (artificial) neural network. The first layer of neurons of a neural

network is referred to as input layer, while the last layer is the output layer. Sometimes,

there exist intermediate layers and these are called hidden layers. A dense layer is a type

of hidden layer where every neuron is connected to all neurons in the next layer. Deep neural

networks are neural networks that have several hidden layers. Deep learning is a subfield

of machine learning dealing with deep neural network constructions.

The following diagram shows a neural network with five layers (where three of them are
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hidden) consisting of several neurons.

Figure 14: Example of a neural network with hidden layers.

We observe that neurons belonging to the same layer are not connected and there are no

connections transmitting data from a higher layer (more to the right) to a lower layer (more

to the left). Neural networks that satisfy this are called feed-forward networks.

However, if the problem we are solving is not linear and we build a neural network using

only what we have presented so far, we will not necessarily outperform a single neuron since

the sum of several linear specifications yields a linear result as well. Thus, in some settings,

building a larger network does not guarantee getting more accurate results.

To solve this problem, one can modify the neural network structure to introduce some non-

linearity. This is done with the so-called activation functions. These functions distort the

output of a neuron to add non-linearities. A neuron with an activation function looks like in

the following diagram:

Figure 15: Example of the same neuron from Figure 13 with an activation function.

Non-linear activation functions φ are applied to the output of a neuron to modify such output

and constrain the values it takes into a given range. All neurons of a given layer have the

same activation function and different layers can have different activation functions. When
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we add a non-linear activation function to a neural network, we are not summing only linear

specifications so now we are able to build a neural network model that better approximates

a non-linear output. The table in Appendix A shows the most used activation functions.

Formally, the information presented so far can be expressed in the following way:

Definition 6. A fully connected feed-forward neural network is given by its architec-

ture a = (N,φ), where L ∈ N, N ∈ NL+1, and φ : R → R is the activation function. L is

the number of layers and N0, NL and Nℓ, ℓ ∈ [1, L− 1] refer to the number of neurons in the

input, output and the ℓ-th hidden layer, respectively. We denote the number of parameters

by

P (N) :=
L∑

ℓ=1

NℓNℓ−1 +Nℓ

and define the corresponding realization function Φa : RN0 ×RP (N) → RNL which satisfies for

every input x ∈ RN0 and parameters

θ =
(
θ(ℓ)

)L
ℓ=1

=
(
(W (ℓ), b(ℓ))

)L
ℓ=1
∈

L

×
ℓ=1

(
RNℓ×Nℓ−1 × RNℓ

) ∼= RP (N)

that Φa(x, θ) = Φ(L)(x, θ), where

i. Φ(1)(x, θ) = W (1)x+ b(1),

ii. Φ
(ℓ)
(x, θ) = φ(Φ(ℓ)(x, θ)), with ℓ ∈ [1, L− 1], and

iii. Φ(ℓ+1)(x, θ) = W (ℓ+1)Φ
(ℓ)
(x, θ) + b(ℓ+1), with ℓ ∈ [1, L− 1].

W (ℓ) ∈ RNℓ×Nℓ−1 and b(ℓ) ∈ RNℓ are the weight matrices and bias vectors, respectively. Φ
(ℓ)

and Φ(ℓ) are the activations and pre-activations of the Nℓ neurons in the ℓ-th layer. The width

and depth of the architecture are given by ∥N∥∞ and L and we say the architecture is deep

if L > 2 and shallow if L = 2.

The training process of a neural network consists in adjusting the value of the weights

w1, ..., wn and the bias b so that the predictions generated by the trained network have the

minimum possible error, i.e. are as close to the real value of the output variable as possible.

The training process has the following steps:

1. Initialize the network with random values assigned to the weights.

2. Predict the value the output variable takes for each observation, ŷi.

3. Calculate the error for each predicted value, i.e. how far the predicted value is from the

observed value.
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4. Identify where these errors have taken place, i.e. how responsible each neuron is for

total error.

5. Modify the weights and the bias in the right direction.

6. Repeat until results are good enough. Generally, the training process stops when a

maximum number of iterations has been reached.

One must note that the larger the number of layers and the more neurons in each layer, the

more complex the network and the higher its learning potential. However, the number of

parameters and the amount of time and resources that are needed for training increase as

well. The learning rate is a parameter that measures how fast the weights of the neural

network are able to change during the training process. It is an arbitrary parameter and there

does not exist a rule of thumb to determine its optimal value. On the one hand, if we choose

a learning rate that is too large, the model is not able to learn so it leads to poor results. On

the other hand, if it is too small, the training can take too long and reaching results is not

guaranteed.

Neural networks are trained using an optimization algorithm that requires a loss function

to be able to calculate the error of the model and minimize it. The specification of such loss

function will depend on the problem the neural network is being trained to solve. As we

detail in Section 6, looking for counterexamples is deep down a binary classification problem 6

and in this type of problems, one usually uses the binary cross-entropy loss function, also

known as log loss. This loss function takes to following form:

LBCE = − 1

N

N∑
i=1

(
yi log(p(yi)) + (1− yi) log(1− p(yi))

)
, (3)

where yi = {0, 1} is the value taken by the i-th observation, p(yi) is the predicted probability

of the i-th observation belonging to the class yi and N is the total number of data points.

One can generalize Equation 3 to use it in multiclass classification problems. That is, when

there are more than two categories or possible values for yi.

Moreover, in classical regression problems, so when the target variable is numerical, one

normally uses the root mean square error as defined below as the chosen loss function for

the neural network.

LRMSE =

√√√√ 1

N

N∑
i=1

(
yi − ŷi

)
,

6A binary classification problem in machine learning consists of an output variable that takes two values
or classes. For simplicity, one usually constrains these two values to be 0 and 1.
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with ŷi and yi being the predicted and observed value for the i-th observation.

A few decades ago, during the training process of a neural network, the error was commonly

reduced by brute force using random weights at each step. This approach made the training

process an extremely inefficient one. Nowadays, the training of modern neural networks is

powered by the backpropagation algorithm, originally introduced in the 1970s but used

widespread after a paper written by D. Rumelhart, G. Hinton and R. Williams [48]. Since a

neural network is a complex structure and the error in the higher (more to the right) layers

is influenced by the error in the lower (more to the left layers) ones, it is difficult to find how

responsible each neuron is for total error and therefore minimize the error. Thus, it makes

sense to try to reduce the error in a backward fashion, that is, starting from the higher layers

down to the lower layers. Moreover, the backpropagation algorithm calculates the gradient 7

for each error, which helps find the minimum value of the cost function. In this setting, given

the i-th weight and the loss function L, the gradient is expressed as

∇L =
( ∂L
∂w1

,
∂L
∂w2

, ...,
∂L
∂wn

)
.

Paired with backpropagation, the training process of a neural network makes use of gradient

descent, an optimization algorithm used to find a weight combination that minimizes the cost

function. Stochastic Gradient Descent, usually abbreviated as SGD, is a faster variant

of the gradient descent algorithm that uses an approxiamtion of the gradient instead of the

actual gradient vector.

The formal derivation of the backpropagation and the SGD algorithms is quite cumbersome

and laborious so we leave them out of the scope of this thesis. Nonetheless, they can be found

in Chapter 2 from [43] and in Chapter 5.9 from [44], respectively.

One important remark is that the backpropagation algorithm requires data to be i.i.d, inde-

pendent and identically distributed, [49]. As we will explore in Section 6.2, this is not always

the case in some of the problems we try to solve.

5.3 Introduction to Reinforcement Learning

In this subsection we present basic reinforcement learning concepts and notions from a the-

oretical standpoint. More can be learned about this machine learning subfield by reading

[50, 51].

The human brain is a very complex system and a constant source of inspiration for AI re-

searchers. Reinforcement learning is not an exception and the way these systems are able to

learn does not differ much from how us humans learn from a young age, i.e. by experimenting

7Let us recall that the gradient shows the direction of greatest change of a function.
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with our surroundings. One typical example is a toddler learning that if they go outside when

it is raining they are going to get wet and that is going to be an uncomfortable feeling for

them. Or them learning that eating food while it is still hot will cause them to burn their

tongue. By being in constant touch with our environment, us humans learn what to do and

what not to do.

Reinforcement learning is acquiring knowledge about what to do by means of maximizing a

numerical reward signal, i.e. a function that we call the reward function. The learner or

agent, as we will call it from now on, is not told what it should do at each point in time

but rather it must discover on its own which actions yield the highest reward by observing

the consequences of such actions. In the most interesting and challenging cases, the actions

taken may not only affect the immediate reward but also the next situation and therefore

all subsequent rewards. In fact, trial and error search and delayed rewards are the two main

distinguishing features of reinforcement learning. Reinforcement learning is also the technique

commonly used to teach machines to play games such as chess or Tetris on their own.

Before formalizing the concept of reinforcement learning, some concepts need to be introduced.

A stochastic process in discrete time is a family (X(n))n∈N0 of random variables where N0 =

{0, 1, 2, ...}. The possible values S of X(n) are referred to as the state space of the stochastic

process. For simplicity, let us assume a finite or countable state space. The distribution of a

discrete-time stochastic process with a countable state space S is characterized by the point

probabilities P (X(n) = in, X(n− 1) = in−1, ..., X(0) = i0) for in, in−1, ..., i0 ∈ S and n ∈ N0.

From the definition of conditional probabilities one has:

P
(
X(n) = in, ..., X(0) = i0

)
= P

(
X(n) = in|X(n− 1) = in−1, ..., X(0) = i0

)
× P

(
X(n− 1) = in−1|X(n− 2) = in−2, ..., X(0) = i0

)
× · · ·

× P
(
X(1) = i1|X(0) = i0

)
× P (X(0) = i0).

A discrete-time Markov chain on a countable set S is a stochastic process satisfying the

Markov property

P
(
X(n) = in|X(n− 1) = in−1, ..., X(0) = i0

)
= P

(
X(n) = in|X(n− 1) = in−1

)
, (4)

for any in, ..., i0 ∈ S and n ∈ N.

Any reinforcement learning problem can be formalized as a discrete time stochastic process

where an agent interacts with its environment, which can be thought of as a computerization

of the problem that we want to solve in a way a machine can understand such problem, in the
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following way: the agent starts, in a given state s belonging to the state space S, by gathering

an initial observation ω0 ∈ Ω, Ω being the set of all possible observations. At each time step

t, the agent has to take an action at from the action set A and it obtains a reward rt that

belongs to the reward set R. Moreover, the agent gets to state st+1 ∈ S and it obtains a new

observation ωt+1 ∈ Ω.

One must note that the closer an action takes the agent to the optimal solution of the problem,

the larger the reward it receives. Depending on the configuration of the problem, rewards

can be both positive and negative numbers. The reward of each state adds up to the total

reward, which is what the agent tries to maximize.

Back to the toddler example, the environment is everything they are surrounded by. The

current state can be them being hungry with hot food in front of them. At such state there

are two available actions: to eat directly the hot food or to wait until it cools down a little

bit to start eating. If the toddler decides to eat the food while it is still hot, they will burn

their tongue, which can be thought of as a negative reward. On the contrary, if they decide

to wait to eat until the food has cooled down, they will be able to enjoy that dish, resulting

in a positive reward for them.

Another very important concept that needs to be introduced in this section is that of finite

Markov decision processes, or finite MDPs for short, an extension to the concept of

Markov chains. MDPs are a way to represent in a formal manner the reinforcement learning

problem with sequential decision making introduced above, where actions influence immediate

rewards as well as subsequent states and therefore future rewards. Naturally, MDPs involve

the tradeoff between immediate and delayed rewards as well. MDPs are useful to understand

the tabular Q-learning method presented in Section 6.2. In this kind of problems, we estimate

the value of each action at each state, as will be studied in detail in Section 6.2.

Figure 16: Agent-environment interaction in MDPs, from [50].

A basic yet very important premise of MDPs is that rewards only depend on the last state

and action. The agent and the environment interact at a sequence of discrete time steps and,

at each of them, the agent receives a static picture of the environment’s state, St, and at that
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point it selects an action, at, given the available information. After carrying out the action,

the agent receives a reward Rt and finds itself at a new state St+1. In a finite MDP, the

state, action and reward sets, S,A, and R respectively, are finite. In the setting of MDPs, St

and Rt are random variables with discrete probability distributions that depend only on the

preceding state and action. That is, for particular values of these random variables s′ ∈ S and

r ∈ R, the probability of those values occurring at time t given the values of the preceding

state and action is:

p(s′, r|s, a) .
= Pr{st = s′, rt = r|st−1 = s, at−1 = a},

for all s′, s ∈ S, r ∈ R and a ∈ S. The function p : S×R×S×A → [0, 1] defines the dynamics

of the MDP.

Naturally, the following is true:∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1,∀s ∈ S, a ∈ A.

In a Markov decision process, the probabilities given by p characterize the environment dy-

namics completely. Moreover, the state must include all information about the past agent-

environment interactions that make a difference for the future. If this is the case, then the

state is said to satisfy the Markov property (4). We assume that this property holds through-

out this thesis.

From the dynamics function p introduced earlier, we can obtain the state-transition prob-

abilities, which we denote as p∗ : S × S ×A → [0, 1] such that

p∗(s′|s, a) .
= Pr{st = s′|st−1 = s, at−1 = a} =

∑
r∈R

p(s′, r|s, a).

We can also compute the expected rewards given a state-action pair as r : S × A → R such

that

r(s, a)
.
= E[rt|st−1 = s, at−1 = a] =

∑
r∈R

r
∑
s′∈S

p(s′, r|s, a),

and the expected rewards given current state and action and next state as r∗ : S×A×S → R
such that

r∗(s, a, s′)
.
= E[rt|st−1 = s, at−1 = a, st = s′] =

∑
r∈R

r
p(s′, r|s, a)
p∗(s′|s, a)

.

The MDP framework can refer to arbitrary successive stages of decision making and not

necessarily to decisions made at fixed intervals of time.
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Contrary to other machine learning techniques, reinforcement learning faces the challenge

known as the trade-off between exploration and exploitation. To obtain a high reward, the

agent must develop a liking for actions that it has tried in the past and have led it to good

rewards so it needs to exploit what it has already experienced. However, it must also ex-

perience with other actions that can potentially mean an even higher reward, so it has to

explore in order to make better action selections in the future. The dilemma here is that

both exploration and exploitation strategies require the agent to fail at the task sometimes,

receiving a lower reward.

A reinforcement learning agent is said to be greedy or to act greedily if at each state it

chooses to perform the action that is believed to yield the highest reward, leaving no place

for exploration. There exist several degrees of greed an algorithm can take. The greedier the

algorithm, the more likely it is to converge to a sub-optimal point.

Another important reinforcement learning element is the notion of policy, which defines the

agent’s way of behaving at a given time. A policy can be thought of the sequence of actions

the agent should take at every step. In some problems, the policy may be a simple function

or a probability distribution over the available actions, whereas in other cases it may involve

more complex computations such as a search process.

Moreover, in some reinforcement learning methods, we also have a value function specify-

ing which set of actions is good in the long run. Rewards, in contrast, only determine the

immediate desirability of each possible action or next state. This concept is studied in more

detail in Section 6.2.

One way of classifying reinforcement learning methods is the following:

i. Model-free or model-based methods

ii. Policy-based or value-based methods

iii. On-policy or off-policy methods

On the one hand, model-based methods build a model from the agent’s understanding of the

environment and such model helps predict what the next reward will be. Given the predicted

reward, the agent chooses the best possible action to take. On the other hand, model-free

methods do not build a model of the environment or reward. Instead, the agent only tries

to learn the consequences of each action and maps observations to actions or to values that

are related to the actions. In general, model-based methods are preferred when the problem

to solve can be framed in a deterministic environment, as is the case of board games with

strict rules. Model-free methods are easier to work with and are the most active area of

reinforcement learning research. The two methods we present in Section 6 and implement

later on are model-free.

31



Policy-based methods directly approximate the policy of the agent. In contrast, in value-

based methods the agent calculates the value of every possible action and chooses the action

with the best outcome or value. In policy-based methods, if the policy is approximated by a

deep neural network, then we are doing deep reinforcement learning. One of the methods

presented in Section 6 and implemented in the code is a deep reinforcement learning technique.

On-policy methods evaluate and try to improve the same policy that is being used to de-

termine which actions to take. Moreover, the agent is trained using fresh data obtained from

the environment. In contrast, off-policy methods evaluate and try to improve another policy

different from the one used to select which action to take next. In addition, the agent learns

from data it has collected in previous iterations.

Of all machine learning techniques that exist, reinforcement learning is the one that makes the

most sense to use to try to find counterexamples to mathematical conjectures. This kind of

problems do not come with a dataset that needs to be analyzed or for which we fit a model and

obtain several predictions. Thus, one can quickly discard using supervised and usupervised

machine learning techniques to refute conjectures like the ones we are trying to disprove.

Instead, we need to find a way to create the data our machine learning system will ingest and

it comes very natural to obtain such data from the studied conjecture in form of states and

actions and generate an environment in which an agent lives. One could take, for instance, all

constructions that are potential counterexamples as states and different operations one can

apply to such constructions as the actions to take. In Section 6 we study in detail how one

can build an environment as well as the state and action sets for a reinforcement learning

agent from graph theory conjectures.

In addition, one may want to try machine learning techniques to avoid brute force or classi-

cal search techniques when looking for counterexamples but, in the end, this is still a search

problem but somehow more efficient. Moreover, for this search to be intelligent, constant feed-

back needs to be given to the system and this is precisely one characteristic of reinforcement

learning that other machine learning paradigms do not have.

To end this section, let us present the following diagram showing the relationship between AI

and several of its subfields studied in this section.
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Figure 17: Diagram showing the relationship between AI and several subfields, from [52].
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6 Searching Counterexamples to Graph Theory Conjectures

In this section we discuss how we try to search counterexamples to Conjectures 1, 2 and 3.

Let’s recall that Conjecture 1 was refuted by Wagner but we still work with it to replicate

his work. We try to refute all three conjectures by using both tabular Q-learning and deep

cross-entropy methods. In this chapter, we use some of the concepts introduced in Section 5.

In the following subsections we discuss the reward functions given to our reinforcement learn-

ing agents and how they are derived from the conjectures as well as the implementation details

for each method. We also present how the reinforcement learning environment differs between

both methods, even though the underlying mechanism is the same for both of them: whether

two vertices are joint via an edge is ultimately a binary decision problem.

More about the theoretical background of the cross-entropy and the Q-learning methods as

well as some useful examples and their code implementation can be found in [53].

6.1 Deep Cross-Entropy Method

The first reinforcement learning approach we take to find counterexamples to the studied

conjectures is the cross-entropy method. Following the classification in Section 5.3, this

method is model-free, policy-based and on-policy. In other words, this method does not build

any model from the environment but rather tells the agent what to do at every state; it

approximates the policy of the agent (i.e. it determines which action the agent should take

at every state); and it requires new data to be obtained from the environment.

This method is quite simple from an implementation perspective and has good convergence.

Moreover, it tends to work well in simple environments that do not require complex, multi-step

policies or with short episodes with frequent returns, as it is our case as we will see.

During the reinforcement learning agent’s lifetime, its experience is presented as episodes 8

and several episodes can be grouped into a batch or iteration. Every episode corresponds to

a sequence of observations the agent receives from the environment, actions it has issued and

their rewards. For every episode, we calculate the total reward claimed by the agent. This

process is repeated in a loop until the episode finishes and the total reward for that episode

can be calculated.

At the end of an episode, when calculating the total reward, one can decide to apply a

discount rate d to the total reward. That is, to let different rewards from one single episode

have different weights in the total reward for that episode. Given a discount rate d, the

8In his work, Wagner uses the term session and number of sessions to refer to episode and batch size,
respectively.
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formula for the discount factor for the k-th reward of a given episode is the following:

γk =
1

(1 + d)k
.

If a given episode contains n observations and ri is the reward corresponding to the i-th

observation within that episode, then the total reward r for that episode can be computed as

r =
n∑

i=1

γiri.

If the total reward is not discounted (i.e. d = 0 and therefore γ = 1), then the total reward

for an episode is just the sum of all rewards that have been computed during that episode.

The larger the total reward of an episode, the better the episode from the agent’s standpoint.

Wagner does not discount the total reward in his work and neither do we in this thesis’s

implementation. The reason being that since the order of the edges does not matter, neither

does the order the states are considered by the agent. Thus, it does not make sense to weigh

the contribution of each state’s reward depending on how early in an episode the agent visits

such state.

Due to the way the agent selects which actions to take at each state and to randomness in the

environment, some episodes will be better than others. The core of the cross-entropy method

is to discard the episodes considered bad and keep the best ones to train our model. Whether

an episode is classified as good or bad depends on a boundary we set for a the total rewards

of states. This boundary is a percentile of all total rewards and there is no rule of thumb to

determine the optimal value of this parameter. The larger the percentile boundary, the fewer

data available to train the agent. However, if the boundary is set too low we risk adding too

much noise 9 and training the agent with irrelevant data.

In our case, and following what Wagner did in his implementation, this boundary is the 93rd

percentile. That is, after total reward has been calculated for all episodes, the episodes with

total reward in the 93rd percentile are considered good episodes and those are the ones we

want to keep. We call those episodes elite episodes. The episodes that do not belong to the

93rd percentile are discarded. The states and actions belonging to those elite episodes are

called elite states and elite actions, respectively.

The algorithm for implementing this method can be summarized as follows:

1. An iteration starts and the environment is reset. Each iteration or batch consists of

9In machine learning terminology, noise refers to data carrying a high proportion of irrelevant information
that can mislead the model or the agent that is being trained and ultimately lead to bad results or low prediction
accuracy.
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several episodes. In our code, the number of episodes within an iteration, or batch

size, is set to 1,000. At each iteration, the agent interacts with the environment in the

following way:

1.1. The agent passes an observation or state from the environment to the neural net-

work as input and the neural network returns a probability distribution on all the

possible actions from that state, with higher probability assigned to the moves that

the agent thinks are best.

1.2. Given these probabilities, the agent performs a random sampling to get the action

that will be carried out. This allows us to add randomness to our agent as random

weights make it behave in a random manner. Such randomness is especially good

at the beginning of the training process since we can expect the predicted actions

to be diverse enough for the agent to experiment during the first iterations.

1.3. Once the agent has decided which action it is going to carry out, it adds that

information to the environment and obtains the next observation and the reward

for the last action.

2. After all episodes in a batch have been played, we calculate the total reward for each

episode and obtain the elite episodes of that batch. This reward at the end of the each

session is the only feedback the neural network receives.

3. We train the agent with this iteration’s elite episodes by passing the elite states as the

input and the elite actions as the desired output. By doing this, we try to reinforce our

neural network to carry out those actions that have led to good rewards.

This process is repeated until results are good enough. At each iteration, the agent improves

at selecting which action it should take at each step or state so rewards generally increase with

each iteration. Typically, one may want to set a maximum number of iterations so that the

method does not keep training ad infinitum. In our implementation, the maximum number

of iterations is set at 10,000, since Wagner states in [2] that he reaches a counterexample at

around iteration 5,000. Moreover, our cross entropy implementation is programmed to finish

the execution if at some point a counterexample is found. In Section 6.3 we present in detail

how the agent detects that a counterexample to a given conjecture has been found.

For step 1.2., we can take advantage of the fact that our problem is binary (i.e. only two

actions exist). In particular, we generate only one probability and compare that value with

a randomly generated number in [0, 1]. If the probability is larger than this random number,

then we add that edge to our graph. Otherwise, we do not add that edge. We could have

arbitrarily made this the other way around: add that edge to the graph if the predicted

probability was lower than a random number in [0, 1].
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The above information about how the algorithm to implement the cross-entropy method can

be expressed in the form of pseudocode as follows:

Figure 18: Pseudocode for the deep cross-entropy method, taken from [2].

This is the approach used by Wagner in [2] to refute Conjecture 1. As part of this thesis’s

work, we replicate what he did by defining the problem as in his paper. That is, we design our

environment and derive the reward function from the conjecture in the same way as he did.

The code for this thesis has been written from scratch and tries to be more straightforward

and easier to follow than the original piece of code. Moreover, it uses more recent versions of

several Python packages making it more robust and reproducible than Wagner’s code in [18].

The first step in designing a good reinforcement learning environment for a given problem

is to encode constructions, in our case graphs, as objects the agent can work with. Since a

n-vertex graph has at most n(n−1)
2 edges, generating a graph of n vertices is equivalent to

generating 0-1 sequences of length n(n−1)
2 .

From this, Wagner takes as input for the agent two vectors of length n(n−1)
2 . The first vector

has a 1 in all positions that correspond to edges that the agent has decided to take (i.e. to

add to the graph) and a 0 in all the places the agent has rejected to add an edge to or has

not considered yet. The second vector has a 0 in every position except for the one position

that corresponds to the edge that is being considered at that state.

In practice, the agent is given all this information in one single vector of length n(n − 1).
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Every instance of this 0-1 array of length n(n−1) represents the state that we are in and it is

the input the agent receives. The 0-1 encoding makes plenty of sense here since at each state,

the agent has two possible actions: adding the edge it is considering at that state or not.

In our implementation, the policy is approximated by a deep neural network so we are actually

implementing the deep version of the cross-entropy method, i.e. the deep cross-entropy

method. Such neural network only learns to predict the optimal move at each state, it does

not learn a value function for the states or the state-action pairs.

As for the deep neural network that approximates the policy, we use the same specification

as Wagner and it has three hidden layers with 128, 64 and 4 neurons, respectively. We use

the binary cross-entropy loss function as we predict a binary outcome. The chosen optimizer

is stochastic gradient descent optimizer with a learning rate set at 0.0001 which is a value

that, according to Wagner’s research, reaches a balance between the speed of convergence and

preventing the agent to get stuck in suboptimal constructions.

6.2 Tabular Q-Learning

The second reinforcement learning approach we take to try to find counterexamples to graph

theory conjectures is Q-learning. And, in particular, tabular Q-learning, a model-free,

policy-based and off-policy method. Q-learning is an old family of algorithms but it deserves

its own place in this thesis as it was the first algorithm with guaranteed convergence to the

optimal policy, see [54]. It was originally proposed by Watkins in [55].

Before entering into how this method works and how we can implement it, we need to present

the value iteration method.

We first define the value of a state as the expected total reward that is attainable from the

state. Formally, the value of state s can be defined as

Vs = E
[ ∞∑
t=0

rtγ
t],

where rt is the local reward obtained at step t and γ is the discount factor as defined earlier.

The following graph showing an abstract environment can make it easier to visualize the

notions that we are about to introduce:
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Figure 19: Example of an abstract deterministic environment.

Let us assume that our agent lives in a deterministic environment, where all actions have

a guaranteed outcome. Suppose the agent observes state s0 which has n available actions.

Every action leads to another state s1, ..., sn with respective reward r1, ..., rn. Further, assume

that we know the values V1, ..., Vn of all states connected to s0. Throughout this section we

denote the state set, action set and rewards set as S,A and R, respectively. To determine

the action it should take, the agent needs to calculate the resulting values of each action and

choose the action that yields the maximum value. That is, it calculates the following:

V0 = max
ai∈A

(ri + γVi), (5)

where Vi refers to the value of the next state and is a measure of the long-term value of the

state s0 and A is the set of all available actions from s0.

By adding the (discounted) value of the next state, Vi, to the above expression, the agent is

discouraged to act greedily so it gets to better possible outcomes than if it just looked at each

action’s reward. Equation 5 is the Bellman equation (of value). The Bellman Equation

determines the maximum reward an agent can receive if it makes the optimal decision at the

current state and at all following states. Further, it recursively defines the value of the current

state as the maximum possible value of the current state reward plus the (discounted) value

of the next state. The Bellman equation gets its name from Richard Bellman who, in fact,

coined the term dynamic programming.

This same idea can be extended to a stochastic scenario or environment, when a given action

can lead the agent to different states with different probabilities. The following diagram

exemplifies this case.
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Figure 20: Example of an abstract stochastic environment.

Formally, in a stochastic environment, the expected value after carrying out action ai from

s0 is calculated in the following manner:

V0(ai) = Es∼S [rs,ai + γVi] =
∑
s∈S

pai,0→s(rs,ai + γVi),

where pai,j→k refers to the probability of action a issued in state j leading to state k.

If we combine Equation 5 for the deterministic case with the value in stochastic environments,

one can get the generalized Bellman equation:

V0(ai) = max
ai∈A

Es∼S [rs,ai + γVi] = max
ai∈A

∑
s∈S

pai,0→s(rs,ai + γVi). (6)

Thanks to Equation 6, any agent can obtain at each state the optimal policy to obtain a given

reward. Moreover, if it knows the value for every state, then it automatically knows how to

get the maximum reward.

Another very important concept related to the value of state s, Vs, is the value of an action

a at state s, denoted as Qs,a. It can be thought of the total reward one can get by executing

action a at state s.

We want to get values of Q, also known as Q-values, for every pair {s, a}. Q for state s and

action a is just the expected immediate reward and the (discounted) long-term reward of the

next state s′. Thus, one has

Qs,a = Es′∼S [rs,a + γVs′ ] =
∑
s′∈S

pa,s→s′(rs,a + γVs′). (7)

Equation 7 can be expressed recursively as

Qs,a = rs,a + γmax
a′∈A

Qs′,a′ .
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Moreover, it is true that the value of state s equals the value of the best action we can execute

from state s as:

Vs = max
a∈A

Qs,a.

From an agent’s point of view it is more convenient to work with Q-values than with the values

for the states since to choose the optimal action at one given state using the Q-values the

agent just needs to compute Q for all available actions using the current state and execute the

action with the largest value of Q. In contrast, to choose the best action using the values of

the states the agent needs to know values and probabilities for transitions, which is something

unknown in advance by the agent and it would have to estimate them.

The value iteration method is an algorithm that allows to numerically calculate the values

of the states and values of the actions of Markov decision processes with known transition

probabilities and rewards. This algorithm for the state values consists of the following steps:

1. Initialize the values of all states to some initial value which is usually 0.

2. For every state s in the MDP, perform the following Bellman update:

Vs ← max
a

∑
s′

pa,s→s′(rs,a + γVs′).

3. Repeat step 2 for some large number of states or until changes become very small.

In the case of action values given a state, that is, Qs,a, the steps to take are:

1. Initialize every Qs,a.

2. For every state s and action a in this state update Qs,a in the following way:

Qs,a ←
∑
s′

pa,s→s′(rs,a + γmax
a′

Qs,a)

3. Repeat step 2 for some large number of states or until changes become very small.

However, it is not really necessary to iterate over every state in the state space as we can

design an environment that can anticipate what would happen at each possible next state

given the current state and all possible actions to execute from it. This modification of the

value iteration method is called Q-learning. In particular, since the Q-values Qs,a are stored

in a table, the presented algorithm is actually called tabular Q-learning and it consists of

the following steps:

1. Initialize a table that maps states to values of actions. We denote the elements of this

table as Qs,a.
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2. Interact with the environment and obtain (s, a, r, s′), a tuple containing the current

state, the action the agent should take, the reward and the next state.

3. Update the table with the value for this state and best action using the Bellman ap-

proximation. Moreover, to prevent the training process from becoming unstable one

may want to keep some information about previous values of Qs,a. For this reason, we

use what is known as a blending technique that computes a weighted average between

old and new values of Qs,a using a learning rate α ∈ [0, 1]. Thus, the update looks like:

Qs,a ← (1− α)Qs,a + α
(
r + γmax

a′∈A
Qs′,a′

)
.

4. Check convergence conditions. If they are not met, we repeat from step 2.

As for step 1, in our implementation we initialize our Q-table with random integer numbers

in [0, 10]. This allows us to add a bit of randomness at the beginning of the training process

for our agent.

In step 4, to check if the agent is converging to a solution, one can simply study if the current

solution has not changed much with respect to the previous one. One way of doing so is by

defining a convergence function such as:

c(Qs,a, Qs′,a′ , ϵ) =

1, if |Qs,a −Qs′,a′ | < ϵ,∀s ∈ S, ∀a ∈ A

0, otherwise
,

where ϵ is a tolerance parameter that can be arbitrarily set at a very close to 0 but positive

value. One must note that this criterion does not guarantee that the reinforcement learning

algorithm converges to the global optimal value function but to some local optimal value

function.

In our implementation, instead of relying on a convergence function, we arbitrarily set a

maximum number of iterations, 10,000, so that the execution stops if no counterexample has

been found and the 10,000th iteration is reached. As in the deep cross-entropy implementation,

the executions stops if a counterexample is found.

In contrast to the environment for the deep-cross entropy method, the environment now only

consists of an array with all possible actions (i.e. 0 and 1, not joining two vertices and joining

them, respectively) and a n(n−1)
2 0-1 vector representing all potential edges of a graph. These

two arrays are all we need to be able to generate and initialize the Q-table.

As already mentioned, Q-learning solves the issue of iterating over the full set of states.

Nonetheless, this approach may not be optimal when the state set is very large, which is

something that may happen as larger graphs are considered. For such cases, one can use
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a non-linear representation to map each state and action pair to a value instead of a table.

In the realm of machine learning, this problem is just a regression problem. The optimal

specification for this regression function will depend on each particular problem.

Nonetheless, one common approach is to use a deep neural network to map each state and

action to a value. When that is the case, the method becomes deep Q-learning and it suffers

a few modifications. First, we go back to work with batches of episodes to train the neural

network. As we have already seen, the size of a batch of episodes is variable and it is at the

end of the episode that we give feedback to our neural network.

The algorithm for the deep Q-learning implementation consists of the following steps:

1. Initialize Qs,a with some initial approximation.

2. Obtain the tuple (s, a, r, s′) from interacting with the environment.

3. Calculate the loss function:

• L = (Qs,a − r)2 if the episode has ended, and

• L =
(
Qs,a − (r + γmaxa′∈AQs,a)

)2
otherwise.

4. Update Qs,a using the deep neural network specification of choice with the loss function

as defined above.

5. Check convergence conditions. If they are not met, repeat from step 2.

The target or response variable for the function approximated by the neural network are the

Qs,a values obtained using the Bellman equation. However, a practical issue with the default

training procedure for deep Q-learning is the lack of independent data. Since s and s′ have

only one step between them, it is very difficult for a neural network to distinguish between

them and the assumption of i.i.d data is violated.

There are several techniques that help solve this issue, one of them being the so-called replay

buffer that yields quasi-independent data. The specific details of these techniques as well as

their implementation are beyond the scope of this thesis and we are not using deep Q-learning

for our counterexample search. However, one can read about this method in Chapter 6 from

[53].

6.3 Reward Functions

As mentioned in Section 5.3, the reinforcement learning agent tries to maximize the so-called

reward function. The choice of such function depends on the problem that is trying to be

solved. In our case, each reward function can be derived from the conjecture we are trying to

disprove.
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In Conjecture 1, we have the following expression:

λ∗(G) + µ(G) ≥
√
n− 1 + 1,

where λ∗(G) is the largest eigenvalue of a connected graph G of n ≥ 3 vertices and µ(G) is

its matching number.

This expression can be rearranged to obtain the following:

√
n− 1 + 1− (λ∗(G) + µ(G)) ≤ 0. (8)

When a given graph has λ∗(G), µ(G) and n such that Expression (8) is not satisfied, i.e
√
n− 1 + 1− (λ∗(G) + µ(G)) > 0, then we have found a counterexample. Therefore, we take

r1(G) =
√
n− 1 + 1−

(
λ∗(G) + µ(G)

)
(9)

as the reward function for Conjecture 1 so this is what our reinforcement learning agent will

want to keep maximizing until it crosses the 0 cut-off point.

From Conjectures 2 and 3, we have

t∑
i=1

λi(G) ≤ e(G) +

(
t+ 1

2

)
(10)

as restriction.

Similarly, from Expression (10) we can obtain that if for any t ∈ {1, . . . , n}

rt(G) =
t∑

i=1

λi(G)− e(G)−
(
t+ 1

2

)

is strictly positive, then we have found a counterexample. Therefore, one may naturally think

that rt(G) can be good candidates for the reward function for Conjectures 2 and 3. However,

if that was the case, we would have several reward functions associated to one single graph

and that would confuse our system. Since that cannot be the case, we take

r2(G) = max
t

rt(G) = max
t

( t∑
i=1

λi(G)− e(G)−
(
t+ 1

2

))
as the reward function for Conjectures 2 and 3.
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6.4 Constraints of Learning-Powered Counterexample Search

Up until now, this thesis has presented some reinforcement learning methods that can help

find counterexamples to refute graph theory conjectures. This section explores the necessary

conditions for these methods or any other reinforcement learning techniques to be applied.

Moreover, we justify that Conjectures 1, 2 and 3 satisfy those conditions.

As we have seen, the first step when building a reinforcement learning agent to find counterex-

amples is to translate the conjecture into a language or code the computer can understand

and to derive a reward function from the studied conjecture. Therefore, the first important

requirement to be fulfilled is to have a conjecture from which a function to be optimized can

be derived.

Further, we need the conjecture to be translated to a problem that is not too complex for a

computer to solve, i.e. the problem needs to be computationally efficient. The complexity

of a given optimization problem is a measure of how difficult it is to solve. In a sense,

computational complexity is related to the amount of resources (including time) consumed

by a computer while performing a given task. One can read about computational complexity

in [56, 57].

The P class consists of all decision problems (i.e. problems with a ”yes” or ”no” answer)

that can be solved in polynomial time O(nk). That is, problems that can be solved in less

than cnk steps, where c and k are constants independent from the input size n. An example

of a problem belonging to the P complexity class is deciding whether a graph has an Eulerian

tour. Problems belonging to the P class are referred to as efficiently computable problems.

The decision problem of our agent to compute the reward of all possible actions at each state

must belong to the P complexity class. Otherwise, the agent may never be able to learn an

acceptable policy.

Further, the reward function must be evaluated at each step. In other words, it cannot be

the case that for a given construction that is a potential counterexample the function is not

defined.

In Section 6.3 we have derived three reward functions from three different spectral graph

theory conjectures. We know that one can efficiently compute the eigenvalues of a matrix [58]

and the matching number of a graph [59]. Therefore, we can evaluate all reward functions at

all states. Thus, we state that this first condition for using reinforcement learning is satisfied

for all three conjectures we are trying to disprove.

The second necessary condition for reinforcement learning to be applied has not been found

in the literature in a formal manner. In consequence, here we attempt to formally introduce

a second restriction for reward functions derived from graph theory conjectures. However, we
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first need to introduce some concepts.

A reward function is said to be sparse if it is zero in most of its domain. A sparse reward

function gives insufficient feedback to the agent about whether an action yield to a relative

reward at a given state. In contrast, a dense reward function assigns a non-zero value to

most of the transactions, allowing the agent to receive feedback at almost every step.

Naturally, learning in environments with sparse reward functions is much more challenging

than with dense reward functions since the agent receives fewer data points as feedback

compared to the dense reward case. In fact, most reinforcement learning methods with a

sparse reward function fail to learn an acceptable policy in a reasonable time frame [60].

Thus, we want our problem to have dense reward functions.

We can go one step further and not only impose that our reward function must be dense but

that we want our reward set, i.e. the range of our reward function, to be as large as possible,

to avoid our agent taking too long to learn a decent policy. In other words, we want high

variability in the values taken by the reward function. Formally, we try to express this as

follows. Let r : Gn → R be a real-valued reward function with Gn being all the graphs of

n vertices (that are considered by our algorithm). Then, the reward function r must satisfy

that ∃c ∀S ⊆ r(Gn) such that |r−1(S)| ≤ c|S|, with c being much smaller than |Gn|. One can

see whether this condition holds by observing the reward values after just a few iterations. In

our case, all three conjectures satisfy this condition.

6.5 Code Implementation

6.5.1 Some Notes about our Implementation

Wagner notes in [2] that Conjecture 1 appears to be true for graphs of n ≤ 18 vertices. He

implements the cross entropy method for n = 19 and finds a counterexample of that size. We

do the same and implement both deep cross-entropy and tabular Q-learning methods with

the number of vertices of our graphs set to 19.

As for Conjecture 2, we know it is true for graphs of n ≤ 10 vertices. Therefore, we implement

both methods for graphs with n ∈ [11, 20] vertices. For Conjecture 3, we implement both

methods for graphs with n ∈ [11, 20] as well since the authors of [39] check by computation

the conjecture holds for all graphs up to 10 vertices.

To discourage the reinforcement learning agent from carrying out a specific action (i.e. take

as a potential counterexample a graph for which we know a conjecture is true), we can assign

to that specific graph’s reward function value a maximum penalty. In our case, we want

this maximum penalty to be a very large negative number as we want to ultimately find our

way to a positive reward function value when a counterexample exists.
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The value of the maximum penalty is −∞ for the deep cross-entropy method and −100, 000 for
the tabular Q-learning method. The value of −100, 000 is an arbitrarily large (in magnitude)

negative number since we cannot use −∞ in this setting. Let us recall that Q-values are

computed using recursive addition and that the values of the reward function are ultimately

involved in that sum. Thus, if the reward function takes at some point the value of −∞, then

all Q-values will be −∞ as well, which does not help our agent decide which action is better

to take.

When trying to refute Conjecture 1 we assign the maximum penalty to all unconnected graphs

since the conjecture only takes into consideration graphs that are connected. As for Conjecture

2, the maximum penalty is assigned to graphs for which this conjecture is known to be true,

as listed in Section 4.2. Finally, for Conjecture 3 we assign the maximum penalty to regular

graphs and trees as it has been proved to be true for these graphs.

6.5.2 Programming Language and Framework

Python is the default programming language used in machine learning research and applica-

tions. This comes as no surprise since it has a very simple syntax that makes it very intuitive

and easy to learn. It is also open-source and therefore accessible to everyone. Moreover, it

has an active community that is constantly developing new libraries and maintaining existing

ones.

The code runs on Python 3.7 to guarantee compatibility with the chosen cloud computing

services, which are discussed in the next subsection. However, it can also be run on more

recent versions of Python, even though it is possible that some libraries may need to be

updated.

When developing machine learning applications, one may want to use existing frameworks

that make the entire process of building and training neural networks faster and easier. There

exist several frameworks that work with Python but the one we use for our implementation

is TensorFlow [61]. The way we interact with TensorFlow is via Keras [62], a TensorFlow

wrapper. This basically means that when we call a Keras function this in turn calls a sequence

of TensorFlow functions.

For dealing with graph constructions and performing operations on graphs, the NetworkX

library [63] is of great help. Moreover, in our code we use some functions from the Scipy

[64] and Numpy [65] libraries, two of the most common Python libraries that are useful for

scientific and advanced computing.

Furthermore, we have used the Logtail [66] and Psutil [67] libraries to manage logs written

by our code to detect any problems and to keep track of the memory allocation during the

execution of the deep cross-entropy method, respectively.
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6.5.3 Using Cloud Services for Remote Execution

Due to the large load of computer power needed to execute the deep cross-entropy to try to

disprove Conjectures 1, 2 and 3, one is better-off looking for alternatives to the local execution

of the scripts. There exist multiple cloud computing services providers and it is very accessible

and affordable for an individual developer to use such services for their own projects.

For this thesis’s code implementation we have used Amazon Web Services, AWS for short,

to execute our code in the cloud. The AWS service we have worked with is Elastic Cloud

Computing, EC2 for short. In particular, we have used EC2 spot instances, a type of instance

that uses spare EC2 capacity and that is available for less than the price for regular on-demand

instances. The instance type used is g4dn.xlarge, one of the available GPU-based instances.

In [68] one can find more about AWS EC2.

To create, manage and terminate the instances in a simplified manner we have used Spotty,

a tool to train machine learning models in AWS or Google Cloud. More about this Python

library in [69].

6.5.4 Problems Encountered During the Execution

During the remote execution of the deep cross-entropy method the machine was running out

of RAM due to an identified issue in Keras by several users [70], preventing us to get past

the 380th iteration. The same would happen when trying to run the code locally. Wagner

found this same problem, as he notes in the first few commented lines in his script [71] and

he solved it downgrading to older versions of both Python and TensorFlow. However, when

we tried to do the same Wagner did in 2021, we encountered that those older versions were

not supported anymore and our code was not able to run.

Finally, after doing some research, we discovered that in our version of Keras there exists a

specific function that can remove unnecessary information automatically stored that takes up

a lot of RAM without compromising the trained model. After implementing this, our deep

cross-entropy code was able to run smoothly without any memory leaks.

6.6 Discussion of Results

Unfortunately, after running both the deep cross-entropy and Q-learning methods for Conjec-

tures 1, 2 and 3 we have not been able to find any counterexample to any of these conjectures.

Nonetheless, we use this section to discuss why this may have been the case and present the

counterexample found by Wagner and presented in his paper [2].

We know Conjecture 1 is false and since we have replicated Wagner’s approach, we were

expecting we would reach a counterexample using the deep cross-entropy method. Nonetheless
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this has not been the case and we suspect the reason is that 10,000 iterations were not enough

for our agent, even though they were enough for Wagner.

The following figure shows the counterexample Wagner found. It is a 19-vertex tree with

largest eigenvalue
√
10 and matching number 2.

Figure 21: 19-vertex graph that does not satisfy Conjecture 1, from [2].

Wagner notes in [2] that trees are the best counterexample candidates for Conjecture 1 since

for a graph G with largest matching M , one can repeatedly delete edges from E(G) \ M
without disconnecting the graph. One can do this without changing µ(G), but the value of

the largest eigenvalue decreases.

We suspect the reason Q-learning has not led us to a counterexample for Conjecture 1 is also

the fact that we did not allow the agent run for enough iterations. Another potential cause is

how the states have been defined, where the agent does not know the difference between an

edge taking the value of 0 because it has deliberately chosen not to join those two vertices or

because that edge has not been visited yet.

As for Conjecture 2, Brouwer’s conjecture, we were not expecting any counterexample to be

found since it is most likely a true statement, even though no one has been able to derive a

formal proof yet. Moreover, in [72] the author shows that for a sequence of random graphs

Brouwer’s conjecture holds true with probability tending to 1 as the number of vertices tends

to infinity. Thus, if a counterexample to that conjecture exists, it is very difficult to find. In

contrast, Conjecture 3 is probably a bit more likely to be false that Conjecture 2. However,

since it has been proven true for some types of graph, finding a counterexample to it is not

an easy task either.
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7 Conclusions and Further Work

In this thesis we have reviewed some graph theory concepts and presented some graph theory

conjectures with the aim of refuting them. The thesis has focused on how machine learning

and, in particular, reinforcement learning can be a part of a mathematics researcher’s toolbox

to find counterexamples to conjectures. Despite the fact that there does not exist a lot of

literature about using reinforcement learning to refute conjectures, one can expect that in

the coming years more and more researchers will publish results after using these methods.

Further, new algorithms are still to be created and it is possible that with time there will be a

reinforcement learning method specifically designed and optimized to look for counterexamples

to graph theory conjectures.

We have also presented the results obtained by Wagner in [2] after applying the deep cross-

entropy method to refute Conjecture 1. This is so far the first known case of a counterexample

being found by a reinforcement learning agent in the literature, even though a counterexample

had previousy been found to this conjecture by Stevanović [28].

We have implemented the deep cross-entropy and tabular Q-learning methods, two rein-

forcement learning techniques, to try to refute Conjectures 1, 2 and 3. Nonetheless, after a

successful implementation, we have not been able to obtain any counterexample to any of the

studied conjectures.

After the lack of successful results we can, however, present some work that could be further

done related to what this thesis has focused on.

i. Re-run the deep cross-entropy and tabular Q-learning methods allowing for a larger

number of maximum iterations.

ii. Redesign the state architecture for the tabular Q-learning method so the agent can

distinguish between the edges that have been discarded in previous iterations and the

ones which have not been considered yet.

iii. Initialize the Q-tables with random integers using ranges different from [0, 10], as this

may require a bit of experimentation.

iv. Closely monitor the behavior of the agent by studying whether its preferred construc-

tions share any characteristics (i.e. they are all trees or the value of a given invariant

coincides) as we approach the maximum number of iterations.

v. Try to refute the same conjectures by implementing more sophisticated algorithms such

as deep Q-learning.
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A Neural Network Activation Functions

Figure 22: List of commonly used activation functions, from [45].
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