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Pediatric nodal marginal zone lymphoma (PNMZL) is an uncommon B-cell neoplasm

affecting mainly male children and young adults. This indolent lymphoma has distinct

characteristics that differ from those of conventional nodal marginal zone lymphoma

(NMZL). Clinically, it exhibits overlapping features with pediatric-type follicular

lymphoma (PTFL). To explore the differences between PNMZL and adult NMZL and its

relationship to PTFL, a series of 45 PNMZL cases were characterized morphologically and

genetically by using an integrated approach; this approach included whole-exome

sequencing in a subset of cases, targeted next-generation sequencing, and copy number

and DNA methylation arrays. Fourteen cases (31%) were diagnosed as PNMZL, and 31

cases (69%) showed overlapping histologic features between PNMZL and PTFL, including

a minor component of residual serpiginous germinal centers reminiscent of PTFL and a

dominant interfollicular B-cell component characteristic of PNMZL. All cases displayed

low genomic complexity (1.2 alterations per case) with recurrent 1p36/TNFRSF14 copy

number–neutral loss of heterozygosity alterations and copy number loss (11%). Similar

to PTFL, the most frequently mutated genes in PNMZL were MAP2K1 (42%), TNFRSF14

(36%), and IRF8 (34%). DNA methylation analysis revealed no major differences between

PTFL and PNMZL. Genetic alterations typically seen in conventional NMZL were absent

in PNMZL. In summary, overlapping clinical, morphologic, and molecular findings

(including low genetic complexity; recurrent alterations in MAP2K1, TNFRSF14, and IRF8;

and similar methylation profiles) indicate that PNMZL and PTFL are likely part of a single

disease with variation in the histologic spectrum. The term “pediatric-type follicular

lymphoma with and without marginal zone differentiation” is suggested.
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Key Points

� PNMZL has a
molecular landscape
characterized by low
genomic complexity
and frequentMAP2K1,
TNFRSF14, and IRF8
alterations.

� The histologic and
molecular features of
PNMZL and PTFL
suggest that they
represent a morphologic
spectrum of the same
biologic entity.
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Introduction

Pediatric-type follicular lymphoma (PTFL) and pediatric nodal mar-
ginal zone lymphoma (PNMZL) are rare indolent B-cell lymphomas
that occur predominantly in male subjects and frequently involve the
head and neck region.1,2 Unlike their adult counterparts, these lym-
phomas are characterized by localized disease and an excellent
prognosis without systemic treatment.

The histopathologic distinction between these 2 entities is based on
assessment of the nodal architecture and immunophenotype of the
atypical cells. In PNMZL, the atypical cells are interfollicular and are
negative for markers of follicle center derivation such as CD10 and
BCL6.1 In contrast, PTFL is characterized by expanded and serpigi-
nous follicles, often with monomorphic centroblast-like cytology, with
expression of CD10 and BCL6.2 However, marginal zone differenti-
ation has been reported in PTFL,2-4 and we and others have noted
cases that display intermediate features between both entities, mak-
ing definitive categorization as PTFL or PNMZL on a morphologic
basis challenging.

Studies of the genetic profile of nodal marginal zone lymphoma
(NMZL) in adult patients have shown recurrent mutations in genes,
including KMT2D, TNFAIP3, NOTCH2, KLF2, and PTPRD, in addi-
tion to frequent copy number (CN) alterations such as trisomies 3,
12, and 18.5,6 The genetic landscape of PTFL is also well charac-
terized as exhibiting very low genomic complexity,7 frequent muta-
tions in MAP2K1,8,9 alterations targeting the TNFRSF14 locus,7,9,10

and IRF8 p.K66R mutations.8,11 In contrast, due to the low inci-
dence of PNMZL, very few studies have been performed to analyze
its genetic profile. In a previous study performed using fluorescence
in situ hybridization (FISH), trisomy 18 and, occasionally, trisomy 3
were reported in PNMZL cases12; in a whole-exome sequencing
(WES) analysis of 6 PNMZL cases, no recurrently mutated genes
were identified.11 We sought to characterize the genomic land-
scape of PNMZL to better understand the pathogenesis of this neo-
plasm and its relationship to PTFL and NMZL as seen in adults.

Materials and methods

Patients and samples

Forty-five cases with the diagnosis of PNMZL according to the
World Health Organization lymphoma classification13 were col-
lected from the National Cancer Institute, National Institutes of
Health (Bethesda, MD; 30 cases), University of T€ubingen (T€ubingen,
Germany; 6 cases), Hospital Cl�ınic of Barcelona (Barcelona, Spain;
3 cases), Universit€atsklinikum Schleswig–Holstein (Kiel, Germany; 4
cases), and Samsung Medical Center (Seoul, South Korea; 2
cases). Cases were reviewed by 5 hematopathologists (C.E., S.P.,
E.C., L.Q.-M., and E.S.J.) blinded to the molecular results, and con-
sensus diagnosis was achieved. Lymph node biopsy specimens
were evaluated with hematoxylin and eosin. The immunohistochemi-
cal staining was performed as part of the diagnostic workup, includ-
ing CD20, CD3, CD79a, CD10, BCL6, MUM1/IRF4, CD21/CD23,
IgD, kappa, and lambda. Eleven cases (cases 34-44) were part of
previously reported studies without mutational analysis.1,12 Morpho-
logically, all cases were estimated to have .30% tumor cells. For
comparison, a previously published series of PTFL7,8 were included
for the methylation analysis and IRF8 mutational status. In addition,
5 age-matched cases (patients aged 4-15 years) of reactive

hyperplasia (RH), either atypical marginal zone hyperplasia (n 5 4)
or progressive transformation of germinal centers (n 5 1), were
included as controls (Table 1).

This study was approved by the institutional review boards of collab-
orating institutions and was conducted in accordance with the Dec-
laration of Helsinki.

DNA extraction and clonality analysis

Genomic DNA was extracted from formalin-fixed paraffin embedded
(FFPE) tissue sections with a Maxwell 16 FFPE Tissue LEV DNA
Purification Kit or Maxwell RSC DNA FFPE Kit and the Maxwell 16
Instrument or the Maxwell RSC Instrument (Promega, Madison, WI)
according to the manufacturer’s protocol.

Polymerase chain reaction amplifications for detecting clonal IGH
and/or IGK chain gene rearrangements were performed according
to the BIOMED-2 protocol (supplemental methods).7,14

Copy number analysis

Forty-six DNA samples (from 42 tumors and 4 control specimens)
were hybridized on OncoScan and 3 samples (2 cases and 1 RH)
on CytoScan arrays (Thermo Fisher Scientific, Waltham, MA) follow-
ing standard protocols. Gains, losses, and copy number–neutral
loss of heterozygosity (CNN-LOH) regions were evaluated and
visually inspected by using Nexus BioDiscovery version 9.0 software
(BioDiscovery, Hawthorne, CA) aligning to human reference genome
GRCh37/hg19.

WES analysis

WES analysis was performed on four PNMZL samples with high-
quality DNA available (supplemental Figure 1), including 3 unpaired
FFPE samples and 1 frozen tissue sample with a paired normal
peripheral blood sample. For the frozen tissue and peripheral blood
samples, libraries were created by using the SureSelect Human All
Exon V5 50-Mb target enrichment kit (Agilent Technologies, Santa
Clara, CA)15 and were sequenced on a HiSeq 2000 instrument
(Illumina, San Diego, CA). For the FFPE samples, libraries were gen-
erated by using the Agilent SureSelect V6 exome target enrichment
kit and were sequenced on a HiSeq 4000 Illumina instrument (Illu-
mina). The variant filtering pipeline is detailed in the supplemental
Methods.

Targeted next-generation sequencing analysis

Targeted next-generation sequencing (NGS) analysis was per-
formed on the Ion Torrent PGM and Ion GeneStudio S5 Prime
(Thermo Fisher Scientific) system. NGS libraries were amplified by
using two or three primer pools of four Ion AmpliSeq Custom Pan-
els covering 27 genes that have been shown to be mutated in follic-
ular lymphoma, PTFL (NGS1, NGS2, and NGS3 panels)
(supplemental Tables 1-3),8,16-18 and adult NMZL (NGS4 panel)
(supplemental Table 4).5,6 The custom panels were designed by
using the Ion AmpliSeq Designer from Thermo Fisher Scientific
(NGS1 panel version 3.0, NGS2 panel version 3.4, NGS3 panel
version 7.49, and NGS4 panel version 5.6.2) to interrogate all exons
of 19 genes (EP300, FOXO1, GNA13, HIST1H1B, HIST1H1C,
HIST1H1D, HIST1H1E, IRF8, KMT2D, MEF2B, TNFRSF14,
TNFAIP3, STAT6, SOCS1, KLF2, NOTCH3, PTPRD, TET2, and
TBL1XR1) and selected regions of 8 genes (CREBBP, EZH2,
XPO1, NOTCH1, NOTCH2, MYD88, MAP2K1, and BRAF)
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Table 1. Clinical, morphologic, and IG clonality features of 45 cases with the diagnosis of PNMZL

Case no. Age, y Sex Lymph node biopsy site Original diagnosis Overlapping features IG gene rearrangement studies

1 16 M Preauricular PNMZL Yes Monoclonal

2 20 M Parotid PNMZL Yes Monoclonal

3 18 M Cervical PNMZL No Monoclonal

4 12 M Submandibular PNMZL Yes Monoclonal

5 20 F Occiput PNMZL Yes Monoclonal

6 15 M Posterior cervical PNMZL Yes Monoclonal

8 14 F Cervical PNMZL No Monoclonal

9 23 M Submental PNMZL Yes Monoclonal

10 18 M Inguinal Overlapping features of PNMZL and PTFL Yes Monoclonal

11 12 M Right inguinal Overlapping features of PNMZL and PTFL Yes Monoclonal

12 15 M Scalp Overlapping features of PNMZL and PTFL Yes Monoclonal

13 23 M Cervical Overlapping features of PNMZL and PTFL Yes Monoclonal

14 20 F Inguinal Overlapping features of PNMZL and PTFL Yes Monoclonal

15 20 M Submental PNMZL No Monoclonal

17 20 M Parotid PNMZL No Monoclonal

19 9 M Parotid Overlapping features of PNMZL and PTFL Yes Monoclonal

21 9 M Cervical PNMZL No Monoclonal

23 16 M Right cervical Overlapping features of PNMZL and PTFL Yes Monoclonal

25 5 M Cervical PNMZL No Monoclonal

27 6 M Cervical PNMZL Yes Monoclonal

28 5 M Left inguinal PNMZL Yes Monoclonal

29 8 M Submandibular PNMZL No Monoclonal

31 16 M Parotid Overlapping features of PNMZL and PTFL Yes Monoclonal

34 18 M Left cervical PNMZL Yes Monoclonal

35 6 M Axilla PNMZL Yes Monoclonal

36 22 M Cervical PNMZL No Monoclonal

37 16 M Right inguinal PNMZL No Monoclonal

38 17 M Submental PNMZL Yes Monoclonal

39 22 M Submental/cervical PNMZL Yes Monoclonal

40 16 M Cervical PNMZL Yes Monoclonal

41 14 M Left cervical PNMZL Yes Monoclonal*

42 6 M Right cervical PNMZL Yes Monoclonal

43 23 M Supraclavicular PNMZL Yes Monoclonal

44 15 M Right inguinal PNMZL Yes Monoclonal

45 13 M Right cervical PNMZL No Monoclonal

46 19 M Cervical PNMZL Yes Monoclonal

47 17 M Left cervical PNMZL No Monoclonal

48 11 M Right postauricular PNMZL No Monoclonal

49 11 M Inguinal Overlapping features of PNMZL and PTFL Yes Monoclonal

50 28 M Cervical Overlapping features of PNMZL and PTFL Yes Monoclonal

51 15 F Cervical Overlapping features of PNMZL and PTFL Yes Monoclonal

52 16 M Cervical Overlapping features of PNMZL and PTFL Yes Insufficient DNA quality

54 15 M Cervical Overlapping features of PNMZL and PTFL Yes Monoclonal

55 30 M Inguinal PNMZL No Monoclonal

58 14 F Right cervical PNMZL No Monoclonal

IG, immunoglobulin; M, male; F, female; LN, lymph node; NA, not applicable.
*An IGK clone was detected and confirmed by using NGS-based analysis (data not shown).
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(supplemental Tables 1-4). For comparison, 37 PTFLs were ana-
lyzed for IRF8 using the NGS3 panel. A description of library prepa-
ration, sequencing, and raw data analyses is presented in the
supplemental Methods.

Targeted resequencing and Sanger sequencing

For validation of the NGS results, selected variants with low allelic
frequencies (,15%) were re-analyzed as single amplicons using a
targeted resequencing approach or using another NGS panel on the

Ion Torrent PGM or Ion GeneStudio S5 Prime system. A description
of primer design is presented in the supplemental Methods and sup-
plemental Table 5.

DNA methylation analyses

DNA methylation analyses were performed on a total of 22 PNMZL
cases and 26 previously published PTFL cases7 using the Infinium
MethylationEPIC BeadChip (Illumina) according to the manufac-
turer’s instructions. Bisulfite conversion of genomic DNA was

Table 1. (continued)

Case no. Age, y Sex Lymph node biopsy site Original diagnosis Overlapping features IG gene rearrangement studies

Control 1 15 M Cervical Atypical marginal zone hyperplasia NA Polyclonal

Control 2 13 M Cervical Atypical marginal zone hyperplasia NA Polyclonal

Control 3 18 M Cervical Atypical marginal zone hyperplasia NA Polyclonal

Control 5 7 F Cervical Progressive transformation of germinal centers NA Polyclonal

Control 6 4 F Cervical Atypical marginal zone hyperplasia NA Polyclonal

IG, immunoglobulin; M, male; F, female; LN, lymph node; NA, not applicable.
*An IGK clone was detected and confirmed by using NGS-based analysis (data not shown).
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Figure 1. PNMZL with features reminiscent of PTFL. (A) The lymph node shows scattered large follicles with intact mantle cuffs. The germinal centers are irregular and

fragmented, resembling progressive transformation of germinal centers. However, the interfollicular region is markedly expanded. (B) The atypical interfollicular infiltrate is

polymorphous and is composed of small- to medium-sized lymphoid cells, some displaying plasmacytoid features. Occasional eosinophils and histiocytes are present.

(C) The CD20 stain highlights increased interfollicular B cells. (D) CD3 shows admixed T cells, some of which localize to the follicle centers. BCL6 highlights the germinal

centers (E), some of which show an irregular serpiginous configuration also seen with the stain for CD10 (F).
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Figure 2. Morphological characteristics of PTFL, PNMZL and cases with overlapping features. (A-B) Two examples of typical PTFL with expanded, serpiginous

germinal centers with a starry-sky pattern and attenuated mantle zones. Note in panel A, a rim of normal lymph node at the upper edge of the biopsy specimen. (C) IgD stain

highlights the attenuated mantle zone. (D) PNMZL with overlapping features with PTFL, Case 28. The lymph node shows large, irregular germinal centers with attenuated
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performed applying the EZ DNA Methylation kit (Zymo Research,
Irvine, CA) according to the protocol supplied by the manufacturer.
DNA methylation data were processed by using GenomeStudio
software (version 2011.1; methylation module 1.9.0; Illumina) and
Qlucore Omics Explorer version 3.6 (Qlucore, Lund, Sweden),
applying the default settings as previously described.19 The intrinsic
controls present on the array were used for data normalization. Sin-
gle nucleotide polymorphism loci, loci on gonosomes, and loci with
a detection P value ..01 were excluded from further analysis.

Statistical analyses

R software version 3.6.2 (R Foundation for Statistical Computing,
Vienna, Austria) was used for statistical analysis. Differences in the
distribution of individual parameters among patient subsets were
analyzed by using Fisher’s exact test for categorical variables and a
t-test for continuous variables. The nonparametric Wilcoxon test
was applied when necessary. P values for multiple comparisons
were adjusted by using the Benjamini-Hochberg correction (false
discovery rate). A cutoff of P 5 .05 was considered significant
unless otherwise indicated.

Results

Clinical characteristics and morphologic findings

The clinical characteristics of the cases are summarized in Table 1.
There were 45 cases in total from a cohort of 40 males and 5
females with a median age of 16 years (range, 5-30 years). The
most common anatomic sites of presentation were in cervical lymph
nodes (n 5 22 [49%]), with other sites of involvement including
inguinal (n 5 8 [18%]), submental (n 5 5 [11%]), intraparotideal
(n 5 4 [9%]), periauricular, occipital (n 5 2 each [4%]), and supra-
clavicular and axillary (n 5 1 each [2%]) regions. All patients
presented with a single anatomic site of disease (stage I).

Most of the cases were originally diagnosed as PNMZL (n 5 32),
with a smaller number initially appreciated to show some overlapping
features between PNMZL and PTFL (n5 13). Characteristic features
of PNMZL included interfollicular expansion by a polymorphous
lymphoid infiltrate composed of small- to medium-sized lymphoid
cells with pale cytoplasm and focal plasmacytoid differentiation.
Dutcher bodies were absent. Follicular structures were always pre-
sent but to a varying degree and extent, with the interfollicular compo-
nent occupying most of the lymph node surface area. However, in
most cases, the interfollicular component encroached upon the fol-
licles, with frequent disruption of the mantle cuffs and fragmentation
of the follicle centers, producing a histologic picture resembling pro-
gressive transformation of germinal centers that has been defined as
a feature of PNMZL (Figure 1).1,13

According to immunohistochemistry, the follicle centers were
strongly positive for BCL6 and CD10, and negative for BCL2. The
interfollicular component was consistently negative for these germi-
nal center markers. The mantle cuffs were highlighted by IgD and

were generally broad, to a greater extent than typically observed in
PTFL. However, in many cases, the follicular component was pre-
sent in much of the node, with the polymorphous and monocytoid
cells forming broad coronas around the follicles. Based on the
extent of the follicular component, a total of 31 cases (69%) were
considered to have overlapping features between PNMZL and
PTFL after central consensus review. However, cases classified as
PNMZL always had a dominant interfollicular and polymorphous
B-cell expansion, with only a minor follicular component. A compari-
son of the histologic features between PTFL and PNMZL with
“overlap” is presented in Figure 2.

IG clonality and CN and CNN-LOH alterations in

PNMZL and RH

Immunglobulin (IG) gene rearrangement was monoclonal in all 44
cases analyzed. The 5 cases of RH used as controls rendered poly-
clonal results with all IG primer sets used (Table 1).

The CN profile of 44 PNMZL and five RH cases was investigated.
Tumor samples showed a total of 53 copy number alterations
(CNA) in 20 of 44 cases (mean, 1.2 alterations per case; range,
0-18 alterations) (Figure 3A; supplemental Table 6), and 8 of 24
cases with no CNA displayed CNN-LOH as the sole abnormality.
Thirty-six regions of CNN-LOH were detected in 15 of 44 cases
(Figure 3B). The most recurrently altered locus was 1p36, including
TNFRSF14, with 4 cases showing CNN-LOH and one additional
case harboring a deletion of 1p36. In addition, CN gains of
3q26.32-q29, 11p15.5-q22.1, and 12p arm were found in 3 cases.
Previously reported trisomies of chromosomes 3 and 18 were only
detected in one case each, indicating that these alterations are rare
in PNMZL.12

All RH control samples analyzed displayed no alterations except for
one carrying a CN gain (3q13.31-q13.32) of uncertain significance
(supplemental Table 6).

PNMZL WES analysis

Four selected cases (one with frozen tissue and paired normal DNA
and three FFPE samples with DNA quality above 400 bp) were ana-
lyzed by using WES. This procedure yielded a mean coverage of
133.93 (range, 118.2-155.7). After filtering, a total of 32 variants
were detected in the 4 analyzed cases (mean, 8 alterations per
case; range, 1-11 alterations) (supplemental Tables 7 and 8), with
15 predicted to be potentially driver alterations according to previ-
ously published criteria.20 Only the MAP2K1 gene was found to be
mutated in 2 cases.

Identification of recurrent mutations by

targeted NGS

All 45 cases were analyzed by using targeted NGS (Figures 4-5).
Twenty-five cases were informative with all 4 gene panels, and 6
cases were informative with 3 panels. Fourteen cases with low

Figure 2 (continued) marginal zones together with expanded interfollicular areas. (E) Case 19. The lymph node reveals an infiltrate with nodular pattern with recognizable

hyperplastic germinal centers and expanded mantle zones with marginal differentiation. (F) IgD stain shows the extension of the mantle zone B cells into the germinal centers,

which display fragmentation, resembling progressively transformed germinal centers (PTGC). (G-L) PNMZL with PTGC-like features.Case 40. (G) Lymph node with residual

reactive follicles but the interfollicular region is markedly expanded. (H) The cellular infiltrate is polymorphous with occasional plasma cells and immunoblasts. (I) A stain for

CD20 shows a predominance of B cells surrounding a residual follicle. (J) IgD stain shows the intact mantle cuff. The germinal center exhibits some fragmentation reminiscent

of PTGC. (K) The residual germinal centers are positive for CD10 and negative in the atypical cells. (L) BCL2 is negative in germinal centers but positive in interfollicular cells.
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Figure 3. Global CN and CNN-LOH profiles of 44 PNMZL cases and comparison plots with CN data from adult NMZL and CNN-LOH data from PTFL. (A-B)

Global CN alterations and CNN-LOH profiles in 44 PNMZL cases. (C) Comparison of CN alterations between adult NMZL (57 cases) and PNMZL (44 cases). (D)

Comparison of CNN-LOH regions between PNMZL (44 cases) and PTFL (42 cases). The horizontal axis indicates chromosomes from 1 to Y and from arm p to q.

The vertical axis represents the frequency of the genomic event among the analyzed cases. CN gains are depicted in blue, CN losses in red, and CNN-LOH in yellow
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DNA quality (#200 bp) were informative at least for 2 panels.
The mean read depth of the NGS sequence analysis was 8763
for mutations (range, 576-59 079). In the 45 cases, 60 muta-
tions were identified (supplemental Table 9) with a mean of 1.3
mutations per case. Fifty-seven (95%) of 60 mutations were vali-
dated with targeted single amplicons (35 mutations) or with a
different NGS panel (20 mutations) with a verification rate of
100%. The most frequently mutated gene was MAP2K1 with 22
mutations in 19 cases (2 mutations in cases 12, 19, and 25; 19
of 45 [42%]) and a median variant allele frequency of 9% (range,
3%-27%), followed by TNFRSF14 with 16 mutations in 13
patients (2 mutations in cases 2, 9, and 12; 13 of 36 [36%])
and a median variant allele frequency of 18% (range, 4%-50%),
and IRF8 with 16 mutations in 12 cases (2 mutations in cases
2, 31, 34, and 45; 12 of 35 [34%]) and a median variant allele
frequency of 5% (range, 1%-13%). Additional mutated genes
were EZH2 (2 of 31 [6%]), FOXO1 (1 of 31 [3%]), GNA13
(1 of 31 [3%]), HIST1H1C (1 of 31 [3%]), and HIST1H1D (1 of
31 [3%]). No mutations were identified in CREBBP, EP300,
HIST1H1B, HIST1H1E, KMT2D, MEF2B, STAT6, XPO1,
MYD88, SOCS1, TNFAIP3, NOTCH1, NOTCH2, NOTCH3,
KLF2, PTPRD, BRAF, TET2, and TBL1XR1 genes.

MAP2K1 gene mutations were nonsynonymous and targeted mainly
the negative regulatory region domain of MEK1 protein. The most
common recurrent mutations clustered in exon 2, hot spot codon
53 found in 12 cases (12 of 19 [63%]), and codon 57 found in 3
cases (3 of 19 [16%]) (Figure 4A). TNFRSF14 gene mutations
included 11 missense mutations, 2 stop variants, 1 frameshift muta-
tion, and 2 intronic variants. These mutations were found in the first
4 exons coding for the signal peptide and part of the extracellular
domain containing the tumor necrosis factor (TNF) receptor (TNFR)
cysteine repeats 1 and 2 (Figure 4B). IRF8 mutations were not
restricted to the hot spot K66 (7 of 16 [44%]), with recurrent muta-
tions targeting codon 23 (p.Y23H) also identified (5 of 16 [31%])
(Figure 4C). In total, MAP2K1, TNFRSF14, and/or IRF8 mutations
were observed in 30 (73%) of 41 cases, and 11 cases showed
concomitant mutations of these genes. Cases with overlapping mor-
phology more often carried mutations of these 3 genes (22 of 28
[78.5%]) compared with those cases with PNMZL morphology
(8 of 13 [61.5%]); however, the difference was not statistically sig-
nificant (P 5 .2802). In contrast, no mutations were identified in the
5 lymph nodes with RH used as controls.

All except for 1 case were investigated by using both CN and
mutational analysis. The integrated CN and mutational informa-
tion (Figure 5) revealed that the most recurrently mutated gene
was MAP2K1 (42% [19 of 45 cases]), followed by IRF8 (34%
[12 of 35 cases]) and frequent alterations in 1p36/TNFRSF14
locus (33% [15 of 45 cases]). TNFRSF14 mutations occurred
concomitantly with 1p36 CNN-LOH in 2 cases and with 1p36 CN
loss in 1 case. Twelve (27%) of 45 cases lacked CNA and gene
mutations.

Genetic comparison of PNMZL with NMZL and PTFL

To compare PNMZL with NMZL in the adult population, previously
published CN raw data were reanalyzed following the same criteria
used for PNZML data analysis.5,6 PNMZL exhibits a lower genetic
complexity than adult NMZL (mean, 1.2 CNA per case vs 6.1 CNA
per case; P , .001) and lacks the CNA typically found in adult
NMZL such as trisomies 3, 12, and 18, and CN loss of 1p36 locus
(P , .05) (Figure 3C). Comparison of the mutational profile of
PNMZL with previously published mutational information from adult
NMZL5,6 showed that MAP2K1 and IRF8 mutations are exclusively
found in the pediatric group (adjusted P , .05). Furthermore, muta-
tions frequently found in adult NMZL affecting genes, including
KMT2D, KLF2, TBL1XR1, NOTCH2, and TNFAIP3, were absent in
PNMZL (adjusted P , 0.05) (Figure 6A).

Comparison of PNMZL with PTFL was performed by using previ-
ously published CN data on PTFL.7 Statistical analyses showed that
both entities have a similar level of genetic complexity (mean, 1.2
CNA per case in PNMZL vs 0.7 CNA per case in PTFL). In general,
PTFL cases showed more CNN-LOH alterations than PNMZL
cases (mean, 0.8 CNN-LOH alterations per case in PNMZL vs 1.8
CNN-LOH alterations per case in PTFL; P , .01). Moreover, both
groups showed 1p36 CNN-LOH, but this alteration was more fre-
quently observed in PTFL (9% of cases in PNMZL vs 40% of cases
in PTFL; P , .05) (Figure 3D). No differences were observed
between PNMZL and cases with overlapping features (supplemen-
tal Figure 2). Comparative analyses of the mutational landscape of
PTFL with PNMZL and overlapping cases were also performed by
using published data on PTFL.7 In addition, to compare the IRF8
mutational status among the 3 groups, 37 PTFL cases were ana-
lyzed by using the same NGS approach. The analysis showed that
the 3 groups have a similar mutational landscape but with different
frequencies (Figure 6B; Table 2). EZH2 mutations were only
observed in PNMZL (P , .05).

Methylation profile of PNMZL

Unsupervised hierarchical cluster analysis of all investigated samples
did not clearly differentiate PNMZL and PTFL into unique clusters
but resulted in considerable overlap of the 2 groups (supplemental
Figure 3). Supervised hierarchical cluster analysis, according to the
original diagnosis and the diagnosis after review, also showed no
clear separation of each entity. Therefore, 2-group comparison (t-test,
s/smax$0.4; q#0.01) as well as multiple-group comparison (anal-
ysis of variance, s/smax$0.4; q#0.01), including the samples with
overlapping features of both entities, were performed (supplemental
Figure 4). Supervised analysis of both multiple-group comparis-
ons (original diagnosis and after review) revealed 28 and 29 CpGs,
respectively, to be differently methylated, affecting 19 genes (supple-
mental Figures 4 and 5). Gene ontology analysis of these differen-
tially methylated CpGs suggested an unspecific cancer effect rather
than a specific role in B-cell lymphomagenesis (supplemental
Table 10).

Figure 3 (continued) (in panel C, upward representing CN gains and downward representing CN losses). CN and CNN-LOH data from PNMZL are depicted in purple,

CN data from adult NMZL are depicted in green, and CNN-LOH data from PTFL are depicted in blue. Asterisks mark regions with statistically significant differences among

groups after applying Fisher’s exact test adjusted; P value , .05, and considering, minimum, 5 altered cases.
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Discussion

PNMZL is a mature B-cell lymphoma seen mainly in children and
young adults, which commonly occurs with localized disease in the
head and neck region of adolescent boys. It has long been recog-
nized that PNMZL displays similarities with PTFL in terms of epidemi-
ology, clinical presentation, and pathologic features21,22; however,
recurrent abnormalities in PNMZL have not been described, in con-
trast to the well-characterized mutational landscape of PTFL. To the
best of our knowledge, this study is the first to perform molecular anal-
ysis on a large series of PNMZL using an integrated approach, includ-
ing targeted NGS, CN, and methylation arrays. We now show that in
addition to clinical and morphologic overlap, PNMZL exhibits similari-
ties to PTFL on a molecular level but is distinct from adult-type NMZL.

To identify novel mutated genes specific to PNMZL, WES was per-
formed on 4 cases. This analysis identified only recurrent MAP2K1
mutations in 2 cases. Because WES analysis did not provide new
possible candidate genes besides MAP2K1, targeted NGS panels
were additionally designed to interrogate genes that have been pre-
viously described as mutated in adult-type NMZL,5 conventional fol-
licular lymphoma,16-18 and PTFL.8 Interestingly, this analysis showed
that the mutational profile of PNMZL cases was similar to that of
PTFL, identifying MAP2K1 (19 of 45 [42%]), TNFRSF14 (13 of 36

[36%]), and IRF8 (12 of 35 [34%]) as the most frequently mutated
genes. The functional impact of MAP2K1 mutations has been previ-
ously investigated by immunohistochemistry with the presence of
phosphorylated extracellular signal-regulated kinase confirming the
expected activation of the extracellular signal-regulated kinase path-
way.8 TNFRSF14 mutations, as reported in PTFL,7 involve the bind-
ing sites of TNFRFS14 to ligands, including members of the TNF
superfamily (LTa and LIGHT) and the Ig superfamily members BTLA
and CD160, which function as checkpoint regulators, suggesting
that these mutations may affect ligand-binding activity.23 The other
important similarity was the presence of IRF8 mutations, which are
reportedly specific for PTFL in 15% to 50% of cases.8,11 Interest-
ingly, in addition to the hot spot K66 position (p.K66R; 7 of 16
[44%]), we now detected a second hot spot on codon 23
(p.Y23H; 5 of 16 [31%]), also targeting the DNA-binding domain.
TNFRSF14 and IRF8 mutations co-occurred in 10% of the cases
in both PNMZL and PTFL, suggesting possible cooperation
between these 2 genes.7 Indeed, both genes are involved in the
regulation of immune system development and function and regulate
germinal center B-cell activation.24,25 Although the mutational pro-
files of PNMZL and PTFL are very similar, there was an important
difference. TNFRSF14 mutations were also frequently observed in
PNMZL (36% vs 54%); however, in contrast to PTFL, TNFRSF14
mutations were associated with 1p36 CNN-LOH or deletion in only
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3 cases (9% vs 38%; adjusted P , .05).8 A relatively recent study
has shown that loss of TNFRSF14 leads to activation of B-cell
receptor–related proliferation signals that drive the development of
germinal center lymphomas, and that disruption of TNFRSF14 in
lymphoma cells also induces tumor-supportive changes in the micro-
environment, including increased recruitment of T-follicular helper
cells and stromal activation.24 The more frequent allelic dominance
of mutated TNFRSF14 might play a role in the prominence of neo-
plastic germinal centers observed in PTFL, as opposed to PNMZL.

The molecular analysis revealed that PNMZL has a similarly low level
of genetic complexity as PTFL. Therefore, methylation profiling was

performed as an additional analysis to investigate possible differences
between PNMZL and PTFL. On a global scale, the DNA methylation
profile did not explicitly differentiate each lymphoma subtype.

In contrast, our results clearly show that adult-type NMZL and
PNMZL are genetically 2 different diseases. PNMZL exhibits a lower
genetic complexity and lacks chromosomal alterations typically
found in adult-type NMZL such as trisomies 3, 12, and 18. Notably,
in a previous study based on the FISH technique, it was reported
that PNMZL carried recurrent trisomy 18 (4 of 23 [17%]). In the
current study, we did not corroborate this finding and identified only
one trisomy 18 (1 of 44 [2%]). An explanation for this discrepancy
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could be the inherent differences in the 2 methods used. Neverthe-
less, recurrent trisomy 18 is infrequently identified in PNMZL. The
mutational profile of PNMZL was also found to be distinct from
adult-type NMZL, with MAP2K1 mutations found exclusively in the
pediatric group, and mutations affecting genes (including KMT2D,
KLF2, TBL1XR1, NOTCH2, and TNFAIP3) that are frequently
found in adult-type NMZL5 were absent in PNMZL. Nevertheless,
the diagnosis of PNMZL should be considered in the differential
diagnosis of limited-stage NMZL.

Prior studies have noted clinical similarities between PTFL and
PNMZL.21,22 One of the interesting observations in our large series
was the extent of morphologic overlap between PNMZL and PTFL,
with many cases that were originally diagnosed as PNMZL showing
some degree of histologic overlap with PTFL upon review. This,
together with the original 13 cases diagnosed as having overlapping
features, indicates that the majority of the cases diagnosed as
PNMZL have morphologic overlap with PTFL (31 of 45 cases
[69%]). A notable architectural feature of overlap in these cases was
the presence of at least some follicles with attenuated mantle zones
and large germinal centers strongly positive for CD10 characteristic
of PTFL and indicative of a subpopulation with germinal center cell
phenotype. Accordingly, the morphologic overlap between them has
been previously noted, and cases of PTFL with marginal zone differ-
entiation2-4 or cases of PNMZL harboring CD10 positivity and light
chain–restricted populations by flow cytometry22 have been
described. In this study, mutations in MAP2K1, TNFRSF14, and
IRF8 were more frequently observed in cases with morphologic over-
lap with PTFL (n 5 22 of 28 [78%]), compared with those cases
without (n 5 8 of 13 [61%]); however, this difference was not statis-
tically significant. Nevertheless, the high percentage of PNMZL cases
carrying 1 or more of these 3 mutations in the whole collective
(73%) suggests that PTFL and PNMZL form part of a histologic con-
tinuum and, given the genetic similarities, could represent a morpho-
logic spectrum within the same biologic entity. One could speculate

that because of the different effects of MAP2K1, TNFRSF14, and
IRF8 in the maturation of B cells, the genetic constellation in each
case might imprint the observed morphology (with or without marginal
zone differentiation), immunophenotype, and maturation stage.11

Given the morphologic similarities of PNMZL to a reactive process,
we analyzed 5 cases of reactive lymph nodes, mainly atypical mar-
ginal zone hyperplasia, and confirmed that this is a benign process
that lacks the monoclonal IG rearrangements and genetic alterations
that are diagnostic of PNMZL. However, our study also highlighted
the difficulty in separating atypical marginal zone hyperplasia from
PNMZL in routine practice, underscoring that the diagnosis of
PNMZL still rests on the combination of morphology and demon-
stration of B-cell clonality.

In conclusion, this study shows that PNMZL is a neoplastic condition
that is distinct from atypical marginal zone hyperplasia and adult-type
NMZL but displays overlapping histologic and molecular features with
PTFL, suggesting that PNMZL and PTFL may represent a morpho-
logic spectrum within the same biologic entity. Due to the indolent
clinical behavior and similar morphologic and genetic features, we sug-
gest renaming these entities under the name of “pediatric-type follicu-
lar lymphoma (PTFL) with and without marginal zone differentiation.”
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