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A B S T R A C T   

Fraud in nut and seed products poses an economic deception and a threat to human health because of their 
allergens. This study comprehensively evaluated the metabolomic diversity of ten different nut types through 
non-targeted liquid chromatography coupled to high-resolution mass spectrometry (LC− HRMS). First, 
LC− HRMS fingerprints were subjected to partial least squares regression-discriminant analysis (PLS-DA), and the 
developed multi-class model reached a classification accuracy of 100% after external validation. Then, variable 
importance in projection (VIP) scores obtained from two-input class PLS-DA models (i.e., a specific nut type 
against all the other samples) allowed the selection of 136 discriminant compounds that were tentatively an-
notated/identified through HRMS data. Finally, as a case of study, successful detection and quantitation of 
almond-based products adulteration (with hazelnut or peanut) was achieved through a targeted LC− HRMS 
study, using some of the found markers and partial least squares (PLS) regression. In this context, new profiling 
approaches could be further implemented based on the reported markers using cheaper techniques.   

1. Introduction 

Analytical strategies based on omics approaches —genomics, prote-
omics, metabolomics, and metallomics/isotopolomics— have been widely 
proposed to solve food authenticity control. In particular, metabolomics, 
which is the closest omics discipline to the phenotype of biological 
systems, focuses on the analysis of small molecules (<1500 Da) (Creydt 
& Fischer, 2018). In this context, the use of metabolomics non-targeted 
methods, where instrumental responses (i.e., mainly analytical signals 
obtained through chromatography and related techniques, spectros-
copy, mass spectrometry, or electronic sensors) are analysed without 
assuming any previous knowledge, has proved its potential in this field 
(Medina, Perestrelo, Silva, Pereira, & Câmara, 2019). 

Liquid chromatography coupled to high-resolution mass spectrom-
etry (LC− HRMS) is a reliable instrumental platform to perform non- 
targeted analysis with high molecular coverage of the non-volatile 
metabolome. Using time-of-flight (TOF) or Orbitrap instruments, 
HRMS provides high resolving power, allowing accurate m/z measure-
ments. Furthermore, structural information can be obtained through 
fragmentation data when using hybrid configurations like quadrupole- 

Orbitrap (Q-Orbitrap) or quadrupole-time-of-flight (Q-TOF). Besides, 
the hyphenation of LC with HRMS enhances both the selectivity and 
sensitivity of the analytical approach. Therefore, because of these 
instrumental capabilities and despite its higher cost and longer analysis 
time, it is usually preferred over spectroscopic techniques for tentative 
compound identification. In this line, LC− HRMS has been widely pro-
posed in diverse applications such as the screening of chemical con-
taminants in food (Fu, Zhao, Lu, & Xu, 2017) or human biomonitoring 
(Caballero-Casero et al., 2021), the characterisation of natural plants 
(Alvarez-Rivera, Ballesteros-Vivas, Parada-Alfonso, Ibañez, & Cifuentes, 
2019), or clinical research (Rochat, 2016). Particularly in the food fraud 
field, it has also been used to investigate markers related to specific 
authentication issues (Lacalle-Bergeron et al., 2021; Zhong et al., 2022). 

Nuts and seeds are usually consumed as a snack, although they can 
also be added to salads, sausages, stews, or bakery products. It is well- 
known that their regular intake promotes beneficial health effects on 
humans (Bitok & Sabaté, 2018). However, according to the Food Fraud 
Risk Information database (Food Fraud Advisors, 2017), some nut-based 
products are at medium or high risk for fraud practices, such as adul-
terations or replacements with cheaper and lower-quality ingredients. In 
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this context, while fraud in raw nuts is unusual due to evident visual 
differences, it is more common in processed nut products such as flours 
or pastes, where its detection is more complicated. Moreover, fraud in 
these products implies an economic deception and a threat to human 
health because of their allergens (Luparelli et al., 2022), being a food 
authentication and safety issue. Thus, developing analytical methodol-
ogies to detect these practices is required. 

Several approaches and analytical techniques have been proposed to 
detect nut species adulteration. Although some of the methods described 
in the literature rely on genomics, proteomics, or metallomics (Ding et al., 
2020; Esteki, Vander Heyden, Farajmand, & Kolahderazi, 2017; Monaci, 
De Angelis, Bavaro, & Pilolli, 2015), most focus has been on metab-
olomics. In this line, spectroscopic fingerprinting approaches are 
commonly used for this aim. For instance, Taylan et al. employed Raman 
spectroscopy to detect green-pea adulteration in pistachio (Taylan et al., 
2021), while Rovira et al. evaluated two infrared spectroscopic tech-
niques —near-infrared (NIR) and attenuated total reflection-Fourier 
transform infrared (ATR-FTIR)— to assess cashew nut authenticity in 
front of four different adulterants (Rovira et al., 2022). 

Instead, to date, most of the targeted and non-targeted methods 
based on chromatographic and related techniques have focused on the 
authentication of the cultivar or geographical origin of nut samples 
(Campmajó & Núñez, 2021; Suman, Cavanna, Sammarco, Lambertini, & 
Loffi, 2021). Indeed, to our knowledge, few studies using these tech-
niques have dealt with nut species adulteration and classification. For 
instance, almond powder adulteration with apricot kernel was evaluated 
using the fatty acid profile obtained with gas chromatography with 
flame ionisation detection (GC-FID) (Esteki, Farajmand, Kolahderazi, & 
Simal-Gandara, 2017), while liquid chromatography with ultraviolet 
(LC-UV) and fluorescent detection (LC-FLD) fingerprinting assessed nut 
type classification (Campmajó et al., 2019; Campmajó, Saez-Vigo, Sau-
rina, & Núñez, 2020). In the latter case, almond-based product adul-
teration was also studied. Moreover, only the adulteration of pistachio 
nut powder with green-pea has been evaluated by non-targeted 
LC− HRMS (Çavuş, Us, & Güzelsoy, 2018). 

Therefore, in this study, non-targeted LC− HRMS was used to address 
the classification of ten nut-type samples (almonds, cashew nuts, 
hazelnuts, macadamia nuts, peanuts, pine nuts, pistachios, pumpkin 
seeds, sunflower seeds, and walnuts) through partial least squares 
regression-discriminant analysis (PLS-DA). Moreover, two-input class 
PLS-DA models (i.e., a specific nut type in front of others) were built, and 
the evaluation of the corresponding variable importance in projection 
(VIP) scores allowed finding the most discriminant molecular features 
for each nut. After tentatively identifying these markers, targeted 
LC− HRMS (focusing on the found discriminant molecules) was pro-
posed to detect and quantitate hazelnut and peanut adulterations of 
almond-based products by partial least squares (PLS) regression. 

2. Materials and methods 

2.1. Reagents and solutions 

Purified water obtained with Elix® 3 coupled to a Milli-Q® system 
(Millipore Corporation, Bedford, MA, USA) and filtered through a 0.22- 
μm nylon membrane, and acetone and hexane purchased from Merck 
(Darmstadt, Germany), were used for the sample treatment. Regarding 
the LC− HRMS analysis, LC− MS grade water and methanol, as well as 
formic acid (96%), were provided by Merck. 

The analytical reagent grade compound standards used for confir-
mation were: (− )-epicatechin and citric, malic, quinic, and tartaric acids 
from Merck, and (+)-catechin from Fluka (Steinheim, Germany). 

2.2. Instrumentation 

The chromatographic system consisted of an ultra-high-performance 
liquid chromatography (UHPLC) system equipped with an Accela 1250 

quaternary pump and an Accela autosampler (Thermo Fisher Scientific, 
San Jose, CA, USA). The chromatographic separation was performed 
using a core-shell technology Kinetex C18 column (100 mm × 4.6 mm 
id., 2.6 μm particle size) and guard column (2 mm × 4.6 mm id., 2.6 μm 
particle size), from Phenomenex (Torrance, CA, USA), and using 0.1% 
(v/v) formic acid aqueous solution (solvent A) and methanol (solvent B) 
as the constituents of the mobile phase. Hence, the developed chro-
matographic method started with linear gradient elution from 5 to 75% 
solvent B in 30 min, continued with a 2.5 min-lineal increase up to 95%, 
and ended with an isocratic step at 95% for 2.5 min. Finally, 0.1 min- 
lineal decrease back to the initial conditions and 4.9 min of isocratic 
elution for column re-equilibration were set. The mobile phase flow rate 
was 400 μL min− 1, and the injection volume 10 μL (partial loop mode). 

The UHPLC system was coupled to a hybrid Q-Orbitrap mass spec-
trometer (Q-Exactive Orbitrap, Thermo Fisher Scientific) equipped with 
a heated electrospray ionisation (H-ESI II) source operating in the 
negative ion mode. Nitrogen with a purity of 99.98%, purchased from 
Linde (Barcelona, Spain), was used for the ESI sheath, sweep, and 
auxiliary gas at flow rates of 60, 0, and 10 a.u. (arbitrary units), 
respectively. Other H-ESI parameters were established as follows: spray 
voltage, - 2.5 kV; probe heater temperature, 350 ◦C; capillary temper-
ature, 320 ◦C; and S-lens RF level at 50 V. Full-scan HRMS data were 
acquired over an m/z range of 100–1500 at a mass resolution of 70,000 
full width at half maximum (FWHM) at m/z 200. In addition, an auto-
matic gain control (AGC) of 1.0 × 106 and a maximum injection time 
(IT) of 200 ms were established. 

For the MS/HRMS experiments, targeted data-dependent scan mode, 
requiring accurate mass inclusion lists, was used to obtain the product 
ion scans of specific ions of interest. The acquisition was performed at a 
mass resolution of 17,500 FWHM at m/z 200. Precursor ions, isolated by 
the quadrupole with an isolation window of 0.5 m/z, were fragmented in 
the higher-energy collisional dissociation (HCD) cell using three-stepped 
normalised collision energies (NCE) ranging from 10 to 50%. Moreover, 
the targeted data-dependent acquisition was subordinated to an in-
tensity threshold fixed at 1.0 × 105, and the AGC and IT values were 
established at 2.0 × 105 and 200 ms, respectively. 

The Q-Orbitrap system was tuned and calibrated every three days, 
using commercially available calibration solutions for both negative and 
positive ion modes (Thermo Fisher Scientific). Moreover, the Xcalibur 
software v 4.1 (Thermo Fisher Scientific) was used to control the 
LC− HRMS system and acquire and process data. 

2.3. Samples 

2.3.1. Nut samples for the classification study 
A set of 149 raw nut samples bought in Spanish commercial super-

markets were analysed for classification purposes. Samples encom-
passed various nut classes − 30 almonds, 10 cashew nuts, 20 hazelnuts, 
10 macadamia nuts, 20 peanuts, 10 pine nuts, 10 pistachios, 20 pumpkin 
seeds, 9 sunflower seeds, and 10 walnuts—, some of them processed 
with different thermal treatments —natural, fried, and toasted— (see 
Table S1 for nut sample details). Before the sample treatment, samples 
were crushed and homogenised. Moreover, a quality control (QC) 
sample consisting of a mix prepared by pooling 50 μL of each sample 
extract was employed. 

2.3.2. Adulterated almond samples for the quantitative study 
Two different almond adulteration scenarios (almond vs. hazelnut 

and almond vs. peanut) were considered to evaluate the suitability of the 
identified biomarkers to address its authentication in two matrices: 
natural almond flour and homemade almond custard cream. Both 
matrices were obtained from a random almond sample previously used 
in the classificatory study. Thus, the sample was crushed and homoge-
nised to obtain the almond flour (as done in Section 2.3.1), whereas the 
custard cream was made from hen eggs, milk, sugar, and corn flour. 

Thus, the adulterants were added in different proportions − 0, 20, 40, 
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60, 80, and 100% for calibration; and 15, 25, 50, 75, and 85% for 
external validation— to both almond-based products. Five replicates of 
each blend were prepared, giving 55 samples for each case (adulteration 
scenario and matrix). Besides, a 50% adulterated sample was used in this 
case as the corresponding QC sample. 

2.4. Sample treatment and analysis 

A previously developed two-step sample treatment for phytochem-
ical extraction from nut samples was carried out (Campmajó et al., 
2019), consisting of ultrasound-assisted solid-liquid extraction (USLE) 
with acetone:water (70:30, v/v) followed by a defatting step with 
hexane. 

Regarding the analysis procedure, samples were randomly injected 
along each sequence to minimise the influence of any instrumental drift 
in the chemometric results. Moreover, an extracting solvent blank and a 
QC sample were injected at the beginning and after every ten sample 
injections to control cross-contamination and avoid systematic errors. 

2.5. Data treatment 

LC− HRMS generates massive datasets, requiring software programs 
to properly reduce and handle the obtained data. Thus, aiming to obtain 
a matrix consisting of ion peak area values as a function of m/z and 
retention times, the application of MSConvertGUI from the ProteoWi-
zard Toolkit (Chambers et al., 2012) and mzMine 2.53 (Pluskal, Castillo, 
Villar-Briones, & Orešič, 2010) software was required. 

2.5.1. Non-targeted approach 
A non-targeted approach was proposed for nut classification. First, 

raw data were reduced by establishing an absolute intensity threshold 
peak filter of 5.0 × 105 and transformed to mzXML format through 
MSConvertGUI. Then, the resulting LC− HRMS data were submitted to 
the mzMine 2.53 software for peak detection (exact mass detection, 
chromatogram detection, and chromatogram deconvolution), isotopic 
peak grouper, and retention time alignment. Briefly, exact mass lists for 
each scan in a sample were generated, establishing a noise level of 5.0 ×
105. Afterwards, the ADAP chromatogram builder allowed the joining of 
the exact masses found in contiguous scans in a sample that fulfilled the 
following conditions: peak time range of 0–35 min, 15 minimum scans 
above an intensity threshold set at 1.0 × 106, and an m/z tolerance of 5 
ppm. Next, individual chromatographic peaks were achieved through 
chromatogram deconvolution. Thus, for this purpose, the baseline cut- 
off algorithm was selected for peak recognition with a baseline level 
of 5.0 × 105, a minimum peak height of 1.0 × 106, and a peak duration 
range of 0.1–1 min. Subsequently, isotope removal was carried out 
considering that the most representative isotope was the most intense 
and setting an m/z and retention time tolerance of 5 ppm and 0.3 min, 
respectively. Finally, retention time alignment was carried out using the 
random sample consensus (RANSAC) peak list aligner method, following 
the following requisites: retention time tolerance before and after 
correction of 2.2 and 1.2 min, m/z tolerance of 5 ppm, 105 maximum 
RANSAC iterations to find the suitable model, and 80% as the minimum 
value to consider the model valid. 

At the end of this workflow, a data matrix was exported to an Excel 
File containing the obtained LC− HRMS fingerprints: samples × vari-
ables. The ‘samples’ column included the 149 nut samples and the 16 QC 
samples, whereas the ‘variables’ row comprised all the detected mo-
lecular features (an exact m/z value at a specific retention time). Only 
the molecular features detected at least in 80% of the samples belonging 
to a nut class were selected to reduce the matrix dimensions. As a result, 
a 165 × 278 dimension data matrix was obtained, containing the 
chromatographic peak areas for each molecular feature in all samples. 

2.5.2. Targeted approach 
A targeted approach was applied to detect and quantify the 

adulteration in almond-based products, focusing on the discriminant 
markers identified for almond, hazelnut, and peanut samples encoun-
tered in the classificatory study. 

First, raw data were processed with MSConvertGUI, applying an 
absolute intensity threshold peak filter of 1.0 × 105. Then, targeted peak 
detection was performed with mzMine 2.53 software using a list of 
targeted molecular features (an exact m/z value at a specific retention 
time) for each almond adulteration scenario: 28 for almond vs. hazelnut 
and 35 for almond vs. peanut. Besides, a noise level of 1.0 × 105, an 
intensity tolerance of 10% (maximum allowed deviation from the ex-
pected shape of a chromatographic peak), an m/z tolerance of 5 ppm, 
and a retention time tolerance of 0.5 min were established. Finally, in 
this case, the join aligner allowed matching of the detected molecular 
features across samples, setting a mass tolerance of 5 ppm, a retention 
time tolerance of 0.5 min, 80% of weight for m/z, and 20% of weight for 
retention time. Again, at the end of the workflow, a data matrix was 
exported to an Excel File containing the obtained LC− HRMS profiles. 

2.6. Chemometric and statistical analysis 

The chemometric analysis by principal component analysis (PCA), 
PLS-DA, and PLS regression was carried out using Solo 8.6 chemometric 
software from Eigenvector Research (Manson, WA, USA). Details of their 
theoretical background are addressed elsewhere (Massart et al., 1997). 

LC− HRMS data matrices (normalised and autoscaled) were used as 
X-data matrices indistinctly of the chemometric method used, which 
depended on the aim of the study. In this line, PCA assessed a first 
exploratory analysis to check the absence of systematic errors through 
QC sample behaviour and allowed visualising sample trends. PLS-DA, 
particularly PLS1-DA (Brereton & Lloyd, 2014), was used in the classi-
ficatory study, requiring a Y-data matrix that defined the nut type of 
each sample. PLS was employed in the quantitation of almond-based 
product adulteration, demanding a Y-data matrix that expounded sam-
ple adulteration percentages. Moreover, the proper number of latent 
variables (LVs) for building PLS-DA and PLS models was selected, after 
Venetian blinds cross-validation (CV), at the first minimum of the 
cross-validation classification error (CVCE) and the root-mean-square 
error of cross-validation (RMSECV), respectively. 

PLS-DA and PLS models’ performance was checked by external 
validation. On the one hand, for the classificatory study, samples were 
stratified and randomly chosen: 60% were used as the calibration set, 
whereas the remaining 40% as the external validation set. Then, overall 
accuracy and each class sensitivity (capability to detect true positives) 
and specificity (capability to detect true negatives) were used to eval-
uate the classification models. While the former is calculated by dividing 
the number of well-classified samples by the total number of samples, 
class sensitivity (Eq. (1)) and specificity (Eq. (2)) are calculated as fol-
lows (Riedl, Esslinger, & Fauhl-Hassek, 2015): 

Sensitivity=
TP

TP + FN
(1)  

Specificity=
TN

TN + FP
(2)  

where TP is true positive samples, TN is true negative samples, FP is false 
positive samples, and FN is false negative samples. 

On the other hand, PLS regression was done using some adulteration 
percentages for calibration and others for external validation, as 
detailed in Section 2.3.2. The model performance was evaluated through 
the root-mean-square error of calibration (RMSEC), RMSECV, and pre-
diction (RMSEP), as well as the corresponding R2 (determination coef-
ficient) values. Eq. (3) shows how RMSEs are calculated. Moreover, 
relative error in each external validation to estimate the adulterant 
percentage was also assessed. 
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RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑N

i=1

(ŷi − yi)
2

n

√
√
√
√ (3)  

where ŷi is the predicted value, yi is the actual value, n is the number of 
samples, and N is the number of predictions. 

Finally, to find the most discriminant molecular features for each nut 
class, individual PLS-DA models of a specific nut class against all the 
others were built. Then, after external validation of the models, vari-
ables with the highest VIP scores were selected for further annotation 
and identification steps. Regression vector coefficients were also eval-
uated, with positive values indicating that variable contribution is 
related to the target class. Moreover, the significance of the differences 
in their peak area values between nut classes was evaluated statistically. 
Thus, after a Fisher test of variances, the student t-test for comparing the 
means of two classes was carried out. A confidence level of 0.99 was 
assumed, so when p (probability) values were lower than 0.01, differ-
ences in the molecular feature peak areas between the classes were 
considered significant. 

2.7. Annotation and identification of the most discriminant compounds 

The most discriminant molecular features for each nut class, selected 
through VIP scores, were putatively identified following Schymanski 

et al. HRMS identification levels (Schymanski et al., 2014). The estab-
lished parameters to assess this identification step were: 5 ppm of exact 
mass tolerance, >85% of isotopic pattern fit, MS2 data similarity, and 
retention time agreement. For the MS2 comparison, public databases 
such as mzCloud (HighChem LLC, Bratislava, Slovakia), The Human 
Metabolome Database (Wishart et al., 2018), and LIPID MAPS Structure 
Database (Sud et al., 2006) were employed. Besides, Phenol-Explorer 
(Rothwell et al., 2013), a database including polyphenolic content in 
food, was also consulted. Finally, in some specific cases, MetFrag soft-
ware (Wolf, Schmidt, Müller-Hannemann, & Neumann, 2010) was also 
used for tentative in-silico elucidation. 

3. Results and discussion 

3.1. Non-targeted LC− HRMS nut classification 

As previously mentioned, the present study aimed to develop a non- 
targeted LC− HRMS method to classify nut samples according to their 
type and identify the most discriminant molecular features. Despite the 
non-targeted nature of the developed method, instrumental conditions 
were oriented to favour phenolic and polyphenolic compound detection 
since they have already been successfully proposed as potential markers 
in several food authentication issues (Lucci, Saurina, & Núñez, 2017; 
Proestos & Pesic, 2022). Thus, a total of 149 nut samples belonging to 10 

Fig. 1. PCA scores plot obtained for the analysed nut samples according to their type, using the non-targeted LC− HRMS data, of (A) PC1 vs. PC2, (B) PC3 vs. PC4, (C) 
PC5 vs. PC6, and (D) PC7 vs. PC8. 
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different nut classes were analysed following the proposed method. As 
an example, Fig. S1 depicts the total ion current (TIC) LC− HRMS 
chromatogram for a selected sample within each nut type. In this 
context, remarkable qualitative differences regarding peak distribution 
and signal intensity can be visually detected. 

LC− HRMS data were subjected to PCA to appraise their discrimi-
nating capability. However, PCA was first employed to select the most 
appropriate data treatment, which is crucial for subsequent unequivocal 
results. In this case, normalisation (scaling each sample to the sum of the 
corresponding peak areas) and autoscaling (mean centring and variable 

scaling to unit standard deviation) were assessed to try to improve the 
data quality. As a result, it was found that performing a normalisation 
step before autoscaling provided a better sample grouping, reducing the 
effect of the HRMS detection variance. 

In this context, Fig. 1 shows the PCA scores plot obtained after 
applying this data pretreatment and using the 165 × 278 dimension data 
matrix containing both nut and QC samples. A total of eight principal 
components (PCs), describing 68.37% of the variance, were chosen for 
the PCA analysis. As a result, the non-supervised chemometric plots 
showed QC samples grouped in the centre, indicating the lack of 

Fig. 2. Sample vs. Y Predicted plot for the two-input class PLS-DA models after external validation.  
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systematic errors affecting the reliability of the results. Moreover, the 
complexity of the studied issue —encompassing a significant number of 
sample classes (nut type) and factors (different geographical origins and 
thermal treatments)— was reflected in the low variance explained by 
the PCs (e.g., 17.62% for PC1). Nevertheless, good sample distinction 
was achieved for almost all nut types. For instance, in Fig. 1A, where the 
plot of scores of PC1 vs. PC2 is depicted, sunflower seed and walnut 
samples were visibly separated through PC1 and PC2, respectively. PC3 
and PC4 were highly related to peanut and macadamia nut samples, 
respectively (see Fig. 1B). Besides, the plot of scores of PC5 vs. PC6 
(Fig. 1C) allowed the discrimination of cashew nut (displaying positive 
PC5 and negative PC6 values), hazelnut (displaying negative PC5 and 
PC6 values), and pistachio (displaying positive PC5 and PC6 values) 
samples. Finally, the scatter plot for scores of PC7 and PC8 (Fig. 1D) 
allowed a slight discrimination of pine nut and almond samples along 
the PC8, presenting negative PC7 values. 

Given the excellent results observed in the PCA, with a remarkable 
separation of samples according to nut classes (except for pumpkin seed 
samples), PLS-DA was applied to the non-targeted LC− HRMS data. For 
this, QC samples were removed from the dataset, and a 149 × 278 
dimension data matrix was subjected to the supervised classificatory 
analysis. In this case, nine LVs were selected to build the PLS-DA model, 
which described 71.35% and 95.53% of X-variance and Y-variance, 
respectively. As a result, visual sample classification was reached for all 
nut types investigated. 

Therefore, to evaluate the classificatory ability of the non-targeted 
LC− HRMS data through PLS-DA, external validation was performed as 
described in Section 2.6. In this line, a PLS-DA calibration model, built 
with 60% of the analysed samples, was composed of nine LVs explaining 
73.53% of X-variance and 95.62% of Y-variance. CV results 
—sensitivities of 100%, specificities above 97.6%, and classification 
accuracies above 98.8%, for each nut class under study— anticipated the 
excellent results obtained in the external validation —sensitivities, 
specificities, and classification accuracies of 100%, for each nut class 
under study—, proving the excellent discriminant capacity of the non- 
targeted LC− HRMS data. The external validation graphical results 
(Sample vs. Y predicted score plot) for each analysed nut type are shown 
in Fig. S2. 

3.2. Annotation and identification of nut type markers 

As previously mentioned, one of this study’s main goals was to 
identify characteristic discriminant molecular features for each studied 
nut type. Thus, with this purpose, two-input class PLS-DA models were 
built: the first input corresponded to a specific nut class, while the sec-
ond encompassed all the others. In this context, as shown in Fig. 2, the 
performance of each binary PLS-DA model was assessed through 
external validation, obtaining complete sample classification in all the 
cases, except for the Pumpkin seed vs. Others model, where 99.3% 
classification accuracy, 87.5% sensitivity, and 100% specificity were 
obtained. 

Then, in each PLS-DA model, VIP loadings scores allowed the se-
lection of the most discriminant molecular features for each nut under 
study. For instance, Fig. S3 presents the results obtained for the PLS-DA 
model of Walnut vs. Others: the classification plot depicting Sample vs. Y 
Predicted Walnut and the corresponding VIP scores plot. To obtain MS/ 
HRMS data of the selected discriminant molecular features, an arbitrary 
sample of each nut type was analysed by LC− HRMS using a targeted 
data-dependent acquisition method, built with an inclusion list con-
taining them. 

Table S2 summarises the tentative annotation and identification of 
the discriminant markers found for each nut type. Most of the com-
pounds were detected in their deprotonated form [M-H]-, as expected 
considering that the HRMS acquisition was performed in the negative 
mode, although in some cases, their adduct with formic acid [M+FA-H]- 

or chlorine [M+Cl]-, or even their deprotonated dimeric form [2M-H]- 

corresponded to the base peak. Some of the annotated/identified com-
pounds are discussed below since some of them had been previously 
reported in the literature. 

In the case of almond discriminant compounds, amygdalin —a 
cyanogenic diglucoside responsible for the bitterness of almonds— and 
amygdaloside were found (Lee, Zhang, Wood, Rogel Castillo, & Mitchell, 
2013; Sang et al., 2003). Furthermore, sugars and derivatives such as 
m/z 341.1083 and 683.2243, annotated as disaccharide and tetra-
saccharide + H2O, respectively, were also detected (Gil Solsona, Boix, 
Ibáñez, & Sancho, 2018; Huang, Robinson, Dias, de Moura Bell, & 
Barile, 2022). Besides, Gil-Solsona et al. previously identified the first, 
annotating it as inulobiose, as a discriminant marker related to the 
Spanish almond variety. 

Among the molecular features presenting high VIP scores in the 
cashew nut PLS-DA classification, the isomers with the molecular for-
mula C15H14O6, observed at the retention times of 12.80 and 15.50 min, 
were identified as the flavanols (+)-catechin and (− )-epicatechin that 
have been previously seen in cashew nut testa (Trox et al., 2011). 

Several indoleacetic acid glycoside isomers were found to be 
discriminant markers for hazelnut classification. In this line, m/z 
541.1458 (at a retention time of 20.91 min) and 540.1719 (at a retention 
time of 21.05 min) were assigned as isomers of 2-(3-hydroxy-2-oxoin-
dolin-3-yl) acetic acid 3-O-6′-galactopyranosyl-2’’-(2′′oxoindolin-3′′yl) 
and hazelnutin D, respectively, which have been previously detected in 
hazelnut kernel (Shataer et al., 2021). Besides, two other indoleacetic 
acid glycoside chiral isomers with m/z 368.0984 —named 
3-(O-β-D-glycosyl)dioxindole-3-acetic acid and hazelnutin E by Singl-
dinger et al. (Singldinger et al., 2018) and Shataer et al. (Shataer et al., 
2021), respectively— were found to be discriminant. These compounds 
presented chromatographic peaks at 7.31 and 8.39 min, although their 
retention time assignment was not possible. 

Regarding macadamia nut markers, among others, various phenolic 
and polyphenolic compounds such as phenolic acid derivatives 
(hydroxybenzoic acid glucoside and apiosylglucosyl 4-hydroxybenzoate 
isomers), guaiacol hexose-pentose isomers, and oleoside dimethyl ester 
were tentatively identified. 

In the case of peanut, several hydroxycinnamic acids (i.e., cis- and 
trans-p-coumaroyl tartaric acids, feruloyl tartaric acid isomer, p-cou-
maric acid, coumaroyl-O-pentoside isomer, di-p-coumaroyl tartaric acid 
isomer, and p-coumaroylferuloyl tartaric acid isomer) and a derivative 
(such as p-coumaroylnicotinoyl tartaric acid), as well as an hydrox-
ybenzoic acid isomer, were detected agreeing with literature and 
considered as discriminant (Ma et al., 2014). 

In relation to pine nut molecular features, ascorbalamic acid isomer 
(C9H13NO8) and vanillic acid glucoside isomers (C14H18O9) were an-
notated as relevant for pine nut classification. 

Moreover, accordingly to previous studies (Erşan, Güçlü-Üstündaǧ, 
Carle, & Schweiggert, 2016), protocatechuic acid and quercetin 
3-O-glucoside were observed in their deprotonated form at 10.44 and 
23.03 min, respectively, providing high VIP scores for pistachio classi-
fication. Organic acids, such as malic and isocitric acid, and nucleotides, 
as uridine monophosphate and adenosine 5′-monophosphate, also 
appeared to be discriminant for pistachio. 

In the case of pumpkin seed, sugars —a trisaccharide in its [M+Cl]- 

form and sedoheptulose—, guanosine, and tyrosol diglycoside isomer, 
were tentatively identified, among others. 

Finally, regarding sunflower seed discriminant compounds, as re-
ported by Romani et al. (Romani, Pinelli, Moschini, & Heimler, 2017), 
several hydroxycinnamic acids were found and related to sunflower seed 
classification: 4-caffeoylquinic acid, 5-caffeoylquinic acid, 3,4-dicaf-
feoylquinic acid, and 4,5-dicaffeoylquinic acid. Besides, other phenolic 
compounds, such as flavonoid O-glycoside isomers and phenylacetic 
acid, were also annotated. 

Instead, among the discriminant compounds presenting high VIP 
scores for walnut classification, several hydroxybenzoic acids and de-
rivatives —galloyl-hexahydroxydiphenoyl-glucose isomer, digalloyl- 
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hexahydroxydiphenoyl-glucose isomer, ellagic acid, and ellagic acid 
pentoside— and a saccharolipid as glansreginin A were found, in 
accordance to Regueiro et al. (Regueiro et al., 2014). 

It should be mentioned that for a molecular feature to be discrimi-
nant, it is not necessary to be detected or not detected in an exclusive nut 
type. Sometimes it presents a higher or lower content compared to other 
matrices. Moreover, considering the complexity of the studied issue, 
where ten nut types were studied, some markers were discriminant just 
in front of some others. Therefore, to better understand the significance 
of the differences of each discriminant marker content in their corre-
sponding nut type compared to each other, student t-tests (preceded by a 
Fisher test of variances) were performed. Thus, Table S3 summarises the 
obtained results. As an example, focusing on hazelnut markers, m/z 
131.0462 (at a retention time of 2.27 min), tentatively identified as 
asparagine, showed lower content in hazelnut than in almond, cashew 
nut, macadamia nut, and peanut, whereas no differences were observed 
with the remaining types. Instead, m/z 368.0984 (at a retention time of 
7.31 min), tentatively identified as a 3-(O-β-D-glycosyl)dioxindole-3- 
acetic acid isomer, presented higher values in hazelnut than in any other 
nut. 

In addition, since some of the analysed nut types presented different 
processing treatments —natural, fried, and toasted for almond; natural 
and toasted for hazelnut and pumpkin seed; and fried and toasted for 
peanut—, differences in the identified markers because of the processing 
were studied. In this context, Table S4 presents the results obtained after 
performing univariate statistical analysis to evaluate the significance of 
differences. In general, differences were not significant except for some 
given cases (e.g., quinic acid content was significantly higher in toasted 

almonds than natural and fried ones). Besides, differences between nut 
matrices prevailed over processing treatment ones. 

3.3. Detection and quantitation of almond-based product adulterations 
through targeted LC− HRMS 

To validate the applicability of the identified molecular features as a 
discriminant profile for nut authentication, the adulteration of almond- 
based products (natural almond flour and homemade almond custard 
cream) was evaluated through PLS regression. These products are at 
medium risk of adulteration with cheaper nuts (Food Fraud Advisors, 
2017). Therefore, hazelnut and peanut were chosen as adulterants due 
to the difficulty of visually detecting them (i.e., mainly due to physical 
similarities such as granulometry or colour) in the studied matrices and 
their lower price. Furthermore, peanut was especially selected because 
of their serious threat to food safety (i.e., they can cause severe allergy 
episodes). 

Hence, as detailed in Section 2.3.2, different blend percentages were 
prepared and analysed following the developed LC− HRMS method. 
Afterwards, LC− HRMS data were processed using the targeted approach 
described in Section 2.5.2, focusing on the discriminant markers iden-
tified in the supervised study (Table S2): 12, 16, and 23 molecular fea-
tures for almond, hazelnut, and peanut, respectively. Therefore, 28 
molecular features were monitored for the almond vs. hazelnut adul-
teration scenario, while 35 were for the almond vs. peanut one (the 
corresponding feature lists file is provided in the Supplementary Mate-
rial as a CSV file). 

Before PLS regression analysis, PCA was performed using the 

Table 1 
Calibration, cross-validation, and external validation results obtained for each of the PLS regression models used to determine the almond products adulteration 
percentage.  

Adulteration case Matrix Data matrix 
(samples ×
variables) 

CALIBRATION CROSS- 
VALIDATION 

EXTERNAL VALIDATION 

LVs RMSEC 
(%) 

R2 RMSECV 
(%) 

R2 RMSEP 
(%) 

R2 Relative error in each adulterant 
percentage (%) 

15% 25% 50% 75% 85% 

Almond vs. Hazelnut Flour 55 × 28 1 5.994 0.969 6.304 0.966 5.037 0.977 6.06 4.93 2.70 3.54 1.88 
Cream 55 × 28 2 7.773 0.946 10.154 0.909 8.887 0.933 6.07 7.14 9.24 7.77 7.55 

Almond vs. Peanut Flour 55 × 35 2 3.865 0.986 6.665 0.960 8.202 0.950 4.30 0.97 8.62 10.86 5.86 
Cream 55 × 35 3 5.237 0.977 8.648 0.937 9.852 0.893 12.89 8.54 8.15 8.20 5.61 

LV: latent variable; R2: determination coefficient; RMSEC: root-mean-square error of calibration; RMSECV: root-mean-square error of cross-validation; RMSEP: root- 
mean-square error of prediction. 

Fig. 3. External validation PLS results for the prediction of the percentage of adulteration of almond flour (on the left side) and almond custard cream (on the right 
side) with hazelnut. The blue line corresponds to the theoretical diagonal line, while the red line to the experimental adjusted one. 
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obtained targeted LC− HRMS data to observe non-supervised sample 
clustering and trends, as well as to check QC sample behaviour. For 
instance, Fig. S4 illustrates the scatter plot for scores of PC1 and PC2 
(describing 70.8% of the variance) for the almond flour adulteration 
with peanut case. As observed, QC samples, which corresponded to a 
50% adulterated sample, appeared in the centre of the plot, ensuring a 
good instrumental performance. Moreover, pure almond and peanut 
samples were distributed on opposite sides of the plot, displaying 
negative and positive PC1 scores, respectively. Intuitively, adulterated 
samples were ordered according to their adulterant percentage from the 
left (low adulterant percentages) to the right (high adulterant percent-
ages) of the plot. 

Then, PLS regression was applied to quantitate the adulteration level 
in each case under study. Thus, complementary to the X-data matrix, a 
Y-data matrix specifying the blend degree was required. Table 1 sum-
marises the original data matrices used, the number of LVs employed to 
build each calibration PLS regression model, and the results obtained for 
the calibration, CV, and external validation. Good calibration models 
were built with low RMSEC (≤7.773%) and R2 ≥ 0.946. Moreover, the 
similarity between calibration and CV parameter values indicated good 
internal consistency, preventing overfitting in the subsequent external 
validation. Regarding the external validation results, RMSEP and R2 

values (≤9.852% and ≥0.893, respectively) indicated that the built PLS 
regression models showed a satisfactory ability to detect and quantitate 
almond adulterations. As an example, Fig. 3 shows the external vali-
dation PLS results for adulterating almond-based products with hazelnut 
(see Fig. S5 for the PLS results when adulterating with peanut). Results 
indicated that although more accurate quantitation was obtained of the 
almond flour matrix, no significant differences were observed between 
the studied matrices. 

4. Conclusions 

This study applied LC− HRMS, combined with chemometrics, to 
analyse nut product samples. In this line, 149 samples belonging to 10 
nut types were analysed through non-targeted LC− HRMS aiming to find 
markers to prevent nut fraud (e.g., adulteration, substitution, or 
replacement). PLS-DA allowed complete sample classification by the 
developed multi-class model (classification accuracy of 100% after 
external validation) and the identification of the most discriminant 
markers for each type of nut. In this regard, 136 molecular features were 
tentatively annotated/identified, taking benefit of the power of the MS/ 
HRMS detection (i.e., high sensitivity and selectivity, leading to good 
molecular coverage). For instance, organic acids, phenolic compounds, 
sugars, amino acids, and some derivatives were found among the com-
pounds identified. Besides, although some of these markers’ content 
varied due to thermal processing (i.e., natural, toasted, or fried), dif-
ferences between nut matrices prevailed. Moreover, to validate the use 
of the found markers for nut authentication, the adulteration of almond- 
based products (almond flour and homemade custard cream) with 
hazelnut or peanut was addressed. Thus, after targeted LC− HRMS 
analysis focusing on the corresponding markers, the obtained PLS results 
demonstrated their applicability to detect and quantitate the blend 
percentage. 

Therefore, this study provides a set of nut and seed markers that 
could be further used in developing profiling approaches (for instance, 
using low-resolution mass spectrometers), which are more established in 
routine analysis, to detect adulteration in processed products. 
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Ma, Y., Kosińska-Cagnazzo, A., Kerr, W. L., Amarowicz, R., Swanson, R. B., & Pegg, R. B. 
(2014). Separation and characterization of phenolic compounds from dry-blanched 
peanut skins by liquid chromatography-electrospray ionization mass spectrometry. 
Journal of Chromatography A, 1356, 64–81. https://doi.org/10.1016/j. 
chroma.2014.06.027 

Massart, D. L., Vandeginste, B. G. M., Buydens, L. M. C., de Jong, S., Lewi, P. J., & 
Smeyers-Verbeke, J. (1997). Handbook of chemometrics and qualimetrics (1st ed.). 
Amsterdam, The Netherlands: Elsevier.  

Medina, S., Perestrelo, R., Silva, P., Pereira, J. A. M., & Câmara, J. S. (2019). Current 
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