
Treball final de grau

GRAU D’INFORMÀTICA

Facultat de Matemàtiques i Informàtica
Universitat de Barcelona

DESIGNING RACING GAME
CONTROLLER BY

IMAGE-BASED HAND
GESTURE RECOGNITION

Author: David López Adell

Director: Dr. Meysam Madadi
Performed in: Departament de

Matemàtiques i Informàtica

Barcelona, January 23, 2023

Abstract

This thesis is focused on exploring how hand gesture recognition can be used to re-
place controllers in racing games. The goal is to understand how to develop a system that
is accurate, allowing for more responsive control when driving virtual vehicles. The first
step of the research project is to analyze existing gesture recognition technologies, such as
the Microsoft Kinect, and how they can be used in racing games.

By studying existing implementations, the thesis aims to gain key concepts that can help
improve the user's experience. The research will also investigate various hardware require-
ments, such as camera placements and sensors, that would be necessary for the system
to function effectively in a racing game environment. Once the research requirements
are established, testing will be carried out to evaluate how effective gesture-based control
systems are compared to traditional controllers. The results of these tests will be analyzed
to evaluate how well the system performs compared to existing controller-based racing
games.

The ultimate goal of this thesis is to create a more natural form of control that allows
players to focus on the thrill of racing without worrying about button presses or joystick
movements.

Resumen

Este trabajo de final de grado (TFG) se centra en explorar cómo el reconocimiento de
gestos de las manos puede usarse para reemplazar los mandos en videojuegos de carreras.
El objetivo es comprender cómo desarrollar un sistema preciso, permitiendo un control
más sensible al conducir vehículos virtuales. El primer paso del proyecto de investigación
es analizar las tecnologías de reconocimiento de gestos existentes, como Microsoft Kinect,
y cómo se pueden usar en juegos de carreras.

Al estudiar las implementaciones existentes, la investigación pretende obtener conceptos
clave que puedan ayudar a mejorar la experiencia del usuario. También se investigarán
varios requisitos de hardware, como ubicaciones de cámaras y sensores, que serían nece-
sarios para que el sistema funcione eficazmente en un entorno de juego de conducción.
Una vez que se establezcan los requisitos de investigación, se realizarán pruebas para
evaluar qué tan efectivos son los sistemas de control basados en gestos en comparación
con los controladores tradicionales.

El objetivo final de esta tesis es crear una forma más natural de control que permita a
los jugadores concentrarse en la emoción de la carrera sin preocuparse por los botones o
los movimientos del joystick.

Contents

Introduction 1

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 3

2 Related work 5
2.1 Pipeline . 5
2.2 Image acquisition & pre-processing . 7
2.3 Convolutional Neural Network . 8
2.4 Gesture mapping . 9
2.5 Conclusions . 10

3 Poject proposal 11
3.1 Requirements . 11
3.2 Image Acquisition . 12
3.3 Convolutional Neural Network . 13
3.4 Gesture Mapping . 14

4 Coding project 17
4.1 Capturing and Preprocessing Images . 17
4.2 CNN and data set . 18
4.3 Mapping hand gestures . 18
4.4 Conclusions . 19

5 Testing & Results 21
5.1 Testing . 21
5.2 Results . 22

5.2.1 Baseline: Sim racing wheel and Controller 22
5.2.2 1st Approach . 24
5.2.3 2nd Approach . 25
5.2.4 3rd Approach . 26

5.3 General outcomes . 27

i

6 Conclusions & Further investigation 31
6.1 Conclusions . 31
6.2 Future work . 32

A Technical manual 33
A.1 Software versions . 33
A.2 How to install . 33
A.3 How to run . 33
A.4 Configuration . 33
A.5 Recommendations . 34

Bibliography 35

Chapter 1

Introduction

1.1 Context

Hand gesture recognition in video games has been a topic of increasing interest in
the gaming industry over the past decade. [9] Hand gesture recognition technology is
the ability to identify and track hand and finger motions by computers. It is a form of
computer vision technology that allows machines to interpret human hand and finger
motions. By analyzing and understanding the gestures, computers can simulate them in
a gaming environment. It has been used in a wide variety of applications, including vir-
tual reality (VR) [25] and augmented reality (AR) games, motion-controlled games, and
gesture-controlled gaming consoles.

The development of hand gesture recognition technology in video games has taken many
steps in recent years. Initially, this technology was limited to users providing pre-programmed
finger commands. However, as the technology has grown, it has become possible to pro-
vide users with more precise and accurate recognition of their hand gestures. [5] For
instance, recent advances in machine learning algorithms and the use of deep neural net-
works have enabled computers to identify and track hand and finger motions. [13]

Furthermore, the addition of cameras and trackers has made it possible for video game
consoles and computers to understand the movements of players'hands, allowing for more
interactive gaming experiences. [8] For example, some video games have implemented ad-
vanced hand gesture recognition technology that allows players to perform moves with
their hands and fingers like they would in the real world. [2]

The most common type of hand gesture recognition used in videogames is known as
skeletal tracking. [10] This method uses cameras and depth sensors to capture a 3D image
of the player's body, including their hands and fingers. The software then analyzes the
images to detect and interpret the hand gestures. [6]

Hand gesture recognition can be used to control a variety of game elements, including

1

2 Introduction

character movement, object manipulation, and menu navigation. It can also be used to
detect gestures that are used to perform special actions, such as casting spells in role-
playing games.

Hand gesture recognition technology has the potential to revolutionize the way people
interact with their games. It can make gaming more immersive and engaging. [20] How-
ever, it is still in its early stages and there are many challenges that need to be addressed
before it can be widely adopted. [27]

In summary, the use of hand gesture recognition in video games has a relatively short
history, but has seen a rapid evolution with the advent of new technologies and improved
computer vision algorithms. Early attempts at hand gesture recognition in video games
were not very successful, but recent advancements in virtual reality and computer vision
technology have led to a resurgence in interest and success in the use of hand gestures in
video games.

1.2 Motivation

In the ever-evolving world of racing games, controller-based input is rapidly becoming
obsolete. Innovations in hand gesture recognition are offering gamers a new way of con-
trolling their favorite vehicles on the track. This thesis aims to explore how hand gesture
recognition systems can be implemented in order to replace the traditional controller-
based input systems in use today.

One of the most exciting developments in gaming is the emergence of hand gesture recog-
nition as a means to control gaming experiences. This technology has the potential to rev-
olutionize the way we play games, allowing for a more intuitive and immersive experience.

One of the main motivations for replacing controllers with hand gesture recognition in
racing games is the potential for increased realism. Hand gestures are a natural and
intuitive way for people to interact with their environment, and by incorporating these
gestures into racing games, players can feel more like they are truly behind the wheel of a
car. This is because gestures like turning the steering wheel or shifting gears are mapped
directly to the player's physical movements, rather than to the press of a button or the
movement of a joystick.

Hand gesture recognition has already been implemented in some gaming platforms, such
as Microsoft Kinect, in these platforms, players use their hands to control on-screen char-
acters or objects. Furthermore, the technology can also be used to add another layer of
realism to racing games, by allowing players to control their vehicles through hand ges-
tures rather than controllers.

1.3 Goals 3

1.3 Goals

This thesis will explore how hand gesture recognition can be used to replace con-
trollers in racing games. It will discuss the potential benefits of this technology and how
it can be implemented in modern gaming systems. It will also look at some possible
drawbacks, such as hardware requirements, user fatigue, and potential compatibility is-
sues with existing controllers. Finally, this thesis will provide suggestions on how hand
gesture recognition can be used most effectively in racing games.

The first step of this research project is to identify and analyze existing gesture recog-
nition technologies, such as the aforementioned Microsoft Kinect, and how they could be
used in racing games. In order for these systems to provide an effective alternative to
traditional controllers, they need to be accurate and responsive. Through this research,
the thesis will aim to develop a system that is capable of detecting multiple input gestures
concurrently with minimal latency, allowing for more responsive control when driving
virtual vehicles.

The next step is to investigate existing racing games that have implemented gesture-based
control systems and what techniques they have utilized in order to provide a successful
gaming experience. By studying existing implementations, there may be key concepts and
algorithms that can be gained and improved upon in order to further enhance the user's
experience when controlling a vehicle via hand gestures. In addition, research should also
be conducted into various hardware requirements for such a system, including camera
placements, sensors, etc., in order for it to work effectively in a racing game environment.

Once the research requirements have been established, testing should be carried out in
order to evaluate how effective gesture-based control systems are compared to traditional
controllers. This includes testing accuracy against different combinations of input ges-
tures as well as how user-friendly it is for all age groups. The results of these tests should
then be analyzed in order to evaluate how well the system performs compared to existing
controller-based racing games.

To sum up, this thesis aims to explore how hand gesture recognition systems can be
effectively implemented into racing games in order to replace traditional controller-based
inputs. Through researching existing technologies and testing various methods of inte-
grating them into racing games, a successful system can be developed that provides an
even more engaging and immersive experience than before. Ultimately, this thesis will
strive towards creating a more natural form of control that allows players to focus on the
thrill of racing without worrying about button presses or joystick movements.

4 Introduction

Chapter 2

Related work

Hand gesture recognition is the process of identifying and interpreting a person's hand
and finger movements and gestures to control a computer system or other technology. It
is a form of non-verbal communication that involves the use of hand and finger motions
to control and interact with a device. Hand gesture recognition technology has become
increasingly popular in recent years, as it provides a convenient and intuitive way for
users to interact with computers and other devices.

The applications of hand gesture recognition are numerous. [14] It has been used to
control video games, control robotic arms, and even to interact with virtual reality en-
vironments. It is also increasingly being used for sign language interpretation, allowing
users to communicate with computers without the need for verbal communication. Fi-
nally, hand gesture recognition is being explored as a way to interact with vehicles and
other machines, allowing for more natural, intuitive interactions as researched by E. Ohn-
Bar et al. [17]

The implementation of this technology is a multi-step process that involves a range of
activities. The initial step in this process is capturing the gestures of the user through
specialized hardware such as cameras or sensors. Once the gestures are captured, they
must be processed to accurately identify the specific gestures being performed. This step
is crucial as it lays the foundation for the subsequent steps. [23] Following the identifi-
cation of the gestures, the next step is to map them to specific actions that the computer
can perform. This might be opening a file, closing a window, or simulating a joystick
movement.

2.1 Pipeline

The task of communicating with a computer via hand gestures is notably complex, as
noted by Murthy et al. [14] Even though the multiple strategies follow a similar pipeline,
what makes them different is the dataset and how we decide to control our in-game car.

5

6 Related work

In this project we propose a pipeline, depicted in Figure 2.1. This pipeline outlines the
entire process, from acquiring images or videos of hand gestures to mapping the corre-
sponding output to an in-game action. The primary stages that we will delve into are:
Obtaining images/videos and pre-process them (Section 2.2), Process the data with an
accurate convolutional neural network (CNN) (Section 2.3), Produce an in-game action
according to the detected gesture (Section 2.4)

Figure 2.1: Flowchart of the proposed algorithm. The normal rectangles represent inputs
and the double rectangles the main steps of the pipeline. The images serve as visual
examples of the outputs.

The steps of the previous diagram (Figure 2.1) can be summarized in the following
way:

1. The initial phase concentrates on the pre-processing of the camera input. This step is
not essential, however, it plays a vital role in enhancing the efficiency of the following
stages, for instance, by decreasing the size of the image which can decrease the
computational load on the system.

2. The next step of the hand gesture recognition pipeline involves utilizing the pre-
processed frames as inputs to a Convolutional Neural Network (CNN). This step is
essential as it is the CNN that will be responsible for recognizing the hand gestures
in the images or videos.

3. The third stage of the pipeline is focused on extracting the accurate gesture from the
output of the Convolutional Neural Network. After the frames have been processed
through the CNN, the network will output a label for the gesture it has recognized.
This stage is crucial as it is at this point that the system can determine what gesture
is being made by the individual.

4. With the identification of the hand gesture, the system can now proceed to the final
step of the hand gesture recognition pipeline, which is to produce an in-game action

2.2 Image acquisition & pre-processing 7

according to the detected gesture. The goal of this step is to translate the recognized
gesture into a specific action that can be executed within the game. One way to
accomplish this can be to simulate traditional controller inputs. This approach is
particularly useful as it allows for compatibility with a wide range of game, since
most games are designed to respond to inputs from traditional controllers.

It is worth noting that the pipeline described is not specially tailored to explore the use of
hand gesture recognition as a replacement for controllers in racing games. However, this
application of hand gesture recognition has been chosen as it provides a clear and specific
use case for the technology, and it allows for the examination of the potential benefits and
limitations of using hand gestures as a means of input in racing games. Racing games
are a perfect scenario to test hand gesture recognition as the inputs in this type of games
usually require a lot of degree of freedom, especially for the turning of a car. [21]

2.2 Image acquisition & pre-processing

To begin, it's important to recognize that input for detecting hand gestures can come
from various sources, not just a camera. This flexibility in input sources allows for greater
versatility in the types of systems and applications that can utilize hand gesture recogni-
tion technology.

An early method for obtaining input for gesture detection was the use of gloves. This
approach required the use of a specialized hardware device that would collect data from
the joints in the hand. While this method had its advantages, such as faster data collection
and the need for less input data due to the information being transferred directly from the
fingers, it also had significant downsides. [19] One of the main drawbacks was the cost
and weight of the gloves, making them impractical for natural interaction and usage. [3]

An alternative approach for obtaining input for gesture detection is through the use of
computer vision. This method involves acquiring images or videos from a camera or
similar device and analyzing the input to detect gestures. One of the major benefits of
this approach is that it allows for more natural interfaces. [28] Unlike the glove-based
approach, which required specialized hardware, this method can be implemented using
commonly available devices such as smartphones, tablets, or webcams. Additionally, this
method is not limited to hand gestures and can be used to detect other body movements
as well as outlined by the article of Rui Ma et al. [12]. Furthermore, this approach is more
cost-effective and can be integrated into a wide range of applications, such as gaming,
virtual reality, and human-computer interaction.

Lastly, there is the depth-based approach which utilizes depth cameras. [23] These de-
vices work differently from traditional cameras, as they do not capture regular images,
but instead record the distance of the points in the scene with depth sensors (Figure 2.2).
A well-known example of this type of device is the Microsoft Kinect. Initially developed
for gaming, it has now found other uses beyond gaming, including hand gesture recog-
nition. For example, researchers B. Ma and others have presented a system that uses the

8 Related work

Kinect to control a robot. [11]

Figure 2.2: Microsoft Kinect architecture diagram.

Once input is received from the device, preprocessing is often carried out to improve
the accuracy and performance of the system. [24] This step, while not strictly necessary,
can include tasks such as resizing and cropping images, normalizing pixel values, and
removing noise.

2.3 Convolutional Neural Network

Convolutional Neural Networks (CNNs) are specifically good processing and analyz-
ing images as inputs. This architecture makes them particularly well-suited for tasks such
as image recognition, object detection, and image classification. [18]

CNNs are composed of multiple layers, each with a specific purpose. The convolutional
layer, which gives the network its name, plays a key role by extracting features from the
input image. It does this by applying a mathematical operation called convolution, in
which a small matrix called a kernel or filter is moved over the input image, and the val-
ues of the kernel are multiplied with the corresponding values of the image. This process
is repeated for different kernel positions and different kernels, resulting in multiple fea-
ture maps. By extracting features, the convolutional layer allows the CNN to learn local
patterns such as edges, textures, and shapes, which are important for recognizing objects
in the image.

The pooling layer follows the convolutional layers and is responsible for simplifying the
output by down-sampling the feature maps produced by the convolutional layer. This
results in a reduction of the complexity of the subsequent layers.

Lastly, the fully connected layer is utilized to learn non-linear decision boundaries by

2.4 Gesture mapping 9

combining the features extracted in the previous layers, and thus producing the final out-
put of the network. [1]

This stage of the pipeline is divided into two parts that must be combined in order to
successfully determine the gesture being made. The first step involves using a hand de-
tector, which filters out the image of the hand from the entire input image. This is a crucial
step as it allows the system to focus on the hand and disregard the rest of the image, thus
making it easier to identify and classify the gesture. The hand detector uses a combination
of techniques such as image processing, machine learning and computer vision to detect
the presence of a hand in the image, and to extract features such as the position and shape
of the hand. [26]

Figure 2.3: Example of detected hands. (Source: mediapipe)

Once the hand is detected, the system proceeds to the next step of identifying the ges-
ture being made. This is accomplished by using a convolutional neural network (CNN) to
analyze the hand image. [26]

Despite their ability to produce good results in the field, CNNs must be well thought
out and properly trained in order to achieve efficient and accurate results. For example,
research by H. Y. Chung et al. [4] demonstrated that through the training, they were able
to achieve recognition rates of up to 95.61% for 6 different gestures. In contrast, one of the
models only achieved a recognition rate of almost 85% on the test set. This illustrates how
the training process and the design of the CNN architecture can significantly impact the
performance of hand gesture recognition.

2.4 Gesture mapping

In Human-Computer Interaction (HCI) by hand gesture recognition, the selection of
hand gestures is a crucial aspect in designing an effective gesture vocabulary. [22] The

10 Related work

unique characteristics and the range of motion of hand gestures must be taken into ac-
count when making this selection since the goal of HCI is to create an interface that allows
users to control computer tasks through a set of commands in the form of hand gestures.
[3] This requires a thorough understanding of the potential gestures available and the
ability to select those that are most intuitive and easy to understand. It's important to con-
duct some user testing and gather feedback in order to optimize the gesture vocabulary
and improve the overall usability of the interface. [15] This step allows us to evaluate the
gesture vocabulary and make sure it is easy to understand and perform, and that it will
not confuse the user.

All in all, the selection of vocabulary (in this case hand gestures) is an essential aspect
of HCI, as it provides the foundation for a natural and intuitive interface. [16] A well-
designed gesture vocabulary can lead to greater efficiency and satisfaction for the user,
and therefore, it is a critical step in the pipeline for the development of a successful HCI
system.

2.5 Conclusions

In summary, recognizing hand gestures in the field of human-computer interaction
(HCI) is a challenging task.

In this chapter, a general pipeline for an HCI interface utilizing hand gesture recognition
was presented and the main approaches in the literature were reviewed. In the following
chapter, we will propose a Proof of Concept (PoC) of this pipeline while making some
simplifications. These simplifications may include the use of pre-trained CNN models
and the use of a predefined dataset of hand gestures. Additionally, we will not be ex-
ploring beyond hand gestures in this PoC, thus excluding some topics such as hand pose
estimation.

Chapter 3

Poject proposal

As previously discussed, we will create a proof of concept for hand gesture recognition
as a means of controlling racing games. This section will delve into the design and method
used to create a demonstration, as well as the strategy chosen to create an intuitive and
natural human-computer interaction.

We will follow the pipeline flow while explaining the proposed strategy for the proof
of concept. Additionally, we will outline the requirements and simplifications applied to
the demo.

3.1 Requirements

This Proof of Concept will have specific requirements that will determine its function-
ality. The first requirement will focus on usability, ensuring that the system is intuitive
and easy for users to understand. Additionally, the interface must be flexible, allowing for
customization of gestures. The system must also be robust, able to accurately recognize
gestures regardless of variations in hand size or skin tone.

In terms of results, the Proof of Concept must demonstrate its ability to meet these re-
quirements and provide accurate and reliable gesture recognition. Additionally, the user
experience must be evaluated to ensure that it is meeting the needs of its intended audi-
ence, this means that the system should be easy to adapt to as well as easy to learn. The
final outcome of this proof of concept should be a functional system that is user-friendly,
accurate and robust in recognizing gestures with flexibility in customization.

The interface should also include gestures that are easy to transition between, particu-
larly in fast-paced situations like racing games. For instance, taking the “okay” and “like”
gestures depicted in Figure 3.1, transitioning from an “ok” sign to a “like” sign quickly
may not be easy. Additionally, the gestures should be intuitive and make sense for the
actions they represent as it doesn't make sense, for example, to map the turning left action
to a “like” gesture while using a “one” gesture to turn right, since using gestures that do

11

12 Poject proposal

not have opposite meanings for opposite actions will confuse the user.

Figure 3.1: Visual example with emojis of the “like” and “okay” gestures.

3.2 Image Acquisition

In this study, the vision-based approach was chosen for hand gesture recognition as it
offers a cost-effective and practical solution. Additionally, this approach has been widely
researched and has been shown to be effective in a variety of applications, making it a
suitable option.

Figure 3.2: Image of a Trust GXT 1160 webcam.

To further illustrate the accessibility of this method, a Trust GXT 1160 webcam (Figure
3.2) was selected as the camera input source. This was a deliberate choice as it is not
a high-end, expensive camera. By using a less costly camera, it is highlighted that the
vision-based approach to hand gesture recognition can be used by people with a range of
resources and budget. It also serves as a demonstration that the system can function ef-
fectively with a relatively low-cost camera, making it more accessible to a wider audience.

3.3 Convolutional Neural Network 13

Meanwhile, in the pre-processing step, we will be taking the raw input image and prepar-
ing it for the machine learning model by performing a series of operations on it. One of
the key operations is to resize the image. This is important because the machine learning
model expects the images to be of a certain size and resizing it to that size will help the
model process the image more efficiently.

Another operation we may need to do is to convert the color space of the image. The
color space of an image refers to the way the colors are represented in the image and dif-
ferent models may expect different color spaces. We might need to convert the image to
a specific color space so it meets the model requirements. This will ensure that the model
is able to process the image correctly and extract relevant features from it.

All these operations are important as they help the model to extract relevant features
from the image, and ultimately, help to improve the model's performance.

3.3 Convolutional Neural Network

In order to simplify the process and not lose focus of the goals, some simplifications
are being added as the whole process to hand gesture recognition is very complex and
time-consuming.

Properly training a CNN for hand gesture recognition can be a time-consuming task.
One of the most time-consuming aspects is collecting and labeling a diverse and extensive
data set of hand gestures. The use of an already existing data set was deemed appropriate
as it can save a significant amount of time.

It's important to keep in mind that a high quality and diverse data set is crucial for the
performance of the model, as variations in hand shape, skin tone and other factors can
affect the classification of gestures. Without a robust data set, the model may not perform
well on new, unseen data.

Another crucial step in the process of hand gesture recognition is training a CNN. This
step can be quite time-consuming, and requires a high-quality dataset as well as a well-
designed CNN architecture. Designing the right architecture for a system can be a com-
plex process that often requires experimentation and adjustments to achieve optimal ac-
curacy. It is not always clear what the initial architecture should be, so it is necessary to
try different combinations of layers and fine-tune parameters such as kernel size, stride,
and activation functions through trial and error until the desired results are achieved.

The training process itself can also be quite time-consuming, as it depends on several
factors such as the size of the training dataset, the complexity of the CNN architecture,
and the computational resources available. This process can take several hours or even
days, depending on the number of images in the dataset, the complexity of the CNN ar-
chitecture, and the computational resources available.

14 Poject proposal

Given the length of time required for this step, it was determined to be more practical
to use a pre-trained model. This approach can save time and computational resources
while still providing good results. Using a pre-trained model means to use a model that
has been previously trained on a large and diverse dataset, which can be helpful in situa-
tions where it is not possible or practical to train a model from scratch.

For this study, the HaGRID dataset was selected. [7] This dataset is substantial, con-
taining over 500,000 samples and 18 labeled classes as seen in Figure 3.3. Additionally, it
provided a variety of pre-trained models with high accuracy that can be used.

By utilizing the HaGRID dataset and the provided pre-trained models, the time and re-
sources required to achieve good results in hand gesture recognition can be minimized.
This approach is expected to result in a robust system that meets the requirements for
accurate hand gesture recognition as well as save time.

Figure 3.3: Image all the gestures available in the HaGRID dataset.

3.4 Gesture Mapping

For this part of the proposal we have to take into account the data set we choose, be-
cause it will define what gestures we have available to map. As seen in Figure 3.3 we can
map up to 18 gestures, and we can play around with the lack of gesture also. In the first
place, we need to think about what actions we have to perform in order to play racing
games. The initial thought and the most obvious controls anyone would think of are:
Turning (either left or right), Breaking and Accelerating.

In order to have an intuitive and natural interface, we first need to think of a combination
of gestures that might be similar to real-life actions and are easy to learn and understand.
However, we should also take into account the effort that is needed in order to play the
game using the interface as having a set of gestures that are tiresome will be detrimental
to the utility of the system and the performance of the player and thus the ability of the
system to replace traditional controllers will be affected.

3.4 Gesture Mapping 15

In the chosen data set we only have static gestures so initially we can't rely on real-life-
like actions as in day to day driving no one uses static gestures. However, this is easily
solvable. For example, thanks to the hand detector in the CNN stage (Section 2.3) we can
track the positions of the hands in the image and thus calculate the angle formed by both
hands and use it to determine the amount and direction of turning.

For this proposal, in order to explore multiple approaches on hand gesture mapping,
we will propose 3 different mapping models that will help understand the different capa-
bilities of the gestures.

1. This first version will try to use only static gestures. This approach will lead to an
accessible interface as the movement of the hands is not necessary outside transition-
ing from one gesture to another. However, both hands will be needed for playing the
game since in racing games you can, and most likely will, turn while accelerating or
braking.

2. For the second model, we will shift to a less accessible but way more intuitive ap-
proach. In this approach we intend to use the solution proposed earlier in which
we use the angles formed by both hands to calculate how much the car turns. With
this we pretend to emulate a car turning wheel to turn. However we will still need
2 gestures for breaking and accelerating.

3. The third and last approach will provide a middle ground, where the interface will
be not as intuitive as the second but in return we'll get more accessibility. The
proposition is to take the angle generated by one hand to determine the amount of
turning, this means that, by turning the hand like depicted in Figure 3.4, we can turn
the car. With this we can keep an intuitive interface making it more accessible as we
just change the orientation of the hand instead of moving around both of them.

Figure 3.4: Visual example of how the hand can be turned to control the car turning.

These 3 approaches will help us understand the strengths and weaknesses of different
hand gesture mapping models, and will also provide a basis for comparison to determine
which approach is the most effective for this specific application of hand gestures in racing
games. Additionally, by evaluating the different models, we will be able to identify which
aspects of the interface are important for the users, such as ease of use, precision, and
intuitiveness. Ultimately, this proposal aims to provide a comprehensive understanding
of how hand gestures can be used in racing games to enhance the player’s experience and
improve the overall usability of the interface.

16 Poject proposal

Chapter 4

Coding project

To develop our proof of concept, we have chosen Python due to its many advantages.
One key advantage is the large and active community of developers, which provides ac-
cess to a wide range of libraries such as TensorFlow and PyTorch that are commonly used
for CNN development.

Additionally, Python is a popular choice in the field of machine learning and deep learn-
ing, providing ample resources for learning and development. Furthermore, its simple
syntax helps to focus on the development of the proof of concept without getting bogged
down by the complexities of the language.

Overall, Python’s community support, wide range of libraries, and simplicity make it
a great choice for developing our proof of concept. We are confident that using Python
will allow us to quickly and efficiently develop our interface proof of concept.

4.1 Capturing and Preprocessing Images

In order to begin capturing camera input we will use OpenCV, a popular Python li-
brary in the field of computer vision. It provides a wide range of functions for processing
images, such as image transformation and video capture. Additionally, it is compatible
with various deep learning frameworks, including TorchVision, enabling developers to
utilize pre-trained models in their applications. The Python community offers ample sup-
port for OpenCV with many resources, tutorials and guides available. One such resource
that is easy to understand and follow are the tutorials provided by the YouTube channel
“Tech With Tim”. 1

Before inputting the images into the model, we will perform preprocessing steps to en-
sure that the images are suitable for the model. One such step is resizing the images to
meet the requirements of the model. This can be easily accomplished using the OpenCV
library. Additionally, we will use the TorchVision library to convert the image type (PIL

1The tutorials made by the channel “Tech With Tim” can be found in this youtube playlist.

17

https://www.youtube.com/playlist?list=PLzMcBGfZo4-lUA8uGjeXhBUUzPYc6vZRn

18 Coding project

object) to a tensor, which is a format that the model can work with. This step allows the
model to effectively utilize the input images and make the whole process more efficient
by reducing the computational cost.

4.2 CNN and data set

Once the image has been pre-processed and is in a format that the model can under-
stand, it can be fed into the CNN model. In this case, we will use one of the pre-trained
HaGRID models, which includes a hand detection task. This means that we don’t need to
use multiple models and can proceed directly to identifying the gestures.

However, before we can use the model, we need to load it and set a threshold value
(ranging from 0 to 1) to determine the level of confidence required for the algorithm to
recognize a gesture. For example, the detector returns two values indicating the level of
confidence that a hand is doing one of the gestures. If the result from the detector is
[0.0419, 0.0329] and we set the threshold to 0.5, the detector will indicate that there are no
hands on the screen and therefore no gestures will be detected. But if either of the scores
is greater than the confidence threshold, the detector will indicate that there is a hand and
its gesture.

It’s important to be mindful of the threshold value as setting it too low may result in
false positive detections, and setting it too high may result in false negative detections.

4.3 Mapping hand gestures

For this project, we have chosen to map hand gestures to an emulated or virtual con-
troller in order to achieve compatibility with a wide range of games and to gain precision
by using the full range of motion of a controller inputs. To achieve this we are using the
“vgamepad” python library which is a simple way to emulate a controller.

For the PoC, as outlined in section 3.4, we will explore three different approaches. The first
approach is to use static gestures, which means that one gesture corresponds to one in-
game action. While this approach increases accessibility by requiring less arm movement,
it sacrifices intuitiveness. Furthermore, it does not take advantage of the full potential of
mapping gestures to a controller. For example, the“one” gesture can be used to turn the
car, but it does not allow for fine-tuned control over the joystick of the virtual controller.

With our second approach, we traded accessibility with intuitivity. The proposal for this
approach is to use the hand position to emulate a turning wheel, which will provide
greater precision when turning. However, braking and accelerating will still be mapped
to static gestures.

The third approach aims to find a compromise between accessibility and intuitiveness

4.4 Conclusions 19

by using one hand to turn while maintaining precision by rotating the hand. This ap-
proach allows for more control and precision than the first approach, while still being
more accessible than the second approach.

Upon examining the available gestures in the data set (Figure 3.3), it was decided to
primarily use the “palm” gesture for acceleration and the “stop” gesture for braking. This
selection was not made arbitrarily, but rather based on a few key factors. Firstly, transi-
tioning between these two gestures is quick and easy as it simply involves bringing the
fingers together or separating them. Additionally, these gestures are intuitive and easy to
understand, as the “stop” gesture is commonly used to indicate stopping in our everyday
language. Furthermore, making the “stop” gesture requires tensing the hand, which can
be related to the action of braking in a car, as applying pressure on the brake pedal usually
requires tensing the foot.

Furthermore, for the first approach, the “like” and “dislike” gestures were selected for
turning as they represent opposite concepts like “left” and “right”.

However, in order to evaluate the ease and comfort of the interface, as well as the ef-
fort required to use it, these gestures will not be fixed but will serve as a reference point.

4.4 Conclusions

The project followed the pipeline outlined in Figure 2.1 and we can now assess if some
of the requirements were met. At first glance, some of the proposals of the interface look
intuitive and easy to understand thanks to the gestures chosen. However, we have limited
control over the robustness of the CNN as we are using a pre-trained model and neither
did we create our own data set. Despite this, we can ensure that there will be no issues
with hand size or skin tone due to the large data set used.

20 Coding project

Chapter 5

Testing & Results

In this section, we will explain how we're testing the interfaces as well as exploring the
results obtained. The test was designed to obtain data about intuitively, ease of use and
the ease to learn the interfaces. In order to accomplish it, the test was done by 10 people
all with different demographics in order to test the different requirements from various
points of view since this kind of solution can be directed to a lot of different groups of
people. Additionally, we'll be able to test the robustness of the pre-trained model.

5.1 Testing

We decided to test the 3 different approaches to replacing traditional controllers in
racing games by playing Assetto Corsa1. The game’s large modding community provides
plenty of options for us to select a track that is appropriate for the test. The track selected
was the “Karting Cardedeu” circuit2 as it provides a good mix of hard braking zones and
fast corners, as seen in the track layout from Figure 5.1. This allows for testing a variety
of gesture combinations in-game. Additionally, the circuit is not too long, allowing users
to focus on learning the interface rather than the circuit layout.

Figure 5.1: Track layout of the selected circuit.

The testers will be required to try the 3 interfaces, as seen in Figure 5.2 as well as
a classic form of input, such as a traditional controller, a sim racing wheel if they have
access to one or both. This will enable us to compare the results not only between the 3
interfaces but also to contrast the proposed interfaces with the traditional forms of input.

1Assetto Corsa is a racing simulation game with a huge modding community.
2This specific mod created by the user “carreras” of can be found here.

21

https://www.assettocorsa.it/home-ac/
https://www.racedepartment.com/downloads/karting-cardedeu.28012/

22 Testing & Results

Additionally, after testing each interface, we will ask the testers if they would like to
change the gestures used in case they felt there could be a more intuitive combination of
gestures.

Figure 5.2: Examples of the 1st, 2nd, and 3rd approach.

The testers will be asked to run 10 complete laps around the circuit to evaluate the
users'adaptability to the interface and the effort required and overall overall competitive-
ness of the interface.

For this test we selected 9 individuals with varying ages and levels of video game knowl-
edge for the study. These participants represented a diverse demographic, including both
genders and various age ranges. The program was tested on participants over the age of
18. Out of the 9 individuals, 6 were men and 3 were women. The group of men included 3
participants between the ages of 20 and 30, 2 between the ages of 30 and 40, and 1 between
the ages of 40 and 50. The men between the ages of 20 and 30 had extensive experience
with video games, particularly racing games. Conversely, the men over 30 had general
experience with video games but not specifically with racing games. As for the women,
one had no prior experience with video games, while the other two had played games
occasionally.

5.2 Results

Before delving into the results, it's important to note that some limitations were en-
countered during the development of the Proof of Concept (PoC). The model struggled to
recognize gestures when the hand was rotated. This should be considered when mapping
the gestures for the second and third approach, as their main feature involves controlling
steering by rotating the hands. Additionally, during some of the tests, some players were
unable to complete the 10 laps, which was unexpected.

5.2.1 Baseline: Sim racing wheel and Controller

Table 5.1 shows that among 5 players who had access to a sim racing wheel, initial lap
times range from 0:43.542 to 0:51.283. Figure 5.3 also demonstrates that improvements for
the initially faster drivers are minimal, with those starting below 44 seconds improving by
less than one second.

5.2 Results 23

Tester Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10
1 0:43.542 0:44.139 0:43.232 0:44.082 0:43.121 0:43.027 0:43.979 0:43.699 0:44.075 0:43.199
2 0:48.950 0:47.197 0:47.502 0:48.823 0:46.895 0:47.791 0:48.783 0:46.836 0:46.897 0:46.867
3 0:51.283 0:49.325 0:48.463 0:47.124 0:47.093 0:46.157 0:45.085 0:45.864 0:45.517 0:46.637
4 0:43.709 0:43.624 0:43.708 0:43.617 0:43.628 0:43.706 0:43.715 0:44.028 0:43.730 0:44.072
5 0:47.759 0:45.602 0:46.497 0:44.921 0:45.439 0:44.029 0:43.600 0:44.290 0:44.110 0:43.862

Table 5.1: Lap times done with sim racing wheel.

Figure 5.3: Line chart of the times with sim racing wheel.

The chart (Figure 5.3) also reveals that most drivers tend to improve, with some show-
ing improvements of up to 4 seconds, which is noteworthy considering the difficulty of
improving one's time as it gets better.

Tester Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10
1 0:44.955 0:44.657 0:45.352 0:43.989 0:45.187 0:43.826 0:43.955 0:45.297 0:43.975 0:45.476
2 0:51.364 0:50.723 0:49.475 0:49.462 0:50.813 0:49.875 0:49.765 0:49.752 0:48.103 0:50.532
3 0:55.704 0:51.010 0:49.508 0:48.964 0:55.417 0:50.245 0:49.937 0:54.314 0:53.105 0:49.176
4 0:44.663 0:44.633 0:44.826 0:44.910 0:44.764 0:43.810 0:43.777 0:44.874 0:44.893 0:44.368
5 1:05.243 1:03.284 1:00.347 0:59.101 1:02.320 0:57.778 1:04.603 1:00.164 0:58.513 0:53.983
6 1:46.289 1:31.394 1:44.931 1:42.585 1:40.245 1:39.367 1:35.939 1:36.164 1:26.442 1:27.693
7 1:10.888 1:05.516 1:04.927 1:08.451 1:04.937 0:57.184 1:01.381 0:58.443 0:59.646 1:00.105
8 0:46.151 0:44.634 0:44.982 0:43.468 0:45.344 0:43.329 0:43.903 0:44.260 0:43.974 0:43.476
9 1:03.935 1:02.350 0:57.630 1:00.379 0:59.567 0:57.556 0:56.889 0:53.621 0:55.868 1:02.729

Table 5.2: Lap times done with controller.

On the other hand, Table 5.2 shows lap times up to 1:46.289 for testers who have never
held a controller before. Similarly, this group also demonstrates the same improvement
pattern as before, where the initially faster testers have difficulty improving while the
slower ones have an easier time. Additionally, a quick observation reveals that there are
three drivers who are notably faster than the rest, providing an opportunity to compare
the effectiveness of different interfaces.

24 Testing & Results

Figure 5.4: Line chart of the times with controller.

Furthermore, from the chart in Figure 5.4 we can see how even though some testers
have a clear and consistent improvement overall, others don't. Thanks to this, we'll be able
to see how our models compare in terms of learnability to the traditional controller.

5.2.2 1st Approach

During the test of the first approach, unexpected results were observed, as some testers
were unable to complete the 10 laps.

Tester Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10
1 1:06.141 1:03.489 1:10.502 1:07.263 1:04.314 1:02.562 1:00.020 0:55.755 1:03.896 0:58.377
2 2:01.314 1:58.093 1:49.396 1:48.164 1:46.869 1:46.869 1:34.948 1:31.177 1:33.843 1:37.928
3 2:09.822 2:11.988 2:03.690 1:55.614 1:54.535 1:46.209 1:57.708 1:52.718 1:49.708 1:50.159
4 1:27.856 1:32.873 1:25.090 1:20.206 1:30.798 1:22.069 1:27.563 1:19.075 1:28.275 1:18.050
5 3:24.661 3:33.314 3:18.986 3:09.137 3:33.866 3:28.950 3:27.995 — — —
6 3:46.088 3:41.530 3:26.599 — — — — — — —
7 3:16.244 3:20.598 3:19.369 3:04.888 3:19.818 — — — — —
8 1:36.188 1:42.099 1:17.022 1:47.788 1:29.837 1:15.396 1:30.141 1:19.799 1:28.522 1:34.723
9 3:06.617 3:25.485 2:32.487 3:19.347 2:59.377 3:01.967 2:40.074 2:40.071 3:25.653 2:38.379

Table 5.3: lap times done with the 1st approach.

5.2 Results 25

Figure 5.5: Line chart of the times with the 1st approach.

Figure 5.5 illustrates that players who performed best in the baseline continue to have
the best results with this interface, however, they are slower and inconsistent.

All players reported that this interface was physically exhausting as it required them to
keep their hands in front of the camera at all times. Additionally, the testers found the
interface not intuitive due to the turning gestures rather than the approach itself. They
found the breaking and accelerating gestures to be fine but felt that the turning gestures
were not clear enough. Despite this, they were unable to find better gestures as they were
missing gestures that clearly indicate left or right turns.

5.2.3 2nd Approach

Tester Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10
1 0:51.761 0:49.916 0:51.270 0:50.632 0:48.685 0:50.200 0:50.147 0:49.495 0:48.204 0:49.004
2 1:20.664 1:23.059 1:15.644 1:22.420 1:20.246 1:16.460 1:15.253 1:11.598 1:14.753 1:10.965
3 1:32.649 1:27.190 1:29.970 1:27.911 1:28.210 1:25.013 1:22.841 1:23.085 1:24.690 1:23.124
4 0:55.635 0:56.635 0:55.210 0:55.925 0:55.019 0:54.963 0:53.596 0:55.405 0:53.532 0:54.514
5 2:55.381 2:46.527 2:48.582 2:37.733 2:40.117 2:37.396 2:52.476 2:49.940 2:50.155 2:41.214
6 3:28.007 3:13.681 3:16.758 3:06.738 3:14.850 3:12.287 3:09.385 3:07.345 3:06.568 3:05.358
7 2:47.210 2:43.208 2:41.296 2:48.991 2:41.893 2:36.588 2:32.056 2:40.279 2:36.751 2:35.091
8 0:56.197 0:57.245 0:56.276 0:57.911 0:55.467 0:53.700 0:52.443 0:51.628 0:50.949 0:52.445
9 2:20.350 2:19.928 2:23.278 2:17.623 2:17.911 2:06.395 2:11.802 2:12.248 2:10.829 2:08.455

Table 5.4: Lap times done with the 2nd approach.

26 Testing & Results

Figure 5.6: Line chart of the times with the 2nd approach.

Figure 5.6 allows for comparison between the first two approaches. A clear improve-
ment in consistency is observed among testers, but the three fastest drivers still perform
worse than with a traditional controller. However, it’s worth noting that this interface is
still better than the first approach, with some drivers achieving times under 50 seconds.

The testers felt more natural and confident using this interface, with testers 1 and 4 at-
tributing most of their improvement to increased turning precision. However, the majority
of players still found this option tiring due to the need to keep both arms in front of the
camera.

5.2.4 3rd Approach

Tester Lap 1 Lap 2 Lap 3 Lap 4 Lap 5 Lap 6 Lap 7 Lap 8 Lap 9 Lap 10
1 0:50.197 0:48.989 0:48.823 0:49.392 0:46.969 0:47.829 0:46.551 0:46.460 0:46.840 0:47.320
2 1:01.588 0:58.403 0:56.912 0:57.217 0:55.759 0:56.105 0:58.461 0:55.233 0:54.239 0:53.822
3 1:02.076 1:01.059 0:58.400 0:59.350 0:58.350 0:58.906 0:58.535 0:59.163 0:58.782 0:58.369
4 0:51.567 0:50.346 0:49.934 0:50.102 0:48.873 0:47.947 0:47.841 0:48.381 0:49.091 0:48.716
5 1:19.023 1:15.974 1:21.646 1:09.324 1:12.013 1:10.415 1:10.052 1:14.426 1:09.605 1:11.370
6 2:53.743 2:49.535 2:36.690 2:45.745 2:43.668 2:36.528 2:37.195 2:26.954 2:21.671 2:27.440
7 1:26.740 1:31.480 1:32.388 1:29.383 1:18.103 1:19.335 1:22.335 1:12.657 1:14.460 1:16.987
8 0:50.696 0:50.061 0:49.353 0:50.398 0:48.390 0:47.088 0:48.109 0:47.626 0 :46.416 0:45.740
9 1:13.176 1:14.293 1:09.635 1:12.752 1:07.900 1:04.924 1:09.060 1:07.111 1:08.515 1:07.880

Table 5.5: Lap times done with the 3rd approach.

5.3 General outcomes 27

Figure 5.7: Line chart of the times with the 3rd approach.

Figure 5.7 shows a distribution similar to that of a traditional controller. Five out of
the nine testers consistently achieved lap times under one minute, despite some starting
with lap times over one minute.

This final approach was the preferred option among testers, who found that even if the
rotation of the hand is not as intuitive as simulating you have a steering wheel, it reminds
enough to the turning movement. Many players also suggested implementing a way to
turn and accelerate using the same hand, in line with this approach’s philosophy.

Additionally, while some testers reported slight strain on the wrist, they still found it
more comfortable than the other approaches.

5.3 General outcomes

From these tests, we can now evaluate if we met our proposed requirements. First,
we asked users to rate the comfort of the 3 interfaces on a scale of 1 to 10, with 1 being
the worst and 10 being the best. The overall scores were 2.44, 4.88, and 7.44 for the first,
second, and third approaches, respectively. As previously stated, most players felt tired or
strained after playing for just 10 laps, but the third approach received the least complaints.

28 Testing & Results

Figure 5.8: Line chart of the overall times of each lap.

Secondly, as seen in Figure 5.8, the first approach shows the most improvement, but it
is also the most inconsistent. This deosn't mean that the users improved since they can’t
keep running as fast as they once achieved. The third approach is more consistent but with
less notable improvement. Additionally, the third approach shows an improvement of over
11% between the initial and best lap times, while the controller shows an improvement
of almost 10%. This suggests that, even though the improvement of the third approach is
higher, the learning rate of the third approach and the controller are similar, as it becomes
harder to improve as one gets closer to the best time possible.

Figure 5.9: Line chart of the best times of each lap.

Looking at the best times for each lap (Figure 5.9), we can see that the first approach
is not consistent, while the other two follow a smoother curve.

It’s also noticeable that the second and third approaches started closer than where they

5.3 General outcomes 29

finished, while the opposite happened to the 3rd approach and the controller.

In terms of comfort and intuitivity, the controller was rated first by testers due to its
minimal movements and lack of physical fatigue. Among the proposed approaches, the
third approach was considered the best as it was more comfortable and had a noticeable
improvement in performance.

From this results we can conclude that out of the 3 proposals, the third one produced the
best results. However, even with its increased intuitivity, this PoC still couldn't overcome
the comfort that the traditional controllers provide. Nevertheless, in terms of performance,
even though the 3rd approach did not surpass traditional controllers, it has to be noted
that our approach is less costly economically speaking. While the webcam used costed
around 20e3, an official Microsoft controller costs no less than 50e4.

3Price of the used webcam in PcComponentes
4Price of an official Microsoft controller in PcComponentes

https://www.pccomponentes.com/trust-gxt-1160-vero-streaming-webcam-fullhd
https://www.pccomponentes.com/microsoft-mando-inalambrico-xbox-series-one-pc-blanco-robot

30 Testing & Results

Chapter 6

Conclusions & Further
investigation

6.1 Conclusions

The creation of an interface for playing racing games using vision-based hand ges-
ture recognition is a broad field that requires the development of multiple techniques
and strategies. However, by analyzing the key processes of hand gesture recognition and
comparing them to previously established requirements, we have obtained a sufficient
understanding of the subject.

All this data has been fundamental in order to propose a pipeline like the one seen in
Figure 2.1 where a minimal flow for a game controller was described as the pipeline has
been based on how generally hand gesture recognition is achieved and adapted to create
a human-computer interface.However, during the pipeline’s description, it was observed
that most methods concentrate on hand gesture recognition and not human interaction.

With the pipeline in place, it became clear how a vision-based hand gesture recognition
interface for playing games could be developed, which led to the creation of a proof of
concept (PoC). This design was then tested by implementing the PoC, taking into account
each step of the proposed pipeline such as acquiring input images, preprocessing the im-
ages, using a neural network, and mapping gestures.

The proof of concept (PoC) was designed to not only evaluate how well static gestures
fare in racing games, but also to provide different models to differentiate the weaknesses
and strengths of each. This allowed for a comprehensive evaluation of the hand gesture
recognition interface.

The results of the PoC provided valuable insight into how various interfaces performed.
The design of the PoC allowed for this evaluation to be done without having to modify
the base code, as all the necessary variables to run the interfaces were the default set ones.

31

32 Conclusions & Further investigation

This streamlined the testing process and made it easier to compare the performance of
different models. Overall, the PoC was a valuable tool in assessing the potential of hand
gesture recognition interfaces in gaming and identifying areas for future development.

6.2 Future work

Despite the positive results that were obtained from the proof of concept (PoC), there
are still areas for improvement. One of the most significant improvements that can be
made is to create a convolutional neural network (CNN) from scratch, either using the
proposed data set or creating a new one. This would allow for greater customization as
the best gestures could be selected in advance and the CNN could be specifically designed
for the dataset.

Another area for improvement in the PoC is in the third approach to the interface, where
testers suggested the ability to control the car (braking, accelerating, and turning) with the
same hand. This would reduce fatigue on the users as the posture taken to play could be
more comfortable and the second hand would be freed. However, due to the limitations
of the model that was selected, this could only be achieved by creating a new model from
scratch, as mentioned earlier.

In addition, to further broaden the investigation, it would be beneficial to research other
camera point of views as most of the proposals use the same point of view. This would
provide a more comprehensive understanding of the potential of hand gesture recognition
interfaces in gaming and allow for the identification of new areas for development.

Appendix A

Technical manual

A.1 Software versions

To develop this application Python 3.9.4 was used on Windows 10 for 64 bits. To
download the code you can navigate to the release and download it. This is the version
released with the thesis.

A.2 How to install

Once you dowloaded the code from the release unzip it in your prefered location. Once
unzipped, open a terminal and navigate to where the root folder of the project. With the
terminal, in the root directory of the project, install the requirements with this command
line:

pip install -r requirements.txt

A.3 How to run

To run the project use the following command line:

python main.py -v {1, 2 or 3 to choose the approach}

or

py main.py -v {1, 2 or 3 to choose the approach}

A.4 Configuration

1. Confidence threshold: In order to change the threshold of confidence of the CNN
head to the “constants.py” file located in the root and modify the “threshold” vari-
able

33

https://github.com/daload/HCI-by-hand-gesture-recognition-PoC/releases/tag/v1.0
https://github.com/daload/HCI-by-hand-gesture-recognition-PoC/releases/tag/v1.0

34 Technical manual

2. Gesture mappings: To change the gesture mappings of the 1st and 2nd approach
head to the “constants.py” file located in the root and modify the values of the “ges-
tures” dictionary.

To change the 3rd approach mappings, change the “mappings” dictionary keys in
the “v3.py” file.

3. Angle needed to turn: To change the maximum angle to turn in the 2nd and 3rd ap-
proach head to either “v2.py” or “v3.py” depending on the one you want to change.
Changing “v2.py” will change the 2nd approach angle while changing “v3.py” will
affect to the 3rd approach angle. Modify the “turning_angle” variable. 30 means
that generating an angle of 30 degrees you will get the maximum turning input.

A.5 Recommendations

These are a couple of recommendations for using this PoC. First, stay a bit away of the
camera. If you are close is more probable that by moving the hand some part will be out
of the frame, and the gesture will not be recognized.

Test that the gestures you selected before playing seriously. Might happen that because
of a complex background some gestures are not detected properly. For example, “palm”
and “stop” worked fine for all cases but the “fist” gesture had problems depending on the
background.

Bibliography

[1] S. Albawi, T. A. Mohammed, and S. Al-Zawi, Understanding of a convolutional neural
network, 2017 international conference on engineering and technology (ICET), IEEE,
2017, pp. 1–6.

[2] M. H. Amir, A. Quek, N. R. B. Sulaiman, and J. See, Duke: enhancing virtual reality based
fps game with full-body interactions, Proceedings of the 13th International Conference
on Advances in Computer Entertainment Technology, 2016, pp. 1–6.

[3] L. Chen, F. Wang, H. Deng, and K. Ji, A survey on hand gesture recognition, 2013 Inter-
national conference on computer sciences and applications, IEEE, 2013, pp. 313–316.

[4] H. Y. Chung, Y. L. Chung, and W. F. Tsai, An efficient hand gesture recognition system
based on deep cnn, 2019 IEEE International Conference on Industrial Technology (ICIT),
IEEE, 2019, pp. 853–858.

[5] J. Galván-Ruiz, C. M. Travieso-González, A. Tejera-Fettmilch, A. Pinan-Roescher,
L. Esteban-Hernández, and L. Domínguez-Quintana, Perspective and evolution of ges-
ture recognition for sign language: A review, Sensors 20 (2020), no. 12, 3571.

[6] J. Han, L. Shao, D. Xu, and J. Shotton, Enhanced computer vision with microsoft kinect
sensor: A review, IEEE transactions on cybernetics 43 (2013), no. 5, 1318–1334.

[7] A. Kapitanov, A. Makhlyarchuk, and K. Kvanchiani, Hagrid-hand gesture recognition
image dataset, arXiv preprint arXiv:2206.08219 (2022).

[8] N. V. Le, M. Qarmout, Y. Zhang, H. Zhou, and C. Yang, Hand gesture recognition
system for games, 2021 IEEE Asia-Pacific Conference on Computer Science and Data
Engineering (CSDE), IEEE, 2021, pp. 1–6.

[9] J. Liu and M. Kavakli, A survey of speech-hand gesture recognition for the development of
multimodal interfaces in computer games, 2010 IEEE International Conference on Multi-
media and Expo, IEEE, 2010, pp. 1564–1569.

[10] M. A. Livingston, J. Sebastian, Z. Ai, and J. W. Decker, Performance measurements for
the microsoft kinect skeleton, 2012 IEEE Virtual Reality Workshops (VRW), IEEE, 2012,
pp. 119–120.

35

36 BIBLIOGRAPHY

[11] B. Ma, W. Xu, and S. Wang, A robot control system based on gesture recognition using
kinect, TELKOMNIKA Indonesian Journal of Electrical Engineering 11 (2013), no. 5,
2605–2611.

[12] R. Ma, Z. Zhang, and E. Chen, Human motion gesture recognition based on computer
vision, Complexity 2021 (2021).

[13] A. Mujahid, M. J. Awan, A. Yasin, M. A. Mohammed, R. Damaševičius,
R. Maskeliūnas, and K. H. Abdulkareem, Real-time hand gesture recognition based on
deep learning yolov3 model, Applied Sciences 11 (2021), no. 9, 4164.

[14] G. R. S. Murthy and R. S. Jadon, A review of vision based hand gestures recognition, Inter-
national Journal of Information Technology and Knowledge Management 2 (2009),
no. 2, 405–410.

[15] M. Niranjanamurthy, A. Nagaraj, H. Gattu, and P. K. Shetty, Research study on impor-
tance of usability testing/user experience (ux) testing, International Journal of Computer
Science and Mobile Computing, IJCSMC 3 (2014), no. 10, 78–85.

[16] K. Norman and J. Kirakowski, The wiley handbook of human computer interaction set,
John Wiley & Sons, 2017.

[17] E. Ohn-Bar and M. M. Trivedi, Hand gesture recognition in real time for automotive inter-
faces: A multimodal vision-based approach and evaluations, IEEE transactions on intelli-
gent transportation systems 15 (2014), no. 6, 2368–2377.

[18] K. O’Shea and R. Nash, An introduction to convolutional neural networks, arXiv preprint
arXiv:1511.08458 (2015).

[19] M. Oudah, A. Al-Naji, and J. Chahl, Hand gesture recognition based on computer vision:
a review of techniques, journal of Imaging 6 (2020), no. 8, 73.

[20] S. S. Rautaray and A. Agrawal, Vision based hand gesture recognition for human computer
interaction: a survey, Artificial intelligence review 43 (2015), no. 1, 1–54.

[21] C. Saha, D. Goswami, S. Saha, A. Konar, A. Lekova, and A. K. Nagar, A novel gesture
driven fuzzy interface system for car racing game, 2015 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE), IEEE, 2015, pp. 1–8.

[22] J. J. Stephan and Sana’a K., Gesture recognition for human-computer interaction (hci)., Int.
J. Adv. Comp. Techn. 2 (2010), no. 4, 30–35.

[23] J. Suarez and R. R. Murphy, Hand gesture recognition with depth images: A review, 2012
IEEE RO-MAN: the 21st IEEE international symposium on robot and human interac-
tive communication, IEEE, 2012, pp. 411–417.

[24] X. Y. Wu, A hand gesture recognition algorithm based on dc-cnn, Multimedia Tools and
Applications 79 (2020), no. 13, 9193–9205.

BIBLIOGRAPHY 37

[25] D. Xu, A neural network approach for hand gesture recognition in virtual reality driving
training system of spg, 18th International Conference on Pattern Recognition (ICPR’06),
vol. 3, IEEE, 2006, pp. 519–522.

[26] P. Xu, A real-time hand gesture recognition and human-computer interaction system, arXiv
preprint arXiv:1704.07296 (2017).

[27] M. Yasen and S. Jusoh, A systematic review on hand gesture recognition techniques, chal-
lenges and applications, PeerJ Computer Science 5 (2019), e218.

[28] Y. Zhu, Z. Yang, and B Yuan, Vision based hand gesture recognition, 2013 International
Conference on Service Sciences (ICSS), IEEE, 2013, pp. 260–265.

	Introduction
	Introduction
	Context
	Motivation
	Goals

	Related work
	Pipeline
	Image acquisition & pre-processing
	Convolutional Neural Network
	Gesture mapping
	Conclusions

	Poject proposal
	Requirements
	Image Acquisition
	Convolutional Neural Network
	Gesture Mapping

	Coding project
	Capturing and Preprocessing Images
	CNN and data set
	Mapping hand gestures
	Conclusions

	Testing & Results
	Testing
	Results
	Baseline: Sim racing wheel and Controller
	1st Approach
	2nd Approach
	3rd Approach

	General outcomes

	Conclusions & Further investigation
	Conclusions
	Future work

	Technical manual
	Software versions
	How to install
	How to run
	Configuration
	Recommendations

	Bibliography

