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A B S T R A C T

How do slums shape the economic and health dynamics of pandemics? A difference-in-differences analysis
using millions of mobile phones in Brazil shows that residents of overcrowded slums engaged in less social
distancing after the outbreak of Covid-19. We develop and calibrate a choice-theoretic equilibrium model in
which individuals are heterogeneous in income and some people live in high-density slums. Slum residents
account for a disproportionately high number of infections and deaths and, without slums, deaths increase in
non-slum neighborhoods. Policy analysis of reallocation of medical resources, lockdowns and cash transfers
produce heterogeneous effects across groups. Policy simulations indicate that: reallocating medical resources
cuts deaths and raises output and the welfare of both groups; mild lockdowns favor slum individuals by
mitigating the demand for hospital beds, whereas strict confinements mostly delay the evolution of the
pandemic; and cash transfers benefit slum residents to the detriment of others, highlighting important
distributional effects.
‘‘The issue is that everything is so close together here. One house next to
the other; one on top of the other. What looks like only a small one is
actually five or six in the same space. A lot of people here work outside
of Paraisopolis. If the virus spreads here, it will spread all over Sao
Paulo’’. Hebert Douglas, resident of Paraisopolis, one of the largest slums
in Brazil (Folha de São Paulo, 2020)

1. Introduction

Disease outbreaks can affect vulnerable people disproportionately,
contributing to the increase in health and economic disparities. Since
its onset, the Covid-19 pandemic has affected places where most social
interactions occur, as the new coronavirus spreads mainly through
close contact among people. Consequently, health authorities advise
people to avoid crowded areas and to practice social distancing. Such
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1 Inloco (www.inloco.com.br), a Brazilian technology company, shared the data on social distancing. See Section 2 for details on these data.

measures can be challenging to put in practice in densely populated
areas, such as overcrowded slums in developing countries. Residents
of these neighborhoods are also poorer individuals whose incomes are
likely to be more adversely affected by lockdowns. Slums are prevalent
in the majority of cities in developing countries and more than 1 billion
people in the world live in them (United Nations, 2020). Despite their
importance, to the best of our knowledge, no paper in the growing
literature on the economics of epidemics has addressed the role of slums
in shaping the economic and health dynamics of pandemics. This paper
fills this gap and makes three contributions.

Our first contribution is empirical. We use daily geo-localized data
from millions of mobile phones in Sao Paulo and Rio de Janeiro, the
two largest cities in Brazil, one of the countries most affected by the
Covid-19 pandemic.1 Through a difference-in-differences analysis, we
vailable online 19 April 2022
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show that social distancing increased significantly less in areas with
slums after the adoption of non-pharmaceutical interventions (NPIs) –
such as the closure of schools, restaurants and retail stores – in both
of these cities. Moreover, areas with slums are associated with more
fatalities.

The second contribution is theoretical. We build a model with
heterogeneous housing location and behavioral choices to address how
the prevalence of slums contributes to the spread of infectious diseases.
Individuals live in two localities: poorer agents live in high-density
places (slums), while richer agents do not. Slum residents are also
less likely to have access to intensive care units (ICUs) in hospitals,
but they are on average younger (as in the data). People leave their
houses to work or enjoy leisure outside and this can lead to infections.
Individuals from different locations interact when they leave their
homes. The model allows for both negative and positive externalities
regarding social distancing. The risks that one group takes might spill
over onto others through increased transmission (negative externality),
but the point of herd immunity may be reached more quickly (positive
externality).

The paper’s third contribution is quantitative. We parameterize the
model to be consistent with Covid-19 transmission and with key empir-
ical moments of the city of Rio de Janeiro. The model reproduces our
empirical finding that, after the outbreak of the pandemic, low-income
slum residents engage in less social distancing relative to individuals
who live in other neighborhoods. As they are poorer, slum residents
work relatively more hours even though this means spending more
time in crowded areas. This leads to worse health outcomes for this
group. Although slum dwellers correspond to 22% of Rio de Janeiro’s
population, they account for around 30% of the Covid-19 deaths in the
city. This group thus contributes more towards reaching herd immunity
in society.2 In a counterfactual world without slums, residents in other
neighborhoods end up catching the virus more and die in higher
numbers.

The emergence of several epidemics (such as Ebola and three lethal
coronaviruses) in less than 20 years highlights the importance of ad-
equate policy responses to disease outbreaks. We then use the model
to simulate a variety of policy experiments: the reallocation of existing
medical resources, shelter-at-home policies, and cash-transfer schemes.
In developing countries, most poor individuals do not have private
health insurance and must rely on publicly provided health care that
is often at capacity. We investigate the pooling of all intensive care
units in Rio de Janeiro into one group that is offered to anyone who
needs it, regardless of insurance. This alleviates the capacity constraints
and decreases the death burden of the disease among both groups of
the population. The total death rate is reduced by 28% relative to an
environment with no policies. In our simulations, this redistributive
policy positively impacts aggregate welfare and output.

Shelter-at-home policies act to delay the dynamics of the disease
substantially. These policies buy time but, if vaccines or new treatments
are not introduced quickly, they hardly change overall death rates.
Lighter lockdowns can be more effective as they lead to an equilibrium
in which the rate of growth in the number of infected individuals is
slower than in the benchmark. This smooths the burden on hospital
resources and saves lives. On the other hand, very strict lockdowns
contain the disease so much that, when lifted, the health dynamics
is quite similar to a no-policy scenario, only delayed. In addition,
strict lockdowns promote a deep economic downturn in the short
run. Confinement policies that shelter one particular group lead to a
redistribution of deaths from the sheltered group to the other. This
actually leads to the welfare of both groups to fall: one faces more
deaths and the other a restriction on their movement.

2 We also consider an extension in which there is a possibility of working
rom home among the non-slum dwellers, which reinforces these results.
2

a

Cash transfers are particularly important for the poorer individuals
who live in slums. When we implement a policy that hands over cash
to the population, slum dwellers can afford to become relatively more
cautious. This decreases the number of infections among this group
and consequently increases this statistic among those living in other
neighborhoods.

We also explore extensions in our framework in which we relax
some assumptions of the baseline environment. One such extension is
the possibility of a vaccine. The economy will have essentially reached
herd immunity if the pandemic develops unchecked and a vaccine only
arrives 18 months after the outbreak. Another extension analyzes the
case in which individuals do not necessarily become immune after
recovering from Covid-19. In this scenario with partial immunity, the
epidemic lasts longer and death tolls are substantially higher than in
the baseline case (in which recovered individuals enjoy full immunity
against the virus). We also introduce the possibility of telework among
non-slums residents, increasing the contribution of slum residents for
society to achieve herd immunity and heightening the disparities across
the two groups.

This paper relates to the economics literature that adds behavioral
choices to epidemiological models in the tradition of Kermack and
McKendrick (1927). This effort has been mostly theoretical, e.g. Kre-
mer (1996), Quercioli and Smith (2006), and Toxvaerd (2019). There
exists some quantitative articles in the context of HIV/AIDS, such as
Greenwood et al. (2017, 2019) and Chan et al. (2016). Our paper shares
the principle of modeling infectious diseases with a special attention
to behavioral choices. We contribute to this literature by studying
individual choices in slums, which are an important feature in cities
in the majority of developing countries.3

There has recently been a great incursion of the economics liter-
ature into the study of the Covid-19 pandemic.4 Some papers have
looked at optimal confinement policies that force stricter levels of social
distancing beyond what individuals endogenously choose, e.g., Al-
varez et al. (2021), Farboodi et al. (2021), Giannitsarou et al. (2021)
and Eichenbaum et al. (2021). A few papers have added choices made
by heterogeneous groups, like different sectors (Kaplan et al., 2020)
or age groups (Brotherhood et al., 2020) and (Favero et al., 2020).
We also connect with the strand using spatial economic models to
understand the diffusion of the Covid-19 pandemic (e.g., Argente et al.
(2020), Bognanni et al. (2020), Cunat and Zymek (2020) and Fajgel-
baum et al. (2020)). Our work is mostly related to Brotherhood et al.
(2020) and Alon et al. (2020). We expand the framework developed
by Brotherhood et al. (2020) by adding different locations (slums and
other neighborhoods), poorer and richer agents, and differential access
to health care. Few quantitative papers focus on studying the Covid-
19 pandemic in developing countries.5 One exception is Alon et al.
(2020), but they do not model slums and the impact of high-density
environments as we do.

Our work also relates to two strands of the urban economics lit-
erature. First, we connect to the papers on agglomeration economies
aiming to understand the advantages and disadvantages of density in
cities (Duranton and Puga, 2004; Ahlfeldt et al., 2015; Henderson and
Turner, 2020). Most of the papers in this field focus on the advantages

3 From a historical perspective, the association between slums and pan-
emics goes well beyond the Covid-19 pandemic, including the cholera
utbreak in the 1850s in London’s slums (Smith, 1964; Ambrus et al., 2020)
nd the Spanish Flu outbreak in slums in Philadelphia (Crosby, 2003).

4 See Boissay and Rungcharoenkitkul (2020), Brodeur et al. (2021)
nd Stantcheva (2022) for recent reviews of this growing literature.

5 There are some articles investigating empirically the health and eco-
omic effects of the Covid-19 pandemic in developing countries. See, for
nstance, Egger et al. (2021) and the World Development articles on ‘‘Pan-
emics, COVID19, and Sustainability and Development’’, including the paper
y Ray (2020). See also Bottan et al. (2020), Palamim and Marson (2020)
nd Rocha et al. (2021).
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of density and increased physical proximity, such as sharing ideas,
fostering innovation, and faster technology adoption (Duranton and
Puga, 2020). We add to some recent papers studying the costs of
agglomeration (e.g., Combes et al. (2019)) by explicitly taking into ac-
count externalities of physical proximity in the context of a pandemic.
Second, we add to the strand modeling the causes and consequences of
slums (e.g., Alves (2021), Brueckner and Selod (2009), Monge-Naranjo
et al. (2018), Cavalcanti et al. (2019) and Henderson et al. (2021)) by
taking into account the externalities of slums during disease outbreaks.

This paper is organized as follows. The next section presents an
empirical analysis regarding how the Covid-19 pandemic evolved dif-
ferently in slums and other areas in Brazil. Section 3 describes the
model environment and Section 4 discusses its calibration. Section 5
presents our baseline results and Section 6 provides results for policy
experiments. Section 7 discusses some extensions to the baseline model.
Section 8 concludes.

2. Empirical motivation

Slums are densely populated areas with narrow alleys and small
houses.6 Most informal settlements lack adequate sanitation and piped

ater supply. Poverty is widespread. According to the 2010 Brazilian
opulation Census, the population density in slums in the cities of
io de Janeiro and Sao Paulo is approximately five times larger than

n other neighborhoods. In addition, per capita income of households
iving in slums in these two cities is roughly one-third of the income of
hose living in other areas. These features of slums imply that move-
ent restrictions are in general more costly for individuals living in

lums compared with those living in other neighborhoods. The impact
f the pandemic on the adherence to social distancing practices in slums
s, however, conceptually ambivalent: some factors may induce greater
obility (e.g., the need to work more hours because income losses

re more severe for low-income families) or lower mobility (e.g., slum
esidents are more exposed to precarious employment conditions and
ore likely to lose their jobs) compared to non-slum areas.

To investigate how social distancing changed during the pandemic
n areas with and without slums, we use a social distancing index
reated and developed by Inloco (www.inloco.com.br), a Brazilian
echnology company. The company collects anonymized location data
rom millions of mobile phones in Brazil, tracking (with a 3-meter pre-
ision) the devices’ location and movements to different places, but en-
uring user privacy.7 The company divides cities into non-overlapping
‘hexagons’’ and measures the percentage of devices in a given hexagon
hat remained within a radius of 450 m of the location identified as
ome. The index is computed daily and ranges from zero to one, where
he index corresponds to the fraction of devices that stay at home in a
iven day. We obtained the social distancing index for each hexagon
rom February 1 to May 30, 2020 (120 days) for two cities: Rio de
aneiro and Sao Paulo. Rio de Janeiro has 841 hexagons, Sao Paulo
301 (see Figures A1 and A2 in Appendix A for more details on the
on-overlapping hexagons).

We define slums as housing units in ‘‘subnormal agglomerations’’.
ccording to the population census, a subnormal agglomeration satis-

ies three conditions: (i) it consists of a group of at least 50 housing
nits, (ii) where land is occupied illegally and (iii) is urbanized in a
isordered pattern and/or lacks basic public services such as sewage
r electricity. Notice that there is a connection between housing units

6 The definition of slums varies depending on the country, but slums are
lways associated with low standards of urban services, overcrowding and
llegal occupation of land (Cavalcanti et al., 2019).

7 See Peixoto et al. (2020) for more details on the Inloco data. Ajzenman
t al. (2022) compare Inloco’s and Google’s social distancing indexes for Brazil
3

nd show a high correlation between the two measures. e
in subnormal agglomeration and the notion of a ‘‘slum’’. See online
Appendix A for more detail on data sources and definitions.8
Fact 1: Social distancing increased after non-pharmaceutical inter-
ventions (NPIs)

Fig. 1 contains the daily average social distancing index for the cities
of Rio de Janeiro (Fig. 1(a)) and Sao Paulo (Fig. 1(b)). It shows that
social distancing increased in both cities after NPIs were implemented.
The first NPI affecting the city of Rio de Janeiro was announced on
March 11. One can observe a sharp increase in the social distancing
index just a few days after this measure was implemented. A similar
pattern is observed for Sao Paulo, where the first NPI was announced
on March 13.9
Fact 2: In slums, social distancing increased less after the adoption
of NPIs

We now present reduced-form evidence showing an association
between social distancing and slums. The unit of investigation is the
hexagon provided by Inloco. We build a dataset of socioeconomic
characteristics for each hexagon based on the census tracts of the 2010
Brazilian Population Census conducted by the country’s statistical office
(Instituto Brasileiro de Geografia e Estatística, IBGE) – see Appendix A
for more details – and combine this dataset with our social distancing
index. We then calculate the number of slum housing units in each
hexagon. We create a dummy variable that equals one if the hexagon
has any slum within its boundaries and zero otherwise. Rio de Janeiro
has 510 hexagons with slums; Sao Paulo has 598 (see Figure A3 in
online Appendix A for the location of those hexagons). The ‘‘treated
group’’ is composed of hexagons with slums, while the comparison
group is composed of hexagons without slums.

To investigate how social distancing evolved in slums compared
to other areas after the implementation of NPIs, we use the following
dynamic difference-in-differences specification:

𝑌ℎ𝑡 =
𝐿
∑

𝜏=−𝐾
𝛽𝜏𝟏{𝑡 − 𝑡∗ = 𝜏} + 𝜔ℎ + 𝛿𝑡 + 𝜖ℎ𝑡 , (1)

where 𝑌ℎ𝑡 is the social distancing index for hexagon ℎ on day 𝑡.
The hexagon fixed effect 𝜔ℎ accounts for unobserved time-invariant
determinants of social distancing, while the inclusion of time fixed
effects 𝛿𝑡 adjusts for aggregate shocks that are common to all hexagons.
The indicator variable 𝟏{𝑡− 𝑡∗ = 𝜏} takes the value of one for hexagons
with slums when 𝜏 days away from the day of the first NPI (𝑡∗), and
zero otherwise. The parameter 𝛽𝜏 is the dynamic treatment effect. We
set the coefficient on 𝛽−1 equal to zero to use the day before the first
NPI as the base date—March 10 in Rio de Janeiro and March 12 in Sao
Paulo. As the social distancing index is bounded between 0 and 1, each
coefficient 𝛽𝜏 should be interpreted as a change in percentage points
relative to the day before the first NPI. We cluster standard errors at the
hexagon level and weight the observations by the hexagon population
in 2010.10 The identifying assumption is that in the period of analysis,
exagons with slums would have had similar trends in social distancing
compared to hexagons without slums) in the absence of NPIs.

8 Before the pandemic, there were no large differences in cellphone penetra-
ion between slum and non-slum areas. Using the 2019 National Health Survey
ata and Pitcairn et al. (2021)’s methodology to classify households into slum
nd non-slum residents, we find that 95.80% and 92.58% of households in
on-slum and slum areas have cellphones, respectively. However, individuals
n slums might use their phones differently during the pandemic (e.g., the
ossibility of remote working is different between the two groups of residents).

9 In Sao Paulo, Decree 64,862, on March 13, suspended public events
ith more than 500 people and public school classes (and recommended the

ame for private schools). In Rio de Janeiro, Decree 45,966, on March 11,
tipulated the measures that would be adopted: isolation, quarantine, and
pecific medical treatments.
10 Figure B4 in Appendix B shows that results are qualitatively similar when
e do not use population weights, but the point regression coefficients are

ess precisely estimated. Results remain significant when we cluster standard
rrors at the neighborhood level—see Appendix Figure B5.

http://www.inloco.com.br
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Fig. 1. Social distancing index. Notes. The figure shows the evolution of the social distancing index for the cities of Rio de Janeiro and Sao Paulo between February 1 and May
18. The first non-pharmaceutical intervention in Rio de Janeiro was put in place on March 11 and in Sao Paulo on March 13.
Fig. 2. Dynamic difference-in-differences analysis: Effect of NPIs on social distancing in areas with slums relative to those without slums. Notes. The figure shows the results for
coefficients estimated from Eq. (1). Coefficients should be interpreted as a change in percentage points relative to the base period, which corresponds to the day before each NPI.
Vertical dotted lines indicate the day of the NPI in each city. The ‘‘treated group’’ is composed of hexagons with at least one housing unit in a slum. We use 841 hexagons in Rio
de Janeiro and 1,301 hexagons in Sao Paulo. Data are provided at the hexagon-day level. The dependent variable is the social distancing index for hexagon ℎ on day 𝑡. Standard
errors clustered at the hexagon level. Confidence intervals: 95%.
Fig. 2 shows the results of the dynamic difference-in-differences
analysis. Hexagons with and without slums evolved similarly before the
NPIs in both cities. This suggests the absence of different pre-trends in
social distancing and therefore yields support for the main identifying
assumption. Furthermore, this result suggests that prior to the NPIs
there was no differential effect of the pandemic on social distancing.
This is consistent with (i) the small change in mobility before the NPIs
we observed in Fact 1 and (ii) the fact that at that time, the pandemic
was in its early stages—the first COVID-19 case (on Feb 26, 2020 in
Sao Paulo and Mar 05, 2020 in Rio de Janeiro) happened a few days
before the NPIs.11

After the first NPI, a sharp decline in social distancing (of about 4–
5 percentage points) follows in hexagons with slums, relative to those
without slums. Indeed, the results of a standard difference-in-difference
strategy in Table B1 in online Appendix B show a (statistically sig-
nificant) average reduction of the social distancing index of 3.9 and
4.3 percentage points in slum areas in Rio de Janeiro and Sao Paulo,
respectively. This decline is relative to pre-Covid social distancing index
of about 0.30 in both cities.12

11 This is different from other settings where there was a differential effect
f the pandemic itself between rich and poor areas, followed by an additional
ifferential effect after NPIs.
12 Column (III) of Table B1 in Appendix B shows that the reduction in the
ocial distancing index was 0.43 percentage points lower in Rio de Janeiro
4

ompared to Sao Paulo (but statistically not significant).
The adherence of individuals to social distancing measures is differ-
ent in areas with and without slums. The magnitude of the treatment
effect is similar in both Rio de Janeiro and Sao Paulo, but the coef-
ficients are more precisely estimated for the latter. Given the spatial
distribution of slums in Rio de Janeiro, several hexagons in Appendix
Figure A3(a) have a small part of slums within their boundaries.
Standard errors may increase when we code hexagons using the slum
dummy because part of the population lives outside a slum and thus
may have a different mobility pattern. In Sao Paulo, slums are located
in more remote areas, and the several hexagons in Appendix Figure
A3(b) have a large share of slums within their boundaries. Appendix
Figure B6 shows that the qualitative implications are similar when
we change the treatment dummy for the slum share in each hexagon.
Besides, standard errors reduce for Rio de Janeiro and remain precisely
estimated for Sao Paulo.

Appendix Figure B7 depicts that lower-income workers are more
likely to be working in-person. This is consistent with the observed
relative drops in social distancing. Behavioral choices regarding so-
cial distancing can also be driven by leisure decisions. Our model in
Section 3 rationalizes how labor and leisure decisions explain social
distancing outcomes.13

13 The day-by-day analysis of Fig. 2 suggests that the relative decrease in
social distancing is similar during weekend days (leisure days) and weekdays
(work days). Appendix Figure B8 splits the sample and finds comparable
magnitudes of relative social distancing drops on weekdays (Monday to Friday)
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Fig. 3. Slums and Covid-19 deaths. Notes. The figure shows Covid-19 deaths for the cities of Rio de Janeiro on June 14 and Sao Paulo on May 25. The percentage of slums in
each area is from the 2010 census.
Fact 3: More Covid-19 deaths occurred in areas with slums than in
areas without slums.

The risk of Covid-19 transmission is higher in overcrowded areas,
such as urban slums. In addition, one might expect that health facilities
would be more congested in areas near slums. People in slums usually
have less access to private health providers.14 Therefore, we would
expect more Covid-related deaths in areas with slums than in other
neighborhoods.

Fig. 3 provides descriptive evidence suggesting that places in Rio de
Janeiro and in Sao Paulo with more slums experienced more Covid-19
deaths. This figure uses Covid-19 death data at the neighborhood level
(which is a group of hexagons), as this is the most disaggregated level
officially reported by both cities.

We now conduct the difference-in-differences analysis to check
how (Covid and non-Covid related) deaths evolved in slums and non-
slums areas using neighborhood-by-month data due to constraints on
data availability (see Appendix A). We use the same specification as
in Eq. (1) with deaths as the dependent variable, but now we use
neighborhood fixed effects and month fixed effects. The dynamic treat-
ment effect measures the differential impact of the pandemic on the
number of deaths comparing neighborhoods with and without slums.
Again, given the nature of our specification, we estimate the effect
of the pandemic on the difference between neighborhoods with and
without slums. The analysis period is from January 2018 until June
2021. The base period is January 2020—the month before the first case
in Sao Paulo and Rio de Janeiro. Standard errors are clustered at the
neighborhood level.

The results of Fig. 4 reveal statistically significant effects: neighbor-
hoods with slums have more deaths by Covid-19 than those without
slums in Rio de Janeiro and Sao Paulo (see panels (a) and (b)). The
point estimate of every period after January 2020 is positive, and most
of them are significantly different from zero. We observe that the effects
present two peaks: in May-2020 and Apr-2021, consistent with the
shape of the Covid-19 waves in Brazil—notice that the shape of the
waves is more pronounced in Sao Paulo. In panels (c) and (d), we find

and weekend days (Saturday and Sunday). This fact can be rationalized by
(i) ethnography studies suggesting that slum dwellers work relatively more
during weekend days (e.g., Nisbett (2017)); and (ii) a mechanism in our model
regarding labor and leisure times changing in the same proportion due to the
equalization of marginal benefits and costs—See Section 3.

14 Approximately 15% and 22% of the overall population have access to
private health insurance in Rio de Janeiro and Sao Paulo, respectively.
5

no effects on non-Covid deaths, which suggests that the pandemic had
no differential effects on other deaths. Finally, in panels (e) and (f),
we analyze the impacts on total deaths. Our findings show that all the
pre-treatment effects are indistinguishable from zero, i.e., there are no
effects on total deaths before the pandemic. In addition, after January
2020, deaths are higher in neighborhoods with slums compared to
those without slums, which is consistent with the rise in Covid deaths
we observed.15

3. Model

In this section, we present a choice-theoretic SIR model in which
individuals are heterogeneous on their income, location and access to
ICUs. Individuals leave their house to work or enjoy leisure outside.
Leaving home increases the risk of Covid-19 infection. We use the
model to study the role of slums in shaping the economic and health
dynamics of the Covid-19 pandemic.

Time is discrete. Suppose there are two groups of agents in this
economy: those who live in slums (or favelas), 𝑔 = 𝑓 , and others
who do not, 𝑔 = 𝑜.16 Agents work, enjoy leisure outside their home,
and home hours. Home hours can also be seen as a proxy for home
production. In the presence of the new coronavirus, denote the agent’s
health status by 𝑗. A susceptible agent is denoted by 𝑗 = 𝑠. By spending
time outside the house, the agent may catch Covid-19. An infected
agent is denoted by 𝑗 = 𝑖. Conditional on being infected, the agent
may either recover (with probability 𝜙(0, 𝑔)) or develop more serious
symptoms that require hospitalization in an ICU (with probability 𝛼(𝑔)).
Denote a hospitalized agent by 𝑗 = ℎ. Someone in the hospital may
either recover (with probability 𝜙(1, 𝑔)) or die (with probability 𝛿𝑡(𝑔)).
The death probability is time varying as it may depend on the usage of
scarce hospital resources. Such resources may also be different across
the two groups. Moreover, we assume that the average slum resident is
younger. This reflects different recovery and death probabilities across

15 Serological tests in Brazilian slums point out that Covid-19 infections are
higher in slums and exceed official data (Prefeitura Rio de Janeiro, 2020). Due
to data restrictions, excess mortality data cannot be analyzed at the intra-city
level in Brazil. Bruce et al. (2020) show that the Covid-19 health impacts in
a given slum in Rio de Janeiro depend on the type of criminal organization
that operates in its territory.

16 We abstract from endogenous housing choice and other characteristics of
slums such as weak property rights; see Cavalcanti et al. (2019). Due to the
swift timeline of a pandemic, we take housing choice and the spatial housing
distribution of a city as given.
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Fig. 4. Dynamic difference-in-differences analysis: Effect on deaths in areas with slums relative to those without slums. Notes. The figure shows the results for coefficients estimated
from Eq. (1) with neighborhood and month fixed effects. Coefficients should be interpreted as a change in number of deaths relative to the base period, which corresponds to
January 2020. The ‘‘treated group’’ is composed of neighborhoods in Rio de Janeiro or Sao Paulo with at least one housing unit in a slum. There are 156 neighborhoods in Rio
de Janeiro and 96 neighborhoods in Sao Paulo. Data are provided at the neighborhood-month level. Vertical dotted lines indicate the month before the first Covid case in Brazil
(January 2020). Panels (a), (c), and (e) are for Rio de Janeiro, while Panels (b), (d), and (f) are for Sao Paulo. Panels (a) and (b): the dependent variable is the number of
Covid-related deaths—the number of deaths between Jan-2018 and Feb-2020 is equal to zero. Panels (c) e (d): the dependent variable is the number of non-Covid-related deaths.
Panels (e) and (f): the dependent variable is the total number of deaths. Standard errors clustered at the neighborhood level. Confidence intervals: 95%.
𝑥
a
p

groups.17 A recovered individual (𝑗 = 𝑟) is assumed to be immune to
the disease forever. Agents discount the future with factor 𝛽 ∈ (0, 1).

An individual is endowed with one unit of time per period that may
be used for work 𝑛, leisure outside the house 𝓁, and hours at home 𝑑

17 Slum residents are on average younger than individuals in other areas
oth in our Brazilian data and in data from other countries; see United
ations (2006). Despite their younger age, slum residents may not necessarily
e healthier. We explore the impact of the different death and recovery
robabilities in Section 5.
6

𝑢

(‘‘domestic’’ hours). The time constraint thus reads:

𝑛 + 𝓁 + 𝑑 = 1. (2)

An individual derives utility from consumption 𝑐, a composite
leisure good consumed outside the home 𝑎, and domestic hours 𝑑. The
good 𝑎 is produced using hours 𝓁 and buying ‘‘intermediate’’ goods

according to the function 𝑎 = 𝑎(𝑥,𝓁). We normalize the utility
fter death to zero and capture the bliss from being alive through the
arameter 𝑏. The utility function is given by:
(𝑐, 𝑎, 𝑑; 𝑗, 𝑔, 𝑝) = ln 𝑐 + 𝛾 ln 𝑎 + [𝜆𝑑 + 𝜆(𝑗) + 𝜆𝑝(𝑗, 𝑔)] ln(𝑑) + 𝑏.
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The term 𝜆(𝑗) expresses an additional preference for staying at home
hen infected and is supposed to capture some partial altruism. This
ariable can take two levels: 𝜆(ℎ) = 𝜆(𝑖) = 𝜆𝑎 and 𝜆(𝑟) = 𝜆(𝑠) = 0, so

that individuals who can transmit the virus are partially altruistic and
the others have no need for that; 𝜆𝑝(𝑗, 𝑔) has a similar role, but from
the point of view of the government.18 This captures simple policies that
confine all groups to staying at home (𝜆𝑝(𝑗, 𝑔) = 𝜆̄𝑝) but can also capture
group-specific confinements (𝜆𝑝(𝑗, 𝑔) = 𝜆̄𝑝(𝑔)) and even condition on
infection status.

An individual’s income consists of two terms. The first is labor
income 𝑤(𝑔)𝑛. Note that the wage per unit of time can vary by group.
The second term corresponds to government transfers and can be time
dependent. Denote it by 𝑤𝑝(𝑔). The budget constraint of the agent is
given by:

𝑐 + 𝑥 = 𝑤𝑝(𝑔) +𝑤(𝑔)𝑛. (3)

A susceptible individual (𝑗 = 𝑠) may become infected when away
from home. The longer one spends outside, the more likely it is that
an infection takes place. For each unit of time spent outside the house,
the transmission risk is given by 𝛱𝑡(𝑔). Note that this is time varying
as it depends on two aggregate variables: (i) the fraction of infected
people in the economy and (ii) the time infected people spend outside
their houses. It can also be group specific as individuals from different
groups may be more exposed to one group versus the other, due to
differences in the density in their neighborhoods, for instance. This will
be elaborated on later. The probability of catching the virus in a given
period 𝑡 is given by

𝜋(𝑛 + 𝓁,𝛱𝑡(𝑔)) = (𝑛 + 𝓁)𝛱𝑡(𝑔). (4)

We turn now to decision making. The problem of a susceptible
individual is described by the following maximization problem:

𝑉𝑡(𝑠, 𝑔) = max
𝑐,𝑥,𝑛,𝓁,𝑑

𝑢(𝑐, 𝑎(𝑥,𝓁), 𝑑; 𝑠, 𝑔, 𝑝𝑡) + (5)

𝛽{[1 − 𝜋(𝑛 + 𝓁,𝛱𝑡(𝑔))]𝑉𝑡+1(𝑠, 𝑔) + 𝜋(𝑛 + 𝓁,𝛱𝑡(𝑔))𝑉𝑡+1(𝑖, 𝑔)}

subject to (2) and (3).

The first line in this problem corresponds to the instantaneous utility
from consumption and leisure. The second line spells out the contin-
uation value. The first term in curly brackets represents the situation
in which the individual does not get infected this period and continues
life as a susceptible person in the next period. The second term denotes
the case in which the agent gets infected today and continues life as an
infected individual in the next period.

The value function for an infected person who does not require
hospitalization is given by

𝑉𝑡(𝑖, 𝑔) = max
𝑐,𝑥,𝑛,𝓁,𝑑

𝑢(𝑐, 𝑎(𝑥,𝓁), 𝑑; 𝑖, 𝑔, 𝑝𝑡) + 𝛽𝜙(0, 𝑔)𝑉𝑡+1(𝑟, 𝑔) + (6)

𝛽(1 − 𝜙(0, 𝑔))[𝛼(𝑔)𝑉𝑡+1(ℎ, 𝑔) + (1 − 𝛼(𝑔))𝑉𝑡+1(𝑖, 𝑔)]

subject to (2) and (3).

The first line captures the instantaneous utility from consumption and
leisure and the situation in which the agent recovers from the disease.
The second line is the continuation value in which the agent either
requires hospitalization (first term in square brackets) or continues life
as an infected person (second term).

Set the flow utility for a hospitalized individual at an ICU (𝑗 = ℎ) to
the same as death (i.e., zero). These individuals may still recover and
enjoy utility from consumption, leisure, and bliss of life later. These
agents do not work, but we assume they interact with people in the
hospital and may thus infect others. Set an exogenous amount of time
they interact with their carers to 𝓁 = 𝓁. Their value function thus reads
as follows:

𝑉𝑡(ℎ, 𝑔) = 𝛽
[

𝜙(1, 𝑔)𝑉𝑡+1(𝑟, 𝑔) + (1 − 𝜙(1, 𝑔))(1 − 𝛿𝑡(𝑔))𝑉𝑡+1(ℎ, 𝑔)
]

(7)

18 The subscript 𝑝 denotes that 𝜆 (𝑗, 𝑔) is a policy instrument.
7

𝑝 p
This value function consists of two scenarios: the first term corresponds
to the patient recovering and leaving the ICU and the second term
represents the case in which life continues in the hospital. With the
remaining probability, the agent dies and the utility is normalized to
zero.

Finally, an agent who has already recovered and is resistant to the
virus enjoys utility:

𝑉𝑡(𝑟, 𝑔) = max
𝑐,𝑥,𝑛,𝓁,𝑑

𝑢(𝑐, 𝑎(𝑥,𝓁), 𝑑; 𝑟, 𝑔, 𝑝𝑡) + 𝛽𝑉𝑡+1(𝑟, 𝑔) (8)

subject to (2) and (3).

It is important to keep track of the number of agents who find
hemselves in each of the situations described earlier. Denote the
easure of agents of each type 𝑗 of group 𝑔 in period 𝑡 by 𝑀𝑡(𝑗, 𝑔).

et 𝑡 be the set of these for all 𝑗s and 𝑔s. Moreover, let 𝑛𝑡(𝑗, 𝑔) and
𝑡(𝑗, 𝑔) denote the policy function for hours worked and outside leisure,
espectively, for each agent. Let the equilibrium time allocations in
eriod 𝑡 across all 𝑗 and 𝑔 be summarized in 𝑡. The law of motion
rom one period to the next is represented by the mapping 𝑇 :

𝑡+1 = 𝑇 (𝑡,𝑡,𝛱𝑡(𝑜),𝛱𝑡(𝑓 )). (9)

The law of motion for susceptible people of a group 𝑔 reads as
ollows:

𝑡+1(𝑠, 𝑔) =𝑀𝑡(𝑠, 𝑔)
[

1 − 𝜋(𝑛𝑡(𝑠, 𝑔) + 𝓁𝑡(𝑠, 𝑔),𝛱𝑡(𝑔))
]

. (10)

hat is, the measure of susceptible people next period consists of those
ho are susceptible today and did not catch the virus. The right-hand

ide of (10) thus describes the mapping 𝑇𝑠 for susceptible individuals.
he corresponding equations for the other groups are provided in
ppendix C. The aggregate mapping in (9) is given by the collection
f all 𝑇𝑗 .

Aggregate output in this economy is given by all the work supplied
y agents of the different groups and infection statuses multiplied by
heir wages:

𝑡 =
∑

𝑗,𝑔
𝑤(𝑔)𝑛𝑡(𝑗, 𝑔)𝑀𝑡(𝑗, 𝑔). (11)

Turn now to the calculation of the probability of getting infected
er unit of time spent outside. First, let 𝛱0 represent an exogenous
ransmission rate from infected to susceptible. Now, assume that, when
utside their homes, both groups (those who live or do not live in
avelas) spend a fraction 1−𝜁 of their time in a common space shared by
veryone. The remaining 𝜁 fraction of their time is spent only among
embers of their own group (𝑓 or 𝑜). These group-specific activities

re undertaken within separate areas for each group. Denote by 𝜉𝑔 the
raction of the space that is assigned to group 𝑔. This is supposed to
epresent the fact that slums have a much higher density than the rest
f a city. Slum dwellers thus have to interact in much more confined
paces, and this contributes to a faster spread of the virus. We then have
he following:

̂ 𝑡(𝑔) = (1 − 𝜁 )𝛱0
∑

𝑔̃∈{𝑓,𝑜},𝑗∈{𝑖,ℎ}

(

𝑛𝑡(𝑗, 𝑔̃) + 𝓁𝑡(𝑗, 𝑔̃)
)

𝑀𝑡(𝑗, 𝑔̃) (12)

+𝜁𝛱0
∑

𝑗∈{𝑖,ℎ}

1
𝜉𝑔

(

𝑛𝑡(𝑗, 𝑔) + 𝓁𝑡(𝑗, 𝑔)
)

𝑀𝑡(𝑗, 𝑔).

When 𝜁 = 0, this expression reduces to a pure random-mixing situation.
The parameter 𝛱0 is usually calibrated to match a basic reproduc-

tion number (𝑅0) at the outbreak of the epidemic. This number can be
high enough such that it drives Eq. (12) to more than 1 because we do
not control for the possibility of multiple infections in a given period.
To avoid this, we take a continuous-time approximation that yields:

𝛱𝑡(𝑔) = 1 − 𝑒−𝛱̂𝑡(𝑔). (13)

f 𝛱̂𝑡(𝑔) is small, then 𝛱𝑡(𝑔) ≈ 𝛱̂𝑡(𝑔).
We now define the probability that an agent that requires hos-
italization (𝑗 = ℎ) dies, 𝛿𝑡(𝑔). This is time varying, as it depends
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on the supply of scarce hospital resources (e.g., ICU beds) and the
demand by sick patients. Suppose there are two networks of medical
services: a public one to which everyone has access and a private one.
Only individuals with health insurance can access the private network.
Let 𝑍𝑝𝑢𝑏 and 𝑍𝑝𝑟𝑖𝑣 be the number of beds in the public and private
ospitals, respectively. Assume also that no slum dweller (𝑓 ) has access

to health insurance and therefore to private hospitals. For the others
(𝑜), a fraction 𝜓 has health insurance.

Let 𝑈𝑝𝑢𝑏 and 𝑈𝑝𝑟𝑖𝑣 be the number of users in the public and private
networks, respectively. These are given by

𝑈𝑝𝑢𝑏 =𝑀𝑡(ℎ, 𝑓 ) + (1 − 𝜓)𝑀𝑡(ℎ, 𝑜), (14)
𝑈𝑝𝑟𝑖𝑣 = 𝜓𝑀𝑡(ℎ, 𝑜),

where 𝑀𝑡(ℎ, 𝑔) is the number of type-𝑔 agents who need hospitalization.
Assume that an individual who needs hospital care and has access

to an ICU bed dies with probability 𝛿1(𝑔). Those without access to
a hospital bed die with probability 𝛿2(𝑔).19 The death probability for
individuals living or not living in slums is given by the following two
equations:

𝛿(𝑓 ) = 𝛿1(𝑓 ) min
{𝑍𝑝𝑢𝑏
𝑈𝑝𝑢𝑏

, 1
}

+ 𝛿2(𝑓 ) max
{𝑈𝑝𝑢𝑏 −𝑍𝑝𝑢𝑏

𝑈𝑝𝑢𝑏
, 0
}

,

𝛿(𝑜) = 𝜓
[

𝛿1(𝑜) min
{𝑍𝑝𝑟𝑖𝑣
𝑈𝑝𝑟𝑖𝑣

, 1
}

+ 𝛿2(𝑜) max
{𝑈𝑝𝑟𝑖𝑣 −𝑍𝑝𝑟𝑖𝑣

𝑈𝑝𝑟𝑖𝑣
, 0
}]

(15)

+ (1 − 𝜓)
[

𝛿1(𝑜) min
{𝑍𝑝𝑢𝑏
𝑈𝑝𝑢𝑏

, 1
}

+ 𝛿2(𝑜) max
{𝑈𝑝𝑢𝑏 −𝑍𝑝𝑢𝑏

𝑈𝑝𝑢𝑏
, 0
}]

.

he first line spells out the probability of death for a slum dweller
hat requires hospitalization. This only depends on the excess demand
or hospital beds in the public network. The second and third lines
how the same for other agents. Now, with probability 𝜓 , they have
ccess to the private network through their health insurance. With
omplementary probability, they use the public hospital network.

A rational-expectations equilibrium in this economy with initial num-
ber of agents 𝑀0(𝑗, 𝑔) consists of a sequence of infection and death rates
{𝛱𝑡(𝑔), 𝛿𝑡(𝑔)}∞𝑡=0 and equilibrium time allocations {𝑛𝑡(𝑗, 𝑔),𝓁𝑡(𝑗, 𝑔)}∞𝑡=0
such that these time allocations are part of the solutions to the individ-
ual optimization problems (5) to (8), and the resulting law of motion
(9), and their aggregation in (13) and (15) indeed gives rise to the
sequence {𝛱𝑡(𝑔), 𝛿𝑡(𝑔)}∞𝑡=0.

4. Fitting the model to the data

To analyze the role of slums in the Covid-19 pandemic, we must
assign values to the model parameters. There are 28 parameters to
be set. Some (22 parameters) are externally calibrated and others (6
parameters) are chosen such that certain model moments match their
empirical counterparts. We focus our analysis on the city of Rio de
Janeiro. Given that this is a framework to understand social behavior
during a pandemic, we set the model period to one week.
City parameters: According to the 2010 Brazilian census, 22% of Rio
de Janeiro’s population live in slums. We normalize the area of the
model city to one. Then, given the share of the population living in
slums (22%) and the population density in areas with slums relative to
those without slums (4.05), we have the fraction of space assigned to
slums as 𝜉𝑓 = 0.065.20

19 We assume the death probabilities to be group specific to reflect different
ge structures across the two neighborhoods. See Section 4 for details.
20 The population density in areas with and without slums in the city of
io de Janeiro is from the 2010 census data. Although informal settlements
re changing the geography of Rio de Janeiro, we consider only the current
abitable areas of city. Population density in Rio de Janeiro’s slums is about
5,701.18 individuals per square kilometer and in areas without slums it is
8

,344.46. The difference is a factor of four.
The proportion of time individuals spend with members of their
same group is given by 𝜁 . We set 𝜁 = 0.334. This corresponds to the
fraction of time spent outside that is not work related. The implicit
assumption is that work-related activities take place across all groups
whereas leisure outside is separate for each group.21

We normalize the wage rate of individuals who do not live in slums
to one, that is, 𝑤(𝑜) = 1. We then set the wage rate of agents who live
n slums to 𝑤(𝑓 ) = 0.277. Therefore, the relative hourly wage per capita
f individuals who live in slums to those who do not is 27.7%, which
s the number observed in the 2010 census data for Rio de Janeiro.

Panel A of Table 1 reports the values of the parameters related to
io de Janeiro.
isease transmission and development: We now turn to parameters

hat control the transmission and disease development of Covid-19. To
iscipline how infectious the disease is, we target the basic reproduc-
ion number, 𝑅0. Appendix D.1 describes how we can compute this
tatistic in the model. The parameter 𝛱0 determines the per-period
ransmission rate in the model and is intimately related to 𝑅0. We thus
ick 𝛱0 to target a value of 2.5 for the basic reproduction number. This
ies within the range used by Atkeson (2020). Ferguson et al. (2020)
se 𝑅0 = 2.4 while Zhang et al. (2020) estimate it to be 2.28. Remuzzi
nd Remuzzi (2020) report values between 2.76 and 3.25. This yields
0 = 11.43.

We set 𝛼(𝑔) = 1 for both groups. This implies that an individual
ho is infected with Covid-19 spends one week with mild symptoms
nd then either recovers or becomes critically ill. To determine the
robabilities of recovery, we turn to medical data. CDC (2020) reports
ge-specific transition rates between infection and ICU care, and from
CU to death. We aggregate these using Rio de Janeiro’s population
yramids for both slums and other areas, which come from the 2010
razilian census. This yields a 2.1% chance that someone in a slum who

s infected ends up needing ICU care; the counterpart for other areas is
.9%. Moreover, the probability of death conditional on being critically
ll is 15.5% for slum residents and 22.9% for other individuals. The
ower probabilities for hospitalization and death for slum residents is a
onsequence of a younger population living in these neighborhoods.
e turn these probabilities into weekly rates to conform with our

hosen model period.22 Moreover, Verity et al. (2020) report that a
ritically ill patient is discharged from the ICU after around 24.7 days,
r 3.52 weeks. We assume the same length of treatment for both groups.
his yields weekly probabilities of recovery from mild symptoms of
(0, 𝑓 ) = 0.979 and 𝜙(0, 𝑜) = 0.971, weekly probabilities of recovering

rom the ICU of 𝜙(1, 𝑔) = 0.284 for all 𝑔, and weekly death probabilities
onditional on being in the ICU of 𝛿1(𝑓 ) = 0.073 and 𝛿1(𝑜) = 0.118. We
ssume the death probability of a hospitalized patient who does not
ave access to an ICU bed to be 𝛿2(𝑔) = 1 for all 𝑔.

Note that we assumed that a patient who is being treated in the
CU does not work or enjoy leisure but still interacts with others and
ay infect them. The amount of time in the model during which this

nteraction takes place is given by 𝓁. Butler et al. (2018) estimate ICU
atients interact with doctors, nurses, and other people around 7.6 h a
ay. Since this is a controlled environment, we use half this number to
etermine infections. This yields 𝓁 = 0.158.

Panel B of Table 1 summarizes the calibrated values of the param-
ters related to the Covid-19 pandemic.
reference parameters: We assume that the composite leisure good 𝑎

s produced according to the following function: 𝑎 = [𝜃𝑥𝜌+(1−𝜃)𝓁𝜌]1∕𝜌.
ollowing Kopecky (2011), we set 𝜌 = −1.72. This yields an elasticity
f substitution between leisure and goods of 0.368, which means they
re complements.

21 Table E3 in Appendix E provides robustness exercises in which 𝜁 ∈
{1∕2, 1∕3}. The main insights are qualitatively similar to our baseline
calibration.

22 See Appendix D.2.
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Table 1
Calibration and estimation of model parameters: Rio de Janeiro.

Parameter Value Interpretation Source

Panel A: City parameters (6 parameters)
∑

𝑗 𝑀0(𝑗, 𝑓 ) 0.222 Fraction of people living in slums Census
𝑤(𝑜) 1 Wage rate of non-slum agents Normalization
𝑤(𝑓 ) 0.277 Wage rate of slum agents Census
𝜉𝑓 0.065 Frac. of space assigned to slums Census
𝜉𝑜 0.934 Frac. of space assigned to areas wo slums Census
𝜁 0.334 Prop. of time spent within group Work/all time outside

Panel B: Disease parameters (15 parameters)
𝛱0 11.43 Infectiousness of Covid-19 Internally estimated
𝛼(𝑜), 𝛼(𝑓 ) 1 Prob. (serious sympt. | no recovery from mild) 1 week w/mild symptoms
𝜙(0, 𝑜) 0.971 Prob. of recovery from mild Covid-19, other CDC & Verity et al. (2020)
𝜙(0, 𝑓 ) 0.979 Prob. of recovery from mild Covid-19, slum CDC & Verity et al. (2020)
𝜙(1, 𝑜), 𝜙(1, 𝑓 ) 0.284 Prob. of recovery from serious Covid-19 CDC & Verity et al. (2020)
𝛿1(𝑜) 0.118 Wkly death rate, other; critically ill with ICU CDC & Verity et al. (2020)
𝛿1(𝑓 ) 0.073 Wkly death rate, slum; critically ill with ICU CDC & Verity et al. (2020)
𝛿2(𝑜), 𝛿2(𝑓 ) 1.0 Wkly death rate; critically ill wo ICU Assumption
𝓁 0.158 Infections through the health care system Butler et al. (2018)
𝜓 0.152 Prop. non-slum agents with priv. insurance ANS
𝑍𝑝𝑢𝑏 8.12e−5 ICU beds (per capita) in public system Covid Radar
𝑍𝑝𝑟𝑖𝑣 4.9e−4 ICU beds (per capita) in private system Covid Radar

Panel C: Preference parameters (7 parameters)
𝜌 −1.72 Elast. of subst. bw leisure time and goods Kopecky (2011)
𝜃 0.108 Production of leisure goods Internally estimated
𝛾 1.089 Rel. utility weight—leisure goods Internally estimated
𝜆𝑑 2.453 Rel. utility weight—leisure at home Internally estimated
𝜆𝑎 1.995 Rel. utility weight—leisure at home; infected Internally estimated
𝛽 0.961∕52 Discount factor Standard
𝑏 8.575 Value of being alive Internally estimated
We set the preference parameters 𝜃, 𝛾, and 𝜆𝑑 to target three data
oments related to time use and expenditures in Brazil. First, we target

he fraction of income spent on goods consumed outside the home.23

ccording to the Brazilian expenditure survey (POF), individuals in Rio
e Janeiro spend on average 27.82% of their income on goods outside
he home.24 Second, we target the average weekly hours at work.
ccording to the Brazilian household survey (PNAD-C), Rio de Janeiro
esidents spend 34.2 h per week at work.25 Assuming an endowment
f 112 non-sleeping weekly hours, this yields the fraction 0.306 for
heir time spent at work. Third, we target the leisure time outside. In
razil, the average person spends around 17.2 h a week outside, which
orresponds to the fraction 0.154 of their endowment of non-sleeping
ours.26

The parameter 𝜆𝑎 denotes the increase in the marginal utility of
taying at home for agents who are infected with Covid. This parameter
s related to the extra amount of time an individual spends at home
ithout any influence from the government. To identify this parameter,
e turn to how agents behave when they contract influenza. Akazawa
t al. (2003) report that the average American worker takes 1.3 days of
ick leave when infected with influenza. Given a 40-h workweek, this
mplies an average of 10.4 h. We assume that the same would happen
ith Covid. As the disease lasts an average of one week (absent the
eed for ICU care), this implies a 26% decline in work time. We assume
he same number for Brazilian workers. Suppose that leisure outside

23 As do (Brotherhood et al., 2020), we classify the following items of the
onsumption basket as goods consumed outside: food away from home, public
ransportation, medical services, and entertainment.
24 The expenditure survey POF is the Pesquisa de Orçamento Familiar for
008–09.
25 The national household survey PNAD-C is the Pesquisa Nacional por
mostra de Domicílios Contínua. For the year 2019, we get the average hours
orked per week and multiply by the share of people who have a job or are

elf-employed.
26 The total hours of leisure outside are computed adding time spent
ommuting (Pereira and Schwanen, 2013) and activities related to socializing
nd cultural and sport activities. These data come from the 2009 PNAD and
he test pilot time-use survey.
9

declines by the same amount. We then choose 𝜆𝑎 to match an increase
in time spent at home by 26% compared with a world without Covid.

For the preference discount factor, we assume that agents discount
the future at roughly 4% per year and set 𝛽 = 0.961∕52. The average real
interest rate in Brazil was approximately 4.9% from 2005.1 to 2020.5
and 3.5% from 2009.1 to 2020.5.27

Finally, we must set a value for 𝑏, the per-period value of being
alive. Note that a higher value for this parameter implies that an
individual will engage in more cautious behavior to avoid death. We
thus pick 𝑏 to generate an increase in time at home as the one observed
at the outbreak of the Covid-19 pandemic. The issue is that most
countries adopted lockdowns at the same time. We thus look at Sweden,
a country that did not implement severe restrictions. Google Mobility
Data reports an increase of 15.7% in time at home in Sweden in April
2020. We take this to represent week 8 of the epidemic. As slums are
not an important factor in Sweden, we use this 15.7% hike as the target
of a version of our model without slums. This yields a value of 𝑏 = 8.575.

Panel C of Table 1 contains the calibrated preference parameters.
Table 2 summarizes some targeted moments of the model and their
data counterpart. The model matches the moments of Rio de Janeiro
quite well.28 Throughout the results of the following sections, we show
that the model also fits some non-targeted moments. In particular, the
model quantitatively replicates the differential behavioral response of
individuals in slums and other neighborhoods as well as the decline in
output during the pandemic.

5. Baseline results

This section presents our baseline results. Our main focus is to
understand the role of slums in the pandemic. We first describe the

27 This is the monthly Over/Selic interest rate (Brazilian Central Bank rate)
minus the inflation rate measured by the IGP-DI (general price index from
Vargas Foundation). We annualized the monthly average real interest rate and
inflation. These two variables can be downloaded from www.ipeadata.gov.br.

28 Appendix E provides sensitivity analysis with respect to the model param-
eters. The baseline results are similar to the ones obtained with the benchmark

calibration.

http://www.ipeadata.gov.br
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Fig. 5. Aggregate variables, baseline.
7

Table 2
Targeted moments—model vs. data.

Moment Model Data (ranges)

Share of individuals living in slums 22% 22%
Pop. density in slums/Pop. density in non-slum areas 4.5 4.5
Relative hourly labor income of individuals in slums 27.7% 27.7%
𝑅0, Covid-19 2.5 1.6–4
% of infected in critical care 3.6 3.6
Weeks in critical care 3.5 3–6
% in critical care who die 20.24 10.6–31.8
Hours/day interacting while in ICU 3.8 7.6 (controlled)
Hours of work per week 34.2 34.2
Hours of outside activities per week 17.2 17.2
% of income on goods outside 27.28 27.28
% ↑ in time @ home – mild symptoms 26 26 (Influenza)
% ↑ in time @ home — outset of Covid-19 15.7 15.7
% of non-slum agents with priv. insurance 15.21 15.21

path of our baseline economy when there is an outbreak of Covid-19
and no policy intervention. Different policies are investigated in the
next section.

Fig. 5 shows the masses of individuals in different health states:
susceptible, infected, hospitalized, recovered, and deceased. The blue
lines describe the dynamics of individuals who live in slums, while
the orange lines represent those who are not slum dwellers.29 The
olid lines display our economic model with equilibrium social dis-
ancing, and the dashed lines show, for comparison, the counterfactual
pidemiological model, in which behavior is unchanged relative to a
orld without the pandemic.30 The last graph in this figure displays
ggregate output. Along with this figure, Table 3 summarizes key
oments of the pandemic in our baseline model (first column) and in a

ypical epidemiological model (second column), where behavior is kept
onstant by assumption.

The total duration of the unchecked epidemic is about a year
when herd immunity becomes strong enough to essentially prevent
urther contagion), and the peak in terms of seriously ill individuals
s reached in about 11 weeks. As the virus spreads, social distancing
ndogenously rises as evidenced by the hike in hours at home by both
roups. The number of infected people is thus reduced relative to the

29 In our calibration, 22% of individuals live in slums. Thus, any change in
he figure is relative to this initial mass.
30 In a world without Covid-19, individuals’ health status are unchanged.
hey choose consumption and their allocation of time to maximize their static
tility function subject to the time and budget constraints.
10
typical epidemiological model. This also translates into a lower death
toll in the benchmark. GDP at the peak is substantially higher in the
epidemiological model relative to the baseline. With the rising risk of
getting infected and possibly dying, agents cut time spent outside their
home and sharply reduce their working hours.

Turning now to the role of slums in shaping health and economic
dynamics, Table 3 shows that the benchmark economy features a much
higher death toll in slums relative to other areas. The total death
rate is 7.35 per 1000 individuals, but in slums it is roughly 10 per
1000 residents. Though slum dwellers represent only 22% of the city’s
population, they account for 30% of the overall deaths. This can be
explained by the higher population density in slums and therefore more
contagion, as well as more congestion of intensive care units – more on
these issues later – but also by differences in the individual choices of
slum and non-slum residents.

Fig. 6 displays the time spent at home, at work, and with leisure
outside. Social distancing (the increase in time at home relative to
an epidemiological model with no behavioral change) is lower for
slum dwellers than for other individuals. Since they are poorer, slum
residents decrease the number of hours worked by less than non-
slum individuals even though they have a higher chance of catching
the virus. Fig. 7 shows the difference in social distancing between
the two groups at the outbreak of the pandemic. At the peak of the
disease, social distancing is about 10 percentage points lower for slum
residents compared with others. This is qualitatively consistent with
our difference-in-differences analysis using mobile phones in Rio de
Janeiro, displayed in Fig. 2. Quantitatively, the unchecked epidemic
generates a larger effect on the difference in social distancing between
slum and non-slum individuals.31 Recall that in our model this is an
unchecked epidemic, while the data includes NPIs. We will discuss the
effects of NPIs in our model in the next section.

To further assess the role of slums in the pandemic, we run a
counterfactual in which we set the measure of slum individuals to zero
and keep all other parameters at their baseline values. See the third
column of Table 3. For the non-slum residents (the only ones in this
hypothetical world), the death rate is now higher than the baseline:
.47 per 1000 in the counterfactual versus 6.57 in the benchmark.

31 We should interpret with caution the comparison of our theoretical social
distancing measure with the empirical index based on mobile phones. The
theoretical measure is an intensive margin proxy for social distancing, while
the index constructed by Inloco is an extensive margin measure. If we interpret
in the model the home time as the fraction of households that stay at home,

then the model and the empirical counterpart would be equivalent.
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Table 3
Baseline results.

Benchmark Epidem. No slum Homog. Homog. Homog.
densities wage rates age struct.

Wks to peak srsly ill (slum) 10.00 9.00 – 15.00 10.00 10.00
Wks to peak srsly ill (other) 11.00 10.00 14.00 14.00 11.00 11.00
Srsly ill p/1000 @ peak (slum) 1.88 5.09 – 0.66 1.19 2.18
Srsly ill p/1000 @ peak (other) 0.77 6.02 0.65 0.68 0.74 0.75
Dead p/1000 1year (slum) 10.04 13.78 – 6.32 8.87 13.49
Dead p/1000 1year (other) 6.35 15.43 6.87 6.86 6.78 6.57
Dead p/1000 1year (all) 7.16 15.06 6.87 6.74 7.25 8.11
Dead p/1000 LR (slum) 10.11 13.78 – 6.53 9.07 13.68
Dead p/1000 LR (other) 6.57 15.43 7.47 7.30 7.13 6.83
Dead p/1000 LR (all) 7.35 15.06 7.47 7.13 7.56 8.34
Immune in LR (slum), % 74.33 91.60 – 51.78 70.11 72.37
Immune in LR (other), % 39.69 77.66 46.01 44.72 43.03 40.76
Immune in LR (all), % 47.36 80.75 46.01 46.28 49.03 47.76
GDP at peak - rel to BM 1.00 1.82 1.48 1.23 1.29 1.03
GDP 1year - rel to BM 1.00 1.14 1.17 1.00 1.17 0.99
Hrs @ home (slum) - peak 80.95 60.48 – 69.19 86.38 83.22
Hrs @ home (other) - peak 86.28 60.48 78.00 80.00 82.26 84.90
Hrs @ home (slum) - 6 m 66.03 60.48 – 65.35 74.38 68.93
Hrs @ home (other) - 6 m 69.40 60.48 72.42 72.82 70.79 70.12
Value - susceptible (slum) 1968.10 1962.10 – 1976.60 4305.90 1960.20
Value - susceptible (other) 4317.40 4283.10 4315.00 4315.30 4315.60 4316.50
Value - susceptible (all) 3797.00 3769.00 4315.00 3797.20 4313.50 3794.50
Fig. 6. Choices of susceptible agents.
Fig. 7. Difference in protection behavior between slum and non-slum agents.
here are two reasons for this. First, in the baseline, close to 75% of
lum residents are immune in the long run. That is, they contribute
lot to reach herd immunity. In the benchmark, only 40% of non-

lum individuals are infected throughout the pandemic. Without slums,
his number rises to 46%. The second reason is that with a safer
nvironment in the non-slum world, other individuals are less cautious.
or instance, at the peak, they spend about eight fewer hours at home.32

32 Slum dwellers live in high-density areas and, in equilibrium, spend more
ime outside working than non-slum individuals because they are poorer and
heir marginal utility of consumption is higher. This increases the rate of
nfection among them and the risk of contagion among any other agent who
oes outside their home. So, in equilibrium, non-slum individuals are more
autious in a world with slums compared with a scenario without them. In
11

ddition, without slums, the duration for the unchecked pandemic to peak is
In the end, residents from other areas end up with a lower welfare in
this scenario without slums.

In our model environment, slum dwellers are different in four
important characteristics: they live in denser areas, their wage rate is
lower, they are on average younger, and it is harder for them to be
admitted to an ICU. We now investigate the role of the first three factors
in shaping the dynamics of the pandemic. Easier access to ICU beds will
be assessed in our policy section.

The fourth column of Table 3 contains statistics for a counterfactual
in which 𝜉𝑓 = 0.22, which implies that the population density in slums
is the same as that observed in other areas. All other parameters are
kept at their baseline values. The pandemic lasts longer now since the

about 40% longer than when there are slums. Hence, non-slum individuals
have more time to contract the virus.
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spread of the virus is reduced, and it takes more time to reach herd
immunity. Relative to the baseline, the death rate of slum dwellers is
reduced from 10.11 to 6.53 per 1000 individuals—a 35% reduction.
The death rate of other individuals rises from 6.57 to 7.30—a rise
of about 11%. That is, living in a neighborhood with higher density
is crucial to generating more deaths among slum residents. With less
contagion due to a lower population density in slums, individuals
expose themselves more by spending less time at home, offsetting in
part the direct effect of a lower population density in slums.

In the fifth column of Table 3, we increase the wage of slum dwellers
and equate it to the wage of other agents; that is, 𝑤𝑓 = 1. All other
parameters remain at their baseline values. Relative to the benchmark,
since they are now richer, individuals who live in slums spend more
time at home. As these agents are now more cautious, their death
rate is reduced from 10.11 to 9.07, a reduction of 10%. Given that a
lower number of slum dwellers are infected now, the economy can only
reach herd immunity with a higher fraction of non-slum residents being
infected. This also translates into a higher death toll among the latter
group, an increase from 6.57 to 7.13 per 1000. As non-slum residents
account for a larger fraction of the population, the overall death rate
slightly increases.

Slum dwellers are on average younger, and this translates into lower
hospitalization and death probabilities for members of this group. The
last column in Table 3 reports the results of a counterfactual in which
we equate these probabilities across the two groups. In this thought
experiment, slum residents face the same (worse) recovery and death
probabilities as individuals from other areas. Even though the infection
rates are similar to the benchmark, death numbers are about 13%
higher in this scenario. Therefore, ignoring the fact that individuals
living in slums are younger can lead to misleading conclusions about
the number of fatalities in these communities. As life is now riskier
in slums, this group becomes more cautious and spends more time
at home. With a lower supply of labor, GDP goes down even further
compared to the baseline.

In sum, in our unchecked pandemic calibrated to Rio de Janeiro,
slums have a nontrivial role in shaping the effects of Covid-19. First of
all, the death rate in slums is higher than in other areas. Slum dwellers’
share in total deaths is much higher than their fraction in the overall
population of the city. In addition, the high population density in slums
compared with other parts of the city is a key feature in explaining
the high death rate observed in slums. The presence of slums decreases
significantly the time to reach herd immunity and protects individuals
who live in other neighborhoods. Policies that aim to curb the Covid-19
pandemic in societies with a high fraction of their population living in
slums must then take this fact into account. The next section explores
the effects of a variety of such policies.

6. Policy experiments

In this section, we assess the impact of NPIs to control the health and
economic impact of the pandemic in our model economy. We evaluate
three policies: the government requisition of private hospital intensive
care units to increase capacity to meet the demand for Covid-19-
related treatment, lockdown interventions to increase social distancing
(shelter-at-home orders), and financial aid policies to help people stay
at home.

6.1. Public hospital beds

In Rio de Janeiro, approximately 15% of individuals have private
health insurance and therefore access to private hospital beds. Intensive
care units in public and private hospitals have 510 and 3079 beds,
respectively (in a city of about 6.3 million people).

In our calibration, we assume that slum dwellers have no health
insurance and approximately 19% of the individuals who do not live
in slums have private insurance. We should expect that congestion
12
Table 4
All hospital beds used by the public system.

Benchmark All beds
public

Wks to peak srsly ill (slum) 10.00 10.00
Wks to peak srsly ill (other) 11.00 11.00
Srsly ill p/1000 @ peak (slum) 1.88 2.84
Srsly ill p/1000 @ peak (other) 0.77 1.07
Dead p/1000 1year (slum) 10.04 6.84
Dead p/1000 1year (other) 6.35 4.82
Dead p/1000 1year (all) 7.16 5.27
Dead p/1000 LR (slum) 10.11 6.85
Dead p/1000 LR (other) 6.57 4.86
Dead p/1000 LR (all) 7.35 5.30
Immune in LR (slum), % 74.33 77.03
Immune in LR (other), % 39.69 42.89
Immune in LR (all), % 47.36 50.46
GDP at peak - rel to BM 1.00 1.02
GDP 1year - rel to BM 1.00 1.04
Hrs @ home (slum) - peak 80.95 80.26
Hrs @ home (other) - peak 86.28 85.01
Hrs @ home (slum) - 6 m 66.03 62.61
Hrs @ home (other) - 6 m 69.40 65.91
Value - susceptible (slum) 1968.10 1974.90
Value - susceptible (other) 4317.40 4325.80
Value - susceptible (all) 3797.00 3805.10

of health services is therefore greater in slum areas.33 In this policy
intervention, we investigate the impact of a counterfactual experiment
in which the ICUs in private hospitals could be used to treat all
individuals in need of critical care.

Table 4 shows that the total death rate is reduced by approximately
28% with this policy. Although slum dwellers are the ones who benefit
the most from this policy, individuals who live in non-slum areas
are also positively affected since only a small fraction of them have
private health insurance. Observe that most of the agents decrease
social distancing with this intervention as time at home decreases. But
the difference is not quantitatively so different from the unchecked
epidemic. The decrease in the death rate is mainly explained by the
direct effect of reducing congestion in access to public hospital care
units rather than by indirect effects of changing behavior. In the long
run, more individuals of both groups survive and become immune to
the disease. This policy increases GDP and the welfare of both groups.

6.2. Shelter-at-home policies

We now investigate stay-at-home orders that can be implemented
with the closing of nonessential businesses and schools, among other
interventions. Table 5 displays results for different lockdown restric-
tions.

The first column in Table 5 reports moments related to the baseline
unchecked pandemic for comparison. The second column shows the
same statistics for a scenario in which a shelter-at-home policy covers
26 weeks from the start of the health crisis. During the duration of
this policy, individuals are required to increase their time at home by
25% relative to an environment without the pandemic.34 As we can
also see in Fig. 8, the lockdown (solid lines) flattens out the infected
and critically ill curves relative to the unchecked pandemic (dashed
lines). The total death rate decreases, mainly among slum dwellers.
There is less congestion of public beds with the lockdown, which is a

33 Rocha et al. (2021) show that in Brazil the correlation of Covid-19 death
rates and ICU beds in the public sector is −0.5 with a 𝑝-value of 0.02; while the
correlation of death rates and ICU beds in the private sector is not statistically
different from zero.

34 We implement this by increasing 𝜆𝑝(𝑗, 𝑔) to the necessary value to induce
agents to follow the lockdown policy. Appendix D.3 reports the calibrated

values for all counterfactuals in this section.



Journal of Development Economics 157 (2022) 102882L. Brotherhood et al.

t

t

w
e
B
a

Table 5
Shelter-at-home policies.

Benchmark 6-week late
Immediate lockdown lockdown

25%, all 25%, slums 25%, non-slum 75%, all 25%, all
26 weeks 26 weeks 26 weeks 35 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 14.00 13.00 11.00 66.00 11.00
Wks to peak srsly ill (other) 11.00 16.00 14.00 12.00 67.00 12.00
Srsly ill p/1000 @ peak (slum) 1.88 1.07 1.11 1.86 1.88 1.10
Srsly ill p/1000 @ peak (other) 0.77 0.48 0.71 0.57 0.77 0.48
Dead p/1000 1year (slum) 10.04 9.21 9.13 10.00 0.00 8.68
Dead p/1000 1year (other) 6.35 5.84 6.92 5.28 0.00 5.26
Dead p/1000 1year (all) 7.16 6.58 7.41 6.33 0.00 6.02
Dead p/1000 LR (slum) 10.11 9.51 9.29 10.19 10.10 9.29
Dead p/1000 LR (other) 6.57 6.48 7.22 5.91 6.56 6.34
Dead p/1000 LR (all) 7.35 7.15 7.68 6.86 7.35 7.00
Immune in LR (slum), % 74.33 73.58 70.96 76.68 74.36 73.29
Immune in LR (other), % 39.69 40.32 42.96 38.18 39.67 40.57
Immune in LR (all), % 47.36 47.69 49.16 46.71 47.35 47.82
GDP at peak - rel to BM 1.00 0.96 1.12 0.86 0.99 0.95
GDP 1year - rel to BM 1.00 0.87 0.98 0.89 0.47 0.87
Hrs @ home (slum) - peak 80.95 83.18 84.40 79.79 80.19 83.76
Hrs @ home (other) - peak 86.28 85.87 81.83 89.56 85.95 86.16
Hrs @ home (slum) - 6 m 66.03 78.32 79.22 63.80 105.84 77.22
Hrs @ home (other) - 6 m 69.40 79.79 70.83 78.39 105.84 78.36
Value - susceptible (slum) 1968.10 1964.40 1964.20 1968.20 1863.20 1964.40
Value - susceptible (other) 4317.40 4312.90 4315.30 4314.80 4213.00 4313.30
Value - susceptible (all) 3797.00 3792.70 3794.50 3795.00 3692.50 3793.10
Fig. 8. Aggregate variables (lockdown, 25% increase in time at home, all groups, 26 weeks).
more binding issue for individuals living in slums. The total death rate
among slum dwellers decreases by approximately 6% while the overall
death rate is reduced by 3%.

GDP during the first year of the pandemic decreases by 13% relative
to the no-policy baseline. In the first few weeks of the epidemic,
however, the drop in output is more pronounced, reaching a trough
around 45% lower than the no-disease scenario. As the disease wanes,
GDP starts to recover. To provide a (non-targeted) comparison with
the data, Fig. 9 shows a quantitatively similar evolution in credit card
transactions in Rio de Janeiro.35 Fig. 9 displays a sharp decrease in
ransactions of about 40% a few weeks after the first NPI.

The strong impact on the economy comes from a reduction in the
ime spent at work. Fig. 10 reports the choice of the agents with a

35 Credit card transaction data stem from one of Brazil’s largest banks,
hich has more than one-third of the credit card market share. Ajzenman

t al. (2022) compares these transaction data with the Brazilian Central
ank’s administrative credit registry on the universe of transactions and find
strikingly high correlation between both measures.
13
26-week shelter-at-home policy (solid lines), as well as the benchmark
(dashed lines). Individuals stay longer at home with this lockdown pol-
icy than in the baseline, reducing the peak of infection but increasing
the duration of the health crisis.

The time spent at home increases by about 20 percentage points
relative to the baseline before the outset of the disease (left panel of
Fig. 10). This is approximately the average percentage point change
in the social distancing index observed in the city of Rio de Janeiro
(see Fig. 1 in Section 2). In addition, the model implies a difference
in social distancing between slum and non-slum dwellers of around
five percentage points (Fig. 11). This is similar to those reported in our
difference-in-differences analysis in Fig. 2 of Section 2.

To understand the role of slums in shaping the dynamics of the
pandemic under a lockdown, we also investigate the effects of targeted
shelter-at-home orders: a policy of increased social distancing applied
only to individuals living in slums (third column of Table 5) and one
applied only to those who live in other areas (fourth column of Table 5).
The shelter-at-home policy in slums only increases the long-run death

rate for non-slum individuals because the fraction of non-slum dwellers



Journal of Development Economics 157 (2022) 102882L. Brotherhood et al.
Fig. 9. Card transactions in Rio de Janeiro: 2019 and 2020. Notes. The figure shows the
evolution of the weekly value of credit card transactions in the municipality of Rio de
Janeiro. The figure plots two periods for comparison: January 01 and 31 July 2019, and
January 01 and 31 July 2020. The value is normalized to 1 in the first week of January
of each year. Credit card transaction data stem from one of Brazil’s largest banks, which
has a large market share in many indicators, including assets and the number of credit
card customers (more than one-third of the market share). The transaction data is
aggregated to the municipality-week level. The first non-pharmaceutical intervention
(NPI) in Rio de Janeiro was on March 11, 2020.

necessary to reach herd immunity would need to rise to compensate for
the lower transmission in slums. As the non-slum group is larger, this
translates into a higher overall death rate. This policy ends up lowering
the welfare of both groups: slum residents are worse off because they
are sheltered (even though deaths among this group decrease) and the
others suffer a worse health shock.

We also implement a more extreme lockdown policy (fifth column
of Table 5) in which we target a rise in 75% in the time spent at home
relative to the baseline. This policy lasts for 35 weeks or approximately
8 months. Almost no deaths occur in the first year of the pandemic,
which now lasts much longer. Therefore, a stricter lockdown is an
effective strategy to delay the peak and to control temporarily the
number of infected individuals and deaths. This might be an important
policy while waiting to build public infrastructure (e.g., hospital beds)
and/or define a future plan of action to control the virus, including
waiting for a possible treatment or vaccine. Without improvements
in infrastructure, treatment, or a vaccine, however, the total number
of deaths with or without an extreme lockdown is roughly the same:
when the extreme lockdown is relaxed, the numbers of infections and
seriously ill patients rise sharply leading to similar deaths compared
with the case without the policy. The extreme shelter-at-home policy
clearly causes a deep economic downturn.

Our shelter-at-home policies so far were implemented in the begin-
ning of the pandemic, when congestion of public ICUs is not necessarily
binding. In the last column of Table 5, we implement a lockdown policy
similar to the one in the second column, but that is imposed in week
6 of the pandemic, instead of week 1. This later lockdown is more
effective in saving lives. The total death rate is reduced by 5% instead
of 3%, as in the lockdown that is implemented in week 1. The economic
effects of both shelter-at-home policies are similar.

6.3. Financial aid

We now turn to study the effects of an emergency measure designed
to compensate individuals for income losses due to a rise in social
distancing. Table 6 contains such counterfactual experiments. Again for
comparison, the first column of this table contains the moments of the
unchecked pandemic. The second column displays the same statistics
for the case in which the government transfers 300 Brazilian Reais (R$)
14
per month for all individuals in the first 26 weeks of the pandemic.36

This corresponds to 44% and 12% of the monthly income of slum and
non-slum dwellers, respectively.

Fig. 12 shows that this policy flattens out the infection curves. This
effect is more pronounced in slums. The income effect is stronger for
slum dwellers than for those individuals who live in other areas (time
at home at the peak is essentially the same across the two groups). This
implies that individuals living in slums increase social distancing much
more than in the benchmark. The total death rate among individuals
living in slums is reduced by 8% relative to the baseline. Given that
the threshold for herd immunity rises for non-slum dwellers, their total
death rate ends up increasing by 5% during the pandemic. The overall
death rate rises since the measure of individuals not living in slums is
large. This composition effect on death rates becomes more pronounced
when only slum dwellers receive the financial aid – third column of
Table 6 – or when the financial aid is more generous (600 R$ for 26
weeks instead of 300 R$)—fourth column of Table 6.

We now combine cash transfers lasting 26 weeks with stay-at-home
orders that cover the same period (we target a rise in 25% in the time
spent at home relative to the baseline by rising 𝜆𝑝, see Appendix D.3).
Such a combination of policies was implemented in several countries
including Brazil.37 Start with a transfer of 300 R$. The combined policy
extends the duration of the pandemic, much longer than when each
of the policies is implemented separately. When the policy is relaxed,
infections rise rapidly and the overall death rate is only 3% below
the baseline. However, the death rate among slum dwellers is higher
than in the case of only cash transfers or only the lockdown. Welfare
with transfers and lockdown is of course higher than in the case with
only lockdown. Targeting the transfer to slum dwellers exacerbates the
differences across groups, as it decreases infections and deaths in slums
and increases these statistics in other areas.

7. Extensions

In our baseline framework, the pandemic ends when the virus
cannot infect enough people to sustain the spread of the disease. This
occurs when a large measure of individuals becomes immune after
recovering from the disease. When Covid-19 emerged, there were some
expectations that recovery from the disease could confer permanent
immunity. However, there is evidence showing that there is only tem-
porary immunity and vaccines against the virus have been developed.
Concerning these observations, this section provides two important
extensions of the baseline environment: we introduce a vaccine in the
middle of the pandemic such that individuals can acquire immunity
through vaccination (Section 7.1); and we analyze the case in which
individuals who overcome the disease can either become immune or
susceptible again (Section 7.2).

Moreover, Section 7.3 discusses the results of an extension of the
model in which richer non-slum individuals can partially telework and
hence decrease their exposure to the virus. Finally, Section 7.4 provides
an alternative calibration based on data for the city of Sao Paulo, the
largest city in Brazil.

7.1. A world with a vaccine

Dozens of Covid-19 vaccines have been authorized or approved
around the globe. Getting everyone vaccinated, however, takes time.
We relax our baseline environment by assuming that a vaccine arrives

36 This amount is approximately 60 US dollars in July 2020.
37 In 2020, Brazilian informal workers received 600 R$ per month for three

months during the pandemic (‘‘Emergency Assistance’’) as a compensation for
their confinement. There were several issues related to the timing of the policy
and to the bureaucracy involved in receiving this cash transfer.
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Fig. 10. Choices of susceptible agents (lockdown, 25% increase in time at home, all groups, 26 weeks).
Fig. 11. Difference in protection behavior between slum and non-slum agents (lockdown, 25% increase in time at home, all groups, 26 weeks).
Table 6
Financial aid policies.

Benchmark Only financial aid Aid and 25% lockdown for all

300R$, all 300R$, slums 600R$, slums 300R$, all 300R$, slums 600R$, slums
26 weeks 26 weeks 26 weeks 26 weeks 26 weeks 26 weeks

Wks to peak srsly ill (slum) 10.00 15.00 14.00 32.00 32.00 32.00 32.00
Wks to peak srsly ill (other) 11.00 16.00 15.00 19.00 33.00 33.00 33.00
Srsly ill p/1000 @ peak (slum) 1.88 0.77 0.80 1.16 1.51 1.23 1.61
Srsly ill p/1000 @ peak (other) 0.77 0.50 0.63 0.52 0.67 0.58 0.63
Dead p/1000 1year (slum) 10.04 8.99 8.94 8.81 9.01 8.96 9.07
Dead p/1000 1year (other) 6.35 6.40 6.94 6.89 5.49 5.98 5.88
Dead p/1000 1year (all) 7.16 6.97 7.39 7.31 6.27 6.64 6.59
Dead p/1000 LR (slum) 10.11 9.28 9.16 9.15 9.54 9.40 9.58
Dead p/1000 LR (other) 6.57 6.91 7.30 7.36 6.48 6.72 6.70
Dead p/1000 LR (all) 7.35 7.43 7.71 7.76 7.15 7.32 7.34
Immune in LR (slum), % 74.33 71.90 70.69 70.33 73.58 72.44 72.27
Immune in LR (other), % 39.69 41.95 43.41 43.96 40.35 41.39 41.55
Immune in LR (all), % 47.36 48.58 49.45 49.80 47.71 48.27 48.36
GDP at peak - rel to BM 1.00 1.16 1.24 1.30 1.10 1.20 1.12
GDP 1year - rel to BM 1.00 0.94 0.99 0.98 0.84 0.89 0.91
Hrs @ home (slum) - peak 80.95 78.61 80.46 77.55 78.85 77.99 80.36
Hrs @ home (other) - peak 86.28 77.74 77.99 80.32 83.88 82.00 84.49
Hrs @ home (slum) - 6 m 66.03 73.96 74.77 80.16 82.24 83.64 87.05
Hrs @ home (other) - 6 m 69.40 71.91 70.83 70.03 77.57 77.49 72.87
Value - susceptible (slum) 1968.10 1985.60 1985.70 1998.80 1982.40 1982.60 1996.70
Value - susceptible (other) 4317.40 4322.20 4315.70 4315.60 4320.70 4315.10 4316.70
Value - susceptible (all) 3797.00 3804.60 3799.60 3802.40 3802.80 3798.50 3802.80
c
(
𝜒

after 78 weeks, or approximately 18 months. Suppose there is no
uncertainty about this time frame and individuals in the model have
perfect foresight.

Table F4 in the Appendix provides the results for the benchmark
under the assumption of vaccine arrival. Time to peak, death rates, and
behavior are virtually the same as under the baseline calibration. When
we simulate the world without slums, residents in other neighborhoods
face higher infection rates and deaths. They also have ex-ante higher
utility in a world with slum individuals than when we set the measure
of these agents to zero. By the time the vaccine arrives 18 months after
the outbreak, most of the dynamics of an unchecked epidemic will have
already come to pass.
15

i

7.2. Partial immunity

In our baseline framework, individuals who recover from the disease
acquire immunity to the virus. Since the degree of acquired immunity is
somewhat uncertain, we relax the assumption of permanent immunity
and consider the case in which agents can become susceptible again
after recovering from infection. More specifically, suppose that, after
recovering from the disease, individuals can transit to the recovered
state 𝑟, where they are immune forever, with probability 𝜒 . With
omplementary probability 1−𝜒 , individuals become susceptible again
state 𝑠). Given the lack of evidence in the medical literature, we set
= 0.5. Table F5 in the Appendix provides the results. Since more

ndividuals are susceptible to the disease, death rates rise substantially
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Fig. 12. Aggregate variables (300R$ financial aid for 26 weeks, all groups).
and approximately 1.4% of the population dies during the pandemic.
Although its peak still happens around three months after the outbreak,
an unchecked epidemic lasts longer now. Unlike the baseline scenario,
a substantial fraction of total deaths happens in the second year of the
epidemic.

The role of slums in shaping the composition of deaths during
the pandemic is robust when we relax the assumption of permanent
immunity. There is still a lower number of deaths among non-slum in-
dividuals in the presence of slums than when we run the counterfactual
model without slums. In addition, non-slum agents still prefer to live
in an environment when there are slum dwellers than when we set the
measure of those agents to zero.

7.3. A scenario in which richer individuals can telework

In our benchmark model, individuals can only work by venturing
outside their home, a risky proposition in the presence of Covid-19.
During the pandemic, however, some individuals were able to telework.
In this section, we allow for this possibility for the richer non-slum
residents.38

Besides spending time in outside work 𝑛, outside leisure 𝓁 and
omestic leisure 𝑑, assume now that non-slum residents can also choose
ome fraction of time 𝑣 to telework, such that 𝑛+𝑣+𝓁+𝑑 = 1. For these
ndividuals, their budget constraint is now given by 𝑐+𝑥 = 𝑤[𝑛+𝜏(𝑣)𝑣].
he function 𝜏(𝑣) = 𝜏0 − 𝜏1𝑣 is decreasing in 𝑣 and represents the
act that, as more work is moved from in-person to the home, the
roductivity of workers may fall (the details of the calibration are
rovided in Appendix F).

Our main insights carry over to this scenario with teleworking for
he richer non-slum population. The health disparities across groups are
ow more pronounced. The infection and death rates among the non-
lum group decreases since they can now protect themselves better via
eleworking without incurring a complete loss in income. Consequently,
his extra protection among the non-slum group generates an external-
ty for the slum population that now has to contribute more towards
erd immunity.

38 According to PNAD-Covid, a nationally representative household survey
onducted by IBGE between May and October 2020, more than 60% of lower-
ncome individuals were working in person; for higher-income individuals only
0% of them were working in person—see Appendix Figure B7.
16
7.4. An alternative calibration for Sao Paulo

Our baseline calibration used data for the city of Rio de Janeiro.
In this section, we briefly discuss an alternative calibration that targets
statistics for the city of Sao Paulo (see Appendix F for more detailed
results). In Sao Paulo, around 11% of the population live in slums,
which is about half the share in Rio de Janeiro. Moreover, there are
slightly more ICU beds per capita in the public hospital network in
Sao Paulo than in Rio de Janeiro and slum residents are a little richer
relative to non-slum dwellers.

The main difference in the benchmark scenario between Rio de
Janeiro and Sao Paulo is that the non-slum residents in Sao Paulo are
more impacted by Covid-19. Non-slum residents in Sao Paulo contract
the virus in higher numbers and, consequently, the death rates among
this group are higher compared with Rio de Janeiro. The main reason
for this result is that the slum population in Sao Paulo corresponds
to a smaller fraction of the overall population. Hence, slum residents
contribute less towards achieving herd immunity and the burden falls
relatively more heavily among the non-slum dwellers.

8. Conclusions

More than one billion people in the world live in slums. These
are usually crowded neighborhoods where social distancing is hard to
implement, and access to improved water and sanitation are limited.
Infectious diseases can thus spread rapidly in such areas. This paper
studies the role of slums in shaping the health and economic dynamics
of pandemics. Using data gathered from millions of mobile phones in
Brazil, we show that social distancing increased less in slums at the
outset of the Covid-19 pandemic. Moreover, there were more deaths in
areas with slums.

We build a model with endogenous social distancing where poor
agents live in high-density slums and richer individuals live in other
areas. Slum residents have a harder time accessing health care due
to capacity constraints in public hospitals, but they are on average
younger. We fit our model such that it is consistent with epidemiologi-
cal parameters of the Covid-19 pandemic and to match key moments of
Rio de Janeiro, where 22% of individuals live in slums. In the outbreak
of the Covid-19 pandemic, our model produces relatively lower social
distancing among slum residents. In equilibrium, individuals living
in slums spend more time outside working because they are poorer
and their marginal utility of consumption is higher—this difference is
reinforced when we introduce the possibility of working from home for
the richer non-slum individuals. Our simulations show that a dispro-

portionately high number of deaths occur in slums. In a counterfactual
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scenario without slums, the pandemic lasts longer and a higher fraction
of residents from other areas catches the disease and die, as the burden
to achieve herd immunity falls only onto this group.

Using the model to explore a variety of policy experiments high-
lights the importance of taking this heterogeneity into account. Reallo-
cating private ICUs into a single pool helps all groups, decreasing the
death toll significantly. Very stringent shelter-at-home orders buy time
but only delay deaths if no other policy, vaccine or new treatments are
introduced. If lockdowns shelter a particular group, the other group
suffers worse health outcomes, and the welfare of both groups declines.
Cash transfers have a disproportional impact on slum residents and,
as they can now afford to cut their labor supply, infections fall more
heavily on the other group.

Though our framework has considerable heterogeneity that allows
for an array of policy experiments, we have abstracted from potentially
important margins. For instance, individuals in our model are assigned
a place of residence and cannot move. Perhaps long-lasting pandemics
may lead them to relocate, and health considerations may then affect
the very structure of the city. Additionally, temporary cuts in labor
supply may have enduring effects on job prospects. Being more likely
to have informal jobs, slum dwellers may suffer more from such dis-
placements. Finally, optimal policies may depend on the existence of
heterogeneous groups living in the same geographical location. These
and other issues are left for future research.
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