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The low-energy spectrum and scattering of two-nucleon systems are studied with lattice quantum
chromodynamics using a variational approach. A wide range of interpolating operators are used: dibaryon
operators built fromproducts of plane-wave nucleons, hexaquark operators built from six localized quarks, and
quasilocal operators inspired by two-nucleon bound-state wave functions in low-energy effective theories.
Sparsening techniques are used to compute the timeslice-to-all quark propagators required to form correlation-
function matrices using products of these operators. Projection of these matrices onto irreducible representa-
tions of the cubic group, including spin-orbit coupling, is detailed. Variational methods are applied to constrain
the low-energy spectra of two-nucleon systems in a single finite volumewith quark masses corresponding to a
pion mass of 806 MeV. Results for S- and D-wave phase shifts in the isospin singlet and triplet channels
are obtained under the assumption that partial-wave mixing is negligible. Tests of interpolating-operator
dependence are used to investigate the reliability of the energy spectra obtained and highlight both the strengths
and weaknesses of variational methods. These studies and comparisons to previous studies using the same
gauge-field ensemble demonstrate that interpolating-operator dependence can lead to significant effects on the
two-nucleon energy spectra obtained using both variational and nonvariational methods, including missing
energy levels and other discrepancies. While this study is inconclusive regarding the presence of two-nucleon
bound states at this quark mass, it provides robust upper bounds on two-nucleon energy levels that can be
improved in future calculations using additional interpolating operators and is therefore a step toward reliable
nuclear spectroscopy from the underlying Standard Model of particle physics.
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I. INTRODUCTION

Precise nuclear and hypernuclear forces are crucial
inputs to state-of-the-art nuclear many-body studies of
matter, from the neutron-star equation of state, to stability
of neutron-rich isotopes, to energetic reactions and exotic
decays of various nuclei, to the scattering cross sections of
nuclei with leptons and beyond-Standard-Model particles

in experimental searches for new physics [1–7]. As ab initio
nuclear many-body investigations achieve reduced statis-
tical and systematic uncertainties, uncertainties in the
nuclear Hamiltonian that is input to these calculations
become more essential to address [7]. One promising
approach to constrain nuclear forces is to derive them
from the underlying theory of the strong force, quantum
chromodynamics (QCD), using lattice QCD (LQCD). Over
the past two decades, initial steps toward this goal have
been taken, leading to LQCD results [8–33] that have
constrained two-nucleon scattering amplitudes and effec-
tive field theory (EFT) representations of forces in the few-
nucleon (and other few-baryon) sectors, although the use of
unphysically large quark masses has prevented a complete

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 107, 094508 (2023)

2470-0010=2023=107(9)=094508(79) 094508-1 Published by the American Physical Society

https://orcid.org/0000-0002-7231-7643
https://orcid.org/0000-0002-9350-3998
https://orcid.org/0000-0003-3570-2849
https://orcid.org/0000-0001-8263-7512
https://orcid.org/0000-0001-7670-1880
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.107.094508&domain=pdf&date_stamp=2023-05-17
https://doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1103/PhysRevD.107.094508
https://doi.org/10.1103/PhysRevD.107.094508
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


quantification of uncertainties. The finite-volume (FV)
spectrum of energies obtained in LQCD calculations
provides input to mapping conditions that constrain scat-
tering amplitudes [34–51] and EFT descriptions of nuclear
forces [18,29,52–57]. The problem of accurate identifica-
tion of ground- and excited-state energies of systems with
multiple nucleons (baryons) using LQCD is, therefore, of
great importance and constitutes a significant challenge in
LQCD studies of nuclear systems.1 The continued develop-
ment of efforts to address this challenge is of particular
importance for systems for which experimental data are
scarce or nonexisting, such as in multineutron systems and
in systems with nonzero strangeness [1,71].
Constraining nuclear forces via LQCD is a computa-

tional challenge because LQCD path-integral representa-
tions of baryon correlation functions evaluated using
Monte Carlo methods are plagued by a severe signal-to-
noise problem [72–76]. This has limited most LQCD
studies of multibaryon systems to date to larger-than-
physical values of the quark masses, for which the growth
of the statistical noise, as the Euclidean time separation in
the correlation functions increases, is less severe than with
the physical quark masses. Furthermore, the excitation
spectrum of multinucleon (baryon) systems is rich, with
energy gaps that are not set by the QCD scale and are often
much smaller, which presents additional challenges. In
principle, the ground-state energy, E0, of a multinucleon
system can be extracted from the large Euclidean-time
behavior of any LQCD two-point correlation function
with the quantum numbers of the state of interest. This
is because the spectral decomposition of the correlation
function is asymptotically dominated by the ground-state
contribution proportional to e−tE0 , where t is the Euclidean-
time separation. Excited-state effects are suppressed by
zne−tδn , where δn ¼ En − E0 is the energy gap between the
ground state and the nth excited state, and zn is the ratio of
the interpolating-operator overlap factor of this excited
state to that of the ground state. Excited-state effects can
therefore be neglected if either t ≫ δ−1n and/or zn ≪ 1 for
each excited state. In practice, Euclidean times that satisfy
t ≫ δ−1n cannot be achieved for multinucleon systems. In
the case of two-nucleon systems, this is because excited
states involving unbound nucleons correspond to small
values of δn for large spatial volumes and exponential

signal-to-noise degradation limits t to much smaller values
than δ−1n in calculations using current algorithms and
computing resources (or those of the forseeable future).
For t < δ−1n , where signals can be resolved for multinucleon
LQCD correlation functions, contributions from low-energy
excited states can be significant, and calculations using
a single correlation function (or a vector of correlation
functions that have the same quantum numbers) face the
challenging problem of performing multiexponential fits in
order to extract E0. This limitation could be ameliorated
through the use of multinucleon interpolating operators that
dominantly overlap with the ground state (or other states of
interest) and are approximately orthogonal to other low-
energy states (zn ≪ 1 for all n > 0). However, the structure
of the true QCD energy eigenstates is unknown a priori and
finding interpolating operators with maximal overlap onto
states of interest is a challenging task. Indirect tests, such as
those enabled by Lüscher’s mapping from the FV spectrum
to scattering amplitudes, can potentially signal issues with
the extracted energies because scattering amplitudes need to
satisfy certain constraints, see Refs. [18,29,77–80]; however,
passing these tests is not sufficient to guarantee that the
spectrum has been extracted reliably.
An approach for constructing interpolating operators with

zn ≪ 1 for a set of low-energy states fng is provided by
variational methods, in which a positive-definite Hermitian
matrix of two-point correlation functions is formed using a
set of interpolating operators and their conjugates, and a
generalized eigenvalue problem (GEVP) is solved in order to
obtain a mutually orthogonal set of approximate energy
eigenstates [81–83]. Symmetric correlation functions result-
ing from this diagonalization have spectral representations as
sums of exponentials with positive-definite coefficients and
are therefore convex functions of t. It follows from this that
logarithmic derivatives of symmetric correlation functions,
called effective masses, provide variational upper bounds on
ground-state energies that approach the true energy from
above [84,85]. Further, if an interpolating-operator set that
overlaps with all energy eigenstates below an energy thresh-
old Δ ≫ δ can be identified, then variational methods can
reduce excited-state contributions to ground-state energy
determinations to e−tΔ [83]. In this work, a large set of
interpolating operators for two-nucleon systems is identified,
and positive-definite Hermitian two-point correlation-func-
tion matrices are constructed using these interpolating
operators. The GEVP solutions for these correlation-function
matrices are used to construct approximate energy eigen-
states. This procedure removes excited-state contamination
from determinations of E0 arising from the lowest-energy
set of states that significantly overlap with the set of the
interpolating operators that are considered. Since variational
methods result in convex correlation functions after diago-
nalization, cancellations between excited-state contributions
that might conspire to be consistent with a single exponential
(within uncertainties) over a significant range of t for t < δ−1

1Another approach to constraining two-body nuclear forces is
to determine the Bethe-Salpeter wave function of multibaryon
systems from LQCD correlation functions, from which (hyper)
nuclear potentials can be deduced [58–63]. Later versions of this
method do not rely on energy identification from Euclidean
correlation functions and are suggested to be free from associated
multibaryon spectroscopy challenges (see Ref. [33] for a review).
Such studies do, however, rely on the assumption that only elastic
scattering states are present in correlation functions. This method
is subject to various systematic uncertainties that are extensively
discussed in the literature [5,64–70].
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cannot arise. Such a possibility, however, is present in
calculations using a set of asymmetric LQCD correlation
functions in which exchanging source and sink interpolating
operators is not equivalent to Hermitian conjugation and
is argued to be relevant for LQCD determinations of
two-baryon energy spectra in Refs. [80,86]. It is noteworthy,
however, that the reliability of variational methods in
extracting energies rather than only upper bounds on them
requires the identification of an interpolating-operator set
that overlaps strongly with the ground state and low-energy
excited states. Since the eigenstates of LQCD are not known
a priori, it is not possible to know beyond a doubt that this is
the case for a given interpolating-operator set.
Variational methods have a long history of successful

applications toLQCDstudies of systemswith baryon number
B ¼ 0 and B ¼ 1. Early studies used interpolating-operator
sets consisting of color-singlet “single-hadron” operators
describing glueballs, mesons, or baryons, with quark wave
functions in the latter cases resembling Gaussians or similar
functions centered about a common point with one or more
widths [82,87–93]. These, and more recent studies, have
generally found that Gaussian quark wave functions with
widths ≲1 fm have significant overlap with the nucleon
ground state. Low-energy excited states can be described, for
example, by using linear combinations of Gaussians con-
taining nodes and qualitatively resembling quark-model
radial excitations [91,94–97]. Further studies extended these
interpolating-operator sets and included tens of single-hadron
operators with (products of) gauge-covariant derivatives, as
well as hybrid baryon operators with gluon fields carrying
angular momentum [98–106]. The next extension was the
inclusion of “multihadron” interpolating operators describing
products of color-singlet hadron operators such as ππ or Nπ
each carrying definite relative momentum [77,78,107–113].
It was noticed in studies of the B ¼ 0, isospin I ¼ 1 channel
in the vicinity of the ρ resonance that interpolating-operator
sets including only single-hadron or multihadron operators
lead to determinations of the energy spectrum with “missing
energy levels” and other inconsistencies in energy-level
results when compared to the energy spectrum determined
using larger interpolating-operator sets including both types
of operators [77,78]. For t → ∞, any interpolating-operator
set can be used to extract the energies of as many lowest-
energy states as there are operators in the set. However, for the
range 0.1≲ t≲1 fm over which correlation functions are
studied in these references, using an interpolating-operator set
neglecting some single- or multihadron interpolating oper-
ators leads to a determination of the energy spectrum inwhich
some energy levels identified using a larger interpolating set
are missing but other higher-energy levels are present. In the
B ¼ 1 sector, multihadron interpolating operators such asNπ
have also been included in interpolating-operator sets used
for variational calculations [114–118]. In this context, it has
been noticed that omitting multihadron operators can lead to
missing or displaced energy levels close to and above the pion

production threshold [114] and that it is much more difficult
(although possible) to resolve energy levels associated with
Nπ scattering states by only including local qqqq̄q operators
with the same quark content as (plane-wave) Nπ operators
[119]. Analogous issues forNN systems will be discussed at
length below, see in particular Sec. IVA.
Although the need for variational studies of multibaryon

systems has long been recognized, only recently with the
advent of efficient algorithms for calculating approximate “all-
to-all” quark propagators, such as the Laplacian Heaviside or
“distillation” method [107], stochastic Laplacian Heaviside
[108], and sparsening methods [120,121], has the application
of variational methods to multibaryon systems become
computationally feasible, albeit still at unphysically large
quark masses. The first variational study of the two-nucleon
isotriplet, “dineutron,” channel and the H-dibaryon channel
using multihadron interpolating operator was reported by
Francis et al. in Ref. [26]. This reference presents studies of
boosted two-baryon systems with several center-of-mass
momenta using 2 × 2 positive-definite Hermitian matrices
of single-hadron interpolating operators, as well as a positive-
definite multihadron correlation function and several other
asymmetric correlation functions. The two-nucleon isosing-
let, “deuteron,” channel as well as the dineutron channel have
also been studied using calculations of 2 × 2 multihadron
correlation-function matrices for several values of the
center-of-mass momentum by Hörz et al. in Ref. [28].
Most recently, a variational study of theH-dibaryon channel
was presented by Green et al. in Ref. [30] using correlation-
function matrices with up to three multihadron interpolating
operators in several boosted frames. This reference obtained
consistent results with Ref. [26] and quantified significant
lattice artifacts in the finite-volume energy shifts of the H-
dibaryon channel. Interestingly, the results for ground- and
excited-state energy levels for two-baryon systems calculated
using variational methods in Refs. [26,28,30] suggest ten-
sions with earlier results obtained using sets of asymmetric
correlation functions [11,13,15,16,18,21,22,25,122–131],
although these calculations use different discretizations and
quark masses. Reference [30] suggests that lattice-spacing
artifactsmay contribute to these discrepancies. In this context,
further variational studies of multibaryon systems are clearly
of great importance.
The goal of the present work is to perform a detailed

study of two-nucleon systems using variational methods
and using a significantly larger set of single- and multi-
hadron interpolating operators than the sets used in
previous works. To this end, the two-nucleon systems in
both the isotriplet and isosinglet channels are studied at a
single lattice spacing and lattice volume with larger-than-
physical quark masses such that mπ ¼ 806 MeV. The
largest set of two-baryon interpolating operators to date
is constructed, including multiple types of “hexaquark”
interpolating operators built from a product of six quark
fields with Gaussian wave functions centered around a
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common point and expected to strongly overlap with
compact bound states, “dibaryon” interpolating operators
built from products of momentum-projected baryons and
expected to strongly overlap with unbound NN scattering
states, and “quasilocal” interpolating operators designed
to somewhat resemble effective low-energy descriptions
of the loosely bound deuteron state present in nature.
Through the use of recently developed propagator spars-
ening techniques [120] and highly optimized codes for
constructing two-baryon correlation functions using the
Tiramisu [132] compiler framework, positive-definite
correlation-function matrices are constructed with dimen-
sionalities as large as 16 × 16 for the dineutron channel
and 42 × 42 for the deuteron channel. The (upper bounds
on the) ground-state energies obtained from the resulting
GEVP solutions for these correlation-function matrices
are significantly closer to threshold than the ground-state
energies obtained using hexaquark sources and dibaryon
sinks in this work and in previous studies using the same
gauge-field ensemble [15,16,18,25].
The results of this work do not provide a conclusive

picture of nucleon-nucleon interactions with mπ ¼
806MeV because the volume and lattice-spacing depend-
ence of the two-nucleon energy spectra require further
investigation. Perhaps more importantly, other states that
have negligible overlap with the operator sets considered
here may also be present in the spectrum, as demonstrated
by the construction of a plausible model for overlap factors
consistent with such behavior in Sec. III B. Nonetheless,
the variational method is an approach to the problem of
excited-state contamination in two-baryon correlation func-
tions that provides systematically improvable upper bounds
on energy levels. Future calculations exploring a range
of lattice spacings and volumes with a wider variety of
interpolating operators may lead to a conclusive under-
standing of nucleon-nucleon interactions at these unphys-
ical values of the quark masses and provide the most robust
available route to determinations of nucleon-nucleon inter-
actions at the physical quark masses. While the previous
nonvariational studies of multinucleon systems, including
calculations of a range of important nuclear matrix ele-
ments [76,122,126–131,133], serve as milestones in
accessing nuclear properties from QCD and have contrib-
uted to the development of the current suite of methods
and algorithms, the era of precision LQCD calculations of
multibaryon systems is just beginning.
In order to introduce the LQCD technology for con-

structing two-nucleon interpolating operators and the
associated correlation-function matrices for the variational
approach, Sec. II presents the relevant methods for evalu-
ating correlation-function matrices and extracting the
energy spectrum using variational methods for single-
and two-nucleon systems. In Sec. III, this formalism is
used to study two-nucleon correlation functions, the asso-
ciated finite-volume spectra, and the S- and D-wave

scattering phase shifts (assuming negligible partial-wave
mixing) at quark masses corresponding to a pion mass of
806 MeV. A total of 22 and 49 ground- and excited-state
energy levels below the single-nucleon first-excited-state
energy are identified for the two-nucleon systems with
I ¼ 1 and I ¼ 0, respectively. The FV energy-spectrum
results, as well as the corresponding scattering phase shifts,
are compared with existing variational and nonvariational
LQCD results at similar quark masses. Extensive studies
of the interpolating-operator dependence of the results are
performed, and the strengths and weaknesses of variational
methods and implications of these results are summarized
in Sec. IV. A number of appendices complement the
formalism and numerical sections of the paper by providing
further details. They are followed by a glossary of fre-
quently used notation in Appendix H.

II. VARIATIONAL METHODS FOR
TWO-NUCLEON SYSTEMS

A. Interpolating operators

In the infinite-volume and continuum limits, interpolat-
ing operators for QCD energy eigenstates in Euclidean
spacetime can be classified by their transformation proper-
ties under rotations, the SOð3Þ subgroup of SOð4Þ space-
time isometries valid at fixed Euclidean time t. Assuming a
vanishing θ term, charge conjugation (C) and parity (P) are
exact symmetries of the QCD action and interpolating
operators are further classified by their C and P trans-
formation properties. For theories in a finite cubic spatial
volume and/or cubically discretized lattice field theories,
SOð3Þ invariance is broken down to the cubic or octahedral
group Oh composed of the 48 symmetries of a cube.
Bosonic states in even baryon-number sectors, such as the
vacuum and two-nucleon sectors, can be decomposed into
direct sums of states that transform in the Oh irreducible
representations (irreps) A�

1 ; A
�
2 ; E

�; T�
1 , and T�

2 , where �
denotes that states in the corresponding irrep are eigenstates
of P with eigenvalues�1.2 Fermionic states in odd baryon-
number sectors transform in direct sums of representations
G�

1 , G
�
2 , and H� of the double cover of the cubic group,

OD
h , which includes all elements of Oh as well as the same

elements composed with a 2π rotation about any axis.
LQCD actions also preserve Uð1Þ baryon-number sym-
metry exactly, and energy eigenstates can therefore be
decomposed into irreps of Uð1Þ corresponding to baryon
number B ∈ Z. Furthermore, the up, down, and strange
quark masses are be chosen to be equal and electroweak
interactions will be omitted throughout this work; therefore
SUð3Þ flavor symmetry and its SUð2Þ isospin subgroup are
exact symmetries in the study below.

2For a octahedral group representation ΓJ , dΓJ
denotes the

dimension of the representation and the individual elements are
referred to as “rows” of the irrep.
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Given these symmetries, FV LQCD energy eigenstates
can be classified by their baryon number B, total isospin I,
strangeness (only strangeness-0 systems are considered in
this work), and cubic irrep ΓJ, which plays the role of the
continuum, infinite-volume total angular momentum, J.
Energy eigenstates with definite values of these quantum
numbers will be denoted jnðB;I;ΓJÞi, with n ∈ f0; 1;…g
labeling discrete FVeigenstates within the spectrum, where
hnðB;I;ΓJÞjnðB;I;ΓJÞi ¼ 1. The corresponding energies are

denoted EðB;I;ΓJÞ
n , and states are ordered such that EðB;I;ΓJÞ

n ≤
EðB;I;ΓJÞ
m for n < m. Energies of these states are exactly

independent of the isospin component Iz ∈ f−I;…; Ig and
the row of the cubic irrep ΓJ on ensemble average. To
simplify notation, jnðB;I;ΓJÞi is defined to be averaged over
Iz and rows of ΓJ. The nucleon is defined to be the ground
state of the sector with baryon number B ¼ 1, positive
parity, and total isospin I ¼ 1=2, and transforms in the Gþ

1

irrep associated with total angular momentum J ¼ 1=2 in
the continuum, infinite-volume limit; see Appendices A–C

and Refs. [134,135] for further discussion. For boosted
systems with nonzero total center-of-mass momentum P⃗,
cubic symmetry is further broken down to the little group
comprised of the elements of OD

h that leave P⃗ invariant
[136]. Boosted systems are classified by their total center-

of-mass momentum P⃗ and irrep ΓP⃗
J under the associated

little group, and the energies and energy eigenstates of

boosted systems will be denoted E
ðB;I;P⃗;ΓP⃗

J Þ
n and jnðB;I;P⃗;ΓP⃗

J Þi
(the P⃗ label is dropped for P⃗ ¼ 0), normalized to

hnðB;I;P⃗;ΓP⃗
J ÞjnðB;I;P⃗;ΓP⃗

J Þi ¼ 1.

1. Single-nucleon interpolating operators

This work uses standard nucleon interpolating operators
whose properties are briefly reviewed. Pointlike proton
interpolating operators transforming in rows of the Gþ

1

irrep indexed as σ ∈ f0; 1g can be constructed in the Dirac
basis3 as

pσðxÞ ¼ εabc
1ffiffiffi
2

p ½uaζðxÞðCγ5PþÞζξdbξðxÞ − daζðxÞðCγ5PþÞζξubξðxÞ�½Pþð1 − ð−1Þσiγ1γ2Þ�σζucζðxÞ; ð1Þ

where qaζðxÞ denotes a quark field of flavor q ∈ fu; dg with
a, b, c being SUð3Þ color indices and ζ, ξ being Dirac
spinor indices,4 γμ are Euclidean gammamatrices satisfying
γ†μ ¼ γμ and fγμ; γνg ¼ 2δμν, C ¼ γ2γ4, and γ5 ¼ γ1γ2γ3γ4
are used to build spin-singlet diquarks, and Pþ ¼ ð1þγ4

2
Þ is a

positive-parity projector. The application of Pþ projects
each quark field from Gþ

1 ⊕ G−
1 onto Gþ

1 , which allows for
increases in computational efficiency, as discussed below.
The Dirac basis is convenient for expressing Eq. (1)
because in this basis the 0 and 1 Dirac spinor components
transform according to the σ ¼ 0 and σ ¼ 1 rows of Gþ

1 .
Pointlike neutron interpolating operators nσðxÞ are obtained
by exchanging u ↔ d in Eq. (1). These interpolating
operators can be combined into a nucleon field NσðxÞ≡
ðpσðxÞ; nσðxÞÞT that transforms as a doublet under SUð2Þ
isospin symmetry, where T denotes transpose.
Spin-color weights can be introduced in order to simplify

expressions for the tensor contractions appearing in
nucleon and multinucleon correlation functions as in
Ref. [137]. Spin-color components of the quark field will
be labeled with indices i; j; k;…, where for example i ¼
ðζ; aÞ denotes a compound spin-color index corresponding

to spinor index ζ∈f0;…;3g and color index a ∈ f0; 1; 2g.
In this way, the proton interpolating operator above can
be expressed as a contraction of three quark fields,5

uiðxÞdjðxÞukðxÞ, with a tensor of real-valued “weights”
whose ijk component is defined to be the coefficient of
uiðxÞdjðxÞukðxÞ in Eq. (1). The corresponding neutron
interpolating operator can be expressed as a contraction of
diðxÞujðxÞdkðxÞ with an identical tensor of weights. The
weights depend on the spin of the nucleon and will
therefore be denoted w½N�σ . Most of the spin-color tensor
components of w½N�σ are zero, and the numerical evaluation
of spin-color contractions becomes significantly more
efficient if the nucleon weights are represented as a sparse

tensor w½N�σ
α , where α ∈ f1;…;N ½N�

w g runs over the N ½N�
w

components of uiðαÞðxÞdjðαÞðxÞukðαÞðxÞ with nonzero
weight, where iðαÞ, jðαÞ, and kðαÞ are spin-color-index-
valued maps from α to spin-color indices such that

pσðxÞ ¼
X
α

w½N�σ
α uiðαÞðxÞdjðαÞðxÞukðαÞðxÞ;

nσðxÞ ¼
X
α

w½N�σ
α diðαÞðxÞujðαÞðxÞdkðαÞðxÞ: ð2Þ

The nucleon weights w½N�σ
α can be evaluated by choosing

a particular basis for the spinor algebra in Eq. (1) and

3For the definition of the Dirac basis and relations to other
bases, see Appendix A of Ref. [135].

4Note that repeated spinor and color indices are implicitly
assumed to be summed throughout this work but that this
summation convention will not be used for cubic irrep rows
and other indices.

5A canonical ordering in which quark flavors occur lexico-
graphically in all hadron interpolating operators can also be used.
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enforcing equivalence with the particular flavor ordering
shown in Eq. (2). The Dirac basis is particularly convenient
because only two of the spinor components have nonzero
weight (due to the application of Pþ to all quark fields), and
the storage and computation time of quark propagator
contractions can be significantly reduced by considering
only these two spin components and treating spin-color
indices as valued in f0;…; 5g. In the Dirac basis, there are

N ½N�
w ¼ 12 terms appearing in Eq. (2) that are explicitly

shown in Appendix A. Quark-exchange symmetry, arising
from the presence of two identical quark fields in NσðxÞ,
can be used to reduce the number of weights required
to compute nucleon correlation functions to 9 [137].
However, this symmetry does not apply to Wick contrac-
tions involving nontrivial quark permutations in B ¼ 2
correlation functions with interpolating operators built
from products of Nσðx1Þ and Nσ0 ðx2Þ in which quark fields
with distinct spatial labels appear. For simplicity, quark-
exchange symmetry is not used to reduce the number of
nucleon weights throughout this work.
Nonpointlike nucleon interpolating operators in the Gþ

1

irrep can be constructed by including (gauge-covariant)
derivatives or other functions of the gauge field into
the interpolating operator of Eq. (1) as described in
Refs. [134,135]. Nucleon spectroscopy studies, for example
in Refs. [87,91,93–97,99,101,103–106], suggest that inter-
polating operators including derivatives or spatial wave
functions with nodes dominantly overlap with nucleon
excited states. Alternative spin structures are also found
to overlap dominantly with nucleon excited states
[89,90,138]. Operators that have larger overlap with the
nucleon ground state can be constructed by combining
the spin-color tensor structure in Eq. (1) with spatial
wave functions that “smear” the location of the quark field
over a volume whose radius is of the order of the proton
radius [87,91]. Gauge-invariantly Gaussian-smeared quark
fields are defined as [139,140]

qiðαÞg ðx⃗; tÞ ¼
X
z⃗∈Λ

X
i0

ΠiðαÞi0
g ðx⃗; z⃗Þqi0 ðz⃗; tÞ; ð3Þ

where i0 is a spin-color index,ΠiðαÞi0
g is a Gaussian smearing

kernel with a width specified by the index g. The kernel is
assumed here to beOh invariant and can be constructed, for
example, by iteratively applying the gauge-covariant dis-
crete Laplacian,6 and Λ ¼ fðx1; x2; x3Þj0 ≤ xk < Lg is the
set of spatial lattice sites where k ∈ f1; 2; 3g labels the
spatial dimensions of the lattice geometry.7 Throughout this
work units are used in which the lattice spacing is equal to

unity, so xk; t ∈ Z. Smeared proton and neutron interpolat-
ing operators are defined from the smeared quark fields as

pσgðxÞ ¼
X
α

w½N�σ
α uiðαÞg ðxÞdjðαÞg ðxÞukðαÞg ðxÞ;

nσgðxÞ ¼
X
α

w½N�σ
α diðαÞg ðxÞujðαÞg ðxÞdkðαÞg ðxÞ; ð4Þ

and smeared isodoublet nucleon fields are defined as
NσgðxÞ≡ ðpσgðxÞ; nσgðxÞÞT . Such smeared quark fields
transform identically to unsmeared quark fields under
OD

h , and therefore smeared hadron fields transform identi-
cally to unsmeared hadron fields.
Projection to a definite center-of-mass momentum P⃗c,

where c indexes the center-of-mass momenta included in an
interpolating-operator set, is accomplished by multiplying

NσgðxÞ by eiP⃗c·x⃗, where x⃗ denotes the spatial components
of the coordinate x ¼ ðx⃗; tÞ, and summing over the set of
spatial lattice sites Λ. In order to reduce the computational
cost of performing this summation (and more costly
volume sums for the two-hadron operators discussed
below), the propagator sparsening algorithm introduced
in Ref. [120] is applied. In particular, “sparsened” plane-
wave spatial wave functions are used that only have support
on a cubic sublattice ΛS ⊂ Λ defined as

ΛS ¼ fðx1; x2; x3Þj0 ≤ xk < L; xk ≡ 0 ðmod SÞg; ð5Þ

where L is the spatial extent of the cubic lattice geometry
and S ∈ Z is the ratio of the number of full and sparse
lattice sites in each spatial dimension. Defining

ψ ½N�
c ðx⃗Þ ¼ eiP⃗c·x⃗jΛS

; ð6Þ

where the bar denotes restriction of support to ΛS, the
nucleon interpolating operators including sparsened plane-
wave spatial wave functions are defined as

NσcgðtÞ ¼
X
x⃗∈ΛS

ψ ½N�
c ðx⃗ÞNσgðx⃗; tÞ: ð7Þ

Momentum-projected two-point correlation functions for
these nucleon interpolating operators are defined by

C½N;N�
σcgσ0c0g0 ðtÞ ¼ hNσcgðtÞN̄T

σ0c0g0 ð0Þi; ð8Þ

where N̄σ0c0g0 ðtÞ is obtained from Nσ0c0g0 ðtÞ by replacing
qiðxÞ with q̄iðxÞ and reversing the order of the fields
in Eq. (2) [the weights should also be replaced by their

complex conjugates but they satisfy ðwðNÞ
α Þ� ¼ wðNÞ

α for the
interpolating operators used here]. Two-point correlation
functions only depend on the time difference between the
two operators; for simplicity, the Euclidean time location
of the “source” operator is denoted by 0 and the Euclidean

6For systems with a large center-of-mass momentum, the
kernel could be replaced with the momentum-smearing kernel
introduced in Ref. [141] to improve ground-state overlap.

7The label k for the spatial coordinate axes should not be
confused with the spin-color index k.
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time location of the “sink” operator is denoted by t.

By isospin symmetry, C½N;N�
σcgσ0c0g0 ðtÞ is proportional to the

identity matrix in flavor space. Similarly, C½N;N�
σcgσ0c0g0 ðtÞ

vanishes unless σ ¼ σ0 and c ¼ c0. Sparsened two-point
correlation functions of the form of Eq. (8) can be practi-
cally evaluated by computing point-to-all quark propaga-
tors with Gaussian-smeared quark sources at each of the
VS ¼ ðL=SÞ3 points on the sparse lattice, smearing the
resulting quark propagators at the sink, and then for each t
restricting the propagators (obtained by solving the Dirac
equation on the full lattice Λ) to have support on ΛS and
subsequently evaluating the V2

S terms appearing in Eq. (8).
Momentum projection with the sparsened plane-wave

wave functions ψ ½N�
c ðx⃗Þ leads to complete projection to

states of momentum allowed by the lattice geometry for
the case of trivial sparsening S ¼ 1, and it amounts to
incomplete momentum projection for the case of interest
where 1 < S ≪ L. The effects of this incomplete momen-
tum projection on sparsened two-point correlation func-
tions can be seen from the spectral representation

C½N;N�
σcgσ0c0g0 ðtÞ ¼

X
P⃗;ΓP⃗

J

X
n

Z
ð1;1

2
;P⃗;ΓP⃗

J Þ
nNσcg

�
Z
ð1;1

2
;P⃗;ΓP⃗

J Þ
nNσ0c0g0

��
e−tE

ð1;1
2
;P⃗;ΓP⃗

J
Þ

n ;

ð9Þ

where thermal effects arising from the finite Euclidean time

extent of the lattice are neglected, and Z
ð1;1

2
;P⃗c;Γ

P⃗c
J Þ

nχ ≡
hnð1;12;P⃗c;Γ

P⃗c
J Þjχ̄ð0Þj0i for a generic interpolating operator

χðxÞ. For x⃗ ∈ ΛS, sparsened plane-wave wave functions

satisfy ψ ½N�
c ðx⃗Þ ¼ eiP⃗c·x⃗ ¼ ei½P⃗cþ2π

S êk�·x⃗, where êk is a unit
vector oriented along the k axis, and therefore the sum over
states in Eq. (9) includes not only states with momentum
P⃗ ¼ P⃗c but also states with momenta that differ by multiples
of 2π

S êk. In the numerical calculations presented below, only

the center-of-mass rest frame P⃗c ¼ 0⃗ will be considered.
In this frame, sparsening results in contributions to Eq. (9)

that are suppressed by e−tΔE
ð1;1

2
;Gþ

1
Þ

S , where ΔEð1;1
2
;Gþ

1
Þ

S ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ð2πS Þ2
q

−MN , with MN ≡ E
ð1;1

2
;Gþ

1
Þ

0 being the mass

of the nucleon. Previous numerical investigations confirm
that sparsening results in changes to the excited-state
structure of correlation functions that can be treated
analogously to other excited-state effects in nucleon
and nuclear correlation functions [120]. Excited-state
effects arising from sparsening can also be stochastically
removed by using random source positions instead of a
lattice of sources ΛS, but using random source positions
has been found to decrease statistical precision [121].
The sum in Eq. (9) includes contributions from two and

more hadron states, e.g., “elastic” Nπ states with the same

quantum numbers as the nucleon that can be approxi-
mately described as sets of interacting color-singlet
hadrons, as well as contributions from “inelastic” excited
states that can be approximately described as a single
localized color-singlet hadron with a different spatial
and/or spin structure than the ground state. Excited-state
contamination from elastic Nπ states is suppressed com-
pared to the ground-state contribution by e−tδ, where
δ≳mπ . These contributions can be neglected for
Euclidean times t ≫ m−1

π , which can be easily achieved
in LQCD calculations that use larger-than-physical quark
masses such as those considered in Sec. III. A simple
nucleon interpolating-operator set sufficient for describ-
ing the nucleon ground state and one or more inelastic
excited states with energies below mπ can be obtained by
using a set of two or more smeared nucleon interpolating
operators. It is noteworthy, however, that the highest-
energy state obtained using variational methods must
describe a linear combination of a whole tower of
higher-energy excited states and is unlikely to be reliable.

2. Two-nucleon interpolating operators

In the two-nucleon sector, the presence of a closely
spaced tower of elastic two-nucleon excitations in addition
to inelastic excitations of the two nucleons leads to the
expectation that larger sets of operators are necessary to
find combinations that strongly overlap onto the low-
energy eigenstates than in the single-nucleon sector. One
possibility for two-nucleon interpolating operators is to
construct single-hadron operators that describe spatially
local color-singlet products of quark fields analogous to
Eq. (1). Due to the quark spin, “hexaquark” operators of
this form transform under the cubic group according to a
sixfold tensor product of Gþ

1 irreps (only positive-parity
quark components are used for simplicity and computa-
tional expediency). The six quark spin representations can
be grouped into the product ðGþ

1 ⊗ Gþ
1 ⊗ Gþ

1 Þ ⊗ ðGþ
1 ⊗

Gþ
1 ⊗ Gþ

1 Þ using an arbitrary quark-field ordering and,
after evaluating the products in parentheses, can be repre-
sented as a product of two spins that can be associated
with B ¼ 1 operators. Hexaquark operators can be con-
structed that transform according to the Gþ

1 ⊗ Gþ
1 irrep

associated with NN operator products, as well as the
Hþ ⊗ Hþ irrep associated with ΔΔ operator products

and other combinations.8 Since MN < MΔ ≡ E
ð1;3

2
;HþÞ

0 ,
both in nature and in LQCD calculations at unphysically
large quark masses, it is expected that ΔΔ operators and
other combinations will dominantly overlap with higher-
energy states than NN operators. For simplicity, only NN

8Additional operators that do not factorize into products of
color-singlet baryons can be constructed [142] but are not used in
this work.
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hexaquark operators constructed from products of color-
singlet nucleons that transform under the cubic group as
Gþ

1 ⊗ Gþ
1 are considered in this work.

Hexaquark operators will be denoted as HρcgðtÞ below,
where ρ∈f0;…;3g labels the row ofGþ

1 ⊗Gþ
1 ¼Aþ

1 ⊕Tþ
1 ,

c labels the center-of-mass momentum P⃗c, and g labels
the quark smearing, as in the single-nucleon case. Quark
antisymmetry and the Aþ

1 spatial symmetry of hexaquark
operators force I ¼ 1 operators to transform in the one-
dimensional Aþ

1 irrep associated with spin-singlet states,
and they similarly force I ¼ 0 operators to transform in the
Tþ
1 irrep associated with spin-triplet states. The I ¼ 1

hexaquark operators have ρ ¼ 0, and for the Iz ¼ 0 case
they are defined by

H0cgðtÞ¼
X
x⃗∈ΛS

ψ ½H�
c ðx⃗Þ1

2
½p0gðx⃗;tÞn1gðx⃗;tÞ−p1gðx⃗;tÞn0gðx⃗;tÞ

þn0gðx⃗;tÞp1gðx⃗;tÞ−n1gðx⃗;tÞp0gðx⃗;tÞ�; ð10Þ

where g specifies the quark-field smearing (chosen to be the
same for all quarks), and the same sparsened plane-wave

wave functions ψ ½H�
c ðx⃗Þ≡ ψ ½N�

c ðx⃗Þ ¼ eiP⃗c·x⃗jΛS
are used as for

thenucleon above. The spectra ofpp andnn stateswith I ¼ 1
and Iz ¼ �1 are identical to those ofpn stateswith I ¼ 1 and
Iz ¼ 0 by isospin symmetry, and it is therefore sufficient
to only consider pn operators in isospin-symmetric calcu-
lations of the two-nucleon spectrum. Hexaquark operators
for pn systems with I ¼ 0 are defined as

H1cgðtÞ ¼
X
x⃗∈ΛS

ψ ½H�
c ðx⃗Þ 1ffiffiffi

2
p ½p0gðx⃗; tÞn0gðx⃗; tÞ − n0gðx⃗; tÞp0gðx⃗; tÞ�;

H2cgðtÞ ¼
X
x⃗∈ΛS

ψ ½H�
c ðx⃗Þ 1

2
½p0gðx⃗; tÞn1gðx⃗; tÞ þ p1gðx⃗; tÞn0gðx⃗; tÞ − n0gðx⃗; tÞp1gðx⃗; tÞ − n1gðx⃗; tÞp0gðx⃗; tÞ�;

H3cgðtÞ ¼
X
x⃗∈ΛS

ψ ½H�
c ðx⃗Þ 1ffiffiffi

2
p ½p1gðx⃗; tÞn1gðx⃗; tÞ − n1gðx⃗; tÞp1gðx⃗; tÞ�: ð11Þ

Quark-level representations of hexaquark operators can be
derived from Eqs. (10) and (11) by inserting the repre-
sentations of pσg and nσg in terms of the quark fields qiðαÞg .
These quark-level representations can be used to define
spin-color weights and associated spin-color-index-valued
maps9 analogous to the weights and index maps defined for
the nucleon in Eq. (2) as

HρcgðtÞ¼
X
x⃗∈ΛS

ψ ½H�
c ðx⃗Þ

X
α

w½H�ρ
α uiðαÞg ðx⃗;tÞdjðαÞg ðx⃗;tÞukðαÞg ðx⃗;tÞ

×dlðαÞg ðx⃗;tÞumðαÞ
g ðx⃗;tÞdnðαÞg ðx⃗;tÞ: ð12Þ

Quark-exchange symmetries can be used to greatly reduce
the number of independent spin-color weights required to
construct local multibaryon operators as described in
Ref. [137]. For pn systems, the number of nonzero

elements of w½H�ρ
α can be reduced to N ½H�ρ

w with N ½H�0
w ¼

N ½H�2
w ¼ 32 and N ½H�1

w ¼ N ½H�3
w ¼ 21. An explicit repre-

sentation of these reduced weights is presented in Appen-
dix A. Hexaquark operators with one or more values of the
quark-field smearing radius can be included in an inter-
polating-operator set that describes two-nucleon systems

(here all quarks are smeared in the same way, although
more general constructions are possible).
In addition to hexaquark operators that are expected to

strongly overlap with compact bound states, operators
constructed from products of pairs of nucleon operators
at nonzero spatial separation may be expected to have
larger overlap with unbound states of two-nucleon systems.
“Dibaryon” interpolating operators, constructed from prod-
ucts of nucleon interpolating operators with factorizable
plane-wave wave functions that are symmetric under
exchange of the nucleon positions, are defined as

DρmgðtÞ¼
X

x⃗1;x⃗2∈ΛS

ψ ½D�
m ðx⃗1;x⃗2Þ

X
σ;σ0

vρσσ0
1ffiffiffi
2

p ½pσgðx⃗1;tÞnσ0gðx⃗2;tÞ

þð−1Þ1−δρ0nσgðx⃗1;tÞpσ0gðx⃗2;tÞ�; ð13Þ
where vρσσ0 is a weight tensor that projects the two-nucleon
system into a row ρ ∈ f0;…; 3g of the Aþ

1 ⊕ Tþ
1 two-

nucleon spin representation, analogous to the hexaquark
operators in Eqs. (10) and (11). Explicitly,

v0σσ0 ¼
1ffiffiffi
2

p ðδσ0δσ01 − δσ1δσ00Þ;

v1σσ0 ¼ δσ0δσ00;

v2σσ0 ¼
1ffiffiffi
2

p ðδσ0δσ01 þ δσ1δσ00Þ;

v3σσ0 ¼ δσ1δσ01: ð14Þ

9The same notation is used for index maps iðαÞ; jðαÞ;…, for
different interpolating operators since the labels carried by the
corresponding weights are sufficient to specify the interpolating
operators in all contexts.
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The spatial wave functions appearing in Eq. (13) are chosen
to be symmetric in x⃗1 ↔ x⃗2 and are labeled by m, where
P⃗m is the center-of-mass momentum and �k⃗m is the
momentum carried by each nucleon in the center-of-mass
frame, and are given by

ψ ½D�
m ðx⃗1; x⃗2Þ ¼

1ffiffiffi
2

p
h
eið

P⃗m
2
þk⃗mÞ·x⃗1eið

P⃗m
2
−k⃗mÞ·x⃗2

þ eið
P⃗m
2
þk⃗mÞ·x⃗2eið

P⃗m
2
−k⃗mÞ·x⃗1

i
: ð15Þ

Quark-level representations for dibaryon interpolating
operators can be derived analogously to the hexaquark
case and are given by

DρmgðtÞ ¼
X

x⃗1;x⃗2∈ΛS

ψ ½D�
m ðx⃗1; x⃗2Þ

×
X
α

w½D�ρ
α uiðαÞg ðx⃗1; tÞdjðαÞg ðx⃗1; tÞukðαÞg ðx⃗1; tÞ

× dlðαÞg ðx⃗2; tÞumðαÞ
g ðx⃗2; tÞdnðαÞg ðx⃗2; tÞ; ð16Þ

where the weights w½D�ρ
α , with α ∈ f1;…;N ½D�ρ

w g, with

N ½D�0
w ¼ N ½D�2

w ¼ 288 and N ½D�1
w ¼ N ½D�3

w ¼ 144, are

obtained from products of w½N�σ
α , w½N�σ0

α , and vρσσ0 and are
explicitly shown in Appendix A. The dibaryon weights

w½D�ρ
α differ from the hexaquark weights w½H�ρ

α , since quark
exchange symmetries can be used to reduce the number of
independent weights in the latter case. For boosted systems
with P⃗m ≠ 0⃗, cubic symmetry is broken and the two-
nucleon operators transform under the appropriate little
groups as described in Ref. [51]. This work specializes to
two-nucleon systems with P⃗m ¼ 0⃗, where cubic symmetry
and parity can be used to simplify interpolating-operator
construction. Further, only positive-parity systems are
considered in this work since the ground states of I ¼ 1
and I ¼ 0 two-nucleon systems in nature are known to be
of positive parity. Although products of two negative-parity
nucleon excitations have the same quantum numbers, they
are expected to correspond to higher-energy states than
those studied here and are therefore not considered.

The plane-wave wave functions ψ ½D�
m ðx⃗1; x⃗2Þ with

P⃗m ¼ 0⃗ for all k⃗m would be energy eigenfunctions in
the absence of strong interactions between the nucleons,

with energies given by 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ jk⃗mj2
q

. For FV systems
with spatial periodic boundary conditions (PBCs), which
will be assumed below, the set of dibaryon operators
DρmgðtÞ with k⃗m ¼ ð2πL Þn⃗m, where n⃗m ∈ Z3, and relative
momentum “shell” sðmÞ≡ jn⃗mj2 ≤ K provides a complete
basis for relative wave functions of noninteracting two-
nucleon scattering states (neglecting the internal structure

of the nucleon) with relative momentum less than a cutoff
set by K. For notational simplicity, the functional depend-
ence of s on m will be dropped below. For noninteracting
nucleons, the energy spectrum is therefore given by

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ sð2πL Þ2
q

for all integer s that can be written as a

sum of three integer squares (multiplicities can be enu-
merated for a given s [143]). Including strong interactions,
one expects the spectrum to resemble a tower of states
whose energies approach these noninteracting energy levels
as the infinite-volume limit is approached, as well as
additional energy levels associated with bound states or
resonances. Although in an interacting theory such as
QCD, k⃗m is not a quantum number of energy eigenstates,
the noninteracting two-nucleon wave function basis still
provides a useful way to enumerate linearly independent
two-nucleon interpolating operators. Further, the trans-
formations of plane-wave wave functions under the cubic
group are straightforward, see Ref. [49] and Appendix B.
The total cubic transformation representation, ΓJ, of a
dibaryon interpolating operator with P⃗m ¼ 0⃗ depends on
the product of the cubic representation of the spin, ΓS,
with the cubic representation of the relative spatial wave
function, Γl, associated with the continuum, infinite-
volume orbital angular momentum, l. As discussed in
Sec. II C, linear combinations of DρmgðtÞ can be con-
structed that transform with definite ΓJ. It is therefore well
motivated to include the dibaryon operators DρmgðtÞ with
s ≤ K, and with the same two choices of quark smearings g
used for single-hadron interpolating operators, in an inter-
polating-operator set that can be diagonalized to obtain the
two-nucleon low-lying energies using variational methods
as described below.
Sparsening leads to incomplete momentum projection in

the sum over ΛS in Eq. (16), as described for the single-
nucleon sector in Sec. II A 1. Specializing to P⃗m ¼ 0⃗,
dibaryon interpolating operators with n⃗m related by shifts
of �L=S (and integer multiples of these) along any lattice
axis are identical since eið

2π
L Þðn⃗m�L

SêkÞ·ðx⃗1−x⃗2Þ ¼ eið2πL Þ·n⃗mðx⃗1−x⃗2Þ
for x⃗1 − x⃗2 ∈ ΛS, where êk is a spatial unit vector. This
equivalence is illustrated in Fig. 1 for particular examples
of n⃗m with L ¼ 32 and S ¼ 4, as relevant to the numerical
calculations discussed in Sec. III. For an interpolating-
operator set including dibaryon operators with s ≤ K,
sparsening effects therefore lead to additional contamina-
tion from operators with s > K. Assuming that S ≪ L and
s ≪ K, the excited-state contamination from higher s-shell
interpolating operators introduced by sparsening is sup-
pressed in comparison to excited-state contamination from
states strongly overlapping with interpolating operators
with s just above K. For the same example parameters,
sparsening leads to the identification of the single-nucleon
momentum vector k⃗m¼ð2;0;0Þ with k⃗m−L

S ê1¼ð−6;0;0Þ
as seen in Fig. 1. For noninteracting nucleons, this leads to

VARIATIONAL STUDY OF TWO-NUCLEON SYSTEMS WITH … PHYS. REV. D 107, 094508 (2023)

094508-9



an excited-state energy gap ΔEð2;I;ΓJÞ
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ 4ð2πL Þ2
q

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ 36ð2πL Þ2
q

− 2MN for the I;ΓJ pairs that have over-

lap with dibaryon operators with s ¼ 0. This is coincident
with the noninteracting energy of states with s ¼ 20 in
the MN → ∞ limit (for the quark masses in Sec. III,
it is closest to the noninteracting energy with s ¼ 19),

and t ≫ 1=ΔEð2;I;ΓJÞ
S is achievable in practical calculations

as seen below. For the choice of K ¼ 6 used in Sec. III,
noninteracting energy levels with s ¼ 8 and many other
relative-momentum shells with 20 > s > K will lead to
excited-state contamination from states that at a given level
of statistical precision are outside the subspace spanned by
the interpolating-operator set and with smaller excitation

energies than ΔEð2;I;ΓJÞ
S . Excited-state effects arising from

sparsening are therefore expected to be suppressed com-
pared to other excited-state effects present in two-nucleon
correlation functions and are not given any special signifi-
cance below.
For large volumes, both plane-wave dibaryon operators

and compact hexaquark operators may have small overlap
with the loosely bound deuteron state found in nature.
Within low-energy EFTs and phenomenological nuclear
models with nucleon degrees of freedom, the deuteron
is described by a wave function that for large jx⃗1 − x⃗2j
and a cubic volume with PBCs is proportional toP

n⃗∈Z3 e−κdjx⃗1−x⃗2þn⃗Lj times a polynomial in 1=jx⃗1 − x⃗2 þ
n⃗Lj [34,35,51,144], where the deuteron binding momen-
tum is κd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
MNBd

p
in terms of the nucleon mass,MN , and

the deuteron binding energy, Bd. However, interpolating

operators proportional to
P

n⃗∈Z3 e−κdjx⃗1−x⃗2þn⃗Lj do not

factorize into products of functions of x⃗1 and x⃗2.
10

In Sec. II B, the factorization of ψ ½D�
m ðx⃗1; x⃗2Þ into a

sum of two products of functions of x⃗1 and x⃗2 shown in
Eq. (15) is exploited using baryon-block algorithms that

efficiently compute C½D;D�
ρmgρ0m0g0 ðtÞ using OðV3

SÞ operations.
“Quasilocal” interpolating operators that can be efficiently
computed using baryon-block algorithms are defined by

QρqgðtÞ ¼
X

x⃗1;x⃗2∈ΛS

ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ

×
X
σ;σ0

vρσσ0
1ffiffiffi
2

p ½pσgðx⃗1; tÞnσ0gðx⃗2; tÞ

þ ð−1Þ1−δρ0nσgðx⃗1; tÞpσ0gðx⃗2; tÞ�; ð17Þ

with wave functions

ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ ¼

1

VS

X
τ∈TS

e−κqjτðx⃗1Þ−R⃗je−κqjτðx⃗2Þ−R⃗j; ð18Þ

where q labels the various localization scales κq included in

an interpolating-operator set, R⃗ is an arbitrary parameter11

FIG. 1. Examples of wave functions demonstrating how sparsening leads to the coincidence on ΛS of plane-wave dibaryon

wave functions ψ ½D�
m ðx⃗1; x⃗2Þ with zero center-of-mass momenta and relative momenta proportional to n⃗m and n⃗m � L

S êk. Each
momentum component can be analyzed independently, and for simplicity the relative position of the nucleons is taken to be
x⃗1 − x⃗2 ¼ ðx1 − x2; 0; 0Þ with momenta corresponding to n⃗m ¼ ð0; 0; 0Þ, n⃗m ¼ ð1; 0; 0Þ, and n⃗m ¼ ð2; 0; 0Þ shown as solid lines
in the left, center, and right panels, respectively. Positions satisfying x⃗1 − x⃗2 ∈ ΛS are shown as open shapes. Analogous spatial

wave functions for momenta n⃗m � L
S ê1 that are identical to ψ ½D�

m ðx⃗1; x⃗2Þ for x⃗1 − x⃗2 ∈ ΛS are shown as dashed and dotted lines
[degenerate for the case n⃗m ¼ ð0; 0; 0Þ]. For concreteness, the values L ¼ 32 and S ¼ 4 used in the numerical calculations in Sec. III
are chosen.

10Using fast-Fourier transform techniques, correlation func-
tions built from such interpolating operators could be computed
using ðVS lnVSÞ2 operations. A fast-Fourier transform approach
may be useful for calculations of two-nucleon correlation
functions, although it has less favorable scaling for B > 2
systems than the baryon-block methods discussed in Sec. II B
and Ref. [137].

11Quasilocal wave functions are invariant under shifts of R⃗ by
Sêk but depend on R⃗ðmod SÞ.
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specifying the location of the center of the two-nucleon
system in the lattice volume (before translation averaging
over ΛS), and TS is the set of translations by multiples of
the sparse lattice spacing, which are defined to act on
coordinate vectors by τðx⃗Þ ¼ x⃗þ Sðτ1ê1 þ τ2ê2 þ τ3ê3Þ
with τ1; τ2; τ3 ∈ f0;…; L=S − 1g, with each component
of τðx⃗Þ defined modulo L to respect PBCs. Quark-level
spin-color weights for quasilocal interpolating operators are

identical to w½D�ρ
α , defined in Appendix A. The sum over

translations in Eq. (18) introduces correlations between
the positions of the nucleons and leads to an entangled
two-nucleon wave function describing a pair of nucleons
exponentially localized around a common point. Applying
the same translation to x⃗1 and x⃗2 in Eq. (18) ensures that the
wave function is independent of x⃗1 þ x⃗2 and therefore has
definite center-of-mass momentum P⃗q ¼ 0⃗ (mod 2π

S ). These
quasilocal wave functions are qualitatively similar although
quantitatively different12 from the periodic EFT expectationP

n⃗∈Z3 e−κqjx⃗1−x⃗2þn⃗Lj, as illustrated in Fig. 2. Linear combi-

nations of ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ with different κq can be used to

construct more general wave functions for quasilocal two-

nucleon systems. Quasilocal wave functions ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ

are linearly independent from a truncated set of dibaryon

wave functions ψ ½D�
m ðx⃗1; x⃗2Þ with s ¼ jn⃗mj2 < 3L2. They

can be included in a variational interpolating-operator set in
an attempt to describe loosely bound states, with spatially
correlated pairs of nucleons, more efficiently than a set

including only dibaryon operators. Quasilocal interpolating
operators therefore provide a well-motivated extension
to a set of dibaryon operators (that approximately describe
unbound two-nucleon systems) and hexaquark interpolat-
ing operators (that approximately describe tightly bound
two-nucleon systems).
Two-nucleon correlation functions using this interpolat-

ing-operator set are defined by

C½T ;T 0�
ρtsρ0t0g0 ðtÞ ¼ hT ρtsðtÞðT 0

ρ0t0g0 Þ†ð0Þi; ð19Þ

for all T ∈ fH;D;Qg with corresponding wave function
indices t; t0 ∈ fc;m; qg. Calculations of the correlation-
function matrix with elements given by Eq. (19) generalize
previous LQCD calculations in the two-nucleon sector
including positive-definite ½D;D� correlation functions
of the form hDρmgðtÞD†

ρ0m0g0 ð0Þi, which have been recently
studied in Refs. [26,28,30], as well as asymmetric ½D;H�
correlation functions of the form hDρmgðtÞH†

ρ0c0g0 ð0Þi,
which have identical structure (up to differences in
quark-field smearing) to the correlation functions studied
in Refs. [11,13,15,16,18,21,22,25,122–131].
A modified form of Eq. (19) is required for calculating

correlation functions involving quasilocal operators using
generalized baryon-block algorithms that assume factoriz-
ability of two-nucleon spatial wave functions. The sum
in Eq. (18) projectsQρqg to total momentum 0 ðmod 2π=SÞ
while introducing correlations in the two-nucleon wave
functions between the positions of the two quasilocal
nucleon interpolating operators. The same sum prevents
correlation functions involving Qρqg from factorizing into
products of single-nucleon wave functions; however, it is
possible to approximate such correlation functions using

FIG. 2. Spatial wave functions ψ ½Q�
q ðx⃗1; x⃗2Þ associated with quasilocal interpolating operators with relative nucleon positions parallel

to a lattice axis x⃗1 − x⃗2 ¼ ðx1 − x2; 0; 0Þ and localization scales κq ∈ f0.14; 0.07; 0.035g are shown in the left, center, and right panels,
respectively. The open squares demonstrate the sparsened wave function with positions satisfying x⃗1 − x⃗2 ∈ ΛS , while the dashed line is
obtained by setting S ¼ 1 to show sparsening effects. Spatial wave functions of the form

P
n⃗∈Z3 e−κqjx⃗1−x⃗2þn⃗Lj are also shown with solid

lines and open circles for comparison. For concreteness, the figure corresponds to L ¼ 32, S ¼ 4, and the values of κq used in the
numerical calculations in Sec. III.

12Since
P

n⃗∈Z3 e−κqjx⃗1−x⃗2þn⃗Lj is not an exact description of the
FV QCD two-nucleon wave function, maximizing the quantita-
tive similarity of an interpolating operator wave function with this
expression does not guarantee maximal overlap with loosely
bound two-nucleon systems in QCD.
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factorized wave functions by relying on ensemble averag-
ing to impose translational invariance. A “factorized”
quasilocal interpolating operator can be defined as

FρqgðtÞ ¼
X

x⃗1;x⃗2∈ΛS

ψ ½F�
q ðx⃗1; x⃗2; R⃗Þ

×
X
σ;σ0

vρσσ0
1ffiffiffi
2

p ½pσgðx⃗1; tÞnσ0gðx⃗2; tÞ

þ ð−1Þ1−δρ0nσgðx⃗1; tÞpσ0gðx⃗2; tÞ�; ð20Þ

where

ψ ½F�
q ðx⃗1; x⃗2; R⃗Þ ¼ e−κqjx⃗1−R⃗je−κqjx⃗2−R⃗j: ð21Þ

The quasilocal wave function ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ can be

obtained by averaging the factorized wave function

ψ ½F�
q ðx⃗1; x⃗2; R⃗Þ over sparse-lattice translations,

ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ ¼

1

VS

X
τ∈TS

ψ ½F�
q ðτðx⃗1Þ; τðx⃗2ÞÞ: ð22Þ

Translation invariance of (gauge-field-averaged) correla-
tion functions therefore implies that correlation functions
involving quasilocal interpolating operators can be com-
puted using factorized quasilocal sources,

C½T ;Q�
ρtgρ0q0g0 ðtÞ ¼ hT ρtgðtÞQ†

ρ0q0g0 ð0Þi ¼ hT ρtgðtÞF†
ρ0q0g0 ð0Þi;

ð23Þ
for all T ∈ fH;D;Qg. Use of factorized interpolating
operators and Eq. (23) allows the full correlation-function
matrix given in Eq. (19) to be efficiently computed using local
and bilocal baryon blocks as described in the next section.

B. Contraction algorithm

Quark propagators, defined as

Sijgg0 ðx⃗; t; y⃗; 0Þ ¼ hqigðx⃗; tÞqjg0 ðy⃗; 0Þi; ð24Þ
are computed by solving the Dirac equation associated with
the LQCD quark action (using the Dirac operator with
support on the entire lattice geometry Λ × f0;…; T − 1g,
where T is the length of the Euclidean time direction) for
a set of Gaussian-smeared quark sources located at
each sparse lattice site y⃗ ∈ ΛS for some chosen source
timeslice(s). In order to construct positive-definite
Hermitian correlation-function matrices, the same set of
smearings used at the source is applied to the solution at
each sink point x⃗ ∈ Λ and the resulting sink-smeared
propagators are subsequently restricted to x⃗ ∈ ΛS.
Proton correlation functions can be expressed in terms
of a sum over permutations of products of quark propa-
gators using Wick’s theorem as

C½p;p�
σ0gσ00g0 ðtÞ ¼ −

X
x⃗;y⃗∈ΛS

ψ ½N�
0 ðx⃗Þfψ ½N�

0 ðy⃗Þg�
X
α;α0

w½N�σ
α w½N�σ0

α0 huiðαÞg ðx⃗; tÞdjðαÞg ðx⃗; tÞukðαÞg ðx⃗; tÞūi0ðα0Þg0 ðy⃗; 0Þd̄j0ðα0Þg0 ðy⃗; 0Þūk0ðα0Þg0 ðy⃗; 0Þi;

¼
X

x⃗;y⃗∈ΛS

ψ ½N�
0 ðx⃗Þfψ ½N�

0 ðy⃗Þg�
X
α;α0

w½N�σ
α w½N�σ0

α0
X

P∈P½N�
signðPÞ

× SP½iðαÞ�i
0ðα0Þ

gg0 ðx⃗; t; y⃗; 0ÞSP½jðαÞ�j0ðα0Þgg0 ðx⃗; t; y⃗; 0ÞSP½kðαÞ�k0ðα0Þgg0 ðx⃗; t; y⃗; 0Þ; ð25Þ

where c ¼ c0 ¼ 0 corresponds to the center-of-mass frame P⃗c ¼ P⃗c0 ¼ 0⃗ used throughout this section for simplicity.13 The
nucleon quark permutations P ∈ P½N� act on spin-color index functions and are given in Cauchy’s two-line notation by

P½N� ¼
��

i j k

i j k

�
;

�
i j k

k j i

��
: ð26Þ

Neutron correlation functions are obtained by exchanging u ↔ d in Eq. (25) and are identical in the isospin-symmetric
limit. Hexaquark correlation functions are similarly given by Wick’s theorem as

C½H;H�
ρ0gρ00g0 ðtÞ ¼

X
x⃗;y⃗∈ΛS

ψ ½H�
0 ðx⃗Þfψ ½H�

0 ðy⃗Þg�
X
α;α0

w½H�ρ
α w½H�ρ0

α0
X

P∈P½pn�
signðPÞ

× SP½iðαÞ�i
0ðα0Þ

gg0 ðx⃗; t; y⃗; 0ÞSP½jðαÞ�j0ðα0Þgg0 ðx⃗; t; y⃗; 0ÞSP½kðαÞ�k0ðα0Þgg0 ðx⃗; t; y⃗; 0Þ
× SP½lðαÞ�l

0ðα0Þ
gg0 ðx⃗; t; y⃗; 0ÞSP½mðαÞ�m0ðα0Þ

gg0 ðx⃗; t; y⃗; 0ÞSP½nðαÞ�n0ðα0Þgg0 ðx⃗; t; y⃗; 0Þ; ð27Þ

13Generalizations of the results in this section to nonzero center-of-mass momentum are straightforward. Calculations of dibaryon
interpolating operators with P⃗m ≠ 0 can reduce computational cost by reusing baryon blocks between calculations with different P⃗m.
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where the 36 pn quark permutations are given by

P½pn� ¼
��

i j k l m n

PuðiÞ PdðjÞ PuðkÞ PdðlÞ PuðmÞ PdðnÞ

�				Pu;Pd ∈ S3

�
; ð28Þ

where S3 denotes the symmetric group acting over a set of three elements. Both Eqs. (25) and (27) can be evaluated by
computing sums with OðV2

SÞ terms for each t for which correlation functions are evaluated. Linear dependence of the cost
of evaluating correlation functions on the number of t for which correlation functions are evaluated applies to all correlation
functions considered in this work and will not be repeated below.
Correlation functions involving a hexaquark sink and a dibaryon source are analogously given by

C½H;D�
ρ0gρ0m0g0 ðtÞ ¼

X
x⃗;y⃗1;y⃗2∈ΛS

ψ ½H�
0 ðx⃗Þfψ ½D�

m0 ðy⃗1; y⃗2Þg�
X
α;α0

w½H�ρ
α w½D�ρ0

α0
X

P∈P½pn�
signðPÞ

× SP½iðαÞ�i
0ðα0Þ

gg0 ðx⃗; t; y⃗1; 0ÞSP½jðαÞ�j
0ðα0Þ

gg0 ðx⃗; t; y⃗1; 0ÞSP½kðαÞ�k
0ðα0Þ

gg0 ðx⃗; t; y⃗1; 0Þ
× SP½lðαÞ�l

0ðα0Þ
gg0 ðx⃗; t; y⃗2; 0ÞSP½mðαÞ�m0ðα0Þ

gg0 ðx⃗; t; y⃗2; 0ÞSP½nðαÞ�n
0ðα0Þ

gg0 ðx⃗; t; y⃗2; 0Þ: ð29Þ

Direct evaluation of Eq. (29) requires evaluating OðV3
SÞ propagator products; however, for factorizable two-nucleon wave

functions, it is possible to reduce this by introducing local baryon blocks, defined by

Bð�Þijk
gσm0g0 ðx⃗; tÞ ¼

X
α0
w½N�σ
α0

X
y⃗∈ΛS

e�ik⃗m0 ·y⃗Sii
0ðα0Þ

gg0 ðx⃗; t; y⃗; 0ÞSjj0ðα0Þgg0 ðx⃗; t; y⃗; 0ÞSkk0ðα0Þgg0 ðx⃗; t; y⃗; 0Þ: ð30Þ

The tensor structure of these local baryon blocks is illustrated in Fig. 3. Evaluating these local baryon blocks for all x⃗ ∈ ΛS

requires OðV2
SÞ operations. The ½H;D� correlation functions in Eq. (29) can be expressed in terms of local baryon blocks

using the relation between dibaryon weights w½D�ρ
α and products of nucleon weights w½N�σ

α detailed in Appendix A, and the
tensor vρσσ0 defined in Eq. (14). The baryon-block components appearing in each term in the sum depend on the permutation
index P. The required components can be denoted by

Bð�;P;αÞijk
gσm0g0 ðx⃗; tÞ≡ Bð�ÞP½iðαÞ�P½jðαÞ�P½kðαÞ�

gσm0g0 ðx⃗; tÞ; ð31Þ

FIG. 3. Diagrams illustrating (a) the tensor structure of local baryon blocks and (b) contributions to Eq. (32) involving such

blocks. Diagram (a) describes Bð�Þijk
gσm0g0 ðx⃗; tÞ, which includes a wave function e�ik⃗m0 ·y⃗, weights w½N�σ

α0 , and sums over spatial points
y⃗ ∈ ΛS and weight index α0, all collectively denoted by the black circle. Free indices σ,m0, and g0 label the source baryon spin, wave
function momentum, and quark-field smearing, respectively. Free spin-color indices i, j, k are associated with the sink position x⃗,

and g denotes the sink quark-field smearing. Diagram (b) similarly illustrates the product Bð�Þijk
gσm0g0 ðx⃗1; tÞBð∓Þlmn

gσ0m0g0 ðx⃗2; tÞ appearing
in Eq. (36).
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in terms of which Eq. (29) can be reexpressed as

C½H;D�
ρ0gρ0m0g0 ðtÞ ¼

X
x⃗∈ΛS

ψ ½H�
0 ðx⃗Þ

X
α

w½H�ρ
α

X
P∈P½pn�

signðPÞ
X
σ;σ0

1ffiffiffi
2

p vρ
0

σσ0

×
n
Bðþ;P;αÞijk
gσm0g0 ðx⃗; tÞBð−;P;αÞlmn

gσ0m0g0 ðx⃗; tÞ þ Bð−;P;αÞijk
gσm0g0 ðx⃗; tÞBðþ;P;αÞlmn

gσ0m0g0 ðx⃗; tÞ
o
: ð32Þ

After determining the local baryon blocks, Eq. (32) can be evaluated in OðVSÞ operations. Analogous results can be
derived for ½D;H� correlation functions by defining baryon blocks with the spatial sum performed at the sink instead of
the source in Eq. (30). Similarly, results can be derived for ½H;F� and ½F;H� correlation functions (which are equivalent
to ½H;Q� and ½Q;H� correlation functions on ensemble average) by defining baryon blocks with e�ikm·y⃗ in Eq. (30)

replaced by e−κqjy⃗−R⃗j.
Correlation functions with dibaryon sources and sinks involve the same quark permutations and an additional sum over

sparse lattice sites,

C½D;D�
ρmgρ0m0g0 ðtÞ ¼

X
x⃗1;x⃗2;y⃗1;y⃗2∈ΛS

ψ ½D�
m ðx⃗1; x⃗2Þfψ ½D�

m0 ðy⃗1; y⃗2Þg�
X
α;α0

w½D�ρ
α w½D�ρ0

α0
X

P∈P½pn�
signðPÞSP½iðαÞ�i0ðα0Þgg0 ðx⃗b1ðPÞ; t; y⃗1; 0Þ

× SP½jðαÞ�j
0ðα0Þ

gg0 ðx⃗b2ðPÞ; t; y⃗1; 0ÞSP½kðαÞ�k
0ðα0Þ

gg0 ðx⃗b3ðPÞ; t; y⃗1; 0ÞSP½lðαÞ�l
0ðα0Þ

gg0 ðx⃗b4ðPÞ; t; y⃗2; 0Þ
× SP½mðαÞ�m0ðα0Þ

gg0 ðx⃗b5ðPÞ; t; y⃗2; 0ÞSP½nðαÞ�n
0ðα0Þ

gg0 ðx⃗b6ðPÞ; t; y⃗2; 0Þ; ð33Þ

where bqðPÞ ∈ f1; 2g indexes the spatial position where the sink connected to the qth source quark is located in
permutation P. Direct evaluation of Eq. (33) requires OðV4

SÞ products, which can be prohibitive in practice. In particular,
it can dominate the OðVSVÞ cost of calculating timeslice-to-all quark propagators on ΛS by orders of magnitude. The
computational cost can be reduced by using a combination of the local baryon blocks discussed above and bilocal baryon
blocks required for permutations in which quarks are exchanged between the baryons, defined by

Eðq�Þijk
gσm0g0 ðx⃗1; x⃗2; tÞ ¼

X
α0
w½N�σ
α0

X
y⃗∈ΛS

e�ik⃗m0 ·y⃗Sii
0ðα0Þ

gg0 ðx⃗1þδq;1 ; t; y⃗; 0ÞSjj
0ðα0Þ

gg0 ðx⃗1þδq;2 ; t; y⃗; 0ÞSkk
0ðα0Þ

gg0 ðx⃗1þδq;3 ; t; y⃗; 0Þ: ð34Þ

The notation x⃗1þδq;r denotes x⃗2 if q ¼ r and x⃗1 if q ≠ r, and therefore Eðq�Þijk
gσm0g0 ðx⃗1; x⃗2; tÞ includes two quark propagators

connected to the sink at x⃗1 and one unpaired quark propagator connected to the sink at x⃗2. The position of the source quark
field connected to the unpaired sink quark field at x⃗2 is denoted by q ∈ f1; 2; 3g. Figure 4 shows the structure of these

FIG. 4. Diagrams illustrating (a) the tensor structure of bilocal baryon blocks and (b) contributions to Eq. (36) involving them.

Diagram (a) describes Eðq�Þijk
gσm0g0 ðx⃗1; x⃗2; tÞ with q ¼ 1, which includes a wave function e�ik⃗m0 ·y⃗, weights w½N�σ

α0 , and sums over spatial points
y⃗ ∈ ΛS and weight index α0 collectively denoted by the black circle. Free indices σ, m0, and g0 label the source baryon spin, wave
function momentum, and quark-field smearing, respectively. Free spin-color indices i and j, k are associated with the sink positions x⃗2
and x⃗1, respectively (other choices of q have different spin-color indices associated with x⃗2), and g denotes the sink quark-field smearing.

Diagram (b) similarly illustrates the product Eð1�Þijk
gσm0g0 ðx⃗1; x⃗2; tÞEð1∓Þlmn

gσ0m0g0 ðx⃗2; x⃗1; tÞ appearing in Eq. (36).
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bilocal blocks. The components of bilocal baryon blocks appearing for each permutation can be denoted analogously to
Eq. (31) as

Eðq�;P;αÞijk
gσm0g0 ðx⃗1; x⃗2; tÞ≡ Eðq�ÞP½iðαÞ�P½jðαÞ�P½kðαÞ�

gσm0g0 ðx⃗1; x⃗2; tÞ: ð35Þ

The dibaryon-dibaryon correlation functions given in Eq. (33) can then be represented in terms of local and bilocal baryon
blocks as

C½D;D�
ρmgρ0m0g0 ðtÞ ¼

X
x⃗1;x⃗2∈ΛS

ψ ½D�
m ðx⃗1; x⃗2Þ

X
α

w½D�ρ
α

X
σ;σ0

1ffiffiffi
2

p vρ
0
σσ0

( X
P∈P½pn�

ex0

signðPÞ
h
Bðþ;P;αÞijk
gσm0g0 ðx⃗1; tÞBð−;P;αÞlmn

gσ0m0g0 ðx⃗2; tÞ

þBð−;P;αÞijk
gσm0g0 ðx⃗1; tÞBðþ;P;αÞlmn

gσ0m0g0 ðx⃗2; tÞ
i
þ

X
P∈P½pn�

ex1

signðPÞ
h
E
ðq1Pþ;P;αÞijk
gσm0g0 ðx⃗1; x⃗2; tÞEðq2P−;P;αÞlmn

gσ0m0g0 ðx⃗2; x⃗1; tÞ

þ E
ðq2P−;P;αÞijk
gσm0g0 ðx⃗1; x⃗2; tÞEðq1Pþ;P;αÞlmn

gσ0m0g0 ðx⃗2; x⃗1; tÞ
i
þ

X
P∈P½pn�

ex2

signðPÞ
h
E
ðq1Pþ;P;αÞijk
gσm0g0 ðx⃗2; x⃗1; tÞEðq2P−;P;αÞlmn

gσ0m0g0 ðx⃗1; x⃗2; tÞ

þ E
ðq2P−;P;αÞijk
gσm0g0 ðx⃗2; x⃗1; tÞEðq1Pþ;P;αÞlmn

gσ0m0g0 ðx⃗1; x⃗2; tÞ
i)

; ð36Þ

where P½pn�
ex0 , P

½pn�
ex1 , P

½pn�
ex2 ⊂ P½pn� are the sets of permu-

tations in which zero, one, and two quarks, respectively,
are exchanged between the source and sink baryons,
and q1P ; q

2
P ∈ f1; 2; 3g denote the positions of the quark

fields within each source baryon (labeled by super-
scripts 1, 2) that is connected to the unpaired quark
field at the sink. Note that the second-to-last line of

Eq. (36) includes E
ðq1Pþ;P;αÞijk
gσm0g0 ðx⃗1; x⃗2; tÞ, which has

paired quark fields connected to x⃗1 and an unpaired
quark field q1P “exchanged” to x⃗2, while the last line

includes E
ðq1Pþ;P;αÞijk
gσm0g0 ðx⃗2; x⃗1; tÞ, which has two paired

quark fields exchanged to x⃗2 and an unpaired quark
field q1P connected to x⃗1. Results for ½Q;D� correlation
functions are obtained by replacing ψ ½D�

m ðx⃗1; x⃗2Þ with

ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ in Eq. (36). Results for ½Q;F� and ½D;F�

correlation functions (equivalent to ½Q;Q� and ½D;Q�
correlation functions on ensemble average) are obtained
by defining bilocal baryon blocks with e�ikm·y⃗ in

Eq. (34) replaced by e−κqjy⃗−R⃗j.
Once the local and bilocal baryon blocks are constructed,

Eq. (36) can be computed by evaluating OðV2
SÞ terms.

Bilocal block construction, which requires evaluating
OðV3

SÞ terms, provides the dominant cost for large VS;
however, block construction is linear in the number of
interpolating operators used while the evaluation of
Eq. (36) is quadratic. When both the number of interpolat-
ing operators and VS are large, this allows contractions to
be performed significantly more efficiently than direct

evaluation of Eq. (33), which is both quadratic in the
number of interpolating operators and requires evaluating
sums with OðV4

SÞ terms.

C. Projection to cubic irreps

Cubic symmetry implies that correlation-function
matrices have a block diagonal decomposition, with
blocks corresponding to each irrep of the cubic group that
do not mix under (Euclidean) time evolution in LQCD.
Nucleon interpolating operators, Nσcg, with P⃗c ¼ 0⃗ trans-
form in the Gþ

1 irrep of the cubic group with rows indexed

by σ ∈ f0; 1g and C½N;N�
σcgσ0c0g0 ðtÞ is therefore already in this

block-diagonal form. Spin-averaged nucleon correlation-
function matrices with definite ðB; I;ΓJÞ quantum numbers
are therefore given by

C
ð1;1

2
;Gþ

1
Þ

NgNg0
ðtÞ ¼ 1

2

X
σ

hNσ0gðtÞN̄σ0g0 ð0Þi; ð37Þ

where NgNg0 labels the sink and source interpolating-
operator structures. On the right-hand side c ¼ c0 ¼ 0

corresponds to P⃗c ¼ P⃗c0 ¼ 0⃗.
Hexaquark interpolating operatorsHρ0g with zero center-

of-mass momentum have wave unctions that transform in
the Aþ

1 irrep and spin that transforms in the Aþ
1 and Tþ

1

irreps for ρ ¼ 0 and ρ ∈ f1; 2; 3g, respectively, as
described in Sec. II A 2. Hexaquark interpolating operators

with definite quantum numbers HðB;I;ΓJ;JzÞ
g can therefore be
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identified as H
ð2;1;Aþ

1
;0Þ

g ≡H00g and H
ð2;0;Tþ

1
;SzðρÞÞ

g ≡Hρ0g,
where

SzðρÞ ¼
8<
:

1; ρ ¼ 1

0; ρ ¼ 2

3; ρ ¼ 3

ð38Þ

is related to the eigenvalue eiJzπ=2 of the cubic trans-
formation14 corresponding to a rotation by π=2 about

the z axis acting on states created by H̄
ð2;0;Tþ

1
;SzðρÞÞ

g with
Jz ¼ SzðρÞ, since hexaquark operators have spatial wave
functions with Aþ

1 symmetry. Hexaquark correlation-
function matrices can be averaged over Jz as

Cð2;I;ΓJÞ
HgHg0

¼ 1

dΓJ

X
Jz

D
Hð2;I;ΓJ;JzÞ

g ðtÞ
�
Hð2;I;ΓJ;JzÞ

g0

�†ð0Þ
E
; ð39Þ

where dΓJ
is the dimension of the ΓJ irrep andHgHg0 labels

the sink and source hexaquark operators.
The quasilocal two-nucleon interpolating operators

defined above have spatial wave functions transforming
in the Aþ

1 irrep after ensemble averaging, and quasilocal
interpolating operators with definite quantum numbers

Qð2;I;ΓJ;JzÞ
qg can be similarly identified as Q

ð2;1;Aþ
1
;0Þ

qg ≡Q0qg

and Q
ð2;0;Tþ

1
;SzðρÞÞ

qg ≡Qρqg. Analogous Jz-averaged
correlation-function matrices can be defined for quasilocal
two-nucleon interpolating operators as

Cð2;I;ΓJÞ
QqgQq0g0

¼ 1

dΓJ

X
Jz

D
Qð2;I;ΓJ;JzÞ

qg ðtÞ
�
Qð2;I;ΓJ;JzÞ

q0g0

�†ð0Þ
E
; ð40Þ

where QqgQq0g0 labels the sink and source quasilocal
interpolating operators. Off-diagonal correlation-function

matrix elements Cð2;I;ΓJÞ
HgQq0g0

and Cð2;I;ΓJÞ
QqgHg0

are defined

analogously.
Dibaryon interpolating-operator wave functions

ψ ½D�
m ðx⃗1; x⃗2Þ defined in Eq. (15) do not transform irreduc-

ibly under the cubic group when either the relative or
center-of-mass momentum of the two-nucleon system is
nonzero. The rest of this section summarizes the change-of-
basis relation between the dibaryon interpolating operators
of Eq. (13), which are convenient for efficient computation
of correlation-function matrices as described above, and an
interpolating-operator set in which each operator trans-
forms in a definite cubic irrep. It is convenient to express
the total cubic irrep ΓJ as

ΓJ ¼ Γl ⊗ ΓS; ð41Þ

where ΓS ∈ fAþ
1 ; T

þ
1 g labels the cubic irrep of the two-

nucleon spin determined by ρ and Γl labels the cubic irrep
of the two-nucleon spatial wave function. One could
instead project nucleon operators onto irreps of the little
groups that leave�k⃗m invariant and then form two-nucleon
operators from products of these operators as done for two-
meson systems in Ref. [136]. Since only the center-of-mass
rest frame is considered here, it is simple to construct two-
nucleon interpolating operators with definite ΓJ from the
product of two cubic irreps in Eq. (41) without introducing
the little groups of �k⃗m as an intermediate step.
For I ¼ 1 (flavor-symmetric) dibaryon operators, pos-

itive-parity spatial wave functions can only be combined
with antisymmetric spin wave functions while satisfying
fermion antisymmetry, and they therefore have ΓS ¼ Aþ

1 .
The dominant large-volume contribution associated with
orbital angular momentum l ¼ 0 states arises with the
Γl ¼ Aþ

1 irrep and therefore has ΓJ ¼ Aþ
1 . Other irreps

include contributions from partial waves with l ≥ 2 as
summarized in Table I. For I ¼ 0 (flavor-antisymmetric)
dibaryon operators, conversely, positive-parity spatial wave
functions can only be combined with symmetric spin wave
functions and therefore have ΓS ¼ Tþ

1 . In this case, spatial
wave functions in the Aþ

1 irrep (relevant for orbital angular
momentum l ¼ 0 states) lead to total-angular-momentum
cubic irrep ΓJ ¼ Aþ

1 ⊗ Tþ
1 ¼ Tþ

1 . This total-angular-
momentum irrep also includes contributions from spatial
wave functions in the Eþ, Tþ

1 , and Tþ
2 irreps, since each

of these projects onto Tþ
1 in the product representation

ΓJ ¼ Γl ⊗ Tþ
1 . Other total-angular-momentum irreps sim-

ilarly include contributions from several orbital angular
momentum irreps as shown in Table II.
The spatial wave functions transforming in each

positive-parity cubic irrep can be denoted by ψ ½D�ðΓl;lzÞ
sk ,

TABLE I. The cubic irreps for I ¼ 1NN systems with positive-
parity spatial wave functions and their dominant partial-wave
contributions in the infinite-volume limit. The left column shows
the cubic irrep possible for the total-angular-momentum repre-
sentation obtained from the spin-orbit product representation
ΓJ ⊆ Γl ⊗ ΓS, the middle columns show the orbital-angular-
momentum and spin irreps contributing to this irrep, and the right
column shows the lowest orbital-angular-momentum representa-
tions associated with the infinite-volume behavior of states in
each irrep.

ΓJ Γl ΓS l

Aþ
1 Aþ

1 Aþ
1

0; 4; 6;…
Eþ Eþ Aþ

1
2; 4; 6;…

Tþ
2 Tþ

2 Aþ
1

2; 4; 6;…
Tþ
1 Tþ

1 Aþ
1

4; 6;…
Aþ
2 Aþ

2 Aþ
1

6;…

14Note that for the cubic group, the conserved charge Jz is
only defined modulo 4 but is otherwise analogous to the
continuum, infinite-volume quantum number Jz. In particular
Szð3Þ ¼ −1 ¼ 3 ðmod 4Þ.
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where Γl labels the cubic irrep of the spatial wave function,
lz labels the eigenvalue eilzπ=2 of a rotation by π=2 about

the z axis applied to ðψ ½D�ðΓl;lzÞ
sk Þ� (or equivalently to states

created by Hermitian conjugates of operators involving the
spatial wave functions), s labels the squared magnitude of

the relative momentum, and k runs from 1 to N ð1;ΓlÞ
s (the

multiplicity of wave functions with this set of labels), as
detailed below. These wave functions are linear combina-
tions of the plane-wave wave functions introduced above,

ψ ½D�ðΓl;lzÞ
sk ðx⃗1; x⃗2Þ
¼
X
m

GðΓl;lzÞ
skm ψ ½D�

m ðx⃗1; x⃗2Þ;

¼
X
m

GðΓl;lzÞ
skm

1ffiffiffi
2

p
h
eið2πL Þn⃗m·ðx⃗1−x⃗2Þ þe−ið2πL Þn⃗m·ðx⃗1−x⃗2Þ

i
; ð42Þ

where the sums include nonzero contributions from n⃗m

satisfying n⃗m · n⃗m ¼ s and GðΓl;lzÞ
skm are coefficients

projecting the wave function to definite cubic irreps.
These coefficients for plane waves with relative momentum
corresponding to s ≤ 6 are presented and compared with
results from Ref. [49] in Appendix B.

The coefficients GðΓl;lzÞ
skm can be used to define operators

Dð2;I;ΓJ;JzÞ
skg ðtÞwith definite isospin (I), total angular momen-

tum (ΓJ), and Jz quantum numbers, relative-momentum
shell indexed by s, multiplicity indexed by k, and smearing
label g. For I ¼ 1, these dibaryon operators are simply
given by

Dð2;1;ΓJ;JzÞ
skg ðtÞ ¼

X
m

GðΓJ;JzÞ
skm D0mgðtÞ: ð43Þ

For the I ¼ 0 channel, interpolating operators with definite
total angular momentum are obtained by taking products
of the orbital wave functions in all the Γl irreps shown in
Table II for a given ΓJ as

Dð2;0;ΓJ;JzÞ
skg ðtÞ
¼

X
ρ;Γl;lz

CðΓJ;Jz;Γl;lzÞ
ρ

X
k0
MðΓJ;ΓlÞ

skk0
X
m

GðΓl;lzÞ
sk0m DρmgðtÞ;

ð44Þ

where the CðΓJ;Jz;Γl;lzÞ
ρ are Clebsch-Gordan coefficients for

ΓJ ¼ Γl ⊗ ΓS presented for example in Ref. [135] and

summarized in Appendix B, and k ∈ f1;…;N ð0;ΓJÞ
s g,

where N ð0;ΓJÞ
s is the total multiplicity of a given total-

angular-momentum irrep in the spin-orbit product irrep for
each s, which are shown for s ≤ 6 in Table III. The

multiplicity-label tensor MðΓJ;ΓlÞ
skk0 converts from the indi-

vidual multiplicity labels for each irrep to the total
multiplicity label needed for the product. As detailed in

Appendix B,MðΓJ;ΓlÞ
skk0 with fixed s and k is equal to one for a

single value of k0 and equal to zero otherwise.

TABLE III. Multiplicities N ðI;ΓJÞ
s of linearly independent dibaryon interpolating operators with fixed Jz (each

independent spin-orbit product gives rise to operators in each row of ΓJ) and the total-isospin and total-angular-
momentum irrep ðI;ΓJÞ shown in each column and relative-momentum shell s shown in each row.

s N
ð1;Aþ

1
Þ

s N
ð1;Aþ

2
Þ

s N ð1;EþÞ
s N

ð1;Tþ
1
Þ

s N
ð1;Tþ

2
Þ

s N
ð0;Aþ

1
Þ

s N
ð0;Aþ

2
Þ

s N ð0;EþÞ
s N

ð0;Tþ
1
Þ

s N
ð0;Tþ

2
Þ

s

0 1 0 0 0 0 0 0 0 1 0
1 1 0 1 0 0 0 0 0 2 1
2 1 0 1 0 1 0 1 1 3 2
3 1 0 0 0 1 0 1 1 2 1
4 1 0 1 0 0 0 0 0 2 1
5 1 1 2 1 1 1 1 2 5 5
6 1 0 1 1 2 1 2 3 5 4

Total 7 1 6 2 5 2 5 7 20 14

TABLE II. The cubic irreps for I ¼ 0 NN systems with
positive-parity spatial wave functions and their dominant
partial-wave contributions in the infinite-volume limit. As in
Table I, the left column shows the cubic irrep possible for the
total-angular-momentum representation obtained from the spin-
orbit product representation ΓJ ⊆ Γl ⊗ ΓS, the middle columns
show the orbital-angular-momentum and spin irreps contributing
to this irrep, and the right column shows the lowest orbital-
angular-momentum representations associated with the infinite-
volume behavior of states in each irrep.

ΓJ Γl ΓS l

Tþ
1 Aþ

1 ⊕ Eþ ⊕ Tþ
1 ⊕ Tþ

2 Tþ
1

0; 2; 4; 6;…
Eþ Tþ

1 ⊕ Tþ
2 Tþ

1
2; 4; 6;…

Tþ
2 Aþ

2 ⊕ Eþ ⊕ Tþ
1 ⊕ Tþ

2 Tþ
1

2; 4; 6;…
Aþ
2 Tþ

2 Tþ
1

2; 4; 6;…
Aþ
1 Tþ

1 Tþ
1

4; 6;…
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Since correlation functions are independent of the Jz
quantum number upon ensemble averaging, Jz-averaged
correlation functions can be defined as

Cð2;I;ΓJÞ
DskgDs0k0g0

ðtÞ ¼ 1

dΓJ

X
Jz

D
Dð2;I;ΓJ;JzÞ

skg ðtÞ
�
Dð2;I;ΓJ;JzÞ

s0k0g0

�†ð0Þ
E
;

ð45Þ
where dΓJ

is the dimension of ΓJ. Off-diagonal correlation-
function matrix elements involving dibaryon operators
and either hexaquark or quasilocal operators can be defined
analogously; for example the two-nucleon correlation
functions with hexaquark sources and dibaryon sinks used
in Refs. [11,13,15,16,18,21,22,25,122–131] are given by

Cð2;I;ΓJÞ
DskgHg0

ðtÞ ¼ 1

dΓJ

X
Jz

D
Dð2;I;ΓJ;JzÞ

skg ðtÞ
�
Hð2;I;ΓJ;JzÞ

g0

�†ð0Þ
E
:

ð46Þ

D. Variational analysis of correlation functions

Correlation functions with baryon number B and isospin
I, projected to the cubic irrep ΓJ and averaged over rows

as above, can generically be denoted CðB;I;ΓJÞ
χχ0 ðtÞ, where χ

and χ0 denote the sink and source interpolating operators,
respectively. For B ¼ 1, interpolating operators are of
the form fχ; χ0g ∈ fNgg, while for B ¼ 2, fχ; χ0g ∈
fDð2;I;ΓJÞ

skg ; Hð2;I;ΓJÞ
g ; Qð2;I;ΓJÞ

qg g, where Jz is averaged as
described above and omitted from operator labels here
and below. Correlation function matrices have spectral
representations

CðB;I;ΓJÞ
χχ0 ðtÞ ¼

X∞
n¼0

ZðB;I;ΓJÞ
nχ

�
ZðB;I;ΓJÞ
nχ0

��
e−tE

ðB;I;ΓJ Þ
n ; ð47Þ

where EðB;I;ΓJÞ
n is the energy of the nth QCD energy

eigenstate with the quantum numbers indicated. Thermal

effects are neglected,15 and ZðB;I;ΓJÞ
nχ describes the overlap of

interpolating operator χ with this state, as in Eq. (9).
GivenasetSofI interpolatingoperatorsthathavemaximum

overlaps with an equal number of energy eigenstates, it is
possible to construct a set of approximately orthogonal
interpolating operators that each dominantly overlap with a
single energy eigenstate by solving the GEVP [82,83],

X
χ0
CðB;I;ΓJÞ
χχ0 ðtÞvðB;I;ΓJ;SÞ

nχ0 ðt; t0Þ

¼ λðB;I;ΓJ;SÞ
n ðt; t0Þ

X
χ0
CðB;I;ΓJÞ
χχ0 ðt0ÞvðB;I;ΓJ;SÞ

nχ0 ðt; t0Þ; ð48Þ

where n ∈ f0;…; I − 1g, λðB;I;ΓJ;SÞ
n ðt; t0Þ are the

eigenvalues, vðB;I;ΓJ;SÞ
nχ0 ðt; t0Þ are the eigenvectors, and t0

is a reference time that can be for example a fixed
t-independent value or a fixed fraction of t. If the infinite
sum in Eq. (47) can be approximately truncated to include I
states, then the eigenvalues satisfy

λðB;I;ΓJ;SÞ
n ðt;t0Þ≈e−ðt−t0ÞE

ðB;I;ΓJ Þ
n ; n¼0;1;…;I −1; ð49Þ

and the energy levelsEðB;I;ΓJÞ
n can be obtained from fits to the t

dependence of the GEVP eigenvalues. In general, truncating
spectral representations to include I states may not be a good
approximation, and it is important to understand how GEVP
results are related to the energy spectrum without this
approximation.
Correlation functions associated with a set of approx-

imately orthogonal interpolating operators can be explicitly
constructed using the GEVP eigenvectors as

ĈðB;I;ΓJ;SÞ
n ðtÞ
¼

X
χχ0

vðB;I;ΓJ;SÞ
nχ ðtref ; t0Þ�CðB;I;ΓJÞ

χχ0 ðtÞvðB;I;ΓJ;SÞ
nχ0 ðtref ; t0Þ;

ð50Þ

where the eigenvectors are obtained from the solution to the
GEVP Eq. (48) with t0 as shown and t set equal to tref (the
dependence of the left-hand side on these parameters is
suppressed). When analyzing the GEVP correlation func-
tions defined by Eq. (50), the ideal scenario is that both t0
and tref can be chosen large enough that contributions from
states outside the subspace spanned by the interpolating-

operator set can be neglected from vðB;I;ΓJ;SÞ
nχ ðtref ; t0Þ. If this

can be achieved, then contributions from such states can be
neglected from the energy spectrum obtained from fits to

ĈðB;I;ΓJ;SÞ
n ðtÞ. However, in systems with small excitation

energies, δðB;I;ΓJÞ ≡ EðB;I;ΓJÞ
1 − EðB;I;ΓJÞ

0 , this condition is
difficult to achieve and requires the introduction of a
large interpolating-operator set that has significant overlap
with all states in a low-energy subspace of Hilbert space.

The dependence of ĈðB;I;ΓJ;SÞ
n ðtÞ and associated fit results

on t0 and tref should be studied in numerical calculations

in order to verify the stability of vðB;I;ΓJ;SÞ
nχ ðtref ; t0Þ under

these choices and assign systematic uncertainties if
the dependence is not negligible. The t0 dependence of
results can also be used to study excited-state effects as
discussed in Ref. [100].
Treating t0 and tref as fixed parameters independent of t

guarantees that ĈðB;I;ΓJ;SÞ
n ðtÞ is a linear combination of

LQCD correlation functions and therefore has a simple
spectral representation [irrespective of the (in)completeness

15Correlation-function fits are restricted to t ≤ 3T
8
in order to

avoid non-negligible thermal effects as discussed in Appendix D.
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of the interpolating-operator set as a basis for energy
eigenstates] that is given by

ĈðB;I;ΓJ;SÞ
n ðtÞ
¼

X
m

			X
χ
vðB;I;ΓJ;SÞ
nχ ðtref ; t0Þ�ZðB;I;ΓJÞ

mχ

			2e−tEðB;I;ΓJ Þ
m ;

≡X
m

			ẐðB;I;ΓJ;SÞ
nm ðtref ; t0Þ

			2e−tEðB;I;ΓJ Þ
m : ð51Þ

Fits of ĈðB;I;ΓJ;SÞ
n ðtÞ to positive-definite sums of exponen-

tials can therefore be used to constrain the energy spectrum.
As will be discussed in detail below, the energy spectrum
determined from fits to correlation-function results with
finite t depends on the choice of interpolating-operator
set S. The extracted spectrum will therefore be denoted

EðB;I;ΓJ;SÞ
n , and the S dependence of EðB;I;ΓJ;SÞ

n and the
associated systematic uncertainties involved in determining

EðB;I;ΓJÞ
n using EðB;I;ΓJ;SÞ

n are discussed at length in Sec. III.
The excitation energy gap determined using a particular
interpolating-operator set will similarly be denoted

δðB;I;ΓJ;SÞ ≡ EðB;I;ΓJ;SÞ
1 − EðB;I;ΓJ;SÞ

0 .
If the interpolating-operator set was a basis for the full

Hilbert space, then orthogonality of the GEVP eigenvectors

would imply that ẐðB;I;ΓJ;SÞ
nm ðtref ; t0Þ are the components of a

diagonal matrix. In calculations with a finite interpolating-
operator set of size I overlapping with the I lowest energy
eigenstates, this orthogonality should approximately hold
within the subspace spanned by the interpolating-operator
set. In the limit t → ∞, it can be shown that excited-state

effects are exponentially suppressed by e−t½E
ðB;I;ΓJ Þ
I −EðB;I;ΓJ Þ

n �

provided that the interpolating operators considered are not
effectively orthogonal (at a given statistical precision) to
any of the lowest I energy eigenstates and t0 is chosen to be
sufficiently large [83,100]. This allows variational methods
to achieve exponential suppression of excited-state effects
on ground-state energy determinations with a suppression

scale EðB;I;ΓJÞ
I − EðB;I;ΓJÞ

0 that can be made much larger

than the excitation energy δðB;I;ΓJÞ ≡ EðB;I;ΓJÞ
1 − EðB;I;ΓJÞ

0

that controls the size of excited-state effects for individual
correlation functions with asymptotically large t. However,
it is noteworthy that achieving excited-state suppression

of the form e−t½E
ðB;I;ΓJ Þ
I −EðB;I;ΓJ Þ

n � at finite t requires that the
overlap of the interpolating operators onto the lowest I
levels is not too small16 compared to the overlaps with
higher-energy states. In practical application of the

variation method, contamination can be from states
much lower in the spectrum that the interpolating-operator
set is only weakly coupled to (including the ground state),
see Sec. III.
In order to study the finite-t behavior of correlation

functions, effective energies can be constructed as

EðB;I;ΓJÞ
χχ0 ðtÞ ¼ ln

� CðB;I;ΓJÞ
χχ0 ðtÞ

CðB;I;ΓJÞ
χχ0 ðtþ 1Þ

�
; ð52Þ

which approach EðB;I;ΓJÞ
0 for t → ∞ and include additional

contributions from excited states at finite t. Effective
energies can also be constructed from the GEVP correlation
functions

EðB;I;ΓJ;SÞ
n ðtÞ ¼ ln

�
ĈðB;I;ΓJ;SÞ
n ðtÞ

ĈðB;I;ΓJ;SÞ
n ðtþ 1Þ

�
; ð53Þ

which for large but finite t are equal to EðB;I;ΓJÞ
n up to

corrections from states outside the subspace spanned by the
interpolating-operator set considered. It follows from the
positivity of the spectral representation in Eq. (51) that

EðB;I;ΓJ;SÞ
0 ðtÞ ≥ EðB;I;ΓJÞ

0 , and in this sense GEVP solutions
provide a variational method for bounding the ground-state
energy [84,85]. Applying analogous arguments to the
subspaces orthogonal to states m with m < n shows that

EðB;I;ΓJ;SÞ
n ðtÞ ≥ EðB;I;ΓJÞ

n . For B ¼ 2 systems, it is also useful
to form correlated differences of effective energies with
twice the nucleon ground-state effective energy:

ΔEð2;I;ΓJ;SÞ
n ðtÞ ¼ Eð2;I;ΓJ;SÞ

n ðtÞ − 2E
ð1;1

2
;Gþ

1
;S0Þ

0 ðtÞ; ð54Þ

where S0 labels the interpolating-operator set used in the

single-nucleon sector [note that ΔEð2;I;ΓJ;SÞ
n ðtÞ implicitly

depends on S0 as well as S]. These correlated differences
involve ratios of correlation functions; these ratios do
not share the convexity of individual correlation functions
and do not provide variational bounds. Correlated

differences between fit results for EðB;I;ΓJ;SÞ
n can be defined

analogously,

ΔEð2;I;ΓJ;SÞ
n ¼ Eð2;I;ΓJ;SÞ

n − 2E
ð1;1

2
;Gþ

1
;S0Þ

0 : ð55Þ

Below, fits are performed to individual one- and two-
nucleon correlation functions rather than to the ratios

entering ΔEð2;I;ΓJ;SÞ
n ðtÞ, and the effective energies of each

correlation function provide variational bounds that are
consistent with the (not strictly variational) results of

multistate fits. Results for ΔEð2;I;ΓJ;SÞ
n are not strictly

variational because the single-nucleon ground-state energy
could be overestimated; however, the statistical and

16The precise condition depends on the structure of the energy
spectrum. A simple model is discussed in Sec. III B below in
which the ground state has an overlap ϵ ≪ 1 with interpolating
operators dominantly overlapping with excited states that
are separated from the ground state by a gap Δ. In this model,
ϵ2 > e−tΔ is required for exponential excited-state suppression.
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systematic uncertainties on the fitted single-nucleon mass
are much smaller than the corresponding uncertainties in
two-nucleon energies below and for simplicity results for

ΔEð2;I;ΓJ;SÞ
n are interpreted as variational bounds below.

These FV energy shifts can be used to constrain infinite-
volume scattering amplitudes through quantization con-
ditions [34–51], as discussed in Sec. III D. For large but
finite t, effective FV energy shifts defined by Eq. (54)
are equal to the FV energy shifts up to corrections from
states outsides the subspace spanned by the interpolating-
operator set.
It is also possible to define effective energies from the

GEVP eigenvalues analogously as lnð λ
ðB;I;ΓJ ;SÞ
n ðt;t0Þ

λ
ðB;I;ΓJ ;SÞ
n ðtþ1;t0Þ

Þ. The
effective energy based on Eq. (50) has the advantage that
smooth t dependence of the form of Eq. (51) is guaranteed
even when I is much smaller than the dimension of the
Hilbert space as discussed in Refs. [103,145], and this
definition is used for all results in the main text. Both
effective-energy definitions are compared for B ¼ 1 and
B ¼ 2 systems in Appendix E and found to give consistent
results, although more precise results are obtained
using Eqs. (50) and (53) in cases where there are closely
spaced energy levels.
Given a determination of the GEVP energy levels from

the GEVP correlation functions or eigenvalues, the eigen-
vectors can be used to determine the corresponding overlap
factors from Eq. (47) as [145]

ZðB;I;ΓJ;SÞ
nχ ¼

P
χ0v

ðB;I;ΓJ;SÞ
nχ0 ðtref ; t0ÞCðB;I;ΓJ;SÞ

χχ0 ðtrefÞ
e−ðt0=2ÞE

ðB;I;ΓJ ;SÞ
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ĈðB;I;ΓJ;SÞ
n ðtrefÞ

q : ð56Þ

The relative contributions of each interpolating operator χ
in the original set to a particular GEVP eigenstate n can be
obtained as

ZðB;I;ΓJ;SÞ
nχ ¼

			ZðB;I;ΓJ;SÞ
nχ

			P
χ0

			ZðB;I;ΓJ;SÞ
nχ0

			 : ð57Þ

GEVP results for the energies and overlap factors can also
be used to reconstruct an estimate of the original set of
correlation functions through Eq. (47). The relative con-
tributions of each GEVP eigenstate n to the real part of the

correlation function with interpolating operators χ and χ0 is
given by

Z̃ðB;I;ΓJ;SÞ
nχχ0 ¼

Re
h
ZðB;I;ΓJ;SÞ
nχ

�
ZðB;I;ΓJ;SÞ
nχ0

��i
P

m

			ZðB;I;ΓJ;SÞ
mχ

�
ZðB;I;ΓJ;SÞ
mχ0

��			 : ð58Þ

III. NUMERICAL STUDY WITH mπ = 806 MeV

This section presents a variational study of one- and two-
nucleon systems with mπ ¼ 806 MeV using a gauge-field
ensemble with L ¼ 32, which was previously used in
Refs. [15,16,18,25] to study multibaryon systems with
½D;H� correlation functions built from hexaquark source
and dibaryon sink interpolating operators. The LQCD action
used is the tadpole-improved [146] Lüscher-Weisz gauge-
field action [147] and the Wilson quark action including the
Sheikholeslami-Wohlert (clover) improvement term [148],
with parameters shown in Table IV, and one step of four-
dimensional stout smearing [149] with ρ ¼ 0.125 applied to
the gauge field. An ensemble of Ncfg ¼ 727 gauge fields
corresponding to a subset of the gauge-field ensemble
studied in Ref. [18] is used for this variational study.
Sparsened timeslice-to-all quark propagators with

S ¼ ðV=VSÞ1=3 ¼ 4 are computed on each gauge-field
configuration from point-to-all quark propagators com-
puted at each site of a VS ¼ 83 ¼ 512 sparse lattice, as
described in Sec. II B. For more details on the effects of this
sparsening on correlation functions, see Refs. [120,121].
Each source position is separated by S ¼ 4 lattice sites
from its nearest neighbors, which corresponds to ≈0.6 fm
in physical units and mπS ≈ 2.4 lattice units. Correlations
between sources, which are suppressed by at least e−mπS,
are therefore expected to be small. We calculate sparsened
timeslice-to-all smeared-smeared quark propagators using
the Chroma [150] LQCD software framework with Dirac-
operator inversions performed using the conjugate gradient
inverter with a residual tolerance of 10−12. Two different
Gaussian-smearing radii are used for both the propagator
source and sink: the first smearing is denoted T for “thin”
and is defined by 20 steps of gauge-invariant Gaussian
smearing [139,140,151] with Chroma smearing parameter
2.1, which corresponds to a Gaussian smearing width of
≈1.24 lattice units (≈0.18 fm). The second smearing is

TABLE IV. Parameters of the gauge-field ensembles used in this work. L and T are the spatial and temporal
dimensions of the hypercubic lattice, respectively, β is related to the strong coupling, a is the lattice spacing
as determined from ϒ spectroscopy [15], mq is the bare quark mass, Ncfg is the number of configurations used,
and Nsrc ¼ VSNcfg is the total number of source points used for propagator calculations. The pion mass
mπ ¼ 0.59445ð15Þð17Þ is taken from Ref. [15].

L3 × T β mq a [fm] L [fm] T [fm] mπL mπT Ncfg Nsrc

323 × 48 6.1 −0.2450 0.1453(16) 4.5 6.7 19.0 28.5 727 3.72 × 105
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denotedW for “wide” and is defined by 100 steps of gauge-
invariant Gaussian smearing with Chroma smearing width
4.7, corresponding to a Gaussian smearing width of ≈2.77
lattice units (≈0.40 fm).17 Link smearing corresponding to
15 steps of stout smearing [149] with ρ ¼ 0.1 is also
applied to the spatial links of the gauge field used for
constructing smeared sources and sinks. We subsequently
calculate one- and two-nucleon correlation-function matri-
ces using the Qlua LQCD software framework [152] and
a C++ implementation of the contraction algorithm
described in Sec. II B that includes significant scheduling
and memory optimizations facilitated by the polyhedral
compiler Tiramisu [132], as described in Appendix C.
In a preliminary study [153], we calculated timeslice-to-

all smeared-smeared quark propagators using Qlua on a
subset of 167 gauge-field configurations and further calcu-
lated one- and two-nucleon correlation-function matrices.
We analyzed these results independently because slightly
different quark-field smearings and inverter tolerances were
used, and we found results that are consistent at ð1–2Þσ
for all energy levels with the significantly more precise
results from the full set of gauge-field configurations
presented below.

A. The nucleon channel

For the nucleon, the quark-wave-function smearing
radius is the only parameter varied in the single-
hadron interpolating-operator construction described in
Sec. II A 1. This results in an interpolating-operator set

SN ¼ fNT;NWg where NT (NW) denotes the “thin”
(“wide”) nucleon interpolating operator with the smaller-
(larger-)radius quark-field smearing. The 2 × 2 correlation-

function matrix C
ð1;1

2
;Gþ

1
Þ

χχ0 ðtÞ for this interpolating-operator
set is diagonalized by solving the GEVP in Eq. (48) to

obtain Ĉ
ð1;1

2
;Gþ

1
;SNÞ

n ðtÞ. The effective energies E
ð1;1

2
;Gþ

1
;SNÞ

n ðtÞ
defined by Eq. (53) are shown in Fig. 5. The GEVP
correlation functions are fit to truncated spectral repre-
sentations using a variety of minimum source/sink sep-
arations and numbers of excited states, and a weighted

average of these fit results is used to obtain E
ð1;1

2
;Gþ

1
;SNÞ

n as
described in Appendix D. The central values and uncer-
tainties (which here and below correspond to 68% con-
fidence intervals determined using bootstrap methods) on
the GEVP energies determined using this fitting pro-
cedure, with fixed values of t0 ¼ 5 and tref ¼ 10 in the
notation of Eq. (50), are

E
ð1;1

2
;Gþ

1
;SNÞ

0 ¼ 1.20446ð83Þ ¼ 1.636ð1Þð18Þ GeV; ð59Þ

E
ð1;1

2
;Gþ

1
;SNÞ

1 ¼ 1.770ð14Þ ¼ 2.404ð19Þð26Þ GeV; ð60Þ

where the first uncertainties show statistical and fitting
systematic uncertainties added in quadrature and the
second uncertainties for the energies in physical units
are associatedwith the uncertainties in the determination of
a ¼ 0.1453ð16Þ fm [15] (ambiguities in defining the lattice
spacing away from the physical values of the quark masses
are not quantified). The ground-state energy is consistent
with previous calculations using a larger ensemble of
gauge-field configurations with identical parameters,
which obtained MN ¼1.20467ð57Þ¼1.636ð18ÞGeV [18].

FIG. 5. Single-nucleon GEVP effective energies defined by Eqs. (50) and (53) with t0 ¼ 5 and tref ¼ 10 for the ground state and first
excited state. Points with error bars show the central values and 68% bootstrap confidence intervals for GEVP correlation-function
results. Shaded colored bands show the total statistical plus fitting systematic uncertainties added in quadrature (the outlined regions
show the statistical uncertainty of the highest-weight fit entering the weighted average of acceptable fit results along with its
corresponding fit time interval) as described in Appendix D. The maximum t shown corresponds to the largest t less than toltherm ¼
3T=8 for which the signal-to-noise ratio of E

ð1;1
2
;Gþ

1
;SNÞ

n ðtÞ is greater than tolnoise ¼ 0.1; see Fig. 37 for larger t results for E
ð1;1

2
;Gþ

1
;SN Þ

1 ðtÞ.
The inset histograms show the relative overlap factorsZ

ð1;1
2
;Gþ

1
;SNÞ

nχ for χ ∈ SN corresponding to thin (left bar of each histogram) and wide
(right bar of each histogram) Gaussian smearings. The error bars on the histograms denote the bootstrap 68% confidence intervals.

17The T and W smearings are constructed using identical
Gaussian smearing kernels with width ε ≈ 0.055 in the notation
of Ref. [141] and differ in the number of iterative applications of
this kernel.
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The gap between the ground state and first excited-
state energies is given by δð1;

1
2
;Gþ

1
;SNÞ ¼ 0.566ð14Þ, which is

smaller than the gap to the noninteracting P-wave pion
production threshold for this volume

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ ð2π=LÞ2
p

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

π þ ð2π=LÞ2
p

−MN ¼ 0.6410ð12Þ.
Negligible sensitivity is seen to either the choices of

t0 ∈ ½3; 7� and tref ∈ ½8; 12� or the choice of GEVP
effective-energy definition. The variation in t0 and tref is
discussed in Appendix E. Alternative effective-energy
definitions based on GEVP eigenvalues rather than
GEVP correlation functions computed using the eigenvec-
tors are also shown in Appendix E for comparison. Given
this insensitivity, the value t0 ¼ 5 is chosen for the final
results. This choice is motivated by the fact that excited-
state contamination is clearly visible in GEVP correlation
function results for t < 5. Therefore, the approximation that
spectral representations can be truncated to only include the
states overlapping with the chosen interpolating-operator
set may be suspect for t < 5, even though fitted GEVP
energy levels are insensitive. The value tref ¼ 2t0 ¼ 10 is
then motivated by the arguments of Ref. [100], where under
the assumption that an interpolating-operator set domi-
nantly overlaps with the lowest I states, it is shown in
perturbation theory that t0 ≥ t=2 is sufficient to demon-
strate that excited-state effects from states outside the
subspace spanned by the GEVP eigenvectors are sup-

pressed by e−t½E
ðB;I;ΓJ Þ
I −EðB;I;ΓJ Þ

n �, where I is the size of the
interpolating-operator set.

The overlap factors Z
ð1;1

2
;Gþ

1
;SNÞ

nχ are obtained from
Eq. (56) using fit results for the GEVP energy levels
and eigenvectors with the same fixed t0 and tref .

Normalized relative overlap factors Z
ð1;1

2
;Gþ

1
;SNÞ

nχ are then
obtained from Eq. (57) and are given by

Z
ð1;1

2
;Gþ

1
;SNÞ

0NT
¼ 0.4488ð3Þ; Z

ð1;1
2
;Gþ

1
;SNÞ

0NW
¼ 0.5512ð3Þ;

Z
ð1;1

2
;Gþ

1
;SNÞ

1NT
¼ 0.89ð3Þ; Z

ð1;1
2
;Gþ

1
;SNÞ

1NW
¼ 0.11ð3Þ: ð61Þ

These GEVP results for E
ð1;1

2
;Gþ

1
;SNÞ

n ðtÞ and Z
ð1;1

2
;Gþ

1
;SNÞ

nχ can
be used to reconstruct the correlation-function matrix in
the fNT;NWg basis using Eq. (47). These GEVP recon-
structions can be compared to numerical results for

C
ð1;1

2
;Gþ

1
;SNÞ

χχ0 ðtÞ to check how well a spectral representation
including only the GEVP energy levels can describe the full

correlation function. The effective masses E
ð1;1

2
;Gþ

1
;SNÞ

χχ0 ðtÞ
obtained from the diagonal and off-diagonal elements of
the correlation-function matrix are shown in Fig. 6, along
with the effective masses obtained from the corresponding
GEVP reconstructions using Eq. (47). The GEVP recon-
structions reproduce the effective masses obtained from
the fNT;NWg interpolating operators within 2σ uncertain-
ties for t≳ t0 ¼ 5. The central value of the GEVP

reconstruction of the ½NW;NT � effective mass approaches
the GEVP ground-state energy from below because

Z̃
ð1;1

2
;Gþ

1
;SNÞ

1NWNT
¼ −0.12ð2Þ is negative. These excited-state

effects in ½NW;NT � are suppressed by both the small

excited-state overlap of NW and by e−tδ
ð1;1

2
;Gþ

1
;SN Þ

with
t ≫ 1=δð1;

1
2
;Gþ

1
;SNÞ ¼ 1.77ð4Þ, and it is clear from Fig. 6

that excited-state effects in ½NW;NT � correlation functions
are negligible for t≳ 5.

B. The dineutron channel

The LQCD energy spectrum for two-nucleon systems
with I ¼ 1 is independent of Iz in this isospin-symmetric
calculation and results for nn, pp, and spin-singlet pn
systems are equivalent; this channel will be referred to as
the dineutron channel below in order to distinguish it
from the I ¼ 0, spin-triplet deuteron channel. S-wave two-
nucleon wave functions in the I ¼ 1 channel are associated
with the ΓJ ¼ Aþ

1 representation in the infinite-volume
limit, as discussed in Sec. II C. The FV analogs of S-wave

dineutron operators are dibaryon operators D
ð2;1;Aþ

1
Þ

skg , where
s labels the relative-momentum shell with all positive-
parity plane-wave wave functions with s ∈ f0;…; 6g
included in our calculations, k labels the multiplicity index
of the relative wave function (which for the ΓJ ¼ Aþ

1

dineutron channel is simply 1), and g ∈ fT;Wg describes
whether thin or wide Gaussian smearing is used on all
six quark fields. In addition, we include hexaquark

operators H
ð2;1;Aþ

1
Þ

g and quasilocal operators Q
ð2;1;Aþ

1
Þ

qg with
exponential localization scales κq ∈ fκ1; κ2; κ3g ¼
f0.035; 0.070; 0.14g in lattice units, corresponding to
f48; 95; 190g MeV. These quasilocal wave functions
resemble FV two-nucleon bound-state wave functions with
binding momenta corresponding to κq that are associated
with binding energies of f0.0010; 0.0041; 0.016g in lattice
units, corresponding to f1.4; 5.5; 22g MeV. This ranges
from less than the binding energy of the deuteron in nature
to the average of the more deeply bound results for negative
FVenergy shifts for the dineutron [0.0111(21), 0.0127(21),
and 0.0137(17), corresponding to 15.1(2.8), 17.3(2.9), and
18.6(2.3) MeV] and deuteron [0.0165(26), 0.0206(22),
and 0.0194(23), corresponding to 22.5(3.5), 28.0(3.0), and
26.3(3.1) MeV] channels obtained in Refs. [15,18,25] for
the same gauge field ensemble.
The set of two-nucleon interpolating operators computed

in this work with I ¼ 1 and ΓJ ¼ Aþ
1 includes 22 dibaryon,

hexaquark, and quasilocal operators. However, a
correlation-function matrix including all 22 interpolating

operators leads to det½Cð2;1;Aþ
1
Þ

χχ0 ðtÞ� consistent with zero at 1σ
for all t. This suggests that at our current statistical
precision, this is effectively a degenerate set of operators
that has statistically significant overlap with fewer than 22
LQCD energy eigenstates. In fact, all I ¼ 1, ΓJ ¼ Aþ

1
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interpolating-operator sets with more than 16 interpolating
operators are similarly found to be degenerate. Sets with 16
or fewer interpolating operators can be constructed that

satisfy det½Cð2;1;Aþ
1
Þ

χχ0 ðtÞ� ≠ 0 and are therefore nondegenerate
at high statistical significance.
One such nondegenerate interpolating-operator set is

given by the 16 operators

S
ð2;1;Aþ

1
Þ

⓪
¼ fDð2;1;Aþ

1
Þ

skg ; H
ð2;1;Aþ

1
Þ

g js ∈ f0;…; 6g; k ∈ f1g;
g ∈ fT;Wgg; ð62Þ

where the multiplicity index k is necessarily unity because

N
ð1;Aþ

1
Þ

s ¼ 1. This set includes two copies (one for each
quark-field smearing) of the seven dibaryon operators
required to describe noninteracting nucleons with rela-
tive-momentum magnitude less than

ffiffiffi
8

p ð2πL Þ in the Aþ
1 irrep

as well as two hexaquark operators (for the two quark-field
smearings). Alternative interpolating-operator sets includ-
ing different sets of 16 or fewer interpolating operators are
investigated below. The same fitting procedure described in

Sec. III A is used to determine E
ð2;1;Aþ

1
;S0Þ

n . The FV energy

shifts ΔEð2;1;Aþ
1
;S0Þ

n are determined from analogous
weighted averages of correlated differences of fit results

for E
ð2;1;Aþ

1
;S0Þ

n and 2E
ð1;1

2
;Gþ

1
;SNÞ

0 with independent fits
performed for one- and two-baryon correlation functions
as detailed in Appendix D. Results for the GEVP effective

FV energy shifts as well as fit results for ΔEð2;1;Aþ
1
;S0Þ

n

and Z
ð2;1;Aþ

1
;S0Þ

n for the eight lowest-energy states obtained

with S
ð2;1;Aþ

1
Þ

⓪
are shown in Figs. 7 and 8. The ground- and

first-excited-state FV energy shifts obtained using S
ð2;1;Aþ

1
Þ

⓪

with this fitting procedure are

ΔEð2;1;Aþ
1
;S0Þ

0 ¼−0.00245ð50Þ¼−3.33ð68Þð4ÞMeV;

ΔEð2;1;Aþ
1
;S0Þ

1 ¼0.02264ð87Þ¼30.7ð1.2Þð0.3ÞMeV: ð63Þ

Results for the eight lowest-energy states obtained with this
interpolating-operator set are tabulated in Appendix F.
There is a clear gap between the lowest- and highest-
energy halves of the GEVP energy levels obtained with

S
ð2;1;Aþ

1
Þ

⓪
, as seen in Fig. 9. The higher-energy levels (n ≥ 8)

FIG. 6. Points with error bars show single-nucleon effective masses for several correlation functions built from the interpolating-
operator set SN . Gray bands are GEVP reconstructions determined by inserting GEVP energies and overlap factors into truncated
spectral representations for the correlation functions shown. In particular, the gray bands are not obtained using fits to the individual
correlation functions shown. The GEVP reconstructions are displayed for t ≥ t0. Inset histograms show the central value and
68% confidence intervals (the error bars) for the relative contribution of each GEVP eigenstate to the corresponding χ; χ0 element of the

correlation-function matrix, that is Z̃
ð1;1

2
;Gþ

1
;SN Þ

nχχ0 as defined in Eq. (58). They are colored as in Eq. (50), with blue bars (n ¼ 0) in the left
and orange bars (n ¼ 1) in the right.
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FIG. 7. Results for two-nucleon GEVP effective FV energy shifts for the eight lowest-energy states with I ¼ 1 and ΓJ ¼ Aþ
1

obtained using the interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
defined in Eq. (62). Histograms show Z

ð2;1;Aþ
1
;S0Þ

n and are analogous to those in
Fig. 5 with the addition of a dashed line separating interpolating operators with thin (left) and wide (right) Gaussian quark-field

smearing; the operators with each smearing are ordered withD
ð2;1;Aþ

1
Þ

s1g with s increasing from left to right, and withH
ð2;1;Aþ

1
Þ

g operators
rightmost.
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satisfy ΔEð2;1;Aþ
1
;S0Þ

n ðtÞ ≳ δð1;
1
2
;Gþ

1
;SNÞ for all t where signals

can be resolved despite the presence of many noninteracting

two-nucleon energy shifts between ΔEð2;1;Aþ
1
;S0Þ

7 and

ΔEð2;1;Aþ
1
;S0Þ

8 . One scenario consistent with these results,
which is investigated further below, is that several QCD

energy levels exist between E
ð2;1;Aþ

1
;S0Þ

7 and E
ð2;1;Aþ

1
;S0Þ

8 , but

S
ð2;1;Aþ

1
Þ

⓪
does not include interpolating operators with sig-

nificant overlap onto these states. The dineutron-channel
excitation energy gap corresponds to 1=δð2;1;A

þ
1
;S0Þ ¼ 40ð2Þ

lattice units or 5.8(2) fm.Degrading statistical precision limits
the results to the regime t ≪ 1=δð2;1;A

þ
1
;S0Þwhere it should not

be surprising that a scenario could arise in which the energy
states making the largest contributions to the correlation-
function matrix used are not simply the lowest-energy states.
Overlap-factor results demonstrate that states n ∈

f0;…; 7g each dominantly overlap with either dibaryon
operators with a single s or with hexaquark operators
as shown in Figs. 7 and 8. States corresponding to
n ∈ f0; 1; 2g have maximum overlap with Ds1g operators
with s ¼ n, the n ¼ 3 state has maximum overlap with
Hg operators, and n ∈ f4; 5; 6; 7g states have maximum

FIG. 8. Results for overlap factors Z
ð2;1;Aþ

1
;S0Þ

nχ defined in
Eq. (57). Uncertainties, shown by error bars in histograms for
the eight lowest-energy states in Fig. 7, are not shown here.

FIG. 9. Compilations of the n ∈ f0;…; 7g GEVP effective FVenergy shifts shown in Fig. 7 (left) and of the full set of n ∈ f0;…; 15g
results (right) obtained with the interpolating-operator set S

ð2;1;Aþ
1
Þ

⓪
. Noninteracting two-nucleon FVenergy shifts 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ sð2π=LÞ2
p

−
2MN with s ∈ f0; 1; 2; 3; 4; 5; 6; 8g are shown as dashed gray lines, and the single-nucleon excited-state energy gap δð1;12;Gþ

1
;SN Þ is shown

as a shaded orange band. Horizontal offsets are applied to points and fit bands in the left panel for clarity.
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overlap with Ds1g operators with s ¼ n − 1. In particular,
the ground state has maximum overlap with s ¼ 0 dibaryon

operators, with
P

gZ
ð2;1;Aþ

1
;S0Þ

0D01g
¼ 0.712ð8Þ, and it has next

largest overlaps with s ¼ 1 dibaryon operators, withP
g Z

ð2;1;Aþ
1
;S0Þ

0D11g
¼ 0.095ð5Þ, and hexaquark operators, withP

g Z
ð2;1;Aþ

1
;S0Þ

0Hg
¼ 0.0918ð8Þ.

The eight lowest energies obtained using S
ð2;1;Aþ

1
Þ

⓪
are

shown compared to the locations of the noninteracting
two-nucleon energy levels 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ sð2π=LÞ2
p

in Fig. 9.
The GEVP energy levels n ∈ f0; 1; 2; 4; 5; 6; 7g each
appear slightly below one of the s ∈ f0; 1; 2; 3; 4; 5; 6g
noninteracting levels, with the n ¼ 3 state determined
much less precisely than the other states. The presence of

the n ¼ 3 state dominantly overlapping with the H
ð2;1;Aþ

1
Þ

W
operator and appearing as an “extra level” when com-
pared to the noninteracting two-nucleon spectrum is
reminiscent of the extra level found in the vicinity of
the ρ resonance in studies of ππ scattering that domi-
nantly overlaps with local quark bilinear q̄γiq interpolat-
ing operators [77,78].
The structure of this interesting “extra level” can be

further investigated by studying the dependence of this
energy level on variations in the interpolating-operator set

used. As shown in Fig. 10, removing the H
ð2;1;Aþ

1
Þ

W operator

from S
ð2;1;Aþ

1
Þ

⓪
before solving the GEVP leads to a consistent

energy-level determination at the 2σ level but increases the
excited-state effects contamination at small t. Removing

the H
ð2;1;Aþ

1
Þ

T operator conversely only slightly modifies the
small-t behavior associated with excited-state effects and
leads to an almost identical fitted energy with slightly larger
uncertainties. Surprisingly, excited-state contamination is

seen to be worse for t≲ 5 with H
ð2;1;Aþ

1
Þ

T included than with

this operator excluded from an otherwise identical inter-
polating-operator set. In all cases this n ¼ 3 energy-level
dominantly overlaps with the hexaquark operators

included: with S
ð2;1;Aþ

1
Þ

⓪
, the H

ð2;1;Aþ
1
Þ

W and H
ð2;1;Aþ

1
Þ

T overlaps

are 0.56(1) and 0.16(1), respectively; with only H
ð2;1;Aþ

1
Þ

W
included, the overlap with this operator is 0.79(1); and with

only H
ð2;1;Aþ

1
Þ

T included, the overlap with this operator is
0.64(3). It is discussed further below that removing both
hexaquark operators from the interpolating-operator set
leads to determinations of the spectrum in which this level
appears to be absent. Although the statistical uncertainties
of this level are significantly larger than the others, it is
clear that the presence of this energy level is a robust feature
of the QCD spectrum that is revealed at the t and statistical
precision of this work only by calculations including
hexaquark operators. Precise determinations of the spec-
trum in this energy region in multiple volumes will be
required to understand the nature of a possible resonance or
virtual bound state associated with this energy level.
The higher-energy GEVP energy levels n ∈ f8;…; 16g

obtained using S
ð2;1;Aþ

1
Þ

⓪
are all consistent with

ΔEð2;1;Aþ
1
;S0Þ

n ≳ δð1;
1
2
;Gþ

1
;SNÞ. Given the presence of GEVP

energy levels close to the noninteracting s ≤ 6 levels (and
the absence of noninteracting energy levels with s ¼ 7),
one expects there to be QCD energy levels close to the
s ≥ 8 noninteracting states, and therefore at lower ener-
gies than these higher-energy excited states. It is plausible

that such energy eigenstates exist, but S
ð2;1;Aþ

1
Þ

⓪
does not

have any interpolating operators with significant overlap
onto them (in comparison to the overlaps with other
states). In this case, the higher-energy excited states are
not free from contamination from lower-energy states.
The GEVP energy levels associated with these higher-
energy states are therefore not considered to be reliable
and are not reported.
Other nondegenerate sets with 16 or fewer operators can

also be constructed. Results for the ground-state FVenergy
shifts for a variety of interpolating-operator sets,

S
ð2;1;Aþ

1
Þ

①
¼
n
D

ð2;1;Aþ
1
Þ

skg js∈ f0g
o
;

S
ð2;1;Aþ

1
Þ

②
¼
n
D

ð2;1;Aþ
1
Þ

skg ;H
ð2;1;Aþ

1
Þ

g js∈ f0g
o
;

S
ð2;1;Aþ

1
Þ

③
¼
n
Q

ð2;1;Aþ
1
Þ

1g ;D
ð2;1;Aþ

1
Þ

skg ;H
ð2;1;Aþ

1
Þ

g js∈ f1;…;6g
o
;

S
ð2;1;Aþ

1
Þ

④
¼
n
Q

ð2;1;Aþ
1
Þ

2g ;D
ð2;1;Aþ

1
Þ

skg ;H
ð2;1;Aþ

1
Þ

g js∈ f1;…;6g
o
;

S
ð2;1;Aþ

1
Þ

⑤
¼
n
Q

ð2;1;Aþ
1
Þ

3g ;D
ð2;1;Aþ

1
Þ

skg ;H
ð2;1;Aþ

1
Þ

g js∈ f1;…;6g
o
;

S
ð2;1;Aþ

1
Þ

⑥
¼
n
Q

ð2;1;Aþ
1
Þ

3g ;D
ð2;1;Aþ

1
Þ

skg ;H
ð2;1;Aþ

1
Þ

g js∈ f0;2;…;6g
o
;

ð64Þ

FIG. 10. The GEVP correlation functions for the n ¼ 3 energy
level dominantly overlapping with hexaquark operators, also
shown in Fig. 7, is displayed in red with a horizontal offset for
clarity. It is compared with analogous GEVP correlation func-

tions for interpolating-operator sets in whichH
ð2;1;Aþ

1
Þ

T is removed,

in green, and with H
ð2;1;Aþ

1
Þ

W removed, in purple.
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leading to relatively precise GEVP correlation functions are
shown in Fig. 11.18 For all of these sets, k ∈ f1g and
g ∈ fT;Wg. The ground-state FV energy shifts for these

sets are consistent with the results for S
ð2;1;Aþ

1
Þ

⓪
at 1σ. It is

noteworthy that ground-state energy results from S
ð2;1;Aþ

1
Þ

①
,

which only includes D01g operators, are consistent at this
level of precision with ground-state energy results using

S
ð2;1;Aþ

1
Þ

⓪
. It is also noteworthy that Q

ð2;1;Aþ
1
Þ

qg operators with

all three values of κq can be included in place of D
ð2;1;Aþ

1
Þ

01g

operators without significantly affecting the ground-state
FV energy-shift results, although the ground-state energy

precision decreases as κq is increased. Further, the Q
ð2;1;Aþ

1
Þ

3g

operators can be included alongside D
ð2;1;Aþ

1
Þ

01g operators in

place of D
ð2;1;Aþ

1
Þ

11g operators; this significantly decreases the
precision of the ground-state FV energy shift and leads to
some distortions of the higher-energy spectrum but leads to
consistent results for the ground-state energy. Replacing

D
ð2;1;Aþ

1
Þ

s1g operators with larger s with Q
ð2;1;Aþ

1
Þ

qg operators
leads to even less precise results, suggesting that the

Q
ð2;1;Aþ

1
Þ

qg operators dominantly overlap with the same
ground and first excited states identified by GEVP calcu-

lations using S
ð2;1;Aþ

1
Þ

⓪
. This is consistent with a scenario in

which there are 16 LQCD energy eigenstates that have
significant overlap with the 22 operators of the forms

D
ð2;1;Aþ

1
Þ

skg , H
ð2;1;Aþ

1
Þ

g , and Q
ð2;1;Aþ

1
Þ

qg used here.
In general, operator sets with fewer than 16 operators

do not give results that are qualitatively or quantitatively

consistent with results obtained using S
ð2;1;Aþ

1
Þ

⓪
. Results for

sets of 14 operators,

S̃
ð2;1;Aþ

1
Þ

ⓜ
¼

n
D

ð2;1;Aþ
1
Þ

skg ; H
ð2;1;Aþ

1
Þ

g js ∈ f0;…; 6gnm
o
;

m ∈ f0;…; 6g;
S̃
ð2;1;Aþ

1
Þ

⑦
¼

n
D

ð2;1;Aþ
1
Þ

skg js ∈ f0;…; 6g
o
; ð65Þ

obtained by removing one of the two-nucleon operators
with both smearings or the hexaquark operators with both
smearings, are shown in Fig. 12. It is noteworthy that the

lowest-energy state obtained using S̃
ð2;1;Aþ

1
Þ

⓪
is consistent

with the first excited state obtained using S
ð2;1;Aþ

1
Þ

⓪
rather

than the corresponding ground state. Although S̃
ð2;1;Aþ

1
Þ

⓪

includes interpolating operators that are not orthogonal to

the ground state identified by S
ð2;1;Aþ

1
Þ

⓪
(the overlap factors

Z
ð2;1;Aþ

1
;S0Þ

0χ computed using S
ð2;1;Aþ

1
Þ

⓪
are nonzero at high

statistical significance for several of the interpolating

operators included in S̃
ð2;1;Aþ

1
Þ

⓪
⊂ S

ð2;1;Aþ
1
Þ

⓪
), each operator

in S̃
ð2;1;Aþ

1
Þ

⓪
overlaps more strongly with some excited state

than with the ground state. Therefore, over the range of t
considered here, the GEVP results resemble a spectrum that

is missing the S
ð2;1;Aþ

1
Þ

⓪
ground state, while results for the

other levels are largely unaffected (note that the lowest

energy obtained using S̃
ð2;1;Aþ

1
Þ

⓪
is still a valid bound on the

ground-state energy). Results for sets S̃
ð2;1;Aþ

1
Þ

①
;…; S̃

ð2;1;Aþ
1
Þ

⑥

similarly resemble results for S
ð2;1;Aþ

1
Þ

⓪
with one low-lying

energy level “missing” while the remaining energy levels

are largely unaffected. Results for S̃
ð2;1;Aþ

1
Þ

⑦
similarly

resemble results for S
ð2;1;Aþ

1
Þ

⓪
without the “extra level”

dominantly overlapping with the H
ð2;1;Aþ

1
Þ

W operators.
These results demonstrate the importance of using an
interpolating-operator set with significant overlap onto
all energy levels of interest and further demonstrate that
having a large interpolating-operator set is not sufficient to
guarantee that a set will have good overlap onto the ground
state or a particular excited state. It is also not guaranteed
that adding linearly independent interpolating operators
will allow a larger nondegenerate correlation-function
matrix to be resolved at a given statistical ensemble size
(as demonstrated here by the onset of degeneracy if

quasilocal interpolating operators are added to S
ð2;1;Aþ

1
Þ

⓪
).

These results suggest that it is difficult to diagnose the
presence of missing energy levels, since GEVP results for
interpolating-operator sets that give rise to missing energy
levels do not show obvious signs of inconsistency without
comparing them to results from a more complete set.
Because the positions of the energy levels that are identified
by these smaller interpolating-operator sets are consistent
with the energy levels appearing in more complete sets, the
scattering phase shifts associated with these energy levels
will also be consistent and the appearance of a missing

level, for example, in results for S̃
ð2;1;Aþ

1
Þ

⑦
, is no more

obvious from a scattering amplitude analysis than from
inspection of the FV energy shifts, see Sec. III D.
The individual correlation functions associated with the

interpolating operator most strongly overlapping with each
GEVP energy level provide good approximations to the
GEVP correlation functions for t≳ t0 ¼ 5, as shown in
Fig. 13. In all cases the FV energy shifts associated with
½Ds1W;Ds1W � correlation functions approach the GEVP
results from above. The FV energy shifts associated with
½Ds1W;HW � correlation functions are also shown in Fig. 13.

18Relatively precise GEVP results can also be extracted from
the correlation-function matrices studied in Ref. [153] using an

additional operator set related to S
ð2;1;Aþ

1
Þ

⑥
by replacing Q

ð2;1;Aþ
1
Þ

3g

with Q
ð2;1;Aþ

1
Þ

2g . However, using the larger set of correlation-
function matrices included in the analysis presented here, the
corresponding correlation-function matrices are found to be
degenerate within 1σ uncertainties.
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Both the effective energies and the effective FV energy
shifts for all ½Ds1W;HW � correlation functions are consis-
tently ð1–4Þσ below the corresponding GEVP results for

t≳ 5 until signal-to-noise degradation makes the difference
consistent with zero. Applying the same fit range selection
and weighted averaging procedure described in

FIG. 11. The bottom panel shows the ground-state FV energy shifts obtained using GEVP correlation functions with interpolating-

operator set S
ð2;1;Aþ

1
Þ

⓪
shown in Fig. 7 (blue) compared to results obtained using seven other interpolating-operator sets defined in Eq. (64)

(purple). Other panels show the ground-state effective FV energy shift for each interpolating-operator set as indicated in the
corresponding legend.
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Appendix D to a combined fit of ½D01g; Hg� correlation
functions with s ∈ fT;Wg gives a ground-state energy
result of −0.0186ð28Þ. The same fit procedure applied
to ½D11g; Hg� gives a result for the first excited state of
0.0097(33). Higher-statistics analyses of ½D01g; Hg0 � and
½D11g; Hg0 � correlation functions with smeared sources and
both smeared and pointlike sinks in Ref. [15], Ref. [25],
and Ref. [18] give more precise results of −0.0111ð21Þ,
−0.0127ð21Þ, and −0.0137ð17Þ for the ground-state FV
energy shift, respectively, and Refs. [16,18] give results of
0.0165(26) and 0.0157(25) for the first-excited-state FV
energy shifts, respectively. These are consistent with the
½Ds1g; Hg� results of this work at 2σ. The first excited-state
energy determined in Ref. [25], −0.0061ð9Þ, is obtained
using asymmetric correlation functions with spatially
displaced two-nucleon sources and D01g sinks. There is
therefore consistency between results from different stud-
ies using similar interpolating operators, as shown in
Fig. 14 for the ground state, but interpolating-operator
dependence is significantly larger than the statistical and
fitting systematic errors obtained using single- or multi-
exponential fits with a given interpolating-operator set.

Interpolating-operator dependence also leads to

differences between ΔEð2;1;Aþ
1
;SÞ

n obtained using variational
methods with different S that are larger than their uncer-

tainties, in particular ΔEð2;1;Aþ
1
;S̃0Þ

0 ¼ 0.0218ð10Þ differs

from ΔEð2;1;Aþ
1
;S0Þ

0 by 21σ, and it is important to recall
that the correct interpretation of results obtained using
variational methods is as upper bounds on energies. In
other words, the ground-state energy bound obtained using

S̃
ð2;1;Aþ

1
Þ

⓪
is valid, but it is less constraining than the bound

obtained using S
ð2;1;Aþ

1
Þ

⓪
.

Results for E
ð2;1;Aþ

1
;S0Þ

n and Z
ð2;1;Aþ

1
;S0Þ

n can be used to
reconstruct correlation functions for particular interpolating
operators as discussed for the nucleon in Sec. III A. The

interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
includes D

ð2;1;Aþ
1
Þ

01g and

H
ð2;1;Aþ

1
Þ

g operators and the correlation-function matrix for

S
ð2;1;Aþ

1
Þ

⓪
therefore includes ½D01g; D01g�, ½D01g; Hg�, and

½Hg;Hg� correlation functions. Reconstructions of the FV
energy shifts associated with positive-definite ½Ds1g; Ds1g�

FIG. 12. FV energy shifts obtained using GEVP correlation functions with interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
(left column in each

panel and corresponding to Fig. 7) are compared to results obtained using the interpolating-operator sets defined in Eq. (64) with
ground-state energy shifts featured in Fig. 11 (left), as well as the eight other interpolating-operator sets defined in Eq. (65) (right). The

color coding for S
ð2;1;Aþ

1
Þ

⓪
energies follows that in Fig. 7, and the dashed lines show noninteracting two-nucleon energies as in Fig. 9.
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correlation functions with s ∈ f0;…; 6g and g ∈ fT;Wg
are shown in Fig. 15. Consistency between correlation
function and GEVP reconstruction results is found at
the ð1–2Þσ level for t≳ 6. Significant deviations for
½Ds1T; Ds1T � can be seen at t ¼ 5, which suggests that
contributions to correlation functions with thin smearing
from excited states outside the GEVP energy levels can
only be neglected for t≳ 6.

Analogous GEVP reconstructions for ½D01g; D01g�,
½D01g; Hg�, and ½Hg;Hg� correlation functions are shown
in Fig. 16. There is agreement at the ð1–2Þσ level between
the GEVP reconstructions and correlation function results
for t≳ 6. The ½D01W;D01W � correlation function is domi-
nated by the GEVP ground-state contribution with overlap

Z̃
ð2;1;Aþ

1
;S0Þ

0D01WD01W
¼ 0.962ð7Þ and includes a few-percent-level

FIG. 14. Comparisons of FV energy-shift results for the n ¼ 0 and n ¼ 1 states between previous results obtained in
Refs. [15,16,18,25] using the same gauge field ensemble with ½D;H� correlation function (as well as displaced sources in Ref. [25])

and results of this work obtained using variational methods with interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
, interpolating-operator set S̃

ð2;1;Aþ
1
Þ

⓪

(in which the operators dominantly overlapping with the ground state are omitted), and nonvariational results obtained using ½D;H�
correlation functions. Arrows emphasize the fact that the variational method provides (stochastic) upper bounds on energy levels and
therefore FV energy shifts under the assumption that the nucleon mass is accurately identified, while ½D;H� correlation functions
provide an estimate of the energy but have systematic uncertainties in both directions that are difficult to estimate.

FIG. 13. The upper (lower) panels show differences between the effective FVenergy shifts computed using correlation functions with
dibaryon sources and sinks ½Ds1W;Ds1W � (hexaquark sources and dibaryon sinks ½Ds1W;HW �) and the fitted FV energy shifts for the

S
ð2;1;Aþ

1
Þ

⓪
GEVP energy levels that dominantly overlap with D

ð2;1;Aþ
1
Þ

s1W , which are n ∈ f0; 1; 2g for the left panels and n ∈ f4; 5; 6; 7g for
the right panels.
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contribution from the GEVP first excited state. The
apparent plateau below threshold in the ½D01W;HW � corre-
lation function is reproduced by the GEVP reconstruction

with Z̃
ð2;1;Aþ

1
;S0Þ

0D01WHW
¼ −0.61ð4Þ, a significant opposite-sign

contribution from the first GEVP excited state

Z̃
ð2;1;Aþ

1
;S0Þ

1D01WHW
¼ 0.14ð1Þ, a smaller contribution from the

second GEVP excited state Z̃
ð2;1;Aþ

1
;S0Þ

2D01WHW
¼ 0.04ð1Þ, and

even smaller contributions from higher-energy GEVP
excited states. The GEVP reconstruction predicts that the
½D01W;HW � effective FV energy shifts approach the GEVP
ground-state FV energy shift for large t, and in particular
that the GEVP reconstruction of the ½HW;D01W � effective
FV energy shift reaches 1σ consistency with ΔEð2;1;Aþ

1
;S0Þ

0

only for an unachievable t≳ 80. It has been previously
argued in Refs. [80,86], based on calculations using the
HAL QCD potential method, that ½D;H� correlation
functions exhibit large FV energy shifts at ∼1 fm that will
approach values closer to threshold for similar t to those
predicted by the GEVP analysis here. Although the results
of Ref. [80] and the GEVP analysis here both indicate

significant opposite-sign contributions to ½D;H� correlation
functions from the ground state and low-energy excited

states, the pattern of Z̃
ð2;1;Aþ

1
;S0Þ

0HWDs1W
predicted in Ref. [80] is

relatively constant in s while the overlap factors calculated
here decrease rapidly with increasing s. Further, there is no
evidence for the extra level associated with hexaquark
operators found here in the potential-method-based results
of Ref. [80].
Other asymmetric correlation functions exhibit effective

FV energy shifts significantly below threshold with mild t
dependence over the range t≳ 5 where signals can be
resolved. Results for ½D01T; Ds1W � correlation functions
with s ≠ 0 are shown in Fig. 17. These correlation
functions show FV energy shifts ∼0.1 below threshold
with mild, although in some cases statistically significant, t
dependence. Applying the same fitting procedure described
above to these correlation functions leads to statistically
significant FV energy shifts in several cases: −0.065ð14Þ,
−0.084ð21Þ, −0.088ð18Þ, −0.049ð27Þ, and −0.053ð10Þ
for s ¼ 2 to s ¼ 6, respectively. Conversely, a large
fitting systematic uncertainty is obtained for s ¼ 1 with

FIG. 15. Points with error bars show effective FV energy shifts for positive-definite dibaryon correlation functions ½Ds1g; Ds1g� with
s ∈ f0;…; 6g from bottom to top with wide (thin) quark-field smearing in the left (right) panel. Gray curves and bands show the central
values and 68% confidence intervals for GEVP reconstructions that are obtained by inserting GEVP energy-level and overlap-factor

results obtained using the interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
into the spectral representations for these correlation functions for all t ≥ t0

in analogy to Fig. 6. In particular, gray curves and bands are not obtained directly from fits to the correlation functions shown. Relatively
large uncertainties on the higher-energy half of the spectrum lead to larger uncertainties in GEVP reconstructions at small t, particularly
for the narrow smearing case in the right panel.
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a result −0.1ð1.1Þ. The GEVP reconstructions using

S
ð2;1;Aþ

1
Þ

⓪
reproduce the subthreshold behavior of all these

correlation functions over the range of t where signals can
be resolved through opposite-sign linear combinations of
ground-state contributions and contributions from excited
states above and below the single-nucleon first excited
state. One possible interpretation of the fact that GEVP

results using S
ð2;1;Aþ

1
Þ

⓪
with a ground-state energy of

−0.00245ð50Þ can reproduce the subthreshold behavior
of these correlation functions is that these subthreshold
effective FV energy shifts are not associated with physical

states at these energies but are t-dependent combinations of
energy levels. Another possible interpretation is that some
or all of these asymmetric correlation functions are over-
lapping with states below threshold that are not visible in

the GEVP correlation functions obtained using S
ð2;1;Aþ

1
Þ

⓪
. In

particular, it is straightforward to construct toy examples of
overlap factors for which asymmetric correlation functions
constructed from nearly orthogonal source and sink inter-
polating operators overlap with deeply bound states that
do not contribute to the corresponding positive-definite
diagonal correlation functions. Consider for example a
three-state system and a pair of interpolating operators A

FIG. 16. Effective FV energy shifts and GEVP reconstructions obtained using S
ð2;1;Aþ

1
Þ

⓪
for ½D01g; D01g�, ½D01g; Hg�, and ½Hg;Hg�

correlation functions with wide (thin) quark-field smearing are shown in the left (right) panels. Histograms show the central values and

68% confidence intervals for the relative contributions Z̃
ð2;1;Aþ

1
;S0Þ

nχχ0 of each GEVP energy level to the correlation function. Bars
correspond to n values increasing from left to right, with coloring consistent with Fig. 9. Overlap factors for thin smearing interpolating
operators are more sensitive to less precisely determined high-energy excited-state energies, which leads to the relatively large

uncertainties in Z̃
ð2;1;Aþ

1
;S0Þ

nD01THT
.
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and B, with the true energy spectrum for this toy model
given by

EðABÞ
0 ¼ η − Δ; EðABÞ

1 ¼ η; EðABÞ
2 ¼ ηþ δ; ð66Þ

and normalized overlap factors for operators A and B onto
these three states (in increasing energy order) given by

ZA ¼
�
ϵ;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
; 0
�
; ZB ¼

�
ϵ; 0;

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p �
; ð67Þ

with ϵ ≪ 1 and real. Positive-definite ½A; A� and ½B;B�
correlation functions will overlap dominantly with the first
and second excited states, respectively, while asymmetric
½A;B� correlation functions will overlap perfectly with the
ground state and may or may not be positive definite
depending on ϵ. In the ϵ → 0 limit (or in practical situations

where ϵ ≈ 0 within statistical uncertainty), the GEVP
solution to the 2 × 2 correlation-function matrix using
the interpolating-operator set fA; Bg will simply be the
½A; A� and ½B;B� correlation functions. Corrections arising
from nonzero ϵ can be calculated exactly and admit a
simple perturbative expansion in ϵ. To Oðϵ3Þ accuracy, the
GEVP eigenvalues are given by

λðABÞ0 ¼ e−ðt−t0Þη½1þ ϵ2ðetΔ − et0ΔÞ þOðϵ4Þ�;
λðABÞ1 ¼ e−ðt−t0ÞðηþδÞ½1þ ϵ2ðetðΔþδÞ − et0ðΔþδÞÞ þOðϵ4Þ�;

ð68Þ

demonstrating that variational methods will not recover
the true ground-state energy that dominates the ½A; B�
correlation function unless t is large enough that etΔ

FIG. 17. Effective FV energy shifts and GEVP reconstructions obtained using S
ð2;1;Aþ

1
Þ

⓪
½D01T; Ds1W � correlation functions with

s ∈ f1;…; 6g. Histograms of Z̃
ð2;1;Aþ

1
;S0Þ

nχχ0 are as in Fig. 16.
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compensates for the Oðϵ2Þ overlap-factor suppression of
the ground-state contribution to the GEVP eigenvalues.
This example can be trivially generalized to include more
states. If states with energies much further below threshold

than E
ð2;1;Aþ

1
;S0Þ

0 are present in QCD, additional interpolat-
ing operators that are nearly orthogonal to the dibaryon,
hexaquark, and quasilocal interpolating operators included
in this calculation will be required to construct an inter-
polating-operator set that strongly overlaps with them.
Correlation functions for two-nucleon systems with

I ¼ 1 and other cubic transformation properties associated
with nonzero angular momentum can also be constructed
using linear combinations of plane-wave dibaryon oper-
ators as described in Sec. II C. Interpolating operators with
I ¼ 1 and ΓJ ∈ fEþ; Tþ

2 ; T
þ
1 ; A

þ
2 g require nontranslation-

ally invariant wave functions and therefore only the Dskg

operators with s ≠ 0 contribute to these irreps. The set of
interpolating operators computed for these irreps does not
include additional operators besides two copies (for the two
quark-field smearings) of each plane-wave dibaryon oper-
ator required to describe noninteracting nucleons, and for
these irreps the full sets of interpolating operators are
nondegenerate. Results for GEVP FV energy shifts
obtained using the same fitting methods applied to the
Aþ
1 irrep are tabulated in Appendix F. The lower-energy

half of the GEVP energy levels are in one-to-one corre-
spondence with the noninteracting two-nucleon energy
levels with the same s, as shown in Fig. 18.19 Also, as
in the Aþ

1 irrep, the higher-energy half of the GEVP energy

levels satisfy ΔEð2;1;ΓJ;S0Þ
n ≳ δð1;

1
2
;Gþ

1
;SNÞ and appear above

noninteracting energy levels not associated with interpolat-
ing operators present in these sets. These higher-energy
GEVP correlation functions, therefore, can be expected to
contain contamination from lower-energy states that
weakly overlap with the interpolating operators present
in this calculation, and the associated GEVP energy levels
are considered unreliable and not presented. Since only
dibaryon operators are included in these irreps, states that
are analogous to the relatively noisy state in the Aþ

1 irrep for

whichZð2;I;ΓJÞ
nHg

≫ Zð2;I;ΓJÞ
nDskg

may well exist in these irreps but
their extraction would require additional localized oper-
ators to be included in the interpolating-operator set.

C. The deuteron channel

The I ¼ 0 deuteron channel includes flavor-
antisymmetric pn systems that for positive-parity spatial
wave functions must be antisymmetric in spin and therefore

in a cubic FV have ΓS ¼ Tþ
1 .

20 Hexaquark, quasilocal, and
s ¼ 0 dibaryon operators in this channel have Γl ¼ Aþ

1

and therefore ΓJ ¼ Tþ
1 . Due to spin-orbit coupling, the ΓJ ¼

Tþ
1 irrep includes not only s ≥ 1 dibaryon operators with

Γl ¼ Aþ
1 but also dibaryon operators with Γl ∈ fEþ; Tþ

1 ;
Tþ
2 g. Since the deuteron bound state in nature can be

described as an admixture of S- andD-wave states, operators
with Γl ∈ fEþ; Tþ

2 g associated with D-wave wave func-
tions in the infinite-volume limit are of particular interest.
Results for ΓJ ¼ Tþ

1 , including operators with all relevant
Γl, will be discussed first. Total-angular-momentum cubic
irreps ΓJ ∈ fTþ

2 ; E
þ; Aþ

2 ; A
þ
1 g are associated with Γl ≠ Aþ

1

and therefore l > 0 partial waves in the infinite-volume
limit. These will be discussed at the end of this section.
A total of 48 linearly independent interpolating operators

with I ¼ 0 and ΓJ ¼ Tþ
1 are included in our calculations:

two copies for the two quark-field smearings of each ofP
6
s¼0N

ð0;Tþ
1
Þ

s ¼ 20 dibaryon operators, three quasilocal
operators, and one hexaquark operator. Including all
interpolating operators leads to a correlation-function
matrix whose determinant is consistent with zero at 1σ
for all t and whose eigenvalues cannot be reliably deter-
mined at the precision of our calculation. As in the
dineutron case, operators can be removed until a non-
degenerate set is obtained (defined as a set where the
correlation-function matrix determinant is resolved from
zero). The largest nondegenerate interpolating-operator sets
constructed in this way include 42 interpolating operators.
One choice of a nondegenerate set of 42 interpolating

operators includes all 20 D
ð2;0;Tþ

1
Þ

skg interpolating operators
with each smearing required to describe noninteracting
nucleons with relative momentum less than

ffiffiffi
8

p ð2πL Þ as well
as the two H

ð2;0;Tþ
1
Þ

g interpolating operators corresponding
to thin and wide smearing widths,

S
ð2;0;Tþ

1
Þ

⓪
¼

n
D

ð2;0;Tþ
1
Þ

skg ; H
ð2;0;Tþ

1
Þ

g js ∈ f0;…; 6g;

k ∈
n
1;…;N

ð0;Tþ
1
Þ

s

o
; g ∈ fT;Wg

o
; ð69Þ

where the multiplicities of dibaryon operators with s-shell

relative momenta N
ð0;Tþ

1
Þ

s are shown in Table III. Results

for GEVP effective FVenergy shifts using S
ð2;0;Tþ

1
Þ

⓪
and the

corresponding fit results for ΔEð2;0;Tþ
1
;S0Þ

n obtained using the
same fitting methods as before are shown for the levels
n ∈ f0;…; 20g in Figs. 19–21. The low-energy GEVP
energy levels include one state that dominantly overlaps

with the H
ð2;0;Tþ

1
Þ

W operator as well as energy levels that
19Note that the noninteracting two-nucleon energy levels have

nontrivial multiplicities N ð1;ΓJÞ
s , as shown in Table III, and in

particular vanish for some choices of s and ΓJ . This leads to the
absence of energy levels for some combinations of s and ΓJ in
Fig. 18 as well as the presence of multiple closely spaced energy
levels near some other combinations of s and ΓJ .

20This restriction does not apply to NΔ, ΔΔ, and other
operators with the same quantum numbers that are not con-
structed from products of two nucleon operators.
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dominantly overlap with each D
ð2;0;Tþ

1
Þ

skW operator for each s
and k. The ground-state and first two excited-state FV
energy shifts obtained with this interpolating-operator set
are given by

ΔEð2;0;Tþ
1
;S0Þ

0 ¼−0.00248ð48Þ¼−3.37ð66Þð4ÞMeV;

ΔEð2;0;Tþ
1
;S0Þ

1 ¼0.02173ð91Þ¼29.5ð1.2Þð0.3ÞMeV: ð70Þ

The inverse excitation-energy gap for the deuteron channel
corresponds to Euclidean time 1=δð2;0;T

þ
1
;S0Þ ¼ 41ð2Þ in

lattice units or 6.0(3) fm, and degrading statistical precision
limits our results to the regime t ≪ 1=δð2;0;T

þ
1
;S0Þ. Further

results for ΔEð2;0;Tþ
1
;S0Þ

n are presented for n ∈ f0;…; 20g in
Appendix F and a compilation of the GEVP effective FV
energy shifts for these states is shown in Fig. 22. The
lowest-energy half of the GEVP energy levels are below the
s ¼ 6 noninteracting energy level, while the highest-energy
half of the GEVP energy levels are at significantly higher

energies with ΔEð2;0;Tþ
1
;S0Þ

n ≳ δð1;
1
2
;Gþ

1
;SNÞ. Several noninter-

acting energy levels lie in the gap between these two halves
of the GEVP energy levels, and as in the dineutron channel
it is very likely that there are missing energy levels
associated with states in this energy range that do not
have significant overlap with the interpolating operators in

S
ð2;0;Tþ

1
Þ

⓪
. The higher-energy half of the GEVP energy levels

are therefore considered unreliable and are not reported.
Overlap-factor results demonstrate that states n ∈

f0;…; 20g each dominantly overlap with either dibaryon
operators with a single s or with hexaquark operators as
shown in Figs. 19–21 and 23. As in the dineutron channel,
the ground state has maximum overlap with s ¼ 0 dibaryon

operators with
P

g Z
ð2;0;Tþ

1
;S0Þ

0D01g
¼ 0.60ð1Þ, and has next

largest overlaps with s ¼ 1 dibaryon operators withP
gZ

ð2;0;Tþ
1
;S0Þ

0D11g
¼ 0.103ð4Þ, and hexaquark operators withP

gZ
ð2;0;Tþ

1
;S0Þ

0Hg
¼ 0.088ð1Þ. The excited-state spectrum

includes sets of approximately degenerate energy levels

with multiplicityN
ð0;Tþ

1
Þ

s that are close to the noninteracting
s-shell energies and separated by comparatively large
energy gaps. States within each closely spaced set can
be clearly distinguished by their overlap factors and
dominantly overlap with either Γl ¼ Aþ

1 or Γl ≠ Aþ
1

operators, although the size of subdominant contributions
increases with increasing s.
The state corresponding to n ¼ 6 has maximum overlap

with H
ð2;0;Tþ

1
Þ

g operators and, as in the dineutron channel,
appears as an extra level not present for noninteracting two-
nucleon systems. This level is at a similar excitation energy
to that in the dineutron channel. As in the dineutron

FIG. 18. GEVP effective FV energy shifts for two-nucleon systems computed using the complete sets of interpolating operators with
I ¼ 1 and ΓJ ∈ fEþ; Tþ

2 ; T
þ
1 ; A

þ
2 g. As in the left side of Fig. 9, only GEVP energy levels below the single-nucleon first excited state are

shown and the noninteracting two-nucleon energy shifts are shown as dashed gray lines. Horizontal offsets are applied to points and fit
bands for clarity.
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FIG. 19. Results for two-nucleon GEVP effective FVenergy shifts for the lowest-energy GEVP correlation functions, n ∈ f0;…; 7g,
with I ¼ 0;ΓJ ¼ Tþ

1 obtained using the set S
ð2;0;Tþ

1
Þ

⓪
. Statistical and systematic fit uncertainties are shown as in Fig. 7. Histograms of

Z
ð2;0;Tþ

1
;S0Þ

nχ are analogous to the histograms in that figure and include a dashed line separating thin (left) and wide (right) quark-field
smearing as well as dotted lines that further divide the operators into subsets corresponding to Γl ¼ Aþ

1 ; E
þ; Tþ

1 ; T
þ
2 from left to right.

Hexaquark operators appear rightmost among operators with Γl ¼ Aþ
1 .
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channel, the structure of this level can be further inves-
tigated by studying variations with interpolating-operator

set. As shown in Fig. 24, removing the H
ð2;0;Tþ

1
Þ

W operator

from S
ð2;0;Tþ

1
Þ

⓪
leads to a 2σ shift in the fitted energy level

and a significant increase in the excited-state contamination

visible at small t. Conversely, removing H
ð2;0;Tþ

1
Þ

T leads to
small differences in the size of excited-state effects and in
the fitted energy results. In all cases this n ¼ 6 energy level
has maximum overlaps with the hexaquark operators

included: with S
ð2;0;Tþ

1
Þ

⓪
, the H

ð2;0;Tþ
1
Þ

W and H
ð2;0;Tþ

1
Þ

T overlaps

FIG. 20. Results for two-nucleon GEVP effective FVenergy shifts for states n ∈ f8;…; 15g obtained using the set Sð2;0;Tþ
1
Þ

⓪
. Symbols

and bands are analogous to those in Fig. 19.
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are 0.28(19) and 0.08(6), respectively, with only H
ð2;0;Tþ

1
Þ

W
included, the overlap with this operator is 0.67(2), and with

only H
ð2;0;Tþ

1
Þ

T included, the overlap with this operator is

0.82(1). With S
ð2;0;Tþ

1
Þ

⓪
, t0 ¼ 5, and tref ¼ 10, the n ¼ 6

energy level also has significant overlap with D
ð2;0;Tþ

1
Þ

31W and

D
ð2;0;Tþ

1
Þ

31T of 0.20(2) and 0.12(2); however, other choices of

t0 and tref lead to smaller overlaps with D
ð2;0;Tþ

1
Þ

31g and for all
t0 and tref choices there is no extra level visible when no
hexaquark operators are included in the interpolating-
operator set as discussed further below.
The interpolating-operator dependence of the other

GEVP energy-level results in this channel can also be
studied by removing or replacing interpolating operators in

S
ð2;0;Tþ

1
Þ

⓪
as in the dineutron channel. Relatively precise

GEVP correlation functions are obtained using the inter-
polating-operator sets

S
ð2;0;Tþ

1
Þ

①
¼
n
D

ð2;0;Tþ
1
Þ

skg js∈f0g
o
;

S
ð2;0;Tþ

1
Þ

②
¼
n
D

ð2;0;Tþ
1
Þ

skg ;H
ð2;0;Tþ

1
Þ

g js∈f0g
o
;

S
ð2;0;Tþ

1
Þ

③
¼
n
Q

ð2;0;Tþ
1
Þ

1g ;D
ð2;0;Tþ

1
Þ

skg ;H
ð2;0;Tþ

1
Þ

g js∈f1;…;6g
o
;

S
ð2;0;Tþ

1
Þ

④
¼
n
Q

ð2;0;Tþ
1
Þ

2g ;D
ð2;0;Tþ

1
Þ

skg ;H
ð2;0;Tþ

1
Þ

g js∈f1;…;6g
o
;

S
ð2;0;Tþ

1
Þ

⑤
¼
n
Q

ð2;0;Tþ
1
Þ

3g ;D
ð2;0;Tþ

1
Þ

skg ;H
ð2;0;Tþ

1
Þ

g js∈f1;…;6g
o
;

S
ð2;0;Tþ

1
Þ

⑥
¼
n
Q

ð2;0;Tþ
1
Þ

3g ;D
ð2;0;Tþ

1
Þ

1k0g ;D
ð2;0;Tþ

1
Þ

skg ;

H
ð2;0;Tþ

1
Þ

g js∈f0;2;…;6g
o
; ð71Þ

FIG. 21. Results for two-nucleon GEVP effective FV energy shifts for states n ∈ f16;…; 20g obtained using the interpolating-

operator set S
ð2;0;Tþ

1
Þ

⓪
. Symbols and bands are analogous to those in Fig. 19.
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where in all cases g ∈ fT;Wg and k ∈ f1;…;N
ð0;Tþ

1
Þ

s g.21
For the last set k0 ∈ f2;…;N

ð0;Tþ
1
Þ

1 g. Results for the GEVP
effective ground-state FVenergy shifts obtained using these
interpolating-operator sets are shown in Fig. 25 and

compared to results obtained using S
ð2;0;Tþ

1
Þ

⓪
. As in the

dineutron channel, interpolating-operator sets obtained by

replacingD
ð2;0;Tþ

1
Þ

01g operators withQ
ð2;0;Tþ

1
Þ

qg operators lead to
consistent results for the GEVP ground-state FV energy
shift with uncertainties that increase with increasing κq.

Sets obtained by replacing the D
ð2;0;Tþ

1
Þ

11g operators with

Q
ð2;0;Tþ

1
Þ

qg operators also give consistent results for the
ground-state and other low-lying excited-state FV energy

shifts although the uncertainties on the ground-state FV
energy shift are much larger than those obtained using

S
ð2;0;Tþ

1
Þ

⓪
. This is consistent with a scenario in which the

lower-energy half of the GEVP energy levels identified

by S
ð2;0;Tþ

1
Þ

⓪
are in one-to-one correspondence with LQCD

energy eigenstates, and the Q
ð2;0;Tþ

1
Þ

qg operators only have
significant overlap with the same set of energy eigenstates
at the statistical precision of this calculation.
Additional interpolating-operator sets can be obtained by

removing a (thin- and wide-smeared) pair of interpolating

operators from S
ð2;0;Tþ

1
Þ

⓪
in analogy to Eq. (65),

S̃
ð2;0;Tþ

1
Þ

⓪
¼
n
D

ð2;0;Tþ
1
Þ

skg ;H
ð2;0;Tþ

1
Þ

g js∈f1;…;6g
o
;

S̃
ð2;0;Tþ

1
Þ

ⓜ
¼
n
D

ð2;0;Tþ
1
Þ

skg ;D
ð2;0;Tþ

1
Þ

mk0g ;H
ð2;0;Tþ

1
Þ

g js∈f0;…;6gnm
o
;

m∈f1;…6g;
S̃
ð2;0;Tþ

1
Þ

⑦
¼
n
D

ð2;0;Tþ
1
Þ

skg js∈f0;…;6g
o
; ð72Þ

FIG. 22. Compilations of the GEVP effective FVenergy shifts shown in Figs. 19–21 corresponding to energy levels below the single-
nucleon first excited state and comparisons to noninteracting two-nucleon FV energy shifts (dashed lines) as in Fig. 9. The left (right)
figures show the GEVP energy levels dominantly overlapping with interpolating operators with Γl ¼ Aþ

1 associated with S-wave states
in the infinite-volume limit (Γl ∈ fEþ; Tþ

1 ; T
þ
2 g associated with D-wave and higher-partial wave states in the infinite-volume limit).

The multiplicities of approximately degenerate energy levels are equal to the multiplicities N
ð0;Tþ

1
Þ

s tabulated in Table III for levels near
the noninteracting levels associated with the s ∈ f0;…; 6g shells.

21As in the dineutron channel, relatively precise GEVP results

can be extracted for an additional operator set related to S
ð2;0;Tþ

1
Þ

⑥

by replacing Q
ð2;0;Tþ

1
Þ

3g with Q
ð2;0;Tþ

1
Þ

2g using the ensemble of
correlation-function matrices studied in Ref. [153] but not using
the larger ensemble studied here.
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where g ∈ fT;Wg, k ∈ f1;…;N
ð0;Tþ

1
Þ

s g, and

k0 ∈ f2;…;N
ð0;Tþ

1
Þ

m g. Results for the GEVP effective FV
energy shifts and fit results for GEVP energy levels with
n ∈ f0;…; 20g using these interpolating-operator sets are
shown in Fig. 26. As in the dineutron channel, it is clear
that removing the interpolating-operator pair that domi-
nantly overlaps with a particular energy level also removes

the corresponding GEVP energy level from the results for
the energy spectrum. The fact that a large interpolating-
operator set is not sufficient to guarantee a reliable ground-
state energy extraction is demonstrated by the case of

S̃
ð2;0;Tþ

1
Þ

⓪
, where a set of 40 interpolating operators leads to a

ground-state energy result that is 5σ larger than the

corresponding result obtained using S
ð2;0;Tþ

1
Þ

⓪
.

Differences between FV energy shifts determined with
individual ½Ds1W;HW � correlation functions and the

S
ð2;0;Tþ

1
Þ

⓪
GEVP FV energy shifts from the state maximally

overlapping with Ds1W , as well as the corresponding
differences between ½Ds1W;Ds1W � FV energy shifts and

S
ð2;0;Tþ

1
Þ

⓪
GEVP FV energy shifts, are shown in Fig. 27. As

in the dineutron channel, the ½Ds1g; Ds1g� FV effective
energy shifts approach the GEVP results from above and
are indistinguishable for t≳ t0 ¼ 5. Conversely, the effec-
tive energies and the FV energy shifts determined using
individual ½Ds1g; Hg� correlation functions both appear
ð1–5Þσ lower than the corresponding GEVP results for
t≳ 5 until statistical noise becomes larger than the
differences resolved at smaller t. Applying the same fitting
procedure used above to combined fits of ½D01g; Hg�
correlation functions with both quark-field smearings gives
a ground-state FV energy shift of −0.0176ð26Þ. Similarly,
combined fits of ½D11g; Hg� correlation functions with
both quark-field smearings gives a FV energy shift of
0.0098(24). Higher-statistics analyses of ½D01g; Hg0 � and
½D11g; Hg0 � correlation functions with smeared sources and
both smeared and pointlike sinks in Ref. [15], Ref. [25],
and Ref. [18] give more precise results of −0.0165ð26Þ,
−0.0206ð22Þ, and −0.0194ð23Þ for the ground-state FV
energy shift, respectively, and Refs. [16,18] give results of
0.0115(29) and 0.0092(23) for the first excited-state FV
energy shift, respectively. These are consistent with the
½Ds1g; Hg� results of this work at the 1σ level but are in
tension with the first excited-state energy determined in
Ref. [25], −0.0073ð8Þ, obtained using asymmetric corre-
lation functions with displaced two-nucleon sources and
D01g sinks. As shown in Fig. 28, interpolating-operator
dependence among best-fit FV energy shift determinations
is larger than the uncertainties of individual fit results, and it
is important to emphasize that results obtained using the
variational method should be interpreted as upper bounds.
Further tests of the consistency of GEVP results using

S
ð2;0;Tþ

1
Þ

⓪
are obtained by comparing GEVP reconstructions

of correlation functions in the original interpolating-
operator set to the corresponding effective FV energy-shift
results. This comparison is shown for the GEVP energy

levels with the largest overlap with the S-wave D
ð2;0;Tþ

1
Þ

s1g

interpolating operators in Fig. 29. Agreement at ð1–2Þσ
is seen for ½Ds1W;Ds1W � for t≳ 6. For ½Ds1T; Ds1T �
correlation functions, there is agreement within ð1–2Þσ

FIG. 23. Results for overlap factors Z
ð2;0;Tþ

1
;S0Þ

nχ for the lower
half of the GEVP energy eigenstates, which are shown as
histograms in Figs. 19–21. Each column represents the sum of
the overlap factors corresponding to the two quark-field smear-

ings,
P

g Z
ð2;0;Tþ

1
;S0Þ

nDskg
or

P
g Z

ð2;0;Tþ
1
;S0Þ

nHg
, for each dibaryon or

hexaquark operator. Uncertainties, shown by error bars in histo-
grams in Figs. 19–21, are not shown here.

FIG. 24. The GEVP correlation functions for the n ¼ 6 energy
level dominantly overlapping with hexaquark operators, also
shown in Fig. 19, is displayed offset in blue and compared with
analogous GEVP correlation functions for interpolating-operator

sets in which H
ð2;0;Tþ

1
Þ

T is removed, in green, and with H
ð2;0;Tþ

1
Þ

W
removed, in purple.
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uncertainties for t≳ 9. Analogous GEVP reconstructions
for ½D01g; D01g�, ½D01g; Hg�, and ½Hg;Hg� correlation func-
tions are shown in Fig. 30. There is agreement at the

level of ð1–2Þσ between the GEVP reconstructions and
correlation function results for t≳ 9 with a similar pattern
of cancellations between opposite-sign ground- and

FIG. 25. The bottom panel shows the ground-state FV energy shifts obtained using GEVP correlation functions with interpolating-

operator set S
ð2;0;Tþ

1
Þ

⓪
shown in Fig. 19 (blue) compared to results obtained using seven other interpolating-operator sets defined in

Eq. (71) (purple). Other panels show the ground-state effective FV energy shift for each interpolating-operator set as indicated in the
corresponding legend.
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excited-state contributions leading to the subthreshold
behavior seen in ½D01g; Hg� effective FV energy shifts.
Other asymmetric correlation functions of the form

½D01T; Ds1W � with s ≠ 0 exhibit effective FV energy shifts
significantly below zero over the range of t studied in
this calculation, as shown in Fig. 31. Applying the same
fitting procedure described above to these correlation
functions leads to −0.074ð25Þ, −0.073ð15Þ, −0.073ð21Þ,
−0.073ð12Þ, −0.045ð16Þ, and −0.035ð23Þ for s ¼ 1 to
s ¼ 6, respectively. Despite the statistically significant

discrepancies between these results and ΔEð2;0;Tþ
1
;S0Þ

0 ¼
−0.00248ð48Þ, the GEVP reconstruction using S

ð2;0;Tþ
1
Þ

⓪

reproduces the subthreshold behavior of effective FV
energy shifts over the range of t where signals can be
resolved through opposite-sign linear combinations of
ground- and excited-state contributions.
Two-nucleon correlation functions with I ¼ 0 and

other cubic irreps associated with nonzero total angular
momenta can also be constructed using linear combinations
of plane-wave dibaryon operators. Interpolating operators
with I ¼ 0 and ΓJ ∈ fTþ

2 ; E
þ; Aþ

2 ; A
þ
1 g require spatial

wave functions with Γl ≠ Aþ
1 and therefore only include

dibaryon operators with s > 0. After constructing dibaryon
interpolating operators where the product of spin and
orbital angular momenta transforms appropriately under
the cubic group as described in Sec. II C and Appendix B,
it is found that the full sets of dibaryon interpolating
operators computed for each ΓJ can be included in a
nondegenerate interpolating-operator set where correlation-
function-matrix eigenvalues and eigenvectors can be
computed without issues of degeneracy. These correlation-
function matrices have rank 4, 10, 14, and 28 for the Aþ

1 ,
Aþ
2 , Eþ, and Tþ

2 irreps, respectively. The same fitting
methods applied above are used to determine energy levels
from the GEVP correlation functions for each irrep;
effective FV energy-shift results are shown in Fig. 32
and fitted energy results are tabulated in Appendix F. In all
irreps, the lower-energy half of the GEVP energy levels
are in one-to-one correspondence with the noninteracting
nucleon energy levels with the same s, which include

nontrivial multiplicitiesN ð0;ΓJÞ
s given in Table III, as shown

in Fig. 32. As in the dineutron channel, the higher-energy

FIG. 26. FV energy shifts obtained using GEVP correlation functions with interpolating-operator set S
ð2;0;Tþ

1
Þ

⓪
(left column in each

panel and corresponding to Figs. 19–21) are compared to results obtained using the interpolating-operator sets defined in Eq. (71) and

featured in Fig. 25 (left) as well as the eight other interpolating-operator sets defined in Eq. (72) (right). The color coding for S
ð2;0;Tþ

1
Þ

⓪

energies follows that in Figs. 19–21, and the dashed lines show noninteracting two-nucleon energies as in Fig. 22.
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half of the GEVP energy levels satisfy ΔEð2;0;ΓJ;S0Þ
n ≳

δð1;
1
2
;Gþ

1
;SNÞ, appearing above noninteracting energy levels

not associated with interpolating operators present in this
calculation, and are therefore considered unreliable and are
not presented. Results for the comparatively well-deter-
mined GEVP energy levels in all irreps are discussed
further in the next section.

D. Summary of spectrum and phase shift results

The GEVP results for ΔEð2;I;ΓJ;S0Þ
n obtained using inter-

polating-operator sets S
ð2;1;Aþ

1
Þ

⓪
and S

ð2;0;Tþ
1
Þ

⓪
including all

available dibaryon and hexaquark operators (but no qua-
silocal operators) for irreps required for studying S-wave
nucleon-nucleon scattering, as well as GEVP results

FIG. 27. The upper (lower) panels show differences between the effective FVenergy shifts computed using correlation functions with
dibaryon sources and sinks ½Ds1W;Ds1W � (hexaquark sources and dibaryon sinks ½Ds1W;HW �) and the fitted FV energy shifts for the

S
ð2;0;Tþ

1
Þ

⓪
GEVP energy levels that dominantly overlap withD

ð2;0;Tþ
1
Þ

s1W , which are n ∈ f0; 1; 3g for the left panels and n ∈ f7; 9; 11; 18g for
the right panels.

FIG. 28. Comparisons of FV energy-shift results for the n ¼ 0 and n ¼ 1 states between previous results obtained in
Refs. [15,16,18,25] using the same gauge field ensemble with ½D;H� correlation function (as well as displaced sources in Ref. [25])

and results of this work obtained using variational methods with interpolating-operator set S
ð2;0;Tþ

1
Þ

⓪
, interpolating-operator set S̃

ð2;0;Tþ
1
Þ

⓪
,

and nonvariational results obtained using ½D;H� correlation functions. Arrows emphasize the fact that the variational method provides
(stochastic) upper bounds on energy levels and therefore FV energy shifts under the assumption that the nucleon mass is accurately
identified, while ½D;H� correlation functions provide an estimate of the energy but have systematic uncertainties in both directions that
are difficult to estimate.
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including all available dibaryon interpolating operators for
other irreps needed to study D-wave and higher partial-
wave nucleon-nucleon scattering, are shown in Fig. 33. A
total of 22 GEVP energy levels with I ¼ 1 and 49 GEVP
energy levels with I ¼ 0 (including all irreps) provide a
determination of the low-energy spectrum with no gaps
between levels that span multiple noninteracting energy
levels; as discussed above, another equal-sized set of
higher-energy levels are expected to include unsuppressed
contributions from excited states approximately orthogonal
to the interpolating-operator sets studied here and are not
included in the analysis below. Besides the energy levels
dominantly overlapping with hexaquark operators, all
GEVP energy levels appear slightly below one noninter-
acting energy level. Statistically significant differences are
found between GEVP energy levels dominantly overlap-
ping with S-wave andD-wave dibaryon operators with s ¼
1 in both channels, for example ΔEð2;1;EþÞ

0 − ΔEð2;1;Aþ
1
Þ

1 ¼
0.007ð1Þ and ΔEð2;0;Tþ

1
Þ

2 − ΔEð2;0;Tþ
1
Þ

1 ¼ 0.008ð1Þ. Smaller
differences are seen between GEVP energy levels domi-
nantly overlapping with S-wave and D-wave dibaryon

operators with s ¼ 2, for example ΔEð2;1;EþÞ
1 −ΔEð2;1;Aþ

1
Þ

2 ¼
0.005ð1Þ and ΔEð2;0;Tþ

1
Þ

2 −ΔEð2;0;Tþ
1
Þ

1 ¼0.006ð1Þ, while

analogous differences for s ≥ 3 are consistent with zero
at 1σ.
Preliminary extractions of scattering phase shifts under

simplifying assumptions that partial-wave mixing can be
neglected are used to facilitate comparisons with results
from other works using similar but not identical LQCD
actions.22 A more detailed analysis of scattering phase
shifts including partial-wave mixing that can be used to
extract, for example, the 3S1 − 3D1 mixing parameters in
the deuteron channel is deferred to ongoing work, where
GEVP results for multiple lattice volumes can be also
included. We further note that all extracted FV energies sit
far above the left-hand t-channel cut [corresponding to
k2 ¼ −ðmπ=2Þ2], and the use of Lüscher’s quantization
condition to constrain k cot δ functions remains valid for
these energies. See Ref. [156] for further discussion of the

FIG. 29. GEVP reconstructions of ½Ds1g; Ds1g� with s ∈ f0;…; 6g from bottom to top for wide (thin) quark-field smearing are shown
in the left (right) panel. As in Fig. 15, gray curves and bands show the central values and uncertainties for GEVP reconstructions for
t ≥ t0. These are obtained by inserting GEVP energy level and overlap-factor results into spectral representations for the correlation
functions and not from directly fitting the correlation functions shown.

22We focus on comparisons of scattering phase shifts obtained
by applying quantization conditions to FV energy levels in order
to study interpolating-operator dependence and other systematic
uncertainties of this method. Potential-method-based results from
the HAL QCD collaboration predict that two-nucleon systems are
unbound in both isospin channels for similar unphysical quark
masses [154,155].
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role of the left-hand t-channel cut in constraining scattering
amplitudes using Lüscher’s quantization condition.
For the I ¼ 1 channel, the quantization conditions

presented in Refs. [45,49], and summarized in
Appendix G, relate the FV energy shifts in each irrep to
the infinite-volume scattering phase shifts δ2Sþ1lJ

. In
general, the quantization condition involves the determi-
nant of a matrix that depends on the scattering phase shifts
in all partial waves. Previous works on nucleon-nucleon
scattering have truncated this matrix to a single entry
corresponding to the lowest partial wave contributing to
each irrep. Future works including results with different
boosts and lattice volumes can be used to test this
approximation; here this same approximation is applied

in order to provide direct comparisons with previous
determinations. Under this approximation, ΓJ ¼ Aþ

1 energy
levels can be mapped to 1S0 phase shifts and ΓJ ∈
fEþ; Tþ

2 g energy levels can be mapped to 1D2 phase shifts,
the results of which are shown in Fig. 34. For the I ¼ 0
channel, wave functions corresponding to multiple Γl are
associated with the same ΓJ. For consistency with the
approximation of no partial-wave mixing used in this
section, only the energy levels associated with the Γl
corresponding to the lowest partial wave are considered.
The quantization conditions can then be truncated to
the lowest partial wave, as presented in Ref. [45] and
summarized in Appendix G, to provide maps from
FV energy levels to scattering phase shifts neglecting

FIG. 30. Effective FV energy shifts and GEVP reconstructions obtained using S
ð2;0;Tþ

1
Þ

⓪
for ½D01g; D01g�, ½D01g; Hg�, and ½Hg;Hg�

correlation functions with wide (thin) quark-field smearing are shown in the left (right) panels. Histograms of Z̃
ð2;0;Tþ

1
;S0Þ

nχχ0 are as
in Fig. 16.
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partial-wave mixing.23 Results are shown in Fig. 35.
The fact that the wave functions for Γl ∈ Aþ

1 and Γl ∈
fEþ; Tþ

2 g transform analogously to spherical harmonics
with l ¼ 0 and l ¼ 2, respectively, as discussed in
Appendix B, suggests that associating energy levels domi-
nantly overlapping with the corresponding interpolating
operators with definite l values is reasonable. Although the
Γl ¼ Tþ

1 and Γl ¼ Aþ
2 spectra can be used to extract

G-wave and I-wave phase shifts under the approximation
of a single partial-wave truncation of the quantization
condition, the interpolating operators for these irreps do

not transform analogously to SOð3Þ spherical harmonics
with l ¼ 4 and l ¼ 6, and an identification of the
corresponding energy levels with purely G-wave and
I-wave states is not justified, even if partial-wave mixing
is small.
The same approximation of neglecting partial-wave

mixing has been applied in previous LQCD calculations
of two-nucleon systems with similar quark masses, various
lattice actions, and different interpolating-operator sets.
Results from previous LQCD calculations using ½D;H�
correlation functions from Refs. [18,25] as well as results
using ½D;D� correlation functions in several boosted frames
from Ref. [26] and GEVP results using sets of two dibaryon
interpolating operators in several boosted frames from
Ref. [28] are compared in Fig. 36 to the GEVP results

from this work using the S
ð2;1;Aþ

1
Þ

⓪
and S

ð2;0;Tþ
1
Þ

⓪

FIG. 31. Effective FV energy shifts and GEVP reconstructions obtained using S
ð2;0;Tþ

1
Þ

⓪
for ½D01T; Ds1W � correlation functions with

s ∈ f1;…; 6g. Histograms of Z̃
ð2;0;Tþ

1
;S0Þ

nχχ0 are as in Fig. 16.

23For the levels from ΓJ ¼ Tþ
1 , the

3S1 and 3D1 partial waves
mix. Here, the Blatt-Biedenharn parametrization of the scattering
amplitude [157] is used, with only the α-wave being computed,
but labeled as 3S1.
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interpolating-operator sets. Discrepancies of ð2–3Þσ in
k cot δ1S0 and k cot δ3S1 are seen between results associated
with the ground state on this lattice volume and corre-
sponding results from Refs. [18,25]. Conversely, there is
agreement at the 1σ level in k cot δ1S0 and k cot δ3S1 between
the ground state results of this work and the corresponding
ground-state results of Ref. [28], as well as 1σ agreement
with the more statistically uncertain results for k cot δ1S0 of
Ref. [26]. This agreement is consistent with the observa-

tions that subsets of S
ð2;1;Aþ

1
Þ

⓪
and S

ð2;0;Tþ
1
Þ

⓪
only including

s ¼ 0 dibaryon operators lead to consistent ground-state
energy results with results obtained using the full sets

S
ð2;1;Aþ

1
Þ

⓪
and S

ð2;0;Tþ
1
Þ

⓪
, at the statistical precision of this

work. Higher-energy phase shifts show consistency
between the results of this work and that of Refs. [26,28]
at ð1–2Þσ.
Although a reliable way to determine whether a bound

state is present is by determining the volume dependence of
the FV energy spectrum and finding a ground-state energy
below 2MN in the infinite-volume limit, statements about
the likelihood of a state being bound or unbound can be
made using results with a single lattice volume by invoking
the analytic structure of the constrained amplitudes. The
ground-state FV energy shift is negative at 1σ in the I ¼ 1
and at 2σ in the I ¼ 0 channels, which indicates attractive
interactions at very low energies in both channels, which is

a necessary but not sufficient condition for a bound state
to be present. Another useful criterion is that k cot δ should
be negative (positive) for a bound (unbound) state in
sufficiently large volumes [37,158], which given MN and
the lattice volume used here corresponds to a FV energy
shift below (above) the threshold ΔEBS ¼ 4π2

MNL2 d1 ¼
−0.003073ð8Þ, where d1 ¼ −0.0959006 is obtained by
expanding Lüscher’s quantization condition [34,35]
about the infinite-scattering-length limit corresponding to
the transition between interactions that do and do not
support a bound state [37,158] (under the assumption
that L is asymptotically large and higher-order terms in
1=L can be neglected). Comparing this threshold to the

results ΔEð2;1;Aþ
1
;S0Þ

0 ¼ −0.00245ð50Þ and ΔEð2;0;Tþ
1
;S0Þ

0 ¼
−0.00248ð48Þ indicates a 1σ preference for an unbound
ground state in both channels. Results using additional
volumes will allow a determination of whether two-nucleon
ground states are bound or unbound with higher statistical
significance. As the ground-state energies obtained with the
variational method are upper bounds on the true LQCD
energies, it is also possible that a bound state exists but has
small overlap with all interpolating operators used in
this study.
The upper bounds for the first excited-state FV energy

shifts obtained using S
ð2;1;Aþ

1
Þ

0 and S
ð2;0;Tþ

1
Þ

0 are positive, and
if they provide an accurate estimate of these energy levels

FIG. 32. GEVP effective FV energy shifts for two-nucleon systems computed using the complete sets of interpolating operators with
I ¼ 0 and ΓJ ∈ fTþ

2 ; E
þ; Aþ

2 ; A
þ
1 g. As in the left panel of Fig. 9, only GEVP energy levels below the single-nucleon first excited state

are shown and the noninteracting two-nucleon energy shifts are shown as dashed gray lines. Horizontal offsets are applied to points and
fit bands for clarity.
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(in particular if there are not lower-energy states approx-
imately orthogonal to the interpolating operators used here)
then there cannot be two bound states in either the
dineutron or deuteron channels. The first excited-state
energy shift is closer to the noninteracting s ¼ 1 energy
than zero, which is suggestive of an attractive interaction

that is not strong enough to form a bound state [37], but it
does not rule a bound state out. Qualitatively, the large
overlap of s ¼ 0 dibaryon operators onto the lowest
extracted state and the large excited-state overlap of
hexaquark operators is more reminiscent of the unbound
than the bound scenario in a QED model of bound-state

FIG. 33. GEVP energy levels below the single-nucleon first excited state with I ¼ 1 (I ¼ 0) in the left (right) panel computed using

interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
(S

ð2;0;Tþ
1
Þ

⓪
) for the ΓJ ¼ Aþ

1 (ΓJ ¼ Tþ
1 ) irrep and using all available interpolating operators for the other

irreps. Points with error bars show statistical and fitting systematic uncertainties added in quadrature and are distinguished by shape and
color according to whether the interpolating operator with the largest overlap with each GEVP eigenstate is a dibaryon interpolating
operator with Γl ¼ Aþ

1 associated with S-wave states in infinite volume, a dibaryon operator with Γl ≠ Aþ
1 associated withD-wave and

higher partial-wave states, or a hexaquark operator. See Figs. 12 and 26 for summaries of the results, including quasilocal interpolating
operators and other interpolating-operator sets. The horizontal lines indicate the positions of noninteracting two-nucleon energy levels.

FIG. 34. I ¼ 1 phase shifts extracted from the GEVP spectrum. The dashed vertical lines (at k2 ¼ m2
π=4) show the threshold above

which an effective-range expansion of the k cot δ functions is not guaranteed to converge. The phase shift associated with ΔEð2;1;Aþ
1
Þ

3 is
not shown because the relatively large uncertainty of this FV energy shift crosses a singularity of the quantization condition and is
therefore consistent with any phase-shift value.
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formation [159], but the large overlap of hexaquark
operators with a particular excited state observed here
in contrast to the approximately uniform overlap with all
excited states found in Ref. [159] indicates that the low-
energy QCD spectrum with B ¼ 2 and mπ ¼ 806 MeV is
likely to be more complicated than this QED-model
spectrum. Further high-precision variational studies
of the volume dependence of B ¼ 2 FV energy shifts
with a more extensive operator set are needed to con-
clusively determine whether the B ¼ 2 ground states at
mπ ¼ 806 MeV are bound or unbound.

IV. DISCUSSION

A. Strengths and weaknesses of variational methods

In the I ¼ 1, ΓJ ¼ Aþ
1 and I ¼ 0, ΓJ ¼ Tþ

1 irreps
associated with S-wave scattering, calculations using the
full sets of interpolating operators introduced in this
work lead to degenerate correlation-function matrices
whose determinants are consistent with zero at the present
statistics. Nondegenerate correlation-function matrices are

found by removing either all six quasilocal operators or by
removing combinations of six dibaryon and quasilocal
interpolating operators from the set under consideration.
Where signals could be resolved, consistent results are
obtained for interpolating-operator sets with this number of
interpolating operators that were studied. However, remov-
ing further interpolating operators leads to the appearance
of “missing energy levels” lower in the spectrum than other
energy levels determined from GEVP results. In particular,
if neither quasilocal nor zero-relative-momentum dibaryon
interpolating operators are included, then the ground-state
energy determined using GEVP results is found to be
consistent with an excited-state energy determined using
the largest available nondegenerate interpolating-operator
set. The orthogonality of GEVP eigenvectors guarantees
that GEVP results for ground-state energies are free from
excited-state contamination from states that strongly over-
lap with any interpolating operators used to construct
correlation-function matrices. However, these examples
demonstrate that the suppression of excited-state effects
provided by variational methods rests on the assumption

FIG. 35. I ¼ 0 phase shifts extracted from the GEVP spectrum. The dashed vertical lines (at k2 ¼ m2
π=4) show the threshold above

which an effective-range expansion of the k cot δ functions is not guaranteed to converge.

FIG. 36. Comparison of the I ¼ 1 (left) and I ¼ 0 (right) two-nucleon S-wave phase shifts determined in this work with previous
calculations using ½D;H� correlation functions from the NPLQCD [18] and CalLat collaborations [25], previous calculations using
½D;D� correlation functions in Ref. [26], and those using variational methods with sets of two dibaryon interpolating operators in several
boosted frames in Ref. [28]. The dashed vertical lines (at k2 ¼ m2

π=4) show the threshold above which an effective-range expansion of
the k cot δ functions is not guaranteed to converge.
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that there are no additional states whose overlap with all
elements of an interpolating-operator set is sufficiently
small—perturbative calculations of the toy model in
Eq. (67) demonstrate that the ground state can be missed
entirely if, for example, the overlap of all interpolating
operators with one or more excited states is a factor of eΔt=2

larger than the corresponding ground-state overlap whereΔ
is the excitation energy gap and t is the time extent at which
signals are resolved.
The appearance of missing energy levels using inter-

polating-operator sets that neglect particular operator
structures has been previously observed in studies of ππ
systems [77,78] as well as Nπ systems [114,119]. These
studies and the results of this work indicate that a
significant strength of variational methods is their ability
to disentangle contributions to correlation functions from a
large set of states with similar energies. The large number
of nearby energy levels arising from spin-orbit coupling in
the I ¼ 0, ΓJ ¼ Tþ

1 irrep, for example, can be resolved

using a set of 42 interpolating operators, S
ð2;0;Tþ

1
Þ

⓪
, with

comparable precision to the more sparsely populated I ¼ 1,
ΓJ ¼ Aþ

1 excited-state spectrum. Variational methods can,
therefore, provide precise determinations of energy spectra
using source/sink separations much smaller than the inverse
energy gap between neighboring levels. However, a sig-
nificant weakness of variational methods is that GEVP
solutions with finite temporal separations lead to correla-
tion functions approximating the energy eigenstates with
the largest overlap with a given interpolating-operator set
rather than necessarily the lowest-energy eigenstates.
Therefore, interpolating-operator set size is not a good
proxy for how reliably variational methods can identify the

ground state: the set of 40 interpolating operators S̃
ð2;0;Tþ

1
Þ

⓪

misses the ground state, and the lowest-energy state
identified is consistent with the first excited state identified

using S
ð2;0;Tþ

1
Þ

⓪
,24 while the set of two interpolating oper-

ators S
ð2;0;Tþ

1
Þ

①
leads a to ground-state energy result that

is consistent with the result obtained using the largest

available nondegenerate interpolating operator set S
ð2;0;Tþ

1
Þ

⓪
.

Further, the toy model overlap factors discussed above
provide an example for which variational methods would
lead to an incorrect determination of the ground-state
energy (unless correlation functions with very large
Euclidean time separations could be resolved), while the
examination of an asymmetric correlation function using
the same interpolating-operator set would lead to a correct
determination. Other surprising behaviors are seen in
previous variational calculations using interpolating-
operator sets with small ground-state overlap, for example,
calculations using local qqqq̄q operators in Ref. [119] that

appear to identify the physical Nπ ground state when using
partial subsets of their interpolating-operator set but not
when using the full interpolating-operator set.
The most precise results for (upper bounds on) two-

nucleon ground-state FV energy shifts with L ≈ 4.6 fm
calculated in this work use interpolating-operator sets
without quasilocal interpolating operators and correspond
to −3.4ð7Þ and −3.3ð7Þ MeV in the I ¼ 0 and I ¼ 1
channels, respectively. These results are consistent with
previous calculations using individual dibaryon correlation
functions and 2×2 matrices of dibaryon correlation func-
tions: Ref. [26] obtained −4ð8Þ MeV for the I ¼ 1 channel
using a similar value of the pion mass (mπ ≈ 960 MeV),
a smaller lattice spacing (a ≈ 0.066 fm), and a smaller
physical volume (L ≈ 2.1 fm); Ref. [28] obtained −2.6ð6Þ
and −3.7ð8Þ MeV for each channel using a similar physical
volume (L ≈ 4.1 fm), a similar value of the pion mass
(mπ≈714MeV), and a finer lattice spacing (a ≈ 0.086 fm)
than used in this work. However, these FVenergy shifts are
significantly closer to threshold than results obtained in
Refs. [15,18,25] using correlation functions with hexa-
quark sources and dibaryon sinks on a larger ensemble
of gauge-field configurations with the same parameters as
the ensemble used here, namely −23ð4Þ, −28ð3Þ, and
−28ð4Þ MeV in the I ¼ 0 channel and −15ð3Þ, −17ð3Þ,
and −21ð4Þ MeV in the I ¼ 1 channel, and other calcu-
lations using ½D;H� correlation functions at unphysically
large quark masses [11,13,21,22,122–131]. Similar,
although less precise, discrepancies are found in direct
comparisons of ½D;H� and GEVP results computed in this
work, and discrepancies of comparable size are seen for
energy levels associated with s ∈ f0;…; 6g dibaryon
interpolating operators. These discrepancies indicate that
either the asymmetric ½D;H� correlation functions would
slowly approach the GEVP results at larger t than that
accessible in this calculation, or that there are additional
lower-energy levels that are nearly orthogonal to the
interpolating operators in the sets used in this work but
that are revealed in asymmetric ½D;H� correlation func-
tions. Further work is needed to discriminate between
these possibilities.
Several pieces of evidence in favor of the GEVP results

of this work providing an accurate description of a low-
energy sector of the LQCD spectrum without missing
energy levels are described in Secs. III B and III C. In
particular, interpolating-operator sets with quasilocal oper-
ators substituted in place of dibaryon operators dominantly
overlapping with either the ground state or the first excited
state reproduce the same low-lying energy spectrum, and
in some cases are inconsistent with the ½D;H� results at
high statistical significance. It is not possible, with the
currently available statistics, to obtain a nondegenerate set
with quasilocal operators included in addition to all of the
dibaryon operators, which indicates that any missing
energy level would have to be associated with operators

24It is clear that operator sets that miss multiple levels can also
be constructed by further omissions.
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approximately orthogonal to those in this interpolating-
operator set. Further, GEVP correlation-function recon-
structions obtained by inserting GEVP energy and
overlap-factor results into the spectral representations for
½D;H� correlation functions are able to approximately
reproduce the corresponding GEVP effective FV energy
shifts for temporal separations where signals can be
resolved. This provides a proof-of-principle demonstration
that linear combinations of a near-threshold ground state
and above-threshold excited states can lead to t dependence
consistent with that observed in ½D;H� effective FVenergy
shifts. In addition, other non-positive-definite correlation
functions, for example of the form ½D01T; Ds1W � with
s > 0, lead to effective FV energy shifts that are
∼100 MeV farther below threshold than either GEVP or
½D;H� correlation-function results. Some of these correla-
tion functions show significant t dependence but others are
consistent with constant t behavior for the range of t, given
the statistical precision of this work. However, the GEVP
reconstructions are able to reproduce the ½D01T;Ds1W � FV
energy shifts and suggest that effective FV energy shifts
significantly below zero for t≲ 1=δð2;I;ΓJÞ may be consis-
tent with much less negatively shifted FV energies. The
GEVP energy levels, therefore, provide a simple hypothesis
for the LQCD spectrum that is consistent with all results for
this volume. Finally, these GEVP results are consistent with
precise results obtained using ½D;D� correlation functions
from Ref. [28] using similar physical parameters but a finer
lattice spacing, as well as the less precise results obtained in
Ref. [26] using ½D;D� correlation functions with a smaller
physical volume in the I ¼ 1 channel.
As stressed above, however, it is also possible for

asymmetric correlation functions to reveal the presence
of physical states that have small overlap with an
interpolating-operator set. The examples of missing energy

levels with the S̃
ð2;1;Aþ

1
Þ

ⓜ
and S̃

ð2;0;Tþ
1
Þ

ⓜ
operator sets show that

it is easy to construct operators that are effectively
orthogonal to states that are visible with other operator
sets using the range of t studied here. It is straightforward to
construct model overlap factors realizing this scenario. This
suggests that the possibility of missing the ground state
using particular interpolating-operator sets is not neces-
sarily unlikely. Evidence in favor of ½D;H� correlation
functions revealing physical energy states is provided by
the fact that there are high-precision calculations of ½D;H�
correlation functions using an identical lattice action and
physical volumes that find consistent results for ground-
state FV energy shifts using three different volumes,
including smaller and larger volumes than the one used
in this work [15,16,18,25]. Analysis of the phase shifts
associated with these FV energy levels indicates that the
results are consistent with the presence of both I ¼ 0 and
I ¼ 1 bound states. It seems unlikely that linear combina-
tions of FVenergy eigenstates whose energies have inverse
power-law dependence on the volume, as expected for

unbound scattering states, would conspire to give FV
energy shifts with negligible volume dependence at high
precision for three values of L varying by a factor of 2 as
further discussed in Ref. [160], especially since the excited-
state contamination visible in correlation functions on the
three volumes is also consistent with being volume inde-
pendent. The scattering phase-shift results determined from
½D;H� correlation functions in Ref. [18] also pass all of the
consistency checks described in Ref. [161]. Pionless EFT
calculations have also used the B ¼ 2 and 3 energy spectra
of Refs. [15,16] to predict the binding energies of larger
nuclei at mπ ¼ 806 MeV and find agreement with B ¼ 4
LQCD results using asymmetric correlation functions with
multinucleon sinks analogous to dibaryons and local
sources analogous to hexaquarks [52]. Furthermore, results
for nuclear matrix elements of scalar currents [130] give
consistent results with determinations of the same quan-
tities from the quark-mass dependence of the FV energy
shifts [162]. It is not clear why the spectrum extracted
from a linear combination of ground- and excited-state
correlation functions should pass these consistency checks
involving nuclear matrix elements and larger-B systems.
The clear instances of missing energy levels discussed
above show that approximate orthogonality of interpolat-
ing-operator sets from eigenstates is easily achieved. Given
these results and the consistency of the spectra and
associated scattering amplitudes determined using ½D;H�
correlation functions, the results of this work obtained
using the variational method should most robustly be
interpreted as upper bounds that do not exclude the
presence of a more negatively shifted ground-state energy.

B. Summary and outlook

Two-nucleon systems are studied in this work using a
wide variety of LQCD interpolating operators: 42 and
96 dibaryon operators in the I ¼ 1 and I ¼ 0 channels,
respectively, including all products of plane-wave nucleon
wave functions with zero center-of-mass momentum and
relative momentum smaller than

ffiffiffi
8

p ð2πL Þ, six quasilocal
operators in each isospin channel with exponentially
localized nucleon wave functions inspired by FV EFT
bound-state wave functions, and two hexaquark operators
in each isospin channel describing six totally antisymme-
trized quarks centered around a common point. The
correlation-function matrix including all of these interpo-
lating operators as both sources and sinks is computed
using sparsened timeslice-to-all quark propagators and
bilocal baryon blocks. The resulting correlation-function
matrix is then projected onto cubic irreps describing the
FV analog of total angular momentum. For each irrep,
the relevant block of the correlation-function matrix is
diagonalized by solving a GEVP and the FV energy
spectrum is extracted from fits to the resulting approx-
imately orthogonal correlation functions. The ground-state
energies determined by applying variational methods to
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correlation-function matrices involving various (although
not all) combinations of hexaquark, dibaryon, and quasi-
local two-nucleon interpolating operators are consistent
with results obtained using only dibaryon interpolating
operators here and in previous works [26,28], while
variational results from all interpolating-operator sets
where signals can be resolved are inconsistent with results
obtained by fitting spectral representations to asymmetric
correlation functions with hexaquark sources and dibaryon
sinks here and in previous works [15,16,18,25]. Nucleon-
nucleon S- and D-wave scattering phase shifts are com-
puted with the assumption that mixing with higher partial
waves is negligible. The results of this work are not
conclusive as to whether the two-nucleon ground states
are bound or unbound in both the I ¼ 0 and I ¼ 1 channels
at these quark masses, and ongoing calculations using
additional lattice spacings and volumes will provide further
constraints. Calculations using additional interpolating
operators are needed to search for more deeply bound
states with small overlap with this interpolating-operator
set in order to conclusively determine the structures of the
two-nucleon ground states for these quark-mass values.
Future LQCD calculations using variational methods to
control contamination from excited low-energy states, as
well as using a range of quark masses, lattice spacings, and
volumes to extrapolate to the continuum limit and physical
quark masses, provide the most robust known route toward
controlled determinations of multinucleon energy spectra
from QCD.
The use of LQCD with variational methods and a large

set of interpolating operators is not sufficient to guarantee
the reliability of the multinucleon spectrum extracted
using LQCD calculations. It is implausible to imagine
correlation-function matrix calculations employing a genu-
ine basis that spans the LQCD Hilbert space for any given
set of quantum numbers. Further, without novel methods
for reducing the scale of exponential signal-to-noise deg-
radation such as multilevel integration [163–166], signal-
to-noise optimization [167], or path integral contour
deformations [168] for noisy observables [169,170] suc-
cessfully applied to multibaryon systems, future LQCD
calculations of two-baryon systems will be limited to
source/sink separations much smaller than the inverse of
the excited-state energy gap. Additional efforts to under-
stand and improve the completeness of an interpolating-
operator set within a low-energy sector of Hilbert space
are therefore critical. This need for physically motivated
interpolating-operator sets that overlap significantly with
low-energy states presents a challenge for studying
multinucleon systems with LQCD, but systematic uncer-
tainties related to interpolating-operator dependence can
be probed to some degree by varying the interpolating-
operator set that is used. Further, as calculations approach
the physical values of the quark masses, nuclear EFT and
models can be used to inspire new interpolating-operator

structures and expand the space of states probed in future
LQCD calculations.
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APPENDIX A: SPIN-COLOR WEIGHTS

The nucleon weights w½N�σ
α with α ∈ f1;…;N ½N�

w ¼ 12g
with spin component σ ∈ f0; 1g are shown in Table V. The

hexaquark weights w½H�ρ
α with α ∈ f1;…;N ½H�ρ

w g with
Aþ
1 ⊗ Tþ

1 spin components ρ ¼ 0 and 2 are shown in
Table VI; the other components ρ ¼ 1 and 3 are shown in
Table VII.
The dibaryon weights can be straightforwardly con-

structed in terms of the nucleon weights. The first

ðN ½N�
w Þ2 ¼ 144 components of w½D�ρ

α can be expressed
using the map αðα1; α2Þ defined by

α ¼ ðα1 − 1ÞN ½N�
w þ α2; ðA1Þ

TABLE V. The weights w½N�σ
α for σ ¼ 0 and 1 are shown in the

left and right tables, respectively, along with the associated index
functions i, j, k that map α to the space of spin-color indices
labeled ζ, a with ζ ∈ f0;…; 3g and a ∈ f0; 1; 2g.

α iðαÞ jðαÞ kðαÞ w½N�0
α

1 0, 0 1, 1 0, 2 −2
ffiffiffi
2

p
2 0, 0 1, 2 0, 1 2

ffiffiffi
2

p
3 0, 1 1, 0 0, 2 2

ffiffiffi
2

p
4 0, 1 1, 2 0, 0 −2

ffiffiffi
2

p
5 0, 2 1, 0 0, 1 −2

ffiffiffi
2

p
6 0, 2 1, 1 0, 0 2

ffiffiffi
2

p
7 1, 0 0, 1 0, 2 2

ffiffiffi
2

p
8 1, 0 0, 2 0, 1 −2

ffiffiffi
2

p
9 1, 1 0, 0 0, 2 −2

ffiffiffi
2

p
10 1, 1 0, 2 0, 0 2

ffiffiffi
2

p
11 1, 2 0, 0 0, 1 2

ffiffiffi
2

p
12 1, 2 0, 1 0, 0 −2

ffiffiffi
2

p

α iðαÞ jðαÞ kðαÞ w½N�1
α

1 0, 0 1, 1 1, 2 −2
ffiffiffi
2

p
2 0, 0 1, 2 1, 1 2

ffiffiffi
2

p
3 0, 1 1, 0 1, 2 2

ffiffiffi
2

p
4 0, 1 1, 2 1, 0 −2

ffiffiffi
2

p
5 0, 2 1, 0 1, 1 −2

ffiffiffi
2

p
6 0, 2 1, 1 1, 0 2

ffiffiffi
2

p
7 1, 0 0, 1 1, 2 2

ffiffiffi
2

p
8 1, 0 0, 2 1, 1 −2

ffiffiffi
2

p
9 1, 1 0, 0 1, 2 −2

ffiffiffi
2

p
10 1, 1 0, 2 1, 0 2

ffiffiffi
2

p
11 1, 2 0, 0 1, 1 2

ffiffiffi
2

p
12 1, 2 0, 1 1, 0 −2

ffiffiffi
2

p

TABLE VI. The weights w½H�ρ
α for hexaquark operators with

ρ ¼ 0 and 2 are shown in the left and right tables, respectively,
along with the associated index functions i; j; k; l; m; n that map α
to the space of spin-color indices labeled ζ, a with ζ ∈ f0;…; 3g
and a ∈ f0; 1; 2g.

α iðαÞ jðαÞ kðαÞ lðαÞ mðαÞ nðαÞ w½H�0
α

1 0, 0 0, 0 0, 1 1, 1 1, 2 1, 2 40
2 0, 0 0, 0 0, 2 1, 1 1, 1 1, 2 −40
3 0, 0 0, 1 0, 1 1, 0 1, 2 1, 2 −40
4 0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 16
5 0, 0 0, 1 0, 2 1, 0 1, 2 1, 1 24
6 0, 0 0, 1 0, 2 1, 1 1, 0 1, 2 24
7 0, 0 0, 2 0, 1 1, 0 1, 1 1, 2 24
8 0, 0 0, 2 0, 1 1, 0 1, 2 1, 1 16
9 0, 0 0, 2 0, 1 1, 1 1, 0 1, 2 −24
10 0, 0 0, 2 0, 2 1, 0 1, 1 1, 1 −40
11 0, 1 0, 0 0, 2 1, 0 1, 1 1, 2 24
12 0, 1 0, 0 0, 2 1, 0 1, 2 1, 1 −24
13 0, 1 0, 0 0, 2 1, 1 1, 0 1, 2 16
14 0, 1 0, 1 0, 2 1, 0 1, 0 1, 2 −40
15 0, 1 0, 2 0, 2 1, 0 1, 0 1, 1 40
16 0, 0 0, 0 1, 1 0, 1 1, 2 1, 2 −40
17 0, 0 0, 0 1, 1 0, 2 1, 2 1, 1 40
18 0, 0 0, 1 1, 0 0, 2 1, 1 1, 2 24
19 0, 0 0, 1 1, 0 0, 2 1, 2 1, 1 −24
20 0, 0 0, 1 1, 1 0, 2 1, 2 1, 0 −16
21 0, 1 0, 0 1, 0 0, 1 1, 2 1, 2 40
22 0, 1 0, 0 1, 0 0, 2 1, 1 1, 2 −24
23 0, 1 0, 0 1, 0 0, 2 1, 2 1, 1 −16
24 0, 1 0, 0 1, 1 0, 2 1, 2 1, 0 −24
25 0, 1 0, 1 1, 0 0, 2 1, 2 1, 0 40
26 0, 2 0, 0 1, 0 0, 1 1, 1 1, 2 −16
27 0, 2 0, 0 1, 0 0, 1 1, 2 1, 1 −24
28 0, 2 0, 0 1, 0 0, 2 1, 1 1, 1 40
29 0, 2 0, 0 1, 1 0, 1 1, 2 1, 0 24
30 0, 2 0, 1 1, 0 0, 2 1, 1 1, 0 −40
31 0, 0 1, 0 0, 1 1, 1 0, 2 1, 2 −96
32 1, 0 0, 0 1, 1 0, 1 1, 2 0, 2 96

α iðαÞ jðαÞ kðαÞ lðαÞ mðαÞ nðαÞ w½H�2
α

1 0, 0 0, 0 0, 1 1, 1 1, 2 1, 2 24
2 0, 0 0, 0 0, 2 1, 1 1, 1 1, 2 −24
3 0, 0 0, 1 0, 1 1, 0 1, 2 1, 2 −24
4 0, 0 0, 1 0, 2 1, 0 1, 1 1, 2 −16
5 0, 0 0, 1 0, 2 1, 0 1, 2 1, 1 40
6 0, 0 0, 1 0, 2 1, 1 1, 0 1, 2 40
7 0, 0 0, 2 0, 1 1, 0 1, 1 1, 2 40
8 0, 0 0, 2 0, 1 1, 0 1, 2 1, 1 −16
9 0, 0 0, 2 0, 1 1, 1 1, 0 1, 2 −40
10 0, 0 0, 2 0, 2 1, 0 1, 1 1, 1 −24
11 0, 1 0, 0 0, 2 1, 0 1, 1 1, 2 40
12 0, 1 0, 0 0, 2 1, 0 1, 2 1, 1 −40
13 0, 1 0, 0 0, 2 1, 1 1, 0 1, 2 −16
14 0, 1 0, 1 0, 2 1, 0 1, 0 1, 2 −24
15 0, 1 0, 2 0, 2 1, 0 1, 0 1, 1 24
16 0, 0 0, 0 1, 1 0, 1 1, 2 1, 2 24
17 0, 0 0, 0 1, 1 0, 2 1, 2 1, 1 −24

(Table continued)
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with the dibaryon index functions of α related to two
nucleon index functions applied to α1 and α2 as

i½D�ðαÞ¼ i½N�ðα1Þ; j½D�ðαÞ¼ j½N�ðα1Þ; k½D�ðαÞ¼k½N�ðα1Þ;
l½D�ðαÞ¼ i½N�ðα2Þ; m½D�ðαÞ¼ j½N�ðα2Þ; n½D�ðαÞ¼k½N�ðα2Þ;

ðA2Þ

and dibaryon weights obtained from products of nucleon
weights as

w½D�0
α ¼ 1ffiffiffi

2
p w½N�0

α1 w½N�1
α2 ;

w½D�1
α ¼ w½N�0

α1 w½N�0
α2 ;

w½D�2
α ¼ 1ffiffiffi

2
p w½N�0

α1 w½N�1
α2 ;

w½D�3
α ¼ w½N�1

α1 w½N�1
α2 : ðA3Þ

The dibaryon spin components ρ ¼ 0 and 2 include an

additional ðN ½N�
w Þ2 weights that can be indexed as

α ¼ ðN ½N�
w Þ2 þ ðα1 − 1ÞN ½N�

w þ α2; ðA4Þ

with index functions defined exactly as in Eq. (A2) and
weights corresponding to

w½D�0
α ¼ −

1ffiffiffi
2

p w½N�1
α1 w½N�0

α2 ;

w½D�2
α ¼ 1ffiffiffi

2
p w½N�1

α1 w½N�0
α2 : ðA5Þ

TABLE VI. (Continued)

α iðαÞ jðαÞ kðαÞ lðαÞ mðαÞ nðαÞ w½H�2
α

18 0, 0 0, 1 1, 0 0, 2 1, 1 1, 2 −40
19 0, 0 0, 1 1, 0 0, 2 1, 2 1, 1 40
20 0, 0 0, 1 1, 1 0, 2 1, 2 1, 0 −16
21 0, 1 0, 0 1, 0 0, 1 1, 2 1, 2 −24
22 0, 1 0, 0 1, 0 0, 2 1, 1 1, 2 40
23 0, 1 0, 0 1, 0 0, 2 1, 2 1, 1 −16
24 0, 1 0, 0 1, 1 0, 2 1, 2 1, 0 40
25 0, 1 0, 1 1, 0 0, 2 1, 2 1, 0 −24
26 0, 2 0, 0 1, 0 0, 1 1, 1 1, 2 −16
27 0, 2 0, 0 1, 0 0, 1 1, 2 1, 1 40
28 0, 2 0, 0 1, 0 0, 2 1, 1 1, 1 −24
29 0, 2 0, 0 1, 1 0, 1 1, 2 1, 0 −40
30 0, 2 0, 1 1, 0 0, 2 1, 1 1, 0 24
31 0, 0 1, 0 0, 1 1, 1 0, 2 1, 2 −96
32 1, 0 0, 0 1, 1 0, 1 1, 2 0, 2 −96

TABLE VII. The weights w½H�ρ
α for hexaquark operators with

ρ ¼ 1 and 3 are shown in the left and right tables, respectively,
along with the associated index functions i; j; k; l; m; n that map α
to the space of spin-color indices labeled ζ, a with ζ ∈ f0;…; 3g
and a ∈ f0; 1; 2g.

α iðαÞ jðαÞ kðαÞ lðαÞ mðαÞ nðαÞ w½H�1
α

1 0, 0 0, 0 0, 1 0, 1 1, 2 1, 2 48
ffiffiffi
2

p
2 0, 0 0, 0 0, 1 0, 2 1, 1 1, 2 −40

ffiffiffi
2

p
3 0, 0 0, 0 0, 1 0, 2 1, 2 1, 1 −8

ffiffiffi
2

p
4 0, 0 0, 0 0, 2 0, 1 1, 1 1, 2 −8

ffiffiffi
2

p
5 0, 0 0, 0 0, 2 0, 1 1, 2 1, 1 −40

ffiffiffi
2

p
6 0, 0 0, 0 0, 2 0, 2 1, 1 1, 1 48

ffiffiffi
2

p
7 0, 0 0, 1 0, 1 0, 2 1, 0 1, 2 40

ffiffiffi
2

p
8 0, 0 0, 1 0, 1 0, 2 1, 2 1, 0 8

ffiffiffi
2

p
9 0, 0 0, 1 0, 2 0, 2 1, 0 1, 1 −40

ffiffiffi
2

p
10 0, 0 0, 1 0, 2 0, 2 1, 1 1, 0 −8

ffiffiffi
2

p
11 0, 1 0, 0 0, 2 0, 1 1, 0 1, 2 8

ffiffiffi
2

p
12 0, 1 0, 0 0, 2 0, 1 1, 2 1, 0 40

ffiffiffi
2

p
13 0, 1 0, 0 0, 2 0, 2 1, 0 1, 1 −8

ffiffiffi
2

p
14 0, 1 0, 0 0, 2 0, 2 1, 1 1, 0 −40

ffiffiffi
2

p
15 0, 1 0, 1 0, 2 0, 2 1, 0 1, 0 48

ffiffiffi
2

p
16 0, 0 0, 0 0, 1 1, 1 0, 2 1, 2 −32

ffiffiffi
2

p
17 0, 0 0, 1 0, 1 1, 0 0, 2 1, 2 32

ffiffiffi
2

p
18 0, 0 0, 2 0, 1 1, 0 0, 2 1, 1 −32

ffiffiffi
2

p
19 0, 0 0, 0 1, 1 0, 1 1, 2 0, 2 −32

ffiffiffi
2

p
20 0, 1 0, 0 1, 0 0, 1 1, 2 0, 2 32

ffiffiffi
2

p
21 0, 2 0, 0 1, 0 0, 1 1, 1 0, 2 −32

ffiffiffi
2

p

α iðαÞ jðαÞ kðαÞ lðαÞ mðαÞ nðαÞ w½H�3
α

1 0, 0 0, 0 1, 1 1, 1 1, 2 1, 2 48
ffiffiffi
2

p
2 0, 0 0, 1 1, 0 1, 1 1, 2 1, 2 −40

ffiffiffi
2

p
3 0, 0 0, 1 1, 1 1, 0 1, 2 1, 2 −8

ffiffiffi
2

p
4 0, 0 0, 2 1, 0 1, 1 1, 1 1, 2 40

ffiffiffi
2

p
5 0, 0 0, 2 1, 1 1, 0 1, 2 1, 1 8

ffiffiffi
2

p
6 0, 1 0, 0 1, 0 1, 1 1, 2 1, 2 −8

ffiffiffi
2

p
7 0, 1 0, 0 1, 1 1, 0 1, 2 1, 2 −40

ffiffiffi
2

p
8 0, 1 0, 1 1, 0 1, 0 1, 2 1, 2 48

ffiffiffi
2

p
9 0, 1 0, 2 1, 0 1, 0 1, 1 1, 2 −40

ffiffiffi
2

p
10 0, 1 0, 2 1, 0 1, 0 1, 2 1, 1 −8

ffiffiffi
2

p
11 0, 2 0, 0 1, 0 1, 1 1, 1 1, 2 8

ffiffiffi
2

p
12 0, 2 0, 0 1, 1 1, 0 1, 2 1, 1 40

ffiffiffi
2

p
13 0, 2 0, 1 1, 0 1, 0 1, 1 1, 2 −8

ffiffiffi
2

p
14 0, 2 0, 1 1, 0 1, 0 1, 2 1, 1 −40

ffiffiffi
2

p
15 0, 2 0, 2 1, 0 1, 0 1, 1 1, 1 48

ffiffiffi
2

p
16 0, 0 1, 0 0, 1 1, 1 1, 2 1, 2 −32

ffiffiffi
2

p
17 0, 0 1, 0 0, 2 1, 1 1, 1 1, 2 32

ffiffiffi
2

p
18 0, 1 1, 0 0, 2 1, 1 1, 0 1, 2 −32

ffiffiffi
2

p
19 1, 0 0, 0 1, 1 0, 1 1, 2 1, 2 −32

ffiffiffi
2

p
20 1, 0 0, 0 1, 1 0, 2 1, 2 1, 1 −32

ffiffiffi
2

p
21 1, 0 0, 1 1, 1 0, 2 1, 2 1, 0 −32

ffiffiffi
2

p
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APPENDIX B: WAVE FUNCTION AND
SPIN-ORBIT CUBIC GROUP THEORY FACTORS

A set of functions bðΓl;lzÞðx⃗Þ provides a basis for the irrep
Γl if it satisfies the transformation law

bðΓl;lzÞðx⃗Þ⟶R bðΓl;l0
zÞðRðx⃗ÞÞ≡X

l0z

bðΓl;l0zÞðx⃗ÞDðΓlÞ
l0zlz

ðRÞ;

ðB1Þ

where R ∈ Oh is a cubic transformation, and the sum
ranges over the lz eigenvalues corresponding to the rows

of Γl. Any matrices DðΓlÞ
lzl0z

ðRÞ satisfying Eq. (B1) furnish a

representation of the irrep Γl, but different choices of

bðΓl;lzÞðx⃗Þ lead to DðΓlÞ
lzl0

z
ðRÞ that differ by a unitary change-

of-basis transformation. Although it is permissible to use

any definition of the DðΓlÞ
lzl0

z
ðRÞ in order to construct a basis

of wave functions, the same definition of theDðΓlÞ
lzl0

z
ðRÞmust

be used to construct wave functions as to derive the cubic-
group Clebsch-Gordan coefficients required to project
ΓJ ¼ Γl ⊗ ΓS into irreps. The particular form of the
representations used to define a basis for each irrep can
be simply specified by providing the choice of basis vectors
satisfying Eq. (B1) in terms of coordinate functions x, y,
and z. A basis of generators for all positive-parity cubic
irreps that is compatible with the Clebsch-Gordan coef-
ficients presented in Ref. [135] is shown in Table VIII.
This choice of basis differs from the choice made in
Ref. [49] for the Tþ

1 and Tþ
2 irreps; further we have found

that relative signs between wave functions in different
rows of the Eþ irrep in the s ∈ f5; 6g shells and the
coefficients defining the s ¼ 6 shell Tþ

2 wave functions
must be modified from the values presented in Ref. [49]
in order to obtain consistent transformation properties for
all wave functions transforming in a given irrep. For these
cases, we constructed basis vectors using group-theory
projector techniques described for example in Ref. [176]
and applied to LQCD interpolating-operator construction
in Refs. [104,134,177].

The basis vectors shown in Table VIII are used to

construct a representation of the cubic group DðΓlÞ
lzl0z

ðRÞ
using Eq. (B1) by constructing linear combinations

of plane-wave wave functions ψ ðΓl;lzÞ
sk ðx⃗1; x⃗2Þ ¼P

m GðΓl;lzÞ
skm ψ ½D�

m ðx⃗1; x⃗2Þ as in Eq. (42) that satisfy

DðΓlÞ
lzl0z

ðRÞ ¼
Z

d3x1d3x2
h
ψ ðΓl;lzÞ
sk ðx⃗1; x⃗2Þ

i�
× ψ ðΓl;l0zÞ

sk ðRðx⃗1Þ; Rðx⃗2ÞÞ: ðB2Þ

The basis functions are chosen to have definite lz and
follow the usual Condon-Shortley phase convention for
spherical harmonics so that the Clebsch-Gordan coeffi-
cients of Ref. [135] can be used to form spin-orbit
products ΓJ with definite cubic transformation properties.
The Aþ

1 , Eþ, and Tþ
2 basis vectors are proportional

to complex conjugated spherical harmonics ðYm
l Þ� [so

that states created by operators with wave functions

ψ ðΓl;lzÞ
sk ðx⃗1; x⃗2Þ� transform as spherical harmonics Ym

l ]:
ðY0

0Þ� for Aþ
1 ; ðY0

2Þ� and ðY2
2 þ Y−2

2 Þ�= ffiffiffi
2

p
for Eþ; and

ðY1
2Þ�, ðY2

2 − Y−2
2 Þ�= ffiffiffi

2
p

, and ðY−1
2 Þ� for Tþ

2 . All basis
vectors including those for the Tþ

1 and Aþ
2 irreps can be

obtained by transforming the Cartesian basis vectors in
Ref. [176] into a basis of lz eigenstates and adding
appropriate normalization and phase factors. Although
cubic transformation properties are unaffected by multi-
plying the wave functions for all rows of an irrep by a
common phase, the relative phases of wave functions in
different irreps do affect dibaryon operators that include
these wave functions in spin-orbit products. Phase factors
have therefore been chosen to ensure that all dibaryon
correlation functions transform identically under charge
conjugation.
In the s ∈ f5; 6g shells, there are multiple linearly

independent wave functions that transform identically.
Group-theory projector techniques must be augmented
by a method for choosing a particular wave function basis
in cases where a given irrep appears with nonunit multi-
plicity for a given s: for the Eþ irrep and s ¼ 5 shell,

TABLE VIII. Basis functions used to construct wave functions ψ ðΓl;lzÞ
sk ðx⃗1; x⃗2Þ transforming according to each irrep of the cubic group,

Γl, and the corresponding row labeled by lz (note that for the cubic group, lz is only defined modulo 4). Products of x, y, z denote
symmetrized tensor products. The relative signs and normalizations of generators within each column are chosen so that products of spin
and orbital angular momentum cubic irreps can be projected in total-angular-momentum cubic irreps using the spinor conventions
presented in Appendix A and the Clebsch-Gordan coefficients presented in Ref. [135].

lz Aþ
1 Eþ Tþ

2 Tþ
1 Aþ

2

0 1 2z2 − x2 − y2 � � � i
ffiffiffi
2

p
xyðx2 − y2Þ � � �

1 � � � � � � −zxþ iyz −zxðz2 − x2Þ − iyzðy2 − z2Þ � � �
2 � � � ffiffiffi

3
p ðx2 − y2Þ −i

ffiffiffi
2

p
xy � � � x4ðy2 − z2Þ þ y4ðz2 − x2Þ þ z4ðx2 − y2Þ

3 � � � � � � zxþ iyz −zxðz2 − x2Þ þ iyzðy2 − z2Þ � � �
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the basis wave functions of Ref. [49] are used, while for the
Tþ
2 irrep and s ¼ 6 shell, it is straightforward to construct

an orthogonal pair of wave functions by choosing ψ
ðTþ

2
;2Þ

61

and ψ
ðTþ

2
;2Þ

62 to be linear combinations of disjoint sets of the

ψ ðDÞ
m . The results for the change-of-basis coefficients

GðΓl;lzÞ
skm leading to a set of s ∈ f0;…; 6g wave functions

that satisfy Eq. (B2) with DðΓlÞ
lzl0z

ðRÞ defined by Eq. (B1),

with the basis vectors presented in Table VIII, are shown in
Tables IX–XIII.
For positive-parity two-nucleon systems with I ¼ 1, the

spin-orbit tensor product is trivial and the wave functions
above provide a complete basis for s ∈ f0;…; 6g wave
functions that transform irreducibly under cubic trans-
formations. The corresponding I ¼ 0 systems have
ΓS ¼ Tþ

1 , and the spin-orbit product representation must
be decomposed into direct sums of irreps. The cubic group
Clebsch-Gordan coefficients required for this decomposi-
tion can be obtained from the SOð3Þ Clebsch-Gordan
coefficients required to decompose products of the gen-
erators shown in Table VIII (which are related to spherical
harmonics) into direct sums of SOð3Þ irreps and are
presented in Ref. [135]. The nonzero Clebsch-Gordan

coefficients CðΓJ;Jz;Γl;lzÞ
ρ appearing in Eq. (44) that are

required for constructing I ¼ 0 correlation functions are
reproduced here for completeness.

For the Aþ
1 irrep, the only nonzero Clebsch-Gordan

coefficients are given by

C
ðAþ

1
;0;Tþ

1
;3Þ

1 ¼ −CðA
þ
1
;0;Tþ

1
;0Þ

2 ¼ C
ðAþ

1
;0;Tþ

1
;1Þ

3 ¼ 1ffiffiffi
3

p ; ðB3Þ

where it should be noted that, for the cubic group, Jz is only
defined modulo 4, and a basis is used in which two-nucleon
spin components ρ ¼ 1, 2, 3 correspond to Jz ¼ 1, Jz ¼ 0,
and Jz ¼ −1 ¼ 3 mod 4, respectively. To complete the
construction of dibaryon operators with I ¼ 0 and
ΓJ ¼ Aþ

1 , it remains only to construct the multiplicity-label

tensor MðΓJ;ΓlÞ
skk0 introduced in Eq. (44). The multiplicity-

label tensor is defined to provide a definite ordering k ∈
f1;…;N ð0;ΓJÞ

s g for all wave functions in the same irrep and
momentum shell, and for a given ΓJ and s, it is equal to one
for a single Γl and k0 and equal to zero otherwise. The only
momentum shells considered here which include Γl ¼ Tþ

1

wave functions are s ∈ f5; 6g; since only a single ΓJ ¼ Aþ
1

wave function can be constructed for each case, the

multiplicity-label tensor M
ðAþ

1
;Tþ

1
Þ

skk0 is simply M
ðAþ

1
;Tþ

1
Þ

s11 ¼ 1

for s ∈ f5; 6g.

TABLE IX. The coefficients GðΓl;lzÞ
skm with ðΓl;lz; kÞ shown in

the left column and n⃗m shown in the top row corresponding to the
s ¼ 0 and s ¼ 1 shells.

s ¼ 0 (0, 0, 0)

ðAþ
1 ; 0; 1Þ 1

s ¼ 1 (1, 0, 0) (0, 1, 0) (0, 0, 1)

ðAþ
1 ; 0; 1Þ 1ffiffi

3
p 1ffiffi

3
p 1ffiffi

3
p

ðEþ; 0; 1Þ 1ffiffi
6

p 1ffiffi
6

p −
ffiffi
2
3

q
ðEþ; 2; 1Þ − 1ffiffi

2
p 1ffiffi

2
p 0

TABLE XI. The coefficients GðΓl;lzÞ
skm with ðΓl;lz; kÞ shown in

the left column and n⃗m shown in the top row corresponding to the
s ¼ 3 and s ¼ 4 shells.

s ¼ 3 (1, 1, 1) ð1; 1;−1Þ ð1;−1; 1Þ ð1;−1;−1Þ
ðAþ

1 ; 0; 1Þ 1
2

1
2

1
2

1
2

ðTþ
2 ; 1; 1Þ − 1−i

2
ffiffi
2

p 1−i
2
ffiffi
2

p − 1þi
2
ffiffi
2

p 1þi
2
ffiffi
2

p

ðTþ
2 ; 2; 1Þ − i

2
− i

2
i
2

i
2

ðTþ
2 ; 3; 1Þ 1þi

2
ffiffi
2

p − 1þi
2
ffiffi
2

p 1−i
2
ffiffi
2

p − 1−i
2
ffiffi
2

p

s ¼ 4 (2, 0, 0) (0, 2, 0) (0, 0, 2)

ðAþ
1 ; 0; 1Þ 1ffiffi

3
p 1ffiffi

3
p 1ffiffi

3
p

ðEþ; 0; 1Þ 1ffiffi
6

p 1ffiffi
6

p −
ffiffi
2
3

q
ðEþ; 2; 1Þ − 1ffiffi

2
p 1ffiffi

2
p 0

TABLE X. The coefficients GðΓl;lzÞ
skm with ðΓl;lz; kÞ shown in the left column and n⃗m shown in the top row

corresponding to the s ¼ 2 shell.

s ¼ 2 (1, 1, 0) (1, 0, 1) ð1; 0;−1Þ ð1;−1; 0Þ (0, 1, 1) ð0; 1;−1Þ
ðAþ

1 ; 0; 1Þ 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p

ðEþ; 0; 1Þ 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p 1ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p

ðEþ; 2; 1Þ 0 − 1
2

− 1
2

0 1
2

1
2

ðTþ
2 ; 1; 1Þ 0 1

2
− 1

2
0 − i

2
i
2

ðTþ
2 ; 2; 1Þ iffiffi

2
p 0 0 − iffiffi

2
p 0 0

ðTþ
2 ; 3; 1Þ 0 − 1

2
1
2

0 − i
2

i
2
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For the Aþ
2 irrep, the nonzero Clebsch-Gordan coeffi-

cients are given by

C
ðAþ

2
;2;Tþ

2
;1Þ

1 ¼ C
ðAþ

2
;2;Tþ

2
;2Þ

2 ¼ −CðA
þ
2
;2;Tþ

2
;3Þ

3 ¼ 1ffiffiffi
3

p : ðB4Þ

The s ∈ f2; 3; 5g shells each include one Tþ
2 wave func-

tion, while the s ¼ 6 shell includes two. No other Γl

contributes to ΓJ ¼ Aþ
2 dibaryon operators, and so the

nonzero elements of the multiplicity-label tensor for this

irrep isM
ðAþ

2
;Tþ

2
Þ

s11 ¼ 1 for s ∈ f2; 3; 5; 6g andMðAþ
2
;Tþ

2
Þ

622 ¼ 1.
For the Eþ irrep, the nonzero Clebsch-Gordan coeffi-

cients are given by

C
ðEþ;0;Tþ

1
;3Þ

1 ¼ C
ðEþ;0;Tþ

1
;1Þ

3 ¼ 1ffiffiffi
6

p ;

C
ðEþ;0;Tþ

1
;0Þ

2 ¼
ffiffiffi
2

3

r
;

C
ðEþ;2;Tþ

1
;1Þ

1 ¼ C
ðEþ;2;Tþ

1
;3Þ

3 ¼ 1ffiffiffi
2

p ;

C
ðEþ;0;Tþ

2
;3Þ

1 ¼ −CðE
þ;0;Tþ

2
;1Þ

3 ¼ 1ffiffiffi
2

p ;

C
ðEþ;2;Tþ

2
;1Þ

1 ¼ −CðE
þ;2;Tþ

2
;3Þ

3 ¼ 1ffiffiffi
6

p ;

C
ðEþ;2;Tþ

2
;2Þ

2 ¼ −
ffiffiffi
2

3

r
: ðB5Þ

TABLE XII. The coefficients GðΓl;lzÞ
skm with ðΓl;lz; kÞ shown in the left column and n⃗m shown in the top row corresponding to the

s ¼ 5 shell.

s ¼ 5 (2, 1, 0) ð2;−1; 0Þ (2, 0, 1) ð2; 0;−1Þ (1, 2, 0) ð1;−2; 0Þ (1, 0, 2) ð1; 0;−2Þ (0, 1, 2) ð0; 1;−2Þ (0, 2, 1) ð0; 2;−1Þ
ðAþ

1 ; 0; 1Þ 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p

ðAþ
2 ; 2; 1Þ − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p − 1

2
ffiffi
3

p − 1

2
ffiffi
3

p

ðEþ; 0; 1Þ 5

2
ffiffiffiffi
78

p 5

2
ffiffiffiffi
78

p 1ffiffiffiffi
78

p 1ffiffiffiffi
78

p 5

2
ffiffiffiffi
78

p 5

2
ffiffiffiffi
78

p − 7

2
ffiffiffiffi
78

p − 7

2
ffiffiffiffi
78

p − 7

2
ffiffiffiffi
78

p − 7

2
ffiffiffiffi
78

p 1ffiffiffiffi
78

p 1ffiffiffiffi
78

p

ðEþ; 0; 2Þ 3

2
ffiffiffiffi
26

p 3

2
ffiffiffiffi
26

p −
ffiffiffiffi
2
13

q
−

ffiffiffiffi
2
13

q
3

2
ffiffiffiffi
26

p 3

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p −
ffiffiffiffi
2
13

q
−

ffiffiffiffi
2
13

q
ðEþ; 2; 1Þ − 3

2
ffiffiffiffi
26

p − 3

2
ffiffiffiffi
26

p −
ffiffiffiffi
2
13

q
−

ffiffiffiffi
2
13

q
3

2
ffiffiffiffi
26

p 3

2
ffiffiffiffi
26

p − 1

2
ffiffiffiffi
26

p − 1

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p 1

2
ffiffiffiffi
26

p
ffiffiffiffi
2
13

q ffiffiffiffi
2
13

q
ðEþ; 2; 2Þ 5

2
ffiffiffiffi
78

p 5

2
ffiffiffiffi
78

p − 1ffiffiffiffi
78

p − 1ffiffiffiffi
78

p − 5

2
ffiffiffiffi
78

p − 5

2
ffiffiffiffi
78

p − 7
2
ffiffiffiffi
78

p − 7
2
ffiffiffiffi
78

p 7
2
ffiffiffiffi
78

p 7
2
ffiffiffiffi
78

p 1ffiffiffiffi
78

p 1ffiffiffiffi
78

p

ðTþ
1 ; 0; 1Þ i

2
− i

2
0 0 − i

2
i
2

0 0 0 0 0 0
ðTþ

1 ; 1; 1Þ 0 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p

ðTþ
1 ; 3; 1Þ 0 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p

ðTþ
2 ; 1; 1Þ 0 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0 0 − 1

2
ffiffi
2

p 1

2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p

ðTþ
2 ; 2; 1Þ − i

2
i
2

0 0 − i
2

i
2

0 0 0 0 0 0
ðTþ

2 ; 3; 1Þ 0 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 0 1

2
ffiffi
2

p − 1

2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p

TABLE XIII. The coefficients GðΓl;lzÞ
skm with ðΓl;lz; kÞ shown in the left column and n⃗m shown in the top row corresponding to the

s ¼ 6 shell.

s ¼ 6 (2, 1, 1) ð2; 1;−1Þ ð2;−1; 1Þ ð2;−1;−1Þ (1, 2, 1) ð1; 2;−1Þ ð1;−2; 1Þ ð1;−2;−1Þ (1, 1, 2) ð1; 1;−2Þ ð1;−1; 2Þ ð1;−1;−2Þ
ðAþ

1 ; 0; 1Þ 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p 1

2
ffiffi
3

p

ðEþ; 0; 1Þ 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p 1

2
ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p − 1ffiffi
6

p

ðEþ; 2; 1Þ − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0 0 0 0

ðTþ
1 ; 0; 1Þ i

2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p 0 0 0 0

ðTþ
1 ; 1; 1Þ 1

4
− 1

4
1
4

− 1
4

− i
4

i
4

i
4

− i
4

− 1−i
4

1−i
4

− 1þi
4

1þi
4

ðTþ
1 ; 3; 1Þ 1

4
− 1

4
1
4

− 1
4

i
4

− i
4

− i
4

i
4

− 1þi
4

1þi
4

− 1−i
4

1−i
4

ðTþ
2 ; 1; 1Þ − 1

4
1
4

− 1
4

1
4

i
4

− i
4

− i
4

i
4 − 1−i

4
1−i
4

− 1þi
4

1þi
4

ðTþ
2 ; 1; 2Þ i

2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p 0 0 0 0

ðTþ
2 ; 2; 1Þ − i

2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p i
2
ffiffi
2

p 0 0 0 0

ðTþ
2 ; 2; 2Þ 0 0 0 0 0 0 0 0 − i

2
− i

2
i
2

i
2

ðTþ
2 ; 3; 1Þ 1

4
− 1

4
1
4

− 1
4

i
4

− i
4

− i
4

i
4

1þi
4

− 1þi
4

1−i
4

− 1−i
4

ðTþ
2 ; 3; 2Þ i

2
ffiffi
2

p − i
2
ffiffi
2

p − i
2
ffiffi
2

p i
2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 1

2
ffiffi
2

p − 1

2
ffiffi
2

p 0 0 0 0
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The s ∈ f5; 6g shells include wave functions with both Γl ∈ fTþ
1 ; T

þ
2 g, and the multiplicity-label tensorMðEþ;ΓlÞ

skk0 is chosen
so that lower (higher) values of k are associated with Tþ

1 (Tþ
2 ) wave functions. The nonzero multiplicity-label tensor

elements have value unity, as always, and areM
ðEþ;Tþ

2
Þ

s11 for the s ∈ f2; 3g shells;MðEþ;Tþ
1
Þ

511 andM
ðEþ;Tþ

2
Þ

521 for the s ¼ 5 shell;

and M
ðEþ;Tþ

1
Þ

611 , M
ðEþ;Tþ

2
Þ

621 , and M
ðEþ;Tþ

2
Þ

632 for the s ¼ 6 shell.
For the Tþ

1 irrep, the nonzero Clebsch-Gordan coefficients are given by

C
ðTþ

1
;1;Aþ

1
;0Þ

1 ¼ C
ðTþ

1
;0;Aþ

1
;0Þ

2 ¼ C
ðTþ

1
;3;Aþ

1
;0Þ

3 ¼ 1;

C
ðTþ

1
;1;Eþ;0Þ

1 ¼ C
ðTþ

1
;3;Eþ;0Þ

3 ¼ 1

2
; C

ðTþ
1
;0;Eþ;0Þ

2 ¼ −1;

C
ðTþ

1
;1;Eþ;2Þ

3 ¼ C
ðTþ

1
;3;Eþ;2Þ

1 ¼
ffiffiffi
3

p

2
;

C
ðTþ

1
;1;Tþ

1
;1Þ

2 ¼ −CðT
þ
1
;1;Tþ

1
;2Þ

1 ¼ C
ðTþ

1
;0;Tþ

1
;1Þ

3 ¼ −CðT
þ
1
;0;Tþ

1
;3Þ

1 ¼ 1ffiffiffi
2

p ;

C
ðTþ

1
;3;Tþ

1
;0Þ

3 ¼ −CðT
þ
1
;3;Tþ

1
;3Þ

2 ¼ 1ffiffiffi
2

p ;

C
ðTþ

1
;1;Tþ

2
;1Þ

2 ¼ −CðT
þ
1
;1;Tþ

2
;2Þ

3 ¼ −CðT
þ
1
;0;Tþ

2
;3Þ

1 ¼ −CðT
þ
1
;0;Tþ

2
;1Þ

3 ¼ 1ffiffiffi
2

p ;

C
ðTþ

1
;3;Tþ

2
;2Þ

1 ¼ C
ðTþ

1
;3;Tþ

2
;3Þ

2 ¼ 1ffiffiffi
2

p : ðB6Þ

All s shells include ΓJ ¼ Tþ
1 operators with multiple Γl, and M

ðTþ
1
;ΓlÞ

skk0 is chosen so that increasing k is assigned to the
ordering Γl ∈ fAþ

1 ; E
þ; Tþ

1 ; T
þ
2 g. The nonzero multiplicity-label tensor elements have value unity and are as follows:

M
ðTþ

1
;Aþ

1
Þ

011 for the s ¼ 0 shell;M
ðTþ

1
;Aþ

1
Þ

111 andM
ðTþ

1
;EþÞ

121 for the s ¼ 1 shell;M
ðTþ

1
;Aþ

1
Þ

211 ,M
ðTþ

1
;EþÞ

221 , andM
ðTþ

1
;Tþ

2
Þ

231 for the s ¼ 2 shell;

M
ðTþ

1
;Aþ

1
Þ

311 and M
ðTþ

1
;EþÞ

321 for the s ¼ 3 shell; M
ðTþ

1
;Aþ

1
Þ

411 and M
ðTþ

1
;EþÞ

421 for the s ¼ 4 shell; M
ðTþ

1
;Aþ

1
Þ

511 , M
ðTþ

1
;EþÞ

521 , M
ðTþ

1
;EþÞ

532 ,

M
ðTþ

1
;Tþ

1
Þ

541 , and M
ðTþ

1
;Tþ

2
Þ

551 for the s ¼ 5 shell; and M
ðTþ

1
;Aþ

1
Þ

611 , M
ðTþ

1
;EþÞ

621 , M
ðTþ

1
;Tþ

1
Þ

631 , M
ðTþ

1
;Tþ

2
Þ

641 , and M
ðTþ

1
;Tþ

2
Þ

652 for the s ¼ 6 shell.
For the Tþ

2 irrep, the nonzero Clebsch-Gordan coefficients are given by

C
ðTþ

2
;1;Aþ

2
;2Þ

3 ¼ −CðT
þ
2
;2;Aþ

2
2;Þ

2 ¼ −CðT
þ
2
;3;Aþ

2
;2Þ

1 ¼ 1;

C
ðTþ

2
;1;Eþ;0Þ

1 ¼ −CðT
þ
2
;3;Eþ;0Þ

3 ¼
ffiffiffi
3

p

2
; C

ðTþ
2
;2;Eþ;2Þ

2 ¼ −1;

C
ðTþ

2
;1;Eþ;2Þ

3 ¼ −CðT
þ
2
;3;Eþ;2Þ

1 ¼ −
1

2
;

C
ðTþ

2
;1;Tþ

1
;0Þ

1 ¼ C
ðTþ

2
;1;Tþ

1
;1Þ

2 ¼ C
ðTþ

2
;2;Tþ

1
;1Þ

1 ¼ −CðT
þ
2
;2;Tþ

1
;3Þ

3 ¼ 1ffiffiffi
2

p ;

C
ðTþ

2
;3;Tþ

1
;0Þ

3 ¼ C
ðTþ

2
;3;Tþ

1
;3Þ

2 ¼ 1ffiffiffi
2

p ;

C
ðTþ

2
;1;Tþ

2
;1Þ

2 ¼ C
ðTþ

2
;1;Tþ

2
;2Þ

3 ¼ −CðT
þ
2
;2;Tþ

2
;1Þ

1 ¼ −CðT
þ
2
;2;Tþ

2
;3Þ

3 ¼ 1ffiffiffi
2

p ;

C
ðTþ

2
;3;Tþ

2
;2Þ

1 ¼ −CðT
þ
2
;3;Tþ

2
;3Þ

2 ¼ 1ffiffiffi
2

p : ðB7Þ

Multiple Γl lead to ΓJ ¼ Tþ
2 operators in several s shells and M

ðTþ
2
;ΓlÞ

skk0 is chosen so that increasing k is assigned to the
ordering Γl ∈ fAþ

2 ; E
þ; Tþ

1 ; T
þ
2 g. The nonzero multiplicity-label tensor elements have value unity and are as follows:

M
ðTþ

2
;EþÞ

111 for the s ¼ 1 shell;M
ðTþ

2
;EþÞ

211 andM
ðTþ

2
;Tþ

2
Þ

221 for the s ¼ 2 shell;M
ðTþ

2
;EþÞ

311 for the s ¼ 3 shell;M
ðTþ

2
;EþÞ

411 for the s ¼ 4
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shell; M
ðTþ

2
;Aþ

2
Þ

511 , M
ðTþ

2
;EþÞ

521 , M
ðTþ

2
;EþÞ

532 , M
ðTþ

2
;Tþ

1
Þ

541 , and M
ðTþ

2
;Tþ

2
Þ

551

for the s ¼ 5 shell; and M
ðTþ

2
;EþÞ

611 , M
ðTþ

2
;Tþ

1
Þ

621 , M
ðTþ

2
;Tþ

2
Þ

631 , and

M
ðTþ

2
;Tþ

2
Þ

642 for the s ¼ 6 shell.

APPENDIX C: CONTRACTION ALGORITHM
IMPLEMENTATION

We have implemented the contraction algorithm
described in Sec. II B using Tiramisu [132], a domain-
specific language embedded in C++. Tiramisu provides a
C++ application programming interface (API) that allows
users to write high level, architecture-independent algo-
rithms, and a set of API calls to specify how the code
should be optimized. Tiramisu is designed for efficiently
expressing algorithms that operate over dense arrays using
loop nests, which in computer-science and applied-math
contexts are often found in the areas of dense linear algebra,
tensor operations, stencil computations, image processing,
and deep learning. Both the bilocal baryon-block con-
struction and correlation-function calculation described in
Sec. II B involve tensor operations with many nested sums
over space, spin, and color indices and are therefore
amenable to similar optimization techniques.

Tiramisu uses a mathematical model known as the poly-
hedral model internally [132,178–181] to represent code,
code transformations, and to reason about the correctness
of code transformations. Optimizations applied using
Tiramisu include loop parallelization (with OpenMP style
parallelism), vectorization (taking advantage of instruction
sets such as AVX2 and AVX512 as well as fused-multiply-
add hardware instructions), loop reordering, and loop
fusion. A simple example of using loop reordering to
improve memory access patterns and reduce computational
redundancy via common-subexpression elimination is to
order the loop over spatial wave function types innermost
during block construction, which allows the product of
three quark propagators to be computed once and then
reused during construction of blocks with all spatial wave
functions. Loop fusion is useful for eliminating the need for
large temporary arrays as well as improving data locality
and is critical to the feasibility of the calculations presented
here. In particular, by fusing the x⃗1 and x⃗2 loops required to

evaluate Eðq�Þijk
gσm0g0 ðx⃗1; x⃗2; tÞ using Eq. (34) with the loops

required to evaluate the x⃗1 and x⃗2 sums in Eq. (36), it is
possible to reduce the intermediate array storage required
for each bilocal baryon block to a single ð2 × 3Þ3 ¼ 216
component tensor for each baryon-level spin and spatial
wave function. Without loop fusion, storing all entries of

Eð�qÞijk
sρ0m0g0 ðx⃗1; x⃗2Þ for the calculations described in Sec. III

would require constructing 8 TB arrays for each quark
smearing type, but with loop fusion only 60 kB of memory
is required. Although loop fusion can introduce redundant
computation, the resultant increase in computational cost (a
subpercent increase in the number of computations to be

performed in this case) can be justified in cases of
sufficiently large memory-use optimization such as this.
This approach further permits distributed parallelization
over the x⃗1 and x⃗2 sums with no communication required
and facilitates practical GPU execution that will be used in
future work.
The advantages of a contraction algorithm based on

bilocal baryon block construction and of the Tiramisu

compiler can be seen by example. With VS ¼ 83 and
Nsrc ¼ 50, evaluating Eq. (33) without introducing baryon

blocks requires 16 × 36N½D�
W N2

srcV4
S ∼ 1019 products of six

complex numbers for each choice of source and sink
smearing. Instead computing bilocal baryon blocks
defined by Eq. (34) using the same lattice volume and

interpolating-operator set requires 6 × 216NðBÞ
W NsrcV3

S ∼
1014 products of six complex numbers. Subsequently
evaluating Eq. (36) using local and bilocal baryon blocks

requires 16 × 4 × 36N½D�
W N2

srcV2
S ∼ 1014 products of two

complex numbers. Introduction of bilocal baryon blocks
and use of Eqs. (34)–(36) therefore leads to a reduction in
computational cost by 105 for this example that would be
even larger for larger VS. Practically calculating bilocal
baryon blocks for this lattice volume and interpolating-
operator set then requires fusion of loops over x⃗1 and x⃗2 in
order to avoid excessive memory requirements as discussed
above. In comparison to a C++ code implementing this loop
fusion and the loop ordering optimization discussed above,
additional optimizations performed internally by Tiramisu

lead to a further order of magnitude speedup for VS ¼ 512.
In order to test the validity of our codes, we have

explicitly tested that applying all LQCD symmetry trans-
formations to the smeared-smeared sparsened timeslice-to-
all quark propagators computed for one mπ ¼ 806 MeV
gauge-field configuration and used as input to the Tiramisu

hadron correlation-function calculation code leads to
the expected transformations of all hadron correlation
functions computed.25 The transformations of gauge
fields UμðxÞ and quark propagators Sðx⃗; t; y⃗; 0Þ ¼
hqðx⃗; tÞq̄ðy⃗; 0Þi under all the symmetries of the LQCD
action including SUð3ÞC gauge transformations, the dis-
crete symmetries C, P, and T, and spacetime isometries
valid for a cubic finite volume with periodic boundary
conditions, as well as t-dependent transformations asso-
ciated with Uð1ÞB and Uð1Þu−d symmetries, are listed in
Table XIV. The 48 elements of the cubic group R ∈ Oh can
be described as products of reflections rk about the êk axis
and permutations pij of the êk and êj axes. Equivalently,
cubic-symmetry transformations R ∈ Oh can be described

25We have also verified that applying symmetry transforma-
tions to a small random gauge field before calculating quark
propagators leads to the expected transformation properties
within inverter tolerances.
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as products of rotations RðθêkÞ of θ radians about the êk
axis and the parity operation taking x⃗ → Px⃗ ¼ −x⃗, with the
two descriptions related by26

rk ¼ PRðπêkÞ;

pij ¼ PRðπêjÞR
�
π

2
êi × êj

�
: ðC1Þ

Quark fields transform under the spin-1=2 representation
of (the double cover of) the SOð3Þ rotation group defined
by [182]

qðx⃗; tÞ→R Dð1=2ÞðRÞ†qðRðx⃗Þ; tÞ ¼ e
1
8
ωij½γi;γj�qðRðx⃗Þ; tÞ;

q̄ðx⃗; tÞ→R q̄ðRðx⃗Þ; tÞDð1=2ÞðRÞ ¼ q̄ðRðx⃗Þ; tÞe−1
8
ωij½γi;γj�;

ðC2Þ

where ωij ¼ θϵijk for R ¼ RðθêkÞ. The representations of
quark fields under cubic group transformations can be
derived by combining Eq. (C1) with Eq. (C2) to obtain

Dð1=2ÞðrkÞ† ¼ γkγ5;

Dð1=2ÞðpijÞ† ¼
1ffiffiffi
2

p γ5γj

�
1þ γ4

X
k

εijkγkγ5

�
; ðC3Þ

with the spin-1=2 representation of the 24 transformations
inOhnfPg obtained by taking products of representations
of reflections f1; r2; r3; r2r3g and representations of
permutations f1; p12; p23; p31; p123; p132g, where p123 ≡
p31p12 and p132 ≡ p12p31 ¼ p−1

123. This representation is
unitary, Dð1=2ÞðRÞ−1 ¼ Dð1=2ÞðRÞ†. The adjoint represen-
tation can be obtained using products of Dð1=2ÞðrkÞ† ¼
−Dð1=2ÞðrkÞ for reflections and Dð1=2ÞðpijÞ† ¼
−Dð1=2ÞðpijÞ for permutations. Comparing the traces of
these representations to character tables for the cubic
group demonstrates the well-known fact that quark
fields transform in the Gþ

1 ⊕ G−
1 representation, that

is DðGþ
1
⊕G−

1
ÞðRÞ ¼ Dð1=2ÞðRÞ, where DðΓJÞðRÞ denotes

the representation ΓJ.
27 Quark propagators therefore

transform under cubic-group elements as shown in
Table XIV.

TABLE XIV. Transformations associated with symmetries of the (Wilson-like) LQCD action and results of transforming gauge fields,
quark propagators, and hadron two-point correlation functions, respectively. In order to obtain expressions in terms of the original
timeslice-to-all propagator, γ5 Hermiticity of the propagator, Sðy⃗; 0; x⃗; tÞ ¼ γ5Sðx⃗; t; y⃗; 0Þ†γ5, has been used in conjunction with charge
conjugation. Opposite-oriented gauge links are defined by U−μðzÞ ¼ Uμðz − êμÞ†. A minus sign appropriate for antiperiodic boundary
conditions has been included with T. Translation êμ represents a shift by one lattice site in the êμ direction, or for sparsened quark
propagators a shift by S lattice units in the êμ direction. pij and rk denote cubic symmetry transformations R ∈ fpij; rkg ¼ Oh

corresponding to permuting the êi and êj axes and reflecting with respect to the êk axis, respectively; the corresponding representations

of quark fields are denotedDðRÞ≡DðGþ
1
⊕G−

1
ÞðRÞ and explicitly presented in Eq. (C3). Transformation results are independent of quark-

field smearing, and propagator smearing indices are therefore suppressed. For the case of Uð1Þu−d isospin, θu−d denotes that a Uð1Þ
transformation of eiθu−dt (e−iθu−dt) should be applied to u-quark propagators (d-quark propagators) with a corresponding factor of e�iθu−d

applied to gauge fields involved in their calculation.

Transformation UμðzÞ Sðx⃗; t; y⃗; 0Þ CðB;I;ΓJÞ
χχ0 ðtÞ

SUð3ÞC ΩðzÞ†UμðzÞΩðzþ êμÞ Ωðx⃗; tÞSðx⃗; t; y⃗; 0ÞΩðy⃗; 0Þ† CðB;I;ΓJÞ
χχ0 ðtÞ

Uð1ÞB fUiðzÞ; eiθ=3U4ðzÞg eiθt=3Sðx⃗; t; y⃗; 0Þ eiBθtCðB;I;ΓJÞ
χχ0 ðtÞ

Uð1Þu−d fUiðzÞ; eiθu−dU4ðzÞg eiθu−dtSðx⃗; t; y⃗; 0Þ eiIzθu−dtCðB;I;ΓJÞ
χχ0 ðtÞ

C UμðzÞ� γ2γ4γ5Sðx⃗; t; y⃗; 0Þ�γ5γ4γ2 CðB;I;ΓJÞ
χχ0 ðtÞ�

P fU−ið−z⃗; z4Þ; U4ð−z⃗; z4Þg γ4Sðx⃗; t; y⃗; 0Þγ4 CðB;I;ΓJÞ
χχ0 ðtÞ

T fUiðz⃗;−z4Þ; U−4ðz⃗;−z4Þg −γ4γ5Sðx⃗;−t; y⃗; 0Þγ5γ4 CðB;I;ΓJÞ
χχ0 ð−tÞ

Translation êk Uμðx⃗þ êk; tÞ Sðx⃗þ êk; t; y⃗þ êk; 0Þ CðB;I;ΓJÞ
χχ0 ðtÞ

pij UpijðμÞðpijðx⃗Þ; tÞ DðpijÞSðpijðx⃗Þ; t;pijðy⃗Þ; 0ÞDðpijÞ† CðB;I;ΓJÞ
χχ0 ðtÞ

rk UrkðμÞðrkðx⃗Þ; tÞ DðrkÞSðrkðx⃗Þ; t; rkðy⃗Þ; 0ÞDðrkÞ† CðB;I;ΓJÞ
χχ0 ðtÞ

26There are multiple descriptions of cubic group permutations
as rotations, another is obtained for example using pij ¼
PRðπ

2
êi × êjÞPðπêiÞ, that give distinct spin-1=2 representations

of these cubic group transformations. The distinct spin-1=2
representations provided by these multiple descriptions are
related by unitary changes of basis and therefore equivalent.

27The two parts of the direct sum Gþ
1 ⊕ G−

1 correspond to the
upper and lower spinor components of the quark field in the Dirac
basis.
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Correlation functions involving interpolating operators
χðB;I;ΓJ;JzÞ with definite Jz transform as

hχðB;I;ΓJ;JzÞðtÞχ̄ðB;I;ΓJ;J0zÞð0Þi
⟶
R X

J00z ;J000z

DðΓJÞ
J00z Jz

ðRÞ�hχðB;I;ΓJ;J00z ÞðtÞχ̄ðB;I;ΓJ;J000z Þð0ÞiDðΓJÞ
J000z J0z

ðRÞ;

ðC4Þ

where χ̄ ≡ χ† for bosonic states with even B. It follows
from Eq. (C4) and the orthogonality relation [176]

X
R∈Oh

DðΓJÞ
JzJ0z

ðRÞDðΓ0
JÞ

J00z J000z
ðRÞ� ¼ 48

dΓJ

δΓJΓ0
J
δJzJ00z δJ0zJ000z ; ðC5Þ

that correlation functions involving different ΓJ or Jz at
the source and sink vanish after averaging over cubic-
symmetry transformations, and further that Jz-averaged
correlation functions are invariant under cubic-symmetry
transformations,

CðB;I;ΓJÞ
χχ0 ðtÞ⟶R CðB;I;ΓJÞ

χχ0 ðtÞ: ðC6Þ

Analogous arguments demonstrate the invariance of hadron
correlation functions under translations, C, P ¼ r1r2r3,
T ¼ r4 (a reflection about the Euclidean time axis analo-
gous to rk), and SUð3ÞC gauge transformations, as well as
the Uð1ÞB and Uð1Þu−d transformations shown in
Table XIV. Applying each of these transformations to
sparsened timeslice-to-all propagators with t ¼ T=2 leads
to exact symmetries of correlation-function matrices con-
taining arbitrary sets of dibaryon and hexaquark operators
[up to complex conjugation for C or multiplication by an
overall phase for t-dependent Uð1ÞB and Uð1Þu−d trans-
formations]. We have verified that the expected symmetries
hold up to machine precision for all of the interpolating
operators described in this work.28

The C and T symmetries provide constraints on hadron

correlation functions: T symmetry gives CðB;I;ΓJÞ
χχ0 ðtÞ ¼

CðB;I;ΓJÞ
χχ0 ð−tÞ, which justifies averaging of correlation

functions with sinks at �t, and C symmetry gives that

correlation functions matrix elements are real CðB;I;ΓJÞ
χχ0 ðtÞ ¼

CðB;I;ΓJÞ
χχ0 ðtÞ�. Provided a symmetric set of interpolating

operators is used at the source and sink, it follows from
C symmetry that correlation-function matrices are real and
symmetric. Besides verifying that applying the transforma-
tions shown in Table XIV to a set of quark propagators
from one gauge-field configuration leads to the correct
transformations of correlation functions, we have verified
that the ensemble average imaginary and antisymmetric
parts of all hadron correlation-function matrices are con-
sistent with zero.

APPENDIX D: CORRELATION FUNCTION
FITTING PROCEDURE

This work uses the same procedure for sampling over
possible fitting analysis choices and estimating the asso-
ciated systematic uncertainties introduced in Ref. [183] and
compared to previous analysis strategies for multibaryon
correlation functions in Ref. [29]. Analysis results are
completely fixed by the specification of several tolerances
and other hyper-parameters of the fitting algorithm. Details
of this procedure and relevant features of the fitting
algorithm are described for completeness below; for more
details see Refs. [29,183].

The GEVP correlation functions ĈðB;I;ΓJÞ
n ðtÞ are

obtained using the eigenvectors of CðB;I;ΓJÞ
χχ0 ðtÞ as

described in Sec. II D. In order to provide a uniform
normalization for all interpolating operators and avoid

spuriously increasing the condition number of CðB;I;ΓJÞ
χχ0 ðtÞ,

a normalization factor of 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðB;I;ΓJÞ
χχ ð0ÞCðB;I;ΓJÞ

χ0χ0 ð0Þ
q

is

applied to the correlation-function matrix before
solving the GEVP, Eq. (48). Single- and multiexponential
fits to truncations of the spectral representation in

Eq. (51) are performed for all ĈðB;I;ΓJÞ
n ðtÞ for t in the

range ½tmin; tmax�, where tmin is varied over all values
tmin ≥ 2 for which at least tolplateau ¼ 5 source/sink
separations are available for fitting. Here, tmax is chosen
to be the largest source/sink separation ≤ toltherm for

which
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½EðB;I;ΓJ;S0Þ

n ðtÞ�
q

=EðB;I;ΓJ;S0Þ
n ðtÞ< tolnoise, where

toltherm ¼ 3
8
T is used as in Ref. [183] and tolnoise ¼ 0.1.

For the single- and two-nucleon ground-state GEVP
correlation functions, the condition tmax ≤ 3

8
T used to

avoid contamination from thermal effects is more restric-
tive than the signal-to-noise cutoff and identical results
are obtained for any choice of tolnoise ≳ 0.05. The χ2=Ndof
for one-state fits with a variety of tmin increase signifi-
cantly if tmax > 3

8
T is chosen, which suggests that toltherm

cannot be increased without introducing non-negligible
thermal effects.

28Correlation functions involving quasilocal interpolating
operators Qρqg are computed using factorized operators Fρqg as
sources. Although ½Q;F� and ½Q;Q� correlation functions have
identical expectation values, they are not equivalent before
ensemble averaging. Since F does not share all of the
symmetries of Q (in particular translation invariance), corre-
lation functions with factorized quasilocal sources are not
invariant under all of the quark propagator symmetry trans-
formations described here.
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For each choice of tmin, a one-state fit is first performed
in which Eq. (51) is truncated to include a single expo-
nential. After performing one-state fits, two-state fits are
performed and taken to be preferred if they improve the
Akaike information criterion (AIC) [184] by at least
tolAIC ¼ −0.5 times the number of degrees of freedom
in the one-state fit. If the two-state fit is rejected, then the
one-state fit is taken to be the optimal truncation of Eq. (51)
for this choice of tmin. This procedure is repeated with three
and more state fits if necessary in order to determine the
optimal truncation of Eq. (51) for each tmin. All fits are
performed using correlated χ2 minimization with optimal
shrinkage [185,186] implemented using the diagonal part
of the covariance matrix as the shrinkage target as in
Refs. [183,187]. Fits are then repeated Nboot ¼ 200 times
using bootstrap ensembles sampled from the GEVP corre-
lation functions computed on each gauge-field configura-
tion. The 68% empirical bootstrap confidence interval is
used to determine the statistical uncertainties in the energy
levels and overlap factors for this fit range [188]. The
GEVP eigenvectors used in Eq. (50) are not varied during
bootstrap resampling in order to avoid numerical instabil-
ities from poorly conditioned resampled correlation-
function matrices; analogous strategies are used for
example in Ref. [145]. Several checks are then applied
to assess the consistency of the multiexponential fit
solution: two nonlinear solvers, implemented in the Julia

language [189] and using the Optim optimization package

[190], are verified to agree on EðB;I;ΓJ;S0Þ
n within a tolerance

of tolsol ¼ 10−5, correlated and uncorrelated fits are verified
to agree within tolcorr ¼ 5σ, and bootstrap median and
sample mean fits are verified to agree within tolmed ¼ 2σ.
Fits passing these checks are then averaged using a
weighted average with weights proportional to the esti-
mated p value/variance for each energy-level result as
used in Refs. [183,187]. The lowest energy level obtained

by the fit is identified with EðB;I;ΓJ;S0Þ
n since the orthogon-

ality of GEVP solutions provides correlation functions
orthogonal to states m with m < n assuming that they
strongly overlap with an interpolating operator in the set

under consideration.29 Positive definiteness of EðB;I;ΓJ;S0Þ
n

and ZðB;I;ΓJÞ
nχ are enforced by using their logarithms as

optimization parameters.

Determinations of the FVenergy shiftsΔEð2;I;ΓJ;S0Þ
n apply

the same fitting procedure above in order to determine

estimates of both Eð2;I;ΓJ;S0Þ
n and E

ð1;1
2
;Gþ

1
Þ

0 using each choice
of tmin sampled. Correlated differences of these fit results
are used during bootstrap resampling in order to determine

statistical uncertainties of ΔEð2;I;ΓJ;S0Þ
n . The central value

and statistical plus fitting systematic uncertainty for

ΔEð2;I;ΓJ;S0Þ
n is then obtained from a weighted average of

all acceptable fit results (where the acceptable fit cuts are
applied to the two-nucleon and single-nucleon fits inde-
pendently) with the same weights described for individual
energies above.

After determining ΔEð2;I;ΓJ;S0Þ
n for each GEVP correla-

tion function ĈðB;I;ΓJÞ
n , the resulting energies and associated

GEVP correlation functions are reordered so that

ΔEð2;I;ΓJ;S0Þ
n < ΔEð2;I;ΓJÞ

m for n < m. In particular, energy
levels that are degenerate within statistical uncertainties are

ordered by the central values of ΔEð2;I;ΓJ;S0Þ
n .

APPENDIX E: TESTS OF VARIATIONAL
ANALYSIS STABILITY

Fit results for the nucleon mass MN ¼ E
ð1;1

2
;Gþ

1
Þ

0 are
stable with respect to variation of t0 and tref and both the
central values and uncertainties are compatible over a
1 fm range of variation as shown in Fig. 37. Results for
the first excited-state energy are similarly stable. Results
using the GEVP eigenvalues in order to define effective
energies are also consistent within 1σ uncertainties for
both the ground and first excited state as shown in
Fig. 38. Effective energies using GEVP eigenvalues with
t0 ¼ t=2 have similar uncertainties for small t and larger
uncertainties for large t in comparison to those obtained
using fixed t0 ¼ 5. The effective energy defined in
Eq. (53) has similar uncertainties for small t and smaller
uncertainties for large t than either eigenvalue-based
definition. The GEVP correlation functions defined
using eigenvectors with fixed t0 and tref and associated
effective energies in Eq. (53) are therefore used in the
main text.
An issue that arises with bootstrap resampling of

eigenvalue-based effective energies is that closely-spaced
eigenvalues associated with different eigenvectors may
swap ordering between bootstrap samples. This issue does
not arise in practice for the single-nucleon correlation-
function matrix studied here; however, it does arise for two-
nucleon correlation functions. To avoid this issue in
general, the eigenvalues associated with the sample-mean
correlation-function matrix are ordered for a fixed source/
sink separations, chosen here as tref ¼ 10, simply by

29Relatively high-energy GEVP correlation functions above
the single-nucleon first excited state are too noisy to obtain three
or more acceptable fits with tolnoise ¼ 0.1. In these cases, the
noise tolerance is doubled and the fitting procedure is repeated
with successive noise tolerance doublings repeated until there are
at least three acceptable fits. Systematic fitting uncertainties may
be underestimated for the relatively high-energy levels where
only ∼3–5 acceptable fits are used for weighted averaging.
However, these results are expected to be contaminated by small
but nonzero mixing with lower-energy states and are only used as
inputs for GEVP reconstructions of correlation-function matrix
elements such as Fig. 15. In particular, their values are not
interpreted as reliable estimates of energy levels.
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enforcing λðB;I;ΓJÞ
n ðtref ; t0Þ > λðB;I;ΓJÞ

m ðtref ; t0Þ for n < m, and

the corresponding eigenvectors vðB;I;ΓJÞ
nχ ðtref ; t0Þ are com-

puted. For the sample-mean eigenvalues with t ≠ tref
and the bootstrap resampled eigenvalues for all t,
eigenvalues are then ordered by enforcing that

jPχ v
ðB;I;ΓJÞ
mχ ðt; t0Þ�vðB;I;ΓJÞ

nχ ðtref ; t0Þj is maximized for
m ¼ n. Analogous issues are discussed for example
in Ref. [98].
A similar analysis can be performed for two-nucleon

systems. In the dineutron channel, results using S
ð2;1;Aþ

1
Þ

⓪
are

insensitive to the choice of t0 and tref used to solve the
GEVP, as shown for the ground state in Fig. 39. Higher
energy states show similar levels of insensitivity to t0 and

tref as long as the size of the fit results for E
ð2;1;Aþ

1
;S0Þ

n are

used to order the energy levels. For many choices of t0 and
tref the eigenvalues associated with the n ∈ f2; 3; 4g levels
fluctuate significantly enough to change the ordering of the
eigenvalues at fixed t0 and tref when compared to the

ordering of E
ð2;1;Aþ

1
;S0Þ

n , which can lead to spurious sensi-
tivity to t0 and tref if energy levels are ordered by enforcing

λðB;I;ΓJÞ
n ðtref ; t0Þ > λðB;I;ΓJÞ

m ðtref ; t0Þ for n < m as described
above. Analogous results for the deuteron channel are
shown in Fig. 40. Surprisingly, the ground-state energy
result with t0 ¼ 8 and tref ¼ 10 has significant larger
uncertainities and a 3σ larger central value than the results
with other t0 and tref . Excited-state energies computed with
t0 ¼ 8 and tref ¼ 10, conversely, are almost identical to
results with other t0 and tref . Further increasing either t0 or
tref away from these values again leads to ground-state

FIG. 38. GEVP effective energies determined using different schemes for choosing t0 and tref to obtain GEVP eigenvectors.
Results with fixed t0 ¼ 5 and tref ¼ 10 are identical to those in Fig. 5 and detailed in the main text, while the other results shown use
fixed t0 ¼ 5 and variable tref ¼ t (omitting the singular point t ¼ t0 ¼ 5) and variable t0 ¼ t=2 (rounded down to the nearest integer
in lattice units) and tref ¼ t, respectively. In the latter two cases, GEVP eigenvectors are obtained for each bootstrap sample and the
corresponding bootstrap eigenvalues are sorted by similarity with the eigenvectors of the sample-mean correlation-function matrix
as described in the main text. Colored bands display the fit results for the fixed t0 and tref GEVP correlation functions (whose
effective energies are shown as squares) with the fit range sampling and averaging procedure described in the main text and
Appendix D and also shown in Fig. 5.

FIG. 37. Stability of the single-nucleon GEVP ground-state energy with respect to variation of t0 and tref . The blue bands show the
ground-state energy determined using t0 ¼ 5 and tref ¼ 10. In the left plot tref ¼ 10 is held fixed while t0 is varied, while in the right plot
t0 ¼ 5 is held fixed with tref is varied.
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energy results that are almost identical to the results shown.
The result with t0 ¼ 8 and tref ¼ 10 would make negligible
contributions to a weighted average of results with a range
of t0 and tref , and a systematic uncertainty is therefore not
explicitly included for this variation.
Results for GEVP effective FV energy shifts using the

eigenvalue-based definition, lnð λ
ðB;I;ΓJ Þ
n ðt;t0Þ

λ
ðB;I;ΓJ Þ
n ðtþ1;t0Þ

Þ, are com-

pared to results using the eigenvector-based definition
in Eq. (50) for the dineutron channel in Fig. 41. The
effective FV energy shifts are seen to be insensitive to
which definition is used. Analogous results for the
deuteron channel are shown in Fig. 42. In this case most
but not all of the effective FV energy shifts are seen to be
insensitive to which definition is used. The GEVP
correlation functions computed using the eigenvalue-
based definition are significantly noisier than those
computed using Eq. (50) for the n ∈ f4; 5g states, which

as seen in Fig. 19 involve mixtures of interpolating
operators and have relatively noisy overlap factor deter-
minations. The eigenvector-based definition with fixed t0
and tref in Eq. (50) therefore appears useful for resolving
states involving mixtures of interpolating operators that
are not well determined at small t.
The effective FV energy shifts for low-energy states

obtained using the interpolating-operator sets S̃
ð2;1;Aþ

1
Þ

⓪
;…;

S̃
ð2;1;Aþ

1
Þ

⑦
and S̃

ð2;0;Tþ
1
Þ

⓪
;…; S̃

ð2;0;Tþ
1
Þ

⑦
are shown in Figs. 43

and 44. The missing energy levels seen in Fig. 12 for the
dineutron channel and Fig. 26 are the deuteron channel are
clearly visible in the effective FVenergy shifts. Besides the
absence of particular energy levels, the effective FVenergy
shifts present in Figs. 43 and 44 do not show any unusual
behavior that could be interpreted as a signature of excited-
state contamination from missing energy levels comparable
to or below the energy levels present.

FIG. 39. Stability of I ¼ 1;ΓJ ¼ Aþ
1 GEVP two-nucleon ground-state FV energy shifts using the interpolating-operator set S

ð2;1;Aþ
1
Þ

⓪

with respect to variation of t0 and tref . Details are as in Fig. 37.

FIG. 40. Stability of I ¼ 0;ΓJ ¼ Tþ
1 GEVP two-nucleon ground-state FV energy shifts using the interpolating-operator set S

ð2;0;Tþ
1
Þ

⓪

with respect to variation of t0 and tref . Details are as in Fig. 37. Results with t0 ¼ 8 and tref ¼ 10 are not precisely determined and are
discussed in the main text.
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FIG. 41. The GEVP effective FV energy shifts determined using different schemes for choosing t0 and tref to obtain GEVP

eigenvectors using the interpolating-operator set S
ð2;1;Aþ

1
Þ

⓪
. Results with fixed t0 ¼ 5 and tref ¼ 10 are identical to those in Fig. 7 and

detailed in the main text, while the other results shown use fixed t0 ¼ 5 and variable tref ¼ t and variable t0 ¼ t=2 and tref ¼ t in analogy
to Fig. 38.
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FIG. 42. Analogous results to Fig. 41 for the deuteron channel using interpolating-operator set S
ð2;0;Tþ

1
Þ

⓪
.
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FIG. 43. The GEVP effective FV energy shifts analogous to Fig. 9 for interpolating-operator sets S̃
ð2;1;Aþ

1
Þ

⓪
;…; S̃

ð2;1;Aþ
1
Þ

⑦
defined in

Eq. (65).

VARIATIONAL STUDY OF TWO-NUCLEON SYSTEMS WITH … PHYS. REV. D 107, 094508 (2023)

094508-67



FIG. 44. Analogous results to Fig. 43 for the deuteron channel.
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APPENDIX F: VARIATIONAL ENERGY-LEVEL RESULTS

Results for the single-nucleon ground- and first-excited-state energies obtained using the interpolating-operator set
fNW;NTg and the fitting methods adapted from Ref. [183] and discussed in Sec. III A are shown in Table XV. The
uncertainties shown include systematic uncertainties associated with the variation in fit results obtained with different
choices of tmin added in quadrature to statistical uncertainties calculated using bootstrap methods. Results for two-nucleon

energy levels Eð2;I;ΓJ;S0Þ
n and FVenergy shifts ΔEð2;I;ΓJ;S0Þ

n are shown in Tables XVI–XVIII. The interpolating-operator sets

TABLE XVI. Two-nucleon I ¼ 1 energy levels in all positive-parity total-angular-momentum cubic irreps ΓJ ∈
fAþ

1 ; E
þ; Tþ

2 ; T
þ
1 ; A

þ
2 g in lattice and physical units obtained from a weighted average of single- and multi-

exponential fits to GEVP correlation functions as described in the main text. Finite-volume energy differences
obtained using correlated differences of GEVP fit results and the associated center-of-mass momenta are also
provided.

n aE
ð2;1;Aþ

1
;S0Þ

n aΔEð2;1;Aþ
1
;S0Þ

n ΔEð2;1;Aþ
1
;S0Þ

n [MeV] k
ð2;1;Aþ

1
;S0Þ2

n =m2
π

0 2.4067(21) −0.0025ð5Þ −3.3ð0.7Þ −0.0084ð17Þ
1 2.4317(25) 0.0226(9) 30.7(1.2) 0.0776(30)
2 2.4624(23) 0.0534(9) 72.6(1.4) 0.1843(30)
3 2.4640(101) 0.0575(98) 78.1(13.4) 0.1984(344)
4 2.4950(23) 0.0861(9) 117.0(1.8) 0.2991(33)
5 2.5250(26) 0.1160(10) 157.5(2.2) 0.4050(36)
6 2.5522(31) 0.1433(15) 194.6(3.0) 0.5033(56)
7 2.5811(28) 0.1725(14) 234.2(3.2) 0.6093(51)

n aEð2;1;Eþ;S0Þ
n aΔEð2;1;Eþ;S0Þ

n ΔEð2;1;Eþ;S0Þ
n [MeV] kð2;1;E

þ;S0Þ2
n =m2

π

0 2.4387(19) 0.0297(5) 40.3(0.8) 0.1019(17)
1 2.4679(20) 0.0589(7) 80.0(1.3) 0.2035(23)
2 2.5244(26) 0.1153(10) 156.6(2.2) 0.4027(37)
3 2.5510(26) 0.1422(13) 193.1(2.8) 0.4992(48)
4 2.5545(29) 0.1454(11) 197.4(2.6) 0.5108(39)
5 2.5801(27) 0.1715(15) 232.9(3.2) 0.6058(54)

n aE
ð2;1;Tþ

2
;S0Þ

n aΔEð2;1;Tþ
2
;S0Þ

n ΔEð2;1;Tþ
2
;S0Þ

n [MeV] k
ð2;1;Tþ

2
;S0Þ2

n =m2
π

0 2.4676(22) 0.0585(6) 79.4(1.2) 0.2018(22)
1 2.4958(21) 0.0869(7) 118.0(1.6) 0.3016(25)
2 2.5504(19) 0.1421(10) 192.9(2.5) 0.4988(38)
3 2.5773(25) 0.1689(14) 229.4(3.1) 0.5962(50)
4 2.5812(29) 0.1721(12) 233.8(3.1) 0.6081(46)

n aE
ð2;1;Tþ

1
;S0Þ

n aΔEð2;1;Tþ
1
;S0Þ

n ΔEð2;1;Tþ
1
;S0Þ

n [MeV] k
ð2;1;Tþ

1
;S0Þ2

n =m2
π

0 2.5533(25) 0.1444(12) 196.2(2.7) 0.5074(43)
1 2.5810(26) 0.1722(14) 233.9(3.2) 0.6085(50)

n aE
ð2;1;Aþ

2
;S0Þ

n aΔEð2;1;Aþ
2
;S0Þ

n ΔEð2;1;Aþ
2
;S0Þ

n [MeV] k
ð2;1;Aþ

2
;S0Þ2

n =m2
π

0 2.5540(27) 0.1450(12) 196.9(2.7) 0.5095(44)

TABLE XV. Single-nucleon energy levels in lattice and physical units obtained from a weighted average of single-
and multiexponential fits to GEVP correlation functions as described in the main text.

n aE
ð2;1

2
;Gþ

1
;SNÞ

n E
ð2;1

2
;Gþ

1
;SNÞ

n [GeV]

0 1.2045(8) 1.636(18)
1 1.7704(143) 2.404(33)
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TABLE XVII. Two-nucleon I ¼ 0 energy levels in the deuteron total-angular-momentum cubic irrep ΓJ ¼ Tþ
1 in

lattice and physical units obtained from a weighted average of single- and multiexponential fits to GEVP correlation
functions as described in the main text. Finite-volume energy differences obtained using correlated differences of
GEVP fit results and the associated center-of-mass momenta are also provided.

n aE
ð2;0;Tþ

1
;S0Þ

n aΔEð2;0;Tþ
1
;S0Þ

n ΔEð2;0;Tþ
1
;S0Þ

n [MeV] k
ð2;0;Tþ

1
;S0Þ2

n =m2
π

0 2.4067(21) −0.0025ð5Þ −3.4ð0.7Þ −0.0085ð17Þ
1 2.4308(24) 0.0217(9) 29.5(1.3) 0.0745(31)
2 2.4393(19) 0.0302(4) 41.0(0.8) 0.1036(15)
3 2.4616(22) 0.0527(9) 71.5(1.4) 0.1815(31)
4 2.4683(27) 0.0589(9) 80.1(1.5) 0.2035(32)
5 2.4681(20) 0.0591(6) 80.3(1.2) 0.2041(21)
6 2.4783(66) 0.0710(60) 96.4(8.2) 0.2456(209)
7 2.4900(33) 0.0819(23) 111.2(3.4) 0.2839(83)
8 2.4937(24) 0.0850(12) 115.4(2.1) 0.2950(42)
9 2.5242(22) 0.1153(9) 156.5(2.1) 0.4025(33)
10 2.5252(23) 0.1163(8) 157.9(2.1) 0.4062(29)
11 2.5524(25) 0.1416(13) 192.2(2.8) 0.4970(48)
12 2.5530(43) 0.1435(10) 194.9(2.6) 0.5042(37)
13 2.5544(26) 0.1440(22) 195.5(3.7) 0.5057(79)
14 2.5537(24) 0.1448(10) 196.7(2.6) 0.5089(36)
15 2.5502(24) 0.1454(10) 197.5(2.6) 0.5109(38)
16 2.5804(24) 0.1707(14) 231.8(3.1) 0.6028(50)
17 2.5796(29) 0.1716(12) 233.0(3.1) 0.6061(45)
18 2.5806(33) 0.1717(15) 233.2(3.3) 0.6065(57)
19 2.5802(26) 0.1718(13) 233.4(3.1) 0.6070(46)
20 2.5807(38) 0.1721(19) 233.7(3.7) 0.6079(70)

TABLE XVIII. Two-nucleon I ¼ 0 energy levels in total-angular-momentum cubic irreps ΓJ ∈ fTþ
2 ; E

þ; Aþ
2 ; A

þ
1 g

in lattice and physical units obtained from a weighted average of single- and multiexponential fits to GEVP
correlation functions as described in the main text. Finite-volume energy differences obtained using correlated
differences of GEVP fit results and the associated center-of-mass momenta are also provided.

n aE
ð2;0;Tþ

2
;S0Þ

n aΔEð2;0;Tþ
2
;S0Þ

n ΔEð2;0;Tþ
2
;S0Þ

n [MeV] k
ð2;0;Tþ

2
;S0Þ2

n =m2
π

0 2.4394(20) 0.0303(5) 41.1(0.8) 0.1039(17)
1 2.4677(22) 0.0586(7) 79.6(1.3) 0.2022(25)
2 2.4689(23) 0.0596(6) 81.0(1.2) 0.2059(23)
3 2.4964(21) 0.0874(7) 118.7(1.6) 0.3036(25)
4 2.5248(30) 0.1157(10) 157.1(2.2) 0.4040(36)
5 2.5508(26) 0.1422(12) 193.1(2.7) 0.4992(45)
6 2.5515(37) 0.1423(15) 193.2(3.0) 0.4996(55)
7 2.5539(27) 0.1450(12) 197.0(2.7) 0.5095(44)
8 2.5540(27) 0.1451(12) 197.1(2.7) 0.5099(43)
9 2.5548(27) 0.1460(12) 198.3(2.7) 0.5131(43)
10 2.5793(26) 0.1706(13) 231.7(3.1) 0.6026(49)
11 2.5810(36) 0.1718(13) 233.3(3.1) 0.6069(48)
12 2.5807(31) 0.1718(13) 233.4(3.1) 0.6070(48)
13 2.5813(26) 0.1724(12) 234.2(3.0) 0.6091(43)

n aEð2;0;Eþ;S0Þ
n aΔEð2;0;Eþ;S0Þ

n ΔEð2;0;Eþ;S0Þ
n [MeV] kð2;0;E

þ;S0Þ2
n =m2

π

0 2.4677(22) 0.0585(7) 79.5(1.3) 0.2021(25)
1 2.4969(33) 0.0873(10) 118.5(1.9) 0.3031(35)
2 2.5525(37) 0.1431(17) 194.3(3.2) 0.5025(63)
3 2.5541(27) 0.1454(11) 197.4(2.7) 0.5108(42)
4 2.5788(29) 0.1699(15) 230.8(3.3) 0.6000(55)

(Table continued)
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S
ð2;1;Aþ

1
Þ

⓪
and S

ð2;0;Tþ
1
Þ

⓪
used to obtain results in the I ¼ 1, ΓJ ¼ Aþ

1 , and I ¼ 0, ΓJ ¼ Tþ
1 irreps include allDskg operators with

s ≤ 6 and Hg operators (but not Qqg operators). The interpolating-operator sets used for the other irreps only include Dskg

operators with s > 0 as described in Sec. II C. Results are presented in both lattice and physical units, and in addition the

values of ΔEð2;I;ΓJ;S0Þ
n are used to obtain results for the corresponding center-of-mass momenta, kð2;I;ΓJÞ

n , for scattering states

and the dimensionless ratios kð2;I;ΓJÞ2
n =m2

π are presented in Tables XVI–XVIII.

APPENDIX G: QUANTIZATION CONDITIONS

The truncated quantization conditions used to obtain the k cot δ values plotted in Figs. 34 and 35 can be found in
Refs. [45,49], and are listed below for completeness. For the I ¼ 1 system,

Aþ
1 ∶ k cot δ1S0 ¼

2ffiffiffi
π

p
L
Z0;0ð1; k̃2Þ;

Eþ∶ k5 cot δ1D2
¼

�
2π

L

�
5 1

π3=2

�
k̃4Z0;0ð1; k̃2Þ þ

6

7
Z4;0ð1; k̃2Þ

�
;

Tþ
2 ∶ k5 cot δ1D2

¼
�
2π

L

�
5 1

π3=2

�
k̃4Z0;0ð1; k̃2Þ −

4

7
Z4;0ð1; k̃2Þ

�
; ðG1Þ

while, for the I ¼ 0 system,

Tþ
1 ∶ k cot δ3S1 ¼

2ffiffiffi
π

p
L
Z0;0ð1; k̃2Þ;

Tþ
2 ∶ k5 cot δ3D2

¼
�
2π

L

�
5 1

π3=2

�
k̃4Z0;0ð1; k̃2Þ þ

8

21
Z4;0ð1; k̃2Þ

�
;

Eþ∶ k5 cot δ3D2
¼

�
2π

L

�
5 1

π3=2

�
k̃4Z0;0ð1; k̃2Þ −

4

7
Z4;0ð1; k̃2Þ

�
; ðG2Þ

where k̃≡ kL=ð2πÞ and Zl;mð1; k̃2Þ ¼
P

n⃗∈Z3 jn⃗jlYm
l ðn̂Þ=ðjn⃗j2 − k̃2Þ is the Z function [34,35]. Methods for efficient

numerical evaluation of the Z function are discussed in Refs. [35,41,191].

TABLE XVIII. (Continued)

n aEð2;0;Eþ;S0Þ
n aΔEð2;0;Eþ;S0Þ

n ΔEð2;0;Eþ;S0Þ
n [MeV] kð2;0;E

þ;S0Þ2
n =m2

π

5 2.5814(29) 0.1725(12) 234.2(3.1) 0.6093(46)
6 2.5839(70) 0.1731(24) 235.1(4.2) 0.6117(91)

n aE
ð2;0;Aþ

2
;S0Þ

n aΔEð2;0;Aþ
2
;S0Þ

n ΔEð2;0;Aþ
2
;S0Þ

n [MeV] k
ð2;0;Aþ

2
;S0Þ2

n =m2
π

0 2.4682(31) 0.0586(10) 79.6(1.6) 0.2024(35)
1 2.4970(29) 0.0876(9) 118.9(1.8) 0.3041(31)
2 2.5544(67) 0.1437(37) 195.2(5.5) 0.5049(135)
3 2.5794(46) 0.1700(20) 230.9(3.7) 0.6003(72)
4 2.5812(30) 0.1722(14) 233.9(3.2) 0.6084(51)

n aE
ð2;0;Aþ

1
;S0Þ

n aΔEð2;0;Aþ
1
;S0Þ

n ΔEð2;0;Aþ
1
;S0Þ

n [MeV] k
ð2;0;Aþ

1
;S0Þ2

n =m2
π

0 2.5544(29) 0.1453(13) 197.3(2.8) 0.5105(46)
1 2.5806(24) 0.1719(13) 233.4(3.1) 0.6070(46)
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APPENDIX H: GLOSSARY OF NOTATION

A glossary of commonly used notation in this work is provided in Tables XIX and XX.

TABLE XX. The continuation of Table XIX.

q Quasilocal spatial wave function index Eq. (17)
κq Quasilocal wave function exponential localization scale Eq. (17)

QρqgðtÞ Quasilocal interpolating operator Eq. (17)

ψ ½Q�
q ðx⃗1; x⃗2; R⃗Þ Quasilocal spatial wave function Eq. (18)

C½T ;T 0 �
σtgσ0t0g0 ðtÞ Correlation function with T ; T 0 ∈ fH;D;Qg and t; t0 ∈ fc;m; qg Eq. (19)

Sijgg0 ðx⃗; t; y⃗; 0Þ Quark propagator Eq. (24)

(Table continued)

TABLE XIX. Glossary of notation including symbols used throughout this work (left), a description of their
meaning (center), and the first equation where the notation is first introduced or the closest equation to where
notation is introduced inline (right).

x ¼ ðx⃗; tÞ Euclidean spacetime coordinates Eq. (1)
σ; σ0 Nucleon spin indices (rows of Gþ

1 ) Eq. (1)
NσðxÞ Nucleon interpolating operator Eq. (1)
i; j; k;… Spin-color indices Eq. (2)
qiðxÞ Quark field Eq. (2)
α; α0 Spin-color weight indices Eq. (2)

w½N�σ
α

Nucleon spin-color weights Eq. (2)

N ½N�σ
w

Nucleon weight multiplicity Eq. (2)

g Smearing width index Eq. (3)
qigðxÞ Smeared quark fields Eq. (3)
NσgðxÞ Smeared nucleon field Eq. (4)
L Lattice extent in spatial directions Eq. (5)
T Lattice extent in temporal direction Eq. (24)
x⃗; x⃗1; x⃗2 Spatial positions of sink operators Eq. (5)
y⃗; y⃗1; y⃗2 Spatial positions of source operators Eq. (24)
t Euclidean time separation between source (at t ¼ 0) and sink Eq. (5)
S Sparsening factor Eq. (5)
ΛS Set of sparse lattice sites Eq. (5)
VS Sparse lattice volume ðL=SÞ3 Eq. (5)
c Center-of-mass momentum index Eq. (6)

ψ ½h�
c ðx⃗Þ Spatial wave function for hadron h ∈ fN;Hg Eq. (6)

NσcgðtÞ Nucleon interpolating operator (momentum-projected) Eq. (7)

C½N;N�
σcgσ0c0g0 ðtÞ Nucleon correlation function Eq. (8)

MN Nucleon mass Eq. (9)

HρcgðtÞ Hexaquark interpolating operator Eq. (10)

w½h�ρ
α

Two-nucleon spin-color weights for h ∈ fH;D;Qg Eq. (12)

N ½h�ρ
w

Two-nucleon weight multiplicity for h ∈ fH;D;Qg Eq. (12)

DρmgðtÞ Dibaryon interpolating operator Eq. (13)

vρσσ0 Weights for spin product Gþ
1 ⊗ Gþ

1 ¼ Aþ
1 ⊕ Tþ

1 Eq. (14)

ψ ½h�
c ðx⃗1; x⃗2Þ Dibaryon spatial wave function Eq. (15)

m Two-nucleon relative momentum index Eq. (15)
P⃗m

Two-nucleon relative momentum vector Eq. (15)
n⃗m Relative-momentum integer n⃗m ¼ ð L

2πÞP⃗m Eq. (15)

s Relative-momentum shell s≡ sðmÞ ¼ jn⃗mj2 Eq. (15)
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