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Abstract 
 
The aim of this work is to deepen into a stochastic variant of the classic Chain-Ladder 
model to calculate claims reserves of an insurance company. Specifically, we will focus  
on the stochastic Generalized Multivariate Chain-Ladder model (GMCL). 
 
First, the classic deterministic method will be explained. Then, we will introduce the 
stochastic method and develop a practical example by using both methods to see the 
differences in the estimations. 

The function MultiChainLadder of the ChainLadder package for R (R Development Core 
Team, 2023) will be used. 
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1. Introduction 
 
One of the most important objectives of an insurance company is to estimate properly 
their future reserves, even more since the establishment of Solvency II, that obligates 
companies to make this estimation more accurate. Since we are focused on the non-life 
insurance, we will talk about claim reserves. We can define claim reserves as the amount 
of money that the insurance company set aside in order to ensure that they will be able to 
pay policyholders that have filed or are expected to file legitimate claims on their policies. 
 
The idea is that insurance companies must keep technical reserves for IBNR (Incurred 
But Not Reported) claims. IBNR claims refers to the fact that during a certain year, many 
accidents occur, but some of them are not reported until the next periods. Therefore, the 
company must consider these possible future obligations, and calculate them correctly, 
since they will represent a major part of the liabilities of the current and the coming years 
in its accounting balance. 
 
In this master thesis we will see how the classic Chain-Ladder method and the 
Generalized Multivariate Chain-Ladder method can be developed. The objective will be 
to prove if there are benefits in using the stochastic Chain-Ladder method instead of the 
classic one. The GMCL method has been chosen because we wanted to explore and 
understand a different method than the ones that we have seen in the master's program. 
 
Regarding the structure of the work, it has been divided into four distinct parts. First, the 
operation of the classic Chain-Ladder method is explained. After this, the stochastic 
GMCL is introduced and described. Once the methodologies of both models are 
explained, a practical exercise is conducted to determine if there are differences in the 
obtained results. Finally, after analyzing the results, the claims reserve is calculated for 
the best method of our case.
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2. Reserving methods 
 
We can differentiate between deterministic and stochastic reserving methods. The 
principal difference is that the stochastic methods use random variables, and the 
deterministic ones don’t. 
 
Some deterministic methods could be the classic Chain-Ladder method, the de Vylder 
least squares method, or the arithmetic and geometric separation method of Taylors. 
 
In the case of stochastic methods, we can draw attention to the Mack model, the 
Bornhuetter-Ferguson model, as well as generalized linear models. These models have 
been studied during the master's program, and in this work, we present the Generalized 
Multivariate Chain-Ladder model, which is an extension of the deterministic Chain-
Ladder model. 
 
One advantage of the stochastic methods that we will be working with is that in addition 
to estimating a value for the reserve, these methods can also provide a measure of how 
much the results can vary around that estimation. 
 

2.1.Run-off triangles 
 
Before starting with the explanation of the reserving methods, it will be introduced the 
concept of the so-called development triangles, and the role they play in the Chain-Ladder 
methodology. 
 
To perform the calculations of the IBNR loss reserves, these run-off triangles are 
commonly used. 
 
The basic structure of these triangles (Weindorfer, 2012) can be visualized in the 
following table: 
 

 Development year 𝒋 
Accident year 𝒊 𝟎 𝟏 𝟐 … 𝒌 − 𝟏 𝒌 

0 𝐶!,! 𝐶!,# 𝐶!,$ … 𝐶!,%&# 𝐶!,% 

1 𝐶#,! 𝐶#,# 𝐶#,$ … 𝐶#,%&#  
… … … … …   

𝒌 − 𝟐 𝐶%&$,! 𝐶%&$,# 𝐶%&$,$    
𝒌 − 𝟏 𝐶%&#,! 𝐶%&#,#     
𝒌 𝐶%,!      

Table 1: Run-off triangle structure. [Source: own elaboration] 

Where: 

𝑖 ∈ (0, … , 𝑘) : Years of occurrence of the loss event. 
𝑗 ∈ (0, … , 𝑘):	 Development year. 
𝐶!,#: Cumulative amounts paid for loss events occurred in the year of occurrence 𝑖, up to 
the development year 𝑗 (including this one). 
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If the amounts were not cumulative, then the nomenclature 𝑐!,# would be used, which 
represents the amount of losses of claims occurred in the year 𝑖 and paid only in the 
development year 𝑗, without taking into account the payments of previous development 
years. 
 
Understanding the concept of accumulated and non-accumulated losses, we can infer that 
non-accumulated amounts are useful for calculating accumulated amounts, as shown 
above, where: 

∑ 𝑐$,#%
#&$ =	𝐶$,% . 

That is, 𝐶$,% will be equivalent to the sum of all those non-accumulated amounts of claims 
occurred in the origin year 0 and paid until the development year 4. 
 
To see clearly what we are doing in these development triangles, we can look at Table 2: 

 Development year 𝒋 
Accident year 𝒊 𝟎 𝟏 𝟐 … 𝒌 − 𝟏 𝒌 

0 𝐶!,! 𝐶!,# 𝐶!,$ … 𝐶!,%&# 𝐶!,% 

1 𝐶#,! 𝐶#,# 𝐶#,$ … 𝐶#,%&#  
… … … … …   

𝒌 − 𝟐 𝐶%&$,! 𝐶%&$,# 𝐶%&$,$    
𝒌 − 𝟏 𝐶%&#,! 𝐶%&#,#     
𝒌 𝐶%,!      

Table 2: Run-off triangle and amounts to be estimated. [Source: own elaboration] 

Starting from initial data, such as those in the triangle of Table 1, the aim is to estimate 
the values of the cells marked in gray in Table 2. 
 
These cells would be the amounts that the company should be accumulating for the 
different development years 𝑗, to cope with the payments for claims occurred in origin 
year 𝑖. 

The term 𝐶' , that we will see below, refers to the values that are estimated from the 
original data. 

That is, the last cell in Table 3, 	𝐶′(,(, would correspond to the total amount that the 
company expects to pay in the development year 𝑘 for claims in origin year 𝑘. 
 

 Development year 𝒋 
Accident year 𝒊 0 1 2 … k-1 k 

0 𝐶!,! 𝐶!,# 𝐶!,$ … 𝐶!,%&# 𝐶!,% 

1 𝐶#,! 𝐶#,# 𝐶#,$ … 𝐶#,%&#  
… … … … …   

𝒌 − 𝟐 𝐶%&$,! 𝐶%&$,# 𝐶%&$,$    
𝒌 − 𝟏 𝐶%&#,! 𝐶%&#,#     
𝒌 𝐶%,! 𝐶'%,# 𝐶'%,$ … 𝐶′%,%&# 𝐶′%,% 

Table 3: Estimated provisions for accident year 𝑘 . [Source: own elaboration] 

 
If we do the same procedure to obtain the final cells for all the different accident years, 
we will obtain a final column that we usually call ultimate loss (see Table 4). 
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Each value of this column would be the total amount that the company expects to pay in 
the future due to claims occurred in their respective origin year 𝑖. 
 

 Development year 𝒋 
Accident year 𝒊 0 1 2 … k-1 k 

0 𝐶!,! 𝐶!,# 𝐶!,$ … 𝐶!,%&# 𝐶!,% 

1 𝐶#,! 𝐶#,# 𝐶#,$ … 𝐶#,%&# 𝐶′#,% 
… … … … … … … 

𝒌 − 𝟐 𝐶%&$,! 𝐶%&$,# 𝐶%&$,$ … 𝐶′%&$,%&# 𝐶′%&$,% 
𝒌 − 𝟏 𝐶%&#,! 𝐶%&#,# 𝐶′%&#,$ … 𝐶′%&#,%&# 𝐶′%&#,% 
𝒌 𝐶%,! 𝐶'%,# 𝐶'%,$ … 𝐶′%,%&# 𝐶′%,% 

Table 4: Ultimate loss. [Source: own elaboration] 

 
Up to this point, we have seen what run-off triangles are, what they are made of, and what 
they are used for, but we have not yet discussed how these future year amounts are 
calculated. 
 
It should be mentioned, that depending on the method that we use to calculate these 
provisions, the calculations will be made in one way or another. 
 
In the following sections we will introduce the considered methods in this work and see 
how the calculations are performed. 

3. Chain-Ladder method 
 
The most common method for claims reserving is the Chain-Ladder method. It is one of 
the most used in the companies due to the facility of its implementation and its lack of 
probabilistic assumptions, with the exception that the proportion of claims that are 
reported to the company from one period to the next one, remains constant. 
 
This method uses an accumulated run-off triangle, and with the so-called development 
factors, that we will define below, it is possible to calculate the estimation of future losses 
for different development periods. 
 
The problem is that on the one hand, the estimations depend on these development factors, 
and on the other hand, these development factors are calculated based on historical data. 
 
Due to this, the effectiveness of the estimations will decay over time, because we will be 
calculating the development factors with less and less data as we progress over the time. 
 
We can refer to Boj et al. (2020) to see the derivation of the formulas for the Chain-ladder 
method from an annual triangle. 
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The estimator or development factor is obtained as: 

𝑚)2 = ∑ +!,#$%
&'#'%
!()
∑ +!,#&'#'%
!()

. 

 
If we want to obtain the development factor 𝑚$, which allow us to obtain the reserves 
estimation from development year 0 to 1, we can use the following formula: 

𝑚$2 = ∑ +!,%
&'%
!()

∑ +!,)&'%
!()

 . 

The way in which we obtain these development factor can be seen more clearly in Table 
5, where it will simply be dividing the sum of the cells in the dark grey rows by the sum 
of the cells in the light grey rows. 
 

 Development year 𝒋 
Accident year 𝒊 0 1 2 … k-1 k 

0 𝐶!,! 𝐶!,# 𝐶!,$ … 𝐶!,%&# 𝐶!,% 

1 𝐶#,! 𝐶#,# 𝐶#,$ … 𝐶#,%&# 𝐶′#,% 
… … … … … … … 

𝒌 − 𝟐 𝐶%&$,! 𝐶%&$,# 𝐶%&$,$ … 𝐶′%&$,%&# 𝐶′%&$,% 
𝒌 − 𝟏 𝐶%&#,! 𝐶%&#,# 𝐶′%&#,$ … 𝐶′%&#,%&# 𝐶′%&#,% 
𝒌 𝐶%,! 𝐶'%,# 𝐶'%,$ … 𝐶′%,%&# 𝐶′%,% 

Table 5: Example to obtain development factors. [Source: own elaboration] 

The same procedure would be followed to obtain the different development factors of the 
different periods, where we will obviously use the data of the corresponding periods. 
 
Once we have obtained the development factors, we can obtain the estimation of future 
expenses as: 
 
𝐶'!,),- = 𝑚3) · 𝐶!,). 
 
For run-off triangles with the same number of origin and development periods (years in 
our case), one less data will always be taken as we increase the number of the 
development year. 
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4. General Multivariate Chain-Ladder model (GMCL) 
 
As we have mentioned before, although the classical Chain-Ladder method is the most 
common and widely used in companies, some variants of it are becoming more important 
for calculating reserves due to the implementation of more restrictive regulations. 
 
One of these stochastic variants is the Multivariate Chain-Ladder method (MCL). 
The difference with the classic method is that in the multivariate case we work with more 
than one run-off triangle simultaneously to make the estimates, which allows us to model 
their correlation. 
 
As we can see in Table 6, in the multivariate case we will work with 𝑁 loss triangles with 
the same structure as used in the classical method. We will explain the model based in 
Zhang (2010). 
 

Development year 𝒌 
Accident year 𝒊 1 2 … 𝑰 − 𝟏 𝑰 

1 𝑌!,! 𝑌!,# … 𝑌!,$%! 𝑌!,! 
2 𝑌#,! 𝑌#,# … 𝑌#,$%!  
⋮ … … …   
𝒊 𝑌&,! …    
⋮ … …    

𝑰 − 𝟏 𝑌$%!,! 𝑌$%!,#    
I 𝑌$,!     

Table 6: Structure of the N run-off triangles [Source: own elaboration] 

In this case: 

𝑖 = (1, … , 𝐼): accident year. 

𝑘 = (1,… , 𝐼): development year. 

Denote 𝑌!,( que as an 𝑁 × 1 vector of the cumulative losses in accident year 𝑖 and 
development year 𝑘. The superscript (𝑛) refers to the 𝑛𝑡ℎ triangle. The symbol ′,  at the 
end of the vector denotes the transpose of the vector. 

𝑌!,( =	 (𝑌!,(
(-), … , 𝑌!,(

(0))′. 

The inclusion of more triangles is very important because there may be structural 
connections between them, so the development of one triangle may depend on past 
information from others. Therefore, it is possible to make estimates that take into account 
the correlation between triangles, which could lead to an improvement in the estimations 
compared to the univariate case. 
 
The next step is to look for a suitable model in order to make a correct estimation of our 
parameters. 
 
This will be carried out by making several modifications to a baseline model. 
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4.1.Baseline Model 

We can formulate the GMCL model as: 

𝑌!,(,- = 𝑩𝒌 · 	𝑌!,( + 𝜖!,( 	.        (1) 

 
This model is a simply natural generalization of the multivariate model. 
 
We will use the model (1) as our baseline model. In this case, it will be for the 
development year 𝑘, that is, from development year 𝑘 to 𝑘 + 1. 
 
Where, 
 

𝑩𝒌 = @
𝛽--	 	⋯	𝛽-0
⋮							⋱						⋮
𝛽0- 	⋯	𝛽00

E 

𝑩𝒌 is an 𝑁	 × 	𝑁 development matrix in development period 𝑘, and the 𝑛𝑡ℎ row contains 
the development parameters for the 𝑛𝑡ℎ triangle. 

Basically, the matrix 𝐵( 	 is a matrix where each row contains a vector with the different 
development factors of the different triangles. For example, the first row would 
correspond to the vector of development factors of the first triangle in the development 
year 𝑘. 
 
This non-diagonal development matrix 𝐵( allows the development of one triangle in 
period 𝑘 to depend directly on the loss information of the other triangles in the same 
period 𝑘. 
 
One problem is that the fully parameterized model has 𝑁3 development parameters in 
each period, which can make parameters estimation difficult or even impossible. 
Additionally, in the latest development periods, the parameters may be difficult to 
estimate even under constraints. 
 
One possible solution to this problem is to use data in trapezoid form to ensure that there 
are enough observations in the tail of the distribution. 
This can improve the quality of parameter estimations and allow the model to be more 
accurate in predicting future losses. 
 
And to conclude, the last term represents the residuals of the model. Residuals are the 
differences between actual observations and model predictions. 
 
Some assumptions are made for the model (1): 
 
 
𝐸H𝜖!,(I𝐷!,(K = 0      (1.1) 
 
𝑐𝑜𝑣H𝜖!,(I𝐷!,(K = 𝐷(𝑌!,()-/3 · 	∑( · 	𝐷(𝑌!,()-/3  (1.2) 
losses from different accident years are independent (1.3) 
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𝜖!,( are symmetrically distributed.    (1.4) 
 
Where: 

∑( = @
𝜎--…	𝜎-0
⋮					⋱					⋮
𝜎0-…	𝜎00

E 

is a symmetric positive definite 𝑁 × 𝑁	matrix. 

∑( is a variance-covariance matrix that allows us to model the relationship between errors 
in different development periods and loss triangles. 

4.2.Introduction to Seemingly Unrelated Regressions (SUR) 
 
Seemingly Unrelated Regressions (SUR), as stated in Mazuelos (2013) are a type of 
multivariate regression model that allows multiple regression equations to be jointly 
modeled, where each equation can have different independent variables and a common 
dependent variable. 
 
In the conventional multivariate linear regression models, it is assumed that all 
independent variables are related to each other, but in SUR models the relationships 
between the independent variables are allowed to vary from one equation to another. 
 
Then, SUR models allow us to model situations in which it is expected that the 
relationships between the independent variables will be different across different 
equations. 
 
The objective of SUR is to estimate the regression coefficients of each equation 
independently but also consider the shared information among the equations to improve 
the precision of the estimates. 
 
To achieve this, the variance-covariance matrix ∑( (that we have already introduced) is 
used to capture the shared information among the equations. 
 
In our case, since none of the dependent variables 𝑌!,(,-

(5)  appears as an explanatory 
variable in the other equations, and since all these equations individually are statistically 
related with the non-diagonal matrix, the use of SUR is suggested for parameter 
estimation. 
 
It can be verified that we can easily switch from our base model to model 2 
 
 

⎝

⎜
⎛
𝑌6,(,-
(-)

𝑌6,(,-
(3)

⋮
𝑌6,(,-
(0)

⎠

⎟
⎞
= U

7%
$
⋮
$

$
7*
9
$

⋯
⋯
⋱
⋯

$
$
⋮
7+
V · W

𝛽-
𝛽3
⋮
𝛽0

X +W

𝜖-
𝜖3
⋮
𝜖0

X   (2) 

 
by applying SUR. 
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Here, 𝑛 = 1,2, … , 𝑁. 

The first term in model (2), that represents the dependent variables of the model, 
corresponds to a (𝐼 − 𝑘) × 1,  vector of the first (𝐼 − 𝑘) losses in the development year 
𝑘 + 1 of the 𝑛𝑡ℎ triangle. 
 
So, if we want to visualize the first term of that vector, we have: 
𝑌6,(,-
(-) = (𝑌-,(,-

(-) , … , 𝑌<=(,(,-
(-) )′. 

 
That would be a vector with the first (𝐼 − 𝑘) losses in the development year 𝑘 + 1, of the 
first triangle. 
 
For the example that we will see later, where two triangles are developed simultaneously, 
the first term would be composed of 𝑌6,(,-

(-)  and 𝑌6,(,-
(3) . 

 
The second term of the new model, composed of the elements 𝑋-, 𝑋3, … , 𝑋0 on the 
diagonal, is an (𝐼 − 𝑘) × 𝑁 matrix of the first (𝐼 − 𝑘) observations in development year 
𝑘 of each of the triangles. 
 
The condition 𝑋- = 𝑋3 = ⋯ = 𝑋0  holds, where, on one hand, 𝑋5 = (𝑌>,(

(-), … , 𝑌>,(
(0)) and 

on the other hand, 𝑌>,(
(5) = (𝑌-,(

(5), … , 𝑌<=(,(
(5) )′, that, as we have said, is a vector of the first 

(𝐼 − 𝑘) losses of the 𝑛𝑡ℎ triangle in the development year k. 
 
Finally, we have two vectors composed of the development factors and error terms. 
The first case is a 𝑁 × 1  vector composed of 𝛽-,			𝛽3, … , 𝛽0, where                     
𝛽5 = (𝛽5-, … , 𝛽50)'  is a 𝑁 × 1  vector of development factors in the 𝑛𝑡ℎ equation. 
 
For example, 𝛽- = (𝛽--, … , 𝛽-0)' would be the vector of development factors for the first 
equation. 
 
And as we have mentioned, a final vector appears composed of the error terms 𝜖-, 𝜖3, … ,
𝜖0, where 𝜖5 = (	𝜖5-, … , 𝜖5,<=() is an (𝐼 − 𝑘) × 1	vector of the error terms of the 𝑛𝑡ℎ 
equation. 
 
 

4.3.First transformation to the SUR model 
 
Once we have understood how the model is structured with the application of SUR, we 
need to modify it again in order to reach the appropriate model for our parameter’s 
estimation. This modification will consist in vectorizing the matrices. 
 
The concept of vectorizing refers to the process of transforming a matrix 𝐴 of size 
𝑚	 × 	𝑛, where 𝐴 = (𝑎-, … , 𝑎5), and where each element of this matrix is 𝐴 is a  𝑚 × 1 
vector, into a vector of size 𝑚 · 𝑛 × 1. 
 
Equation (3) shows the structure of the new model that we obtain by vectorizing. 

𝑌 = 𝑋 · 𝛽 + 𝜖 .  (3) 
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Once again, we need to define the terms of the new model (3). 
 
The first term, 𝑌 = 𝑣𝑒𝑐	`𝑌6,(,-

(-) , … , 𝑌6,(,-
(0) a, is an 𝑁 · (𝐼 − 𝑘) × 1  vector of response 

variables. We are vectorizing a matrix with the same structure as the 𝑋5 terms in the SUR 
matrix, so when we vectorize a (𝐼 − 𝑘) × 𝑁 matrix, we obtain the structure of the 𝑌 term. 
 
The second term, 𝑋 = 𝐼⨂𝑋5, is a 𝑁 · (𝐼 − 𝑘) × 𝑁3 diagonal matrix, where ⨂ represents 
the Kronecker product operator of matrices. The diagonal is composed by the 𝑋- = 𝑋3 =
⋯ = 𝑋0	terms. 
 
The third term, 𝛽 = 𝑣𝑒𝑐	(𝛽-, 𝛽3, … , 𝛽0), is a 𝑁 · 𝑁 × 1 vector of development 
parameters. Since we have defined in the SUR model that each element 𝛽5 is a vector 
with 𝑁 × 1 structure, and we have up to 𝛽0 elements, then we will have a 𝑁 × 𝑁 matrix, 
and by vectorizing an 𝑁 × 𝑁 matrix, we obtain a 𝑁 · 𝑁 × 1 vector. 
 
Finally, we have a vector of error terms 𝜖 = 𝑣𝑒𝑐	(𝜖-, 𝜖3, … , 𝜖0), where each element 𝜖5 
is a vector with dimensions (𝐼 − 𝑘) × 1, obtaining a matrix (𝐼 − 𝑘) × 𝑁. Vectorizing that 
matriz we obtain a 𝑁 · (𝐼 − 𝑘) × 1 vector. 
 

4.4.Final model 
 
To arrive at the model that we will use to obtain our parameters, we need to make one 
last change to the model shown in (3). 
 
We introduce a new term 𝑊 = 𝑣𝑒𝑐	(𝑌>,(

(-), 𝑌>,(
(3), … , 𝑌>,(

(0)), where each 𝑌>,(
(5) is a         

(𝐼 − 𝑘) × 1 vector. As there are up to 𝑌>,(
(0), we will be vectorizing a (𝐼 − 𝑘) × 𝑁 matrix, 

which will result in a vector of dimensions 𝑁 · (𝐼 − 𝑘) × 	1. 
 
𝑊 is a vector of the first (𝐼 − 𝑘) losses in the development year 𝑘. 
 
From (1.3) and (1.4), we arrive at 𝑐𝑜𝑣(𝜖) = 𝐷(𝑊)

%
* · (∑(⨂𝑰) · 𝐷(𝑊)

%
*, where 𝑰 is the 

identity matrix of order (𝐼 − 𝑘) × (𝐼 − 𝑘), and 𝐷 is the diagonal operator, defined as an 
𝑁 × 𝑁 matrix with the 𝑁-dimensional vectors 𝒂 = (𝑎-, … , 𝑎5)′  along the diagonal. 

If we multiply by 𝐷(𝑊)=
%
* the model (3), we get: 

𝐷(𝑊)=
%
* · 𝑌 = 	𝐷(𝑊)=

%
* · 𝑋 · 𝛽 + 𝐷(𝑊)=

%
* · 𝜖, 

that can be expressed as: 

𝑌∗ = 𝑋∗ · 𝛽 + 𝜖∗.  (4) 

Where: 

𝑌∗ = 𝐷(𝑊)=-/3 · 𝑌 

𝑋∗ = 𝐷(𝑊)=-/3 · 𝑋 
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𝜖∗ = 𝐷(𝑊)=-/3 · 𝜖	. 

Using the structure 𝑐𝑜𝑣(𝜖) = 𝐷(𝑊)
%
* · (∑(⨂𝑰) · 𝐷(𝑊)

%
*, previously obtained, we can 

arrive to 𝑐𝑜𝑣(𝜖∗) = 𝐷(𝑊)=
%
* · 𝑐𝑜𝑣(𝜖) · 𝐷(𝑊)=

%
* =	∑(⨂𝑰 . 

Now, this variance-covariance structure is consistent with the typical SUR assumption 
introduced by Zellner (1962). 
 
For this reason, we will use model (4) as our final model to obtain the parameters. 
Applying Aitken's Generalized Least Squares (GLS) to the final model, we can obtain the 
best linear unbiased estimator (BLUE) of β as: 

𝛽f@ = (𝑋∗, ·(∑(⨂𝑰)=- · 𝑋∗)=- · 𝑋∗' · (∑(⨂𝑰)=- · 𝑌∗ 

And the variance-covariance matrix of this estimator 𝛽f@  looks like: 

𝑉H𝛽f@K = (𝑿∗, · (∑(	⊗ 𝑰)=- · 𝑿∗)	=-. 

Finally, it should be mentioned that there is a problem when we are obtaining the BLUE 
estimator of β and its variance-covariance matrix, and that is that we are assuming that 
the matrix ∑( is known, which is generally not the case. 
 
In cases where the matrix ∑( is unknown, we need to use an estimator of it to calculate  
𝛽f@   and 𝑉H𝛽f@K. 
 
Thus, if we use the estimator ∑j( in the previous equations, we obtain a Feasible 
Generalized Least Squares (FGLS) estimator of β such that: 

𝛽fA@ = (𝑋∗,(∑j(⨂𝑰)=- · 𝑋∗)=- · 𝑋∗'(∑j(⨂𝑰)=- · 𝑌∗. 

Although there exist many estimators for the matrix ∑(, one of the most commonly used, 
which is consistent and unbiased, is the shown below. 

∑Bk =	 -
<=(

(𝜖-∗j , 𝜖3∗j ,… , 𝜖0∗k)'(𝜖-∗j , 𝜖3∗j ,… , 𝜖0∗k). 

Considering that the objective of this model is to obtain optimal estimators, there will be 
a loss of efficiency due to the estimation of the matrix ∑(. 
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5. Practical example 
 
In this section, a practical example of a GMCL model will be developed with the help of 
the R program, using the ChainLadder package. To be familiarized with all the practical 
applications of the package, we have look on Zhang (2023). 
 
We will use the database that we have named AUTO, obtained by applying a 
multiplicative factor to another database. AUTO contains a list with two accumulated run-
off triangles called AUTOPAID and AUTOINCURRED. 
 
AUTOPAID and AUTOINCURRED correspond to two development triangles composed 
of paid and incurred losses of an insurance company from the origin year 2013 to the year 
2022. 
 
In addition to the GMCL model, we will also perform calculations with the classical 
Chain-Ladder method, the SCL and the MCL, with or without intercept terms, in order to 
see how the results vary depending on the methodology applied. 
 
First, we will introduce each of these models in a generic way, and in the final part we 
will make a comparison of the obtained results. 
 
We can define the SCL as a multivariate method that ignores correlations between 
triangles, which ends up being the same as developing the univariate model, where the 
triangles will be developed independently. 
 
On the other hand, the MCL model is a direct multivariate generalization of the classical 
method, where correlations between triangles are considered, but the average 
development in each triangle is only estimated based on its historical values, without 
using direct information from other triangles. To achieve this, the MCL restricts the 
matrix 𝐵( to be diagonal. 
 
And finally, the GMCL extends the MCL model by allowing development dependencies 
between different triangles and the inclusion of regression intercepts. 
 
According to Zhang (2010), the structure of the GMCL model in the development year 𝑘 
can be seen as: 

𝑌!,(,- = 𝐴( + 𝐵( · 𝑌!,( + 𝜖!,( .      (5) 

This structure may be familiar to us since it is the same as the one used in our baseline 
model, but with the inclusion of a new term 𝐴(, which we can define as a vector of 
intercept terms. 
 
Barnett and Zehnwirth (2000) pointed out that both the classical Chain-Ladder method 
and the multivariate one are not suitable, as they tend to overestimate large values and 
underestimate small ones. This, results in a decreasing trend in the residuals plot. 
The reason why both models fail in their residual plot is that they do not include an 
intercept term. For this reason, we will now incorporate this term 𝐴(. 
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5.1.ChainLadder package 

 
Although we will not explain in detail the ChainLadder package (Gessman et al, 2023), 
we must mention that it includes two functions for predicting insurance loss payments 
based on several cumulative losses development triangles: MultiChainLadder and 
MultiChainLadder2. 
 
Both options permit to obtain the estimations of the reserves from different models such 
as the Separate Chain-Ladder model, the Multivariate Chain-Ladder model or the 
Generalized Multivariate Chain-ladder. 
 
In our case, we will develop the practical example using the second option, as it allows 
us to make the robustness of the tail easily. 
 
We should understand that if we employ a multivariate method, it will be in a context 
where we have evidence that the triangles used are correlated. 
 
For the latest periods, where we have limited data available, running a multivariate model 
often produces extremely volatile estimates or may even fail. 
 
That is why we will divide the data into two distinct periods. In the first period, we will 
apply the multivariate method, and in the second period, which represents the tail, we will 
apply the SCL method, where we do not take correlations into account. 
 
This process is called tail robustification and allows us to make more accurate estimates. 
 
As mentioned, with MultiChainLadder2 (unlike MultiChainLadder), we can directly 
partition the data, so it will be the function that we will use in our example. 
 
The number of periods included in the tail is selected by us and is relevant in the 
estimation process, as it significantly affects the results. 
 
In our case, we conducted the study of different models by robustifying the tail using 
three and four periods. Finally, we selected three periods as we obtained better paid-
incurred ratios. 
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5.2.Classic Chain-Ladder model 
 
After understanding the first part of the work, which explains in detail the procedure for 
calculating reserves using the Chain-Ladder method, we complete both run-off triangles 
after obtaining the development factors, which can be visualized in Table 7. 
 

 Development Factors 𝒎𝒉 
h 0 1 2 3 4 5 6 7 8 
AUTOPAID 1,98999 1,28515 1,13664 1,06395 1,03114 1,01668 1,00635 1,00409 1,00065 
AUTOINCURRED 1,00380 1,00030 0,99309 0,99505 1,00071 1,00122 1,00119 0,99989 1,00106 
          

Table 7: Development factors univariate Chain-Ladder. [Source: own elaboration] 

The purpose will be to verify that we obtain the same results with the classic and the SCL 
method. 
 
As we are doing the calculations with a univariate method, we work with one triangle at 
a time, so we need to calculate the complete run-off triangles AUTOPAID and 
AUTOINCURRED separately. 

For the classic model we obtain the following results: 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 126406 262401 333272 381384 409812 425836 435538 438991 441691 441980 
1 128176 254016 325846 378978 411165 426185 434166 437266 438154 438440 
2 143665 284630 372650 431928 459700 472499 479514 481530 483501 483818 
3 143065 284701 376340 425836 449974 461560 466656 469620 471543 471851 
4 144496 304514 394019 443112 465470 478422 486403 489493 491497 491818 
5 159700 324270 408719 457225 483406 498458 506773 509992 512080 512415 
6 169520 327868 408858 459196 488564 503776 512180 515433 517543 517881 
7 158971 305311 397465 451774 480667 495634 503901 507102 509178 509511 
8 160789 308504 396475 450649 479469 494399 502646 505839 507910 508242 
9 157860 314140 403718 458881 488229 503431 511828 515079 517188 517526 

Table 8: AUTOPAID Full Triangle. [Source: own elaboration] 

 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 406779 420532 432576 434658 438744 441998 443496 443781 443732 444204 
1 404534 424084 430634 436619 438798 439479 440062 440289 440241 440709 
2 448012 482912 482105 480874 484598 484942 485675 486795 486742 487259 
3 506649 495801 489791 481024 476142 475204 474632 475198 475146 475651 
4 542581 536639 527726 511652 492692 491002 491601 492186 492133 492655 
5 521472 527884 516858 508389 508129 508489 509108 509715 509659 510201 
6 498661 498484 497525 500675 498199 498551 499159 499754 499699 500230 
7 473442 451371 461660 458472 456204 456527 457083 457628 457578 458064 
8 438851 419384 419511 416614 414553 414847 415352 415847 415802 416244 
9 411545 413108 413234 410380 408350 408639 409137 409625 409580 410015 

Table 9: AUTOINCURRED Full Triangle. [Source: own elaboration] 
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5.3.Separate Chain-Ladder model (SCL) 

As we have mentioned, in this second case, we are working with a multivariate method 
where we develop two triangles simultaneously. In a SCL, OLS1 is used to estimate the 
parameters. Here, the estimation of development factors for each triangle is independent 
of the others. 

Correlation Coefficients SCL 
0 0 0 0 0 0 0 0 0 

Table 10: Correlation Coefficients SCL. [Source: own elaboration] 

 
In summary, although we are using a multivariate method, by applying OLS, we do not 
assume correlation between the triangles, so it is like developing a univariate model for 
each triangle. 
 
This can be easily verified as we obtain correlation coefficients equal to zero in all periods 
and there are no differences observed in the results obtained between the classical case 
and the SCL: 
 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 126406 262401 333272 381384 409812 425836 435538 438991 441691 441980 
1 128176 254016 325846 378978 411165 426185 434166 437266 438154 438440 
2 143665 284630 372650 431928 459700 472499 479514 481530 483501 483818 
3 143065 284701 376340 425836 449974 461560 466656 469620 471543 471851 
4 144496 304514 394019 443112 465470 478422 486403 489493 491497 491818 
5 159700 324270 408719 457225 483406 498458 506773 509992 512080 512415 
6 169520 327868 408858 459196 488564 503776 512180 515433 517543 517881 
7 158971 305311 397465 451774 480667 495634 503901 507102 509178 509511 
8 160789 308504 396475 450649 479469 494399 502646 505839 507910 508242 
9 157860 314140 403718 458881 488229 503431 511828 515079 517188 517526 

Table 11: AUTOPAID Full Triangle. [Source: own elaboration] 

 
 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 406779 420532 432576 434658 438744 441998 443496 443781 443732 444204 
1 404534 424084 430634 436619 438798 439479 440062 440289 440241 440709 
2 448012 482912 482105 480874 484598 484942 485675 486795 486742 487259 
3 506649 495801 489791 481024 476142 475204 474632 475198 475146 475651 
4 542581 536639 527726 511652 492692 491002 491601 492186 492133 492655 
5 521472 527884 516858 508389 508129 508489 509108 509715 509659 510201 
6 498661 498484 497525 500675 498199 498551 499159 499754 499699 500230 
7 473442 451371 461660 458472 456204 456527 457083 457628 457578 458064 
8 438851 419384 419511 416614 414553 414847 415352 415847 415802 416244 
9 411545 413108 413234 410380 408350 408639 409137 409625 409580 410015 

Table 12: AUTOINCURRED Full Triangle. [Source: own elaboration] 

 
 
 
 

 

 

 

 
1 OLS: Ordinary Least Squares 
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5.4.MCL with SUR 
 
By specifying the SUR methodology (previously defined), we allow the inclusion of 
correlations between triangles. In this case, they are modeled simultaneously. 
 
As we add this correlation the technical reserves will either tend to increase or decrease. 
This will clearly depend on the sign and magnitude of the correlation. 
 
We can observe that the correlation coefficients are different from zero now, unlike in the 
SCL case. 
 

Correlation Coefficients SUR 
0,326 -0,010 0,597 0,711 0,857 0,928 0 0 0 

Table 13: Correlation Coefficients SUR. [Source: own elaboration] 

 
The last three values are zero because, as we explained in the previous section, we are 
robustifying the tail (data partitioning) to obtain more precise estimates. So for the last 
segment, we apply OLS, ignoring the correlations. 
 
The following are the results obtained: 
 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 126406 262401 333272 381384 409812 425836 435538 438991 441691 441980 
1 128176 254016 325846 378978 411165 426185 434166 437266 438154 438440 
2 143665 284630 372650 431928 459700 472499 479514 481530 483501 483818 
3 143065 284701 376340 425836 449974 461560 466656 469620 471543 471851 
4 144496 304514 394019 443112 465470 478422 486399 489489 491493 491814 
5 159700 324270 408719 457225 483406 498457 506768 509987 512075 512409 
6 169520 327868 408858 459196 488526 503736 512134 515387 517497 517836 
7 158971 305311 397465 451719 480571 495534 503796 506996 509071 509404 
8 160789 308504 396476 450595 479375 494300 502542 505734 507804 508136 
9 157860 314117 403689 458793 488097 503293 511685 514935 517043 517381 

Table 14: AUTOPAID Full Triangle. [Source: own elaboration] 

 
 Development year 𝒋 

Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 406779 420532 432576 434658 438744 441998 443496 443781 443732 444204 
1 404534 424084 430634 436619 438798 439479 440062 440289 440241 440709 
2 448012 482912 482105 480874 484598 484942 485675 486795 486742 487259 
3 506649 495801 489791 481024 476142 475204 474632 475198 475146 475651 
4 542581 536639 527726 511652 492692 491002 491598 492184 492130 492653 
5 521472 527884 516858 508389 508129 508484 509100 509707 509651 510193 
6 498661 498484 497525 500675 498146 498494 499099 499693 499639 500169 
7 473442 451371 461660 458413 456097 456416 456969 457514 457464 457950 
8 438851 419384 419512 416561 414457 414747 415250 415745 415699 416141 
9 411545 412900 413026 410121 408049 408334 408830 409317 409272 409707 

Table 15: AUTOINCURRED Full. [Source: own elaboration] 

 
Regarding the SCL model, we observe a decrease in the reserves when we apply SUR. 
At the beginning, we might think that if, for example, there is a high positive correlation 
between both triangles, the reserves should increase compared to the SCL model. 
 
However, this is not always the case. In some cases, a positive correlation between 
triangles can lead to a decrease in estimated reserves. This happens when the multivariate 
model accurately captures the correlation and the information from one triangle can help 
to predict the development of the other, resulting in more precise estimates and reducing 
the bias in the reserves. 
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5.5.GMCL model without intercepts 
 
As we have mentioned, the GMCL extends the MCL model by allowing dependencies 
between triangles. We will first develop a model without including the intercept terms, 
and then another one incorporating them. 
 
The idea is to visualize the effect of including this dependency between triangles 
individually and jointly with the intercepts. 
 
On the one hand, the correlation coefficients obtained for the GMCL-int model are the 
following: 
 
 

Correlation Coefficients GMCL-int 
0,411 0,337 0,877 0,980 0,680 0,925 0 0 0 

Table 16: Correlation Coefficients GMCL without intercepts. [Source: own elaboration] 

And on the other hand, the future reserves estimate is: 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 126406 262401 333272 381384 409812 425836 435538 438991 441691 441980 
1 128176 254016 325846 378978 411165 426185 434166 437266 438154 438440 
2 143665 284630 372650 431928 459700 472499 479514 481530 483501 483818 
3 143065 284701 376340 425836 449974 461560 466656 469620 471543 471851 
4 144496 304514 394019 443112 465470 478422 484529 487607 489603 489924 
5 159700 324270 408719 457225 483406 494420 499653 502827 504886 505216 
6 169520 327868 408858 459196 485111 494720 499019 502189 504245 504574 
7 158971 305311 397465 443200 465526 471014 472672 475674 477622 477934 
8 160789 308504 385913 427686 447507 450374 450375 453236 455092 455389 
9 157860 298236 373317 413964 433306 436301 436448 439220 441018 441307 

Table 17: AUTOPAID Full Triangle. [Source: own elaboration] 

 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 406779 420532 432576 434658 438744 441998 443496 443781 443732 444204 
1 404534 424084 430634 436619 438798 439479 440062 440289 440241 440709 
2 448012 482912 482105 480874 484598 484942 485675 486795 486742 487259 
3 506649 495801 489791 481024 476142 475204 474632 475198 475146 475651 
4 542581 536639 527726 511652 492692 491002 491050 491635 491581 492103 
5 521472 527884 516858 508389 508129 506099 505829 506432 506377 506915 
6 498661 498484 497525 500675 508148 505256 504709 505311 505256 505792 
7 473442 451371 461660 468018 483047 478059 476819 477387 477335 477842 
8 438851 419384 432661 441874 461391 455168 453514 454055 454005 454487 
9 411545 407419 419946 428584 447019 441124 439565 440088 440040 440508 

Table 18: AUTOINCURRED Full Triangle. [Source: own elaboration] 

 
In this GMCL model without intercepts, we can see that the ultimate loss of the first and 
second full triangle is now much closer compared to the MCL model applying SUR. 

Two reasons could be that there are higher correlations now and that we have included 
the dependence between triangles. 
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5.6.GMCL model with intercepts 

Finally, we will develop the GMCL model with intercept terms. As we said before, there 
are cases where the multivariate method fails due to the exclusion of these terms, which 
allow us to obtain more precise estimates. 

In our case, we have applied intercepts in all periods of the first part of the partition in the 
robustification. 
 
 
The obtained correlation coefficients are: 
 

Correlation Coefficients GMCL with intercepts 
0,248 0,384 0,723 0,947 0,602 1 0 0 0 

Table 19: Correlation Coefficients GMCL with intercepts. [Source: own elaboration] 

And the estimated reserves are: 

 Development year 𝒋 
Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 126406 262401 333272 381384 409812 425836 435538 438991 441691 441980 
1 128176 254016 325846 378978 411165 426185 434166 437266 438154 438440 
2 143665 284630 372650 431928 459700 472499 479514 481530 483501 483818 
3 143065 284701 376340 425836 449974 461560 466656 469620 471543 471851 
4 144496 304514 394019 443112 465470 478422 483973 487047 489041 489361 
5 159700 324270 408719 457225 483406 494336 498839 502007 504063 504392 
6 169520 327868 408858 459196 485758 496014 500184 503362 505422 505753 
7 158971 305311 397465 448428 478590 488640 492985 496117 498148 498473 
8 160789 308504 386678 437915 470320 480535 485232 488314 490313 490634 
9 157860 298777 375500 426920 459640 470613 475965 478988 480949 481263 

Table 20: AUTOPAID Full Triangle. [Source: own elaboration] 

 
 Development year 𝒋 

Accident Year 𝒊 0 1 2 3 4 5 6 7 8 9 
0 406779 420532 432576 434658 438744 441998 443496 443781 443732 444204 
1 404534 424084 430634 436619 438798 439479 440062 440289 440241 440709 
2 448012 482912 482105 480874 484598 484942 485675 486795 486742 487259 
3 506649 495801 489791 481024 476142 475204 474632 475198 475146 475651 
4 542581 536639 527726 511652 492692 491002 490973 491557 491504 492026 
5 521472 527884 516858 508389 508129 505981 505605 506207 506152 506690 
6 498661 498484 497525 500675 509165 506937 506413 507017 506961 507500 
7 473442 451371 461660 475680 500885 499125 498605 499199 499144 499674 
8 438851 419384 435911 457822 492246 490984 490548 491133 491079 491601 
9 411545 410415 427940 449599 482322 481650 481430 482004 481951 482463 

Table 21: AUTOINCURRED Full Triangle. [Source: own elaboration] 

By adding intercepts, we can observe that the columns of ultimate loss for both full 
triangles remain very similar but slightly increase compared to the model without 
intercepts. 
 
In the next section, we will explain the importance of obtaining larger or smaller reserves, 
although we can already get an idea if we have understood the concept of reserve. 
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5.7.Paid-Incurred ratios 
 
The paid-incurred ratio is used to evaluate the adequacy of claims reserves. It allows us 
to measure the evolution of claims costs over time and assess the quality of existing 
reserve estimates. This ratio is defined as the proportion of total claims paid and the total 
claims incurred. 
 
If we obtain a ratio greater than one, it means that the actual costs of claims have exceeded 
the initial estimates, indicating a need of additional reserves as we have underestimated 
the costs. 
 
On the other hand, if the ratio is less than one, it signifies that the costs of claims have 
been lower than expected, indicating that we have set aside too high reserves. 
 
If this ratio is close to one, it suggests that the reserve estimates are accurate, and the 
actual payments align with the expected payments. In the case of ratios deviating 
significantly from one, it indicates that the estimates obtained are highly imprecise, and 
adjustments to the model must be made to reflect the actual costs of claims better. 
 
In Table 22, we can observe a table of the ratios obtained in each model over time: 
 

Model 

Period SCL MCL 
GMCL-
int GMCL 

1 99,50% 99,50% 99,50% 99,50% 
2 99,49% 99,49% 99,49% 99,49% 
3 99,29% 99,29% 99,29% 99,29% 
4 99,20% 99,20% 99,20% 99,20% 
5 99,83% 99,83% 99,56% 99,46% 
6 100,43% 100,43% 99,66% 99,55% 
7 103,53% 103,53% 99,76% 99,66% 
8 111,23% 111,24% 100,02% 99,76% 
9 122,10% 122,11% 100,20% 99,80% 
10 126,22% 126,28% 100,18% 99,75% 

Table 22: Paid-Incurred Ratios [Source: own elaboration] 

 
We can conclude that the most accurate model is the GMCL with intercepts. Both the 
SCL and MCL models show ratios for the last periods over 120%. 
 
Lastly, when we introduce the GMCL without intercepts, we see that the model adjusts 
much better, and when we add these intercepts, we reach values slightly below one, 
indicating a correct estimation of reserves. 
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5.8.Residual plots of the error terms 
 
Another way to check the model's goodness of fit is by examining the error residuals 
plots. As we already know, residuals error are the differences between the observed values 
and the values predicted by the model. 
 
If it is a good model, we expect the residuals error to be distributed around zero. If the 
residuals exhibit patterns or trends, it may indicate that the model is not capturing all the 
relevant information in the data, or that a different specification is needed. 
 
Lastly, another advantage of visualizing the residuals plot is that it allows the detection 
of outliers. This is particularly helpful as the GMCL model is highly sensitive to these 
outlier values Peremans (2018), and appropriately handling them can greatly improve the 
model's fit. 
 
The plots of the residual errors obtained for the different models are shown: 
 

 
Figure 1: Residuals Plot with SCL model. [Source: R script] 

 

Figure 2: Residuals Plot with MCL model. [Source: R script] 
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Figure 3: Residuals Plot with GMCL-int model. [Source: R script] 

 
Figure 4: Residuals Plot with GMCL with intercepts model. [Source: R Script] 

 
It is clear from the plots that all the models without intercepts exhibit a clear decreasing 
trend in their error residuals plots, indicating an overestimation of large values and an 
underestimation of small values. 
 
Therefore, the model that would provide the best fit in this case would once again be the 
GMCL with intercepts, where the residuals are distributed around zero in both cases, 
without any apparent trend or pattern. 
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5.9.EIOPA Risk Free Rate (RFR) application 
 
The results that we will present in this section have been updated using the interest rate 
curve provided by EIOPA (European Insurance and Occupational Pensions Authority). 
 
Specifically, we will use the European interest rate curve published by EIOPA without 
volatility adjustment (volatility adjustment, VA) for April 2023, as stated in EIOPA 
(2023). We will not consider other factors such as inflation. 
 
Table 23 presents a summary table of the interest rates to be used for the first ten years, 
as provided by EIOPA. 
 

Year Interest Rate 
1 3,673% 
2 3,362% 
3 3,128% 
4 2,998% 
5 2,932% 
6 2,893% 
7 2,872% 
8 2,865% 
9 2,866% 
10 2,875% 
  

Table 23: Annual EIOPA Interest Rate, May 2023. [Source: own elaboration] 

The purpose of updating the reserves with the EIOPA curve is to adjust the value of the 
technical reserves to their present value. 
 
Before delving into how reserves are updated, we need to explain what the diagonals of 
triangles are and their importance when performing this update. 
 

 Development year 𝒋 
Accident year 𝒊 𝟎 𝟏 𝟐 … 𝒌 − 𝟏 𝒌 

0 𝑐!,! 𝑐!,# 𝑐!,$ … 𝑐!,%&# 𝑐!,% 

1 𝑐#,! 𝑐#,# 𝑐#,$ … 𝑐#,%&#  
… … … … …   

𝒌 − 𝟐 𝑐%&$,! 𝑐%&$,# 𝑐%&$,$    
𝒌 − 𝟏 𝑐%&#,! 𝑐%&#,#     
𝒌 𝑐%,!      

Table 24: Diagonals of a natural year. [Source: own elaboration] 

If we look at Table 24, we can see that a claim occurred in the origin year 𝑘 − 1 but paid 
in the development year 𝑗 = 2, in terms of calendar year, has been realized in 𝑘 − 1 + 2, 
or in other words, in year 𝑘 + 1. 
 
Similarly, if we look at the origin year 𝑘, but this time at the development year 𝑗 = 1, we 
will obtain the exact same calendar year as before. 
 
By repeating this process, we end up with a diagonal of losses (as marked in gray in Table 
24) that correspond to the same calendar year. 
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These diagonals correspond to the vectors of future payments for each calendar year. We 
will update these vectors of future payments to obtain the present value of the reserves 
for each calendar year. 
 
In summary, we will take the values from each diagonal (corresponding to the same 
calendar year), sum them, and bring them to present value using the EIOPA curve. 
 
To make this update we will treat them as an income, and we will apply the classic 
formula used in the financial sector: 
 

∑ 𝑅C · (1 +	𝐸𝐼𝑂𝑃𝐴DAD)=(C=()3(
C&(,- . 

 
Where 𝑅C are the total reserves for each natural year 𝑡, that is, the sum of the diagonal of 
losses of each natural year. On the other hand, 𝑡 − 𝑘 is the number of years elapsed since 
the calendar year 𝑘. In k+2, it will be k+2–k, which is 2 years, and so on. 
 
This update is important because it allows insurance companies to comply with regulatory 
and accounting requirements, which obligates the technical reserves to be valued at their 
present value using an appropriate discount rate. The EIOPA curve is considered a 
reliable and recognized source for determining the appropriate discount rate for insurance 
valuations in the European context. 
 
Lastly, it can provide a better understanding of the current financial position of the 
company and can help in the risk management. 
 
In Table 25, is shown the vector of future payments and its present value of the two 
triangles of the GMCL model, since it has been the selected model. 
 

 Vectors of future payments 
 

Year 2023 2024 2025 2026 2027 2028 2029 2030 2031 
Present 
Value 

            
GMCL+int AUTOPAID 320748 181955 107653 56681 24554 13333 5380 2294 317 667185 

AUTOINCURRED 37339 64079 55997 33139 1005 1658 1052 470 513 180397 
            

Table 25: Vectors of future payments and their present value. [Source: own elaboration] 

 
Based on Table 25, we can conclude that the company should have total reserves of 
847,582 to meet its obligations in the coming years. 
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6. Conclusions 
 
With the completion of this work, the objective of introducing and understanding a new 
model for reserve calculation that we had not worked with during the master’s program, 
the GMCL model, and the advantages that it offers over the classical SCL or MCL models 
has been achieved. 
 
To accomplish this, a practical exercise was conducted in R, where the correlations 
between triangles and the reserves obtained in each model were visualized. 
 
Subsequently, paid-incurred ratios and error residuals plots were calculated to assess the 
model fit quality. An SCL model was developed as it ignores correlations between 
triangles and provides the same results as the classical method, allowing us to compare 
the results obtained from the classical method against those obtained from the stochastic 
method. 
 
Then correlations between triangles were included by applying the SUR methodology to 
the MCL model, and finally, a GMCL model was applied both with and without 
intercepts. It should be noted that the difference between an MCL model and a GMCL 
model is that in the GMCL model, in addition to correlation, dependencies between 
triangles are also allowed. 
 
The GMCL model with intercepts emerged as the clear appropriate, as it does not 
underestimate reserves and its residual errors are distributed close to zero. 
 
While there are various resources available to assess the quality of a model, there is no 
established criterion for selecting models, such as the Akaike criterion in statistical 
models. In this case, the knowledge and experience of the actuary play a crucial role in 
model selection. 
 
Although in our practical exercise we concluded that the GMCL model with intercepts 
had better fit quality, we cannot generalize that applying a GMCL model will always be 
better to the classical method. 
 
This multivariate methodology provides greater efficiency gain only when the triangles 
present high correlation, which, as we know, tends to decrease in the later periods. 
 
If this is not the case, it may be more advisable to apply the classical method, as the 
application of a multivariate model is much more complex. 
 
We should mention that an existing problem in developing multivariate methods is the 
over-parametrization, which refers to the inclusion of too many parameters, resulting in 
imprecise estimates. 
 
Furthermore, unlike the classical method, in the multivariate approach, the development 
factors cannot be easily obtained since they are included in the matrix 𝐵(. Estimating this 
matrix generally reduces the efficiency of the model and is one of the main reasons why 
we cannot guarantee that a multivariate model is always better than the univariate one. 
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As the purpose of this work was to introduce and gain a solid understanding of the model, 
a practical exercise was conducted without adding excessive complexity to the 
calculations. 
 
These models can become much more complex by adding parameter constraints or 
studying the optimal inclusion of intercepts in specific periods. In our case, we did not 
delve into these aspects, leaving them open for future research. 
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Appendix A: R Script 
     
A.1. Install packages and database 
                    
install.packages("ChainLadder") 
library(ChainLadder) 
 
install.packages("systemfit") 
library(systemfit) 
 
install.packages("Metrics") 
library(Metrics) 
 
database<-list(a,b) 
database<-as(database,"triangles") 
 
database 
 
triangle<-database[[1]] 
triangle   
 
triangle2<-database[[2]] 
triangle2 
 
A.2. Development Factors 
 
n <- 10 
f <- sapply(1:(n-1), 
            function(i){ 
              sum(triangle[c(1:(n-i)),i+1])/sum(triangle[c(1:(n-i)),i]) 
            } 
) 
f 
 
n <- 10 
f2 <- sapply(1:(n-1), 
            function(i){ 
              sum(triangle2[c(1:(n-i)),i+1])/sum(triangle2[c(1:(n-i)),i]) 
            } 
) 
 
f2 
                        
A.2. Obtaining Full Triangles 
 
full1<- cbind(triangle); 
for(k in 1:n) { 
  full1[(n-k+1):n, k+1] <- full1[(n-k+1):n,k]*f[k]} 
 
A<-round(full1) 
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colnames(A)<-c(0:9) 
rownames(A)<-c(2013:2022) 
 
A 
 
getLatestCumulative(triangle)  
 
full2<- cbind(triangle2); 
for(k in 1:n) { 
  full2[(n-k+1):n, k+1] <- full2[(n-k+1):n,k]*f2[k] 
} 
 
B<-round(full2);B 
 
colnames(B)<-c(0:9) 
rownames(B)<-c(2013:2022) 
 
B 
 
A.4.  EIOPA RFR 
 
EIOPA<c(3.673,3.362,3.128,2.998,2.932,2.893,2.872,2.865,2.866,2.875,2.890,2.896,2.
903) 
EIOPA<-EIOPA/100 
EIOPA 
 
 
# obtain VPF 
 
a<-matrix(c(rep(0,dim(C)[1]),mch$FullTriangle),nrow=dim(C)[1],ncol=dim(C)[1]);a 
noncumFullTriangle<-mch$FullTriangle-a; noncumFullTriangle 
 
# Obtenemos el vector de pagos futuros 
 
vpf <- rep(0, dim(C)[1] - 1) 
for (k in 1:dim(C)[1] - 1) { 
  future <- row(noncumFullTriangle) + col(noncumFullTriangle) - 1 == dim(C)[1] + k 
  vpf[k] <- sum(noncumFullTriangle[future]) 
} 
vpf 
 
 
#UPDATE VPF# 
 
EIOPA 
i.renta<-numeric(length(EIOPA)) 
for (i in 1:length(EIOPA)) {i.renta[i]<- (1+EIOPA[i])^(-i)}; i.renta 
prov.renta<-sum(vpf*i.renta); prov.renta 
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A.4. Separate Chain-Ladder 
 
# Multivariate chain-ladder using Separate Chain-Ladder ignoring correlations #  
 
fit.1 <- MultiChainLadder(database,fit.method = "OLS") 
fit.1 
 
 
C<-round(fit.1$FullTriangles[[1]]) 
D<-round(fit.1$FullTriangles[[2]]) 
 
par(mfrow = c(2, 2)) 
plot(fit.1, which.plot = 3:4)  
 
round(unlist(residCor(fit.1)), 3)  
 
 
A.5. SUR   
 
fit.2 <- MultiChainLadder2(database, fit.method = "SUR",last=3) 
fit.2 
 
round(unlist(residCor(fit.2)), 3) 
 
E<-round(fit.2$FullTriangles[[1]]) 
F<-round(fit.2$FullTriangles[[2]]) 
 
#PLOT# 
par(mfrow = c(2, 2)) 
plot(fit.2, which.plot = 3:4)  
round(unlist(residCor(fit.2)), 3)  
 
 
A.6. GMCL without intercepts 
 
fit.3<-MultiChainLadder2(database,type = "GMCL-int", last = 3) 
fit.3 
 
round(unlist(residCor(fit.3)), 3) 
 
G<-round(fit.3$FullTriangles[[1]]) 
H<-round(fit.3$FullTriangles[[2]]) 
 
 
par(mfrow = c(2, 2)) 
plot(fit.3, which.plot = 3:4) 
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A.7. GMCL with intercepts 
 
fit.4<-MultiChainLadder2(database, type = "GMCL", last = 3) 
fit.4 
 
round(unlist(residCor(fit.4)), 3) 
 
I<-round(fit.4$FullTriangles[[1]]) 
J<-round(fit.4$FullTriangles[[2]]) 
 
par(mfrow = c(2, 2)) 
plot(fit.4, which.plot = 3:4) 
 
fit.1 <- MultiChainLadder(database,fit.method = "OLS") 
fit.1 
 
fit.2 <- MultiChainLadder2(database, fit.method = "SUR",last=4) 
fit.2 
 
fit.3<-MultiChainLadder2(database,type = "GMCL-int", last = 4) 
fit.3 
 
fit.4<-MultiChainLadder2(database, type = "GMCL", last = 4, int) 
fit.4 
 
A.8. Plots summary 
par(mfrow = c(4, 2)) #scl# 
plot(fit.1, which.plot = 3) 
 
par(mfrow = c(2, 2)) 
 
par(mfrow = c(2, 2)) #mcl# 
plot(fit.2, which.plot = 3) 
 
par(mfrow = c(2, 2)) #gmcl-int# 
plot(fit.3, which.plot = 3) 
 
par(mfrow = c(2, 2)) #gmcl 
plot(fit.4, which.plot = 3) 
 
par(mfrow = c(2, 2)) #mcl + interceptos 
plot(fit.5, which.plot = 3:4) 
 
 
 
A.9. PAID-INCURRED ratios 
 
#RATIO 1: MCL-OLS = SCL#  
ultimateC<-C[,10] 
ultimateD<-D[,10] 
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ratio1<-ultimateC/ultimateD;ratio1 
 
#RATIO 2: MCL-SUR = MCL# 
ultimateE<-E[,10] 
ultimateF<-F[,10] 
 
ratio2<-ultimateE/ultimateF;ratio2 
 
#RATIO 3: GMCL-int # 
ultimateG<-G[,10] 
ultimateH<-H[,10] 
 
ratio3<-ultimateG/ultimateH;ratio3 
 
#RATIO 4:GMCL # 
ultimateI<-I[,10] 
ultimateJ<-J[,10] 
 
ratio4<-ultimateI/ultimateJ;ratio4 
 
ratios<-cbind(ratio1,ratio2,ratio3,ratio4)*100;ratios 
colnames(ratios)<-c("SCL","MCL","GMCL-int","GMCL") 
ratios 
 
 

 

 

 

 

 

 
 

 


