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Abstract

We propose a new power index, which we call the essential coalitions index. The
new index is fit to analyze influence in the formation of stable coalitions to run a
government or a company board. Within the field of power indices, it extends the
Deegan-Packel power index to situations with restricted cooperation; more specif-
ically, to the class of games introduced by Amer and Carreras in [2|. In general,
these are not simple games. We will use the essential coalitions as an analogue to
the minimal winning coalitions of a simple game, since they generalize some rele-
vant properties. Similarly to the index that inspires it, we will first define the new
index in terms of three reasonable assumptions, resembling those used in [5] for
the Deegan-Packel index. Then, we formally characterize the index, using suitable
modifications of the properties introduced in [2]| to characterize the Shapley value
in restricted games. Finally, through numeric examples, we compare the essen-
tial coalitions index to the similarly inspired, albeit more constrained, probabilistic
Deegan-Packel index. We will see that, in the latter’s domain, the two indices only

differ in their normalization.

Keywords: Cooperative games, simple games, cooperation index, stable coali-

tions, government formation.
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1 Introduction

Cooperative games have long been used to measure the power agents wield in a range of
real-life settings. In Shapley and Shubik’s seminal paper (|10]), their namesake index is
used to assess the influence a member of a committee has on the final decisions of the
group. In the framework of the Shapley-Shubik index, the decisions of the committee are
binary in nature (to pass a motion or not, in what is formally called a simple game), and

the source of power for an agent are so-called swings.

A swing for an agent is a coalition that cannot pass a motion, but becomes able to do
so if the agent at issue joins it. Thus, power stems from the decisiveness of the agent, in

the sense that their cooperation is necessary for the members of a swing to pass a motion.

Another approach to measuring power is that of the Deegan-Packel index. In this
case, the main idea is that only a certain class of coalitions will actually form in practice.
Namely, Deegan and Packel argue in [5] that “only minimal winning coalitions emerge
victorious”. In the same committee framework we established before, a minimal winning
coalition is one that is able to pass a motion, but for which this would cease to be the case
should any of its members abandon it. In Deegan and Packel’s approach, membership in

minimal winning coalitions is the source of power for agents.

Regardless of the power measure, ever since the introduction of the Shapley-Shubik
index, the literature has mostly focused on axiomatically characterizing these indices.
The first of many characterizations of the Shapley value, of which the Shapley-Shubik
index is the restriction to simple games, appears in |11], the same paper that introduced
this concept; similarly, the Deegan-Packel power index is characterized in [5|. Moreover,
as it is pointed out in the latter reference, the two characterizations diverge only slightly,
in spite of the apparent difference in their assessment of power.

There is, however, an underlying assumption that hinders the applicability of these
indices. Namely, in these initial frameworks it was assumed that agents cooperate with
each other without constraint. In such a setting, all coalitions are deemed equally likely
to form. Indeed, in particular, Deegan and Packel assume that each minimal winning
coalition has the same probability to arise.

It is not difficult to convince oneself that this is unlikely to be the case in real-life
situations. For instance, in parliament, committees are bound to have members from
different parties, and coalitions will arguably tend to form along ideological lines. This
motivates the development of models to restrict cooperation.

The most well studied such models are based on combinatorial structures that capture
the relations between the agents. In particular, graphs have been used both to convey

feasible channels of communication (|9]) and describe pairwise incompatibilities between
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agents (|4]). Both the Shapley-Shubik (]9, 3|) and the Deegan-Packel (]1]) indices have
been characterized on these restricted cooperation settings.

Arguably though, a more comprehensive restriction model is one that assesses how
likely each coalition is to remain united. This is the intent behind cooperation indices
(first introduced in |2]), which map each coalition to a value in the unit interval. In this
same reference, its authors define a restriction to cooperation in TU games via cooperation
indices, and characterize the Shapley value on the resulting class of games.

Finally, a similar but distinct approach to that of cooperation indices are probabilistic
indices. In these, a probability distribution is defined on the set of feasible coalitions.
Probabilistic generalizations of the Shapley value and the Deegan-Packel index are dis-
cussed in [7] and [6], respectively.

In both cases, though, the probabilistic indices assume probability distributions that
are “‘symmetric with respect to cardinality”; that is, the probability that a coalition forms
only depends on its size. This hampers generality. Once again referring to the parlia-
mentary framework, while forming a larger coalition requires more agreements between
parties, affecting its probability of occurring, the identities of the parties involved are also
likely to have an effect on the probability of formation.

This issue does not arise in the cooperation index approach, which has not been
studied as much. In particular, even though the Shapley value in restricted games has
been characterized, this is not the case for other power indices.

In what follows, our goal will be to fill this gap. Namely, we shall introduce and
characterize a Deegan-Packel inspired index on simple games restricted by a coopera-
tion index. We will then compare the newly introduced index to the probabilistic one.
The following section introduces the proper mathematical models needed to describe the
aforementioned situations.

In Section 3 we will introduce the restriction models of interest and their potential
applications, as well as an analogue to minimal winning coalitions on simple games re-
stricted by a cooperation index. We will use this to motivate the new power index we
propose, for which we will provide a characterization in Section 4. Finally, in Section 5

we shall compare the two indices conceptually and via some numerical examples.

2 Preliminaries

A cooperative transferable utility game (henceforth, a TU game, for short) is a pair (N, v)
where N = {1, ..., n},n > 1, is its set of players, and v : 2% — R is its characteristic
function. The elements in 2V = {5 : S C N} are called coalitions, and the only constraint
on v is v (&) = 0. We denote the set of TU games with player set N by TU(N).
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We say (N, v) € TU(N) is superadditive when v(SUT) = v(S) 4+ v(7T) for any pair of
disjoint coalitions S, T"C N. The sum of two games (N, v), (N, w) € TU(N) is defined
as a new game (N, v+ w) € TU(N), where (v + w) (S) = v(5)+w(S) VS C N. A player
i € Nin (N, v) € TU(N) is said to be null when v(SUi) = v(S) VS C N\ i[] A game
(N, v) € TU(N) is null when all of its players are null; equivalently v(S) = 0 VS C N.
We say i, j € N are symmetric players if v(SUi) =v(SUJ) VS C N~ {i,j}.

A simple game is a TU game such that v(S) € {0,1} ¥vS C N, v(N) = 1 and
v(S) < v(T) whenever S C T. The latter condition is called monotonicity. We denote
the set of simple games with player set N by SI(/N). The combination of two games
(N, v), (N, w) € SI(N) is a new simple game (N, v V w), where (vV w) (S) =1 if and
only if v(S) =1 or w(S) = 1.

If (N, v) € SI(N), we refer to the coalitions S C N such that v(S) =1 (v(S) = 0,
respectively) as winning (losing) coalitions. As such, the game is completely determined
by its set of winning coalitions, W(N, v) = {S C N : v(S) = 1}. A simple game is
superadditive if and only if no two of its winning coalitions are disjoint; we say such a
game is proper. We denote the set of proper simple games with player set N by PS(N).

The minimal winning coalitions of a simple game are those winning coalitions that
become losing should any subset of its members be removed from them. We denote this
set by W(N, v) ={S € W(N,v): T ¢ W(N, v) VI C S}. Two simple games (N, v)
and (N, w) are said to be mergeable when for any pair S € W™(N, v), T € W™ (N, w)
we have S Z T and T ¢ S.

A wvalue defined on a class of games C(IN) C TU(N) is a function f : C(N) — R™.
The i-th component of f(N, v) represents the value of player i according to f. We say
a value f is symmetric when, for every (N, v) € TU(N), we have f; (N, v) = f; (N, v)
whenever ¢ and j are symmetric players. We say f : TU(N) — R" satisfies the null
player property when, for every (N, v) € TU(N), f;(N, v) =0 if 7 is a null player.

A value f is efficient when for every (N, v) € TU(N) we have Z fi(N, v) = v(N).

We say [ satisfies additivity when, for any pair (N, v), (N, w) e TU(N), we have
fi(N,v+w) = fi(N,v) + fi (N, w) Vi € N. The following result, due to [11], shows

that there is a unique value satisfying all four of the previous properties.

THEOREM 2.1. The only value f : TU(N) — R™ satisfying the null player property,
symmetry, efficiency and additivity is the Shapley value. Given (N, v) € TU(N), for
1 € N, the value is defined as

o (N, 0y = 3 B =ISI= DY)~y s)).

n!
SCN~\1

'We abuse notation and write S U4 and N \ i, instead of S U {i} and N \ {i}, respectively.
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An index is a value defined on a subclass of simple games. The Shapley-Shubik index
is the restriction of the Shapley value to simple games.

We say an index f satisfies mergeability when, for every pair of mergeable games
(N, v), (N, w) € SI(N) and every i € N we have

_WTN, ) fi (N, v) + VT (N, w)] fi (N, w)
JilN, vvw) = W (N, vV )| ‘

As previously discussed in an informal manner, the Deegan-Packel index assesses the
power of an agent in a simple game via their membership in minimal winning coalitions.

Namely, Deegan and Packel make the following assumptions:

e Only minimal winning coalitions will emerge victorious.
e FEach minimal winning coalition has an equal probability of forming.

e Players in a minimal winning coalition divide the “spoils” equally.

From these, Deegan and Packel derive their namesake index, p, defined for every
(N, v) € SI(N) and i € N by

1 1
pi(N,v)= ——— —.
|Wm (N7 U)| SEWZ(:N,U) |S‘
€S

The following result, due to [5], provides a set of properties that determine this index.

THEOREM 2.2. The only index f : SI(N) — R”" satisfying the null player property,

symmetry, efficiency and mergeability is the Deegan-Packel index.

However, as previously suggested, Deegan and Packel’s second assumption is debat-
able. This issue is addressed by these same authors in 6], where a probabilistic gener-
alization of their index is introduced. Let f : 2¥ — (0, 1) be a probability function,
mapping each coalition to its probability of forming. It is assumed that f is symmetric
with respect to cardinality, that is, if |S| = |T|, then f(S) = f(T"). Given such f and
(N, v) € SI(N), they define the probability function

f(S) m
Pi(s) = d F0 if S € W™(N, v)

0 otherwise,

where of (N, v) = Y f(9).

SeW™(N,v)



The following result characterizes the probabilistic version of the Deegan-Packel index.

THEOREM 2.3. Given a symmetric probability function f : 2V — (0, 1), there is only
one function p/ : SI(N) — R™ such that

pl (N, v) = 0 if and only if i € N is null in (N, v).

If i, j € N are symmetric in (N, v), then p!/ (N, v) = pf(N, v).

ST pf(N, v) =1V(N, v) € SI(N).

1€EN

o If (N, v), (N, w) € SI(N) are mergeable, then

pI (N, vV w) =

Moreover, the index is defined as

_ N us)
pl(N, v) = Tpf(s),

a5 151
i€S

3 Games with cooperation indices

We begin this section by summarizing the introduction to cooperation indices in [2]. A
cooperation index over player set N is a function p : 2V — [0, 1] such that for every
i € N we have p ({i}) = 1. We will denote the set of cooperation indices over N by I(N).

The notion of the cooperation index is meant to generalize other models that restrict
cooperation among agents, in particular, the aforementioned framework of graphs. How-
ever, a specific interpretation of the index is not provided in the original paper; instead,
a list of options is given.

It is worth pointing out that, since a cooperation index does not add up to 1 in its
domain, it does not define a probability function over 2V. For the purposes of this work,
and in order to start motivating applications, we will think of a cooperation index as
conveying the stability of a coalition. Namely, given that S has formed, we will interpret
p(S) as the probability that S will remain united for a standardized period of time.

Condition p ({i}) = 1 Vi € N reinforces this idea, since there is no coalition to break
in these cases. Moreover, under this interpretation, we can justify the absence of further
structure on a cooperation index. The following example shows a reasonable scenario in

which we can define a cooperation index that is non-monotonic with respect to inclusion.



EXAMPLE 3.1. Consider the set of players N = {L, C, R} representing a left-wing, a
centrist, and a right-wing party, respectively. Arguably, the most stable non-trivial coali-
tions in 2V are S; = {L, C} and S, = {C, R}, since they only involve two ideologically
close agents. Due to its increased size and diversity, it also seems logical for the grand
coalition to have a lower cooperation index than both of these.

Finally, we can also support that S3 = {L, R} is less stable than the grand coalition.
While S5 € N, and both coalitions contain the ideological extremes, one can argue that
the presence of the centrist party in N increases communication between the other two.

All in all; it is not unsound to define p € I(N) so that p(Sy) > p(IV) > p(Ss).

Having made these observations, we proceed to establish how a cooperation index
serves as a generalization of a graph. In order to be self-complete, let us reproduce
here the communication graph restriction model due to Myerson ([9]), which is arguably
the most well studied restricted cooperation model. Let G = (N, E) be an undirected
graph whose vertices i € N are players in a simple game (N, v). In this model, an edge
{i, j} € FE indicates that players i and j can communicate.

Recall that two vertices i, 7 € S C N in a graph are said to be connected in S
when there is a path joining ¢ and j that only passes through vertices in S. We say
S is a connected set (in G) if its vertices are pairwise connected in S. The connected
components of G are its maximal connected sets.

All in all, given a game and a communication graph, in Myerson’s model players
can only communicate within the connected components of the graph, possibly through
intermediaries. Formally, given a simple game (N, v) and a graph G = (N, E), a new
game (N, v§) is defined so that v3(S) = 1 if some T C S is winning in (N, v) and
connected in G, and v3(S) = 0 otherwise.

Now, let p € I(NN) and consider the following equivalence relation ~ in N. Two players

1, j € N are related if and only if there exist coalitions Si, ..., Sk such that

e p(S,)>0Vre{l,..., k}.
e SSNS,#@Vre{l, ..., k—1}.

e €5, j€ S

The equivalence classes under this relation are called islands. Note that the connected
components of G = (N, E) coincide with the islands of any cooperation index such that
p(S) =1if S € E and p(S) = 0 whenever S is not connected. Indeed, in mathematical

terms, a cooperation index is a weighted hypergraph.



The following result shows how, in the words of Amer and Carreras, “islands are the
natural unities within which players can negotiate”, further validating their role as a

generalization of the connected components of a graph.

LEMMA 3.1. Let n > 1, N = {1, ..., n},p € I(N). If p(S) > 0, then S must be fully

contained within an island.

Proof. Since islands are the equivalence classes under ~, it suffices to show that i ~ j for
any pair of players i, 7 € S. This is seen to be true by letting £ = 1 and S; = S in the
definition of ~. ]

In other words, p(S) = 0 whenever S contains players from different islands.

DEFINITION 3.1. A game with a cooperation index is a triple (N, v, p) where (N, v) is
a TU game and p € I(N). We denote the set of games with a cooperation index with
player set N by GI(N).

Given (N, v, p) € GI(N), the p-restriction of (N, v) (as long as no confusion arises,

the restricted game) is a new TU game (N, v,) with

v,(S) =  max )Zv(T)p(T), VS C N,

PeP+(S,p Tep
where P (S, p) denotes the set of partitions of S into coalitions with positive index.

Amer and Carreras show that the restricted game above is superadditive and mono-
tonic (the latter as long as v is non-negative). They also provide a characterization for
the Shapley value on restricted games. Since our goal is to define a power index similar
to the Deegan-Packel index, we will focus on restricted simple games. Unfortunately, the
restriction of a simple game is not a simple game in general.

Nonetheless, the expression for the characteristic function of a restricted game is
greatly reduced when the original game is a proper simple game. For the sake of notation,
let PI(N) denote the set of restricted proper simple games, that is, triples (N, v, p) such
that (IV, v) is a proper simple game, p € I(N) and (NN, v,) is not a null game.

LEMMA 3.2. Let (N, v, p) € PI(N). The p-restriction of such a game satisfies

v,(S) = I%lggw(T)p(T), VS C N.

Proof. Note that, for any S C N and partition P € P* (S, p), there is at most one
winning coalition 7" € P, since we are assuming that (N, v) is a proper game. Thus, as
long as no winning 7" C S with positive index exists, v,(S) =0 = r%lggcv(T)p(T).

If, on the contrary, such T exists, then v,(S) = Tewn(q]%f)ms p(T) = r%lggw(T)p(T). O



In particular, if (N, v, p) € PI(N), then for every S C N, v,(95) is either zero, or the
value of the cooperation index on some coalition 7" C S. We may think of such a game
as modeling the formation of a government or a company board. Namely, the agents in
a coalition S seek to organize themselves in the most stable coalition; their payoff v,(S5)
is the maximum expected time for a governing coalition within S to remain united.

Be that as it may, motivates the search for a set of coalitions whose

cooperation indices capture all non-zero valued coalitions in the restricted game.

DEFINITION 3.2. Given (N, v, p) € PI(N), we define the set of essential coalitions (of

the restricted game) as

E(N,v,) ={SCN: v,(S)>v,(T)VT C S5, S # @}

We will see in that the set £ (N, v,) satisfies a property that makes its elements indeed
essential to define the restricted game. The following characterization of £ (N, v,) will

aid us in proving the aforementioned result.

LEMMA 3.3. The set of essential coalitions satisfies

E(N,v,) ={SCN: v&)p(S)>vT)p(T)VT S, S # }.

Proof. 1t suffices to show that, given a non-empty S C N, v,(S) > v,(T) VI' C S if and
only if v(S)p(S) > v(T)p(T) VT C S. For the “only if” part, using [Lemma 3.2
max v(R)p(R) = vp(S) > vp(T) = maxv(R)p(R) > o(T)p(T), ¥T' & 5.
Thus, it must be the case that v,(S) = v(S)p(S), and the implication follows.
Conversely, if v(S)p(S) > v(T)p(T) VT C S, in particular, v(S)p(S) > r%lgaéw(T)p(T).
Once again, this implies v,(S) = v(S)p(S). Since v,(T') = v(R)p(R) for some R CT C S,
it also follows that v,(S) > v,(T") VI C S. O

COROLLARY 3.1. If E € £(N, v,), then v,(E) = p(E) > 0.

Proof. It was shown in that v,(E) = v(E)p(E) > v(T)p(T) VT C E. In
particular, v(E)p(E) > v(@)p(2) =0, so v(E) > 0, p(E) > 0 and v,(E) = p(E). O

COROLLARY 3.2. If E is an essential coalition, then it is fully contained in an island.

Proof. This follows from the previous corollary and [Lemma 3.1] O

PROPOSITION 3.1. Let (N, v, p) € PI(N), C C 2¥. Suppose that for every S such that
v,(S) > 0 there is some T' € C satistying v,(S5) = v,(T) and 7' C S; then, £ (N, v,) C C.

Furthermore, the property holds for the set of essential coalitions.
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Proof. The first part of the result is equivalent tono C C £ (IV, v,) satisfying the property.
To show this is true, let C C 2V and suppose there exists £ € £ (N, v,) such that £ & C.
By definition, v,(E) > v,(T") > 0 VI' C E, so the only T' C E for which v,(E) = v,(T) is
E itself. In particular, C does not satisfy the property of interest.

For the second part, let S C N be such that v,(S) > 0. By , we know that
v,(S) = max v(T)p(T). Let R C S be the smallest coalition satistying v,(S) = v(R)p(R).
Hence, v(R)p(R) > v(T)p(T) VI' C R. By [Lemma 3.3 this implies R € € (N, v,) and
vp(R) = v(R)p(R) = v,(S), which ends the proof. O

It is worth pointing out that [Proposition 3.1 does not require that each non-zero

valued coalition contains a unique essential coalition with the same value. Indeed, nothing
prevents two essential coalitions from having the same cooperation index.

This is not unlike what occurs with minimal winning coalitions of a simple game,
which all have the same value. On the other hand, any winning coalition contains at least
one minimal winning coalition, and no smaller set of coalitions satisfies this property.
The connection between both sets is summarized in our definition of essential coalitions,

which is evocative of the minimal winning coalitions satisfying

W™ (N, v) = {SCN: v(S)>v(T) VT C S, S £ &} .

Now, recall Deegan and Packel’s assumption that, in a simple game, only minimal win-
ning coalitions “emerge victorious”. They argue in [5] that this is reasonable for players
who maximize payoffs. Within the context of government formation, this assumption im-
plies that the agents will not seek more agreements with their peers than those necessary
to form a government.

As already argued, in the original framework, the agents exhibit no preference for
any coalition. On the other hand, in restricted games, the cooperation index captures
the stability of each coalition. Our previous results convey that, if agents in a coalition
organize themselves in the most stable winning subcoalition possible, the only coalitions
that will form are the essential coalitions.

All in all, the motivation for a Deegan-Packel inspired power index on restricted proper
simple games is established. The new index will be defined by the following assumptions

on the behavior of the agents in these games:

1) Only essential coalitions will form.
2) Each of these coalitions have an equal probability of emerging.

3) Players in an essential coalition divide the benefits equally.

10



These assumptions define the essential coalitions index, ¢, which assigns each game

(N, v, p) € PI(N) to an n-dimensional vector ¢ (N, v, p) whose i-th component is

1 p(E)
(1 WD) =y, O fE
i€E

Now, we have already discussed at length the first of the three assumptions that define
this new index. The other two are merely restatements of those defining the original
Deegan-Packel power index, now in terms of essential coalitions. Let us end this section
with some observations on them.

Recall that the cooperation index is not meant to represent the probability that a
coalition is formed, but that of it not breaking up before a standard period of time.
Thus, lacking further information regarding their probability of formation, we argue in
favor of still using a uniform probability distribution over the set of essential coalitions.

As for the utility distribution between agents, we once more point out that the value of
an essential coalition need not be one. Again using the government formation framework,
we may think of the agents in an essential coalition as taking turns in leading the group.

Our assumption is that each agent will lead the coalition for the same amount of time.

4 A characterization for the new index

In this section we will identify a set of more formal properties that uniquely define the
essential coalitions index, e. The properties in our proposed characterization are very
similar to those used in [2| to characterize the Shapley value on restricted games. With
this in mind, and in order to be self-contained, let us recall them.

We say a value U : GI(N) — R satisfies

e Efficiency (E) when, for every (N, v, p) € GI(N) and every island I of p,
Z\I’i (N, v, p) = v(I).
i€l

e Fairness (F) when, for every pair (N, v, p1), (N, v, po) € GI(N) such that there is
some R C N for which p;(S) = p2(S) VS # R, and every i, j € R,

\I/'L(N? Uapl)_lpi(Nv U7p2):\1]j<N7 Uapl)_\llj(Nﬂ Uap2)‘
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e Stability (S) when for every pair (N, v, p1), (N, v, po) € GI(N) such that there is
some R C N for which p;(S) = p2(S) VS # R and po(R) = 0, and every i € R,

\Iji (N7 v, p2) < \1}1 (N7 v, pl) .

THEOREM 4.1. There is only one value ¥ : GI(N) — R" satisfying (E) and (F), namely,
U (N, v, p) = ¢ (N, vp), that is, the Shapley value of the p-restriction of (IV, v). More-

over, such U satisfies (S).

By the end of this section, we will show that our new index satisfies a similar result.

Before that, we will need to introduce the relevant properties involved in it.

DEFINITION 4.1. We say a value U : PI(N) — R" satisfies:

o Average Essential Efficiency (AvEE) when for every (N, v, p) € PI(N) and every
island I of p, if I ¢ W (N, v) then W, (N, v, p) =0, and if I € W (N, v), then

icl
> Wi (N, v, p) = SR > p(E).
icl [€ (N, )] E€&(N,vp)

ECI

e Essential Fairness (EF) when for every pair (N, v, p1), (N, v, ps) € PI(N) such
that p;(S) = pa2(S) VS # R for some R C N, and i, j € R,

|5 (N7 Up1)| (\Ill (N’ v, pl) - \Ijj (N, v, pl))
= |£ <N7 UPQ)‘ (\DZ (N> U, p2) - ‘Ij]' <N7 v, p2)) :

e Essential Monotonicity (EM) when for every pair (N, v, p1), (N, v, ps) € PI(N),

|5 (Nv Up2)|\pi (N7 v, p2) < |€ <N7 UP1)|\I]1' (N’ v, pl)'

for every ¢ € N for which & (N, v,,) C & (N, v,,) and po(E) < pi(E) for every
E € & (N, v,,), where & (N, v,) denotes the set of essential coalitions of (N, v,)

that contain player 1.

Out of these properties, the second one is the normalization of (F) via the number of
essential coalitions in each game. In contrast, the term “monotonicity” in (EM) makes

the differences between this property and (S) more noticeable. Furthermore, it can be

12



shown that the essential coalitions index does not satisfy “essential stability” defined as a
normalization of (S). Regardless, we argue that the properties we propose are reasonable.

If the cooperation index of one coalition is changed it is only fair that it produces
the same difference in payoffs for every member of that coalition. Moreover, if the new
cooperation index of that coalition is zero, we would expect the payoff allocated to its
members to decrease. Due to the relevance of essential coalitions in restricted games, it is
reasonable to normalize by the number of such coalitions when defining these properties.

It is worth pointing out that both properties resemble axioms that already exist in
the literature. Indeed, essential monotonicity is reminiscent of the minimal monotonicity
property used to characterize the Deegan-Packel power index in [§]. In [1], minimal fair-
ness is used in the characterization of the Deegan-Packel index in games with cooperation
restricted by a communication graph.

Finally, note that our notion of efficiency is well-defined due to [Corollary 3.2 which
established that any essential coalition is fully contained in an island. On the other hand,
as long as the original game is simple and proper, at most one island can be a winning
coalition. If no such island exists, then the restricted game is a null game. Any (N, v, p)
such that (N, v,) is null is excluded from PI(N); therefore, the restricted games we shall
consider have exactly one winning island.

All in all, (AvEE) states that the agents in the winning island divide a payoff of

1
e 2 ME)

EE€E(N,vp)

This quantity has a natural interpretation tied to the notion of stability the coop-
eration index conveys. Namely, if each essential coalition £ has an equal probability of
forming a government and a probability of p(E) of remaining united after a given amount
of time, then the quantity above represents the expected time the governing coalition will
stay united. In summary, those in the winning island divide among themselves the average
time during which there will be a stable governing coalition.

We will now show that (AvEE) and (EF) characterize e, which also satisfies (EM).
To do so, we will first prove an auxiliary lemma regarding the essential coalitions of two
similar restricted games. Then, we will show that the essential coalition index satisfies
the three properties at issue; finally, we will argue that no two different mappings can

satisfy the first two properties.

LEMMA 4.1. Let (N, v) € PS(N), p1, p2» € I(N) and R C N be such that, for every
S # R, p1(S) =p2S). f RZ E, then E € £(N, v,,) if and only if E € € (N, v,,).

Proof. The statement we seek to proof is equivalent to every £ € &£ (N, v,,) such that
E & & (N, v,,) containing R.

13



By [Lemma 3.3) E € £ (N, vy,) if and only if v(E)pi(E) > o(T)p(T) VT C E.
Similarly, E & £ (N, v,,) if and only if v(E)pe(E) < v(T)p2(T) for some T'C E.

It suffices to observe that, for E to satisfy both inequalities at the same time, it must
be the case that p;(T") # po(T) for some T' C E. Since the only coalition for which this
could be true is R, it follows that R C FE. O

PROPOSITION 4.1. The map ¢ : PI(N) — R" defined by satisfies average essential

efficiency, essential fairness and essential monotonicity.

Proof. We start by the first property. By the monotonicity of v, if an island I of p is not
winning in (N, v), then neither is any 7" C I. In particular, by [Corollary 3.2 no essential
coalitions are contained in such an island, and so ¢; (N, v, p) =0 Vi € 1.

If, on the contrary, I € W (N, v), then

€ (N, 0,)]) e (N, v, p) :Z 3 ‘_E

i€l €&(N,vp)
ek
p(E)
= Z Z‘_
Ec&(N,vp) 1€F
ECI
= > p(E)

E€&(N,vp)
ECI

Moving on to essential monotonicity, let (N, v, p1), (N, v, p2) € PI(N) and i € N
be such that & (N, v,,) C & (N, vp,) and pa(E) < pi(E) VE € & (N, vp,). Then,

|E (N, vp,)| & (N, v, p2) = Z pa(E)

|E]
E€E(N,vpy)
el
pi(E)
<
2. g
EeE(N,vpy)
i€cE

IN
=

—|=

=5
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Finally, for (EF) note that for any pair (N, v, p1), (N, v, ps) € PI(N) and i, j € N,

EN, o)l (6 (N, 0, ) — s (N, o, p) = 3 2B s~ D)

E| |E|
EGS(N,UPI) EGS(N,UPI)
i€k JjeE
pi(E) pi(E)
- 7y
)3 |E| 2 |E]
EGS(N,U;)I) EGS(N,UPI)
i,j€E i€, jEE
P (E) pi(E)
2 |E| 2 |E|
EGS(N,Um) EES(N,vpl)
i,jEE iZ¢E,jel
2 - N '
) D D D
EeS(N,vpl) EGS(N,UPI)
i€E,j¢E i¢EjEE

Now, if p; and p; may only differ on one coalition R, then, by [Lemma 4.1} for any
1, j € R the latter expression does not change if the index is p, instead of p;. Hence, for

any such ¢ and 7,

po(E p2 (&
|8(N7 Up1)|(ei(N> U, p1>_ej<N’ v pl)l: Z 2|(E|) - Z Té|)
EES(N,va) EE&’(N,UPQ)
i€E,j¢E gEjeE

= |5 (Nv UP2)| (ei (N7 v, p2) — ¢ (N7 v, p2>|7

where the second equality summarizes a chain of equalities analogous to that in (2)).

All in all, it is shown that e satisfies essential fairness, and the proof ends. O

THEOREM 4.2. There exists a unique map ¥ : PI(N) — R" satisfying (AvEE) and (EF).
Moreover, such WU satisfies (EM).

Proof. Existence was shown in the previous proposition; thus, it only remains to prove
that (AvEE) and (EF) uniquely define e. First of all, note that this is the case for
(N, v, p) € PI(N) such that p(S) = 1 if |[S| = 1 and p(S) = 0 otherwise. In such case,
the islands of p are the singletons. By our definition of PI(N), exactly one of them is
winning; let {i} be this island. Then, {i} is the only essential coalition of (N, v,) and so,
by (AvEE), it must be the case that U, (N, v, p) = 1, while ¥; (N, v, p) =0 if j # .
Now, let W, & : PI(N) — R" satisty (AvEE) and (EF), and let p € I(N) have the
minimum amount of non-zero index coalitions so that there is some (N, v, p) € PI(N)
such that U (N, v, p) # ® (N, v, p). By our previous discussion, we can find R C N such
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that |R| > 2 and p(R) > 0. Given such R, define a new index p’ so that p/(S) = p(S) for
every S # R and p/(R) = 0. By our choice of p, ¥ (N, v, p') = & (N, v, p').

On the other hand, by essential fairness, if 7, j € R,

|g (N7 Up)| ((I)z (N7 v, p) - (I)j (Nv v, p)) = |5 (Nv Up')| (q)z (Nv v, p,) - (I)j (Nv v, p,))
= |5 (N7 UP')| (\Ill (N7 U, p/> - \I[j <N7 U, p,))
= €N, vp)| (Vi (N, v, p) = ¥; (N, v, p))

and, rearranging terms, it follows that, for every pair i, j € R,

(bl(N? U7p)_\Iji(N7 U,p):(Dj(N, v,p)—\Ifj(N, U,p)-

Note that this will remain true for any R C N such that p(R) > 0. Therefore, it will
still hold for any pair 7, j € N such that i ~ j (see page 7 for the definition of the relation
~). To see this, given such a pair let S, ..., S, be a sequence of coalitions with positive
index p such that ¢ € S, j € Sy and S, NS, # @ Vr € {1, ..., k — 1}. Thus, for each
re{l,..., k—1} we can take i, € S.NS,,1. Now, by repeatedly applying our previous

findings, we obtain

q)z(N7 U7p)_\Iji(N7 Uup):

To summarize, it is shown that d(i) = ®; (N, v, p) — ¥, (N, v, p) is constant for i € I,
where [ is an island of p. Thus, for each island I we can define &;(I) = d(i) with 7 € 1.
By (AVEE), for every island I of p, we also have > ®; (N, v, p) = > W, (N, v, p), so

i€l el

:Z((Di(N>vap)_‘Ij va Zd ‘]’d )

i€l i€l

It follows that 67,,(] ) = 0 for every island I, which contradicts our original assumptions,
since it implies ® (N, v, p) = U (N, v, p). Thus, it must be the case that ® and ¥ are

equal everywhere, as desired. O
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5 Examples and counterexamples

Now that we have completed the theoretical analysis of the new index, we will proceed to
analyze its behavior on a series of numerical examples. In the first one, we will show that,
as previously claimed, the essential coalitions index does not satisfy “essential stability”.
Recall that a value ¥ : PI(N) — R" is said to satisfy essential stability when, for
every pair (N, v, p1), (N, v, po) € PI(N) such that there is some R C N for which
p1(S) = p2(S) VS # R and pa(R) = 0, and every i € R,

|€ (Nv Up2)| v; (N> v, p2) < ‘5 (N7 Up1)’qji (Na v, p2)'

EXAMPLE 5.1. Consider four (groups of) shareholders vying for control of a corporation.
Suppose that none of them is able to run the company alone. Nonetheless, the biggest
of them (henceforth, agent 1) can win joint control just by reaching an agreement with
one of the two next biggest holders (call them agents 2 and 3). Agents 2 and 3 together
do not hold a majority of the shares. Finally, agent 4 controls the smallest share of the
company; for this agent to get into the board, they must form a coalition with two other

shareholders. This situation can be described by the simple game (N, v) with

W™ (N, v) = { {1, 2}, {1, 3}, {2, 3,4} }.

Before introducing a cooperation index that describes the relations between the agents,
let us compute the unrestricted Deegan-Packel index, p, for this game. Agent 1 appears
in two of the three minimal winning coalitions, both of size two; agent 4 on the other

hand, only appears in one of them, which is of size three. Finally, agents 2 and 3 are

liil)
37 18 187 9/°

Now, when providing a cooperation index p € I(N) to restrict cooperation in this

game, we are only concerned about p(S) for S € W (N, v). Indeed, due to |Definition 3.1}

the cooperation index on losing coalitions has no effect on this new game; thus, in turn,

symmetric; thus, since p is efficient and symmetric, we will have p (N, v) = (

they do not affect the set of essential coalitions nor their associated power index.

That being said, consider a cooperation index p; such that p; ({1, 2}) = 0.2 and
p ({1, 3}) = 0.8, and, for every three player coalition S, let p;(S) = 0.6 if it contains
{1, 2}, and p;(S) = 0.75 otherwise. Also take p;(N) = 0.4.

In a loose sense, we may interpret the situation as follows. The preferred partner for
agent 1 is agent 3; agreements between the two largest shareholders only are unlikely
to be stable. However, in larger coalitions, size and diversity compel them to create a
commission to keep each others’ actions on check, thereby improving the working relation
between agents 1 and 2. On the other hand, for coalitions including at most one of the

two biggest shareholders, stability decreases with coalition size.
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Figure 1: The lattice of winning coalitions of (N, v) in [Example 5.1} with the value of
the cooperation index p; on each of them in parentheses. The minimal winning coalitions
of (N, v) are in boldface; the essential coalitions of (N, v,,) are underlined.

{1, 2, 3, 4} (0.4)

AT

2,3} (0.6) {1, 2,4} (0.6) {1, 3,4} (0.75) {2, 3, 4} (0.75)

N

Be that as it may, by inspecting [Figure 1] it is readily seen that

g(Nv Up1) = {{17 2}’ {17 3}7 {1’ 2, 4}’ {27 3, 4}}

is the set of essential coalitions of the restricted game. Therefore, the essential coali-

07 055 0.65 0‘45)
40 40 44 )

Observe that, while agents 2 and 3 were symmetric in the unrestricted game, the

tions index for this game is ¢ (N, v, p;) = (

essential coalition index allocates a bigger payoff to the latter. In particular, despite
agent 2 appearing in more essential coalitions (i.e. having more options to reach a stable
pact), the difference does not compensate for the fact that an agreement only between
agents 1 and 3 is significantly more stable than any of the options available to agent 2.
Consider now a cooperation index p, such that ps(S) = p1(S) for every S # {1, 3},
and py ({1, 3}) = 0. Within the established narrative, the relation between agents 1 and
3 has broken down; however, broader agreements are assumed to be robust enough to

withstand their mutual animosity. The essential coalitions of (N, v,,) are

E(N, v,,) = {{1,2}, {1,2, 3}, {1,2 4}, {1, 3,4}, {2,3,4}}.

Hence, the essential coalitions index is now e (N, v, po) = (22, &2 8T 0T)  Note
that agents 1 and 2 appear in the same number of essential coalitions, and with the same
cooperation indices; the same occurs for agents 3 and 4. As a consequence, agents 1 and

2 have the same essential coalition index in this game, and so do agents 3 and 4.
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On the other hand, essential stability has been violated. Indeed,

IE (N, vp,)]e1 (N, v, pa) =0.75 > 0.7 = |E (N, vy, )| e1 (N, v, p1)

and

|8 (N> /UPQ)’ €3 (N’ v, p2) =0.7>10.650= |8 (N, vpl)‘ €3 (N> v, pl)'

We do observe that, for agents 1 and 3, their essential coalition index has decreased
due to having ps ({1, 3}) = 0: we have ¢; (N, v, p2) = %2 = 0.15 < 0.175 = ¢; (N, v, p1)
and e3 (N, v, po) = 0.14 < 0.1625 = e3 (N, v, p1), respectively. In light of this, we may
suspect that the essential coalitions index does satisfy the same notion of stability as the

Shapley value on restricted games. The following example shows that this is not the case.

EXAMPLE 5.2. Consider the six player simple game (N, v) with

W™ (N, v)={{1, 2}, {2,3,4,5,6}}

and the cooperation index p;(S) = 1 VS C N. Note that € (N, v,,) = W™ (N, v);
moreover, the essential coalitions index coincides with the Deegan-Packel index of the

original game,

0.5 0.7 0.2 02 0.2 0.2 1 7 1 1 1 1
e(N,v,pl):p(N,v):( ______ ):< )

Consider now the cooperation index po defined by po(S) = p1(S) VS # {1, 2} and
p2 ({1, 2}) = 0. The essential coalitions of the restricted game (N, v,,) are

E(N,v,) ={{1, 2, 3}, {1, 2,4}, {1, 2,5}, {1, 2,6}, {2,3,4,5,6}}.

Hence, the essential coalitions index is

1.33 1.53 0.53 0.53 0.53 0.53) (4 23 8 8 8 8
C\157 757 757 75 5 75 )

Q(N,U,pg):<57 57 57 57 57 5

Even though the index for player 2 has decreased from ey (N, v, p;) = % = 0.35 to

eo (N, v, po) = % ~ 0.307, player 1 has actually improved from e¢; (N, v, p;) = i =0.25
to e (N, v, py) = % ~ 0.267. To validate our calculations, note that essential fairness

and average essential efficiency are satisfied.
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Indeed, for the former we have

|E (N, vp,)| (e2 (N, v, p1) —e1 (N, v, p1)) =0.7—0.5
=02=153-1.33
= |g (N’ ’UPQ)‘ (22 (N7 v, p?) — € (N7 v, p2)) .

For (AvEE), note that for both p; and ps, N is their only island; this follows from
and the fact that p(/N) > 0. Thus, since all essential coalitions of (N, v,,)
and (NN, v,,) have cooperation index one, to show that the property is satisfied, it suffices
to observe that both e (N, v, p1) and ¢ (N, v, py) add up to one.

The previous example hints at the following property of essential coalitions. For any
simple game (N, v), if p € I(N) is monotonically non-increasing with respect to inclusion,
then £ € £ (N, v,) if and only if E € W™ (N, v) and p(E) > 0. In other words, the
essential coalitions of the restricted game are those minimal winning coalitions of the
original game with positive cooperation index.

This follows directly from [Definition 3.2 We will now show that, if p is also symmet-
ric with respect to cardinality, then the essential coalitions index and the probabilistic
Deegan-Packel index only differ in their normalization.

Let (N, v, p) € PI(N), and suppose that £ (N, v,) = W™ (N, v) and p is symmetric

with respect to cardinality. Thus, so is the probability function f(S) = Zp (i)(T)' Now,
TCN
for each player ¢ € N, the probabilistic index satisfies
v(S v(S f(s
Ao =3 e = 3 G
a8 SeWn (N v) WeWm (N, v)
—1
f(s
o D > ﬁ
Wewm(N,w) SEW™(N,v)
’LES
~1
_ 3 (W) 3 p(5) 1
vkt D ) soiifn 2P0 19
i€s

-1

p(5)
= 2 2. g
Wewm(N,w) SewméN,v)
1€
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Note that this implies that normalizing p to be a probability function over 2V was
irrelevant; the effect of this operation was cancelled out in the computation of the prob-
abilistic index. Be that as it may, under our assumptions the essential coalitions index

of i in (N, v, p) satisfies

Ty p m Ty p(S)
ei(N7U7p) |€ N Up | ‘ |W (N7U)| ' ‘S‘ .
S€e&(N,vp) SEW™(N,v)
€S €S

In particular, the normalization ¢ defined by

e; (N, v, p)
> ¢ (N, v, p)

JEN

EZ(Nv U7p):

coincides with the probabilistic index in this case. In other words, ¢ generalizes p/,
since the probabilistic index is only applied when f defines a probability function over
2N and is symmetric with respect to cardinality. We have already established that a
cooperation index is not as constrained.

Many power indices are normalized to one, including the Shapley-Shubik index and
the Deegan-Packel index. This feature is desirable in order to compare how different
power indices distribute payoffs in the same scenario. Even though we will use ¢ to
compare the essential coalitions index to other indices, we will argue that it is meaningful
for ¢ not to be efficient.

We will delve deeper into this in the next section. For now, we end this section

with two more examples, in which the cooperation index is symmetric with respect to

cardinality.

EXAMPLE 5.3. Let (N, v) be the five player simple game with

W (N, o) = {{1, 2}, {1, 3,4}, {1, 3,5}, {1, 4,5}, {2, 3,4,5}

and consider the cooperation index defined as p;(S) = Gl SI for every non-empty S C N.
Since p; is decreasing with respect to size, £ (N, v,,) = W™ (N, v). Hence, the essential

coalitions index for (N, v, p;) is

Now, if we denote by f; the normalization of py, i.e. fi(S) = 1—:;)@), then the

probabilistic Deegan-Packel index p/t (N, v) is
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One can verify that, as expected from our previous discussion, for each i € N we have

~ ¢; (NJ v, pl) f
(N, v, py) = = ol (N, v).
¢ ( v pl) Z ¢ (N, v, pl) 2 ( U)

JEN

EXAMPLE 5.4. Consider the same game and cooperation index as in[Example 5.3| and the
new cooperation index p, defined as p(S) = p1(S) as long as |S| # 2, and let py(S) = £
if |S| = 2. Then,

E(N, v,,) = W™(N, v)U{{1, 2,3}, {1,2,4}, {1,2,5}}.

and so the essential coalitions index evaluates to

¢ (N, v, po) ~ (0.0958, 0.0620, 0.0495, 0.0495, 0.0495) .

By taking fo(S) = % and computing the probabilistic Deegan-Packel index

TCN

o2 (N, v), we obtain

p'? (N, v) =~ (0.299, 0.112, 0.196, 0.196, 0.196) .

For the sake of comparison, let us normalize the essential coalitions index,

T(N, v, p2) ~ (0.313, 0.202, 0.162, 0.162, 0.162) .

As expected, now the normalization does not coincide with the probabilistic index. In
fact, while they agree in that player 1 should be allocated the highest payoff and players
3 through 5 are symmetric, they differ on whether the latter should get more or less than
player 2. Namely, the (normalized) essential coalitions index allots more to player 2 than
to players 3 through 5.

This is explained by this player appearing in more essential coalitions. These have
a positive effect in the namesake power index, and, in this case, compensate for the
low cooperation index of {1, 2}. On the contrary, the probabilistic index only captures
the negative consequences of player 2 being involved in this minimal winning coalition,

compared to those with higher cooperation index in which players 3 through 5 participate.
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6 Final remarks

Models to restrict cooperation are of great importance in game theory, as they provide a
more realistic approach to analyze the results of the interactions between agents. In this
work, we studied the broad restriction model of cooperation indices; more specifically, we
focused on the study of power in so restricted games.

Our main contribution is the essential coalitions indez, a new index fit to analyze
several real-life situations. In particular, it is suitable to assess power in the formation of
the board of a corporation, or a governing coalition in a parliamentary system. In such a
process, the cohesion of the governing coalition is a relevant factor, and this is one feature
the restriction model describes.

By design, the new index has similarities with the Deegan-Packel power index (|5]).
Indeed, as motivation for the essential coalitions index, we argued that some of the
assumptions that define the Deegan-Packel index were not realistic. For one, we claim
that not only minimal winning coalitions will be formed; instead, in some occasions,
having more agents involved in a coalition will make it more stable.

We also observed the need to generalize the probabilistic Deegan-Packel index (|6]),
which aims to address the fact that “not all coalitions are equally likely to form”; but,
arguably, uses a rather constrained model to do so. To be specific, in the probabilistic
model, a probability function over the set of coalitions is given, but it is required to only
depend on its size. This is a very strong and possibly unrealistic condition.

Indeed, it negates the importance of the identity of the members of a coalition in
its probability of forming. All in all, the probabilistic index will satisfy a notion of
symmetry with respect to the unrestricted game, but at the expense of the generality of
the restriction model.

For its part, the cooperation index is a much more flexible restriction model: it is a
function from the set of coalitions to the unit interval with the only condition of mapping
singletons to the value one. Also, crucially, it encompasses other models of restriction,
including Myerson’s communication model (|9]), which has been more thoroughly studied
(see |2] for more models that can be expressed as specific cases of the cooperation index).

And yet, the essential coalitions index retains a notion of symmetry, with respect
to the restricted game. Namely, given (N, v, p) € PI(N), it can be shown that if two
players i, j € N are symmetric in (N, v,), then ¢; (N, v, p) = ¢; (NN, v, p). This follows
from the definition of ¢ in and the fact that two players ¢, j € N are symmetric in
(N, v, p) if and only if for each essential coalition E; containing i there is exactly one

essential coalition Ej; such that j € E; and p (E;).
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One key difference between the probabilistic index and the essential coalitions index,
though, is in regards to efficiency. In general, the new index is not efficient; instead, it
satisfies the property of average essential efficiency, introduced in Section 4. This is a
consequence of the conceptual differences between the two indices.

As previously said, the probability function used for the probabilistic index is meant
to measure the chance a given coalition has of forming. In contrast, the cooperation index
conveys the stability of a coalition. For the sake of example, in the government formation
framework the cooperation index of a coalition can be understood as the probability it
has to remain united until the end of the term.

As such, we interpret the essential coalitions index of an agent as the expected fraction
of the full term for which they lead the governing coalition. The “efficiency gap”, that is,
the quantity 1— > e; (IV, v, p) accounts for the possibility that the government collapses
at some point, ariglj\z; caretaker government is put in place. More specifically, this efficiency
gap is interpreted as the expected time during which a caretaker government is running
the country or institution at issue.

Nonetheless, we did see in Section 5 that the normalization of the essential coalitions
index, ¢, does generalize the probabilistic index. Accordingly, the characterization in
Section 4 could be altered to apply to this normalization. Due to ¢ being a generalization
of the probabilistic index, we argue in favor of using it only when the cooperation index
defines a probability function over the set of coalitions. In doing so, its interpretation
remains intact: the normalized index conveys the expected fraction of the term for which
an agent leads the governing coalition provided that it does not fall apart.

All of this is begging for the combination of the two approaches: a probability function
assessing the chances each coalition has to emerge victorious, and a cooperation index
indicating their stability. We hope to explore this in the future. To see how it might
make for a more complete model, let us turn to the property of essential stability and
Example 5.1

There, we analyzed the consequences of the cooperation index of coalition {1, 3}
dropping to zero, with all other coalitions remaining as stable as they were. At first, this
may seem an unlikely scenario; if p ({1, 3}) changes, it seems reasonable that so will the
cooperation index of coalitions that contain {1, 3}. We argue that the probability that
one such coalition is formed does decrease, but, with the right agreements in place, their
stability (which is conditional on the coalition forming) does not change.

Now, in spite of its desirable features, the new index is not without its questionable
assumptions. In acknowledging them, we open the possibility to amend them in future

works; with this in mind, we dedicate the closing paragraphs to mentioning two of them.
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The first one regards the equal division of payoffs. Within the framework of govern-
ment formation, at the end of Section 3 we interpreted this hypothesis as the members
of the governing coalition taking turns in leading it. The assumption is that at the end
of the term each member has been the leader for the same amount of time.

In practice, even in coalition governments, this is hardly the case. Usually, the senior
partner of the coalition serves as its leader, with others providing either external support
or occupying secondary roles in government. Moreover, when there is a power-sharing
agreement in place, it will likely be only the two biggest partners those who will share
the position of leader of the government.

To solve this, we may justify our assumption as each member having equal influence
on policy. While still debatable, it is closer to reality: even small partners will make
demands in exchange for their support to the governing coalition. Either way, we point
out that this issue already appeared in the definition of the original Deegan-Packel index.
In other words, its authors did consider reasonable that members of a minimal winning
coalition evenly divide their collective payoff.

The final issue we will address is how fit the essential coalitions are for the assumptions
that define their namesake index. For the sake of example, let us turn to [Figure 1}
We showed there that S = {1, 2, 4}, with a cooperation index of 0.6, was an essential
coalition, despite not being a minimal winning coalition.

This was reasonable in that example. Since |S| = 3, equally dividing p(S) = 0.6
between its members yields 0.2 to each of them. On the other hand, if agents 1 and 2
did not reach an additional agreement with agent 4, they would split p ({1, 2}) = 0.2,
which yields 0.1 for each player. Thus, agents 1 and 2 have an incentive to enlarge their
coalition.

But, if, for instance, p(S) = 0.27, then, equally dividing this among the three agents
yields 0.09 to each of them. In other words, assuming they are rational, now agents 1
and 2 have no interest in reaching an agreement with agent 4. Nonetheless, our definition
would still deem S an essential coalition.

This is arguably a more contentious point than the previous one. One could be in
favor of using a family of coalitions that more accurately reflects the agents’ rationality to
define an analogous power index. There are possibly several alternatives in this direction.

All in all, it is worth noting that the essential coalitions were defined by extending to
restricted games a property of minimal winning coalitions of a simple game. As such, in
any case, we consider that the essential coalitions index is a reasonable extension of the

Deegan-Packel index, although it is likely not the only one.
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