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Primary Sjögren’s syndrome (pSS) is an autoimmune disease triggered by a combination

of environmental and host genetic factors, which results in the focal lymphocytic

infiltration of exocrine glands causing eye andmouth dryness. Glandular infiltrates include

T and B cell subsets positive for CD5 and/or CD6, two surface scavenger receptors

involved in the fine-tuning of intracellular signals mediated by the antigen-specific

receptor complex of T (TCR) and B (BCR) cells. Moreover, the epithelial cells of

inflamed glands overexpress CD166/ALCAM, a CD6 ligand involved in homo and

heterotypic cell adhesion interactions. All this, together with the reported association

of functionally relevant single nucleotide polymorphisms (SNPs) of CD5, CD6, and

CD166/ALCAM with the risk or prognosis of some immune-mediated inflammatory

disorders, led us to investigate similar associations in a local cohort of patients with

pSS. The logistic regression analyses of individual SNPs showed the association of

CD5 rs2241002T with anti-Ro/La positivity, CD6 rs17824933C with neutropenia, and

CD6 rs11230563T with increased leukopenia and neutropenia but decreased peripheral

nervous system EULAR Sjögren’s syndrome disease activity index (ESSDAI). Further

analyses showed the association of haplotypes from CD5 (rs2241002T-rs2229177C)

with anemia and thrombocytopenia, CD6 (rs17824933G-rs11230563C-rs12360861G)

with cutaneous ESSDAI, andCD166/ALCAM (rs6437585C-rs579565A-rs1044243C and

rs6437585C-rs579565G-rs1044243T) with disease susceptibility and several analytical

parameters (anti-nuclear antibodies, neurological ESSDAI, and hematologic cytopenias).

These results support the relevance of gene variation at loci coding for cell surface

receptors involved in the modulation of T and B lymphocyte activation (CD5, CD6) and

epithelial-immune cell adhesion (CD166/ALCAM) in modulating the clinical and analytical

outcomes in patients with pSS.
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INTRODUCTION

Primary Sjögren’s syndrome (pSS) is a chronic, systemic
rheumatic disease characterized by the lymphoplasmacytic
infiltration of exocrine glands—mainly salivary and lacrimal
glands—resulting in sicca syndrome and systemic manifestations
(1). It is a common disorder (prevalence of 0.5–1% in the general
population) with a female/male ratio of approximately 9:1 (2,
3). pSS is considered as a complex and multifactorial process
whose pathogenesis involves environmental factors, such as viral
infections, combined with sex hormonal, genetic and epigenetic
factors, causing epithelial cell barrier disruption followed by an
abnormal immune cell-mediated inflammatory response (4, 5).

Periductal immune cell infiltrates in the affected glands of
patients with pSS include CD5- and/or CD6-positive T and B cells
(6–9). CD5 and CD6 are two highly homologous lymphocyte
surface receptors of the scavenger receptor cysteine-rich
superfamily (SRCR-SF) (10). They are expressed on all T cells and
a subset of B cells (B1a) involved in the production of polyreactive
natural antibodies, and they are abnormally expanded in the
peripheral blood of patients undergoing autoimmune disorders,
such as pSS and systemic lupus erythematosus (SLE) (6, 10, 11).
Both receptors are signal-transducing molecules that modulate
intracellular activation and differentiation signals from the
antigen-specific receptor complex of T (TCR) and B (BCR)
cells to which CD5 and CD6 physically associate (12–14). In
addition, CD5 and CD6 act as pattern recognition receptors
(PRRs) by recognizing microbial-associated molecular patterns
(MAMPs) from the bacterial, fungal, viral, and parasitic origin
(15–17). Particularly, CD5 has been shown to interact with
fungal β-glucans (18), hepatitis C virus (19), and tegumental
structures of Echinococcus granulosus (20), while CD6 interacts
with lipopolysaccharide, lipoteichoic acid, and peptidoglycan
from Gram-negative and -positive bacteria (21), gp120 from
human immunodeficiency virus 1 (22), and the tegumental
components of E. granulosus (20).

A central phenomenon in the immunopathogenesis of
pSS is the aberrant epithelial cell activation status (pSS has
been described as an autoimmune epithelitis) (23, 24). This
results in the increased expression of human leukocyte antigen
(HLA)-DR, costimulatory, and adhesion molecules. Among
the latter, overexpression of the well-known CD6 ligand
CD166/ALCAM has been reported in pSS epithelial lesions (8,
9, 25). CD166/ALCAM (for activated leukocyte cell adhesion
molecule) is an adhesion molecule of the immunoglobulin
superfamily with a broad tissue distribution, such as epithelia,
endothelia, neurons, myeloid progenitors, hematopoietic stem
cells, mesenchymal stem cells, bone marrow stromal cells,
and cancer cells (26). Interestingly, CD166/ALCAM establishes
not only homophilic (ALCAM-ALCAM) but also higher
affinity heterophilic (ALCAM-CD6) interactions with the CD6
lymphocyte receptor, which facilitate cell interactions of T or B1a
lymphocytes with epithelial and endothelial cells (26–28).

Studies aimed at the genetic basis of pSS show the associations
of both human leukocyte antigen (HLA) and non-HLA genes
with pSS susceptibility. The HLA-DR and HLA-DQ alleles have
shown the strongest associations across different ethnicities (29,

30). The long, though still incomplete, list of non-HLA genetic
polymorphisms contributed by genome-wide (GWAS) and gene-
driven association studies includes interferon regulatory factor
5 (IRF5), signal transducer and activator of transcription 4
(STAT4), B lymphocyte kinase (BLK), tumor necrosis factor-α
(TNF-α), interleukin (IL)-4, IL-10, IL-12A, C-X-C chemokine
receptor type 5 (CXCR5), surfactant protein-D (SP-D), and
Mannan-binding lectin (MBL) (30–36).

Single nucleotide polymorphisms (SNPs) at the CD5, CD6,
and CD166/ALCAM gene loci have been associated with
different immune-mediated inflammatory diseases (IMID) (37).
Specifically, CD5 variation has been associated with rheumatoid
arthritis (RA) susceptibility (38) and the development of lupus
nephritis (39). CD6 and CD166/ALCAM SNPs have been
identified and validated as risk factors for the development and
progression of multiple sclerosis (MS) (40–42), psoriasis severity
(43), Behçet’s disease risk (44), and inflammatory bowel disease
(IBD) risk (45, 46).

Given the expression of CD5, CD6, and CD166/ALCAM
in pSS inflamed tissue and the association of their SNPs with
other IMIDs, we hypothesize that variation at CD5, CD6,
and CD166/ALCAM loci may impact the pathology of pSS.
The results of the present candidate gene-driven association
analysis show that CD5, CD6, and CD166/ALCAM genetic
polymorphisms are associated with the clinical and analytical
parameters of the disease in a local cohort of pSS patients.

MATERIALS AND METHODS

Subjects
Consecutive patients with pSS (n= 212) attending to theHospital
Clínic de Barcelona, Barcelona, Spain were included in the study
(Table 1). Patients fulfilled the 2002/2016 criteria approved by the
American-European Consensus Group (47). Exclusion criteria
for considering SS as a primary disease were chronic HCV/HIV
infection, previous lymphoproliferative processes, and associated
systemic autoimmune diseases. Diagnostic tests for SS (ocular
tests, parotid scintigraphy, and salivary gland biopsy) were
performed according to the European Community Study Group
recommendations (48).

Unrelated volunteers (n= 305) from the Banc de Sang i Teixits
(BST) from Generalitat de Catalunya were included as controls
(143 women and 162 men).

The study was approved by the local Hospital Ethics
Committee, and written informed consent was obtained from all
participants before inclusion and blood extraction.

Definition of Variables
Disease diagnosis was defined as the time when the attending
physician confirmed the fulfillment of the 2002/2016 criteria
(47). The main disease features were retrospectively collected
and analyzed. The following clinical variables were selected for
harmonization and further refinement: age, gender, ethnicity,
country of residence, fulfillment of the 2002/2016 criteria items,
antinuclear antibodies (ANA), rheumatoid factor (RF), C3 and
C4 levels, and cryoglobulins. The epidemiological variables
included in this study were age at diagnosis, gender, and
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TABLE 1 | General characteristics of the primary Sjögren’s syndrome (pSS)

cohort.

Variables n (%)

Gender (Female) 202 (95.3)

Ethnicity (Caucasian) 201 (94.8)

Age at diagnosis 54 (14.4)

Dry mouth 212 (100)

Dry eyes 205 (96.7)

Schirmer test (abnormal) 185/194 (95.4)

Salivary scintigrahy (abnormal) 163/180 (90.6)

Minor salivary gland biopsy (positive) 103/113 (91.2)

Antinuclear antibodies (positive) 181/211 (85.8)

Rheumatoid factor (positive) 98/208 (47.1)

Anti-Ro/La antibodies (positive) 151 (71.2)

Anti-Ro 143 (67.5)

Anti-La 103/211 (48.8)

Monoclonal gammopathy 25/142 (17.6)

Low C3 levels (<0.82 g/L) 19/210 (9)

Low C4 levels (<0.11 g/L) 13/207 (6.3)

Cryoglobulins 17/201 (8.5)

Cytopenias 109/211 (51.7)

Anemia (Hb < 110 g/L) 43/211 (20.4)

Leukopenia (<4,000/mm3 ) 57/211 (27)

Thrombocytopenia (<150,000/mm3) 23/211 (10.9)

Neutropenia (<1,500/mm3 ) 53/211 (25.1)

Lymphopenia (<1,000/mm3 ) 21/211 (10)

ESSDAI domains (activity)

Constitutional 28 (13.2)

Lymphadenopathy 27 (12.7)

Glandular 60 (28.3)

Articular 93 (43.9)

Cutaneous 37 (17.5)

Pulmonary 41 (19.3)

Renal 5 (2.4)

Muscular 1 (0.5)

Peripheral nervous system 23 (10.8)

Central nervous system 8 (3.8)

Hematological 159 (75)

Biological 141 (66.5)

Total ESSDAI (baseline) 7.4 (6.8)

Total ESSDAI (cumulative) 10.2 (8.5)

ethnicity according to the Food and Drug Administration
(FDA) definitions (49). Systemic involvement at diagnosis was
retrospectively classified and scored according to the EULAR
Sjögren’s syndrome disease activity index (ESSDAI) (50), which
evaluates 12 domains or organ systems, and the ClinESSDAI
(51), which evaluates the same domains but excluding the last
(biological) domain. Each domain is divided into 3–4 levels
according to the degree of activity and scored as 0 (no activity),
1 (low activity), 2 (moderate activity), or 3 (high activity) (52).
Disease activity states (DAS) were calculated as: no activity
(global score = 0), low activity (global score 1–4), moderate

activity (global score 5–13), and high activity (global score
≥14) (53).

Additionally, cumulative systemic involvement was classified
and scored according to the ESSDAI. Cumulative systemic
involvement was defined as the systemic activity present since the
diagnosis of pSS to the last medical visit.

Genotyping
DNA was purified from ethylenediaminetetraacetic acid
(EDTA)-treated peripheral blood using the QIAamp DNA
Blood Mini Kit (Qiagen, Venio, The Netherlands) and subjected
to real-time (RT)-PCR with the following TaqMan probes:
CD5 rs2241002 (assay number: C__25472293_20), CD5
rs2229177 (assay number: C___3237272_10), CD6 rs17824933
(assay number: C__33967506_10), CD6 rs11230563 (assay
number: C__31727142_10), CD6 rs12360861 (assay number:
C__25922320_10), and CD166/ALCAM rs6437585 (assay
number: C__29281365_20), all from ThermoFisher Scientific
(Barcelona, Spain). Primers for PCR amplification and further
sequence-base typing (PCR-SBT) of CD166/ALCAM rs579565
and rs1044243, which lie 2 bp apart from each other, were
also from ThermoFisher Scientific (Hs00666884_CE assay).
SNP genotyping and clinical data are available at a public
repository (54).

Statistical Analyses
Statistical analyses were performed with R 3.6.0 (R Foundation
for Statistical Computing, Vienna, Austria). Genotypic statistical
associations among the SNPs and susceptibility or disease
outcomes were tested by generalized linear models using the R
package “SNPstats.” For each analysis, 4 models were generated
(codominant, dominant, recessive, and log-additive), and the
model with the lowest Akaike information criterion (AIC) was
chosen. The p values were corrected for false discovery rate (FDR,
q values). Haplotypic analyses were performed with generalized
linear models by means of the R package “haplo.stats.”

RESULTS

A total of 212 patients with pSS with a mean age of 54
years at diagnosis were included in the study, most of them
were women (95.3%) and presented dry mouth (100%) and
dry eyes (96.7%). The association of individual SNPs with
susceptibility and the clinical parameters of pSS was first
investigated (Supplementary Table 1). Sex is a major risk factor
in pSS, so statistical models for subphenotypical analyses were
generated with or without including sex as a covariant, and their
goodness of fit compared with the AIC. The results presented
here do not include sex as a covariant, as these models had lower
AIC. Susceptibility analyses were performed only with female
patient cases and controls. No significant association was found
between any individual CD5, CD6, and CD166/ALCAM SNPs
and pSS susceptibility, although the CD166/ALCAM rs579565A

allele showed a trend for statistical association in women (q =

0.064) (Table 2).
Regarding association with pSS clinical parameters, the CD5

rs2241002C allele was found associated with a higher frequency of

Frontiers in Medicine | www.frontiersin.org 3 March 2022 | Volume 9 | Article 822290

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Casadó-Llombart et al. Gene Variation in Sjögren’s

TABLE 2 | Logistic regression analyses of CD166/ALCAM SNP association with pSS susceptibility.

Gene SNP Model Genotype Controls (%) pSS cases

(%)

OR (95% CI) q value

CD166/

ALCAM

rs579565 Recessive G/G-G/A

A/A

139 (97.9)

3 (2.1)

169 (91.4)

16 (8.6) 4.39 (1.25, 15.36)
0.064

TABLE 3 | Logistic regression analyses of CD5 and CD6 SNPs association with anti-Ro/La antibodies, neutropenia, leukopenia, and peripheral nervous system (PNS)

EULAR Sjögren’s syndrome disease activity index (ESSDAI) activity.

Gene SNP Model Genotype No anti-Ro/La

(%)

Anti-Ro/La

(%)

OR (95% CI) q value

CD5 rs2241002 Recessive C/C-C/T 55 (90.2) 149 (98.7) 0.046

T/T 6 (9.8) 2 (1.3) 0.12 (0.02, 0.63)

No neutropenia

(%)

Neutropenia

(%)

CD6 rs17824933 Dominant C/C

C/G-G/G

75 (50.3)

74 (49.7)

33 (73.3)

12 (26.7) 0.37 (0.18, 0.77)
0.022

No leukopenia

(%)

Leukopenia

(%)

rs11230563 Recessive C/C-C/T

T/T

121 (85.8)

20 (14.2)

34 (65.4)

18 (34.6) 3.20 (1.53, 6.73)
0.019

No neutropenia

(%)

Neutropenia

(%)

Recessive C/C-C/T

T/T

127 (85.8)

21 (14.2)

28 (62.2)

17 (37.8) 3.67 (1.72, 7.84)
0.008

No PNS ESSDAI

activity (%)

PNS ESSDAI

activity (%)

Dominant C/C

C/T-T/T

50 (28.7)

124 (71.3)

12 (60.0)

8 (40.0) 0.27 (0.10, 0.70)
0.041

anti-Ro/La antibody positivity (Table 3). The CD6 rs17824933G

allele was associated with decreased risk of neutropenia (Table 3),
and the CD6 rs11230563T allele with increased leukopenia and
neutropenia, but decreased ESSDAI peripheral nervous system
(PNS) activity (Table 3).

Haplotypic analyses showed the association of CD5
rs2241002T-rs2229177C haplotype with an increased risk of
anemia and thrombocytopenia (Table 4). The CD6 rs17824933G-
rs11230563C-rs12360861G haplotype was associated with an
increased risk of ESSDAI cutaneous activity (Table 5). The
CD166/ALCAM rs6437585C-rs579565G-rs1044243T haplotype
was associated with increased ANA positivity, ESSDAI PNS
activity, and hematologic cytopenias, such as anemia and
lymphopenia (Table 6).

Case-control analyses to assess the influence of CD5, CD6,
and CD166/ALCAM haplotypes on pSS risk were also performed.
To account for the gender skew in pSS, only female cases
and controls were included in this haplotypic analysis. The
results showed that the only associations with pSS susceptibility
were with theCD166/ALCAM rs643785C-rs579565A-rs1044243C

(CAC) and rs643785C-rs579565G-rs1044243T (CGT) haplotypes
(Table 6), which were over-represented in the case cohort,

indicating the association of rs579565A and rs1044243T alleles
with pSS susceptibility.

DISCUSSION

The pathophysiology of pSS is complex and multifactorial. How
the innate and adaptive immune responses are dysregulated
through both cellular- and humoral-mediated processes (30) is
still poorly understood. Identifying genetic factors associated
with pSS may help in the better comprehension of pathogenic
mechanisms leading to the overall pSS phenotype and clinically
heterogeneous subsets of patients (55). By using a candidate
gene-driven strategy, the present work shows evidence on the
impact of CD5, CD6, and CD166/ALCAM gene variants in the
susceptibility and clinical expression of pSS, thus supporting their
involvement in pSS pathophysiology.

CD5, CD6, and CD166/ALCAM variation study in pSS
responds to: first, the three genes encode functionally relevant
and related cell surface receptors. CD5 and CD6 are highly
homologous lymphocyte receptors of the ancient and highly
conserved SRCR-SF and are encoded by contiguous genes likely
resulting from a duplication event (56, 57). Both CD5 and
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TABLE 4 | Logistic regression analysis of CD5 haplotype association to anemia and thrombocytopenia.

Haplotype Anemia

rs2241002 rs2229177 % in cohort % No % Yes p value OR (95% CI)

C C 41.0 41.8 39.9

C T 39.1 38.9 38.0 0.941 1.02 (0.58, 1.78)

T T 15.2 16.5 12.0 0.399 0.69 (0.29, 1.62)

T C 4.7 2.8 10.0 0.032 4.48 (1.14, 17.60)

% in cohort Thrombocytopenia

% No % Yes

C C 41.0 39.7 35.9

C T 39.1 41.4 35.9 0.905 1.07 (0.46, 2.50)

T T 15.2 15.1 14.1 0.872 0.93 (0.27, 3.19)

T C 4.7 3.8 14.1 0.036 5.83 (1.12, 30.29)

Significant haplotypes are shown in bold.

TABLE 5 | Logistic regression analysis of CD6 haplotype association to cutaneous affectation. Only the 4 most common haplotypes are shown.

Haplotype Cutaneous ESSDAI activity

rs17824933 rs11230563 rs12360861 % in cohort % No % Yes p value OR (95% CI)

C C G 32.6 35.2 20.1

G C G 23.6 22.1 31.4 0.012 2.85 (1.26, 6.43)

C T A 22.4 22.3 20.8 0.141 1.81 (0.82, 4.00)

C T G 20.6 20.0 25.8 0.055 2.26 (0.98, 5.12)

Significant haplotypes are shown in bold.

CD6 are expressed by all T cell types and the B1a cell subset,
with the lower levels of expression in other cell types (e.g.,
macrophages, dendritic cells, or natural killer cells) (10, 13),
all found in pSS periductal immune cell infiltrates (6–9). From
the functional point of view, CD5 and CD6 are considered
relevant signaling immune receptors at the interphase of the
innate and adaptive immune responses as a result from their
involvement in (i) the recognition and sensing of bacterial,
viral, and/or parasitic MAMPs (17) and (ii) the fine-tuning
of lymphocyte activation signals delivered by clonotypic T
and B antigen-specific receptors, which they are physically
associated to (58–60). While the nature of the endogenous
CD5 ligand is yet uncertain, one of the most-well studied
CD6 ligands is CD166/ALCAM, a cell adhesion molecule
overexpressed in pSS salivary gland epithelial cells (8, 9, 25), but
also RA synovium (61), MS blood–brain barrier endothelium
(62), and lupus nephritis kidneys (63), thus contributing to
T and B cell migration and infiltration at inflamed tissues in
autoimmune processes.

Second, several CD5, CD6, and/or CD166/ALCAM gene
variants have been associated with different IMIDs, such as
RA (38), lupus nephritis (39), MS (40–42), psoriasis (43),
Behçet’s disease (44), and IBD (45, 46) (Supplementary Table 2).
The CD5, CD6, and CD166/ALCAM SNPs included in the
present study were selected not only for being informative
in the above-mentioned IMIDs but also for their putative

functional relevance. Regarding CD5, the rs2241002 (C > T)
and rs2229177 (C > T) SNPs result in amino acid substitutions
at the extracellular SRCR2 domain (Pro224>Leu) and just next
to a cytoplasmic ITAM-like motif (Ala471>Val), respectively
(39, 64). Functional studies show that homozygous carriers
for the ancestral rs2241002C-rs2229177C haplotype (Pro224-
Ala471) present increased T-cell proliferation and cytokine
release and a bias toward a Th2 profile, compared with the
homozygous carriers of more recently derived rs2241002C-
rs2229177T haplotype (Pro224-Val471) (39). Regarding CD6, the
rs11230563 (C>T) and rs12360861 (G>A) SNPs result in amino
acid substitutions at the extracellular SRCR2 (Arg225>Trp) and
SRCR3 (Ala271>Thr) domains, respectively, and the intron
1 rs17824933 (C>G) SNP results in the skipping of exon 5
and expression of a CD6 isoform lacking the SRCR3 domain
(CD61d3), in which the CD166/ALCAM-binding site locates
(65). Functional studies show that the CD6 rs11230563C-
rs2074225C haplotype (Arg225-Ala257) results in higher CD6
surface expression on CD4+ and CD8+ naïve T cells and NKT
cells (41). The carriage of CD6 rs17824933G allele results in an
increased CD61d3/full-length CD6 ratio driving to lower CD4+

T cell activation responses (66). Regarding CD166/ALCAM,
the rs6437585 (C > T) SNP maps at the 5’-untranslated
region (UTR) and is known to influence the transcriptional
activity of CD166/ALCAM (42, 67), while the rs579565 (G
> A) and rs1044243 (C > T) SNPs result in synonymous
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TABLE 6 | Logistic regression analysis of CD166/ALCAM haplotype association with anti-nuclear antibodies (ANA), cytopenia, anemia, lymphopenia, peripheral nervous

system (PNS) ESSDAI activity, and pSS susceptibility.

Haplotype ANA positivity p value OR (95% CI)

rs6437585 rs579565 rs1044243 % in cohort % Negative % Positive

C G C 55.1 58.4 54.3

C A C 27.3 30.5 27.2 0.685 0.87 (0.46, 1.66)

C G T 13.0 3.7 14.3 0.045 4.64 (1.04, 20.81)

T G C 3.0 4.5 3.0 0.494 0.57 (0.11, 2.90)

Cytopenia

% in cohort % No % Yes

C G C 55.4 58.0 53.1

C A C 27.1 27.8 26.3 0.975 0.97 (0.61, 1.54)

C G T 12.8 9.0 16.5 0.027 2.14 (1.08, 4.21)

T G C 3.0 3.5 3.0 0.657 0.71 (0.16, 3.15)

Anemia

% in cohort % No % Yes

C G C 55.4 57.1 49.0

C A C 27.1 26.7 27.6 0.632 1.15 (0.65, 2.06)

C G T 12.8 11.0 20.7 0.030 2.25 (1.08, 4.66)

T G C 3.0 3.6 0.0 – –

Lymphopenia

% in cohort % No % Yes

C G C 55.4 56.1 56.3

C A C 27.1 27.4 18.8 0.907 0.95 (0.44, 2.08)

C G T 12.8 11.3 18.8 0.030 2.64 (1.10, 6.35)

T G C 3.0 3.2 0.0 – –

PNS ESSDAI activity

% in cohort % No % Yes

C G C 55.1 55.6 52.5

C A C 27.3 28.1 20.0 0.404 0.70 (0.30, 1.62)

C G T 13.0 11.5 25.0 0.036 2.56 (1.06, 6.15)

T G C 3.0 3.1 0.0 – –

pSS susceptibility

% in pool % controls % cases

C G C 58.5 63.3 54.8

C A C 24.4 20.6 27.3 0.044 1.51 (1.01, 2.24)

C G T 11.4 8.8 13.3 0.046 1.72 (1.01, 2.95)

T G C 4.2 5.8 2.7 0.274 0.62 (0.26, 1.47)

Only the 4 most common haplotypes are shown. Significant haplotypes are shown in bold.

(Leu300>Leu) and non-synonymous (Thr301>Met) changes
at the extracellular C1-like domain (42) with still unknown
functional consequences.

Individual SNP and haplotypic analyses showed the
association of CD5, CD6, and CD166/ALCAM SNPs
with different pSS clinical parameters. Thus, the CD5
rs2241002C allele and the minor CD5 rs2241002T-rs2229177C

haplotype, previously associated with a more aggressive
form of SLE (lupus nephritis) (39), showed association with
anti-Ro/anti-La antibody positivity, and with anemia and
thrombocytopenia, respectively. This could be interpreted
as a result of hyperactive autoantibody-producing B cells
(most likely CD5+ B1a cells) in pSS carriers of such
CD5 variants.

Frontiers in Medicine | www.frontiersin.org 6 March 2022 | Volume 9 | Article 822290

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Casadó-Llombart et al. Gene Variation in Sjögren’s

The individualCD6 rs11230563C allele was associated with the
higher risk of PNS ESSDAI activity, and the CD6 rs17824933G-
rs11230563C-rs12360861G haplotype with cutaneous ESSDAI
activity. This is reminiscent of the increasedMS risk and psoriasis
severity previously reported for rs11230563C allele (40, 43, 68–
70). It is noteworthy that both rs17824933G and rs11230563C

alleles were associated with the reduced risk of neutropenia. Since
both alleles impact the extracellular region of CD6 (an increased
expression of CD61d3 isoform and Arg225 to Trp substitution
at SRCR2, respectively), it remains to be analyzed whether
this relates to the reported surface CD6 (and CD166/ALCAM)
expression by hematopoietic cell progenitors present in the bone
marrow and in mobilized blood (71, 72).

The CD166/ALCAM (rs6437585C-rs579565G-rs1044243T)
haplotype was found associated with the increased incidences
of ANA positivity, neurological affectation, and hematologic
cytopenias. These results further support the damaging
role of CD6 rs17824933G and rs11230563C alleles and
of CD166/ALCAM rs1044243T allele by worsening some
analytical and clinical parameters of pSS. Interestingly,
haplotypic analyses showed the association of CD166/ALCAM
rs6437585C-rs579565A-rs1044243C and rs6437585C-rs579565G-
rs1044243T haplotypes with increased pSS susceptibility.
This supports a role for minor rs579565A and rs1044243T

alleles in pSS susceptibility, which is reminiscent of the
earlier age of MS diagnosis reported for the rs579565A

allele (42).
The association of CD5, CD6, and CD166/ALCAM SNPs with

pSS phenotype highlights the relevance of genetic variation at
loci related with immune activation in pSS pathophysiology. In
addition, this is illustrated by the previously reported association
of HLA-DR and HLA-DQ, IRF5, STAT4, BLK, TNF, IL4RA,
IL10, IL12A, CXCR5, TNFAIP3, MTHFR, CD28, CTLA4, IKZF1,
HIF1A, AKNA, SFTPD, and MBL2 loci with pSS (30–36, 73, 74)
(Supplementary Table 3). Interestingly, CD5 and CD6 interact
with microorganisms, such as SP-D and mannose-binding lectin
(encoded by SFTPD and MBL, respectively). This brings out the
relevance of microbial/pathogen recognition in pSS.

We are aware of some limitations in the present study
regarding: first, the limited number of pSS cases and controls
in this single-center study. Second, only a single patient cohort
was available for the analysis in spite of our efforts to access
validation cohorts with the necessary subphenotypical data for
replicates. Therefore, validation in an independent cohort is
pending for significant confirmation of the role of CD5, CD6, and
CD166/ALCAM gene variants in pSS.

In summary, we identified the CD166/ALCAM rs579565
and rs1044243 SNPs as pSS risk markers, and the CD5
rs2241002,CD6 rs17824933 and rs11230563 andCD166/ALCAM
rs1044243 SNPs as disease modifiers markers. Further studies in
independent cohorts will be required to validate these results.
Nevertheless, our observations are the first to support a role
for CD5, CD6, and CD166/ALCAM variation in pSS, and they
highlight the shared immunogenetic basis of different IMIDs
(75). These results, along with the identification of other genetic

factors involved in pSS etiopathogenesis, may also help to
classify patients and allow better identification, management, and
treatment of the disease.
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