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antimicrobial drug activity on a wide spectrum of pathogens

by Marcos DE LA TORRE

Predictive modelling of antimicrobial activity of molecules is a crucial step to-
wards the discovery of anti-infective medicines. Unfortunately, there is a shortage
of models covering endemic pathogens of the Global South, reflecting the existing
bias in research towards diseases prevalent in wealthy countries.

This project has developed a pipeline to systematically build drug discovery
models, in particular antimicrobial activity prediction models for small molecule
compounds. The data of assay results on a selected pathogen is extracted from a
publicly available database: ChEMBL. This data is then cleaned and processed in
order to build predictive models with various Automated Machine Learning (Au-
toML) techniques using the ZairaChem tool from the Ersilia Open Data Initiative.

The pipeline has been applied on 6 pathogens of great relevance to global health
known as ESKAPE, for which the data has been obtained and processed, and base-
line models created. We have built the full set of final models for one of these
pathogens, Staphylococcus aureus. The pipeline can be used on any other pathogen
for which ChEMBL has sufficient data. This pipeline will be used to deploy mod-
els in the Ersilia Model Hub, a repository of pre-trained ML for drug discovery in
global health. This will be an opportunity to compensate for the shortage of ML
models adapted to the needs of the Global South.
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Chapter 1

Introduction

1.1 Motivation

Predictive modelling of antimicrobial activity of molecules is a crucial step towards
the discovery of anti-infective medicines. Unfortunately, there is a shortage of mod-
els covering endemic pathogens of the Global South, reflecting the existing bias in
research towards diseases prevalent in wealthy countries.

In particular, there is a shortage of models for the six pathogens known collec-
tively as ESKAPE. These are:

• Enterococcus faecium

• Staphylococcus aureus

• Klebsiella pneumoniae

• Acinetobacter baumannii

• Pseudomonas aeruginosa

• Enterobacter (various species)

The study (Ikuta et al., 2022) estimated the number of global deaths caused
by 33 of the most deadly bacterial pathogens (figure 1.1), with a disproportionally
high rate of the years of life lost occurring in Sub-Saharan Africa. The six ESCAPE
pathogens, which have been selected as proof of concept for our model building
pipeline, are among the top in this list.

FIGURE 1.1: Global number of deaths by pathogen and infectious
syndrome, 2019. Chart from (Ikuta et al., 2022)
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1.2 Technical problem statement

Overall, the goal is to compile bioactivity data from public repositories and build
machine learning models from it.

The information on the result of experiments on compounds activity against
pathogens are scattered in scientific papers and other sources. Fortunately, the ChEMBL
project has done an enormous amount of work to compile and harmonize this data.
Still, before we can use it to train a predictive model, the data needs preparations
and some decisions need to be made.

The idea is to be able to build models in a systematic way, so that the same
pipeline can be applied to any pathogen (having sufficient data in the ChEMBL
database) to gather the data, transform it, use it to train the models, and evaluate
them. To build models without the need of manual intervention, AutoML tech-
niques can be used, such as those provided by the ZairaChem tool from the Ersilia
Open Data Initiative.

The pipeline will be applied to build models for the six ESKAPE pathogens.

1.3 Previous work

There is an acceptable amount of compound bioactivity prediction models for some
well-studied pathogens, such as Plasmodium falciparum (malaria) and Mycobacterium
tuberculosis (tuberculosis). Unfortunately, models for ESKAPE pathogens are scarce
due to low interest by pharmaceutical companies.

This project is a practical application of previously developed methods and tools.
In particular, we have used the ZairaChem tool to build the models, that in turn
relies on a number of existing chemical descriptor models and AutoML frameworks.
Zairachem is described in detail in section 2.4.

1.4 Ersilia Open Data Initiative

Ersilia Open Data Initiative (www.ersilia.io) is a tech non-profit organization sup-
porting research against infectious and neglected diseases in low-income countries.

The Ersilia Model Hub is a repository of pre-trained Machine Learning mod-
els for infectious and neglected disease research. It aims at providing open source
AI/ML tools to accelerate drug discovery in global health, with a particular focus on
the needs of the Global South. The repository is populated with models from the sci-
entific literature (with appropriate acknowledgement) as well as models developed
by the Ersilia team or contributors.

http://www.ersilia.io
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Chapter 2

Background info and theory

2.1 Automated Machine Learning (AutoML)

Building a Machine Learning model usually requires to make a number of decisions,
mainly in data preprocessing, the choice of the ML algorithm, and choice of hyperpa-
rameters. An Automated Machine Learning (AutoML) framework automates some
or all of these decisions.

AutoML is currently a very popular trend, and the number of available frame-
works is growing quickly. Here we mention the ones that Zairachem uses at the
moment.

• FLAML (Wang et al., 2021) is used in the majority of the Zairachem submodels,
fitting Random Forest and XGBoost models. Its main differentiating feature is
high speed.

• AutoGluon-tabular (Erickson et al., 2020), which Zairachem applies on top of
its 12-variable embedding, builds sophisticated ensemble models in multiple
layers. It has ranked very high in benchmarks against other AutoML frame-
works.

• KerasTuner (O’Malley et al., 2019) is a framework that finds optimal hyperpa-
rameters for a neural network. Zairachem uses it on top of the Grover model in
Zairachem. This makes sense because Grover is a pre-trained neural network,
and with KerasTuner we can add one or more extra layers that get trained on
our specific data.

• In addition, a Convolutional Neural Network (CNN) is used in one of the
submodels, to make use of the Molmap descriptors. Although a CNN is not
properly AutoML, in this case it plays an analogous role, since it is used with
the default configuration and has been shown to perform well without the
need of hyperparameter tuning (Shen et al., 2021).

It is important to remark that Zairachem is modular and designed to incorporate
any additional descriptors and AutoML frameworks in order to further improve
performance.

2.2 Drug Discovery

The research and development of new drugs (Drug Discovery) is expensive and
time-consuming. Over 90% of drug candidates fail during the clinical trial phases
(Namba-Nzanguim et al., 2022). Because of this, methods that can successfully se-
lect the most promising candidates are very valuable. In particular, computer-based
simulations or models (called in silico methods), are an effective tool.
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FIGURE 2.1: Example Drug Discovery pipeline - Image from Schmidt
et al., 2014

The advances in Artificial Intelligence and Machine Learning in recent years is
leading to important improvements in data-driven drug discovery. Machine Learn-
ing allows to build models with higher predictive power than traditional statistical
models, and they often offer results also with limited amounts of data. In particu-
lar, Machine Learning models are being applied successfully to perform screening
of drug candidates, reducing the cost of the process.

Figure 2.1 shows an overview of a Drug Discovery process that includes in silico
profiling.

2.2.1 Assay types

In order to determine if a compound is effective against a pathogen, there are differ-
ent assay strategies. Some of the most common ones are described here. For each
of these four, our pipeline will build specific prediction models if sufficient data is
available.

• Minimum Inhibitory Concentration (MIC)

A MIC assay determines the lowest concentration of a compound that com-
pletely inhibits visible growth of a pathogen over a defined time period. It is
usually determined by exposing the pathogen to an incremental series of the
compound concentrations. Usually measured in µg/mL or in nM.

• Inhibition Zone (IZ)

An IZ assay consists on growing a culture of the pathogen on a plate, and then
adding a small amount of the compound to the plate in the form of a disc. The
area around the disc that is free of growth is called the inhibition zone. The
larger the inhibition zone, the more effective the antimicrobial is at inhibiting
the growth of the pathogen. Usually measured in mm.

• Inhibition

An Inhibition assay is performed by adding the compound to a solution con-
taining the pathogen and measuring the remaining activity of the pathogen
after a certain amount of time. The resulting percentage of inhibition is the
comparison between the activity before and after adding the compound. Mea-
sured in %.

• Half-maximal Inhibitory Concentration (IC50)
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An IC50 assay tries to determine the concentration of the compound required
to inhibit 50% of the growth of the pathogen. This is done by trying different
concentration values, observing the response, and then fitting a curve to find
the 50% point. Usually measured in µg/mL or in nM.

2.2.2 Machine Learning in Drug Discovery

The majority of Machine Learning tasks in Drug Discovery are:

• Supervised (classification or regression), as in our case

• Unsupervised: Typically clustering

• Generative: Used to invent new candidate molecules

Our project will deal with supervised models to predict molecular bioactivity.
This kind of models are a type of quantitative structure-activity relationship (QSAR)
modeling.

2.3 ChEMBL Database

2.3.1 What is ChEMBL

ChEMBL ((Mendez et al., 2018)) is a large, open-access bioactivity database. It compiles
information about small molecules and their biological activity. The information is
obtained from published journal articles, data on approved and candidate drugs,
from other databases such as PubChem, BioAssay and BindingDB, as well as de-
posited data from other institutions. The data is maintained manually by curators.

In this project we use ChEMBL release 31, from July 2022. It contains information
from over 85000 documents, totaling more than 19 million measurements for over
2.3 million compounds (source: ChEMBL31 release notes).

2.3.2 Available data on important pathogens

We have queried the ChEMBL database to quantify the number of assay results (ac-
tivities) that are available for the 20 pathogens that cause the most deaths, according
to the chart shown in 1.1. We can see that Chembl contains a rich amount of data for
most of these pathogens.
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Pathogen Data points in ChEMBL

Staphylococcus aureus 132,317
Escherichia coli 187,614
Streptococcus pneumoniae 20,104
Klebsiella pneumoniae 31,464
Pseudomonas aeruginosa 99,448
Acinetobacter baumannii 32,064
Enterobacter spp 8,257
group b Streptococcus ~1,200
Enterococcus faecalis 20,580
Enterococcus faecium 8,288
non-typhoidal Salmonella ~12,000
group a Streptococcus ~20,000
Salmonella typhi ~4,700
Neisseria meningitidis 531
Campylobacter spp 1,450
Shigella spp 3,799
Proteus spp 9,079
Haemophilus influenzae 6,701
Serratia spp 3,103

The central entity in the Chembl database is the assay. The main properties of
an assay that are relevant to this project are the following: compound, assay type,
measurement units, value...

2.3.3 Target Organism vs Protein

In ChEMBL, all assays are associated to a target. The target can be a complete organ-
ism, a specific protein, or others (such as tissues or cell lines).

For our models, we will only consider organism and protein targets. Some mod-
els will be built to predict activity against organisms (the entire pathogen), other
models on activity against specific proteins.

In any case, we are primarily interested on assays targeting organisms. Protein
targets are interesting as a complement, but we have data for only a few proteins out
of the thousands of proteins in an organism.

2.3.4 SMILES data

The Simplified Molecular-Input Line-Entry System (SMILES) is a format to describe
chemical formulas of compounds using short ASCII strings. It is widely used in
computational Chemistry. Many Chemical databases (such as ChEMBL) and Ma-
chine Learning models utilize SMILES.

In this project, the models receive their input in the form of SMILES strings.

2.4 ZairaChem tool

ZairaChem is a machine learning (ML) tool to build small molecule activity predic-
tion models. It is fully automated, not requiring manual choices of algorithms or
hyperparameters. It is meant to work with limited computing resources.
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See Turon et al., 2022 for a more detailed description of the tool and a success
story using ZairaChem in a real setting in South Africa.

ZairaChem takes as training data a set of molecules in SMILES format together
with an indicator of activity (1-0 binary variable).

In order to build models that predict the activity, we need to obtain numerical
properties (descriptors) based on the SMILES text string. ZairaChem uses various
existing methods for this purpose. The idea is that combining descriptors of very
different nature, the models can adapt to a variety of tasks. The following descrip-
tors are currently used by ZairaChem:

• Classic descriptors: Contain basic physico-chemical properties

• Classic fingerprint: 2048 binary variables encoding atomic connectivity (atoms
and bonds between them)

• Chemical Checker (Duran-Frigola et al., 2020): Known and inferred bioactivity.
A vector of 3200 components.

• ECFP fingerprint: 2D structural fingerprints (morgan counts). A vector of 2048
components. Similar concept to the Classic fingerprint but counts instead of
binary

• Mordred (Moriwaki et al., 2018): >1600 physicochemical parameters

• Grover embedding: graph-based embeddings. 5000 dimensions

• Molmap (Shen et al., 2021): Two 2D images built with descriptors, where pixels
of the image that are close to each other correspond to correlated descriptors

Once the descriptors are generated, the submodels will be trained, each using
one of the previous descriptors and an appropriate Machine Learning algorithm.
By default ZairaChem trains 9 submodels. The following table lists the submodels,
what descriptors they are based on, and the Machine Learning Algorithm that builds
them (typically an AutoML framework - see section 2.1).

Submodel Descriptor ML Algorithm

classic Classic descriptors FLAML
fingerprint Classic fingerprint FLAML
cc-signaturizer Chemical Checker FLAML
morgan-counts ECFP fingerprint FLAML
mordred Mordred FLAML
grover-embedding Grover embedding FLAML
manifolds Grover embedding Manifold + AutoGluon
reference-embedding Grover embedding Keras Tuner
molmap Molmap CNN

At prediction time, each of these submodels will give a binary classification score,
and the 9 results are aggregated into a single score.

Chapter 4 provides more detail about the ZairaChem pipeline.
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Chapter 3

Methodology and data

3.1 Data extraction from ChEMBL Database

We have developed two python modules to carry out the data extraction from the
ChEMBL Database into the datasets required for the models: the function chembl_activity_target
and the class ChemblMoleculeSampler.

3.1.1 Function to extract required fields from ChEMBL

A python function (chembl_activity_target) has been created to extract from the
ChEMBL database a list of assay results (called "activities" in the database) for a
given pathogen. The extraction includes a number of useful variables from different
tables, such as:

• Activity results: molecule used, value, units, etc.

• Assay information: type, publication, etc.

• Target information: organism, protein

This information is deduplicated and standardized into a clean data set.
The criterion to select a pathogen is based on searching for a given text in the

organism’s name. If a more sophisticated selection is required, a practical approach
is to use this function with a more generic value, and then filter the resulting dataset
as desired.

3.1.2 Class to obtain negative cases

It may happen that a data extraction of assay results for a given pathogen has a
majority of positive results. This is mostly due to the existing positive reporting bias
in biomedicine, where positive (active) results are more likely to be published than
negative results.

In this case, completing the data with a sample of negative cases may help to
build a better model. A possible approach for this is to select randomly some molecules
used in other assays in ChEMBL, making sure that we exclude those that are known
to be positive. While these molecules are not 100% guaranteed to be negative, the
probability that a random molecule is active against our pathogen just by coinci-
dence is extremely low (certainly below 1%, much less for ESKAPE pathogens). This
approach makes sense because ChEMBL is a good representative of the chemistry
space used in Medicine.

This procedure is implemented in the class ChemblMoleculeSampler. It will gen-
erate a random sample of molecules of the required size, making sure that they do
not belong to a given set of known active molecules.
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3.2 Regression or classification?

The results of an experiment as provided in a publication (and therefore in the
ChEMBL database) is usually a continuous value (examples: 1000nM, 0.5µg/ml,
80%) Because of this, we would be tempted to use a regression model for it. How-
ever, there are some reasons to prefer a classification model:

• Some of the input data is very skewed.

• Often the input data capped to a certain value (e.g., ≥ 1000nM).

• Most important of all: the drug development processes work as a pipeline with
several steps. Each drug candidate may pass a step or not pass it. This means
that the user is not interested in the exact measurement value, rather in the
likelihood that the molecule is considered active.

The continuous values will be converted into a binary result ("active" or "not
active"), based on a given threshold. The threshold will be different depending on
the assay type and the measurement units.

In a brainstorming session with subject matter experts from Ersilia, we also de-
cided to build two versions of every model, with two different thresholds. One of
the thresholds (high confidence) will be more demanding, and the other (low confi-
dence) more relaxed. The scientist who uses the models will choose one or the other
based on the required task, or they may use some kind of combination of the results
of the two models.

3.3 Configuring activity threshold values

The threshold values to define what results are active or not are provided in the con-
figuration table, which the pipeline will use when building the datasets for training.
This configuration table defines, for each combination of assay type and measure-
ment units:

• active_direction: +1 or -1

• threshold low confidence

• threshold high confidence

An active direction value of +1 indicates that a value higher than the threshold
will be active. If the active direction is -1, a value lower than the threshold will be
active. This depends on the type of experiment and the units used, and it cannot be
deduced from the database values.

We have provided a configuration table that covers the most common combina-
tions of assay type and measurement units used in the ChEMBL data corresponding
to the six ESKAPE pathogens. If the process is applied to other pathogens, it is pos-
sible that the table needs to be expanded to cover new assay types and/or units. The
assay results data that does not match the configuration file will not be included in
the datasets for training the models. If this is the case for a large amount of data, a
warning will be issued.

Our current version of the configuration table is the result of an iterative process
working together with subject matter experts from Ersilia. Based on the statistics of
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TABLE 3.1: Configuration table (extract)

standard type standard units active direction low cut high cut

MIC ug.mL-1 -1 2.5 0.5
IZ mm 1 15 20
MIC nM -1 5000 1000
Inhibition % 1 50 80
IC50 nM -1 5000 250

the data and the knowledge of the usual acceptance criteria in each kind of experi-
ment, after a few iterations, the current version is considered useful for modeling. It
is likely we will want to refine some of the thresholds after we have more experience
using this modeling process. Besides, our code is open source and any other user
may want to customize this configuration.

In some assays, the exact measurement result is not provided and instead a qual-
itative explanation is given in the text. The ChEMBL database, in this case, may store
the text "Active" or "Not Active" in the activity comment field (a free text field), and
the numeric value will be missing. Our process also includes these cases and records
them active or not as indicated by ChEMBL.

Some additional data cleaning is done to standardize some values and remove
possible invalid values. In the end, we obtain a clean dataset with the molecule
representation (smiles) and the activity indicator (0 or 1).

For illustration, table 3.1 contains the 5 most frequent combinations of assay
type (standard_type) and measurement units (standard_units), with the selected
thresholds for low confidence (low_cut) and high confidence (high_cut).

• MIC (µg/mL), figure 3.1

• IZ (mm), figure 3.2,

• MIC (nM), figure 3.3

• Inhibition, figure (%) 3.4

• IC50 (nM), figure 3.5

3.4 Prediction tasks

We will build several models for each pathogen, so they can be useful for different
tasks. Initially we want to build a model for a pathogen of interest that predicts if a
given molecule is active against the pathogen. This may mean to kill it, but also to
inhibit its growth or make it less harmful. We call this initial generic task organism-
anytype. The model for this task will use all the assays that are marked as targeting
the organism (pathogen).

It may also be useful to define tasks for the most common types of assay. For
example, the task organism-mic aims to predict the activity of a molecule against the
pathogen when used in an assay of type MIC. If a researcher wants to perform a
MIC experiment and wishes to obtain promising candidates for it, a model based on
this task may be more helpful than the generic model.
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FIGURE 3.1: Value distribution for MIC (µg/mL)

FIGURE 3.2: Value distribution for IZ (mm)

FIGURE 3.3: Value distribution for MIC (nM)
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FIGURE 3.4: Value distribution for IZ (mm)

FIGURE 3.5: Value distribution for IC50 (nM)
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Furthermore, sometimes there are very large-scale assays that try thousands of
molecules. It is possible to build a model just on the data from that assay, which
may be very precise if a researcher decides to perform a very similar experiment
with other molecules. Because of this, we also define a task for each of the largest
assays on the selected pathogen.

In addition to assays targeting an organism, ChEMBL also classifies other assays
as targeting a specific protein of the pathogen. These are much more focused assays,
and they aim at obtaining very particular effects. We will define a task for each of
the target proteins for which the database contains a minimum amount of data.

For each organism and task, two models will be generated (high and low con-
fidence) if the amount of data is considered sufficient. For this there is a config-
urable parameter with the required minimum number of positive (active) cases in
the dataset. Currently the limit is set at 30 positive cases, which seems to be a bare
minimum based on the experience implementing Zairachem in a real setting (Turon
et al., 2022).

In the end, for a given organism we may have between 4 and 28 models depend-
ing on how much data ChEMBL has on that organism.

Table 3.2 lists all the tasks for which models may be built.
Given a pathogen, the program create_datasets automatically creates a dataset

for each of the models that will be trained for that pathogen. The program takes care
of the following:

1. Obtain from the ChEMBL database all the assay results for the required pathogen

2. Merge with the configuration table to obtain active direction and low/high
confidence activity thresholds

3. Calculate activity value (target variable for the models)

4. For each of the tasks indicated in 3.2:

(a) Filter data as required for the task (by target type, assay type, individual
assay, individual protein)

(b) Fill up with sampled negative cases if less than 50%

(c) Store the resulting datasets if minimum size requirements are met

In the end, a total of 72 datasets were generated for the 6 ESKAPE pathogens.
See the full list in appendix B.

3.5 Split into training and test data

Each dataset will be split into a training and a test set. The test set (about 20%) will
be used to obtain model performance statistics that indicate how good the model is.

An alternative strategy would have been k-fold cross validation. This would of-
fer a more robust measurement of the model performance. However, the training of
these models is costly (see table 4.1), and running for instance a 5-fold cross valida-
tion would take 5 times longer and become intractable within the timeframe of this
project.

The most usual approach to the train-test split is to perform a random sampling
of the data. In our case, however, this does not offer a realistic assessment of the
model performance.
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TABLE 3.2: Tasks

Task Description

organism_anytype model trained using assays that target the pathogen
organism_mic model trained using assays of type MIC that target the pathogen
organism_iz model trained using assays of type IZ that target the pathogen
organism_inhibition model trained using assays of type Inhibition that target the pathogen
organism_ic50 model trained using assays of type IC50 that target the pathogen
organism_assay_top1 model trained with one specific assay (top 1 amount of data)
organism_assay_top2 model trained with one specific assay (top 2 amount of data)
organism_assay_top3 model trained with one specific assay (top 3 amount of data)
protein_any model trained using assays that target any protein
protein_top1 model trained with one specific protein (top 1 amount of data)
protein_top2 model trained with one specific protein (top 2 amount of data)
protein_top3 model trained with one specific protein (top 3 amount of data)
protein_top4 model trained with one specific protein (top 4 amount of data)
protein_top5 model trained with one specific protein (top 5 amount of data)

The historical data that we have of the assays performed usually cover a small
subset of all the chemical space of possible molecules. Drug design is an iterative
process based on making modifications to promising new compounds. Therefore, a
random split does not necessarily simulate a realistic prospective scenario.

When we try to predict the behavior of a molecule that is similar to existing
molecules in the training dataset, the model will typically perform well, as this task
is easy (comparable to interpolation). On the other hand, predicting a molecule that
is very different to the molecules used for training the model is difficult (comparable
to an extrapolation).

We want the test dataset to emulate the situation that we will find when the
model is used on real cases that may be quite different from the training cases.
ZairaChem helps with this by offering a command to generate train-test splits with
different criteria. We will try three criteria:

• Random

• Scaffold

• Similarity

The random split criterion just selects randomly 20% of the data for the test set.
This will evaluate the performance when predicting molecules that are similar to the
ones we already know.

The scaffold split criterion classifies each of the molecules into groups based on
their scaffold, which can be thought of as the core of the molecule. Molecules with
the same scaffold tend to have properties in common. This split method ensures
that the test set contains different scaffolds than the training set. This emulates the
situation of trying to predict molecules that are genuinely novel. The performance
metrics obtained with this split are expected to be worse.

The similarity split criterion relies on a measure of similarity between molecules.
Based on this measure, the dataset is divided into 5 clusters using LSH clustering.
This results in similar molecules being in the same cluster. One of these clusters will



16 Chapter 3. Methodology and data

be chosen as test set. Typically, the difficulty of this task is a balance between the
random split (easy) and the scaffold split (hard), offering perhaps a fairer measure
of performance.

We will see the comparison of the model performance with different split criteria
in section 5.2.3.
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Chapter 4

Modeling

4.1 ZairaChem pipeline

The modeling is performed with the ZairaChem tool. In section 2.4, we explained
what descriptors and Machine Learning algorithm ZairaChem uses. Here we give
an overview of the ZairaChem modeling pipeline.

• Data pre-processing

Check that the input file contains a column with the SMILES strings (input
variable) and the activity value (target variable, binary in our case).

Apply the MELLODDY-Tuner protocol (Heyndrickx et al., 2022) to vali-
date and standardize the SMILES strings.

• Obtain descriptors

Various existing descriptor models from the Ersilia Model Hub are ob-
tained for the molecules in the dataset. More details in section 2.4. This results
in various vectors of several thousand variables.

The descriptor variables are normalized, and missing data is imputed us-
ing nearest-neighbor.

From the GROVER descriptor, an embedding is generated

• AutoML: On each set of descriptors and embedding, an AutoML method is
run to fit a model. More details in section 2.4. This results in 9 submodels
fitted.

• Pooling: The 9 submodels are aggregated to form an ensemble model.

• Reports and output: Performance reports are provided.

4.1.1 Pooling of submodel results

At the end of the pipeline, the results from the 9 submodels are aggregated into a
single score using a weighted average. Before the averaging, the scores are scaled
with quantiles. The weights are given by feature importance according to an inde-
pendently trained random forest classifier.

4.1.2 ZairaChem vs LazyQSAR

As explained, ZairaChem builds an ensemble of various submodels, some of which
are quite heavy to train and run.

In order to facilitate quick testing and prototyping, ZairaChem allows a faster
way to fit a model using the LazyQSAR package, also developed by Ersilia. LazyQSAR
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TABLE 4.1: Model run times

Pathogen Task code Total cases
Similarity split

run time (h:mm)
Scaffold split

run time (h:mm)

saureus organism_anytype 61742 10:24 11:08
saureus organism_anytype_hc 61742 10:23 8:37
saureus organism_mic 48026 7:54 8:25
saureus organism_mic_hc 48026 15:15 7:17
saureus organism_iz 8178 1:55 1:43
saureus organism_iz_hc 8178 1:35 1:33
saureus organism_inhibition 7008 1:36 1:12
saureus organism_inhibition_hc 7008 1:47 1:16
saureus organism_ic50 1576 0:30 0:29
saureus organism_ic50_hc 1576 0:29 0:28
saureus protein_any 5008 1:17 0:59
saureus protein_any_hc 4517 1:00 0:55
saureus organism_assay_top1 4518 0:56 0:53
saureus organism_assay_top1_hc 4518 0:54 0:50
saureus protein_top1 616 0:19 0:15
saureus protein_top1_hc 606 0:15 0:16
saureus protein_top2 828 0:27 0:20
saureus protein_top2_hc 683 0:17 0:18
saureus protein_top4 696 0:23 0:18
saureus protein_top4_hc 562 0:18 0:16
saureus protein_top5 310 0:11 0:12

Total: 58 hours Total: 48 hours

uses only the two most basic submodels of ZairaChem: classic and fingerprint. These
two submodels are considerably lighter to calculate but still offer fair predictive
power. This way the LazyQSAR model can be used as a baseline model or as a
preliminary trial.

4.2 Model training - Run times

As we have seen, our pipeline can be used to build models for any pathogen that
has sufficient available data in the ChEMBL database. We are focusing in particular
on the six ESKAPE pathogens. We have built the models for the six pathogens with
LazyQSAR. We have chosen the pathogen with the largest amount of data, Staphylo-
coccus aureus, to build full ZairaChem models as an illustration of the process.

Table 4.1 shows the run times of each model, for the two different train-test splits
performed (similarity and scaffold). The models were trained on a PC with a 2.80 GHz
Intel i7 processor and 16 GB of RAM.

The models for any other pathogen may be obtained by following the same pro-
cess.

In chapter 5 we assess and discuss the results of the models.
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Chapter 5

Model results

5.1 ZairaChem automatic report charts

ZairaChem produces by default a number of charts for every model created. These
charts offer a useful overview of the data and model behavior. We show here some
examples for illustration, from the output of model saureus_organism_inhibition.

In figure 5.1, on the left, we visualize the scores of the real positives (Active)
versus those of the the real negatives (Inactive). This gives a good idea of the trade-
off between the number of true positives we want to capture and the number of
false positives we can accept. The higher we set the threshold to classify a value as
positive, the higher the precision — at the cost of losing true positives.

In the same figure, on the right, we have the confusion matrix based on a thresh-
old value set by ZairaChem.

Figure 5.2 shows two especially interesting charts, also created by ZairaChem
for every model. These are projections (PCA and UMAP) of one of the descriptor
vectors (grover) into two dimensions . The interpretation is that points that are close
to each other in the projections have probably similar values of the descriptor, and
may have properties in common.

These projections may for example help identify clusters of active components,
or problematic situations such as zones where there is a lack of training data.

5.2 Analysis of model results

We have trained the following models:

• All tasks for all 6 ESKAPE pathogens, trained with LazyQSAR (total 70 mod-
els)

• All tasks for the pathogen Staphylococcus aureus, trained with full ZairaChem
(total 21 models)

Each model has been trained twice: using the similarity and the scaffold train-
test splits. A detailed list of the models is shown in appendix B.

The performance metrics produced by Zairachem have been compiled for anal-
ysis. To compare the performance of different models we use the AUROC metric
(Area under the Receiver Operating Characteristic). This can be used to answer in-
teresting analysis questions.

5.2.1 Question: Are some pathogens easier to model?

We compare the performance of the models trained on each of the 6 pathogens. We
use the LazyQSAR models, because for the moment the full ZairaChem models have
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FIGURE 5.1: Sample Zairachem model assessment charts

FIGURE 5.2: Example of projections in Zairachem output
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FIGURE 5.3: Compare between pathogens

FIGURE 5.4: Compare between split criteria

only been trained for one pathogen. We focus only on organism models, not protein
models. The reason is that protein models exist only in some pathogens and may
behave differently, confusing the analysis. Besides, the specific proteins used are
very different between pathogens.

The results include both the similarity split and the scaffold split.
The answer to the question is yes, as we see in figure 5.3. Predicting the activity

against pathogens s. aureus and e. faecium seems to be the most difficult, obtaining
a median performance slightly above 0.85. On the other hand, it seems easier for a.
baumannii and enterobacter, obtaining a median AUROC well above 0.90.

5.2.2 Question: Are the similarity and scaffold splits harder to predict
than a simple random split?

We expect a random split to be relatively easy to predict, and the similarity and
scaffold splits to be harder.

Indeed we see in figure 5.4 that the performance of the models is highest with
the random split, a bit less with similarity, and the lowest with the scaffold split.
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FIGURE 5.5: Compare between split criteria

5.2.3 Question: Is there a relationship between how similar the train and
test sets are, with the model performance?

This is in a way analyzing the same issue as in the previous question, but with a dif-
ferent strategy: the Zairachem output provides for each predicted molecule, a mea-
sure of similarity between that molecule and those used to train the model. From
there we can calculate the average similarity of the whole test dataset with the train-
ing dataset.

The result (figure 5.5) shows a slight increase of the AUROC for models with a
higher train-test similarity, as expected. That is, the prediction seems more difficult
for molecules very different from the training set. However, the amount of data does
not allow a solid conclusion, as we see by the very wide tolerances of the regression
lines.

5.2.4 Question: How much better is ZairaChem than LazyQSAR?

The full ZairaChem model is an ensemble of 9 submodels, while the LazyQSAR
approach uses only 2 of those submodels. We expect therefore that the performance
of the full ZairaChem is better (at the cost of longer training time).

For the pathogen s. aureus we have run both the LazyQSAR and the full ZairaChem
models. We can therefore compare the performance of both approaches.

As we see in figure 5.6, the improvement of ZairaChem vs LazyQSAR is highest
when we use the scaffold split. This is the most demanding one, that simulates
trying to predict new molecules that are very different from those used to train the
model. On the other hand, if we use the random split, the advantage of ZairaChem
is almost zero, meaning that a simpler model like LazyQSAR is good enough for this
easier job. The similarity split is a bit of an intermediate situation.

This result is OK, given that LazyQSAR is already a fairly good modeling tool.
We suspect that the ZairaChem method for pooling the 9 submodels has margin for
improvement, as we see in the following analysis. Besides, ZairaChem is flexible to
easily add more descriptors from the Ersilia Model Hub.
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FIGURE 5.6: Compare between ZairaChem and LazyQSAR, by split

5.3 Analysis of the model pooling

We have seen in section 5.2.4 that the ZairaChem models are performing just marginally
better than the LazyQSAR. Since ZairaChem performs an ensemble of 9 submodels
and LazyQSAR uses just 2 of those submodels, we may wonder if the ZairaChem
ensemble is successful at getting the most information possible from the submodels.

5.3.1 Initial exploration of the submodels

To get an initial idea of the submodels behavior, we pick two models and have a
look at the output chart that ZairaChem generates comparing the performance of
the submodels. On the left we see the ROC curve of the ensemble, on the right the
AUROC of each individual submodel.

The following charts show the output of the model saureus_organism_inhibition:

We see that the ensemble model is better than any of the individual models. This
would be the ideal case. The next charts show the output of the model saureus_organism_ic50:
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FIGURE 5.7: Within each model, compare pooled performance with
best submodel

In this case we see that the ensemble model is actually performing worse than
one of the submodels.

5.3.2 Compare ensemble with best submodel

Now we want to check this in general. One initial analysis is to compare the AUROC
of the ensemble model versus the best submodel.

Ideally, we expect that the pooled model is often as good or even better than the
best submodel. We check this in figure 5.7. The pooled model is sometimes better,
sometimes worse, and often very similar to the best submodel. This is not bad but
makes us suspect that there is margin for improvement in the pooling system.

We wonder which are the submodels that sometimes outperform the pooled
model, in case we find a clear pattern. Figure 5.8 shows this. Apparently the clas-
sic fingerprint model is often better than the pooled. The number of models is not
enough for a strong conclusion, but it does give a hint for a future improvement of
the pooling system.
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FIGURE 5.8: Count of cases of submodels outperforming the pooled
model

5.3.3 Compare cases where predicted values differ

One final question to check: in an ensemble model, we would hope that there is not
too much overlap in the information provided by the different submodels, so that
the ensemble can in a way take the best from each.

One way to check this is to look at individual predictions and see if the pooled
model and the submodels are right or wrong in the same cases.

For one of the models, saureus_organism_ic50, we have generated and compared
the predicted values of the pooled model and of each of the submodels.

We take all the cases where the pooled prediction is wrong. Then we check, for
each of the submodels, how often the submodel prediction would be correct:

correct cc_signaturizer 35%
correct morgan_counts 24%
correct mordred 33%
correct grover 16%
correct manifolds 22%
correct classic 22%
correct reference_embedding 22%
correct fingerprint 24%
correct molmap 30%

This seems indicative that the ensemble method is not making the most of the
available information from the submodels.





27

Chapter 6

Conclusion and future directions

6.1 Conclusion

We have built a pipeline that can be used to obtain models that predict the effective-
ness of a molecule against a given pathogen. This can be applied to any pathogen for
which there is enough data in ChEMBL. In principle the pipeline does not require to
make any decisions on the models, other than monitoring the results.

The full pipeline has been successfully applied to generate models for the pathogen
s. aureus. This is a good illustrative example because it has enough amount of data
to generate models for all the defined tasks. It is also a good test case to verify that
the system works with relatively large data.

A partial version of the pipeline (the LazyQSAR models) has been run for the 6
ESKAPE pathogens. This was useful as a feasibility study, and also to get an idea of
the predictive performances we can expect from this system.

This project has been the first case of large-scale, systematic use of ZairaChem.
This has been a benefit in itself, as it has helped find and solve some bugs, and to
propose improvements in functionality and usability of the ZairaChem modeling
tool.

The analysis of the model results indicates that there is margin to improve the
performance of the ZairaChem ensemble model (the pooling of the submodels).

6.2 Future directions

The models for the pathogen s. aureus have been trained. Now the models will be
further validated by domain experts, and then a distilled version will be created.
The final models will be published for open access in the Ersilia Model Hub.

The other 5 ESKAPE pathogens will follow the same process using the estab-
lished pipeline until they are published.

After this, the pipeline is available to automatically build models on any other
pathogen for which there is sufficient data in ChEMBL. As we saw in section 2.3.2,
ChEMBL has abundant data on the majority of the pathogens that cause the most
deaths in the world. We hope this tool will contribute to the drug discovery process
in low-resource environments. The Ersilia Open Data Initiative currently has active
projects in Cameroon and South Africa dedicated to bioactivity prediction against
some of these pathogens.

As for improvements in the ZairaChem tool, there is the intention to investigate a
better way to combine the results of the submodels to improve the predictive power.
In addition, the tool will continue incorporating new descriptors and AutoML tech-
niques.
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Appendix A

Source code

The main repository of this project is: https://github.com/ersilia-os/antimicrobial-
ml-tasks

The functions to obtain the input data and the sampled negatives from the ChEMBL
database, also developed by me, are in a different repository. The reason is that
these functions are more generic and prepared to be useful for other projects using
ChEMBL. The repository is: https://github.com/ersilia-os/chembl_ml_tools

The ZairaChem tool has been developed by Ersilia Open Data Initiative. Here I
have made a small contribution and provided some feedback for fixes and improve-
ments. ZairaChem repository: https://github.com/ersilia-os/zaira-chem

The project relies on the Ersilia Model Hub, also developed by Ersilia Open Data
Initiative: https://github.com/ersilia-os/ersilia

https://github.com/ersilia-os/antimicrobial-ml-tasks
https://github.com/ersilia-os/antimicrobial-ml-tasks
https://github.com/ersilia-os/chembl_ml_tools
https://github.com/ersilia-os/zaira-chem
https://github.com/ersilia-os/ersilia
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Appendix B

List of datasets

TABLE B.1: List of datasets for the ESKAPE pathogens

Pathogen code Task code Total cases Positive cases Total cases
efaecium organism_anytype 5475 1856 34%
efaecium organism_anytype_hc 5475 910 17%
efaecium organism_mic 5025 1747 35%
efaecium organism_mic_hc 5025 841 17%
efaecium organism_inhibition 110 40 36%
efaecium organism_ic50 152 76 50%
efaecium organism_ic50_hc 132 65 49%
saureus organism_anytype 61742 18507 30%
saureus organism_anytype_hc 61742 9559 15%
saureus organism_mic 48026 14143 29%
saureus organism_mic_hc 48026 7577 16%
saureus organism_iz 8178 3722 46%
saureus organism_iz_hc 8178 1898 23%
saureus organism_inhibition 7008 676 10%
saureus organism_inhibition_hc 7008 365 5%
saureus organism_ic50 1576 562 36%
saureus organism_ic50_hc 1576 143 9%
saureus protein_any 5008 2504 50%
saureus protein_any_hc 4517 1416 31%
saureus organism_assay_top1 4518 130 3%
saureus organism_assay_top1_hc 4518 57 1%
saureus protein_top1 616 308 50%
saureus protein_top1_hc 606 138 23%
saureus protein_top2 828 414 50%
saureus protein_top2_hc 683 240 35%
saureus protein_top4 696 348 50%
saureus protein_top4_hc 562 281 50%
saureus protein_top5 310 58 19%
kpneumoniae organism_anytype 20147 4257 21%
kpneumoniae organism_anytype_hc 20147 2567 13%
kpneumoniae organism_mic 12894 2899 22%
kpneumoniae organism_mic_hc 12894 1903 15%
kpneumoniae organism_iz 2782 1310 47%
kpneumoniae organism_iz_hc 2782 673 24%
kpneumoniae organism_inhibition 5538 39 1%
kpneumoniae organism_ic50 163 65 40%

Continued on next page
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Table B.1 – continued from previous page
Pathogen code Task code Total cases Positive cases Total cases
kpneumoniae organism_ic50_hc 163 31 19%
kpneumoniae protein_any 448 224 50%
kpneumoniae protein_any_hc 363 150 41%
abaumannii organism_anytype 28111 678 2%
abaumannii organism_anytype_hc 28111 287 1%
abaumannii organism_mic 4530 604 13%
abaumannii organism_mic_hc 4530 244 5%
abaumannii organism_inhibition 23396 33 0%
paeruginosa organism_anytype 51533 5405 10%
paeruginosa organism_anytype_hc 51533 2380 5%
paeruginosa organism_mic 23467 3214 14%
paeruginosa organism_mic_hc 23467 1397 6%
paeruginosa organism_iz 4987 1998 40%
paeruginosa organism_iz_hc 4987 947 19%
paeruginosa organism_inhibition 24244 306 1%
paeruginosa organism_inhibition_hc 24244 162 1%
paeruginosa organism_ic50 740 116 16%
paeruginosa protein_any 2911 1230 42%
paeruginosa protein_any_hc 2911 750 26%
paeruginosa organism_assay_top1 24074 47 0%
paeruginosa protein_top1 658 152 23%
paeruginosa protein_top2 571 209 37%
paeruginosa protein_top2_hc 571 110 19%
paeruginosa protein_top3 916 458 50%
paeruginosa protein_top3_hc 808 404 50%
paeruginosa protein_top4 197 74 38%
paeruginosa protein_top4_hc 197 34 17%
paeruginosa protein_top5 116 44 38%
enterobacter organism_anytype 3798 1682 44%
enterobacter organism_anytype_hc 3798 1330 35%
enterobacter organism_mic 3525 1617 46%
enterobacter organism_mic_hc 3525 1292 37%
enterobacter protein_any 330 162 49%
enterobacter protein_any_hc 330 94 28%
enterobacter protein_top1 256 127 50%
enterobacter protein_top1_hc 256 76 30%
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