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1  |  INTRODUC TION

Major lifestyle transitions in insects, such as the conquest of ter-
restrial habitats, flight or host- plant interactions, are often accom-
panied by dramatic shifts in their sensory systems (Almudi et al., 

2020; Anholt, 2020; Missbach et al., 2015; Vieira & Rozas, 2011; 
Wang, Pentzold, et al., 2018). Subterranean specialization has also 
offered opportunities for evolutionary innovation in the way an-
imals interact with this particular environment (Cartwright et al., 
2017). While adapting to subterranean niches, different species, 
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Abstract
The chemosensory system has experienced relevant changes in subterranean animals, 
facilitating the perception of specific chemical signals critical to survival in their par-
ticular environment. However, the genomic basis of chemoreception in cave- dwelling 
fauna has been largely unexplored. We generated de novo transcriptomes for anten-
nae and body samples of the troglobitic beetle Speonomus longicornis (whose char-
acters suggest an extreme adaptation to a deep subterranean environment) in order 
to investigate the evolutionary origin and diversification of the chemosensory gene 
repertoire across coleopterans through a phylogenomic approach. Our results sug-
gested a diminished diversity of odourant and gustatory gene repertoires compared 
to polyphagous beetles that inhabit surface habitats. Moreover, S. longicornis showed 
a large diversity of odourant- binding proteins, suggesting an important role of these 
proteins in capturing airborne chemical cues. We identified a gene duplication of the 
ionotropic coreceptor IR25a, a highly conserved single- copy gene in protostomes in-
volved in thermal and humidity sensing. In addition, no homologous genes to sugar 
receptors or the ionotropic receptor IR41a were detected. Our findings suggest that 
the chemosensory gene repertoire of this cave beetle may result from adaptation to 
the highly specific ecological niche it occupies, and that gene duplication and loss may 
have played an important role in the evolution of gene families involved in chemore-
ception. Altogether, our results shed light on the genomic basis of chemoreception in 
a cave- dwelling invertebrate and pave the road towards understanding the genomic 
underpinnings of adaptation to the subterranean lifestyle at a deeper level.
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ranging from fishes to insects, have evolved highly convergent 
alternatives to live in perpetual darkness in habitats exhibiting 
specific biotic and abiotic factors (i.e., limited nutrient sources, 
constant temperature and humidity). Evolutionary regressions (e.g., 
loss of eyes and pigmentation), elaborated elements (e.g., hyper-
trophy of extra- optic sensory structures) and other physiological 
changes (e.g., modified life cycles) have been reported as possible 
adaptations for many obligate subterranean fauna (Culver & Pipan, 
2019). Likewise, it is conceivable that the subterranean selective 
pressures have driven adaptive shifts in other sensory systems, in-
cluding the chemosensory systems of subterranean animals. For 
instance, some studies on cavefish pointed out an enhancement 
of chemosensory systems from a morphological point of view (i.e., 
visible differences in taste buds and olfactory neural bulbs) when 
compared to surface populations (Parzefall, 2001; Yamamoto et al., 
2009; Yang et al., 2016). In subterranean arthropods, elongation 
of antennae and body appendages have also been attributed to 
enhanced sensory capabilities (Turk et al., 1996). Nevertheless, the 
evolution of the chemosensory system in subterranean fauna from 
a molecular perspective remains widely unexplored.

Environmental chemical signals are enormously diverse 
in nature. Animals have developed a wide diversity of mecha-
nisms to perceive and interpret specific cues essential to their 
evolutionary success (Nei et al., 2008). In insects, these chem-
icals include palatable nutrient or repellent odours and tastes, 
pheromones, warning signals of predators and those indicating 
optimal substrates for oviposition, and various others (Joseph & 
Carlson, 2015). The chemosensory system in insects is distrib-
uted morphologically at the interface between the environment 
and the dendrites of the peripheral sensory neurons, where 
different chemosensory proteins act in parallel for the signal 
transduction to the brain centers in which the information is pro-
cessed (Dippel et al., 2016; Joseph & Carlson, 2015). To capture 
this complex information, insects use three large and divergent 
families of transmembrane chemoreceptor proteins: gustatory 
receptors (GRs), odourant receptors (ORs) and ionotropic recep-
tors (IRs; Benton et al., 2009; Clyne et al., 1999; Gao & Chess, 
1999; Sánchez- Gracia et al., 2009; Vosshall et al., 1999). GRs, 
which detect nonvolatile compounds, probably represent the 
oldest chemosensory receptors (Eyun et al., 2017), being dis-
tributed in several taste organs along the entire body including 
mouth pieces, legs, wing margins and other specialized struc-
tures such as vaginal plate sensilla in abdomens of female flies 
(Stocker, 1994). Airborne chemical particles are perceived in the 
head appendages by the ORs, an insect- specific chemoreception 
gene family thought to have originated from the GR gene family 
(Robertson, 2019; Robertson et al., 2003; Thoma et al., 2019). 
ORs work with the functionally universal odourant receptor 
coreceptor (ORCO), which is highly conserved in winged insects 
(i.e., Paleoptera and Neoptera; Brand et al., 2018). Moreover, IRs 
derived from the ionotropic glutamate receptor gene (IGluRs) 
superfamily in protostomes (Benton, 2015; Vosshall & Stocker, 
2007) and mediate responses to many organic acids and amines, 

including pheromones and nutrient odours (Benton et al., 2009). 
In insects there are other gene families that also participate in 
chemosensory functions, such as the sensory neuron membrane 
proteins (SNMPs; Grimaldi & Engel, 2005; Missbach et al., 2014; 
Nichols & Vogt, 2008). The odourant- binding proteins (OBPs) and 
chemosensory proteins (CSPs) also play a key role for chemore-
ception in terrestrial insects, besides other physiological roles. 
The stable and compact structure of OBPs and CSPs make them 
versatile soluble proteins relevant for signal transduction of small 
hydrophobic compounds such as pheromones and odourants 
(Pelosi et al., 2014, 2018; Roys, 1954; Stürckow, 1970).

As in other large gene families encoding ecologically relevant 
proteins, constant birth- and- death dynamics may play an important 
role in their evolution in arthropods (Nei & Rooney, 2005; Sánchez- 
Gracia et al., 2009; Vieira et al., 2007). A general positive correla-
tion has been observed when comparing the chemosensory gene 
diversity across species and the complexity of chemical signal in the 
ecological niche they occupy; several studies reported contrasting 
patterns of gene family expansions and gene losses when explor-
ing the chemosensory gene repertoires in extreme specialist and 
generalist species, with the latter usually exhibiting larger expan-
sions of gene families involved in chemoreception (Andersson et al., 
2019; Kirkness et al., 2010; Li et al., 2018; McBride, 2007; McBride 
& Arguello, 2007; Ngoc et al., 2016). However, the evolution of the 
chemosensory gene families in subterranean species are still largely 
unexplored, hampering our understanding on how these animals 
perceive their particular environment.

Cave beetles represent ideal models to shed light on the ge-
nomic basis of chemoreception in subterranean environments. The 
Leptodirini tribe is a speciose lineage of scavenger beetles that rep-
resents one of the most impressive radiations of subterranean organ-
isms. Several lineages within Leptodirini (estimated to have colonized 
subterranean habitats ca. 33 Ma (Ribera et al., 2010)) acquired mor-
phological and physiological traits typically associated with troglo-
bitic adaptations. Their modifications include complete lack of eyes 
and optic lobes, depigmentation, membranous wings, elongation 
of antennae and legs (Deleurance, 1963; Jeannel, 1924; Luo et al., 
2019) and loss of thermal acclimation capacity (Pallarés et al., 2020; 
Rizzo et al., 2015). They also exhibit modified life cycles as a key in-
novation for their subterranean specialization (Cieslak et al., 2014; 
Delay, 1978). One of the highly modified species of the Leptodirini 
tribe is Speonomus longicornis Saulcy, 1872 (Coleoptera, Polyphaga, 
Leiodidae; Figure 1a). This obligate cave- dwelling beetle is com-
pletely blind, depigmented, possesses enlarged antennae (Jeannel, 
1924) with a high sensilla density (Figure 1b) and it has a contracted 
life cycle, comprising a single larval- instar during its development in 
which the larvae remain practically quiescent like the pupal stage 
(Glaçon, 1953). The troglobitic characters of this species suggest an 
extreme adaptation to the deep subterranean environment.

This study aims to characterize the chemosensory gene reper-
toire of S. longicornis. The aims of this project were (i) to pinpoint 
genes putatively involved in chemoreception in the cave beetle 
S. longicornis through a transcriptomic approach, and (ii) to explore 
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how such genes evolved in the broader phylogenetic context of bee-
tle and insect evolution. Our study therefore aims to provide the 
first characterization of the chemosensory gene repertoire of an ob-
ligate cave- dwelling species.

2  |  MATERIAL S AND METHODS

2.1  |  Sample collection and preservation

Thirty specimens of Speonomus longicornis were collected in 2016 at 
the type locality: Grotte de Portel cave, in the Plantaurel massif at 
the French region of Ariège (43º01′51″N, 1°32′22″E). All specimens 
were manually captured and kept alive inside a thermo- box during 
the stay at the cave. Once sampling was completed, all individuals 
were placed in an 8 ml tube and flash- frozen in liquid nitrogen at the 
cave entrance in order to prevent stress- related alterations in gene 
expression levels and to minimize RNA degradation during transpor-
tation to the laboratory, where the samples were stored at – 80ºC 
until RNA extraction.

2.2  |  RNA extraction

All steps were performed in cold and RNase free conditions. Several 
specimens were pooled in each sample prior to RNA extraction in 
order to obtain sufficient tissue for an efficient extraction. We did 
not examine the sex of the specimens to minimize the manipula-
tion in order to avoid RNA degradation. Nevertheless, no significant 

sexual dimorphism has previously been found in the chemosensory 
system of other coleopterans (Dippel et al., 2016; Wu et al., 2016).

The specimens were split into three groups of 10 individuals 
each, representing biological replicates. Since chemosensory struc-
tures are mainly concentrated in the antennae (see Section 1), they 
were dissected from each specimen. Therefore, the experimental 
design included three biological replicates representing two condi-
tions: antennae and the rest of the body.

The isolation of total RNA was performed by phenol/chloroform 
extraction with a lysis through guanidinium thiocyanate buffer fol-
lowing the protocol of Sambrook et al. (1989) with minor modifica-
tions (i.e., not using 2- mercaptoethanol). A first quality check was 
done by size separation in a 1% TBE agarose gel chromatography. 
Total RNA yield was quantified by an RNA assay in a Qubit fluorom-
eter (Life Technologies).

2.3  |  cDNA library construction and next- 
generation sequencing

For the antennae samples, a low- input RNA sequencing protocol 
was followed. mRNA sequencing libraries were prepared following 
the SMARTseq2 protocol (Picelli et al., 2013) with some modifica-
tions. Briefly, RNA was quantified using the Qubit RNA HS Assay 
Kit (Thermo Fisher Scientific). Reverse transcription with an input 
material of 2 ng was performed using SuperScript II (Invitrogen) 
in the presence of oligo- dT30VN (1 µM; 5′- AAGCAGTGGTATC
AACGCAGAGTACT30VN- 3′), template- switching oligonucleo-
tides (1 µM) and betaine (1 M). The cDNA was amplified using 

F I G U R E  1  Speonomus longicornis 
and its phylogenetic position within 
Coleoptera. (a) Speonomus longicornis. 
(b) Scanning electron microscopy image 
of the antennal sensilla of S. longicornis 
(voucher IBE- AI531). (c) Simplified 
phylogeny showing the relationships 
of the studied species, adapted from 
McKenna et al. (2019). Coloured circles 
illustrate the dietary habits of the 
species: darkgreen corresponds to 
polyphagous herbivores, lightgreen to 
oligophagous herbivores and brown to 
nonphytophagous species [Colour figure 
can be viewed at wileyonlinelibrary.com]
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the KAPA Hifi Hotstart ReadyMix (Roche), 100 nM ISPCR primer 
(5′- AAGCAGTGGTATCAACGCAGAGT- 3′) and 15 cycles of ampli-
fication. Following purification with Agencourt Ampure XP beads 
(1:1 ratio; Beckmann Coulter), product size distribution and quantity 
were assessed on a Bioanalyzer High Sensitivity DNA Kit (Agilent). 
The amplified cDNA (200 ng) was fragmented for 10 min at 55°C 
using Nextera XT (Illumina) and amplified for 12 cycles with indexed 
Nextera PCR primers. The library was purified twice with Agencourt 
Ampure XP beads (0.8:1 ratio) and quantified on a Bioanalyzer using 
a high sensitivity DNA kit.

For the samples containing the rest of the body, total RNA was 
assayed for quantity and quality using the Qubit RNA BR Assay 
kit (Thermo Fisher Scientific) and RNA 6000 Nano Assay on a 
Bioanalyser 2100 (Agilent). The RNASeq libraries were prepared 
from total RNA using the KAPA Stranded mRNA- Seq Kit for Illumina 
(Roche) with minor modifications. Briefly, after poly- A based mRNA 
enrichment from 500 ng of total RNA, the mRNA was fragmented. 
The second strand cDNA synthesis was performed in the pres-
ence of dUTP to achieve strand specificity. The blunt- ended dou-
ble stranded cDNA was 3′ adenylated and Illumina single indexed 
adapters (Illumina) were ligated. The ligation product was enriched 
with 15 PCR cycles and the final library was validated on an Agilent 
2100 Bioanalyser with the DNA 7500 assay.

The libraries were sequenced on an Illumina HiSeq 2500 plat-
form in paired- end mode with a read length of 2 × 76 bp. Image anal-
ysis, base calling and quality scoring of the run were processed using 
the manufacturer's software real tiMe analysis (RTA 1.18.66.3) and 
followed by generation of FASTQ sequence files by CASAVA. cDNA 
libraries and mRNA sequencing were performed at the National 
Center of Genomic Analyses (CNAG).

2.4  |  Sequence processing, decontamination and 
de novo assembly

Raw reads for all samples were downloaded in FASTQ format. The 
quality of the raw reads was assessed and visualized using fastqc 
version 0.11.8 (www.bioin forma tics.babra ham.ac.uk). For each data 
set, remaining Illumina adaptors were removed and low- quality 
bases were trimmed off according to a threshold average qual-
ity score of 30 based on a Phred scale with triMMoMatic version 
0.38 (Bolger et al., 2014). Filtered paired- end reads were validated 
through a fastqc visualization.

A reference de novo transcriptome assembly was constructed 
with trinity version 2.8.4, using paired read files and default param-
eters, including all replicates and conditions (Grabherr et al., 2011; 
Haas et al., 2013). blobtools version 1.1.1 (Laetsch & Blaxter, 2017) 
was used to detect putative contamination from the assembled tran-
scriptome. Transcripts were annotated using blast+ version 2.4.0 
against the nonredundant (nr) database from NCBI with an expect 
value (E- value) cutoff of 1e−10 and reads were mapped to the ref-
erence transcriptome with bowtie2 version 2.3.5.1 (Langmead & 
Salzberg, 2012). Putative contaminants included transcripts with 

significant hits to viruses, fungi, bacteria or chordates, accounting 
for a total of 7.8% of the mapped sequences (see also Figure S1).

2.5  |  Inference of candidate coding regions and 
transcriptome completeness assessment

To check completeness of the reference transcriptome, we searched 
for single copy universal genes in insects through benchmarking uni-
versal single- copy orthologues (busco version 4.1: Simão et al., 2015) 
using the insecta database (insecta_odb10) and three different data 
sets as a query: (i) the assembled transcripts in trinity, (ii) the total 
predicted open reading frames (ORFs), and (iii) the longest isoform 
per ORF. The assembly was processed in transdecoder version 5.4.0 
to identify candidate ORFs within the transcripts using the universal 
genetic code (Haas et al., 2013). Only the longest ORFs (i.e., with a 
minimum length of 100 amino acids) of each transcript were retained 
as final candidate coding regions for further analyses.

2.6  |  Chemosensory gene repertoire 
characterization

bitacora version 1.0.0 (Vizueta et al., 2020) was used to curate an-
notations during the sequence similarity searches of the chemosen-
sory gene families of interest. Curated protein databases containing 
chemoreceptor genes (ORs, GRs, IRs, SNMPs, OBPs and CSPs) of 
several arthropods were used in the bitacora searches (Vizueta et al., 
2016). An additional database was used for the ORs annotation, con-
taining Coleoptera ORs based on the data sets from Mitchell et al. 
(2019). The “protein mode” pipeline of bitacora was used to anno-
tate all the predicted ORFs of the transcriptome (see previous sec-
tion), combining blast and hMMer searches. All the predicted coding 
regions were used for bitacora searches, retrieving a multifasta file 
for each of the chemosensory families. Dubious annotations were 
manually inspected (i.e., some ORFs received significant hits for both 
ORs and GRs, which were post- validated through Pfam searches). 
Results were filtered with customized Python scripts using biopy-
thon version 1.76 seqio package (https://biopy thon.org [Cock et al., 
2009]); in order to obtain final candidates, which were represented 
by the longest isoform per gene and thus achieving unique gene 
annotations.

2.7  |  Expression levels quantification and 
differential gene expression analysis

salMon version 0.10.2 (Patro et al., 2017) was used for indexing and 
quantification of transcript expression. Expression estimated counts 
were transformed into an expression matrix using a Perl script in-
cluded in the trinity software (abundance_estimates_to_matrix.
pl), which implements the trimmed mean of M- values normaliza-
tion method (TMM). We also examined the data to ensure that the 
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biological replicates were well correlated using the “PtR” module in-
cluded in trinity version 2.8.4 analysis toolkit, generating a variety 
of plots that allowed us to visually inspect the presence of strong 
outliers or batch effects that can affect the differential expres-
sion analysis. Differential expression analysis was conducted in 
the Bioconductor edger package (Robinson et al., 2010; Robinson 
& Oshlack, 2010). The Benjamini- Hochberg method was applied to 
control the false discovery rate (FDR; Benjamini & Hochberg, 1995). 
The significance value for multiple comparisons was adjusted to 
0.001 FDR threshold cutoff and a four- fold change. Differentially 
expressed genes (up-  and downregulated) in antennae and the rest 
of the body were plotted in heatmaps using the R scripts provided in 
the trinity software. The expression matrix was also interrogated in 
order to detect exclusively expressed genes in antennae (defined as 
genes that showed positive expression values in the three replicates 
of antennae and with expression values lower than 0.001 TMM in 
the rest of the body).

2.8  |  Transcriptome characterization, gene 
ontology enrichment and visualization

The peptide predictions, including all isoforms, were used as input 
for eggnog- Mapper version 4.5.1 (Huerta- Cepas et al., 2017), retriev-
ing gene ontology (GO) terms for all the annotated transcripts. The 
GO annotations were subsequently filtered to discard those cor-
responding to nonanimal taxa (i.e., viruses, bacteria, fungi, plants, 
10.86% of total GO annotations) and to eliminate the redundancy 
provided by the isoforms. All GO terms for each unique gene were 
retained and used in the subsequent analyses. GO enrichment 
analysis was performed using a two- tailed Fisher's test in fatigo 
software (Al- Shahrour et al., 2007) to detect significant overrepre-
sentation of the GO terms in the pairwise comparisons between the 
upregulated genes in antennae and the rest of the body, adjusting 
the p- value to .05.

GO enrichment analyses were visualized in the revigo web server 
(Supek et al., 2011), plotting the results in a “TREEMAP” graph using 
r, where the size of the rectangles is proportional to the enrichment 
p- value (abs_log10_pvalue) of the overrepresented GO terms.

2.9  |  Phylogenetic inferences for the candidate 
chemosensory genes

Complete and partial annotated genes for S. longicornis (referred to 
as Slon in the figures) were included in the phylogenetic inferences in 
order to interrogate their phylogenetic relationships with chemosen-
sory genes of other species, all of them based on genomic data. With 
this approach, the aim is to infer diversity patterns of the chemosen-
sory repertoire of S. longicornis and to characterize each gene family 
more specifically, indicating with a higher confidence the putative 
function of these genes compared to analysis merely based on ho-
mology. Individual phylogenies for each chemosensory gene family 

as annotated by bitacora (see above) were inferred using the follow-
ing pipeline. Amino acid sequences were aligned using pasta soft-
ware version 1.7.8 (Mirarab et al., 2015). Poorly aligned regions were 
trimmed using triMal version 1.2 (Capella- Gutiérrez et al., 2009) with 
the “- automated1” flag. Maximum likelihood phylogenetic inference 
was inferred with iq- tree version 2.0.4 (Nguyen et al., 2015). The 
mixture model LG + C20 + F + G was used with the site- specific 
posterior mean frequency model (PMSF; Wang et al., 2018) and the 
ultrafast bootstrap option (Hoang et al., 2018). A guide tree was in-
ferred with fasttree2 under the LG model (Price et al., 2010). Results 
were visualized using the itol web interface (Letunic & Bork, 2019).

The ORs phylogeny included the coleopteran ORs obtained from 
Mitchell et al. (2019). These species (Figure 1c) included a range of 
ecological strategies. Considering the degree of dietary specializa-
tion, the phytophagous specialists (i.e., species feeding on a small 
number of plants or algae species usually belonging to the same bo-
tanical family, thus considered as oligophagous [Schoonhoven et al., 
2005]) were represented by the aquatic beetle Hydroscapha redfordi 
(Myxophaga, Hydroscaphidae), the ash borer Agrilus planipennis 
(Polyphaga, Buprestidae), the Colorado potato beetle Leptinotarsa de-
cemlineata (Polyphaga, Chrysomelidae) and the mountain pine beetle 
Dendroctonus ponderosae (Polyphaga, Curculionidae). By contrast, the 
phytophagous generalists (i.e., species feeding on several plants be-
longing to different families, thus considered as polyphagous) included 
the red flour beetle Tribolium castaneum (Polyphaga, Tenebrionidae), 
the wood borer Anoplophora glabripennis (Polyphaga, Cerambycidae), 
the reticulated beetle Priacma serrata (Archostemata, Cupedidae) 
and the dung beetle Onthophagus taurus (Polyphaga, Scarabaeidae). 
Moreover, the species set include two nonphytophagous beetles, 
the insectivorous Calosoma scrutator (Adephaga, Carabidae) and the 
burying beetle Nicrophorus vespilloides (Polyphaga, Silphidae) that 
feeds on vertebrate carrion (Vogel et al., 2017).

For the ORCO phylogeny, some additional ORCO sequences 
of coleopteran species and other taxa as outgroups (Apis mellifera 
and Drosophila melanogaster) were also included (see species and 
GenBank accessions at Table S1).

3  |  RESULTS

3.1  |  A high quality de novo transcriptome for 
Speonomus longicornis facilitates the annotation of its 
chemosensory gene repertoire

Since no reference genome is available for the focus species, a 
deeply sequenced de novo assembly transcriptome was con-
structed combining the paired- end reads from the six librar-
ies (~411 million reads; ~356 million after trimming), obtaining a 
total of 245,131 transcripts (Figure S1). These transcripts include 
177,711 unique predicted “genes” by trinity and 74,273 candidate 
ORFs (including all genes and isoforms). When filtering by the long-
est isoform per gene (which could be considered as a “proxy” for 
the total number of genes in the genome), we obtained a total of 
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20,956 ORFs. busco analysis indicated a high completeness for the 
assembled transcriptome, with 97% of complete busco genes com-
pared to the insecta database (Figure S1), indicating that a mostly 
complete reference gene set was recovered and hence it was of 
enough quality to explore gene family evolution. These results 
should be interpreted with caution as they are based on transcrip-
tomic data instead of high- quality genomes, and further reference- 
level genomic analyses may help clarify the evolutionary dynamics 
of chemosensory gene families with higher precision. However, 
this approach has been successfully applied in other studies with 
non- model organisms through the combination of genomic and 
high quality transcriptomic data (e.g., Fernández & Gabaldón, 
2020; Vizueta, Escuer, et al., 2020). Further details about sequenc-
ing, assembly statistics, the completeness assessment and the pu-
tative contamination results are summarized in Figure S1.

3.2  |  Differential gene expression analysis reveals 
chemosensory genes upregulated in the antennae

bitacora searches identified a total of 205 chemosensory gene can-
didates for S. longicornis (Table 1, see also Table S2). The expression 
level distribution obtained in the transcript quantification steps was 
assessed in order to identify possible biases when comparing rep-
licates and conditions (Figure S2). Results indicated that replicates 
are more similar to each other than between the different condi-
tions. A total of 18,160 clusters of transcripts (reported as clus-
ters of transcripts or “genes” by trinity, referred to as trinity genes 
hereafter) were detected as differentially expressed in antennae 
and body, with 8,949 trinity genes upregulated in antennae (Figure 
S3; Table S3). Out of the 205 candidate chemosensory genes as 
detected by bitacora, 78 were detected as differentially expressed. 
From those, 49 genes were overexpressed in antennae (18 ORs, 17 
OBPs, five GRs, five IRs/IGluRs, two SNMPs/CD36s and two CSPs; 
Table 1; Figure 2a). Furthermore, seven ORs were identified as ex-
clusively expressed in antennae, including two additional genes not 
recovered as differentially expressed due to the disparity of the ex-
pression values between antennae replicates (Table S4).

3.3  |  Gene ontology enrichment reveals 
upregulated chemosensory specificity in antennae

Out of the 74,273 predicted ORFs (including isoforms), 59.4% were 
annotated through eggnog- Mapper, and from those only 23,555 of 

these annotations yielded associated GO terms, representing 31.7% 
of the total queried sequences from the assembled transcriptome. 
After filtering annotations from nonanimal taxa (including viruses, 
bacteria and fungi) 89.14% of the annotations were retained. 
Figure 2b depicts enriched GO terms for upregulated genes in an-
tennae and in the rest of the body. In antennae, “sensation and per-
ception of chemical stimulus” represent the most enriched category 
within the biological processes analysed and, in a minor proportion, 
some categories related to cilium activity. “Mechanosensory activ-
ity” terms are also overrepresented but in a minor proportion. More 
than half of the cellular component GO terms enriched in antennae 
correspond to “dendritic structures”, and a high proportion of the 
overrepresented terms correspond to “extracellular and membrane 
structures”. Regarding the molecular function category in antennae, 
“odourant- binding” and “odourant reception” terms occupy a large 
proportion of the enriched functions followed by other “binding and 
signal transduction” terms.

3.4  |  Phylogenetic interrelationships of Coleoptera 
ORs and ORCOs

A total of 1,222 OR sequences were aligned and trimmed (see 
Section 2). The final length of the alignment was of 254 amino acid 
positions. To facilitate comparison, we retained the nomenclature 
used by Mitchell et al. (2019) to describe the phylogenetic groups 
and clades recovered in their phylogenetic analyses (i.e., groups 1, 
2A, 2B, 3, 4, 5A, 5B, 6 and 7). Our results were overall congruent 
with those reported by Mitchell et al. (2019), with virtually all OR 
groups recovered with high support except group 6 and a different 
position for group 4, which was recovered as nested within group 3 
(Figure 3a). While most of the genes fall into the same groups than 
in Mitchell et al. (2019), four genes (i.e., AplaOR1, PserOR120- 121 
and SlonOR34525c0g1) were not recovered for any of the previ-
ously proposed groups. The upregulated ORs in S. longicornis anten-
nae were distributed among the different coleopteran OR groups, 
mostly clustered within group 1 and group 7 (with six and five genes, 
respectively). Exclusively expressed ORs in antennae are found in 
groups 1, 3, 4 and 7. The number of ORs is highly variable among 
these species (Figure 3b). S. longicornis and the other nonphytopha-
gous species (i.e., C. scutator, N. vespilloides) exhibited relatively mod-
erate OR repertoires and a similar distribution pattern (i.e., without 
representation in group 5A, moderate gene family expansions and 
the largest expansion in group 3; Figure 3b,d). All the ORCO se-
quences were recovered as a clade with high support and were used 
to root the tree, facilitating the identification of the ORCO candidate 
of S. longicornis (SlonORCO; Figure 3a,c).

The phylogeny of ORCOs (Figure 3c; with a final trimmed 
alignment of 478 amino acid positions) recovered clades for the 
different beetle families, but did not mirror the phylogeny of 
Coleoptera at the family level. For instance, all ORCOs of species 
of Cucujiformia were recovered in a clade and were subsequently 
clustered into their corresponding families. The same pattern was 

TA B L E  1  Annotated chemosensory genes of S. longicornis

ORs GRs
IRs/
IGluRs

SNMPs/
CD36s OBPs CSPs

Total 50 36 53 20 39 7

Antennae 18 5 5 2 17 2

The number of overexpressed genes in antennae are indicated.
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F I G U R E  2  Differentially expressed genes in antennae and body in S. longicornis. (a) Heatmap of chemosensory genes of S. longicornis 
differentially expressed in antennae and the rest of the body. (b) Gene ontology (GO) treemaps for the differentially expressed genes in 
antennae versus the rest of the body. Biological process, molecular function and cellular component enriched GO terms are shown [Colour 
figure can be viewed at wileyonlinelibrary.com]
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observed for the ORCOs of the different species of Scarabaeidae. 
By contrast, the ORCO of S. longicornis did not cluster together 
with that of N. vespilloides, despite belonging to the same super-
family (i.e., Staphylinoidea).

3.5  |  Phylogenetic inference of the annotated GRs

A total of 374 sequences were interrogated, resulting in a multiple 
sequence alignment of 271 amino acid positions. Notably, none of 
the candidate GRs from S. longicornis clustered together with GRs 
involved in the perception of fructose and other sugars in the other 
species (Figure 4). On the other hand, in several coleopteran GRs, 
including S. longicornis, we recovered three candidates that cluster 
with those of D. melanogaster involved in perception of CO2, which 
are well characterized functionally (termed as GR1, GR2, GR3 in 
beetles, and GR21a, GR63a in D. melanogaster; Dippel et al., 2016; 
Jones et al., 2007; Kwon et al., 2007). One of these three candi-
date CO2 receptors of S. longicornis was upregulated in antennae 
and was recovered as orthologous to the GR2 gene in beetles. We 
also identified a candidate bitter taste GR (SlonGR19567c0g1) that 
clustered together with strong support with previously identified 
as conserved bitter taste GRs for A. planipennis and D. ponderosae 
(Andersson et al., 2019). The rest of the genes were generally re-
covered in well- supported clades with species- specific differences 
in the extent of GR expansions. S. longicornis showed divergent GRs 
distributed along the tree exhibiting relatively small expansions (i.e., 
from two to five genes) and in general a relatively diminished gusta-
tory repertoire, whereas the other species exhibit remarkable ex-
pansions and considerably larger repertoires. The functions of the 
other four upregulated GRs in antennae cannot be further predicted 
due to the lack of functional annotation of the genes they cluster 
together with.

3.6  |  IR and IGluR phylogenies

Since IRs derive from IGluRs (see Introduction), our phylogenetic ap-
proach facilitated the initial annotations of both types of genes in 
S. longicornis. IGluRs are not directly associated with chemorecep-
tion but show a high sequence identity with the most conserved IRs 
(i.e., IR8a, IR25a). Three genes clustered together with N- methyl- D- 
aspartate receptors (NMDARs) and nine genes clustered with differ-
ent IGluR clades, one upregulated in antennae (Figure 5a).

A total of 164 IR sequences were aligned and trimmed result-
ing in a multiple sequence alignment of 356 amino acid positions 

(Figure 5c). Several IRs of S. longicornis clustered together with con-
served IRs in insects (i.e., IR8a, IR25a, IR93a, IR76b, IR21a, IR68a, 
IR40a, IR100, IR60a). No genes clustering together with IR41a were 
detected for S. longicornis. Several putative gene duplications were 
detected for S. longicornis (containing each from 2 to 5 IRs), more 
moderate in size than the large gene family expansions observed 
for A. planipennis and D. ponderosae, which included up to eight and 
17 IRs, respectively. Our analyses revealed a gene duplication in 
IR25a, a highly conserved single copy gene virtually in all protos-
tomes (with the exception of the parasitoid wasps Nasonia vitripennis 
and Microplitis mediator and the limpet Lottia gigantea, see Section 
4). The copy of IR25a exhibiting the shortest branch in S. longicornis 
was upregulated in antennae (Figure 5a– c). In order to assess the 
robustness of our results, we followed four steps. First, all isoforms 
from both genes were visually inspected in an alignment (Figure S4), 
observing notable differences between the sequences belonging to 
the different genes and a high similarity for the isoforms of the same 
gene. Second, we used the expression values of each isoform in both 
genes to test whether only a low number of sequence reads from 
some of the isoforms were mapping back to one of the genes (which 
would indicate errors in the assembly), and tested if the expression 
levels were statistically different by means of a one- way ANOVA 
(Table S5). Expression levels were uniformly distributed across repli-
cates with the exception of one isoform that was highly expressed in 
one replicate, indicating that the inference of the two genes was not 
a methodological artefact. Third, the final alignment for the phylog-
eny including all the taxa (using the longest isoforms as described in 
Section 2) was examined to test that they were not nonoverlapping 
fragmented genes. Fourth, both IR25a copies were annotated with 
HMMER to inspect the similarity of the domain profiles. These IR25a 
candidates (i.e., SlonIR11039c0g2 and SlonIR14393c1g1) shared 
44% of identical residues whereas the conserved copy of S. longi-
cornis (SlonIR14393c1g1) had between 69% to 72% of amino acid 
sequence identity with the IR25 candidates of the other coleopteran 
species. In addition, the protein annotation of the IR25a candidates 
of S. longicornis by HMMER resulted in highly similar domain profiles, 
suggesting their similarity at the structural level.

3.7  |  OBP phylogeny

A total of 137 OBP sequences were included to explore the OBPs 
diversity of S. longicornis, resulting in a multiple sequence alignment 
of 110 amino acid positions after trimming. Our results suggest that 
OBPs in S. longicornis are relatively abundant compared to the other 
species, being the most diverse repertoire of this comparison after 

F I G U R E  3   Phylogeny of odourant receptors. (a) Maximum likelihood phylogenetic tree of odourant receptors (ORs) including OR sets of 
S. longicornis and other coleopterans from Mitchell et al. (2019), representing the proposed OR groups in grey ranges. Red triangles represent 
the upregulated genes in the antennae of S. longicornis. Purple triangles represent exclusively expressed genes in antennae. Species 
are colour coded as indicated in (b). (b) Number of OR genes of each OR group inferred for each species included in the phylogeny. “U” 
indicates unclassified ORs. (c) Maximum likelihood phylogeny of ORCO across coleopterans (see Methods and Table S1 for species codes). 
(d) Simplified representation of OR diversity recovered for each species, highlighting the OR repertoire of species with different feeding 
strategies [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 4 Phylogeny of gustatory receptors. Maximum likelihood phylogenetic tree of gustatory receptors (GRs) including GR sets of S. longicornis, 
other coleopterans from Andersson et al. (2019) and conserved GR sequences of D. melanogaster. Grey ranges represent well supported GR clades, 
indicating the proposed functions in the other species. Red triangles represent upregulated genes in the antennae of S. longicornis [Colour figure can 
be viewed at wileyonlinelibrary.com]
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T. castaneum (Figure 6). Several OBP candidates of S. longicornis clus-
tered together with the OBP subgroups described for the other spe-
cies in Andersson et al. (2019; i.e., classic- OBPs, minus- C, plus- C and 
antennal binding proteins II [ABPII]). Only seven out of the 17 OBPs 
upregulated in antennae correspond to the ABPII clade. Furthermore, 
two relatively large OBP expansions include the majority of the up-
regulated OBPs, formed by (i) the minus- C clade (with three upregu-
lated genes in antennae), and (ii) a specific S. longicornis OBP lineage 
of ten genes (with five upregulated genes in the antennae).

The phylogenomic characterization of other gene families 
(SNMP/CD36 and CSPs) was also explored. The results and discus-
sion are included as Supporting Information (Results S1).

4  |  DISCUSSION

A highly complete transcriptome for the cave- dwelling beetle 
Speonomus longicornis was generated in the present study (Figure 

F I G U R E  6  Phylogeny of OBPs. Maximum likelihood phylogenetic tree of OBPs including sequences of S. longicornis and other 
coleopterans from Andersson et al. (2019). Grey ranges represent the main OBP clades described in previous studies. Red triangles 
represent upregulated genes in the antennae of S. longicornis [Colour figure can be viewed at wileyonlinelibrary.com]
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S1). Combining the differential gene expression and GO enrichment 
analyses with a curated annotation pipeline for the chemosensory 
related genes, we were able to explore the chemosensory gene rep-
ertoire of S. longicornis. Furthermore, the phylogenetic inferences 
for each of the chemosensory gene families offered the opportunity 
to compare the repertoire of genes involved in chemosensation in 
S. longicornis to other beetle species that occupy a wide variety of 
ecological niches, all of them in surface habitats.

The differential gene expression (Figure 2a) and GO enrich-
ment analysis (Figure 2b) allowed us to identify upregulated genes 
in antennae (where chemosensory structures— sensilla— are highly 
concentrated) and compare the overall enriched functions in the 
antennae versus the rest of the body. As expected, olfaction was 
recovered as the most prominent function in antennae, represent-
ing more than half of the enriched terms in the molecular function 
category (odourant- binding and olfactory reception activities), in-
dicating that ORs and OBPs are playing a major role in how cave 
beetles receive and process airborne cues. ORCO was upregulated 
in antennae, as expected since it is an essential component of the 
functional heterodimers that facilitate odourant reception combined 
with other ORs (Stengl & Funk, 2013). In addition, only seven ORs 
were observed as exclusively expressed in antennae (Table S4), sug-
gesting that this gene family may include genes with high specificity 
in these appendages. All in all, these results highlight the importance 
of antennae in odourant perception in this cave beetle; further gene 
expression studies including additional structures such as mouth 
appendages would give more detailed insights for the rest of the 
identified ORs.

Concerning the OR phylogeny (Figure 3), our results are mostly 
consistent with what was found in Mitchell et al. (2019). Large ex-
pansions in several OR groups are highlighted in the polyphagous/
generalist species T. castaneum, O. taurus, A. glabripennis and P. ser-
rata, whereas the oligophagous/specialist D. ponderosae, L. decem-
lineata, A. planipennis and H. redfordi exhibit relatively reduced OR 
repertoires. Therefore, an apparent correlation between the host 
breadth and the OR diversity of herbivore Coleoptera is observed, 
clearly exemplified by the extent and distribution of OR diversity in 
the wood boring species (i.e., A. glabripennis, D. ponderosae, A. pla-
nipennis; Andersson et al., 2019). The insectivorous C. scrutator and 
the scavengers N. vespilloides and S. longicornis could be perceived as 
polyphagous/generalists but they showed an apparent low number 
of ORs and relatively smaller expansions compared to the rest of the 
polyphagous herbivores. Our results suggest a relatively reduced OR 
repertoire of S. longicornis compared to the other species, which may 
result from adaptation to the deep subterranean environment con-
ditions: very limited in primary production, oligotrophic and inhab-
ited by a relatively smaller number of species compared to surface 
habitats. Moreover the air remains still, saturated with water vapour 
and the potential evaporation rate is negligible for long time periods 
(Howarth & Moldovan, 2018). These features suggest an homoge-
neous habitat, probably less diverse in airborne odourant clues than 
surface habitats. An extreme contraction of chemosensory gene 
repertoire, particularly for ORs and OBPs, was observed in the fig 

wasp Ceratosolen solmsi when compared to other hymenopterans, 
possibly reflecting its high host- specificity (Xiao et al., 2013). Further 
research comparing high quality transcriptomes and genomes of sur-
face and subterranean species or including a high quality reference 
genome for the target species would help to validate this conclusion.

Regarding gustatory perception (Figure 4), five GRs were signifi-
cantly enriched in the antennae in S. longicornis, indicating a sub-
stantial gustatory role in these appendages. This result is consistent 
with what was found for GR expression levels of T. castaneum, where 
similar values in the maxillary palps and the antennae were reported 
(Dippel et al., 2016). Remarkably, no GRs associated with the per-
ception of fructose and other sugars were detected in S. longicornis 
(at least clustering together with functionally annotated genes in 
D. melanogaster) indicating that either S. longicornis does not have 
receptors for these types of carbohydrates, or their evolutionary 
origin is different from that in other beetles. Further research in-
cluding transcriptomic data of other structures involved in taste per-
ception (e.g., mouth appendages) would help to better sustain the 
absence of these highly conserved sugar receptors with the current 
approach. In insects, the entire loss of sugar receptors has only been 
documented in some obligate blood feeders (i.e., Glossina morsitans, 
Cimex lectularius and Pediculus humanus; Benoit et al., 2016; Kirkness 
et al., 2010; Obiero et al., 2014). Further comparative studies includ-
ing nonphytophagous beetles inhabiting surface habitats would help 
to test the hypothesis that a lack of sugar receptors may be directly 
associated with a strict subterranean lifestyle.

CO2 perception may be crucial for S. longicornis to orientate 
within its habitat and to detect decomposing organic matter in 
the darkness, the main food source for this species. We detected 
three candidate GRs clustering together with highly conserved CO2 
receptors of insects (Robertson & Kent, 2009), among which only 
one candidate was significantly expressed in antennae (Figure 4). 
Our results suggest that CO2 perception may not be restricted to a 
single chemosensory structure, congruent with what was found in 
T. castaneum after comparing different body structures (Dippel et al., 
2016). These results in beetles are in contrast to what was found in 
well studied dipterans. For instance, D. melanogaster has only two 
CO2 receptors that form functional heteromers significantly en-
riched in antennae (i.e., DmelGR21a and DmelGR63a; Dippel et al., 
2016; Jones et al., 2007; Kwon et al., 2007), whereas A. gambiae 
has three CO2 receptors that are upregulated in the mouthparts 
(AgamGR22- 24; Pitts et al., 2011). Further studies exploring differ-
ential gene expression in different body parts are needed to deepen 
our understanding of CO2 perception in S. longicornis.

The GR repertoire of S. longicornis was small and similar in size 
to that observed in the oligophagous A. planipennis (ash tree spe-
cialist). Our findings on the gustatory perception of this cavernico-
lous beetle may reflect the poor diversity of gustatory substances in 
the hypogean habitat compared to surface environments. A notably 
diminished odourant and gustatory capabilities were reported in 
Drosophila sechellia, an endemic species to the Seychelles that is spe-
cialized in feeding on a single plant species (McBride, 2007). Similar 
tendencies were found in independently specialized drosophilids 
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(McBride & Arguello, 2007) which showed a remarkable acceleration 
of gene loss when compared to other species. In contrast, the most 
remarkable GR family expansion in insects was found in Periplaneta 
americana (i.e. 522 GRs, with the most expanded clade (329 GRs) 
corresponding to potential bitter receptors), that been related to its 
omnivorous and opportunistic feeding habits. Moreover this spe-
cies has also the most expanded OR repertoire of Blattodea species 
(Li et al., 2018). A large expansion of GRs has also been reported in 
the polyphagous moth Helicoverpa armigera compared to other lep-
idopterans, again finding bitter receptor GRs as the most expanded 
clade of the family (Xu et al., 2016).

Contrary to the specific role of IGluRs in synaptic communica-
tion, IRs have more diverse roles which in insects are often related 
to chemoreception (Koh et al., 2014; Rytz et al., 2013). While the 
most conserved IRs (e.g., IR8a and IR25a) act as coreceptors con-
ferring multiple odour- evoked electrophysiological responses, more 
recently some insect IRs have been found to mediate specific stim-
ulus forming heterodimers with more selectively expressed IR sub-
units (Abuin et al., 2011, 2019). For instance, in D. melanogaster, the 
highly conserved coreceptors IR93a and IR25a are coexpressed with 
IR21a, mediating physiological and behavioral responses to low tem-
peratures (Knecht et al., 2017; Ni et al., 2016). In S. longicornis we 
found overexpression in the antennae of the candidate genes clus-
tering together to D. melanogaster IR93a and IR25a, while the can-
didate IR21a (SlonIR2299c0 g1) was significantly underexpressed in 
these appendages (Figure 5c). By contrast, higher expression levels 
for IR21a of D. melanogaster were found in the antennae (Sánchez- 
Alcañiz et al., 2018) and the same was found for other Coleoptera 
(Bin et al., 2017; Dippel et al., 2016). However, we did not explore 
differential gene expression in different structures from the body, 
which could explain the differences in the observed results.

Remarkably, our results suggest a putative duplication in the 
two genes annotated as IR25a, despite being a highly conserved 
gene with a single copy in virtually all protostomes (Figure 5b). 
Duplications have only been reported for the limpet L. gigantea 
and for two parasitoid wasp species: N. vitripennis and M. mediator 
(Croset et al., 2010; Wang et al., 2015). The inferred phylogeny sug-
gested different origins for the observed duplication in the IR25a 
candidates. A lineage- specific duplication has been observed in N. 
vitripennis and M. mediator, where both copies of IR25a were re-
trieved as sister to each other, suggesting either recent duplication 
or gene conversion. The candidate duplication in S. longicornis could 
represent an ancestral duplication in Coleoptera that was retained in 
this cave beetle or, alternatively, a recent gene duplication followed 
by extensive sequence divergence. Our results represent the first 
report of a gene duplication observed in this highly conserved gene 
in Coleoptera, which may indicate that the evolutionary history of 
IR25a and its role in chemoreception may be more complex than 
originally considered across arthropods.

Cave beetles inhabit a medium where air tends to be still and the 
ambient temperature and humidity fluctuate only by tiny amounts 
over long periods, and therefore a sensitive thermal detection may 
have a selective advantage. On the contrary, it may also result in a 

loss of selection of thermal detection ability and/or a loss of abil-
ity to adapt to thermal extremes (i.e., climate variability hypothesis; 
Stevens, 1989). Physiological experiments on a close relative species 
(i.e., the cave- dwelling Speophyes lucidulus, Leoididae, Cholevinae) 
revealed an extreme sensitivity to small changes in temperature 
incurred by antennal receptors (Corbière- Tichané & Loftus, 1983) 
that may be mediated by some of the inferred candidate IRs. 
Consequently, other relevant IRs for S. longicornis may be those 
potentially related to humidity sensing. The functionally charac-
terized IR40a and IR68a in D. melanogaster have been seen to be 
coexpressed with IR93a and IR25a in specialized sensory neurons 
of the antennae performing hygrosensory responses (Enjin, 2017; 
Knecht et al., 2017). Through the phylogenetic analysis we identified 
the hygroreceptor candidates (IR40a and IR68a) for S. longicornis 
(Figure 5c), although we did not find significant differences in the 
expression values between antennae and the rest of the body. The 
rest of the candidate IRs annotated in S. longicornis (i.e., IR8a, IR76b, 
IR75a, IR64a, 100a and IR60a; see Figure 5c; Table S2) have been 
shown to be potentially involved in taste and odour transduction in 
D. melanogaster, suggesting candidate odourant and gustatory roles 
in S. longicornis.

Regarding OBPs, the GO enrichment analysis highlighted 
odourant- binding functions vastly enriched in antennae (Figure 2b). 
In addition, the differential gene expression analyses identified a 
high number of upregulated genes (17 in antennae; Figure 2a). The 
large number of OBPs annotated in S. longicornis suggests a rela-
tively diverse repertoire with species- specific gene duplications 
and gene family expansions; this may indicate an important role of 
these proteins in odourant perception in this subterranean beetle. 
Notably, less than half of the upregulated OBPs in antennae clus-
tered together with the previously described “antennal binding 
proteins II” (ABPII) in Vieira and Rozas (2011; Figure 6). These re-
sults indicate that although ABPII were described as OBPs typically 
enriched in antennae, some genes of this clade may also be differ-
entially expressed in some other body structures, as also found for 
T. castaneum (Dippel et al., 2014). The rest of the upregulated OBPs 
in both conditions clustered together with the different OBP groups 
described in previous studies (Andersson et al., 2019; Dippel et al., 
2014; Vieira & Rozas, 2011). Further research including closer rela-
tives to this cave species with different ecological preferences will 
allow us to test the hypothesis that subterranean specialization has 
modified the chemosensory capabilities in Coleoptera.

5  |  CONCLUSION

In this study, we characterized for the first time the chemosensory 
gene repertoire of an obligate subterranean species, the cave- 
dwelling coleopteran S. longicornis. We found relatively diminished 
odourant and gustatory repertoires compared to polyphagous co-
leopterans inhabiting surface habitats and more similar to species 
considered specialists based on their feeding habits. Considering 
the selective pressures of the niche that S. longicornis occupies (i.e., 
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limited resources, poor diversity and heterogeneous distribution of 
food, among others), an optimized chemosensory repertoire in terms 
of diversity may result from its adaptation to the deep subterranean 
environment. In this obligate cave- dwelling beetle, we identified 
some putative gene losses (e.g., sugar GRs and IR41a). Furthermore, 
several gene duplications and gene family expansions were ob-
served. A putative duplication of the gene IR25a was identified, 
which might potentially have facilitated adaptation to subterranean 
conditions in this cave beetle. Our study thus paves the way towards 
a better understanding of how subterranean animals perceive their 
particular environment.
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