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Abstract: Risk analysis in motor insurance aims to identify factors that increase the frequency
of accidents. Telematics data is used to measure behavioural information of drivers. Contextual
variables include temperature, rain, wind and traffic conditions that are external to the driver, but may
also influence the probability of having an accident, as well as vehicle and personal characteristics.
This paper uses a monthly panel data structure and the Poisson model to predict the expected
frequency of claims over time. Some meteorological information is included. Two types of claims are
considered separately: only those related to at-fault third-party liability accidents, and all types of
claims including assistance on the road. A sample of drivers in Spain in 2018–2019 is analysed with
information on claiming frequency per month. Drivers were observed for seven months. Our analysis
is novel because monthly summaries of telematics information are combined with weather data in
a panel structure, revealing that external factors affect the expected claims frequencies. Reckless
speeding behaviours and intense urban circulation increase the risk of an accident, which also
increases with windy conditions.

Keywords: motor insurance; predictive models; telematics data; contextual data; at-fault claims

1. Introduction
1.1. Context and Motivation

Frequency models in motor insurance can identify factors that are associated with
an increase in the probability of accident occurrence and can help identify which features
should be taken into consideration when calculating the pure premium of a motor insurance
policy. Combined with severity models, frequency models are fundamental for motor
insurance pricing and, as such, regulators scrutinise how these are constructed internally by
insurers in order to guarantee that they comply with legal standards and are transparent.

New technologies based on on-board devices, smartphones or the introduction of
sensors in vehicles have expanded the possibilities of collecting information on vehicles in
motion and, therefore, of considering new features in the design of claim frequency models.
These new sources of data have led to the development of what is called “motor insurance
telematics”. Telematics data have proven to be very effective in identifying the behavioural
traits of the insured which, combined with traditional rating factors such as age or place
of residence, can be used to assess the claims propensity of a certain driver. All in all, it is
now widely accepted that telematics data can be introduced in claim frequency models to
increase their predictive performance compared to models based exclusively on classical
non-telematic rating factors such as age, vehicle power, age of the policyholder’s driver’s
licence, vehicle age, and so on.

The large amount of information that we can expect to collect in a telematics landscape
allows statisticians and data analysts to play a decisive role in risk analysis. However,
transforming a vast amount of available data into relevant information remains a bigger
challenge than anticipated a few years ago when the interest in telematics information
intensified enormously.
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Our aim here is to combine telematics information from vehicles in motion with
external contextual information from meteorological databases. It is widely accepted that
driving conditions may affect the way a driver operates their vehicle and that storms, heavy
rain, wind and fog escalate the need to drive with maximum alertness. However, the
combination of traditional rating factors, telematics information and weather conditions
has not been analysed when modelling motor insurance claim frequencies. Usually, it is
assumed that the place of residence indirectly captures the external atmospheric features
that a driver usually encounters, because some places experience more rain than others
or are more exposed to dangerous weather phenomena. We analyse a monthly panel of
telematics motor insurance records together with information on wind, sunshine, and
average temperature.

1.2. Background

Pay-as-you-drive (PAYD) schemes are the simplest form of motor insurance telematics
pricing, where premiums basically increase with distance driven. Insurers base their
predictive modelling on records of distance driven during a certain period of time, usually
one year, together with traditional rating factors and observed claim frequency. It has
been proven (see Cheng et al. 2022) that PAYD benefits the policyholder by reducing their
premium payments and increasing the total utility derived from vehicle usage. Moreover, it
also has positive effects for insurers, since it has been shown that early adopters experience
a significant increase in their market share, as they are able to attract low-risk drivers from
other insurers (see Che et al. 2021). As already mentioned, the most primitive telematics
variable is the distance travelled, and its relationship with accident risk has been intensively
investigated in the literature. Boucher et al. (2013) analysed real data and found that
this relationship is not linear, as driving twice as much as other drivers with the same
characteristics results in the expected number of claims being less than twice the number
of accidents. This non-linearity was also observed in further studies (see Boucher et al.
2017; Guillen et al. 2019, among others). The so-called learning effect is one possible
explanation, as those who drive more become more skilful at driving. Those who drive
more kilometres are also probably using safer roads. More recently, Boucher and Turcotte
(2020) analysed panel telematics count data using Generalised Additive Models (GAMs)
and found that the distance–claims frequency relationship seems to be linear, and the
apparent non-linearity was caused by a residual heterogeneity captured by GAMs. Another
issue that has recently been investigated in the literature is the existence of a cut-off value
of distance driven, below which drivers who have a traditional policy should switch to
a PAYD policy (Cheng et al. 2022). The impact of non-linearities and interactions may
be better captured with, for example, neural nets or the combined GLM/NN methods
that have been proposed in the literature (see Blier-Wong et al. 2020; Owens et al. 2022).
However, they use cross-sectional information on insurance claims, and no studies have
used panel data.

The literature presents evidence of the association between other telematics variables
and the risk of having an accident. There is evidence of a better assessment of driving
behaviour when detailed telematics information is used compared with traditional risk
factors (see, for example, So et al. 2021). Specifically, speed, road type, and the time of day
when the vehicle is used seem to have a strong relationship with the number of claims,
and alternative models have been proposed in the literature to describe the joint dynamics
of telematics data and claim occurrence (Ayuso et al. 2014; Pérez-Marín and Guillen 2019;
Pérez-Marín et al. 2019; Guillen et al. 2019; Corradin et al. 2022, among others). More-
over, such detailed telematics information can be used to identify periods of increased
risk by classifying trips that occur immediately before a claim (see Williams et al. 2022).
Eling and Kraft (2020) reviewed over fifty papers published in the last two decades on
usage-based insurance, with a summary of the methods, the selected telematics variables,
and the key findings. In light of Eling and Kraft’s survey, it is clear that telematics infor-
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mation is no longer in its infancy and is a useful tool for enhancing the performance of
classical pricing methods.

However, managing telematics information for motor insurance is difficult due to its
volume and complexity, requiring technical skills from IT departments and new perspec-
tives from actuarial teams. The development of big data in the insurance sector requires
information to be summarized and key risk factors identified for pricing purposes. Ad-
ditionally, data cleaning and pre-processing also become more difficult to perform with
telematics information (see Gao et al. 2022). In this context, Barry and Charpentier (2020)
assess the impact of big data technologies on insurance ratemaking, with a special focus on
motor policies. These authors also consider that the big volume of data and the personal-
ization compromises behind usage-based insurance shakes the homogeneity hypothesis
behind pooling. It is clear that telematics information enhances the capacity to differentiate
or discriminate among the insured. Recently, Frees and Huang (2021) analysed the social
and economic principles that can be used to assess the appropriateness of discrimination
nowadays in the insurance sector.

In this context, different approaches have been proposed to deal with the huge amount
of telematics data. On the one hand, new variable selection algorithms have been developed
to deal with a large number of covariates in the context of motor insurance (see Chan et al.
2022). Additionally, research has investigated exactly how much information should be
collected. Duval et al. (2022) found that telematics data become redundant after about
3 months or 4000 km of records, at least for risk classification. Another approach that
somehow simplifies this task is the consideration of near-miss events in the driving context
(an incident that might have resulted in an accident), as they can help to reduce the amount
of information needed for risk classification. Guillen et al. (2020) identified the relationship
between telematics information (speed, road type, and time of the day) and three types of
near-miss events (harsh acceleration, braking, and cornering). Their results are relevant
for claim risk quantification based on dynamic monitoring of near-miss events, but the
way that near-miss events and tariffs should be connected is still an open debate. Finally,
another approach that can help to summarize telematics information consists of calculating
a driving behaviour score for each finished trip. In this regard, recently Meng et al. (2022)
used a supervised driving risk-scoring neural network model to calculate a risk score.
The authors showed that incorporating risk scores significantly improves the prediction
performance of classical Poisson regression models for the frequency of claims.

Beyond behavioural information captured in telematics features, evidence has recently
shown that contextual information is also potentially relevant when assessing the risk
of suffering an accident, specifically in bad weather. Although this type of information
is missing from most of the papers on usage-based insurance, many authors admit that
traffic congestion and weather conditions, in addition to the time of day and type of road,
influence the frequency and severity of claims. Qiu and Nixon (2008) found that crash
rates increase during precipitation; specifically, they showed that snow has a greater effect
than rain on crash occurrence (snow increases the crash rate by 84% and the injury rate by
75%). Mornet et al. (2015) used information from historical wind speed data in France to
create an index to assess the economic impact of storms on insurance portfolios. Malin et al.
(2019) investigated the relative accident risk of different road weather conditions as well as
combinations of conditions. They found that relative accident risks were the highest for icy
rain and slippery road conditions. Liang et al. (2021) found there to be a non-linear and
lag relationship between local temperatures and traffic accident injuries; specifically, both
low temperatures and high temperatures increase the incidence of traffic accident injuries.
In addition, different temperatures have different effects on accident injuries for different
age and gender groups. More recently, Gao and Shi (2022) also investigated the impact
of hailstorms on hail damage claims using data from a U.S. insurer. The authors used
information provided by hail radar maps and other spatially-varying weather features to
help insurers anticipate and manage claims more efficiently.
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To our knowledge, there has been no previous attempt to combine telematics and
weather condition information in panel data for frequency models.

1.3. Objectives

We are interested in answering two research questions using telematics data. First, we
aim to find a method for identifying meteorological factors that should be considered when
modelling claim frequency. Second, by analysing a panel structure in our monthly data, we
aim to confirm an autoregressive pattern that demonstrates whether a previous month’s
claiming behaviour and telematics information have an influence on the expected current
number of claims.

In what follows, a claim is understood as an event not necessarily associated with
an accident that requires the assistance of the insurer, such as technical assistance due
to an incident (ignition or flat tyre, for example). We also aim to predict the frequency
of at-fault accidents. Therefore, we compare the results of predictive models: (a) for the
number of claims in general, and (b) for the number of at-fault third-party liability claims.
Furthermore, we aim to identify the impact of a selection of weather conditions on the
expected claim frequency for each of these two responses.

A real case study using telematics data is used to show the implementation in a panel
of insured drivers observed over time on a monthly basis.

1.4. Data and Structure

The original database is composed of telematics data on insured drivers and contains
a series of 249,408 observations. Each policy corresponds to an insured driver and infor-
mation on different variables is obtained each month. 12 months of effective driving are
observed for each insured driver, although these months may not necessarily be consec-
utive because some drivers use their cars quite irregularly. Only months when vehicles
were used at least once a week are considered. This could bias the results because drivers
who only drive occasionally may be underrepresented. The total number of observed
policyholders is 20,784 and corresponds to a sample of drivers in Spain between 2018
and 2019. Working on monthly data with such a large number of policyholders adds an
innovative component to the analysis and allows for complex modelling, in particular
panel data models. The policyholders received a telematics on-board box to collect data,
but the insurance product started operating under the pay-as-you-drive scheme after four
months. Therefore, we consider only months 6 to 12. Month 5 was also discarded because
we observed a higher claim frequency of claims in that particular month and we strongly
believe that policyholders may have reported claims which actually occurred in month 4,
in order to be covered by the new policy. In fact, the embargo period of four months may
have created a new form of fraud. We also note that policies start at different points in time.
Therefore, even if month number 6 may correspond to June for some insured drivers who
started their contracts in January, this could also correspond to August for drivers who
signed their contracts in March. We would like to remark that many papers use summaries
of telematic information but do not analyse longitudinal information of the same policy,
instead combining weekly telematics information with historical records.

The data that we manage have two levels of aggregation, since an insured driver has
as many rows as months driven. Furthermore, the panel data is balanced, since for each
insured driver we have the same number of months observed. The original database has
more than 60 variables that are grouped into 3 categories:

- The first category contains the variables related to the basic features of the insured,
such as gender, age, vehicle power, and driver’s licence age. These variables do not
vary over time, so they are implicitly included in the panel models as individual
effects. In this category, we also consider the location where the insured driver has
mostly driven each month, which is generally constant over time because it is usually
their place of residence. Specifically, we have an indicator of the province where the
driver has driven the majority of the monthly total distance.
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- The second category includes time-varying variables related to the drivers’ behaviour
and weather information. Weather information contains data on sunshine hours,
average monthly temperatures, and wind. The drivers’ information includes features
such as maximum and average speed and distance travelled obtained from daily
information. All variables are disaggregated by road type: highway, national road,
regional road, and urban road.

- Finally, the third category includes claim frequency information.

One of the most innovative highlights of our analysis is the introduction of weather
data. Three new variables are initially introduced in the database: average monthly
temperature, average number of hours of sunshine per day, and average wind speed.
Unfortunately, we do not have information on rain. They are all linked to the province
and month where each insured driver has driven. The data for these three variables were
taken from the Agencia Estatal de Meteorología (2022) in Spain. The list of variables finally
considered in our analysis is shown in Table 1. We would like to remark that a selection of
variables was undertaken previous to the current choice. As in similar studies, total distance
driven is one of the main telematics features (Pitarque and Guillen 2022; Huang and Meng
2019). Speeding is also one of the telematics variables that has a tremendous effect on the
expected frequency of accidents (Ma et al. 2018). We wanted to avoid multicollinearity in
the models, so we could not introduce distance driven by type of road.

Table 1. Description of the variables finally considered in the analysis. They are all measured from
the policyholder’s monthly information. Spanish data set, seven complete months observed in 2018
and 2019.

Variable Description

Telematics variables
Tele_km_total_urban Kilometres travelled on urban roads
Tele_speed_mean_urban Mean speed on urban roads
Tele_speed_mean_national Mean speed on national roads
Tele_speed_mean_highway Mean speed on the highways
Tele_speed_max_urban Maximum speed on urban roads
Tele_speed_max_national Maximum speed on national roads
Tele_speed_max_highway Maximum speed on the highways

Weather conditions
Temperature Average monthly temperature (degrees Celsius)

Sun Average number of hours of sunshine per day
during the month

Wind Average monthly wind speed (km/h)
Response

Claims Number of claims (of any type)
At-fault claims Number of at-fault third-party liability claims

1.5. Description of the Data

In Figure 1 the average maximum speed is represented as a function of the month,
depending on the type of road, and separating policies with claims from those without
claims. We observe that the average maximum speed for drivers with claims is slightly
higher than for those without claims. We also observe that for highways and national
roads, the average maximum speed remains very stable over time. The average maximum
is around 132 km/h on highways (where the maximum possible posted limit is 120 km/h)
and 102 km/h on national roads (where the posted limit is 90 km/h). However, for urban
roads, the maximum speed is clearly above the posted limit (more than 80 km/h when the
posted limit is 50 km/h) and this increases in the last months of the observation period.
Figure 2 presents the monthly average mean speed by type of road. At the beginning of
the observation period the average values were around 76 km/h on highways, 55.5 km/h
on national roads, and 19 km/h on urban roads, and they change over time (we observe a
decrease for highways and an increase for national and urban roads).
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Figure 2. Plots of the average mean speed per individual from month 6 to month 12 in terms of
whether or not individuals reported claims at some point over the entire period. From left to right
there is a graph for the average mean speed on highways, national roads and urban roads, respectively.

Figure 3 presents the percentage monthly frequency of total claims and at-fault third-
party liability claims together with the monthly averages of the temperature, wind speed,
and sunshine daily hours. The frequency of claims decreases from month 6 to 11 (from
7.63% to 6.09% for all types of claims and from 0.41% to 0.24% for third-party liability
claims), and then increases during the last month (reaching 6.75% for all claims and 0.35%
for third-party liability claims). The temperature and sunshine daily hours, however,
increase between months 6 and 10 and decrease at the end of the observation period, and
wind speed slightly increases over time.

A full description of the data is presented in Table A1 in Appendix A. In Table 2, we
also show a cross-table with the number of claims and at-fault accidents suffered by the
insured in the sample.

Table 2 shows that 16,235 policyholders did not report any claim, while 2694 reported
one claim, 475 two claims, and 1380 three or more claims. Note that those general claims
may include all types of assistance. Only one policyholder reported three or more at-fault
third-party liability claims. We can see that all the individuals who suffered an at-fault
accident during the seven months also reported other claims. Furthermore, those insured
who made fewer than three claims did not have any at-fault accidents. Therefore, those
insured who made more claims are the ones who experienced at-fault accidents.
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Table 2. Cross-table with the total number of claims (rows) and at-fault third-party liability (TPL)
claims (columns) per insured during the seven observed months in 2018 and 2019.

All Claims
At-Fault TPL Claims

Total
0 1 2 3 or More

0 16,235 0 0 0 16,235
1 2694 0 0 0 2694
2 475 0 0 0 475

3 or more 868 502 9 1 1380
Total 20,272 502 9 1 20,784

2. Methods

Using panel data for the study objectives is adequate because we have longitudinal
information. Even if neural network or combined GLM/NN methods could provide newer
insights into non-linearities, they do not provide the simplicity of linear models for an
explanation of the effects.

We use the Poisson model for monthly panel data to predict the expected total number
of claims and the expected total number of at-fault third-party liability policy claims. The
model considers explanatory variables varying over time:

- Behavioural variables allow us to identify the most dangerous forms of conduct.
- Variables related to the weather conditions that change with the area and month where

the vehicle has been driven allow us to see which environments are the most dangerous.

Individual non-time-changing factors constitute the individual effects.

2.1. Software and Package

The statistical analysis was carried out using R software. The estimation of the models
with panel data was performed using the pglm() function of the pglm package released in
July 2021 (see Croissant 2021). This package is part of the R software’s current libraries and
allows the estimation of generalised linear models with panel data.
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2.2. Models Specification and Estimation

The model specification for the number of total claims, a response variable called
yit, for an individual i in the driving month t, consists of a panel data counts model. It is
assumed that conditional on the latent state variables λit, yit are mutually independent
with Poisson distribution and with mean µit = exp(λit). This assumption means that we
are estimating a random effects model. The corresponding probability density function
of yit given λit, where λit represents the logarithm of the conditional mean of yit, from the
Poisson distribution family, is:

f (yit|λit) =
exp{yitλit − exp(λit)}

yit!
, i = 1, . . . , N t = 1, . . . , T

where N is the total number of individual policyholders and T is the total number of months
observed. The term λt is autoregressive and is defined as:

λt = κ λt−1 + Xtβ + εt , (1)

where λt = (λit) is the N × 1-dimensional vector of the state variables in period t, εt = (εit)
is the N × 1-dimensional vector of the error terms and Xt is the N × K matrix where the
i-th row xit = (xikt) consists of the K covariates observed by individual i in month t.

In order to take into account possible unobserved and time-invariant heterogeneity
we assume that the error term follows a Gaussian normal distribution of random effects of
the form: εt = τ + et, where τ

∣∣Xt ∼ N
(
0, σ2

τ

)
and et

∣∣Xt ∼ N
(
0, σ2

e
)

. The vector τ = (τi)
contains the specific individual effects that are not taken into account by the Xt regressors
and et = (eit) is the vector of disturbance terms. It is assumed that τ and i are mutually
independent, conditional on Xt. Therefore, a random effects model is estimated where
the individual effects τi are assumed to be random and distributed independently of
the regressors.

As shown in (1), the model is dynamic since it depends directly on past values through
λt−1, which represents the value of the state variables in the previous period. Thus, we
consider that yt has a Poisson distribution with mean that is a function of the regressors xt
and past claims information, yt−1.

Additionally, a fixed-effect model is also considered and (1) contains N individual
parameters, ai, each one summarizing individual non-time-changing information. We use
the so-called within estimator. Therefore, we use a Poisson regression model which is
expressed in terms of the differences in each observation with respect to the average of all
individuals in each time period.

All the covariates available in the database have been considered and introduced into
the model linear predictor. Finally, features have been selected using a backwards variable
selection process and by minimizing the Akaike information criterion.

3. Materials and Methods

The main results of the models for random effects and for fixed effects are shown
in Table 3, separated into a response that counts all observed claims and one that counts
only at-fault third-party liability claims. In Table 3, only the monthly wind speed average
is included as a weather feature. The results for average monthly sunshine hours and
monthly temperature are presented in Tables A2 and A3 in Appendix A. Additionally,
extreme temperature, sunshine and wind have also been considered. Specifically, we have
repeated the analysis with monthly maximum averages and the conclusions do not vary
substantially (see Tables A4–A6 in Appendix A).
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Table 3. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third-party liability (TPL)
claims (right) per month and per insured based on the seven observed months in 2018 and 2019.

Variable

All Claims Only At-Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.942 <0.001 - - −7.226 <0.001 - -
lag(claims *) −0.445 <0.001 −0.569 <0.001 −1.200 0.252 −4.370 <0.001

Wind 0.022 0.003 0.016 0.066 0.087 0.001 0.078 0.033
Tele_km_total_urban ** 0.123 0.012 −0.212 <0.001 0.789 <0.001 0.071 0.764

Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.024 0.007 −0.028 0.041
Tele_speed_max_highway 0.004 <0.001 −0.001 0.407 0.007 0.021 −0.011 0.047

στ 0.158 <0.001 - - 1.008 0.161 - -
AIC 58,911.58 26,833.79 5779.10 1420.46

* we consider either all claims or only at-fault TPL claims, correspondingly; ** expressed in thousands of kilometres.

3.1. Poisson Panel Data Model with Random Effects for the Number of Claims

Table 3 shows a summary of the final models with information on the linear predictor
coefficients of the most relevant variables for the model, with random effects for the total
number of claims as well as their significance test. The AIC of the model is 58,911.58.

The coefficient of the lag of the previous period claim observation is significant, as
well as the sigma coefficient, except when at-fault TPL claims are being modelled with
random effects. The sigma coefficient corresponds to the standard deviation of the time-
invariant unobserved heterogeneity στ , i.e., the variance of the random individual effects.
The significance of this coefficient tells us that there are differences between policyholders
in the portfolio, or that it captures effects omitted from the model or imperfectly measured.

The fact that the coefficient of the time lag is significant and negative indicates that if
the number of claims in period t − 1 was high, then the number of claims in the current
period t is expected to be lower and, conversely, if no claim was observed in period t −
1, the likelihood of observing a claim in period t increases. This result is evidence of an
autoregressive pattern and is to be expected. If in one month a driver has at least one
incident on the road, in the following months they may drive less or behave more cautiously
to avoid new incidents. Likewise, if no incident is reported, then drivers may become more
confident in the subsequent month.

The behaviours that pose the highest risk of incidents are high maximum speeds on
highways and driving in urban areas, such as travelling over the posted speed limit. The
coefficient of average speed on urban roads is seen to be significant but negative, which
indicates that the risk of an incident is higher when driving at a lower average speed. This
can be attributed to driving on more congested roads, or to driving less safely. We also
observe that the total distance travelled on urban roads increases the number of claims.

Regarding the variables related to meteorological conditions, we conclude that windy
conditions impact the risk of reporting a claim even when considering constant individual
features and behavioural information. However, no evidence can be found for the effects of
average temperature and average daily sunshine hours. The positive coefficient of wind
indicates that driving in areas with wind or during windy months increases claim risk.

The coefficients β of each variable can be interpreted approximately as semi-elasticities,
giving the proportional increase in E(yit|xit) associated with a unit increase in the regressor
xit. To give an example, the coefficient of the maximum highway speed equals 0.004 in
the random effects models (see Table 3, first column). Therefore, a one-kilometre per hour
increase in the maximum highway speed per month is associated with a 0.4% increase in
the expected total number of claims, given that the other regressors remain constant.
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3.2. Poisson Panel Data Model with Fixed Effects for the Number of Claims

Table 3 also shows the results for the Poisson regression model with fixed effects for
the total number of claims. The AIC of the model with fixed effects is 26,833.79, which
is lower than the AIC obtained for the random effects structure. In this case, the model
is expressed in terms of the differences between each observation and the corresponding
mean of all individuals for each time period.

Again, the coefficient of the lag of the number of claims in the previous period is
significant and negative. Therefore, again, we conclude that the number of claims fluctuates
over time. In this case, the average monthly wind speed is not associated with a higher
risk of accident. However, again, we observe a negative and significant coefficient for
the mean speed on urban roads, while the maximum speed on highways does not have a
significant effect. Finally, in this case, the total distance travelled on urban roads decreases
the number of claims, therefore there is a change in the sign of this coefficient with respect
to the random effects approach, and it is surprising. A possible explanation is that in the
fixed effects model for all claims we have probably captured the behaviour of the driver
and their personal characteristics.

3.3. Poisson Panel Data Model with Random Effects for At-Fault Third-Party Liability Claims

Table 3 shows the results for the Poisson model with random effects for the at-fault
third-party liability claims. The AIC is 5779.10. In this case, the lag of the number of
at-fault accidents in the previous period does not have a significant effect. The reason
could be that third-party liability claims are too infrequent to detect the autoregressive
pattern. Again, we conclude that wind increases the accident risk. High maximum speed
on highways is also associated with a higher risk of accident than when maximum speed
is lower. Regarding the mean speed on urban roads, we note that it has a negative and
significant coefficient. Therefore, driving at a lower mean speed on urban roads increases
the risk of accident (this effect can be explained again by the higher risk of accidents when
driving in more congested areas, where the mean speed is lower). The rest of the telematics
variables were finally included in the model for comparability, but were not selected by
the variable selection algorithm. Too many explanatory variables induce multicollinearity.
Lastly, we conclude that the sigma coefficient (variance of the random individual effects) is
not significant, therefore there are no differences between individuals, just heterogeneity.

3.4. Poisson Panel Data Model with Fixed Effects for At-Fault Third-Party Liability Claims

Table 3 shows the results of the Poisson regression model with fixed effects for the
at-fault accidents. In this case, the AIC equals 1420.46, which is lower than the AIC obtained
for the random effects structure. Note that models with the lowest AIC contain insignificant
terms, but we wanted to have the same covariates in all models to compare the results.
In that model, we observe that the lag of the number of at-fault accidents has a negative
and significant parameter. Again, we observe that wind is associated with a higher risk
of at-fault accidents. High values of the maximum speed on highways and high mean
urban speed reduce the risk of at-fault accidents, which can only be explained by the lack
of congestion and heavy traffic.

Finally, we would like to mention that we also performed the calculations with Month
5 included in the analysis. The results are shown in Appendix A (Tables A7–A9). The
conclusions do not change. Moreover, we have also analysed the results when interactions
between weather conditions and driver behaviour are included in the models. The results
are presented in the Appendix A (Tables A10–A12). We found an interesting interaction
between sunshine hours and telematics information when we modelled the total number
of claims. Specifically, we observe that the total distance travelled on urban roads has a
negative and significant parameter, but sunshine hours and its interaction with the total
distance travelled on urban roads have a positive and significant parameter. This means that
driving on urban roads in combination with sunshine conditions contributes to increasing
the number of claims. On the other hand, the interaction between sunshine hours and the
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mean speed on urban roads is negative; therefore, driving at a higher mean speed on urban
roads in combination with sunshine conditions contributes to decreasing the number of
claims. Finally, we also observe that the maximum speed on highways has a positive and
significant parameter, but its interaction with sunshine hours is significant and negative.
This means that, although sunshine conditions and high values of the maximum speed on
highways increase the number of claims separately, this effect is, to some extent, mitigated
when both conditions occur at the same time.

4. Discussion and Conclusions

We investigate the effect of telematics variables and contextual information of weather
conditions on the risk of claims and at-fault accidents using real panel data based on
monthly information. The telematics information on speeding, which together with total
distance driven is probably the most relevant telematics variable, shows that the type of
road where speeding takes place is significant. We distinguish between the mean and
maximum speed on three different types of roads (urban, national, and highway). Two
modelling approaches are used: fixed vs. random effects.

For the model for all types of claims, we reach similar conclusions about the effect of
the covariates for both modelling approaches. With regard to weather conditions, only a
higher average wind speed is associated with a higher risk of accidents (for the random
effects model). Contrary to what was expected, we do not find a significant association
between claims and average monthly temperature and average sunshine hours. We would
have expected that winter time, with low temperatures in Spain, would be riskier than
summer time, but it appears that only windy conditions were relevant. We would like to
mention that working with average values over a month for meteorological conditions is
somewhat coarse, and is a limitation of analysing monthly data.

We also find a negative association between the number of claims and the average
speed in urban areas, which can be explained by the higher risk of collision for those who
normally drive on congested urban roads. There are articles in the literature that found
the same result. Specifically, Abdel-Aty and Radwan (2000) showed that heavy traffic
volume, speeding, narrow lane width, larger number of lanes, urban roadway sections,
narrow shoulder width and reduced median width increase the likelihood of accident
involvement. Cabrera-Arnau et al. (2020) found that minor and serious accidents are more
frequent in urban areas, whereas fatal accidents are more likely in rural areas. Indeed,
when looking at data from different parts of the world, it is well-known that accidents with
fatalities are more frequent in rural areas, rather than urban areas (Zwerling et al. 2005).
We assume maximum speed to be an indicator of risky driving (especially when it is above
the posted limit of the road). The maximum speed on highways increases the risk of claims.
Finally, for both modelling approaches, we also observe that the number of claims shows
an autoregressive fluctuation over time, as having a claim in the previous month decreases
the risk of having a claim in the subsequent month.

Regarding the number of at-fault accidents, we reach similar conclusions for both
modelling approaches. Firstly, we observe that high temperatures and sunshine do not
seem to be associated with fewer accidents, but we confirm that the lower the wind speed
average, the lower the expected frequency of at-fault accidents. We also observe that higher
values for the total distance driven on urban roads increases the risk of at-fault accidents (for
the random effects model), but the mean speed on urban roads has the opposite effect, as
lower values are associated with a higher risk of at-fault accidents. A possible explanation
is, again, related to situations in which the mean speed is lower due to congestion, which
facilitates more accidents. Finally, for random and fixed effects we find contradictory results
regarding the effect of average maximum speed on highways.

Our findings highlight the importance of considering detailed telematics information
in combination with contextual information in order to predict the risk of at-fault accidents
or the risk of all types of claims. Both sources of information have been considered in
accident risk research, but there is a lack of studies in which they are considered simul-
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taneously and with a panel data structure including detailed telematics information, in
particular when considering interactions. Therefore, even if we make a contribution to the
prediction of accident risk, which can be used to reconsider pricing usage-based insurance
products and also for designing road safety plans, considering contextual factors such as
the weather is necessary to understand telematics information.
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Appendix A

Table A1. Descriptive statistics: mean and standard deviation (SD) for 20,784 policyholders in seven
observed months in 2018 and 2019.

Mean Month 6 Month 7 Month 8 Month 9 Month 10 Month 11 Month 12 Total

Telematics variables
Tele_km_total_urban 361.745 353.987 345.384 331.785 322.242 303.230 283.157 328.790
Tele_speed_mean_urban 19.422 19.540 19.833 20.077 20.340 20.476 20.384 20.010
Tele_speed_max_highway 131.781 131.704 131.712 131.793 131.557 131.121 130.341 131.430

Weather conditions
Wind 9.560 10.021 10.259 10.297 10.251 10.246 10.343 10.140
Temperature 14.404 14.407 16.202 18.138 18.959 18.386 16.986 16.783
Sun 6.682 7.219 8.118 8.702 8.706 8.289 7.740 7.922

Responses
Claims 0.076 0.073 0.068 0.068 0.064 0.061 0.068 0.068
At-fault third-party liability 0.004 0.004 0.004 0.004 0.003 0.002 0.003 0.004

S.D. Month 6 Month 7 Month 8 Month 9 Month 10 Month 11 Month 12 Total

Telematics variables
Tele_km_total_urban 310.455 297.183 293.006 275.432 265.530 245.056 230.455 230.455
Tele_speed_mean_urban 5.524 5.598 5.715 5.764 5.928 6.056 6.075 6.075
Tele_speed_max_highway 15.583 15.527 15.618 16.002 16.131 16.737 16.934 16.934

Weather conditions
Wind 1.802 1.877 1.734 1.666 1.657 1.739 1.864 1.864
Temperature 4.936 5.311 5.827 5.894 5.864 6.024 6.080 6.080
Sun 2.078 2.348 2.432 2.337 2.319 2.372 2.364 2.364

Responses
Claims 0.491 0.481 0.467 0.466 0.440 0.407 0.443 0.443
At-fault third-party liability 0.064 0.065 0.063 0.061 0.058 0.049 0.059 0.059
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Table A2. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third-party liability (TPL)
claims (right) per month and per insured based on the seven observed months in 2018 and 2019. The
models consider the average number of sunshine hours per day as explanatory variable describing
weather conditions.

Variable

All Claims Only At-Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.688 <0.001 - - −6.049 <0.001 - -
lag(claims *) −0.445 <0.001 −0.569 <0.001 −1.177 0.261 −4.357 <0.001

Sun 0.001 0.979 0.004 0.438 −0.025 0.209 −0.003 0.887
Tele_km_total_urban ** 0.116 0.018 −0.223 <0.001 0.789 <0.001 0.015 0.951

Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.022 0.014 −0.028 0.043
Tele_speed_max_highway 0.003 <0.001 −0.001 0.328 0.006 0.048 −0.011 0.045

στ 0.158 <0.001 - - 1.000 0.159 - -
AIC 58,920.18 26,836.56 5787.84 1426.87

* we consider either all claims or only at-fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A3. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third-party liability (TPL)
claims (right) per month and per insured based on the seven observed months in 2018 and 2019.
The models consider the average monthly temperature as explanatory variable describing weather
conditions.

Variable

All Claims Only At-Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.680 <0.001 - - −6.022 <0.001 - -
lag(claims *) −0.444 <0.001 −0.570 <0.001 −1.177 0.261 −4.357 <0.001
Temperature −0.001 0.788 0.002 0.331 −0.013 0.116 −0.002 0.857

Tele_km_total_urban ** 0.116 0.017 −0.224 <0.001 0.797 <0.001 0.016 0.946
Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.021 0.016 −0.028 0.043

Tele_speed_max_highway 0.003 <0.001 −0.001 0.317 0.005 0.056 −0.011 0.046
στ 0.158 <0.001 - - 1.004 0.160 - -

AIC 58,920.11 26,836.22 5786.94 1426.86

* we consider either all claims or only at-fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A4. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values. for the total number of claims (left) and at-fault third party liability (TPL)
claims (right) per month and per insured based on the seven observed months in 2018 and 2019.
Monthly maximum daily average wind speed is introduced as the weather-related regressor.

Variable

ALL Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.839 <0.001 - - −6.920 <0.001 - -
lag(claims *) −0.444 <0.001 −0.569 <0.001 −1.187 0.257 −4.358 <0.001
Wind max 0.011 0.038 0.006 0.279 0.053 0.010 0.036 0.165

Tele_km_total_urban ** 0.120 0.014 −0.218 <0.001 0.788 <0.001 0.039 0.870
Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.023 0.009 −0.028 0.045

Tele_speed_max_highway 0.003 <0.001 −0.001 0.381 0.006 0.034 −0.011 0.043
στ 0.158 <0.001 - - 1.008 0.161 - -

AIC 58,915.90 26,836.00 5782.95 1424.98

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.
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Table A5. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third party liability (TPL)
claims (right) per month and per insured based on the seven observed months in 2018 and 2019. The
models consider the monthly maximum daily average of sunshine hours as explanatory variable
describing weather conditions.

Variable

All Claims Only At Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.723 <0.001 - - −6.032 <0.001 - -
lag(claims *) −0.445 <0.001 −0.570 <0.001 −1.177 0.261 −4.360 <0.001

Sun max 0.005 0.391 0.009 0.088 −0.022 0.284 0.009 0.724
Tele_km_total_urban ** 0.115 0.019 −0.223 <0.001 0.788 <0.001 0.017 0.943

Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.022 0.014 −0.029 0.037
Tele_speed_max_highway 0.003 0.001 −0.001 0.295 0.006 0.047 −0.011 0.040

στ 0.158 <0.001 - - 1.001 0.160 - -

AIC 58,919.45 26,834.25 5788.27 1426.77

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A6. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third party liability
(TPL) claims (right) per month and per insured based on the seven observed months in 2018 and
2019. The models consider the monthly maximum daily average temperature as explanatory variable
describing weather conditions.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.702 <0.001 - - −5.981 <0.001 - -
lag(claims *) −0.445 <0.001 −0.570 <0.001 −1.176 0.261 −4.357 <0.001

Temperature max 0.001 0.581 0.004 0.053 −0.014 0.084 −0.001 0.881
Tele_km_total_urban ** 0.114 0.020 −0.229 <0.001 0.805 <0.001 0.017 0.942

Tele_speed_mean_urban −0.020 <0.001 −0.020 <0.001 −0.021 0.016 −0.028 0.042
Tele_speed_max_highway 0.003 <0.001 −0.001 0.273 0.006 0.053 −0.011 0.046

στ 0.158 <0.001 - - 1.007 0.161 - -

AIC 58,919.88 26,833.42 5786.42 1426.87

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A7. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values. for the total number of claims (left) and at-fault third party liability (TPL)
claims (right) per month and per insured based on the eight observed months in 2018 and 2019, i.e.,
month 5 is included.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −3.049 <0.001 - - −7.309 <0.001 - -
lag(claims *) −0.421 <0.001 −0.535 <0.001 −1.373 0.184 −4.389 <0.001

Wind 0.019 0.006 0.014 0.055 0.077 0.002 0.063 0.054
Tele_km_total_urban ** 0.064 0.145 −0.275 <0.001 0.727 <0.001 −0.042 0.842

Tele_speed_mean_urban 0.016 <0.001 −0.016 <0.001 −0.018 0.024 −0.018 0.148
Tele_speed_max_highway 0.004 <0.001 <0.001 0.911 0.008 0.004 −0.007 0.145

στ 0.183 <0.001 - - 1.151 0.125 - -

AIC 70,710.83 34,887.78 6893.57 1886.79

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.
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Table A8. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third party liability (TPL)
claims (right) per month and per insured based on the eight observed months in 2018 and 2019,
i.e., month 5 is included. The models consider the average number of sunshine hours per day as
explanatory variable describing weather conditions.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.842 <0.001 - - −6.356 <0.001 - -
lag(claims *) −0.420 <0.001 −0.534 <0.001 −1.354 0.190 −4.375 <0.001

Sun 0.001 0.834 0.004 0.425 −0.013 0.462 0.001 0.944
Tele_km_total_urban ** 0.059 0.177 −0.283 <0.001 0.731 <0.001 −0.081 0.701

Tele_speed_mean_urban −0.016 <0.001 −0.016 <0.001 −0.016 0.050 −0.018 0.149
Tele_speed_max_highway 0.004 <0.001 >−0.001 0.965 0.007 0.011 −0.007 0.120

στ 0.183 <0.001 - - 1.139 0.123 - -

AIC 70,718.47 34,890.80 6902.71 1890.49

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A9. Cross-table with the parameter estimates of random effects and fixed-effects Poisson panel
data models, with p-values, for the total number of claims (left) and at-fault third party liability (TPL)
claims (right) per month and per insured based on the eight observed months in 2018 and 2019, i.e.,
month 5 is included. The models consider the average monthly temperature as explanatory variable
describing weather conditions.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.817 <0.001 - - −6.283 <0.001 - -
lag(claims *) −0.420 <0.001 −0.534 <0.001 −1.355 0.190 −4.373 <0.001
Temperature −0.002 0.377 <0.001 0.982 −0.010 0.163 −0.005 0.545

Tele_km_total_urban ** 0.061 0.168 −0.284 <0.001 0.738 <0.001 −0.081 0.698
Tele_speed_mean_urban −0.016 <0.001 −0.016 <0.001 −0.015 0.054 −0.017 0.170

Tele_speed_max_highway 0.004 <0.001 >−0.001 0.987 0.007 0.012 −0.007 0.136
στ 0.183 <0.001 - - 1.141 0.123 - -

AIC 70,717.74 34,891.44 6901.30 1890.13

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A10. Cross-table with the parameter estimates of random effects and fixed-effects Poisson
panel data models, with p-values. for the total number of claims (left) and at-fault third party liability
(TPL) claims (right) per month and per insured based on the seven observed months in 2018 and
2019. Interactions are included.

Variable

All Claims Only At Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −3.342 <0.001 - - −6.197 0.009 - -
lag(claims *) −0.445 <0.001 −0.569 <0.001 −1.203 0.251 −4.370 <0.001

Wind 0.061 0.295 0.015 0.809 −0.011 0.961 −0.042 0.872
Tele_km_total_urban ** 0.083 0.752 −0.335 0.244 0.847 0.253 −0.983 0.375

Tele_speed_mean_urban −0.007 0.609 <0.001 0.977 −0.067 0.183 −0.061 0.295
Tele_speed_max_highway 0.005 0.295 −0.004 0.419 0.005 0.762 −0.012 0.551

Wind*Tele_km_total_urban ** 0.004 0.883 0.011 0.678 −0.005 0.941 0.103 0.324
Wind*Tele_speed_mean_urban −0.001 0.291 −0.002 0.143 0.004 0.388 0.003 0.563
Wind*Tele_speed_max_highway >−0.001 0.799 <0.001 0.538 <0.001 0.922 <0.001 0.931

στ 0.158 <0.001 - - 1.006 0.161 - -

AIC 58,916.38 26,837.19 5784.357 1426.86

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.
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Table A11. Cross-table with the parameter estimates of random effects and fixed-effects Poisson
panel data models, with p-values, for the total number of claims (left) and at-fault third party liability
(TPL) claims (right) per month and per insured based on the seven observed months in 2018 and
2019. The models consider the average number of sunshine hours per day as explanatory variable
describing weather conditions. Interactions are included.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −3.655 <0.001 - - −7.481 <0.001 - -
lag(claims *) −0.445 <0.001 −0.569 <0.001 −1.207 0.250 −4.366 <0.001

Sun 0.120 0.004 0.141 0.001 0.156 0.350 0.377 0.047
Tele_km_total_urban ** −0.366 0.012 −0.717 <0.001 0.336 0.468 −0.759 0.239

Tele_speed_mean_urban −0.002 0.807 0.002 0.833 0.005 0.872 0.030 0.397
Tele_speed_max_highway 0.009 <0.001 0.005 0.059 0.014 0.157 0.005 0.644

Sun*Tele_km_total_urban ** 0.059 <0.001 0.061 0.001 0.055 0.306 0.093 0.205
Sun*Tele_speed_mean_urban −0.002 0.012 −0.003 0.005 −0.003 0.350 −0.007 0.083

Sun*Tele_speed_max_highway −0.001 0.013 −0.001 0.009 −0.001 0.389 −0.002 0.123
στ 0.158 <0.001 - - 0.970 0.151 - -

AIC 58,904.37 26,818.82 5791.49 1426.45

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.

Table A12. Cross-table with the parameter estimates of random effects and fixed-effects Poisson
panel data models, with p-values, for the total number of claims (left) and at-fault third party liability
(TPL) claims (right) per month and per insured based on the seven observed months in 2018 and 2019.
The models consider the average monthly temperature as explanatory variable describing weather
conditions. Interactions are included.

Variable

All Claims Only at Fault TPL Claims

Random Effects Fixed Effects Random Effects Fixed Effects

Parameter p-Value Parameter p-Value Parameter p-Value Parameter p-Value

Intercept −2.952 <0.001 - - −6.480 <0.001 - -
lag(claims *) −0.445 <0.001 −0.570 <0.001 −1.190 0.256 −4.367 <0.001
Temperature 0.015 0.358 0.022 0.201 0.016 0.812 0.090 0.236

Tele_km_total_urban ** −0.071 0.573 −0.460 0.001 0.650 0.102 −0.494 0.362
Tele_speed_mean_urban −0.003 0.640 −0.002 0.764 0.022 0.372 0.039 0.194

Tele_speed_max_highway 0.003 0.123 −0.001 0.758 0.003 0.720 −0.008 0.400
Temperature*Tele_km_total_urban ** 0.011 0.111 0.014 0.054 0.008 0.711 0.029 0.301
Temperature*Tele_speed_mean_urban −0.001 0.005 −0.001 0.005 −0.003 0.061 −0.004 0.014
Temperature*Tele_speed_max_highway <0.001 0.992 >−0.001 0.795 <0.001 0.740 >−0.001 0.743

στ 0.158 <0.001 - - 0.988 0.157 - -

AIC 58,916.62 26,831.48 5789.44 1425.98

* we consider either all claims or only at fault TPL claims, correspondingly; ** expressed in thousands of
kilometres.
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