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Abstract: This project aims to evaluate deep learning algorithms’ suitability to correctly de-
lineate the regions of interest on computer tomography images for dosimetric computations, in the
context of postoperative endometrial carcinoma treatment. To achieve this goal, the project includes
the complete training and evaluation of two deep learning networks. Furthermore, a qualitative as-
sessment of the predicted dosimetric computations and a post-processing of the predicted results
have been conducted.

I. INTRODUCTION

A. Clinical context

Endometrial cancer[1] is the most frequent type of gynae-
cological tumour among women for which postoperative
prophylactic vaginal brachytherapy (VBT) is the usual
treatment modality. The chosen treatment comprises a
combination of surgery and pelvic radiotherapy followed
by the application of VBT.
Prophylactic VBT is a surgical process involving the
placement of an applicator inside the vagina that delivers
the required radiation dose. The applicator is composed
of a series of interconnected cylinders that are designed
to efficiently adapt to the vaginal anatomy of different
patients and can be easily placed. These cylinders have
diameters between 2 and 3.5 cm.
The first step of the process is the acquisition of Com-
puter Tomography images (CT) or Magnetic Resonance
images (MRI) over which the treatment planning will
be prepared. Applicators are made of materials that do
not cause artefacts to CT, and also, that are compatible
with MRI.
The obtained images are 3D volumes made up of slices
whose thickness goes from 1 mm to 3 mm. These images
are afterwards sent to the planner with which the radio-
therapist specialist delineates organs at risk (OAR) and
the clinical target volume (CTV). Radioactive source
trajectory is also reconstructed inside the applicator.
CTV must include the proximal third of the vagina while
it encompasses a usual length of 2.5 and 4 cm maximum.
The anatomical treated volume is the mucous membrane
of the vaginal vault, including the surgical scar. Accord-
ing to some authors, almost all of the vaginal walls are
also included. It is worth noting that 90% of reappear-
ances occur in the vaginal vault.
OAR and vagina’s vault delimitation are done manually
which implies a series of uncertainties: intraobserver, i.e,
the same radiotherapist might delimit different volumes
at different times in case the task is repeated or inter-
observer, which means that different radiotherapists will
delimit these volumes in slightly different ways.
At this stage is when the usage of Artificial Intelligence

(AI) algorithms may prove to be remarkably helpful ow-
ing to their faster performance and their more repro-
ducible and systematic results as a consequence of their
learning process.

The main goal of this project is to assess the viability
of Deep Learning (DL) algorithms for this specific seg-
mentation task. To this end, the complete training and
evaluation of two DL models was undertaken as well as
the arrangement of a solid data set to train both algo-
rithms.

II. METHODS

A. Data set

The used data set was acquired and provided by the ra-
diotherapy unit of the Clinic Hospital of Barcelona and it
covered a range of time of 7 years extending from 2014 to
2021. It consists of CT images of 220 patients in DICOM
format[2] (Digital Imaging Communication in Medicine),
along with their corresponding RT-Struct[2] (Radiation
Therapy Structure) file containing all the information
related to the structures of the patients. A first pro-
cess of classification, rearrangement and anonymisation
of the data set was done[2] followed by the conversion to
NIfTi[2] format of all the files so they could be handled
with standard processing packages.

Once achieved, the next step was the manual revision
of all the included segmentations, particularly those in-
volving the vaginal vault, which is the region of interest
(ROI). Each patient did not have the same OAR de-
lineated nor the same label’s name for the CTV region.
Therefore, a manual revision was essential to assure the
quality and consistency of the segmentation. Moreover,
clinical criteria was offered to ensure the requirements of
the radiotherapists. The indications were as follows:

• Vaginal vault’s segmentation had to only cover
the outer surface of the first applicator’s cylinder
(FIG.1), which is meant to be the radiated zone
and where dosimetric computations are done (vagi-
nal vault’s mucous). The interior of the cylinder is
excluded.
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• Neither lack of segmentation amidst the ROI’s
slices nor delineated volumes out of the ROI were
acceptable (FIG.1).

FIG. 1: Top images correspond to a correct case, while bottom
ones correspond to an incorrect case. Left and right images
display an axial and a sagittal view of the ROI respectively.

B. Nets

All DL networks were implemented with the use
of MONAI[3] and Pytorch[8]. The used nets have
been V-Net[4] and UNETR[5] that stands for UNET-
TRansformers. Despite their similarity to U-Net’s[4–6]

architecture, they have a series of improvements and
changes, including:

• The fully convolutional architecture of V-Net,
which also replaces pooling operations with convo-
lution ones. This modification produces a smaller
memory footprint during training depending on the
segmentation task.

• V-Net’s utilisation of residual functions instead of
classic stochastic gradient descent. This choice
leads to a faster convergence and improved segmen-
tation results.

• UNETR’s implementation of transformers as en-
coders. This choice leads to a more optimal learn-
ing of global context and capturing of long-range
dependencies.

• UNETR’s demonstrated higher efficacy in segment-
ing small organs and more accurate boundary seg-
mentation. These characteristics are of the utmost
importance for this segmentation task at hand.

C. Quantitative metrics for evaluation

Evaluation metrics serve as a means to evaluate nets’
performances and results. When selecting the adequate
metrics to evaluate our segmentation task, there are sev-
eral key properties from the ROI to consider, as outlined
in [7]. These are:

• Absence of outliers, which are small wrongly delin-
eated regions outside the ROI and that do no not
belong to it.

• The significantly smaller size of the ROI when com-
pared to the background’s size. This property also
helps in distinguishing and isolating the ROI from
the surrounding areas.

• ROI’s complex boundary regardless of the applica-
tor’s consistent and regular shape. The complexity
arises because of the specific anatomical features
and structures within the ROI.

Therefore, the most suitable metrics are the
Dice Coefficient[7] (DICE) and the Hausdorff
Distance[7](HD).

DICE is a frequently used overlap based metric and also
a reproducibility measure. It is given by the expression:

DICE =
2·|V 1

g ∩ V 1
t |

|V 1
g |+ |V 1

t |
(1)

with V 1
g and V 1

t corresponding to the volume (voxels)
delineated from the ground truth input (manually de-
lineated) and the predicted output (automatically delin-
eated) respectively. DICE tends to 1 when the degree
of overlapping between both is high while it tends to 0
when they differ significantly.

HD is a spatial distance based metric and serves as a
dissimilarity measure. It is specially recommended when
contour is of the highest importance. Given two point
sets, A and B, HD between them is given by the expres-
sion:

HD(A,B) = max(h(A,B), h(B,A)) (2)

where h(A,B) is the directed Hausdorff distance and it
is given by:

h(A,B) = max
a∈A

min
b∈B

||a− b|| (3)

where ||a − b|| is a norm, in this case, an Euclidean dis-
tance. HD is the maximum distance of a set to the near-
est point in the other set. HD is very sensitive to outliers,
hence, it is recommended the calculation of the 95th per-
centile as a way to mitigate their impact.
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D. Training and evaluation process

Following the standardised workflow in DL segmentation
tasks[3, 8], the whole process was split into three main
parts: training, validation and testing. After assuring
the quality and consistency of the data set, it was di-
vided into three groups to be used in each of the prior
stages: Training, Validation and Testing in respective
proportions of 70%, 20% and 10%.
The training phase followed the usual process, which in-
volves forwarding the data through the model, comput-
ing the loss function between the prediction and ground-
truth and backpropagating the loss to update the weights
of the model accordingly. The used loss function and op-
timizer have been Dice loss[3, 8] and Adam algorithm[3, 8].
Each iteration of the training loop is called epoch. For
every pre-established number of epochs, a validation pro-
cess is performed to ensure net’s gradual optimization
and correct learning. If the loss results improve with re-
spect to the previous validation process, net’s parameters
are saved.
When the training process is finished, the model is tested
with the images from the testing data set. Once the
model delivers the output predicted segmentation, a
post-processing clusterization is done to it to remove pos-
sible outliers. When this last step is completed, the out-
put results are saved into a NIfTi file. Evaluation metrics
are computed before and after the clusterization opera-
tion.
The effect of data augmentation[3, 8] (DA) on the model
was also studied. In DL, the amount of available data to
train is of the greatest importance, and the larger it is,
the better quality segmentations are obtained. DA is a
key tool since its purpose is to increase data set size with-
out the need of acquiring new images. It consists[3, 8] in
the application of filters and deformations to the images
as a means to obtain new cases. Applied transformations
were split into two groups as a way to study the sensitiv-
ity of the net towards certain images’ properties: image
filters (IF) and spatial transformations (ST). IF included
a histogram normalisation and the random application
of: gaussian noise, gaussian smooth and random adjust-
ment of contrast. ST included a random application of:
zoom, axis flip, translation and image rotation. All the
transformations and filters were applied taking into ac-
count the observed variability of the available data and
the usual characteristics of CT images.

E. Qualitative evaluation of the predicted
dosimetric computations

Due to the lack of sufficient patients to do an exhaustive
and complete statistical analysis, only a qualitative as-
sessment of the obtained results can be provided. To this
end, different outputs from both UNETR and V-Net have
been selected, assuring an equitable sample from both of
them. These outputs were next taken to the planner to

compute the pertinent dose distributions.
Two dosimetric parameters are used to evaluate the ad-
ministered radiation dose. The first one is D90%

[1]. It
corresponds to the dose received by the 90% of the tar-
get volume closest to the radioactive source. It is a good
measure of the effective received dose by the total vol-
ume, since the usage of the 100% volume has a greater
degree of uncertainty associated to it. The second one is
D2cc

[1]. It accounts for the dose received by the 2 cm3

more exposed from the OAR. Particularly, it is the vagi-
nal surface in direct contact with the applicator. D2cc

has a good correlation with toxicity.

III. RESULTS AND DISCUSSION

The first arisen technical issue was the inadequacy of the
standard python library, called dcmrtstruct2nii [2], to cor-
rectly convert this type of segmentation from RT-Struct
format to NIfTi format. The reason was that it filled the
inner part of the cylinder as it is shown in the bottom left
image of FIG.1. This was solved with its replacement
by another library, DicomRTTool [2], which delivered suc-
cessful conversions. Next, a first manual revision was
undertaken leading to the rejection of 34 cases that did
not fulfil clinical criteria. An example is displayed in the
bottom right image of FIG.1. After a subsequent visit
to the radiotherapy unit, 23 cases could be fixed and, as
a result, our final data set consisted of a total number of
208 cases. Following the procedures indicated in the for-
mer section, cases were split as follows: a training data
set of 146 cases, a validation data set of 41 cases and a
testing data set of 21 cases.
Another key aspect was to check the efficacy of the clus-
terization, which was achieved thanks to HD metric.
Given HD’s strong sensitivity to outliers[7] it is advisable
to not apply it directly in segmentation tasks of medical
images, in view of their usual amount of noise and out-
liers. Nonetheless, in this task it has demonstrated to
be an effective way to measure clusterization’s effective-
ness. Taking as an example the training corresponding
to no DA applied and 1200 epochs, it is seen in both
V-Net and UNETR that their mean HD±SD, with SD
standing for Standard Deviation, significantly diminishes
from 136.3±81.4 mm to 8.7±3.3 mm in the case of UN-
ETR, and from 37.22±33.22 mm to 8.18±3.54 mm in
the case of V-Net. In contrast, DICE is not effective to
detect this kind of error since its value does not signif-
icantly vary, in view of outliers’ little volume that does
not greatly affect the degree of overlapping. In UNETR’s
case, from 0.74±0.07 to 0.78±0.07, and in V-Net’s case
from 0.76±0.07 to 0.79±0.07.

A. Nets’ results

Metrics’ results for both nets are now introduced. DICE
and 95 % HD obtained values for each training configura-
tion and net are presented in FIG.2. In this section, out-
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FIG. 2: Figure presents each training’s DICE results (left) and 95% HD (right) for both used nets. Boxplots displaying each net’s
resulting distribution are combined with stripplots indicating each result for the testing data-set. White dots indicate the distribution’s
mean value. Even though the y-axis’ range of the right figure is not the most optimal one to present the data, the way it is displayed

serves the purpose of showing the big number of outliers, specifically, in V-Net’s results.

liers now refer to the points differing significantly from
the rest of the data set. Both nets have shown DICE
mean values greater than 0.70 in all training configura-
tions, which is a fair degree of overlapping. In relation
to DICE, V-Net exhibits the greater variability among
training configurations, delivering the best mean value in
the training configuration corresponding to DA with IF.
With respect to UNETR, the latter presents a constant
value for the mean DICE in each training configuration of
0.78±0.07 and littler variability (narrower distributions)
among different training configurations. A striking trend
is observed in both nets when more epochs were added
to the training process. In the case of V-Net, not only a
wider distribution is observed but also a lesser mean value
for both DICE and 95% HD, while in contrast, UNETR
does not experience any kind of improvement. Great re-
semblance and low variability among patients’ anatomy
in the ROI might account for this observed trend, thus
making it not advisable to greatly increase the number of
training epochs. It is also worth noting that in the case
of V-Net, it is clearly visible not solely a greater presence
of outliers but also a worst score from both metrics for
them. When it comes to the effects of DA on the perfor-
mances of the nets, V-Net prominently shows a notice-
able sensitivity to DA, being the one focused on applying
IF, the most beneficial one when compared to DA centred
on applying ST, which does not provide an enhancement
when compared to no DA with 1200 epochs. This is sup-
ported by 95% HD results, as it can be observed by the
greater number of outliers. Alternatively, UNETR takes
advantage of DA specially in the training configuration
focused on ST, as it can be deduced from the narrower

distribution achieved in both 95% HD and DICE.

B. Predicted dosimetric computations

The obtained results are presented in FIG.3 and TA-
BLE.I. Despite not having done a sample size computa-
tion, a series of results can be inferred. Mean values±SD
for D90% and D2cc are presented in TABLE.I. Also, a
statistical hypothesis testing has been performed in or-
der to establish dose compatibility between the manual
segmentation and the automatic one. The selected test
to achieve this task has been Wilcoxon signed-rank test[9]

due to the characteristics of our test data, mainly, a sam-
ple size with less than 25 samples and the assumption
that it is distribution-free (non-parametric). Taking a
significance value α = 0.05, samples will be compatible
if the p-value is greater than 0.05 (P > 0.05). The p-
value for each parameter is shown in TABLE.I. It can
be deduced from the obtained results that manual and
automatic segmentation are compatible.

Manual

(Mean±SD)

[cGy]

Automatic

(Mean±SD)

[cGy]

p-value

D90% 807.4±52.3 755.84±109.3 0.095

D2cc 1009.75±63.9 986.3±96.1 0.98

TABLE I: Dosimetric data for the manual and automatic
testing data set. P -value calculated with the Wilcoxon

signed-rank test has been included.
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FIG. 3: Figure on the left displays nets’ predicted volumes as a function of their corresponding manually traced volume. Centre and
right figures display D90% and D2cc as a function of their corresponding volumes. 95% confidence intervals are represented in all the

figures.

IV. CONCLUSIONS

An evaluation of the suitability of DL algorithms for
CTV and OAR segmentation in Postoperative endome-
trial carcinoma treatment has been done. For that pur-
pose, the proper arrangement of a training data set for
DL segmentation has been achieved. Also, the train-
ing of two different model networks, UNETR and V-Net,
has been completed while studying the effects of DA on
both nets performances along the process. Dice Coef-
ficient and 95% HD have been the selected metrics to
evaluate net’s results. Both nets have proven to be ca-
pable of accomplishing this task, even though UNETR
usage is far more recommended, specially if it is accom-
panied by DA centred on the use of ST. V-Net can be
used if the proper training configuration is guaranteed,
i.e, V-Net with a DA centred on IF. It has been also con-
firmed the adequacy of the clusterization post-process as
a means to enhance the quality of the results and remove
possible outliers or noise. Besides, the output results
have been utilised for dosimetric computations showing
a compatibility with the manually computed ones. Fi-

nally, I want to mention that this project has offered me
a first hand experience of the clinical routine in the ra-
diotherapy unit as well as an opportunity to strengthen
my programming skills, specially Python language, and
to study in more detail certain topics that were briefly
explained to me during the optional courses in Medical
Physics and Statistics I attended.
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