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Abstract: The goal of this study is to compare models and real data to better understand the role of 

stochastic dynamics in forest-fire propagation rendering fractal geometries. I analysed empirical data 

and developed stochastic models to simulate fire spread. The main results show that forest fires have 

fractal dimensions, shown as repetitive and self-similar patterns in their structure. This discovery 

suggests that stochastic models can be useful in understanding and predicting the dynamics of forest 

fire spread. Furthermore, the simulation using the bond percolation stochastic model has yielded 

more similar results to the empirical data compared to site percolation, although there is room for 

improvement. Discrepancies might be caused by not considering the existence of natural boundaries, 

changes in atmospheric conditions, or human intervention in the evolution of a forest fire. 

 
 

I. INTRODUCTION 

Forest fires pose a serious threat to natural ecosystems and 

human communities. Every year, thousands of hectares of 

forests are engulfed in flames, causing loss of biodiversity, 

habitat destruction, and material damage. Moreover, forest 

fires jeopardize the safety and well-being of people living near 

wooded areas. Therefore, the prevention and control of forest 

fires are essential for preserving biodiversity and protecting 

human communities. 

Understanding the spread of these fires is crucial for the 

development of effective forest management policies and 

strategies. The study of fire dynamics has been a subject of 

research for decades, aiming to develop predictive methods 

and tools to prevent and mitigate the impacts of these natural 

disasters. 

Forest fires exhibit fractal forms in their structure, 

influenced by the underlying geometry of vegetation and fire 

propagation dynamics. The fractal arrangement of trees, the 

branching and the repetitive patterns of flame fronts 

contribute to these fractal shapes. 

Fractals are objects or phenomena that exhibit self- 

similarity and repetitive structures at different scales. Their 

application in understanding forest fires allows us to explore 

the roughness and complexity of fire spread and identify 

emerging patterns and behaviours. 

On the other hand, stochastic models are mathematical 

tools that enable the simulation and analysis of random 

processes. In the context of forest fires, these models capture 

the inherent variability of fire propagation and generate 

scenarios that can aid in decision-making and planning 

preventive measures. 

In this work, I aim to explore the presence and application 

of fractals in the propagation of forest fires and investigate the 

fractal properties of forest fires. This will be accomplished 

through the analysis of empirical data from the forest fire 

cartographic database of the Department d’Acció Climàtica, 

Alimentació i Agenda Rural [1], using statistical analysis 

techniques for fractal characterization. 

I will also implement a simple stochastic model to simulate 

the propagation of forest fires. This simulation will employ the 

percolation method on a two-dimensional square lattice [2]. 

Through the simulation, I will assess the model's ability to 

reproduce patterns observed in empirical data and seek 

correlations between fractal properties and propagation 

dynamics. 

The objective of this study is to compare mathematical 

models with real data to understand how stochastic dynamics 

influence forest fire propagation and the formation of fractal 

geometries. 

 
II. METHODS 

I employed a methodology combining fractal analysis and 

stochastic modelling to investigate the propagation of forest 

fires. The study focuses on two aspects: the application of 

fractals to understand fire propagation and the implementation 

of a stochastic model to simulate this propagation. 
 

A. SIMULATION 

I developed a stochastic model to simulate the propagation 

of forest fires using the percolation method as a foundation. 

There are more sophisticated models of fire simulation[3], 

but I work with percolation models as simplified versions 

that replicate fractal geometries. 

This method consists of representing the forest landscape 

as a two-dimensional square grid of dimension LxL with 

periodic boundary conditions. Initially, each grid cell is 

assigned as an unexplored zone with a value of -1, indicating 

that no fire has been detected in that area. 

The fire propagation starts in a specific zone of the grid, 

which is marked as a burned zone with a value of 1. From 

there, we impose an equal probability to propagate the fire to 

any neighbouring site. I call this probability the percolation 

threshold (p). If the fire spreads to a neighbouring zone, it 

becomes a burned zone with a value
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of 1. If the fire does not spread to the neighbouring zone, it 

becomes an explored but unburned zone, with a value of 0, 

who depending on the model, it can either burn or not. 

Using this propagation method, starting from an initial 

site the fire propagates shell by shell across the grid until it no 

longer propagates. This process allows for simulating the 

dynamics of forest fire propagation and observing the 

properties of the clusters that form, such as their area and 

perimeter. 

There are two types of propagation, depending on the type 

of percolation being followed: 

• Bond percolation: The available neighbours are 

the four immediate neighbours (top, bottom, left, 

and right), if they are not burnt areas (value 1). 

• Site percolation: The available neighbours are the 

four immediate neighbours (top, bottom, left, and 

right), if they are unexplored areas (value -1). 

 

The difference between the two types of propagation is 

that, in the propagation of simulations following bond 

percolation, explored but unburnt areas (value 0) can be burnt 

and change to a value of 1. On the other hand, in site 

percolation, explored but unburnt areas (value 0) can no 

longer be modified. 

Another significant difference between the two types of 

percolation is the critical percolation threshold. This is the 

critical probability of interest, where scale-free and self-

similar behaviour appears as I will focus our study on this 

value and its vicinity. The critical percolation threshold for 

bond percolation is 0.5, while for site percolation it is 0.5927 

[4]. 

For each type of propagation, I have implemented two 

different codes to determine the fractal dimension and the 

distribution of cluster areas. 

 

One cluster script 

The main objective is to simulate the spread of fire by 

initiating a forest fire at the centre of the network at the 

percolation threshold. The simulation stops once the fire 

extinguishes. Then, the process is repeated 10,000 times to 

obtain a statistically significant sample. For each simulation, 

the area and the perimeter are recorded. The area, A, is the 

number of grid squares that have been burned, represented by 

the value 1, and the perimeter, P, is the number of squares 

forming the boundary, represented by the value 0. 

Once the simulations are completed, the focus shifts to 

analysing the relationship between the perimeter and the area 

of the generated clusters. This relationship is analysed as a 

bivariate distribution where some scatter is observed around a 

power-law model, where the exponent of this distribution is 

related to the fractal dimension of the clusters. The fractal 

dimension reflects the fractal structure of the clusters and 

provides information on how they are organized and 

distributed within space [5]. Specifically, I focus our study on 

the Hausdorff dimension, HD, to describe the relationship 

between the perimeter and area, and it is represented by the 

following equation: 

𝑃~𝐴
𝐻𝐷

2⁄   Ref. [6] (1) 

 

Full lattice script 

In this code, the goal is to determine the distribution of 

cluster sizes found in a lattice given a fixed percolation 

threshold. To do this, I start the first fire at point 1,1 of the 

grid, propagate it, and then navigate through the grid to find 

the next unexplored zone with a value of -1, where I start 

another fire. This process is repeated successively until there 

are no more unexplored zones in the grid with a value of -1. 

For each simulation, I record the area of all the clusters 

formed, which is the number of grid points with a value of 1. 

I repeat this process 1000 times, and with the data of the 

cluster areas, I calculate the number of fires with the same 

area. 

As the probability distribution function of areas, pdf(A) 

follows a power-law [7], I can estimate the exponent using 

maximum likelihood [8]. First, I define the distribution 

function of the power-law as: 

where the term 𝜏 − 1⁄𝑥𝑚𝑖𝑛 is included to normalize the 

function. 

The logarithm of the likelihood function becomes: 

𝐿(𝜏) = ln ∏
𝜏 − 1

𝑥𝑚𝑖𝑛

(
𝑥

𝑥𝑚𝑖𝑛

)
−𝜏

𝑛

𝑖=1

  𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑚𝑖𝑛  
(3) 

Differentiating with respect to τ and setting it equal to zero, 

I find the maximum of the likelihood function. Rearranging, I 

obtain the following expression for the exponent. 

�̂� = 1 + 𝑛 [∑ ln
𝑥𝑖

𝑥𝑚𝑖𝑛

𝑛

𝑖=1

]

−1

  𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑚𝑖𝑛  
(4) 

where {𝑥𝑖} are the n points 𝑥𝑖 ≥ 𝑥𝑚𝑖𝑛 [9]. 
Then, the pdf(A) depends on the area in the following 

way: 

𝑝𝑑𝑓(𝐴)~𝐴−𝜏 (5) 

 

I perform this simulation for probabilities that are lower 

but close to the critical percolation probability. 
 

B. REAL FOREST FIRES 

For the analysis of empirical data from the forest fire 

cartographic database of the Department d’Acció Climàtica, 

Alimentació i Agenda Rural, I have a text file per fire from 

2007 to 2022, about 1200 fires, which simulates the shape of 

the fire using a matrix. In this matrix, the burned areas are 

represented with the value 1, the border areas with the value 

0, and the unburned areas with the value -1. Each value in the 

matrix represents a one-hectare square in reality. This means 

that the border areas correspond to squares that are not 

completely burned, i.e., they have a combination of burned 

and unburned areas within the same square. 

Additionally, I also have a file with the number of squares 

that form the areas and perimeters for each fire. 

Firstly, I analyse the relationship between the perimeter 

and the area plus the perimeter because, as mentioned before, 

part of the fire area is in the border zones.  

𝑝(𝑥) =
𝜏 − 1

𝑥𝑚𝑖𝑛

(
𝑥

𝑥𝑚𝑖𝑛

)
−𝜏

  𝑓𝑜𝑟 𝑥 ≥ 𝑥𝑚𝑖𝑛 
      (2) 
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This relationship is modelled using a power law, where 

the exponent of this distribution is related to the Hausdorff 

dimension, as mentioned earlier, through the following 

equation: 

𝑃~(𝐴 + 𝑃)
𝐻𝐷

2⁄  (6) 

 

Then, by calculating the distributions of perimeter and area 

plus perimeter using the data, I determine the exponents of the 

power laws through maximum likelihood as given in (4) for 

the distributions: 

𝑝𝑑𝑓(𝑃)~𝑃−𝜏𝑃  (7) 

𝑝𝑑𝑓(𝐴 + 𝑃)~(𝐴 + 𝑃)−𝜏𝐴+𝑃 (8) 

Using the equations (6), (7) and (8) and S=A+P, I can 
calculate the HD using these exponents as follows: 

𝑝𝑑𝑓(𝑆)𝑑𝑆 = 𝑝𝑑𝑓(𝑃(𝐴 + 𝑃))
𝜕𝑃

𝜕𝑆
𝑑𝑆 

(9) 

𝑆𝜏𝑆𝑑𝑆 = (𝑆
𝐻𝐷

2⁄ )
−𝜏𝑃 𝐻𝐷

2
𝑆

𝐻𝐷
2

−1
 

(10) 

𝐻𝐷 = 2
𝜏𝐴+𝑃 − 1

𝜏𝑃 − 1
 

(11) 
 

Finally, I select the 3 largest wildfires during these 16 

years: the Agramunt wildfire of 2009, the La Jonquera wildfire 

of 2012, and the Ribera d'Ebre wildfire of 2019 to reduce the 

size of the wildfire matrix, which has dimensions Lx·Ly, by a 

factor of 4. I reduce Lx by a factor of 2 and Ly by a factor of 

2, meaning I go from having 4 squares in the matrix to having 

only 1, and so on until the matrix can no longer be reduced. 

 
FIG:1. Example of reduction following the indicated method. 

 

Before initiating a reduction, if Lx, Ly, or both dimensions 

are odd numbers, I add a row, a column, or both a row and a 

column of -1 to the respective matrix. To perform the 

reduction, I sum the values of the 4 squares. If the sum is -4, 

the new square has a value of -1. If the sum is 4, the new square 

has a value of 1. In any other case, the new square has a value 

of 0. For each reduction of the matrix, I record the reduction 

number, the number of squares with a value of 1, and the 

number of squares with a value of 0, that is, the area and 

perimeter of the reduced matrix. With this data, I analyse the 

evolution of the Minkowski-Bouligand dimension [5], DMB. 

Which is an estimation of the fractal dimension using the area 

of the squares forming the boundary and the scale of the 

squares, according to the following equation: 

𝐷𝑀𝐵 = lim
𝑟→0

log 𝑃(𝑟)

log 1
𝑟⁄

+ 2 
(12) 

where r is the scale of the squares, and P(r) is the perimeter of 

the boundary defined as 𝑃(𝑟) = 𝑁 ∗ 𝑟2 where N is the number 

of squares forming the boundary. Then, applying logarithms, 

the DMB is as follows: 

𝐷𝑀𝐵 = lim
𝑟→0

log 𝑁

log 1
𝑟⁄
 

(13) 

  

III. RESULTS AND DISCUSSION 

A. RESULTS OF THE BOND PERCOLATION 

Firstly, I define A as the number of grid squares forming 

the cluster area and P as the number of grid squares forming 

the cluster perimeter. 

Using a grid of dimension L=128 and considering the 

critical bond percolation probability, pc=0.5, I have executed 

the one cluster script, and the results obtained are as follows: 

 
FIG. 1: Plot of P as a function of A from bond percolation, on 

a double logarithmic scale with base 10. The fitting was 

performed for values greater than 10^2. 

 

The power-law regression equation is P= 0.87(2)𝐴0.867(3). 

Comparing it with equation (1), I determine that the Hausdorff 

dimension for bond percolation is 𝐻𝐷 = 1.734(6). 
Using a grid of dimension L=64, I have run the full lattice 

script for the range of probabilities between 0.46 and 0.49, 

with a step of 0.01. The results obtained are as follows: 

a) b) 

  
FIG. 2: a) Plot of the pdf(A) as a function of A from bond 
percolation, on a double logarithmic scale with base 10. b) Plot 

of the �̂� as a function of Amin from bond percolation, on a 

logarithmic scale on the x-axis. I do this for different values 

of p to observe how τ evolves as it moves away from the 
critical percolation threshold. 

Using the equation (5) and examining the data for p=0.49, 

I determine that 𝜏 = 1.75(1) for bond data. 
 

B. RESULTS OF THE SITE PERCOLATION 

Firstly, I define A as the number of grid squares forming 

the cluster area and P as the number of grid squares forming 

the cluster perimeter. 

Using a grid of dimension L=256 and considering the 

critical site percolation probability, pc=0.5927, I have 
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executed the one cluster script, and the results obtained are as 

follows: 
 

 

FIG. 3: Plot of P as a function of A from site percolation, on a 

double logarithmic scale with base 10. 

 

The power-law regression equation is of the form  𝑃 = 
0.843(3)𝐴0.9797(4). Comparing it with equation (1), I 

determine that the Hausdorff dimension for bond percolation 

is 𝐻𝐷 = 1.9594(8). 
Using a grid of dimension L=128, I have run the full lattice 

script for the range of probabilities between 0.56 and 0.59, 

with a step of 0.01. The results obtained are as follows: 

a) b) 

  
FIG. 4: a) Plot of the distribution of A as a function of A from 

site percolation, on a double logarithmic scale with base 10. 

b) Plot of the �̂� as a function of Amin from site percolation, on 

a logarithmic scale on the x-axis. I do this for different values 

of p to observe how τ evolves as it moves away from the 
critical percolation threshold. 

 

Using the equation (5) and examining the data for p=0.59, 

I determine that 𝜏 = 1.67(1) for site data. 
 

C. RESULTS FROM THE REAL DATA 

Firstly, I define A as the area of the cluster in hectares and 

P as the perimeter of the cluster in hectares. 

From the fractal dimension study: 

 
FIG. 5: Plot of P as a function of A+P on a double logarithmic 

scale with base 10 to observe its behaviour as a power law. 

The power-law regression equation is 𝑃 = 1.3(2)(𝐴+𝑃)0.74(2). 

Comparing it with equation (1), I determine that the 

Hausdorff dimension for bond percolation is 𝐻𝐷 = 1.48(4). 

To determine de exponent of pdf (P) and of pdf(A+P) I 

obtained: 

a) b) 

  

  

 

FIG. 6: a) Plot of pdf(A+P) as a function of A+P on a double 
logarithmic scale with base 10 and plot of 𝜏𝐴+𝑃 as a function 

of (𝐴+𝑃)𝑚𝑖𝑛 on a logarithmic scale on x-axis. b) Plot of 

pdf(P) as function of P on a double logarithmic scale with base 
10 and plot of 𝜏𝑃 as function of 𝑃𝑚𝑖𝑛 on a logarithmic scale on 

x-axis. 
 

Using the equations (8) and (7), I determine that: 

𝜏𝐴+𝑃 = 1.9(1) and 𝜏𝑃 = 2.3(1). 
Using equation (11) the 𝐻𝐷 = 1.4(2). 
The new value, 𝐻𝐷 = 1.4(2), is compatible with the 

previously calculated HD value using FIG. 5, 𝐻𝐷 = 1.48(4), 
with a relative error of 5%. 

The evolution of P and DMB with the reductions taking the 

smallest value of P and the respective reduction as a reference 

from the three largest forest fires are: 

a) b) 

  

FIG. 7: a) Plot of P as a function of l, on a double logarithmic 

scale with base 10. b) Plot of DMB as function of l on a 

logarithmic scale on x-axis. 

 

Where l is the scale of the reference value grid divided by 

the scale of the corresponding value grid. I can observe how 

the DMB converges to a value close to 1.5 the grid scale is close 

to 10 hectares, which is approximately the HD. Then DMB tends  
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towards 1 when the grid scale is close to 1 hectare, the DMB of 

the polygon, because the data is given in polygons, and 

therefore, there is a scale at which the perimeter becomes a 

line. 
 

D. DISCUSSION 

Using the values obtained from the simulations and the real 

data, I assess whether the simulations are a good method for 

predicting real forest fires. 

TABLE I: Obtained statistics. 

 

 

 
 

As we can see, the HD values from the simulations are 

higher than those from the real data, with the value of bond 

percolation being the closest with a relative error of 17% 

compared to the HD value of the real data. 

The tau values from the simulations, in this case, are lower 

than those from the real data, with the value of bond 

percolation being the closest with a relative error of 8% 

compared to the tau value of the real data. 

On their own, these simple models are not a good method 

for predicting the fractal shapes of forest fires, as they depend 

on external agents such as forest distribution, weather 

conditions, natural barriers or human intervention, which 

these models do not implement. These factors influence the 

fire grade distribution to a minor order of magnitude. 

 

IV. CONCLUSIONS 

In summary, for the real data, we obtain 𝐻𝐷 = 1.48(4) and 

𝜏 = 1.9(1). 

For the simulations using bond percolation, we obtain 

𝐻𝐷 = 1.728(6) and 𝜏 = 1.75(1), and for the simulations 

using site percolation, we obtain 𝐻𝐷 = 1.9594(8) and 𝜏 = 
1.67(1). 

Ultimately, bond percolation is better than site percolation 

for predicting forest fires, although the simulation should be 

improved to achieve lower relative errors. One reason why it 

is better is that in the mesh, a region defined with a value of 0, 

meaning that it has been explored, and the fire has not spread 

there, it is possible for the fire to spread again using bond 

percolation. However, when using site percolation, a region of 

the mesh defined with a value of 0 becomes immutable. 

One way to improve the simulations would be to introduce 

boundaries within the mesh, such as rivers, roads, or cliffs, 

which act as natural firebreaks. Other way would be applying 

changes in atmospheric conditions or considering the human 

intervention in the evolution of a forest fire. 
On the other hand, we observe that in the real data, we can 

calculate the HD in two different ways. Regarding the DMB, 

which theoretically is larger than the HD, we see that it closely 

approximates the value of the HD in average values. 
To carry out this work, I have applied knowledge from 

Computational Physics, Statistical Physics, and Collective 

Phenomena and Phase Transitions. These fields of knowledge 

have allowed me to analyse and simulate the spread of forest 

fires, investigate the fractal properties of fire boundaries, and 

perform statistical analyses for result characterization. This 

combination of disciplines has been essential in addressing the 

objectives of the study and achieving the obtained results. 
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 Real data Bond data Site data 

HD 1.48(2) 1.734(6) 1.9594(8) 

τ 1.9(1) 1.75(1) 1.67(1) 

 


