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Abstract: In this work, we present a theoretical study of Macroscopic Quantum Tunneling
(MQT) for magnetic systems. To gain insights into its properties, Spin-coherent-state Feynman
path integrals are used to calculate the tunneling transition rate, Γ, for single-domain ferromagnetic
nanoparticles. We also compute the critical temperature Tc, which serves as the threshold between
the quantum and thermal regime and we finally discuss experimental approaches that can provide
empirical evidence of MQT in magnetic particles.

I. INTRODUCTION

Quantum mechanics is a field of physics well known for
its unique and novel phenomena, however, due to its dif-
ficulty, these are commonly observed in the microscopic
world and not at macroscopic scales. In this work, quan-
tum tunneling, (one of most fascinating phenomena of
quantum mechanics [1]) will be studied in the macro-
scopic regime [2].

The typical systems in which QT effects are observed
(e.g. finite single well or double well potentials) are char-
acterized by a probability transition rate (Γ) that de-
pends exponentially on the quantity −S/ℏ, being S the
action [3]. For a heavy macroscopic particle: S ≫ ℏ,
and, as a result, Γ is exponentially suppressed due to its
high mass.

Therefore, different type of systems should be studied
that present a greater probability of manifesting MQT.
Magnetic systems are a great candidate for this purpose,
some examples are QT of domain walls [4], QT of molec-
ular magnets [5], or the object of this work: the study of
MQT in single-domain uniaxial ferromagnetic nanoparti-
cles (NP) [2, 6]. These particles can manifest MQT when
the total magnetic moment (M) rotates between the two
stable states, overcoming the magnetic anisotropy en-
ergy barrier [7], without having enough thermal energy
to do so. It is also referred as ’Spin Quantum Tunneling’
(SQT), and the action in this case depends on the mo-
ment of inertia associated to the rotation of M and not
explicitly on the mass of the particle [3]. To characterize
SQT, the tunneling rate Γ at T = 0 K will be com-
puted in the presence of an applied external magnetic
field (H) pointing perpendicular to the easy-axis. The
Stoner-Wohlfarth model [8] and Feynman path integral
formulation of quantum mechanics [9] will be used for
this purpose. The calculations are based on the concept
of instanton trajectories, which are classical solutions of
the equations of motion in imaginary time. The resulting
expression for Γ will be then particularized in the limit
of H → Hc, where Hc is the coercive field, and com-
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pared with the thermal transition probability rate (ΓT )
to get a measure of the critical temperature Tc between
the quantum and thermal regimes [3].
A discussion about the experimental methodology that

could demonstrate SQT is also included, in which the
temperature dependence of the magnetic viscosity (S(T ))
is measured with the objective is to observe a region
in which S becomes independent of temperature, which
would mean that the magnetic relaxation is mainly due
to SQT driven transitions. This discussion is then fo-
cused on the results for maghemite single-domain NPs
(γ-Fe2O3) [10].

II. MAGNETISM AT THE NANOSCALE

In this section, we present basic concepts for the de-
scription of the magnetic properties of particles with sizes
in the nanoscale that are necessary for the calculations
presented in Sec. IV. The basic equation governing the
dynamics of the magnetization vector of a ferromagnetic
material is the Landau and Lifshitz equation:

dM

dt
= −γM× δE

δM
, (1)

where γ = ge
2mc is the gyromagnetic ratio and M the

magnetization vector. It describes the precession of M
around the effective field Heff = δE

δM than can be derived
from the functional dependence of the magnet energy E
on the magnetization. The different terms contributing
to this energy will be described in the following subsec-
tions.

A. Magnetic Domains

Ferromagnetic (FM) materials tend to align their
atomic spins in parallel to minimize the Heisenberg ex-
change, which is a strong short-ranged interaction of
quantum mechanical origin. However, arising from the
magnetic field they generate, the magnetostatic energy
is increased. As a result, magnetic moments of ferromag-
nets will then arrange into regions of uniform magneti-
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zation, called magnetic domains, that point at different
directions [7].

The size of domains is determined by the minimiza-
tion of the total energy of the magnetic material, con-
sisting on different competing terms such as magneto-
static, anisotropy and exchange energies. In this work,
we will consider FM NPs in the single domain limit hav-
ing a radius R below a critical size Rc, which typically
ranges from few to 10ths of nanometers [7]. Therefore,
they can be characterized by their total magnetic mo-
ment M, consisting in the sum of the atomic moments of
their magnetic ions.

B. Magnetic Anisotropy

The magnetization of a FM material tends to point
along some preferential directions due to magnetic
anisotropy energy. Anisotropy is mainly caused by the
shape of the NP and the spin orbit coupling to the crystal
lattice. In our work, we will focus on quasi spherical NP
with an effective uniaxial anisotropy resulting from both
contributions. In this case, the anisotropy energy can
be represented as a polynomial series based on the angle
(θ) that the magnetization (M) forms with the principal
crystallographic c-axis (see Fig. 1):

Euniaxial
mc = K0 +K1 sin

2 θ + ...... , (2)

where K0 and K1 are the ’anisotropy coefficients’, con-
stants that depend on the material properties and its
temperature. The K0 term is angular independent, and
will be consequently ignored. For K1 > 0 the easy-axis
lies along the c-axis (θ = 0).

FIG. 1: Schematic representation of the magnetization in
spherical coordinates.

C. Stoner-Wohlfarth model

The Stoner-Wohlfarth model is used to characterize
the M rotation of a single domain NP in a magnetic
field [8]. It assumes a rigid exchange coupling between
the atomic spins of the NP and, as a result, the module

of the total magnetic moment is constant. This means
that our NP’s atomic magnetic moments will all rotate
as a single entity which is the total magnetization M.
When an external magnetic field H is applied to a FM
NP, M will tend to point towards it in order to minimize
the Zeeman energy (see Fig. 2). If the magnetic field is
applied at an angle α from the easy axis, the total energy
is given by:

E = Ku sin
2 θ −MH cos(α− θ) , (3)

where the first term is due to the magnetic anisotropy
(Eq. (2)) and the second one is the Zeeman energy.

FIG. 2: Schematic representation of the magnetization direc-
tion change due to an external magnetic field.

III. PATH INTEGRAL METHOD

In classical mechanics, the trajectory that a particle
follows from one point to another one is unique and will
be the one that minimizes the classical action S:

S =

∫ tf

t0

Ldt , (4)

where L is the Lagrangian of the system. In contrast, ac-
cording to the path integral formulation of quantum me-
chanics [9], all possible trajectories must be taken into ac-
count when computing the transition amplitude between
two states:

⟨xf | e
1
ℏ Ĥ(tf−t0) |x0⟩ =

∫ xf

x0

Dxe
i
ℏS(t) , (5)

where Dx indicates the sum over all possible paths be-
tween point x0 and xf , and the imaginary exponential
function is the phase that represents the contribution of
each path to the transition amplitude.
Switching to imaginary time with the substitution τ =

it, the exponential part of Eq. (5) becomes

B ≡ S(τ)
ℏ

= −1

ℏ

∫ τf

τ0

L(τ)dτ . (6)

Due to the similarity of Eq. (5) with the WKB probabil-
ity transition rate, we can express it as

Γ = Ae−B , (7)
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where A is a prefactor that accounts for fluctuations
around the minimal action trajectory and has a value of
the order of the frequency of small oscillations ω around
x = x0. For a macroscopic particle, the imaginary time
action is large in comparison with ℏ, hence only trajec-
tories near the one that minimizes the action will sig-
nificantly contribute to the path integral. Consequently,
we will approximate the latter using the saddle point ap-
proximation.

Particularizing this problem to a particle of mass m in
a 1D potential U(x) at T → 0 [3]: Lτ = ẋ2

τ/2 + U(x).
The particle will tunnel from x0 to xf with an imaginary
time period of τT = ℏ/T → ∞ and then the transition
will take place from τ0 = −∞ to τf = ∞. The extremal
trajectory that minimizes the action satisfies

ẍ =
dU(x)

dx
, (8)

which is the classical equation of motion for a particle
in an inverted potential −U(x) (see Fig. 3). There are
three solutions to this equation that satisfy the condition
of periodicity: x = x0, x = xf and x = xb(τ). The last
one is the non-trivial solution called bounce trajectory or
instanton. By switching to an imaginary time action, we

FIG. 3: Representation of the potential inversion when time
is switched to an imaginary time.

have obtained a classical trajectory for a pseudoparticle
(instanton) going down the slope of an inverted poten-
tial to tunnel though the barrier [11]. Summarizing, the
exponential factor in the Γ corresponds to the Euclidean
action evaluated along the instanton solution, which is
the classical trajectory in the inverted potential −U(x).
For the case of spin tunneling, all the above formalism

can be adapted to the calculation of the SQT rate by
changing the Lagrangian and the coordinates appearing
in the path integral of Eq. (5). First, notice that now ϕ is
the dynamic coordinate and, therefore, the conjugate mo-
mentum is p = M0/γ cos θ. Using this correspondence,
the action for spin tunneling becomes

S(τ) =
∫ ∞

−∞
dτ

(
−i

M0

γ
ϕ̇ cos θ − E(θ, ϕ)

)
, (9)

where E(θ, ϕ) is the total energy. Moreover, it is impor-
tant to note that the equations of motion derived from
this Lagrangian reproduce the Landau-Lifshitz Eq. (1),
in imaginary time, correctly.

IV. TRANSITION RATE CALCULATION

The transition rate Γ will now be computed using the
Stoner-Wohlfarth model and the integral path method for
a particular case. It consists of a uniaxial single-domain
NP with the easy-axis oriented in the ’c-axis’, under the
influence of an external magnetic field H applied per-
pendicular to it. Its potential energy per unit volume is
[6]:

E(θ, ϕ) = K sin2 θ −HM0 sin θ cosϕ+
H2M2

0

4K
, (10)

where the third is a constant that enforces Emin = 0.
The two stable states (E = 0) for the magnetization

are found at θ0 and π − θ0, where: sin θ0 = 2KH/M0.
Initially, M0 points at θ0 and will tunnel to the other
stable state (at π−θ0) overcoming the anisotropy energy
barrier.
The external magnetic field is applied in order to re-

duce this barrier and increase the probability of MQT.
At H = Hc ≡ 2K/M0 (called coercive magnetic field),
the barrier disappears and the two stable states merge
into one stable state at θ = π/2 (see Fig. 4).

FIG. 4: Potential energy E per unit of volume as a function
of θ at ϕ = 0. Three different dependencies are shown for
different values of the external magnetic field: H = 0 (violet),
H < Hc (blue) and H = Hc (red).

To compute Γ at T = 0, the instanton solution will
be calculated first. We begin by using the total energy
expression Eq. (10) into the Landau-Lifshitz equation (1)
expressed in the spherical coordinates of Fig. 1. After
some algebra, we obtain the following two equations for
the spherical angles:

θ̇ = −iHλ sinϕ (11)

ϕ̇ = i
γ

M0
(2K cos θ −HM0 cot θ cosϕ) , (12)
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where θ̇ and ϕ̇ are the derivatives of θ and ϕ with respect
to the imaginary time τ .
Now, instead of solving the equations for θ(τ), ϕ(τ) and

substituting in Eq. (9), which leads to intricate calcula-
tions. We take advantage of energy conservation (E = 0),
to obtain an expression that relates ϕ with θ, so that the
two differential equations are reduced to just one:

θ̇ =
Hγ

2 sin θ0

sin2 θ − sin2 θ0
sin θ

. (13)

The solution to this equation gives the instanton tra-
jectory in spherical coordinates as

cos θ(τ) = − cos θ0 tanh(ωbτ) (14)

sinϕ(τ) = i
cot2 θ0 sech

2(ωbτ)

2
√
1 + cot2 θ0 sech

2(ωbτ)
, (15)

where we have defined ωb ≡ Hγ
2 tan θ0

that corresponds to
half the frequency of small oscillations in either potential
well.

The action for the particle can now be calculated using
Eq. (9) and the instanton trajectory, along which the
energy is conserved and, therefore, equal to zero:

S = 2M0

(
− cos θ0 +

1

2
ln

(
1 + cos θ0
1− cos θ0

))
. (16)

Finally, the exact expression for the tunnel probability
rate is then (using Eq. (7)):

Γ ∝ exp

[
−2M0

ℏ

(
− cos θ0 +

1

2
ln

(
1 + cos θ0
1− cos θ0

))]
(17)

(by saying ’exact’ we refer to the exponential factor, the
expression is not exact, it lacks the prefactor).

We would like to obtain now the dependence of Γ with
H, which is the only parameter that can be tuned exter-
nally in this example. When H → Hc, we expect Γ to
be maximum as both the width and height of the energy
barrier decrease when approaching the coercive field (see
Fig. 4). To do so, we define ϵ ≡ 1 − H/Hc (closeness
to the coercive field) and the (small) angle between the
magnetic field and the magnetization vector δ = π

2 − θ.
Both tend to zero in this limit.

Therefore, the stable magnetization directions can be
approximated by δ0 = ±

√
2ϵ. After performing a Taylor

expansion of the cosine and the natural logarithm, the
tunneling rate becomes:

Γ ∝ exp

(
−2M0V

3ℏγ
(2ϵ)3/2

)
. (18)

This expression confirms our premises. In order to ob-
serve SQT experimentally, a magnetic field perpendic-
ular to the easy-axis with a value close to the coercive
field (Hc) should be applied. The prefactor of Γ has not
been calculated because the exponential component of
the transition rate dominates (see [6] for details of the
calculation).

V. ANALYSIS OF THE RESULTS

Thermal and Quantum regimes. SQT has been
studied for a system at T = 0, yet in reality, finite tem-
perature effects compete with the quantum ones. At fi-
nite T , thermal activation over an energy barrier U0 can
also occur, with a transition rate given by Arrhenius law
[3]

ΓT ∝ exp

(
− U0

kBT

)
. (19)

Equating ΓT to the T independent SQT rate found in
Eq. (18), a critical temperature (Tc) below which dynam-
ics will be governed by quantum effects can be obtained

Tc ≈
3ℏγ
2kB

U0

M0
(2ϵ)−3/2 . (20)

Inserting typical K and M0 values for a FM NP of 10 nm
and using ϵ = 0.01, Tc is be estimated to be in the range
of 0.01 − 1 K, depending on the material. Therefore,
observation of SQT effects requires the study at very low
temperatures.
Experimental manifestations of SQT. One way

to evidence SQT, is through the study of the magnetic
relaxation effect. It occurs when, after aligning M along
an external field direction, it relaxes back to its equilib-
rium value once the magnetic field is suppressed

M(t) = M0e
−Γt , (21)

where Γ will follow the Arrhenius law for T > Tc Eq. (19)
and the SQT temperature-independent rate expression
for T < Tc Eq. (17).
The Eq. (21) above assumes a magnetic NP with a

single energy barrier. However, since in practice exper-
iments are performed on a NP ensemble, there will be
a distribution of volumes and anisotropy barriers. It is
not difficult to show that when averaging the previous
equation over a barrier distribution, the long time de-
pendence of the total magnetization can be described by
a logarithmic law as

M(t) = M0(t0)[1− S(T,H) ln(t/t0)] , (22)

where S(T,H) is called magnetic viscosity, which is in-
versely proportional to the mean energy barrier. It
should be linear with T if relaxation is driven by ther-
mal fluctuations and should become constant at T < Tc,
where SQT dominates.
In the 90’s, several experiments to evidence this be-

haviour in NP were attempted [10]. As an example, we
show in Fig. 5 the results for an assembly of maghemite
NP with diameter < 10 nm. As can be seen in the inset,
the viscosity seems to become independent on T below 2
K, although the results are not really conclusive due to
the lack of points at lower temperatures. At the time,
experiments with similar results were reported in NPs of
other compositions and in thin films. Evidence of MQT
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effects have been also reported in antiferromagnetic NPs
[12] (where they should show up at higher T ) and even
in domain walls [4]. However, all of these experiments
have been debated due the difficulties in the interpreta-
tion of the experimental techniques. Perhaps, the most
clear-cut manifestation of MQT effects up to date has
been reported in molecular magnets [5], which are small
magnetic clusters, consisting of a small number of ions,
with a total magnetic moment of the order of tenths of
µB that can be chemically synthesized all equal. In this
case, the steps that appear in the low T hysteresis loops
are a manifestation of resonant QT between the discrete
energy levels of the molecule.

FIG. 5: Temperature dependence of the magnetic viscosity in
arbitrary units measured in an assembly of maghemite NPs.
The magnetic relaxation was recorded using a SQUID mag-
netometer after switching the field to H = −50 Oe. The inset
shows a zoom of the lowest temperature region. (Reproduced
from [10]).

VI. CONCLUSIONS

In this work, we have presented a general theoretical
framework to compute tunneling rates in magnetic sys-
tems. Starting from the general path integral formula-
tion to compute transition probabilities, we have shown
how it can be adapted to the case of a tunneling variable
that corresponds to the macroscopic magnetization of a
single-domain ferromagnetic NP.

We have reviewed some key concepts of magnetism at
the nanoscale relevant to the problem at hand, such as
magnetic domains, magnetic anisotropy, and the Stoner-
Wohlfath model for a macrospin at T = 0. From these,
we have obtained an expression for the potential energy
barrier of a single-domain NP, with uniaxial anisotropy,
under the action of a transverse magnetic field along, as
well as its energy, which are basic ingredients for the cal-
culation of tunneling rates. We have used this exemplary
case to show explicitly how to evaluate the tunneling ex-
ponent by using the instanton method. This approach
have allowed us to obtain an exact analytic expression
for the exponential factor of the tunneling rate.
Furthermore, we have analyzed the requirements for

the most favorable experimental observation of SQT ef-
fects, calculating also the critical temperature below
which quantum effects dominate over thermal effects.
Our calculations reveal that by finely tuning the field
to a value close to the coercive field and considering NP
with sizes in the range of < 10 nm, SQT in a single NP
could potentially be observed at temperatures lower than
few K.
Lastly, we have reviewed some examples of experimen-

tal results that have attempted to demonstrate SQT,
critically discussing the challenges and limitations en-
countered. While the theoretical basis for SQT is well-
established, in our opinion, a conclusive experimental
demonstration of this quantum effect in single NP is yet
to be achieved. This is due to the difficulties in measur-
ing the small magnetic moment associated to a single NP
and the low temperatures required.
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