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Abstract: Odour is a human perception whose relationship with chemical composition is un-
known. Contrary to the olfactometric measurement techniques, senso-instrumental methods pro-
vide real-time odour monitoring. The study presents a drone equipped with an electronic nose that
generates dynamic sensor signals for the classification and quantification of odours in wastewater
treatment plants. By calibrating predictive models with Machine Learning algorithms, odour/non-
odour samples are classified with 93% accuracy, and odour concentration is predicted 95% limits of
agreement within a factor of four, in comparison with dynamic olfactometry measurements.

I. INTRODUCTION

Odour pollution is currently a significant environmen-
tal and human health issue. Due to advancements in soci-
ety, there is a growing number of odour-emitting sources,
and wastewater treatment plants (WWTPs) are one of
the primary contributors. These emissions have an im-
pact on well-being and air quality in the nearby area, and
can even lead to health and psychological problems.

Understanding odour as a human perception, its char-
acterization has become a challenge. This difficulty arises
from its subjectivity nature and the complexity of its
chemical composition. In recent years, the main purpose
has been to estimate odour intensity via standardized
methods.

According to the European standard EN13725:2022,
its quantification is determined in a laboratory by dy-
namic olfactometry, a sensorial technique that correlates
odour concentration with the human sense of smell. This
measurement, carried out by trained human panels, rep-
resents the dilution factor required for a sample to reach
its odour detection threshold concentration (ouE/m

3).
Since the referenced method is a slow process and re-
quires multiple sampling, real-time odour monitoring is
not feasible. These limitations, along with the variability
in results, highlight the need for alternative techniques.

Instrumental Odour Monitoring Systems (IOMS) [1],
commonly known as electronic noses, are devices trained
to classify and quantify odours by analyzing the dynamic
electrical signals provided by poorly-selective chemical
sensors. Their aim is to establish the relationship be-
tween sensors response and odour concentration, which
is unknown a priori. Using algorithms that learn from
samples, we are able to solve the problem and experi-
mentally measure what is actually a human perception.

There is also a necessity to study complex environ-
ments such as WWTPS, where there are numerous
odour-emitting sources. A novel approach to odour moni-
toring in these areas is the utilization of drones equipped
with e-noses, because they allow for quickly measuring
different positions. In this study [2], a similar IOMS
was employed to monitor odour in the WWTP of Molina
de Segura (Murcia, Spain). The drone hovers above

the WWTP following a predefined navigation path and,
at each point of interest, the chemical sensors continu-
ously measure for a specific period of time. The drone
is also equipped with an odour sampling device to mea-
sure the odour concentration using dynamic olfactome-
try. Moreover, odourless samples (blanks) are character-
ized through sensor measurements in the surroundings.
By covering the entire area, an odour concentration map
can be developed to study odour propagation and the
interaction of emissions from different sources.
The main goal of this TFG is to estimate the emitting

odours of a WWTP by processing the sensor signals us-
ing Machine Learning methods. As the odour concentra-
tions of the samples are known, two types of problems are
addressed. On one hand, the classification aims to dis-
tinguish between odour and non-odour samples. On the
other hand, the regression problem involves predicting
the odour concentrations for each sample. To approach
these issues, the data needs to be initially preprocessed
and then analyzed, improving the accuracy of the IOMS.

II. EXPERIMENTAL METHODS

The drone used in Molina de Segura WWTP is the
DJI Matrice 600 [2]. It is a rotary-wing small drone with
a wide range of applications in aerial monitoring. The
structure incorporates an air sampler and a customized
IOMS. As pollution gases at the WWTPs environment
are composed of a mixture of gases, the e-nose requires
a multi-sensor system. It includes low-cost chemical sen-
sors with a fast response time: there are 4 electrochemi-
cal sensors (H2S, NH3, SO2, CO), 16 metal oxid sensors
(MOX) and one infrared (CO2). The odour sampling
device and IOMS are both connected to vacuum pumps
that draw in the samples through a tube. By connecting
the two tubes, we ensure that both samples are identi-
cal, enabling a reliable comparison between the results of
dynamic olfactometry and e-nose signals.
As mentioned, the drone hovers at a point while sen-

sors measure over a 5-minute period. Nine records per
minute are logged, so each sensor generates a spectrum
signal of 45 data points evenly distributed in time. In the
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second minute, the air sample device is opened for one
minute to collect the sample. After the 5 minutes, the
drone is landed to retrieve and replace the air sampling
bag for the next measurement. Once the full process
is completed, the samples are transported to Odournet,
S.L. (Sant Cugat), a dynamic olfactometry laboratory.

A four-day measurement campaign [2] was carried out
at the WWTP during the summer of 2020, when odour
intensifies. A total of 72 samples were obtained, including
41 odour measurements and 31 blanks. The odour ones
were taken around the four main sources of odour emis-
sions: settler, bioreactor, chimney and desander. Mean-
while, the blank samples were collected in different points
from the surrounding area, where odour was not per-
ceived by the expedition members.

III. MACHINE LEARNING METHODS

Machine Learning (ML) methods are used to predict
response values. Supervised learning develops models us-
ing input and output data.

The sensor signals provide features that characterize
the samples. As there are a total of 21 sensors and each
sensor generates 45 data points, a vector of m = 945
(21× 45) values is obtained per sample. Considering all
n = 72 samples, the input data is a resulting feature
matrix X (n×m) with 72 samples per 945 features.
Classification and regression problems are addressed

using different datasets. For classification, the entire ma-
trix X is used as input data, and the output is based on
a feature y (n × 1) with categorical variables to distin-
guish the odour samples from the blanks. For regression,
the blanks and one outlier were excluded, resulting only
nreg = 40 samples. The dimensions of matrix Xreg are
nreg × m and odour concentrations are represented in
yreg (nreg × 1) as continuous variables.
This high-dimensional problem, with a few number of

samples (n < m) and features strongly correlated, is ap-
proached using multiple linear regression models. A lin-
ear combination of the variables is built to predict y:

ypred = Xβ + ε (1)

where β (m × 1) is the vector of regression coefficients
and ε (n×1) stands for random errors. The aim is to un-
derstand the data behavior, predict odour concentration
and blanks, and identify important predictors.

A. Dataset preprocessing

Preprocessing data is a crucial step in ML before mod-
elling, in order to identify significant information. The
matrix X and feature y are logarithmically transformed
to map data onto a Gaussian distribution, reducing dis-
persion, improving normality and linearizing the corre-
lation between X and y. Once the training and test
partition is done, each dataset is mean-centered per fea-
ture: this standardization removes any bias or offset and
reduces the multicollinearity between predictor variables
(features). Furthermore, signal noise is reduced and rel-
ative changes in sensor response are amplified.

B. Cross-validation

To avoid overfitting, generalize the models for un-
seen data and accurately assess its performance, cross-
validation (CV) technique splits the data into multiple
training and test sets. In this study, a double CV is de-
veloped. Firstly, in external validation, four models are
built using one of the four days’ data as the test set and
the remaining three for training. A second data partition
(internal validation) is necessary for each model’s train-
ing set, in order to calculate the optimal hyperparameters
of the ML models. Although K-fold would be an inter-
esting data splitting, the different test sets are composed
by samples from each source and day. For classification
problems, blanks are evenly distributed across all sources.

C. PLS and PLS-DA modelling

Partial Least Squares (PLS) and PLS Discriminant
Analysis (PLS-DA) modelling are properly used for the
requirements of the problem, as there are more predic-
tors than equations. By maximizing the covariance be-
tween X and y, the algorithm projects data onto a lower
dimensional space defined by latent variables (LVs) [3].
X-scores (n×h) is refered to the resulting projected data,
and its dimension corresponds to the number h of LVs,
which are orthogonal to each other.
Identify the important variables is essential for vari-

able selection and, consequently, model optimization.
The large of the PLS-regression coefficients β and PLS-
weights ω (m× h) can provide an initial idea, but the

TABLE 1: Number of samples collected in WWTP of Molina de Segura and categorized by sources and odour/non-odour.

Day Date Settler Bioreactor Chimney Desander Total (odour) Blanks Total

1 24/06/2020 2 3 3 1 9 7 16

2 25/06/2020 2 2 2 2 8 6 14

3 14/07/2020 3 3 3 3 12 11 23

4 15/07/2020 3 3 3 3 12 7 19

All days 10 11 11 9 41 31 72
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method used is variable importance in projection (VIP).
VIP summarizes the importance of each predictor j by
considering the weights and the explained variance in y
of each LV. The VIP score [4] for the jth predictor is
calculated as:

νj =

√√√√√p

∑h
a=1 R2(y, ta)

(
ωaj

||ωa||

)2

∑h
a=1 R2(y, ta)

(2)

where p is the number of predictors (features) and R2

is the coefficient of determination between y and the
eigenvectors of each component (ta). The criterion used
for feature reduction is Recursive Feature Elimination
(RFE), an algorithm that iteratively discards a percent-
age of features with the lowest VIP scores.

PLS modelling predict continuous variables and is used
for regression problems. The same algorithm can also
be applied for classification but an additional step is re-
quired: PLS-DA transforms the y variables into categor-
ical ones. In this case, a threshold classify the samples:
values below it are assigned to one category, while values
above it belong to the other one. The chosen thresh-
old is the intermediate value between the two categorical
variables that distinguish odour samples from blanks.

D. LASSO and logistic LASSO regression

Regularization models are often used to discard un-
informative variables in the data. One of these sparse
methods is LASSO (Least Absolute Shrinkage and Selec-
tion Operator) regression, which adds a ℓ1-norm penal-
ization to the cost function. The objective is to minimize:

min
β

 n∑
i=1

(yi − β0 −
m∑
j=1

βjXij)
2 + λ

m∑
j=1

|βj |

 (3)

optimizing β and where λ > 0 is the ℓ1-norm regulariza-
tion parameter. It sets some model coefficients to zero

and thus manages automatic feature selection.
On the other hand, logistic regression is used for odour

classification [5] (yodour = 1, yblank = 0). The standard
logistic function is referred to the predicted probability:

pi = P (yi = 1|Xi) =
1

1 + e−(β0+Xiβ)
(4)

This function can be transformed to a linear regression
as yi,pred = β0 + Xiβ = log pi

1−pi
and results are found

minimizing a cost function with ℓ1-norm regularization
parameter (λlog), similar to the previous one. Finally,
samples are classified by applying a threshold (0.5) to y
predicted, expecting a categorical target.

IV. RESULTS AND DISCUSSION

The preprocessed matrix X is illustrated in FIG. 1,
where each sample vector is color-coded based on its
odour concentration (y). As a preliminary observation,
sensors exhibiting greater signal variance demonstrate
higher sensitivity to odour, thereby contributing more
valuable information to the classification and regression.
The VIP score for each predictor is calculated as the

average of the VIP scores for the four models built in
external validation. By the results shown at FIG. 2, we
confirm the important electrochemical sensors and the
few relevant MOX sensors for PLS and PLS-DA mod-
elling. Additionaly, it can be observed that the outstand-
ing measurements over the five-minute period are around
the third minute. This pattern holds true for all sensors
except for H2S and CO in PLS-DA.

A. Classification

In classification problems, although it may not be the
most suitable metric to evaluate the model due to imbal-
anced data, the optimal hyperparamaters are selected by
maximizing the accuracy score in internal validation.

FIG. 1: Mean-centered values of sensor signals for all samples, colored by odour concentration.
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FIG. 2: VIP scores for each feature in PLS-DA and PLS modelling. The air sampling minute per sensor is colored red.

For PLS-DA modelling, ten internal validation models
(i = 1,...,10) are constructed using a different number of
LVs (LVi = 1,...,10). Since the four external models con-
sist of different sub-models, the accuracy and the average
accuracy is computed for each. By applying the ”elbow
rule” [5], the optimal number of LVs determined is 3.

The PLS score plot of FIG. 3 shows a clear separa-
tion between odour and non-odour samples in different
regions of the reduced-dimensional space. The cluster-
ing observed suggests that the model based on all e-nose
signals is able to distinguish the blank measurements.

In reference to VIPs presented in FIG. 2(a) and using
the the “greater than one rule” [4], H2S, NH3, CO, M1,
M3, M6 and M7 (VIP sensors) are selected for model op-
timization. Then, with the same number of LVs, RFE
is applied discarding a 10% of data per iteration. Fea-
tures are recursively eliminated until a sudden change in
accuracy takes place, known as the “knee of the curve”.
This cutoff point represents where model may reduce its
performance due to the removal of important features. It
is determined through internal validation, creating sub-
models with the different number of features.

Otherwise, in logistic LASSO regression, multiple in-
ternal validation models are created considering a wide
range of regularization parameter values. After deter-
mining the appropriate order of magnitude, the accuracy
is maximized again and the most suitable value found is
λlog = 6.5. The algorithm automatically selects the same
sensors as those chosen in PLS-DA previously, setting the

FIG. 3: PLS score plot of model 1 (day 1 as validation day).

coefficients of the remaining sensors to zero.

By looking at the regression coefficients of both ML
algorithms, we ensure that the four external validation
models are comparable with each other because their co-
efficients are highly similar. Moreover, the coefficients for
the central period of sensor measurements are the larger
ones, as VIPs predicted. It may be a consequence of the
response time needed for the sensors and will affect on
feature selection. On the contrary, H2S and CO sensors
have a different behaviour. H2S coefficients appear to be
shifted down, possibly indicating the presence of an offset

TABLE 2: Results of confussion matrix (odours as P; blanks as N) and classification metrics using different ML methods.

Model # Features TN TP FN FP Accuracy Precision Sensitivity Specificity F1 score

Logistic LASSO regression 945 29 34 2 7 88% 94% 83% 94% 88%

PLS-DA 945 26 38 3 5 89% 88% 93% 84% 90%

PLS-DA-RFE 191 27 40 1 4 93% 91% 98% 87% 94%
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CO seems to measure the derivative of the signal ob-
served in the other sensors. This discrepancy could be
attributed to sensor sensitivity.

The results shown in TABLE 2 demonstrate the abil-
ity of PLS-DA and logistic LASSO regression to classify
odour samples from blanks with a 88% and 89% accuracy,
respectively, using the entire matrix. PLS-DA-RFE re-
ducesX and a 93% accuracy is achieved. Only the central
features from MOX VIP sensors are selected, together
with all measurements of H2S, NH3 and CO.

B. Regression

In regression problems, the root mean squared error
(RMSE) is minimized in internal CV using training sets.
For PLS modelling and LASSO regression, hyperparam-
eters are selected following the same procedure as for
PLS-DA and logistic regression, respectively. The opti-
mal number of LVs is 2 and λ = 3.7× 10−2.

According to FIG. 2(b), 5 sensors take importance in
PLS: H2S, NH3, M3, M6 and M7. In the case of LASSO
regression, just a few features of NH3 sensor are selected
by the 4 models. It suggests that this sensor is the crucial
one to predict odour concentration. Even so, the results
presented in TABLE 3 show that LASSO predictions are
not as favourable as the ones of the optimized PLS model.
PLS-RFE improves results by selecting only the features
with the highest VIP scores, corresponding to NH3.

FIG. 4: Predicted and real odour concentration for the opti-
mized PLS-RFE model, labelling the source of the samples.

TABLE 3: Predictive performance of odour concentration for
different ML models. Bias is negligible in all results.

Model # Features RMSEP Correlation LoA

LASSO 945 2.28× 0.79 [0.19×, 5.19×]

PLS 945 2.74× 0.67 [0.13×, 7.52×]

PLS-RFE 8 2.15× 0.82 [0.22×, 4.61×]

Limits of agreement (LoA) represents the 95% confi-
dent of the differences between the predicted odour con-
centration and dynamic olfactometry results. LoA for
dynamic olfactometry is already [0.5×, 2×] and a factor
of four is obtained with PLS-RFE. RMSEP is reduced to
a factor of two and FIG. 4 displays a correlation of 82%.

V. CONCLUSIONS

In this TFG, we have demonstrated that a flying elec-
tronic nose predicts with precision the odour in aWWTP,
which can have environmental interest. By using the pro-
posed IOMS, we obtain sensor signals and odour con-
centration for samples from four sources and for blanks.
Different ML methods are proposed in order to classify
and quantify odour. We present a double CV and a fea-
ture selection algorithm to assess their performance and
improve their reliability.
On one hand, PLS-DA and logistic LASSO regression

models classify accurately odour and blank samples us-
ing H2S, NH3, CO, M3, M1, M6 and M7 sensors. On the
other hand, PLS-RFE and LASSO identify that NH3 is
the unique relevant sensor for predicting odour concen-
tration. Furthermore, we have discussed that the impor-
tant sensor response is situated in the middle of measure-
ments, so these features will be selected for optimization.
The satisfactory results found indicate that this

methodology could be an alternative to detect odour
emissions in WWTP before they impact negatively in
nature and society. Even so, due to the few samples used
to calibrate the models, we are probably underestimat-
ing the complexity of the problem and it is necessary to
continue investigating for better conclusions.
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